
MEASURING CHARACTERISTICS OF RILL

EROSION USING IMAGE PROCESSING

TECHNIQUES

By

CHRISTINE THERESA RICE
I)

Bachelor of Science in Agricultural Engineering

Oklahoma State University

Stillwater, Oklahoma

1985

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

MASTER OF SCIENCE
December, 1987

1~4$iS
19<61
~4'1SM
C:~f. ~

~ : ;

: > ·~ .~ • :-- _./ ; '.·., .~

MEASURING CHARACTERISTICS OF RILL

EROSION USING IMAGE PROCESSING

TECHNIQUES

Thesis Approved:

Thesis Adviser

Dean of the Graduate College

ii

1291044

PREFACE

This study is concerned with measuring soil profiles and velocity using

image processing techniques. The main objectives are to develop the apparatus

and algorithms and test the system. This research has been completed at

Oklahoma State University in the Agricultural Engineering Department. The

apparatus and testing materials were constructed in the Ag Engineering

Laboratories. The profiles used in this research were preformed and the

velocities were limited to known parameters. This project did not measure actual

field properties, but extensions of this research will. The image processing techni­

ques are limited to the capabilities of an IBM-AT complete with accessory boards.

I wish to extend my sincere thanks to my major advisor, Dr. Bruce Wilson, for

his patience, guidance and assistance throughout the entire cource of study.

Appreciation is also expressed to the other committee memberrs, Dr. Glenn A.

Kranzler and Dr. Greg Hanson for their advice and suggestions and their assistance

in the preperation of the fin al manuscript.

A special note of thanks is given to Mark Appleman who was responsible for

writing the majority of the software for the system and being available when

problems occurred. His assistance and talents have been much appreciated.

Thanks is also extended to Mr. Wayne Kiner and his staff, especially Robert

Harrington, at the Agricultural Engineering Laboratory for their assistance in

constructing the system apparatus.

I would also like to thank my husband. Chris, for his understanding and

patience thoughout this research, especially during the final stages.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION

II. LITERATURE REVIEW . 3

Introduction . 3
Overview of Erosion Research . 3

History . 3
Erosion Process . 4
Measurement and Experimentation 5

Techniques of Measuring Soil Profiles . 6
Introduction . 6
Pin Displacement Units . 6
Height Transducers . 10
Non-Contact Meters . 13

Techniques of Measuring Velocity in Rills 15
Introduction . 15
Pitot Tube Measurments . 15
Hot Film Anemometry . 16
Dye Method ·. 18

III. INSTRUMENTATION SYSTEM . 20

Introduction . 20
Erosion Table . 20
Soil Profile Measuring Equipment . 23

Mechanical Driving System . 23
Image Processing System . 27

Velocity Measuring Equipment . 30

IV. IMAGE PROCESSING SOFTWARE 31

Introduction . 31
DT-IRIS Software Functions 31
Soil Profile Software Algorithm . 32

Structured Lighting Concepts ·. 32
General 32
Geometry Considerations . 32

·Profile Measurement Software . 37
Velocity Software . 38

Connectivity Analysis . 38

iv

Chapter Page

Velocity Algorithm . 39

V. EXPERIMENTAL PROCEDURES 41

Introduction . 41
Calibration Procedures . 41

General . 41
Vertical Direction . 42
Horizontal Plane (x and y directions) 44

Testing Procedures . 47
Surface Profile Measurements . 47

General 47
Rigid Objects . 47
Soil Profile . 49

Velocity Measurements . 50

VI. RES UL TS AND DISCUSSION • . 52

Introduction . 52
Profile Measurements . 52

Rigid Objects . 52
Soil Profile "' . 55
Applications . 61

Velocity Measurements 63
Comparison Test . 63
Accuracy Test . 63

VII. SUMMARY AND CONCLUSIONS 68

Recommendations for Future Research . 70

REFERENCES CITED . 71

APPENDIX A - CALIBRATION PROGRAMS . 75

APPENDIX B - SOIL PROFILE MEASURING PROGRAMS 88

APPENDIX C - VELOCITY MEASURING PROGRAMS 107

v

LIST OF TABLES

Table Page

I. Actual and Measured Block Heights
of Rectangular Blocks . 54

II. Summary of Height Measurements . 56

III. Actual and Measured Height Dimensions
of Trapezoidal Notched Blocks . 57

IV. Actual and Measured Width Dimensions
of Trapezoidal Notched Blocks . 58

V. Comparison of Live and Recorded Velocities 65

VI. Actual and Measured Velocities . 66

vi

LIST OF FIGURES

Figure Page

1. Pin Displacement Unit 7

2. Height Transducer Probe . 11

3. View of Erosion Apparatus . 21

4. Side View of Erosion Table . 22

5. Schematic of Instrumentation Rack . 24

6. Vertical Direction Driving Mechanism . 26

7. Structured Lighting Equipment_ . 28

8. Schematic Illustrating Structured Lighting Concepts 33

9a. Two Dimensional View of y-z Plane . 35

9b. Two Dimensional View of x-z Plane . 35

IO. Schematic Illustrating Change in K with Elevation 45 y

11. Symbols of Trapezoidal Notches Used in
Tables III and IV . 48

12a. View of a Trapezoidal Notched Block . 53

12b. Corresponding Screen Image of Laser Line . 53

13. Soil Profile for Sandy Soil . 59

14. Soil Profile for Loam Soil . 60

15. Topographical and Cross-sectioal View of Soil
Surface Area . 62

16. Displacement of Beads for Velocity Algorithm 64

vii

CHAPTER I

INTRODUCTION

As water strikes the earth and flows over the land surface, soil particles are

detached and transported. This process is generally referred to as water erosion.

Although erosion is a natural geological process, society has greatly accelerated

erosion rates with land disturbing activities associated with agriculture, urban

development, silviculture and surface mining.

Water erosion is damaging in many ways. Soil depth is decreased; plant

nutrients are removed; texture is changed; structure is degraded; productive

capacity is reduced; and fields are dissected. Sediments produced by erosion

pollute streams and lakes and are deposited on bottom lands and in channels and

reservoirs.

The most apparent damage caused by water erosion is the removal of soil.

Grant (1975) has indicated that erosion can vary from less than 1 metric ton/

hectare/year from land covered with perennial vegetation, either grass or trees, to

more than 450 metric tons/hectare/year from bare, cultivated fields. Although any

soil loss is a concern, topsoil loss is most important (Troeh et al., 1980). Topsoil is

generally more friable and more permeable to water, air and roots than deeper soil,

and contains more organic matter and fertility than subsoils.

DeBoodt and Gabriels (1980) researched the severity of erosion on a world

wide basis. Virtually every area in the world where food and fiber are produced

must deal with water erosion. Of course the problem is worse in high rainfall areas,

but not necessarily absent in low rainfall areas. In 1978, scientists from North

1

2

America, Africa, Australia and Europe met in Belgium to assess the world wide

water erosion problem; all agreed that soil erosion is a universal threat to present

and future crop production (DeBoodt and Gabriels, 1980).

Soil erosion and subsequent deposition are also nonpoint pollution sources.

They adversely affect the quality of our flu vial systems by changing the aquatic life

in streams and rivers, reducing the storage capacity of reservoirs and lakes, clogging

navigable waterways, and transporting land-applied chemicals which otherwise

would not enter the stream ecosystem. Erosion related pollutants have been

estimated to impose net damages of $3.2 to $13 billion per year in the United States,

with a single value estimate of $6.1 billion (Clark et al., 1985). Considering these

impacts, it is not surprising that the USGS Water Resource Division Memorandum

No. 85.80 places a highest priority in expanding the data base on the processes

governing erosion, sediment transport -and sediment deposition.

As the result of advancing technologies, innovative instrumentation techni-

ques for gathering and expanding the erosion data base are possible. These techni-

ques have the potential to gather data more accurately and efficiently than current

methods allowing for more comprehensive analyses of erosion processes. An impor-

tant advancing technology is low cost image processing systems. The application of

this technology in quantifying erosion processes is the general thrust of this study.

The specific objectives of this study are:

I. To design and develop an apparatus to measure soil profiles and water
velocity using image processing techniques,

2. To test the system for measuring soil profiles using rigid, well-defined
objects of known size and shapes and using actual soil profiles,

3. To test the system for measuring water velocities using known velocities of
small wooden beads.

CHAPTER II

LITERATURE REVIEW

Introduction

Advances in reducing water erosion are ultimately linked to obtaining a better

understanding of the erosion process. Theoretical modeling can provide valuable

insight into this process. Nevertheless, this work still relies on comparisons

between predicted and measured values. As more fundamentally-based erosion

models are proposed, the need to measure fundamental processes more accurately

increases. This places a greater demand on instrumentation systems.

In this chapter, a brief overview of erosion research will first be given to

provide a historic perspective and to underline important physical processes. The

remaining sections will focus on current instrumentation techniques for measuring

soil erosion processes. Emphasis will be on techniques for measuring soil profiles

and for estimating flow velocities in rills.

Overview of Erosion Research

History

The first scientific investigations of erosion were carried out by the German

soil scientist Wollny, between 1877 and 1895 (Hudson, 1981). Small plots were used

to measure the effects of vegetation and surface mulches on rainfall interception

and the deterioration of soil structure by erosion. Wollny also studied the effects

of soil type and slope on erosion. In the United States, isolated cases of farmers

3

4

implementing conservation practices were reported as early as 1850. Implementa­

tion of conservation practices gradually increased to the turn of the century. In

1907, the United States Department of Agriculture declared an official policy of

land protection (Hudson, 1981). The United States is now a leader in soil erosion

research.

Bennet (1939), with the help of funds from Congress, was able to establish a

network of ten field experiment stations between 1928 and 1933 to study runoff and

erosion. During the next decade, this program expanded until forty-four stations

were operating. This program was primarily experimental. Early theoretical

work was done by Ellison (1944) who analyzed the mechanical action of raindrops

on soil.

In 1954, a national study was started to correlate the results of all the field

experiments started by Bennett (Wischmeier, 1955). As a result of this study, the

main features in the erosion process were identified and mathematically enumerated

in the Universal Soil Loss Equation (Wischmeier et al., 1958). This work has had a

major impact on the quantitative investigation of soil erosion.

Erosion Process

There are several types of water erosion including sheet erosion, rill erosion,

gully erosion and streambank erosion. Sheet erosion is the removal of thin layers of

soil by water acting over the entire surface area. Raindrop splash and surface flow

are the mechanisms for detachment and transport of soil of sheet erosion.

Raindrop splash is the primary detaching agent, and flow is the primary

transporting agent (Troeh et al. 1980).

Schwab et al. (1966) defines rill erosion as the removal of soil by water from

small but well-defined channels or streamlets. Rills are formed by the concentra­

tion of overland flow. Rill erosion is usually the form of erosion in which most of

5

the soil erosion occurs. In contrast to sheet erosion, both detachment and transport

of soil in rills are dominated by runoff characteristics.

When erosion channels become too large to be removed by ordinary tillage,

they are then called gullies. Gullies are considered to be active as long as erosion

keeps the sides bare of vegetation, and inactive when they have been stabilized by

vegetation.

Sheet, rill and gully erosion are active only during or immediately after

rainstorms. Erosion along the banks of perennial streams occurs both during and

between rainstorms. Stream banks erode either by runoff flowing over the side of

the stream bank or by scouring and undercutting below the water surface. Bottom­

land soils damaged by streambank erosion are usually more productive than any

other soils in the area (Troeh et al., 1980).

Measurement and Experimentation

Data on soil erosion and its controlling factors can be collected in the field or,

for simulated conditions, in the laboratory (Morgan, 1986). Attempts have been

made to distinguish between measurement and experimentation (DePloey and

Ga briels, 1980). DePloey and Ga briels (1980) defined measurements as the steps

used to determine erosion rates with observed data. They are not conducted to

study erosion mechanics. According to DePloey and Gabriels (1980), experiments

are conducted to obtain a better understanding of the erosion process itself. Since

experiments generally also involve measurements, it is difficult in practice to sepa­

rate the two.

Measurements are subject to error. No single measurement of soil loss can be

considered as the absolutely correct value (Morgan, 1986). Errors are usually

assessed in terms of variability. This requires replicating the experiment several

times to determine the mean value of soil loss. In a review of field and laboratory

6

studies of soil erosion, Beasley et al. (1984) found typical values of 13 to 40 per cent

for the coefficient of variation for soil loss.

Experiments should be set up in such a way that they can be easily understood

and repeated by other workers. Because of the natural variability in soils, it is

sometimes difficult to have replicate runs. Additional errors may also arise due to

different operators or to slightly different equipment, for example, different rain­

fall simulators (Morgan, 1986).

Techniques of Measuring Soil Profiles

Introduction

The soil surface profile is an important characteristic of erosion, especially

rill erosion. In the last fifty years m:rny rillmeter and profile meters have been

developed, resulting in a variety of ways to measure soil profiles. The following

sections will describe the three most common techniques used in the United States:

pin displacement units, height tranducers (probes), and non-contact profile meters.

Pin Displacement Units

Pin displacement units measure soil profiles by the displacement distance of

pins as they are moved from a reference level to the soil surface. Although the

basic principles for pin displacement measurements are the same, automation and

technology used to run the system, record and analyze the data vary with different

studies. An example of a pin displacement unit can be seen in Figure 1.

Surface roughness for tillage effectiveness was measured by Kuipers (1957)

using a board holding twenty vertical probes at 100 mm spacings. After these

probes were lowered to the soil surface, twenty elevation readings were collected

manually. The board was then moved to the next site at fixed intervals, depending

7

Figure 1. Pin Displacement Unit

8

on the surface area to be covered. Burwell et al. (I 963) used a point quadrant

instrument similar to that of Kuipers (I 957) to measure soil surface elevation before

and after preplant tillage. The soil surface elevations were measured to the nearest

0.25 cm on a 5.08 cm by 5.08 cm grid for a 1.02 m by 1.02 m area. Eighteen

measuring pins were gently lowered until all pins were resting on the soil surface.

The height measurements were read from a scale board at the top of the measuring

pins. The measuring pins were then raised and advanced 5.08 cm and lowered

again to obtain a three-dimensional representation of the surface.

Curtis and Cole (1972) measured soil loss from surface mined lands using a pin

displacement unit. Their unit was a frame holding a row of 40 pins set 30 mm apart

and arranged so they could move freely, vertically. The device was placed on

preinstalled angle iron reference stakes. The pins were then lowered to the surface

and a graph of a 1.2 m profile was exhibited. The graph was then recorded on film

for later tabulation. In a similar manner, Foster and Meyer (1972) developed two

rill meters which were used for estimation of soil movement in soil erosion studies.

The profiles were determined by lowering the pins onto the soil and photographi­

cally recording the data. The pin spacings for the meters were 6.4 mm over 190 mm

and 25 mm over 3.5 m.

McCool et al. (1976) reported on the use of a pin type instrument for measuring

soil loss in rills. The instrument used 3 mm stainless steel pins on 12.5 mm centers.

The working width of the unit was 1.83 m. The pin readings were recorded

photographically and analyzed at a later time.

Moore and Larson (1979) measured the soil surface profile to estimate micro­

relief surface storage. The plot size was 102 cm by 102 cm. Spot measurements of

surface elevation were taken on a 5 cm by 5 cm grid using the surface relief meter

described by Allmaras et al. (1966). A horizontal bar holding 18 pins was lowered

manually by a crank device until each pin touched the surface. Individual cross

9

sections were recorded photographically and digitized manually.

McCool et al. (1981) revised and updated his rillmeter to make rill erosion

measurements on cultivated fields and runoff plots. The pin spacing was the same

as in his previous study, but the measuring rods were constructed of aluminum alloy

welding rods, and the frame was stronger and more maneuverable. Photographic

data were processed using a manual electronic digitizer which was connected to a

desk-top calculator. A calculator program was written to determine the amount of

soil eroded using the trapezoidal rule.

A microprocessor automated rillmeter was developed by Radke et al. (1981).

The rillmeter measured 312 surface elevations with sensing rods arranged in three

rows of 104 rods each. The rods were spaced 1 cm apart within the row and 5 cm

apart between rows. An electric motor was used to lower the grid of sensing rods.

Electrical contacts were made when the rods were touching the soil surface. A

micro-processor then scanned and stored the platform position of each sensing rod.

Data were stored on magnetic casette tape.

Highly-automated pin type rillmeters were developed by Hirschi et al. (1984)

to measure soil surface heights. Two similar rillmeters were constructed of

different sizes and pin spacings. One meter had a 13 mm pin spacing over a 1 meter

width (72 pins), and the other had a 64 mm spacing over a 4.5 meter width (70 pins).

Each had a measurement accuracy of :!:.... lmm. The mechanical movement of the

pins was the same as the meter utilized by Moore (1979). The pins were lowered

using a remote control circuit, thus eliminating the necessity of walking on the plot.

Electronic sensing was used to determine the pin location. A stainless steel contact

on the top of each pin connected wires in a parallel network to a voltmeter. The

voltmeter was used to sense the voltage drop along a parallel network wire between

the pin location and the lower bar.holding the pins. Computers were used to control

the rillmeter, take data, process the data and stop the data collection.

10

Height Transducers

An alternative method to pin displacement units is to use a single height

transducer mounted on a carriage for lateral movement which moves across a plot.

This method is typically similar to a pin displacement unit, in that a probe is

lowered to the soil surface from a reference height. It differs, however, because

only a single probe is used, and because contact between the probe and soil is the

switching mechanism that determines the height readings. Figure 2 shows the basic

concept of a height transducer.

An automated soil surface profile-meter was developed by Schaf er and Lovely

(1967). This system would automatically make and record a large number of point

elevation readings over a distance of 2.1 mat 25 mm intervals. A prodding device

rolled laterally along a horizontal beamextending across the frame length. Height

readings were obtained by lowering the prod until it contacted the soil surface. A

sensor would then actuate the prod bottom when the soil was touched. A recorder

would record the distance the prod travelled to reach the surface. This same

concept was extended by Currence and Lovely (1970) into a fully automatic

recording profile-meter. This profile-meter allowed height readings to be taken on

a 25 mm grid over an area of 1.5 m by 2.0 m. The travel distance of the probe was

recorded using a card punch. Height readings recorded by the profilometer were

accurate to + 0.127 cm.

Mitchell and Jones (1973) used a device similar to Currence and Lovely (1970)

to measure soil surface profiles. The device consisted of a carriage probe unit, a

power supply control and a recording unit. It was designed to measure a 2.54 cm by

2.54 cm grid for a surface of 0.91 square meters. The movement of the probe over

the test area could be either completely automated or manually controlled. At each

measurement point, the probe was driven downward until the sensing rod touched

GOING
DOWN

BOTTOM
CONTACT

SIDE
CONTACT

Figure 2. Height Transducer Probe

--

12

the surface. When this happened, a snap action switch in the probe was activated

by the pressure of the movable sensing rod on the soil surface. At that instant, the

probe returned to the probe carriage and moved to the next position. The

measuring system within the probe carriage was a ten turn rotational potentiometer

which would send a voltage signal to the recording system when the probe was

actuated. The recording system would then hold the voltage signal, convert it to a

digital signal and place the digital signal on paper tape.

Semi-automatic micro-relief meters to relate surface roughness to hydraulic

roughness have been investigated by Heermann et al. (1969) and by Merva et al.

(1970). To study shallow overland flow, profiles were recorded at close intervals.

Heermann et al. (1969) obtained roughness measurements longitudinally down a

furrow bottom at intervals of 3.2 mm for a distance of 2.9 m. Each digit on the

vertical potentiometer was equivalent te 0.001 cm. The mechanical cycle was auto­

matic and continuous. Merva et al. (1970) illustrated the difference between

macro- and micro-surfaces. Spectral density analysis was applied to micro­

surf ace profiles measured at 20 mm spacings over a distance of 3.0 meters in grass­

land. Anisotropy of surfaces was estimated by comparing the spectra of cross and

down slope profiles.

Henry et al. (1980) developed a device for measuring soil surface profiles

electromechanically. Using electronic controls and a battery powered printer,

elevations and their horizontal locations were automatically printed on paper tape.

The device consisted of a frame which served as a track for a horizontally powered

carriage. Mounted on the carriage was a soil sensing probe which was driven up

and down with a low inertia motor. A contact circuit controlled the probe motor to

drive the probe down until either the bottom or the side of the sensor wire touched

the soil. The motor would then reverse its direction. . As soon as the sensor wire

cleared the soil, the motor would again go in the downward direction. This process

13

caused the probe tip to follow the contour of the soil surface. The output was sent

to a battery powered strip chart recorder or a digital voltmeter and DC printer.

Linear profiles of stabilized sand surfaces were measured using a linear vari­

able differential transformer (LVDT), which was designed by Podmore and Huggins

(1981). Elevation measurments were required to relate physical roughness with

hydraulic roughness. A step size of 0.25 mm was chosen so that the effects of coarse

sand and larger roughness elements could be measured. The profilemeter consisted

of a frame and a cross carriage which held the vertical probe. The cross carriage

would allow a total horizontal distance of 1.85 meters to be measured. The L VDT

consisted of a central core and various coils sending a transformed output in current.

The signal was then converted to a voltage output which resulted in a linear rela­

tionship between core position and output voltage. The LVDT core was bonded to a

sensing probe and measured sharply varying surface profiles with resolution of ±_

0.005 mm. Data were collected on magnetic tape and analyzed using a large central

computer.

Non-Contact Meters

Another type of soil profile meters is one in which the measuring device never

comes in contact with the soil surface. This relatively new approach has become

more economically feasible in recent years because of the reduction in cost of

hardware equipment.

Harral and Cove (1982) developed an optical displacement transducer for the

measurement of soil surface profiles. The transducer has a fast response opto-elec­

tronic displacement moniter with a working range of±_ 150 mm for a point 600 mm

from the sensing head. The device collected light from an illuminated spot using a

semiconductor laser diode on the target surface and focused this onto a position­

sensing photo-diode, giving an output related to the position of the target. As the

14

surface level changed, the focused image would move on the detector surface. The

resolution of the system was ±.... 6 mm.

An automated non-contact micro-relief meter was developed by Romkens et al.

(1982) to measure profile elevations of the soil surface in field situations. The

meter consisted of an optical probe which scanned the soil surface at a known

tracking height in predetermined transects. Ball screws made horizontal movement

of the carriage and vertical movement of the probe possible. A servo motor moved

the probe vertically, while a 12 V DC motor moved the carriage. Displacements

were recorded by encoders, which relayed electrical pulses for directional movement

via digital subtractors to a cassette tape data logger. The plot area in which the

probe system was able to move was 1 m by 1.15 m. The electronic components of the

profiler consisted of a super pulser, an infared LED with phototransistor, a servo

controller, a pulse counting system and a recording system. The super pulser gener­

ated an analog voltage output which became more negative as the probe approached

the soil surface. The probe would move up and down depending on the various

voltage readings. The probe would stay at a constant height above the soil surface.

The necessary location adjustment of the sensor to maintain that height was

monitored and recorded automatically. A 250 point per meter transect could be

completed in about 4 minutes.

Another non-contact optical device was developd by Khorashahi et al. (1984)

to measure soil surface elevations before and after artificial rainfall for erosion

studies. The profiler consisted of a digital camera, a laser, and a mechanical drive

train for horizontal movement. Calibration was done on the system using two

artificial surface heights and the position of a camera-laser plate. Color and posi­

tions did not affect the distance measurements. The accuracy of the height

measurements was within±.... 1.95 mm. The surface that the system covered was 1.5

m by 1.5 m. The digital camera and laser were mounted on an adjustable stand. A

15

stepper motor controlled by a logic board in a microcomputer was responsible for the

horizontal movement. A prefabricated control board was used to interface the

camera with the microcomputer. One section of this board controlled camera oper­

ation and received the data, and the other section manipulated and transferred the

data to the microcomputer.

Techniques of Measuring Velocity in Rills

Introduction

Rills are usually very irregular in their cross section and grade, resulting in

high spatial variabilities in hydraulic variables. Intense local velocities may result

in significant erosion. Information on rill velocities is therefore needed to improve

our understanding of the erosion process (Foster et al., 1984). Although there are

many ways to measure fluid velocities, only those techniques that are readily

applicable to flows in small open channels will be discussed. The techniques

discussed are pitot tube measurements, hot film anemometry and dye measurements.

Pitot Tube Measurments

A pitot tube is a submerged tube which is oriented so that the axis is parallel to

the flow of the fluid (Shames, 1982). The ambient pressure is measured through

holes in the side of the tube, and the stagnation pressure which represents the total

head is measured through a hole in the tip of the tube.

The pitot tube can be used to determine velocity using the following special

form of the Bernoulli equation

v = ~ 2~p

in which v is the velocity, p is the density of the fluid and .6.p is the difference in

16

pressure between the tip of the tube and the side holes. In this way, the magnitude

of velocity is determined in a simple and straightforward fashion (Albertson et al.,

1960).

A major problem in the use of an ordinary pitot tube is to obtain proper

alignment of the tube with flow direction. The angle formed between the probe

axis and the flow streamline at the pressure opening should be zero, but many times

the angle may not be constant. The flow may be fixed in either magnitude or

direction. Beckwith et al. (1982) show that the pitot tube is particularly sensitive to

yaw. Although sensitivity is influenced by orientation of both impact and static

openings, the latter probably has the greater effect.

Vanoni (1946) found it necessary to measure water velocity when researching

the transportation of suspended sediment by water. A pitot static tube was used

with a diameter of 4.67 mm. The differential pressure on the tube was read to an

accuracy of 0.03 cm on a water manometer.

Vanoni and Brooks (1957) also used pitot tubes to study roughness and

suspended load of alluvial streams and to measure vertical velocity profiles. Pitot

tubes of diameter 4.76 mm and 6.35 mm were used in their studies.

Hot Film Anemometry

In hot film anemometery, velocities are determined by changes in the elec­

trical resistance of a thin film of carefully constructed material (i.e. platinum,

tungsten) surrounding a cylindrical element. The film is heated above the ambient

temperature of the surrounding fluid by passing an electrical current through a

resistance material. Flow of the fluid over the hot film cools it by forced convec­

tion. The cooling of the film is a function of the velocity of the flow; temperature,

density, viscosity, and thermal conductivity of the fluid; temperature, diameter, and

length of the film backing material; and thickness of the film. If all but fluid

17

velocity are kept constant, the heated film is a transducer for measuring velocities

(Richardson and McQuivey, 1968).

The hot film anemometer has a very short response time, permitting it to pick

up rapid fluctuations in velocity. Also, the probe of the device is very small, so

rather than getting average values of velocity over a comparatively large region as

in the case of the pitot tube, an average over a much smaller region can be taken and

for all practical purposes, the measurements are considered valid for a point in the

flow (Shames, 1982).

Richardson and McQuivey (1968) used a hot film anemometer to measure

turbulence in water. The probes used in this study had a thin coating of quartz

fused over the platinum to insulate the conductor from the fluid. The coating

eliminated stability problems caused by electrolysis and conductivity through the

fluid medium. A method was developed for measuring turbulence in extremely

dirty water. The method was based on a hypothesis that dirt and air bubbles

accumulating on the sensor decrease the mean voltage for a given velocity, but in the

domain of frequencies encountered in water, do not affect the frequency response

of the sensor to velocity fluctuations. The hypothesis was experimentally verified

using hot film anemometers by comparing turbulence measurements made in clean

and very dirty water.

Hot film anemometry and random signal analysis were used by Barfield et al.

{1969) to measure the turbulent diffusivity in shallow open channel flows as

affected by rainfall. Each quartz coated hot film probe required a unique calibra­

tion curve. Calibration was done in a flume using pitot tube velocities and

observed voltages from the hot film probes. The hot film anemometers were

calibrated to an 0.0076 m/sec.

Barfield and Henson {1971) discussed different cali bra ti on methods for hot

film probes. Since calibration of the probes is one of the major problems associated

18

with the use of the anemometer, this was an important topic to discuss. Several

calibration methods were discussed including two methods developed by the authors.

In a laboratory study of rill hydraulics, Foster et al. (1984) used hot film

anemometry to obtain velocity measurements and relationships. In addition,

average velocity at a section was computed by dividing discharge rate at the section

by flow area determined from water surface and rill cross-section elevations. A

comparison of hot film velocities measured at several points and those obtained by

average section velocities were within four percent.

Wilson and Barfield (1986) used a constant temperature anemometer unit to

measure the turbulent characteristics of pond flows. The probe used was

cylindrical and relatively insensitive to the direction of the fluid velocity which

was a necessity due to the possible fluctuations in the pond's recirculation pattern.

Analog data from the anemometer were converted to a digital form and stored in

data files using an IBM PC computer. The data were analyzed to obtain estimates

of mean velocities, mean square values of velocity fluctuation, Eularian time scales

and turbulent diffusion coefficients.

Dye Method

Another method commonly used to measure water velocities is a technique

involving dye. Hydraulic variables in streams and rivers have been widely iden­

tified using this method. Fluorescent dyes, utilized in dye dilution procedures, are

economical, easy to handle and can be measured quantitatively in very low concen­

trations. However, characterization of hydraulic parameters using fluorometric

techniques has received only limited use in upland areas.

While examining the effect of soil-surface configuration resulting from tillage

tool marks on erosion, Young and Mutchler (1969) measured the flow velocity of

water in small triangular furrows. The velocity was measured by injecting dye in

19

the stream at certain points and timing the advance of the dye front. Mean flow

velocity was also measured by Gilley et al. (1986) using a fluorometer. A slug of

dye was injected into the channel and the amount of time required for the concen­

tration peak to pass a downstream point was determined. A time-concentration

curve resulted from continuous pumping of the sample through the fluorometer flow

cell. Mean flow velocity was obtained by dividing travel distance by time of travel.

Line and Meyer (1978) measured average flow velocities along row furrows

under intense simulated rainfall. An estimate of the velocity was obtained by

introducing several drops of fluorescent dye onto the center of the flow surface and

recording the time required for its peak to travel from a point 2 meters down to a

point 8 meters down the furrow. Since dye-travel times determined by observation

are subjective, a related laboratory study was conducted to correlate the field

measured dye velocities to average flow velocities. Regression equations were

developed and used to convert field dye results to average velocities.

CHAPTER III

INSTRUMENTATION SYSTEM

Introduction

A system has been developed to measure soil profiles and velocities in rills

using image processing techniques. This system is incorporated into a large-scale

laboratory apparatus designed for experiments that (1) require instrumentation

techniques that are difficult to use in the field, (2) need control of erosion

parameters to examine fundamental processes more accurately and/or (3) are

conducted more efficiently in a laboratory setting because of cost and time

constraints. The focus of this chapter is on the mechanical, electrical and struc­

tural components of the measurement system including the erosion table, soil profile

measuring equipment and velocity measuring equipment. Details of the system's

software are given in the next chapter.

Erosion Table

The erosion table is located at the edge of the Oklahoma State University

Campus in one of the Agricultural Engineering Department's research shops. It has

been designed to conduct erosion studies on a 2.4 m by 9.8 m surface. A view of the

erosion table from the upslope end of the plot is shown in Figure 3. A side view of

the erosion table is shown in Figure 4. The sidewalls are constructed of 2.9 cm

plywood supported by a metal frame with appropriate bracing at approximately 1.2

m intervals. The plywood has been coated with a fiberglass sealant.

20

21

Figure 3. View of Erosion Apparatus

SIDE
WALL

RAINFALL SIMULATOR

RAILING

4.9m

Figure 4. Side View of Erosion Table

23

As shown in Figure 4, two false floors support the erosion surface. The

upslope floor is hinged so that it can rotate to obtain different slopes and spatially

varying sideslopes. Fine tuning of surface profiles can be obtained by varying the

depth of soil. The maximum possible uniform slope over the entire plot length is

roughly 11 percent and roughly 19 percent for the adjustable section of the plot.

Located above the erosion table is a rainfall simulator. This simulator has

been designed to duplicate natural rainfall by matching of kinetic energy and

momentum factors. Further information on the erosion table and rainfall simu­

lator is given by Wilson and Rice (1987).

The focus of this research is to measure erosion processes occurring on the

erosion table. An important component of this system is the instrumentation rack

shown mounted over the surface in Figure 3. Details of this component and the

image processing hardware are given -in the next section.

Soil Profile Measuring Equipment

An important part of this study is the development of techniques for

measuring surface topography. These measurements are made using a structured

lighting technique. This technique requires that a well-defined stripe of light be

projected onto the surface. The location of the stripe within the field of view of a

camera is compared to some base value to obtain an elevation measurement. The

support and movement of the light source and camera are done using the instrumen­

tation rack. Image processing boards and software are used to analyze the data.

The software component of this approach is described in the next chapter.

Mechanical and hardware components are described here.

Mechanical Driving System

A schematic of the instrumentation rack is shown in Figure 5. The rack width

z

Shaft Encoder,
x-direction

Camera
Signal

Control
Board

for
Drivers

IBM
PC-AT

y

Stepper Motor,
Shaft Encoder, .
z-direction

Laser

Shaft Encoder,
Stepper Motor,
y-direction

Stepper Motor,
x-direction

}
Structured
Lighting
Components

25

is roughly equal to the width of the erosion plot (i.e., 2.4 m). On top of the rack is a

platform that supports the mechanical components of the structured lighting equip­

ment. This platform can move laterally across the plot and is used to move the

structured lighting equipment vertically. Movement in the x, y and z directions is

powered by three Cyber Research's ESH 088 stepper motors. These motors provide

a torque of about 780 mN-m with 1.8 degrees per step. The stepper motors are

driven by Cyber Research's 3-amp stepping motor driver boards (ESH 082) which in

turn are operated using an IBM PC-AT with a Cyber Research's controller board

(ESH 080).

Motion in the y and z directions is driven by precision racks and pinions.

Figure 6 shows the driving mechanism for the z-direction. The racks (Reliance

Gear Company RlOA standard rack) have a maximum adjacent tooth-to-tooth error

of 0.010 mm. The y-direction pinion -has an outside diameter of 35.58 mm and

travels 101.6 mm (4 inches) per revolution. One step of the stepper motor therefore

results in a movement of 0.508 mm (0.02 inch). In the z-direction, a series of gears is

used to allow for finer distance steps and to increase the holding and driving torque

of the motor. In comparison to they-direction, the gear reduction is 4:1, so that one

step results in a vertical movement of 0.127 mm (0.005 inch). The maximum travel

distance in the z-direction is roughly 1.2 m (4 ft). A solenoid switch is used as a

brake in the z-direction to hold the structured lighting equipment in place when the

power is off.

The instrumentation carriage must be capable of moving the entire length of

the plot (i.e., 9.8 m). To reduce cost, movement in the x-direction is by a chain

driven system. The carriage is mounted on adjustable aluminum tees that have

been carefully leveled. A standard AMSI #25-lR roller chain is used to move the

rack precisely and automatically. A gear is placed on the stepper motor and a shaft

running down the center of the carriage is rotated to move the carriage. Chains are

26

Figure 6. Vertical Direction Driving Mechanism

27

mounted to both sides of the erosion table and matching gears on each side of the

carriage are used to keep both ends moving together. One step in the x-direction

results in a movement of 0.38 mm (0.015 inch).

Travel distance in the x, y and z directions is also monitored using three Disc's

Model 701FR-200-0CN-SS shaft encoders. These shaft encoders have a resolution

of 200 pulses per revolution or 1.8 degrees of angular rotation. The shaft encoders

are connected to the IBM PC-AT computer using the stepper motor driver boards

previously discussed. By using appropriate software, stepper motors, and shaft

encoders, the structured lighting equipment can be moved precisely to a desired

(x,y,z) point over the plot.

Image Processing System

The main components of the structured lighting system are (I) a laser light to

provide a well-defined stripe of light, (2) a video camera to sense the reflected light,

and (3) computer boards in an IBM PC-AT to digitize and manipulate the image.

These components are shown in Figure 5. The arrangement of the laser light and

camera is shown in Figure 7. The horizontal distance between the laser and the

camera is 0.43 m, and the laser is tilted at about a 45 degree angle.

The laser light is Newport Corporation's SLD-1008 diode laser line projector.

It is a self-contained unit that has a laser light source and lens to produce a well­

defined stripe of light in the near infared range of 770 to 820 nm. On special

request, the laser has an optimum focus length of 0.6 m (2 ft) which corresponds to a

striped line of 0.3 m (1 ft) length with a width less than 1 mm. The laser light has

an intensity of 2 mW and runs on 12 volts DC.

A Hitachi KP 130 solid-state, black-and-white video camera is used in the

instrumentation system. This camera has a sensor array with 384 horizontal and

485 vertical picture elements. The camera has an interlaced scanning system and a

28

Figure 7. Structured Lighting Equipment

29

standard RS-170 output signal. It has the desired features of relatively low power

requirements of 12 volts DC, low weight (1 lb) and small size (2.2" x 2.1" x 3.3").

Output signals from the camera are sent to a Data Translation DT-2851 frame

grabber board located in an IBM PC-AT. This board has flash A/D converters that

can digitize a video frame in 1 /30 of a second. Its resolution is 512 lines by 512

pixels with 256 possible gray values. Limited processing on the board can be done

such as frame averaging, frame addition and subtraction, and windowing. It also

has two memory-map 256 Kbyte frame-store memory buffers to store two frames.

An AST Advantage board with 1.5 Mbyte of RAM has been installed in the IBM

PC-AT to store additional frames. The DT-2851 frame grabber can take input

directly from a video camera or from a recorded tape using a video playback unit.

Output from the frame grabber board is viewed on a Hitachi 12" black-and-white,

solid-state VM-129 monitor.

The computational speed of the system is increased using a Data Translation

DT-2858 auxiliary frame processor board. This board has high speed direct inter­

face to the frame grabber memory, pipelined arithmetic performance of 2.5 million

multiplications per second 700,000 divisions per second, and 2.5 million addition per

second and supports NxM convolutions, frame averaging, normalization and

histograming operations. The DT-2858 board is located in a slot next to the frame

grabber in the IBM PC-AT.

The distance from the instrumentation rack to the soil surface can change

significantly as the rack is moved, especially for steeply sloped surfaces. To keep

the camera and laser light in focus, an ultrasonic distance measuring device has been

placed on the bar holding the camera and laser as shown in Figure 7. The ultrasonic

distance measurement system includes a sensor, a data acquistion card and software

(purchased from ICS computer products). This equipment is used to obtain an

average measurement of height in the vicinity of the camera. Based on this

30

measurement, the structured lighting bar is raised or lowered using the vertical

stepper motor to maintain a height of roughly 0.43 m above the soil surface.

Velocity Measuring Equipment

An important erosion parameter is the flow velocity in rills. Image

processing techniques to measure this parameter are developed in this study.

Velocity is determined by the movement of small wooden beads as they float past a

camera. Two frames containing the beads are taken at different points in time.

Velocity is then calculated from a measured displacement distance and the time

interval between the frames. Software algorithms for this procedure are discussed

in Chapter IV.

The camera, computer and image processing boards for the velocity measure­

ments are the same as those used to measure soil profiles. Contrast between beads

and background is enhanced by painting the beads with flourescent paint and using

an ultra-violet bulb for a light source. The computational speed of the velocity

measurement algorithm is too slow to run in real time. Therefore, the movement of

the beads is first taped using an NEC high quality digital video cassette recorder

(VCR). Once the process has been recorded, image processing algorithms are used

to determine velocity.

Several sizes and types of beads were tested. Styrofoam beads were too light

and had a tendency to attract to each other. Bead diameters any larger than 5 mm

would not travel at the water velocity, frequently catching themselves on the bottom

or sides of the channel. Wooden beads of approximately 5 mm diameter floated

very well and were easy to handle. Different colors of flourescent paints were

tried to obtain the greatest contrast using an ultra-voilet light source. Flourescent

yellow paint was selected.

CHAPTER IV

IMAGE PROCESSING SOFTWARE

Introduction

The successful application of an image processing system depends upon its

software. Various algorithms and routines must be written to manipulate and

analyze data obtained with the hardware described in Chapter III. Different

programs are used here for the soil profile and the velocity measurements. Both

programs have been developed utilizing-software functions supplied by Data Trans­

lation. This software support package (OT-IRIS) will be briefly discussed.

Algorithms used for profile and velocity measurements will then be described. The

testing of the measurement algorithms will be discussed in Chapter V.

DT-IRIS Software Functions

OT-IRIS is a comprehensive image processing support package for the DT2851

frame grabber board and the DT-2858 auxiliary processor board. The software

package is composed of two sections: I) a command driven tutorial program which

provides an interactive image processing environment and 2) an imaging subroutine

library package which provides a set of imaging functions callable from most

popular high level languages. For this particular image processing system, the C

language has been chosen because of its computational speed and popularity.

The OT-IRIS package includes important image processing techniques to

manipulate images. Callable functions frequently used include routines for

31

32

aquiring and displaying images, selecting frame buffers, modifying and selecting

input and output lookup tables, and arithmetic operations such as adding and

subtracting frames, and convolutions. Other important routines used extensively

are those which do windowing and region operations, histograms and graphic over-

lays. DT-IRIS routines are accessible at link time.

Soil Profile Software Algorithm

Structured Lighting Concepts

General. Surface topography is measured in this research using structured

lighting techniques. This approach is commonly used in industrial settings when

depth readings need to be incorporated into machine vision systems (Jalkio et al.,

1985; Swientek, 1986). The hardware C()mponents of our system are a laser source to

project a well-defined stripe of light onto the surface, a camera to sense the

reflected light, and image processing boards to digitize and manipulate images.

Details of these components were previously given in Chapter III.

A three-dimensional schematic of a structured lighting system is shown in

Figure 8. A laser source at (x ,y ,z) projects a well-defined stripe of light across a
s s s

block of fixed height situated on a flat surface. The light is gathered through a

lens located at (0,0,0) and focused on a sensor located at a vertical height of F behind

the lens. The sensor image of the striped light is shown in the inset of Figure 8.

The image is digitized into a square grid (512 x 512) of discrete picture elements or

pixels. Since the light is striking the block at an angle, there is a difference in pixel

locations between the top of the block and that of the flat surface. Differences in

these locations can be used to determine the height of the block.

Geometry Considerations. Relating the difference in pixel locations to a block

height is a geometry problem. To help clarify the geometry, two-dimensional views

x
~

-------------·-1~--: Zs

SENSOR _
LASER
SOURCE

--------.Y

FLAT SURFACE

Figure 8. Schematic Illustrating Structured Lighting Concepts

x

.___ ______ y

34

of the y-z plane and the x-z plane are shown in Figure 9a and Figure 9b, respec-

tively. From Figure 9a, the pixel location for a point (y ,z) on the surface can be
0 0

related to the location of the light source (assumed to be a point), the angle of the

source and the vertical height. The angle of the source is defined as

or

tan9
y

y0 = y - (z - z) tan9 s 0 s y

Likewise, for the x-position

x = x - (z - z) tan9
0 s 0 s x

where the symbols are as shown in Figures 9a and 9b.

(1)

(2)

(3)

The location of points y and x on the sensor can be determined using defini-o 0

tions for tana and tan,!3 (or similar triangles) as

and

x
F

0 z
0

where superscript i refers to the position on the image sensor shown in

(4)

(5)

Figures 9, and Fis the distance from the receiving lens to the sensor, which is nearly

equal to the focal length of the lens for large z .
0

By substituting relationships for y and x given by Eqs. 2 and 3, the above
0 0

equations can be rearranged as

£. (y + z tan9) - F tan9
z s s y y

0

(6)

and

z=-F
. jc

CY6 ,-F) (0,-F)

SENSING PLATE

--------------.-

(0,Zo)
SURFACE

I
I
I
I
I Sy
I

\
1._Zs

LIGHT
SOURCE

(a)

Figure 9a. Two Dimensional View of y-z Plane

z=-F

z=z 0

i~ ~---- Xs ---~\
(X0 ,-F) (0,-F)

J3
LENS I

SENSING PLATE

I -----------)!s
I~ \
I LIGHT
I : SOURCE

I I 0
I x

I I
I

SURFACE
(b}

Figure 9b. Two Dime.nsional View of x-z Plane

35

36

i F x = - (x + z tan9) - F tan9
0 z s s x x (7)

0

The above equations can be used to determine the image position for any

(x ,y ,z) point on the surface of a projected laser line. Of greater interest in our
0 0 0

study is the difference in height relative to some reference elevation. It can be seen

from Figure 8, for a line parallel to the y-axis, that a _difference in height

corresponds to a shift in the pixels of the x-direction and is therefore of primary

interest. Pixel differences at some elevation z=z relative to a reference elevation
0

of z=z f can be evaluated as re

1 1 AX = X
0 0

i
- x ref

i i
where x0 and xref can each be evaluated using Eq. 7 to obtain

1 AX
0

= F(x + z tan9) [1.. --1- J
s s x z0 zref

i where Ax is the pixel difference as shown in the inset of Figure 8.
0

(8)

(9)

In measuring soil topography, our objective is to determine z=z for a
0

measured Axi. Therefore, Eq. 9 is rearranged as
0

z ref z =
0 1

AX Z f
I + o re

K z
where

K = F(x + z tan9) z s s x

.

(IO)

(11)

where K is a constant for a fixed laser source and for a projected line that is
z

parallel to the y-axis. If z f' K and Axi are known, the elevation of a point can re z o

be determined by Eq. 11. Calibration procedures to determine K and z f are z re

37

discussed in Chapter V.

Profile Measurement Software

An important step in the profile measurement algorithm is identifying the

location of pixels corresponding to the line projected by the laser shown in Figure 8.

Since the source is infrared, some background lighting can be removed with an

optical filter. Additional filtering is done with software as describe below.

Differences in elevations are obtained using the midpoints of the laser line.

The intensity of the laser light across the width of the line follows a Gaussian

distribution which is symmetrical about the midpoint, with the brightest pixel

located in the center. Although several methods can be used to locate the line, the

one chosen for this project involves edge detection/enhancement of the line. Edge

enhancement is implemented with spatial filter to increase the contrast between the

laser line and the background. The filter is a lx9 convolution filter selected to use

the slope of pixel brightness to enhance the edge of the laser line. A lx9 filter,

rather than a more common 3x3 filter, is used to remove the effects of values above

and below the center pixel. The specific values used for this filter are

(-2,-2,l,2,2,2,l,-2,-2]. These values were determined by trial-and-error.

After the original image is enhanced, a gray level threshold value is selected to

remove background noise. Since the laser light corresponds to the brightest pixels

in the image, a histogram of the image can be used to determine the appropriate

threshold level. The width of the line appears to be between 4 and 9 pixels for our

camera and lens and apparently varies with the intensity of the background lighting.

Using 4 to 9 pixels, the appropriate gray level for thresholding would correspond to

a value between 98.2% and 99.2% of the cumulative distribution of pixels. For the

very low background lighting used in the tests described in this paper, a threshold

gray level corresponding to 99% is used.

38

The final step in finding the midpoint is to determine the edges of the line.

This is done by scanning from left to right and locating the first non-black pixel.

Once this pixel has been found, the program looks both ways to find the first black

pixels on either side of the non-black pixel. Both edges of the line can now be

determined. Since the light intensity is symmetrical, the center of the line is found

by averaging the two edge values. This center point is the x-direction value. The

y direction value is determined by the row number of interest.

The above steps describe the procedures used to determine the midpoint of a

single scanning line. The algorithm repeats the process for the 300 most centered

lines in an image (each image has 512 lines). The complete image can be analyzed

in less than 6 seconds.

Velocity Software

Connectivity Analysis

Velocity is measured by the displacement distance of small wooden beads with

time. This requires that the location of beads within the image frame be deter­

mined at various points in time. The connectivity analysis given by Cunningham

(1981), is the basis for identifying these locations.

In Cunningham's (1981) analysis, the image is first partitioned into regions or

"blobs" that correspond to objects, holes, or background in the scene. A blob is

simply defined as a connected cluster of pixels which are the same color (i.e. black or

white). Since a picture may be composed of a number of blobs, including one for

the background, it can be most easily represented as a linked list of blob descriptors.

Descriptors are records that contain information about a blob, such as its area,

centroid, perimeter, number, gray level and possibly other shape information.

A blob is obtained by determining whether a pixel is "connected" to its

adjacent pixels. Adjacent pixels are connected if they are the same grey level.

39

There are several conventions in a rectangular grid to specify which pixels are

adjacent, but for this research, a 6-connectivity convention was used.

Run-length encoding is used to determine the blob number of a previously

processed pixel. In the coding scheme, each unbroken run of O's or l's in a raster

line of the image is described by a record that tells its starting (leftmost) column, its

length, and blob number. The entire line is then described by a list of these

run-length records which are allocated sequentially as the image is scanned.

The connectivity analysis algorithm scans the image from left to right, top to

bottom, updating the descriptors of each blob which intersect the current scan line.

At the end of each run of O's or l's, the run-length list is updated and blob statistics

are accumulated. If any pixel of the run just completed is 6-connected to a pixel of

the same gray level on the previous line, an existing blob is extended to include this

information. Otherwise, a new blob record is allocated. Each blob is assigned a

unique number. Pixels belonging to the blob are labeled with this number in the

run-length list.

Velocity Algorithm

The connectivity analysis and the DT-IRIS functions are used to determine

velocity. Beads are first moved under the camera as a result of their velocities.

The camera then "snaps" an image and sends a video signal to the computer where it

is digitized using the Data Translation frame grabber board. The frame rate of the

camera is one frame per 1/30 of a second. It is also possible for the camera to send

a signal to a video cassette recorder to avoid real time processing. The VCR unit

has the same frame rate as the camera.

The video signal from the camera or the VCR unit is digitized into various

gray levels by the frame grabber board. A 2x2 low pass convolution is used to filter

out high frequency noise. A threshold gray level is then chosen by varying the

•

40

threshold value until blobs best depict the true size of the beads. This threshold

value is held constant for all velocity measurements, which is a valid assumption for

unaltered lighting conditions.

After the threshold value has been selected, the user visually observes the

beads as they flow past the camera and selects a frame for processing. This frame

is stored in one of the on-board frame memory buffers, and a second frame is

snapped three frames later. The second frame is stored in the other on-board frame

buffer.

For both frames, the low pass convolution filter and the threshold value are

used to obtain binary images. The connectivity analysis is then done individually

for the blobs (in this case the blobs are beads) in each frame, and blob statistics are

determined. The user visually matches the blobs in the first frame with the

appropriate blobs in the second frame. The displacement distance is defined as the

distance between the centroids of each pair of blobs. The user can disregard any

blobs that are in one frame but not in the next.

The distance between the centroids of the blobs is converted from pixels to

inches using a conversion factor which is determined in a calibration procedure

described in Chapter V. Time lapse between images is calculated using the number

of frames between snaps and the frame rate of 1/30 of a second. The velocity is

simply the displacement distance divided by the time lapse.

CHAPTER V

EXPERIMENT AL PROCEDURES

Introduction

The testing of the system and algorithms for soil profile and velocity measure-

ments is done in two steps. First, the system is calibrated. After calibration,

experiments to test the system hardware and software are performed. These tests

are used to assess the capabilities of the image processing system. Calibration and

experimental procedures are both described in this chapter.

Calibration Procedures

General

Algorithms for soil profile and velocity measurements both require distance

values in length units such as inches or millimeters. The profile algorithm uses the

distance between the laser light line and a reference line, and the velocity measure-

ment algorithm uses the distance between the centroids of blobs. The image

processing system inherently works with units in pixels, instead of more meaningful

length units. Calibration procedures to convert pixel distances to length measure-

ments are discussed in this section.

Conversion factors are required for the x, y and z directions for the soil

profile measurements and the x and y directions for the velocity measurements.

Calibration in the z-direction requires the determination of K and z f given in Eq.
z re

41

42

10. It is described separately. Calibration procedures in the x and y directions are

very similar and are discussed together. These procedures are conducted prior to

the start of each run.

Vertical Direction

Two calibration factors, K and z f' are needed to calculate depth using Eq. z re

10. The first step in the calibration procedures is to move the structured lighting

equipment over a horizontal plate which is by definition at the reference elevation

(i.e., zref). Two blocks of known heights are placed on the plate. The elevation at

the top of these blocks can then be defined as (downward positive)

and

where z1 and z2 are elevations of the top of the first and second blocks,

respectively, and h 1 and h2 are the heights (known) of these two blocks.

(12)

(13)

Changes in pixel location between the reference plate and the top of each

block can be defined directly from Eq. 9, or,

i
K [z\ - zr

1
ef J ax 1 = z (14)

and

i
K

[;2 - zr
1
ef J ax2 z (15)

i 1 where ax 1 and ax2 are the differences in pixel locations from the

reference elevation to the elevations of the top of the first and second blocks.

These differences can be determined by software and thus are known values. The

definition of K given by Eq. 11 is used in the above equations. z

43

Using Eqs. 12 and 13, Eqs. 14 and 15 can be written as

i
K

[zref l _ hl - zr
1
ef J ~xl = z (16)

and

i
K [1 I J ~x2 = z - h - -z-z ref 2 ref

(17)

We now have two equations (i.e., Eqs. 16 and 17) and two unknowns (K and z

z f). The ratio of the above equations can be written as re

To simplify typography a dimensionless variable v is defined as

v =

so that z f is calculated as re

(18)

(19)

(20)

The value for K can now be determined from Eqs. 16 or 17. Using Eq. 16, z

K is calculated as z

K z 1
(21)

K indirectly incorporates the conversion of pixels to a length measurement.
z

After K and z f are determined, the elevation of a reflected surface can be z re

calculated directly from Eq. 10.

44

The algorithm to locate the laser light uses 300 of the most centered lines of an

image. The solution of Eqs. 17 and 18 could then be obtained for each one of these

300 lines.Different values for K and z fare possible because of slight imperfec-z re

tions in the construction of mechanical components and possibly other factors.

Scatter in values was avoided by fitting a least squares line to the observed points

and by using the intercept values for estimating Ax; and Ax~. Corrections are also

included to account for a laser line that is not perfectly parallel to the y-axis.

Horizontal Plane (x and y directions)

Conversion factors are also needed to convert pixel values to length measure-

ments in the x and y directions. These factors are determined without using the

laser light. A card with two sets of parallel lines, one in the x direction and one in

the y direction, is viewed from the camera. Both set lines are located by software.

A least squares line is again fitted through points to account for slight imperfec-

tions. Distance in pixels between the parallel lines in the x and y directions is

determined using the midpoints of the least squares lines. The conversion factors

are then calculated as the ratio of known distances between parallel lines and

measured pixel values. This calibration procedure is done at an elevation of z f"
re

Conversion factors are a function of the height of the surface being measured.

This concept is illustrated in Figure 10 for the y direction. A similar figure could

be drawn for the x direction. The origin is again at the lens. At the reference

height, the conversion factors described in the previous paragraph can be used to

determine the distance measurement between (O,z f) and (y f'z f) from a re re re

measured pixel difference Ayi as

K Ayi
y,ref

(22)

z=-F

z=z 0

z=Zref

Figure 10.

(Y~ef ,-F) (0,-F)
SENSING PLATE

(0,Z0)

Schematic Illustrating Change in K with Elevation
y

45

46

where K f is the conversion factor from pixel-to-distance measurements y,re

for the y direction at the reference height and other terms are as defined in Figure

10.

In Figure 10, consider the situation when the height of the surface has been

moved to z=z . The pixel difference Ayi is constant, but the distance meas~rement is
0

now the difference between (0,z) and (y ,z). Using similar triangles, we can
0 0 0

write

which can be substituted into Eq. 22 to obtain,

K o z l
y,ref zref

1 Ay

(23)

(24)

Equation 24 is used to calculate distance measurement for a measured pixel

difference at elevations different than the reference height. It essentially adjusts

the reference height conversion factor by the ratio of the surface and reference

elevations.

Likewise, for the x direction one would obtain

x0 = [Kx,rcf z::r] ax' (25)

where K f is the conversion factor from pixels-to-length measurements x,re

for the x direction at the reference height, Axi is the pixel difference in the x

direction (from zero) and other terms are as previously defined.

47

Testing Procedures

Surface Profile Measurements

General. Two sets of experiments were conducted to evaluate the accuracy and

applicability of structured lighting techniques for measuring soil surface profiles.

The first set of experiments used "precision", rigid objects. These objects were

constructed precisely and represented well-defined shapes for evaluating accuracy.

The second set of experiments used soil with pre-formed surface depressions to test

the applicability of the system.

The first step in the testing procedures was to calibrate the conversion factors

discussed in the previous section. Stepper motors were used to move the structured

lighting equipment as described earlier. Adjustment in the coordinate system was

obtained from the number of steps and the distance traveled per step. Location of

the laser line was determined by the algorithm previously described in Chapter IV.

Because of the large amount of data that can be gathered by the system, separate

programs were written to encode and store the data in a compressed format and to

conduct subsequent analyses.

Rigid Objects. Two different sets of blocks were used for the rigid object

testing. The first set consisted of five square tubing blocks, each of a different

height. The second set of blocks was made from solid square steel with milled

trapezoidal surface notches of varying dimensions. Measurements of block dimen­

sions were obtained using calipers with an accuracy of roughly 0.05 mm. The

square tubing blocks were used to evaluate the accuracy of height measurements.

The trapezoidal notched blocks were used to evaluate the accuracy of measured

channel geometries. A schematic showing the dimensions of interest in the

trapezoidal notched blocks is shown in Figure 11.

Each block was measured eight times by the image processing system to check

48

~--b--•I

T \4---c-+!
a

l ______ d._______..

Figure 11. Symbols of Trapezoidal Notches Used in Tables III and IV

49

the system for repeatability and accuracy. In all tests, the blocks were placed on

the flat plate used to calibrate the system. The stepper motors were therefore not

used to move the equipment in the x and y directions. Several tests, however, were

made to check the stepper motor routines and evaluate the effects of moving the

camera system vertically.

The first four tests are similar to that illustrated in Figure 8 where the

reference elevation and surface elevation of the block are in the same image. Block

heights can then be evaluated directly by the pixel difference as illustrated in the

insert of Figure 8. The only differences between the first four tests are due to the

movement of the camera system vertically. Tests #5 through #8, however, store the

baseline reference elevation in a data file at calibration. Elevations of the block

surfaces are then determined from separate images and subtracted from the stored

reference elevation to estimate block height. Differences in these four tests are

again due to the movement of the camera system vertically. A summary of the

conditions for each test is given below:

I. Camera equipment was left in the same position as it was for calibration,

2. Camera was moved up 500 steps and then down 500 steps (roughly 64 mm) to
test stepping motor routines,

3. Camera equipment was moved up 500 steps to account for changes in
conversion factors with camera height,

4. Camera equipment was lowered 250 steps (roughly 32 mm) from its original
position to account for changes in conversion factors and to provide a
larger vertical range on measured values,

5. Repeat Test #l using reference elevation stored in data file,

6. Repeat Test #2 using reference elevation stored in data file,

7. Repeat Test #3 using reference elevation stored in data file,

8. Repeat Test #4 using reference elevation stored in data file.

Soil Profile. The ability of the structured lighting system to measure soil

profiles was examined using two different soil types. A sandy soil and a loam soil

50

were placed in two large trays. A varying surface profile was formed in each soil.

This profile was measured using both the structured lighting system and a pin

displacement unit. A 0.3 m (I foot) section of the profile was measured. The

spacing of the pins was 12.7 mm (0.5 inches).

A disadvantage of evaluating the structured lighting system using soil profiles

is the limited accuracy of determining the actual elevation of the soil. The

accuracy of our pin displacement unit was estimated as roughly ±_2 mm. This value

was obtained by taking several readings at the same site with different people.

In this set of experiments, the structured lighting system was calibrated and

then moved by stepper motors to the soil trays. Measurements were then taken in

the region of interest. Elevations of the soil profile were gathered relative to the

elevation of the calibration plate. The pin displacement unit determines the varia­

tions in height (z direction) with distance in the y direction for a given x value.

The structured lighting system measures the variation in height in the y direction,

but the value for x varies with height as previously discussed. Therefore, it was not

possible to match pin locations and structured lighting readings exactly.

Reasonably close values could be obtained by making several passes of the struc­

tured lighting system surrounding the pin locations and by selecting x locations that

were closest to the pin values.

Velocity Measurements

Two testing procedures were conducted to evaluate the velocity measurement

system. The first test was used to determine differences between measured

velocities from a live camera and those obtained using a VCR playback unit. The

second set of tests was done to evaluate the accuracy of the algorithm.

Both testing procedures used the rotational speed of a conveyor belt driven by

a variable speed motor to move the beads. Painted beads were glued randomly to

51

the belt. The camera was mounted in a stationary position over the belt and was

calibrated for this position. The actual velocities of the beads were determined

using a wheel tachometer and converting measured rpm values to linear velocities

(m/s). The accuracy of the tachometer was roughly 0.009 m/sec.

Ten different speeds were tested using the live camera, and ten different

speeds were recorded onto video tape. The varying speeds were then played back

and the algorithms were used to measure the velocity of the beads on tape.

Although the speeds for live and taped velocities were different, comparisons are

still possible by using differences between belt velocities and those measured.

The precision of the velocity measurements was evaluated by repeating the

taped velocities. Small discrepancies between measurements are possible, because

each frame may have different beads. For each belt velocity, the bead velocity was

measured eight times at varying points in time. The number of beads used in each

measurement was then counted and an overall average velocity was determined.

Standard deviation of the velocities was also determined for each speed.

CHAPTER VI

RESULTS AND DISCUSSION

Introduction

The results of the experimental testing are discussed in two sections. In the

first section, the accuracy and applicability of the soil profile measuring system are

evaluated. This section also includes an application of the system to a three-dimen­

sional surface. The second section is used to present and discuss the results

obtained with the velocity measuring system.

Profile Measurements

Rigid Objects

A print of an image produced with structured lighting is shown in Figures 12a

and 12b. Figure 12a shows a trapezoidal notched block used in the experiments.

The corresponding image seen by the structured lighting system is shown in Figure

12b. These figures clearly show the displacement of pixels in the x-direction caused

by a difference in surface elevations.

The results obtained for the five square tubing blocks are shown in Table I for

all eight tests. Data shown in this table also incorporate possible errors in the

vertical movement of the structured lighting equipment by the stepper motor. No

definite trends can be seen with the results shown in Table I. The maximum

difference in measured values for a given block was only 0.63 mm and a maximum

52

53

Figure 12a. View of a Trapezoidal Notched Block .

Figure 12b. Corresponding Screen Image of Laser Linc

Test
ID

* Actual
#l
#2
#3
#4
#5
#6
#7
#8

Max.
Diff.

* Actual

TABLE I

ACTUAL AND MEASURED BLOCK HEIGHTS
OF RECTANGULAR BLOCKS

Block #l Block #2 Block #3 Block #4 Block #5
(mm) (mm) (mm) (mm) (mm)

12.80 25.04 37.69 50.37 62.08
12.80 24.99 37.79 50.44 62.08
12.95 25.04 37.64 50.29 62.03
12.73 24.77 37.16 50.16 61.98
12.75 24.84 37.69 +++ +++
12.83 24.79 37.52 50.19 61.98
13.00 25.10 37.72 50.44 62.13
13.00 25.04 37.69 +++ +++
12.67 25.02 37.59 50.32 61.90

0.33 0.33 0.63 0.28 0.23

value represents the best estimate possible using
using instruments and equipment with limited precision.

+++Laser light was outside the view of the camera.

54

55

difference for most blocks of roughly 0.30 mm. A summary of these measurements

is given in Table II, using mean values and standard deviations. The mean value is

within 0.1 mm of the actual value for each block height.

The results for trapezoidal notched blocks are given in Table III and Table IV.

Table III shows the height dimensions of the block and Table IV shows the width

dimensions. Only mean and standard deviation values for the eight tests on these

blocks are presented. Measurement accuracy for the geometry of these blocks is

roughly equivalent to that obtained for the square tubing. The mean value for each

geometric characteristic is within 0.15 mm of the actual value.

The results of the rigid block tests indicate that structured lighting techniques

are capable of measuring geometric characteristics with good accuracy. Maximum

errors in measuring these characteristics are less than 1 mm for all runs.

Differences between actual and measured mean values are less than 0.15 mm.

Soil Profile

The comparison of the soil profiles measured using the structured lighting

system and the pin displacement unit for the sandy soil and loam soil are shown in

Figure 13 and Figure 14, respectively. The uncertainty region(::!:._ 2 mm) of the pin

displacement unit are shown around each point. As previously discussed, the

results of the structured lighting technique gives the x, y, and z coordinates of a

point. The plotted laser lines are they and z values calculated for the 0.3 m section

for each soil type. Approximately 600 data points were used to construct each laser

line.

As shown by Figure 13 and Figure 14, the structured lighting technique values

are within the accuracy of the pin displacement values. The trend of the pins in

the sandy soil to be lower than the laser line is probably caused by pins sinking into

56

TABLE II

SUMMARY OF HEIGHT MEASUREMENTS

Actual Height Mean Value Std Dev.
Block (mm) (mm) (mm)

#l 12.80 12.84 0.128
#2 25.04 24.95 0.128
#3 37.69 37.60 0.196
#4 50.37 50.31 0.119
#5 62.08 62.02 0.082

TABLE III

ACTUAL AND MEASURED HEIGHT DIMENSIONS
OF TRAPEZOIDAL NOTCHED BLOCKS

Actual dimension Mean Value Std.
a d a d a

(mm) (mm) (mm) (mm) (mm)

Block #6 44.45 19.02 44.34 19.02 0.180
Block #7 44.32 25.22 44.27 25.15 0.168
Block #8 44.32 31.77 44.27 31.67 0.164

57

Dev.
d

(mm)

0.056
0.113
0.109

TABLE IV

ACTUAL AND MEASURED WIDTH DIMENSIONS
OF TRAPEZOIDAL NOTCHED BLOCKS

Actual dimension Mean Value Std. Dev.
b c b c b c

(mm) (mm) (mm) (mm) (mm) (mm)

Block #6 41.80 12.62 41.78 12.75 0.187 0.250
Block #7 47.47 25.04 47.45 25.12 0.171 0.174
Block #8 51.90 37.63 51.97 37.64 0.026 0.038

58

E
E

:r:
I-
CL
w
0

10

0

-10

-20

-30

-40
100

Line

Pins

175 250 325 400 475
WIDTH OF CROSS SECTION (mm)

Figure 13. Soil Profile for Sandy Soil

E
E

I
f-
n..
w
0

10

0

-10

-20

-30

-40
100 175 250 325

WIDTH OF CROSS SECTION (mm)

Figure 14. Soil Profile for Loam Soil

400 475

°' 0

61

the surface. Therefore, the measured values of the pins tend to be lower than the

laser values.

The results of the rigid object and soil profile tests indicate that the structured

lighting system is an alternative technique for measuring soil profiles. Additional

runs have been made with wet and dry soils. No noticeable problems have been

observed as long as water is not ponded on the surface.

Applications

Results previously discussed are limited to measuring a single profile. Addi­

tional algorithms have been written to analyze the data gathered with several passes

of the system. Three-dimensional views of the soil surface can then be obtained for

a given soil area. The algorithms have been specifically written for use with the

erosion table described in Chapter III, but could be easily modified for field work.

A three-dimensional analysis of the soil surface is obtained using the stepper

motors and software previously described. Successive measurements of a specified

area are first made in the erosion table. This information is stored in encoded

form. Data points are then analyzed to determine average height values for a

specific grid. These results can be displayed graphically with two figures shown

simultaneously on the screen. In Figure 15, an example of the two figures for a 0.3

by 0;3 m area of the erosion table is shown. The first figure is a topographical view

(x and y values) of varying gray levels. Each gray level represents a different

height. As shown in Figure 15, a three-dimensional view of a rill can be seen from

this representation. The bottom figure shows the cross-section of a specified slice

of the three-dimensional view. The location of the slice is shown in the top figure.

This slice can be rotated so that various cross-sections can be seen.

62

Figure 15. Topographical and Cross-sectional View of Soil Surface Area

63

Velocity Measurements

Comparison Test

A print of the final image of the velocity measuring algorithm is shown in

Figure 16. The double circles represent the location of the beads which were

snapped in the first frame. The blobs are the beads of the second snapped frame.

The line between the first and second frame beads is the displacement of the

centroids which results in the distance the bead has traveled.

The results of the comparison between live measurements and taped measure­

ments are shown in Table V. Although the actual velocities are different for the two

types of measurements, a comparison can still be made by considering the accuracy

of the velocity routines. The maximum difference using live processing is 0.006

m/s and is 0.009 m/s using the recorded images. Both of these values fall within the

measurement accuracy of the actual values.

Results of this test show that there is no substantial difference for using the

velocity system between live velocities and recorded velocities. This allows various

flows to be recorded first and then analyzed at a more convenient time.

Live data in Table V were also used to estimate the maximum velocity

measurable with this particular algorithm. The maximum value was approximately

0.914 m/s (3 ft/sec). At larger velocities, the beads are traveling so fast that they

are not in successive frames. A fast velocity routine needs to be developed to

measure speeds greater than 0.914 m/s.

Accuracy Test

The accuracy and precision of the velocity measuring system were determined

by measuring the same speed eight different times. The results of these tests are

shown in Table VI. Since the velocities were pre-recorded, it was possible to

64

Figure 16. Displacement of Beads for Velocity Algorithm

65

TABLE V

COMPARISON OF LIVE AND RECORDED VELOCITIES

Live Recorded
Actual Measured Actual Measured

Velocity Velocity Velocity Velocity
(m/s) (m/s) (m/s) (m/s)

0.411 0.416 0.360 0.360
0.457 0.460 0.460 0.460
0.478 0.478 0.527 0.521
0.610 0.616 0.567 0.570
0.668 0.668 0.582 0.579
0.686 0.692 0.643 0.634
0.734 0.734 0.725 0.722
0.817 0.820 0.741 0.732
0.863 0.863 0.811 0.811
0.914 0.911 0.875 0.869

66

TABLE VI

ACTUAL AND MEASURED VELOCITIES (m/s)

True Number Average Average
Run Speed of Blobs Max. Dev. Mean Standard

(±_0.009) per frame per frame Velocity Error

I 0.340 5 to 7 0.004 0.340 0.005
2 0.460 4 to 6 0.004 0.463 0.009
3 0.570 4 to 6 0.004 0.570 0.004
4 0.579 4 to 6 0.007 0.579 0.003
5 0.634 4 to 5 0.009 0.637 0.002
6 0.722 3 to 4 0.006 0.725 0.002
7 0.811 2 to 4 0.006 0.808 0.003
8 0.869 2 to 3 0.009 0.869 0.004

67

measure speeds at varying points on the tape, resulting in a different number of

beads in each velocity calculation. A velocity for each bead was first calculated.

The average of all beads in a frame was used to calculate a mean velocity, and the

average of this value for eight frames was used to calculate the average mean

velocity.

The variability in bead speeds for individual frames is summarized by the

average maximum deviation per frame in Table VI. These values were obtained by

averaging the maximum deviation observed for the eight different frames. The

largest average maximum deviation was only 0.009 m/s. indicating small variations

between individual bead speeds for a given frame.

The average mean velocity was obtained by averaging the mean velocity for

eight different frames. As shown in Table VI, the average mean velocities were

within the uncertainty of true speed values. The variability in mean velocities

between frames is reflected in the standard errors given in Table VI. These values

represent the standard deviation of the mean velocities about the average mean

velocity. The small standard errors show that the system is consistent in its

measured values.

These results indicate that the velocity measuring system is an acceptable

procedure for measuring the velocity of beads. The accuracy of the system is

within±_ 10 mm/s. Additional tests are needed with flowing water before the tech­

nique can be applied to rill flows.

CHAPTER VII

SUMMARY AND CONCLUSIONS

A study was conducted to quantify erosion processes using a low cost image

processing system. The objectives of the study were (1) to design and develop an

apparatus to measure soil profiles and water velocity using image processing techni­

ques, (2) to test the system for measuring soil profiles using well-defined objects of

known size and shapes and using actual soil profiles, and (3) to test the system for

measuring water velocities using known velocities of small wooden beads.

The image processing measuring system was incorporated into a large-scale

laboratory apparatus. The mechanical, electrical and structural components of the

measurement system, including an erosion table, soil profile measuring equipment,

and velocity measuring equipment were described. The system is controlled by an

IBM-AT. Data Translation's DT-2851 frame grabber and DT-2858 co-processor

boards are used to digitize and manipulate images.

Surface topography measurements are made using a structured lighting tech­

nique. This technique requires that a well-defined stripe of light be projected onto

the surface by a laser. Equations to determine elevation and the location of the

stripe within the field of view of a camera are developed. Calibration procedures

are also discussed.

Image processing techniques to measure surface velocities are developed using

the travel distance of small wooden beads in a specified time period. Travel

distance is obtained by analyzing two frames at different points in time. Contrast

between beads and background is enhanced by painting the beads with flourescent

68

69

paint and using an ultra-violet bulb for a light source. The computational speed of

the velocity measurement algorithm is too slow to run in real time. Therefore, the

movement of the beads is first taped using a NEC high quality digital video cassette

recorder.

Two sets of experiments were conducted to evaluate the accuracy and applica-

bility of structured lignting techniques for measuring soil surface profiles. The

first set of experiments used rigid objects. These objects were constructed precisely

and represented well-defined shapes for evaluating accuracy. The second set of

experiments used soil with pre-formed surface depressions to test the applicability

of the system.

Two testing procedures were conducted to evaluate the accuracy of the

velocity measurement system. The first tests were used to determine differences

between measured velocities from a live camera and those obtained using a VCR

playback unit. The second set of tests was done to evaluate the accuracy of the

algorithm.

Based on the experimental results, the following conclusions may be drawn.

I. The results of the rigid block tests indicate that structured lighting
techniques are capable of measuring geometric characteristics with good
accuracy. Errors in measuring these characteristics were less than 1
mm for all runs.

2. The structured lighting is applicable to soil profiles. No noticeable
problems have been observed as long as water is not ponded on the
surface.

3. There seems to be no substantial differences between live velocities and
those recorded on video tape.

4. The maximum velocity for which this particular algorithm can be util­
ized is approximately 0.914 m/s (3 ft/sec).

5. The velocity measuring system appeared to be a useful technique for
measuring surface velocities. The accuracy of the system is at least +
10 mm/s. -

70

Recommendations for Future Research

I. Perform surface measurements on actual rills in laboratory and field
settings.

2. Develop a rain/light shield for the camera and laser to protect them
from water an·d to limit outside lighting for consistent thresholding.

3. Design a portable system for field work.

4. Test the slow water algorithm with open channel flows.

5. Develop a fast velocity algorithm to measure accurately water velocities
greater than 0.914 m/s.

REFERENCES CITED

Albertson, M. L., J. R. Barton and D. B. Simons. 1960. Fluid Mechanics for Engi­
neers. Prentice-Hall, Inc. New Jersey.

Barfield, B. J. and W. H. Henson, Jr. 1971. Calibration of hot-wire and hot-film
probes. Transactions of the ASAE. 14(6):1100-1102, 1106.

Barfield, B. J., E. A. Hiler and E.T. Smerdon. 1968. The effects of rainfall on the
structure of turbulence in shallow open channel flow. ASAE Paper No.
68-748, ASAE, St. Joseph, MI 49085.

Beasley R. P., J.M. Gregory and T. R. McCarty. 1984. Erosion and Sediment Pollu­
tion Control. 4th Ed. Iowa State University Press. Ames.

Bennett, H. H. 1939. Soil Conservation. McGraw-Hill. New York.

Beckwith, T. G., N. L. Buck and R. D. Marangoni. 1982. Mechanical Measurements.
Addison-Wesley Publishing Comapany, Inc. Reading, Massachusetts.

Burwell, R. E., R. P. Allmaras and M. Amemiya. 1963. A field measurement of total
porosity and surface microrelief of soils. Soil Sci. Soc. Am. Proc. 27:697-700.

Clark II, E. H., J. A. Haverkamp and W. Chapman. 1985. Eroding Soils The Off­
Farm Impact. The Conservation Foundation. Washington D.C.

Cunningham, R. 1981. Segmenting binary images. Robotics Age. 3(4):4-19.

Currence, H. D. and W. G. Lovely. 1970. The analysis of soil surface roughness.
Transactions of the ASAE. 13(6):710-714.

Curtis, W. R. and W. D. Cole. 1972. Micro-topograghic profile gage. Agricultural
Engineering. 53:17.

DeBoodt, M. and D. Gabriels. 1980. Assessment of Erosion. John Wiley & Sons. New
York.

DePloey, J. and D. Gabriels. 1980. Measuring soil loss and experimental studies. Soil
Erosion. John Wiley & Sons. New York.

Ellison, W. D. 1944. Studies of raindrop erosion. Agricultural Engineering.
25: 131-136, 181-182.

71

72

Foster, G. R., L. F. Huggins and L. D. Meyer. 1984. A laboratory study of rill
hydraulics: I. velocity relationships. Transactions of the ASAE.
27(3):790-796.

Foster, G. R. and L. D. Meyer. 1972. Efficient processing of microrelief
photographs. ASAE Paper No. 72-593, ASAE, St. Joseph, MI 49085.

Gilley, J.E., S. C. Finker and G. E. Varvel. 1986. Hydraulic and soil loss variables
on eroding area. ASAE Paper No. 86-2041, ASAE, St. Joseph, MI 49085.

Grant K. E. 1975. Erosion in 1973-74: The record and the challenge. J. Soil Water
Cons. 30:29-32.

Harral, B. B. and C. A. Cove. 1982. Development of an optical displacement
transducer for the measurement of soil surface profiles. Jour. Agric. Engr.
Research. 27:421-429.

Heermann, D. F., R. J. Wenstrom and N. A. Evans. 1969. Prediction of flow resis­
tance in furrows from soil roughness. Transactions of the ASAE.
12(4):482-485,489.

Henry, J.E., M. J. Sciarini, and D. M. Van Doren, Jr. 1980. A device for measuring
soil surface profiles. Transactions of the ASAE. 23(6):1457-1459.

Hirschi, M. C., B. J. Barfield and I. D. Moore. 1984. Rillmeters for detailed measure­
ment of soil surface heights. ASAE Paper No. 84-2534, ASAE, St. Joseph, MI
49085.

Hudson, N. 1981. Soil Conservation. 2nd Ed. Cornell University Press.

Jalkio, J. A., R. C. Kim and S. K. Case. 1985. Three dimensional inspection using
multistripe light. Optical Engineering, Bol. 24(6):966-97 4.

Khorashahi, J., R. K. Byler, and T. A. Dillaha. 1985. An opt-electronic soil profiler.
ASAE Paper No. 85-3041, ASAE, St. Joseph, MI 49085.

Kuipers, H. 1957. A relief meter for soil cultivation studies. Netherlands J. of Agr.
Sci. 5:255-262.

Line D. E. and L. D. Meyer. 1987. Flow velocities of concentrated runoff along
cropland furrows. ASAE Paper No. 87-2087, ASAE, St. Joseph, MI 49085.

McCool, D. K., M. G. Dossett, and S. J. Yecha. 1976. A portable rill meter for
measureing soil loss. ASAE Paper No. 76-2054, ASAE, St. Joseph, MI 49085.

McCool, D. K., MG. Dossett, and S. J. Yecha. 1981. A portable rill meter for field
measurement of soil loss. Proceedings of the International Symposium on
Erosion and Sediment Transport Measurement, June, 1981, Florence, Italy.

Merva, G. E., R. D. Brazee, G. 0. Schwab and R. B. Curry. 1970. Theoretical
considerations of watershed surface description. Transactions of the ASAE.
13(4):462-465.

73

Mitchell, J. K. and B. A. Jones. 1973. Profile measuring device. Transactions of
the ASAE. 16(3):546-547.

Moore, I. D. and C. L. Larson. 1979. Estimating micro-relief surface storage from
point data. Transactions of the ASAE. 22(5):1073-1077.

Morgan, R. P. C. 1986. Soil Erosion and Conservation. Longman Group UK Limited.
England.

Podmore, T. H. and L. F. Huggins. 1981. An automated profile meter for surface
roughness measurements. Transactions of the ASAE. 24(3):663-665, 669.

Radke, J. K., MA. Otterby, R. A. Young and C. A. Onstad. 1981. A microprocessor
automated rillmeter. Transactions of the ASAE. 24(2):401-404, 408.

Rice, C., B. N. Wilson and M. Appleman. 1987. Instrumentation for erosion research
using image processing techniques. ASAE Paper No. 87-2097, ASAE St.
Joseph, MI 49085.

Richardson, E. V. and R. S. McQuivey. 1968. Measurement of turbulance in water.
Journal of the Hydraulics Division. Proc. of the ASCE. 15(3):411-429

Romkens, M J., S. Singarayar, and C. J. Gantzer. 1982. An automated noncontact
surface profile meter. ASAE Paper No. 82-2620, ASAE St. Joseph, MI 49085.

Schafer, R. L. and W. G. Lovely. 1967. A recording soil surface profile meter.
Agricultural Engineering. 48:280-282.

Schwab, G. 0., R. K. Frevert, T. W. Edminster and K. K. Barnes. 1966. Soil and
Water Conservation Engineering. 2nd Ed. John Wiley & Sons, Inc. New York.

Shames, I. H. 1982. Mechanics of Fluids. McGraw-Hill Book Company. New York.

Swientek, R. J. 1986. On-line thickness control improves product quality. Food
Processing. 47(8):100-101

Troeh, F. R., J. A. Hobbs and R. L. Donahue. 1980. Soil and Water Conservation for
Productivity and Environment Protection. 2nd Ed. Prentice-Hall, Inc. New
Jersey.

Vanoni, V. A., 1946. Transportation of suspended sediment by water. Transactions
of the ASCE. 111:67-133.

Vanoni, V. A. and N. H. Brooks. 1957. Laboratory studies of the roughness and
suspended load of alluvial streams. Final Report to Corps of Engineers, U.S.
Army. Report No. E-68. Pasadena, California.

Wilson, B. N. and B. J. Barfield. 1986. Predicted and observed turbulence in deten­
tion ponds. Transactions of the ASAE. 29(5):1300-1306, 1313.

Wilson, B. N. and C. T. Rice. 1987. A large-scale laboratory apparatus for erosion
research. ASAE Paper No. 87-2096, ASAE St. Joseph, MI 49085.

74

Wischmeier, W. H. 1955. Punch cards record runoff and soil loss data. Agricultural
Engineering. 36:664-666.

Wischmeier, W. H., D. D. Smith and R. E. Uhland. 1958. Evaluation of factors in the
soil loss equation. Agricultural Engineering. 39(8):458-462, 474.

Young, R. A. and C. K. Mutchler. 1969. Soil and water movement in small tillage
channels. Transactions of the ASAE. 12(4):543-545.

APPENDIX A

CALIBRATION PROGRAMS

75

/* BLineCal.c

* Base Line Calibration

*/

/* Standard Microsoft header files. * /
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <conio.h>

#include <ctype.h>

#include <io.h>

/* Other header files. */
#include <iris.h>

#include <stddefs.h>

#include <baseline.h>

#include <2dSpace.h>

/* Define macros for vidio sync source. * /
#define EXT_SYNC 1

#define INT_SYNC 0

/* Undefine the toupper macro so that the library function is used. * /
#undef toupper

/* Declarations of external functions called from this file. "'/

extern

extern

extern

extern

extern

extern

struct Line2D FindLine(int, int, int, int) ;

WriteBaseLine(struct BaseLine *) ;
ReadBaseLine(struct BaseLine *) ;

double CalcZO(double, double, double)

yoid InitCondition(void)

void Condition(void)

struct BaseLine BaseLine /* This is the BaseLine structure which

is to be filled then saved to disk. "'/

extern double SetPoint

main()

{
char c ;

int i, j, k, q

printf("\n")

printf("

printf("

printf("

printf("\n")

***\n")
* B a s e L i n e C a 1 i b r a t i o n *\n") ;
***\n")

is _initialize()

is_reset() ;

InitCondition() ;

76

}

MakeBaseLine(&BaseLine) ;

if(ERROR == WriteBaseLine(&BaseLine))
puts("*** error writing baseline ***")

if(ERROR == ReadBaseLine(&BaseLine))

puts("*** error reading baseline ***") ;

is_end()

/* MakeBaseLine()

* Fill a BaseLine structure.

*/
MakeBaseLine(BaseLinePtr)

struct BaseLine *BaseLinePtr

{
/* Pointer to a BaseLine structure * /

int n,
temp,

/* loop counter */

XStart = 40,

XEnd = 480,

YStart = 100,

YEnd = 400;

/* temporary storage

/* minimum x value in window

/* maximum x value in window

/* minimum y value in window

/* maximum y value in window

float CalBlocklHeight,/* height of calibration block #1

Ca1Block2Height ;/* height of calibration block #2
*/
*/

struct Line2D

Linea,

Linel,

Line2

unsigned

/*
/*

/*
/*

{see 2dspace.h for Line2D structure) */
structure describing zero reference line.

structure describing cal. block #1 line.

structure describing cal. block #2 line.

*/

*/

*/

*/

MidY /* y value of the midpoint of each line * /

*/
*/

*/
*/

double MidXO, /* x value of the midpoint of zero ref. line * /

MidXl, /* x value of the midpoint of block #1 line. * /

MidX2, /* x value of the midpoint of block #2 line. * /

AvgSlope, /* average slope of the three lines. * /
NewinterceptO, /* new x intercept using average slope. * /

Newlnterceptl, /* new x intercept using average slope. * /

Newlntercept2 ; /* new x intercept using average slope. * /

/* Initialize beginning and end members of Base Line structure. * /
BaseLinePtr->Begin = YStart

BaseLinePtr->End = YEnd ;

/* Initialize ILUT #6 for thresholding at 50 * /

for(n = O; n < 256; n++)

{
if(n < 50)

is_load_ilut_sval(6, n, 0)

else

is_load_ilut_sval(6, n, n)

}

77

/* Get line #0 (zero reference line) • /

puts("\nPosition camera to view base line")

puts(" press any key to continue.") ;

Live(O)

getch()

is _freeze _frame()

Condition() ;

is_ display(l)

LineO = FindLine(XStart, XEnd, YStart, YEnd)

/* Get line #1 (calibration block #1) */
puts("\nPlace calibration block #1 in veiw")

puts(" press any key to continue.") ;

Live(O)

getch()

is _freeze _frame()

Condition() ;

is_display(l)

Linel = FindLine(XStart, XEnd, YStart, YEnd) ;

puts("What is the calibration block's heigth?")

scanf(" %1"', &CalBlocklHeight) ;

/* Get line #2 (calibration block #2) • /

puts("\nPlace calibration block #2 in veiw")

puts(" press any key to continue.") ;

Live(O)

getch()

is _freeze _frame()

Condition() ;

is_display(l)

Line2 = FindLine(XStart, XEnd, YStart, YEnd)

puts("What is the calibration block's heigth?") ;

scanf(" %1"', &Ca1Block2Height) ;

/* Calculate the average slope of the three lines * /
AvgS!ope = (LineO.Slope + Linel.Slope + Line2.Slope) / 3.0

/* Calculate the X value at the midpoint of each line * /
MidY = (BaseLinePtr->Begin + BaseLinePtr->End) / 2 ;

MidXO = (LineO.Slope * MidY) + LineO.xlntercept

MidXl = (Linel.Slope * MidY) + Linel.xlntercept

MidX2 = (Line2.Slope • MidY) + Line2.xlntercept

/* Using the X and Y values at the midpoint, calculate the

* new intercept.

*/
NewinterceptO = MidXO - (MidY * AvgSlope)

Newlnterceptl = MidXl - (MidY • AvgSlope)

Newintercept2 = MidX2 (MidY • AvgSlope)

/* Print some diagnostics. * /
printf("Slopes: (0)%.4f (1)%.4f (2)%.4f (avg)%.4f\n",

LineO.Slope, Linel.Slope, Line2.Slope, AvgSlope) ;

78

}

/* For each image row, calculate Xref, Zref, and K * /
for(n = YStart; n <= YEnd; n++)
{

}

double DeltaXl,

DeltaX2,

V;

/* pixels from line #0 to line #1 * /
/* pixels from line #0 to line #2 * /
/* intermediate variable (see

derivation of equation) * /

/* Calculate difference between baseline and lines 1 & 2 * /
DeltaXl = New Intercept! - NewlnterceptO /* pixels * /
DeltaX2 = Newlntercept2 - NewlnterceptO /* pixels "/

/* Calculate Xref in pixels * /
BaseLinePtr->Xref[n) = (AvgSlope * n) + NewlnterceptO

/* Calculate V (V has no units) * /
V = (DeltaXl * Ca1Block2Height) / (DeltaX2 * CaIBlocklHeight)

/* Calculate Zref (same units as the CaIBlockHeights) * /
BaseLinePtr->Zref[n) =

((V * CalBlocklHeight) - Ca1Block2Height) / (V - 1.0)

/* Calculate K * /
BaseLinePtr->K[n) =

DeltaXl /

((1.0 / (BaseLinePtr->Zref[n] - CalBlocklHeight)) ·

- (1.0 / BaseLinePtr->Zref[n])) ;

/* Mark BaseLine structure as being loaded • /

BaseLinePtr->Loaded = TRUE ;

79

/* FitLine.c * /
/* Find the best fit line for an array of points in 2 dimensional space. * /

/* Standard Microsoft header files. * /
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Other header files. • /

#include <2dspace.h>

/* FitLineToPoints()

* Find the line that best fits the given points.

* This algorythm assumes the error of each point from a straight line

* to be in the X direction.

* NOTE that this function returns a structure.

*/
struct Line2D FitLineToPoints(Points, NPoints)

struct Point2D Points[) ; /* Array of 2 dimensional points * /
int NPoints ; /* Number of points in Points[) * /
{

unsigned int

i ; /* loop counter */

struct Line2D

Line ;

/* (see 2dspace.h for Line2D structure) • /

/* structure defining a line. * /

double x, y,

SigmaX,

SigmaXX,

SigmaY,

SigmaYY,

SigmaXY;

/* temp. storage for point coordinates. • /

/* Sum of x's

/* Clear sums to zero. * /

/* Sum of (x squared)'s

/* Sum of y's

/* Sum of (y squared)'s

/* Sum of (x * y)'s

SigmaX = Sigma Y = SigmaXX = Sigma YY = SigmaXY = 0

/* For the array of points,

/* sum x's, y's, x 11quared's, y 11quare's, and x*y's.

for(i = O; i < NPoints; i++)

{

}

x = Points[i].X ;

y = Points{i].Y ;

SigmaX += x;

SigmaY += y;

SigmaXX += x *
SigmaYY += y *
SigmaXY += x *

x

y

y

/* Calculate best fit slope. * /
Line.Slope = (SigmaXY - (SigmaY * SigmaX / NPoints)) /

(SigmaYY - (SigmaY * SigmaY / NPoints)) ;

*/
*/

*/
*/
*/
*/
*/

80

}

r Calculate best fit x intercept. *I
Line.xlntercept = (SigmaX - (Line.Slope * Sigma Y)) / NPoints

/* Return the line structure. * /
return (Line) ;

81

/* RWBaseLn.c */
/* Read Base Line and Write Base Line functions. * /

/* Standard Microsoft header files. * /

#include <stdio.h>

#include <std!ib.h>

#include <math.h>
#include <io.h>

/* Other header files. * /

#include <stddefs.h>

#include <base!ine.h> /* Includes the BLINEFILE macro. * /

/* Define the maximum line length for the BaseLine text file. * /

#define MAX_LENGTH 80

/* Write a BaseLine structure to disk. * /

ERRCODE WriteBaseLine(BaseLinePtr)
struct BaseLine *BaseLinePtr ; /* Pointer to a BaseLine structure. * /
{

int n; /* Loop counter

FILE *fp /* Reference to file stream for writing.*/

/* Open the BaseLine file for writing in default mode (text). * /
if(NULL == (fp = fopen(BLINEFILE, "w")))

{

}

puts("*"'* error - unable to open BaseLine output file "'"'*")
return(ERROR) ;

/* Write the beginning and ending row number of the BaseLine. * /

fprintf(fp, "Begin = %d\nEnd = %d\n",

*/

BaseLinePtr-> Begin, BaseLinePtr-> End)

}

/* For each row, write Xref, Zref, and K to the BaseLine file. * /
for(n = BaseLinePtr->Begin; n <= BaseLinePtr->End; n++)
{

}

fprintf(fp, "[%d] %f %f %f\n",

n,
BaseLinePtr->Xref(n],

BaseLinePtr-> Zref[n J,
BaseLinePtr->K[n]) ;

fclose(fp)
return(NOERROR)

/* Read a BaseLine structure from disk. * /
ERRCODE ReadBaseLine(BaseLinePtr)
struct BaseLine *BaseLinePtr ;

{
int
FILE

n· .
*fp

/* Loop counter
/* Reference to file stream for writing.*/

*/

82

}

/* Open the BaseLine file for reading in default mode (text). * /
if(NULL == (fp = fopen(BLINEFILE, "r")))

{

}

perror("ReadBaseLine()")

retum(ERROR) i

/* Read the beginning and ending row number of the BaseLine. * /
if(l I= fscanf(fp, " Begin = %d", &(BaseLinePtr->Begin)))

{

}

perror("ReadBaseLine()") ;

fclose(fp) ;

BaseLinePtr->Loaded = FALSE

retum(ERROR) i

if(l I= fscanf(fp, " End = %d", &(BaseLinePtr->End)))

{

}

perror("ReadBaseLine()") ;
fclose(fp) ;

BaseLinePtr->Loaded = FALSE

retum(ERROR) i

/* For each row, read Xref, Zref, and K from the BaseLine file. * /
for(n = BaseLinePtr->Begin; n <= BaseLinePtr->End; n++)

{

}

fclose(fp)

if(3 I= fscanf(fp, " [%*d] %If %If %If",

&(BaseLinePtr->Xref[n]),

&(BaseLinePtr->Zref[n]),
&(BaseLinePtr->K[n])))

{

}

perror("ReadBaseLine()") ;

fclose(fp) i

BaseLinePtr->Loaded = FALSE

retum(ERROR) ;

/* Mark BaseLine structure as being loaded * /
BaseLinePtr->Loaded = TRUE

return(NOERROR) ;

83

/* ScaleCal.c
* Calibrate the X and Y Scaling factors.

*I

#include <conio.h>

#include <stdio.h>

#include <iris.h>

#include <stddefs.h>

#include "draw.h"

#include "measure.h"

#include "2dSpace.h"

#define LEFTEDGE

#define RIGHTEDGE

#define TOPEDGE

#define BOTTOMEDGE

100

400
100

400

extern void main(void) ;

static int Window[] = { LEFTEDGE, RIGHTEDGE, TOPEDGE, BOTTOMEDGE }

static int XWindow(] = (LEFTEDGE, RIGHTEDGE, TOPEDGE + 80, BOTTOMEDGE - 80 }
static int YWindow(] = { LEFTEDGE + 120, RIGHTEDGE - 120, TOPEDGE, BOTTOMEDGE }

void main()

(

}

is _initialize()

is_reset() ;

is_set_sync_source(l)
is_select_input_frame(O)

is_select_output_frame(O)

is_display(l) ;

is_set_foreground(127) ;

if(NOERROR == ScaleCalibrate(O))

prin tf(" Calibration Successful.\ n")

else

printf("Calibration Unsuccessful. \n")

IS_END();

ERRCODE ScaleCalibrate(Frame)

int Frame ;

(
struct Line2D LeftLine, RightLine, TopLine, BottomLine ;

double AvgVertica!Slope, AvgHorizontalSlope ;
double MidLeftLineY, MidRightLineY, MidLeftLineX, MidRightLineX

double MidTopLineY, MidBottomLiney, MidTopLineX, MidBottomLineX

double DeltaX, DeltaY ;
float XDistance, YDistance

double XFactor, YFactor ;

int Col0fPixels[512], RowOfPixels[512), col, row

struct Point2D Pointsl[512], Points2(512)

int CompPix ;

int i ;

int MinValue, MinCol, MinRow

84

is_load_mask(O) ;
DrawBox(Window[O], Window[l), Window[2], Window[3)) ;
DrawBox(XWindow[O], XWindow[l], XWindow[2], XWindow[3))
DrawBox(YWindow[O], YWindow[l), YWindow[2), YWindow[3])

is_load_mask(l)
is_select_olut(7)

is_passthru() ;

printf("Place parallel lines in image ... \n") ;

printf(" ... press any key to continue, <er> to exit.\n")

if('\r' == getch())
return(NOERROR)

is_acquire(O, 1) ;

for(i = O, row = XWindow[2) + 1; row <= XWindow[3] - 1; i++, row++)
{

}

is_get_pixel(O, row, 0, 512, RowOfPixels)

r Left side box. *I
MinValue = 256 ;

for(col = Window(O) + 1; col <= YWindow[O] -1; col++)
{

}

if(RowOfPixels(col] < MinValue)
{

}

MinValue = RowOfPixels[col]

MinCol = col ;

Pointsl[i).Y = (float)row ;
Pointsl[i).X = (float)MinCol

CompPix = RowOfPixels[MinCol) • Ox80 ;
is_put_pixel(O, row, MinCol, 1, &CompPix)

/* Right side box. * /
MinValue = 256 ;
for(col = YWindow[l) + 1; col <= Window[l) - 1; col++)
{

}

if(RowOfPixels[col) < MinValue)
{

}

MinValue = RowOfPixels[col]

MinCol = col ;

Points2[i].Y = (float)row ;

Points2[i).X = (float)MinCol
CompPix = RowOfPixels[MinCol) • Ox80 ;
is_put_pixel(O, row, MinCol, 1, &CompPix)

LeftLine = FitLineToPoints(Pointsl, i - 1) ;
RightLine = FitLineToPoints(Points2, i - 1) ;

85

for(i = O, col = YWindow[O] + 1; col <= YWindow{l] - 1; i++, col++)
{

}

/* Top side box. * /
for(row = Window[2] + 1; row <= XWindow[2] - 1; row++)
{

is_get_pixel(O, row, col, 1, &(ColOfPixels{row])) ;

}

MinValue = 256 ;

for(row = Window[2] + 1; row <= XWindow[2] - 1; row++)
{

}

if(ColOfPixels[row] < MinValue)

{

}

MinValue = ColOfPixels[row]

MinRow = row ;

Pointsl[i].X = (float)MinRow ;

Pointsl[i].Y = (float)col ;
CompPix = RowOfPixels[MinRow] A Ox80 ;

is_put_pixel(O, MinRow, col, 1, &CompPix)

/* Bottom side box. * /
for(row = XWindow[3] + 1; row <= Window[3] - 1; row++)
{

is_get_pixel(O, row, col, 1, &(Co!OfPixels[row])) ;
}

MinValue = 256 ;

for(row = XWindow[3] + 1; row <= Window[3] - 1; row++)
{

}

if(Co!OfPixels[row] < MinValue)
{ .

}

MinValue = Co!OfPixels[row]

MinRow = row ;

Points2{i].X = (float)MinRow ;

Points2{i].Y = (float)col ;

CompPix = ColOfPixels[MinRow] A Ox80 ;

is_put_pixel(O, MinRow, col, 1, &CompPix)

TopLine = FitLineToPoints(Pointsl, i - 1) ;

BottomLine = FitLineToPoints(Points2, i - 1)

AvgVerticalSlope = (LeftLine.Slope + RightLine.Slope) / 2

AvgHorizontalSlope = (TopLine.Slope + BottomLine.Slope) / 2

MidLeftLineY = MidRightLineY = XWindow[3] - XWindow[2] ;

MidLeftLineX = (LeftLine.Slope * MidLeftLineY) + LeftLine.xintercept

MidRightLineX = (RightLine.Slope * MidRightLineY) +
RightLine.xintercept ;

86

}

MidTopLineX = MidBottomLineX = YWindow[O) - YWindow[l) ;

MidTopLineY = (TopLine.Slope * MidTopLineX) + TopLine.xlntercept

MidBottomLineY = (BottomLine.Slope * MidBottomLineX) +

DeltaX = MidRightLineX - MidLeftLineX ;

DeltaY = MidBottomLineY - MidTopLineY

BottomLine.xlntercept

printf("Delta X = %.4f Delta Y = %.4f\n", DeltaX, Delta Y)

printf("What is the distance between the two VERTICAL lines?\n")

scanf(" %1"', &XDistance) ;

printf("What is the distance between the two HORIZONTAL lines?\n")

scanf(" %1"', &YDistance) ;

XFactor = XDistance / DeltaX /"' inches per pixel * /
YFactor = YDistance / DeltaY /* inches per pixel * /
printf("X factor = %.6f Y factor = %.6f\n", XFactor, YFactor)

if(ERROR == WriteScalingFactors(XFactor, YFactor))

return(ERROR) ;

else
return(NOERROR)

87

APPENDIX B

SOIL PROFILE MEASUREMENT PROGRAMS

88

/"' Measure.c * /

/* Standard Microsoft header files.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
#include <conio.h>

#include <ctype.h>

#include <io.h>
#include <string.h>

/* Other header files. • /

#include <stddefs.h>

#include <iris.h>

#include <pcmotion.h>

#include <measure.h>

#include <topog.h>

#include <udm.h>

*/

/"' Stepping motor ramp table file names. * /
#define RAMPTABLE_A "C:\ \PCMOTION\ \RAMPA.DAT"
#define RAMPTABLE_B "C:\ \PCMOTION\ \RAMPB.DAT"

#define RAMPTABLE_C "C:\\PCMOTION\\RAMPC.DAT"

#define INITIAL_THRESHOLD 50
#define UDM_TIMEOUT 1000

extern int ermo ;

extern void Condition(void)

extern void InitCondition(void)

extern double SetPoint ;

struct BaseLine BaseLine

float ImageXCenter = 512

float ImageYCenter = 480

/* baseline structure • /

/ 2 ;/* pixel position * /
/ 2 ;/"' pixel position * /

double XScale, YScale ;

double XStepSize = .0156

/* x and y scaling factor, inches per pixel * /
/* inches per step * /

double YStepSize = .02 j /* inches per step • /
double ZStepSize ; /* inches per step (not currently used) • /
BOOL :poStep ;

int ilutBuf[511] ; /* Input lookup table buffer (help from KAN) * /
int xStepsPerSnap,

yStepsPerSnap

/* Do initialization and settup for call to Measure() * /
void main(argc, argv)

int argc ;

char *argv(] ;

{
int errcode

switch(argc)
{

/* argument count

/* argument vectors

/* Form: Measure <filename> * /

*/
*/

89

}

case 2:

DoStep = FALSE

break ;

/* Form: Measure <filename> STEP * /
case S:

if(O == strcmpi(argv(2], "STEP"))

{

}else{

}

DoStep = TRUE ;
break ;

DoStep = FALSE

/* All other forms invalid. * /

default:

}

printf("usage: Measure <filename> (STEP]\n")

return ;

/* Initialize stepping motor drivers. * /
PCM_Init() ;

if(0 I= (errcode =

{

}

PCM_LoadRampTables(RAMPTABLE_A, RAMPTABLE_B, RAMPTABLE_C)))

printf("error loading ramp tables, error code %d.\n", errcode) ;
return ;

/* Initialize image processing hardware. * /
is _initialize() ;
is_reset() ;

InitCondition() ;

/* Initialize ultra-sonic distance measurement device. * /
UDM_Init(UDM_BASE)

/* Read in BaseLine * /
if(ERROR == ReadBaseLine(&BaseLine))

return ;

/* Read in scaling factors * /

if(ERROR == ReadScalingFactors(&XScale, &YScale))

return ;

/* Do measurement. * /
if(ERROR == Measure(argv(l]))

printf("Measure Unsuccessful\n", &(*argv[l]))

else

printf("Measure Successful\n")

is_end()

90

Measure(filename)

char *filename

{
int n,

errcode,

argument,

XS tart,

XEnd,

YStart,

YEnd,

xsteps,

ysteps,

thresh =

/* Loop counter, array index. * /

/* Temporary storage for some functions

return code. */
*/

/* Minimum frame column to look for line. * /
/* Maximum frame column to look for line. * /

/* Minimum frame row to look for line. * /
/* Maximum frame row to look for line. * /

/* Loop counter. * /
/* Loop counter. * /

INITIAL_ THRESHOLD /* Threshold for conditioning. * /

static double

TOPOG

char

XPos[512], /* X position relative to camera position. * /
YPos[512], /* Y position relative to camera position. * /
ZPos(512], /* Z position relative to camera position. * /
xposition, /* X position of camera. * /
yposition, /* Y position of camera. * /
zposition = 0.0;/* Z position of camera. * /

*tp

c[2],

command

/* Pointer to file descriptor for an

encoded topographic data file. * /

/* 1 character + null byte command string. * /
/* 1 character command. (1st char of c(]) * /

if(NULL == (tp = open_topog_write(filename)))
retum(ERROR) ;

/* Set x, y, and z scaling factor for encoding. * /
new_topog_xscale(tp, XScale)

new _topog_yscale(tp, YScale)
new_ topog_ zscale(tp, 0.001) ;

/* Define search window for line. * /
XStart = 50 ;

XEnd = 450 ;

YStart = BaseLine.Begin

YEnd = BaseLine.End ;

Live(O)

do

{
printf("\n\nCOMMANDS:\n") ;

printf(" X n ... Moves the camera 'n' steps in the X direction.\n") ;

printf("

printf("

printf("

printf("

Y n ... Moves the camera 'n' steps in the Y direction.\n") ;

Z n ... Moves the camera 'n' steps in the Z direction.\n") ;

M Begin surface measurements.\n") ;

Q Quit.\n\n") ;

91

while(!kbhit())
{

UDM _ Start(UDM _BASE)

printf("height = %.2f\r",
UDM_Poll(UDM_BASE, UDM_TIMEOUT)

* 1111. * .0000016)
}
printf("\ncommand:")
scanf(" %s", c) ;

switch(command = c[O))
{

case •x•:

case 'X':

scanf("%d", &argument) ;

PCM_ MoveR(argument,

break

case 'y':

case 'Y':

scanf("%d", &argument) ;

o,

PCM_MoveR(O, argument,

break

case 'z':
case 'Z':

0)

0)

scanf("%d", &argument) ;

PCM_MoveR(O, 0, argument)

break

case 'q':

case 'Q':

}
goto quit

}while('m' I= tolower(command))

printf("enter the number of steps per measurement in the x direction\n ")

printf(" (1 or 2 is typical): ") ;

scanf(" %d", &xStepsPerSnap)

PCM_MoveR(O, -50, 0) ;

PCM_Flag2() ;

PCM_MoveR(O, 50, 0) ;

PCM_Flag2() ;

PCM_MoveR(-50, 0, 0) ;

PCM_Flagl() i

PCM_MoveR(50, O, 0)
PCM_Flagl() ;

/" For each step in the y direction, do ... * /
for(ysteps = O; (yposition = (ysteps * YStepSize)) < 12.1;)
{

/* For each step in the x direction, do ... * /
for(xsteps = O; (xposition = (xsteps * XStepSize)) < 12.1;)
{

/* Make the display live. * /
Live(O) ;

92

/* Check to see if a key has been pressed. * /
if(kbhit())

{

}

/* If so then take action. * /
switch(getch())

{
/* if key = <esc>,

abort x steps, continue at next y step. * /
case '\xlb':

goto NextY ;

/* if key = <return>,

abort x and y steps. * /
case '\r':

goto quit ;
}

f* Snap this frame * /
if(O != is_freeze_frame())
{

}

printf(" ... retrying. \n")

continue ;

/* If stepping is enabled, step now and do processing

while the camera stablizes. • /

if(TRUE == DoStep)
{

}

PCM_Flagl()

PCM_Flag2()

PCM_MoveR(xStepsPerSnap, 0, 0)

xsteps += xStepsPerSnap ;

/* Do conditioning of image. • /

Condition() ;

is_display(l) ;

/* Make a measurement.

* Data goes into XPos[), YPos[), &; ZPos(]. • /

MeasureLineDepth(O, &BaseLine, XPos, YPos, ZPos,

XStart, XEnd, YStart, YEnd, XScale, YScale)

/* Write each data point offset by the current camera

* position to the encoded topog. file. * /
for(n = YStart; n <= YEnd; n++)
{

if(lOO.O I= ZPos(n))
{

if(NOERROR I= write_topog(tp,

XPos(n] + xposition,

YPos[n] + yposition,
ZPos(n] + zposition))

93

NextY:

}

}

}
}

{

}

printf("error writing topographical data. \n")

return(ERROR) ;

printf("x y z %.4f %.4f %.4f\n",

xposition, yposition, zposition)

/"' If stepping is enabled ...

* make another pass. * /
if(TRUE == DoStep)

{

}

PCM_Flagl() ;

PCM_MoveR(-xsteps - 50, 120, 0)

PCM_Flagl() ;

PCM_MoveR(50, 0, 0)

ysteps += 120 ;

xsteps = 0 ;

PCM_Flagl() ;

/"' Close the topographic data file. * /
quit: if(O I= (errcode = close_topog_write(tp)))

}

{
printf("error closing topographical data file '%d'\n", errcode)

printf(" ... errno = %d\n", errno) ;

perror("") ;

return(ERROR)

}
return(NOERROR)

94

/"' baseline.h * /

#ifndef BASELINE_ H

#define BASELINE_ H

struct BaseLine
{

} i

char Loaded

int Begin, End

double Xref[512) ;

double Zref[512]

double K[512) ;

#define BLINEFILE

#endif

/* Structure loaded flag (set by

MakeBaseLine and ReadBaseLine) * /
/* Beginning and ending defined

array members.

/* Baseline pixel locations

/* Baseline Zero on Z axis (heigth)

/"' Calibration constant

"C:\ \Measure\\ Calib\ \Baseline.cal"

*/
*/

*/

*/

95

r R WScales.c *I

#include <stdio.h>

#include <stddefs.h>

#include <measure.h>

#define SCALEFILE "C:\ \measure\ \calib\ \xyscales.cal"

ERRCODE WriteScalingFactors(XScale, YScale)

double XScale, YScale
{

}

FILE *fp ;

if(NULL == (fp = fopen(SCALEFILE, "w")))
{

}

puts("*** error - unable to open BaseLine output file ***")

return(ERROR) ;

fprintf(fp, "X Scale = %f (inches/pixel)\n", XSca!e)

fprintf(fp, "Y Scale = %f (inches/pixel)\n", YScale)

fclose(fp) ;

return(NOERROR)

ERRCODE ReadScalingFactors(XScale, YScale)
double *XScale, *YScale

{
FILE *fp ;

double tXScale, tYScale ;

if(NULL == (fp = fopen(SCALEFILE, "r")))
{

}

puts("*** error - unable to open input file ***")

return(ERROR) ;

if(l I= fscanf(fp, " X Scale = %F (inches/pixel)", &tXScale))
{

}else{

}

fclose(fp) ;
return(ERROR)

*XScale = tXScale

if(l != fscanf(fp, " Y Scale = %F (inches/pixel)", &tYScale))
{

}else{

}

fclose(fp) ;

return(ERROR)

*YScale = tYScale

96

}

fclose(fp) ;

return(NOERROR) ;

97

/* 2dSpace.h * /

#ifndef TWODSPACE_H

#define TWODSPACE_H

struct Point2D

{
float X, Y

}

struct Line2D

{

} i

double Slope

double xlntercept

double rSquared ;

extern struct Line2D FitLineToPoints(struct Point2D [), int)

#endif

98

/• Measure.h * /

#ifndef MEASURE_H

#define MEASURE_ H

#include <stddefs.h>

#include <baseline.h>

#include "2dSpace.h"

#define CalcZO(Zref, DeltaX, K) ((Zref)/(1.0+((DeltaX)*((Zref) / (K)))))

extern ERRCODE

extern ERRCODE

extern ERRCODE
extern ERRCODE

extern ERRCODE

extern struct Line2D

extern struct Line2D

extern struct Line2D
extern double

extern void

extern void

#endif

WriteBaseLine{struct BaseLine *) ;

ReadBaseLine(struct BaseLine *) ;

WriteScalingFactors(double, double)

ReadScalingFactors{double *, double *)

ScaleCalibrate(int) ;

FindLine(int, int, int, int)
FindVerticalLine(int, int, int, int) ;

FindHorizonta!Line(int, int, int, int)

LineCenter(int [], int, int) ;

Live(int) ;

MeasureLineDepth(int, struct BaseLine *
double [], double [], double [],

int, int, int, int, double, double) ;

99

/* MeasureLineDepth() * /

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <iris.h>

#include <conio.h>

#include <ctype.h>

#include <io.h>

#include <measure.h>

static int WhitePix = 255

static int BlackPix = 0 ;

extern float ImageXCenter, ImageYCenter

/* MeasureLineDepth()

* Measure the line depth in the window defined by:

* XStart, XEnd, YStart, YEnd.

* The coordinates of each point on the laser line are calculated

*
*
*
*

*/

and adjusted for "perspective distortion" and stored in

arrays X[], Y[), and Z[). Note that there is one set of coordinates

for each image frame line from YStart to YEnd and they are stored

in the X[), Y[], and Z[] array elements YStart to YEnd.

void MeasureLineDepth(Frame, BaseLinePtr, X, Y, Z,

XStart, XEnd, YStart, YEnd, XScale, YScale)

int Frame ; /* Frame buffer number to process. * /
struct BaseLine *BaseLinePtr /* Pointer to the BaseLine structure. */
double X[), Y[], Z[] ;

int XStart, XEnd, YStart, YEnd ;/* Window limits to look for laser. * /
double XScale, YScale ; /* Scaling factors to convert pixels to

position (See ScaleCal()). * /
{

register int

n; /* Loop counter, array index. */

int LineArray[512]./* Buffer for image row. */
showx, /* Column to show center of laser line. * /
show grey /* Grey level to show center of line. */

double zo, /* Calculated distance from laser line

to camera.

xPrime, /* Uncompensated x position of line. */
yPrime, /* Uncompensated y position of line. */
xAdj, /* X coordinate adjusted for distortion.*/

yAdj; /* Y coordinate adjusted for distortion.*/

/* Draw box to show window of interest. * /
DrawBox(XStart - 1, XEnd + 1, YStart - 1, YEnd + 1)

/* For each display row ... * /
for(n = YStart; n <= YEnd; n++)

{
/* Read a row of pixels into LineArray(]. * /

*/

100

}
}

is_get_pixel(Frame, n, 0, XEnd + 1, LineArray)

/* Find the center of the line for this row. * /
xPrime = LineCenter(LineArray, XStart, XEnd)

printf("center of line 0 %3.lf\n", xPrime) ; */

/* If the center cannot be found then flag this set of

* coordinates an invalid. LineCenter return -1.0 if it

* cannot find the center of the line. The set of coordinates
* is marked invalid by setting the Z[) array element to 100.0.

*I
if(-1.0 == xPrime)

{
X(n] = Y[n) = Z[n) = 100.0 ;

}else{

}

/* yPrime is just the row number converted to a double. "/

yPrime = (double)n ;

/* Determine frame column and grey level to show in frame.*/

showgrey = LineArray[showx = (int)xPrime] • Ox80 ;

/* Invert pixel at line center. * /

is_put_pixel(O, n, showx, 1, &:showgrey)

/* Calculate distance from camera to laser line. * /

ZO = CalcZO(BaseLinePtr->Zref(n],

xPrime - BaseLinePtr->Xref(n], BaseLinePtr->K[n))

/* Adjust x and y for "perspective distortion". * /
xAdj = {(xPrime - ImageXCenter)

* ZO / BaseLinePtr->Zref(n)) + ImageXCenter ;

yAdj = ((yPrime - lmageYCenter)
* ZO / BaseLinePtr->Zref(n)) + ImageYCenter

r Store coordinates in X[], Y[], and Z[) arrays. *I
Z[n) = BaseLinePtr->Zref(n) - ZO ;

X[n] = XScale * xAdj

Y[n) = YScale * yAdj ;

101

f* FindLine * /
/* Functions to find vertical and horizontal lines. * /

/* Standard Microsoft header files. * /
#include <process.h>

#include <malloc.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* Other header files * /
#include <iris.h>

#include <stddefs.h>

#include <2dSpace.h>

/* Function prototypes * /
struct Line2D FindLine{int, int, int, int) ;

struct Line2D FindVerticalLine{int, int, int, int) ;

struct Line2D FindHorizontalLine{int, int, int, int)

double LineCenter{int [], int, int) ;

static int WhitePix = 255

static int BlackPix = 0 ;

/* Find a best fit vertical line in the window defined by

* XStart, XEnd, YStart, and YEnd.

*/
struct Line2D FindVerticalLine{XStart, XEnd, YStart, YEnd)

int XStart, XEnd, YStart, YEnd ; /* Window limits. * /
{

register int

n, /* Loop counter

row /* Vidio frame row number

int RowOfPixels[512) /* Array to hold one line of pixels. * /

struct Point2D

Points[512)

struct Line2D

Line ;

/* Array of points on the vertical line. * /

/ * (see 2dspace.h for Line2D structure * /
/* Structure describing best fit line

*/
*/

through Points. * /

/* For each row from YStart to YEnd... * /
/* ... fill array of points with x and y coordinates. * /
for{row = YStart, n = O; row <= YEnd; row++, n++)
{

int CenterPix ; /* Column # of center of line. * /

/* Get a row of pixels * /
is_get_pixel{O, row, 0, 480, RowOfPixels)

102

}

}

/* Y coordinate = row number * /
Points[n).Y = (float)row ;

/* X coordinate = pixel number of center of line. * /
Points[n].X = LineCenter(RowOfPixels, XStart, XEnd)

/* CenterPix = contrasting grey scale to center pixel. * /
CenterPix = RowOfPixels[(int)Points[nJ.XJ • Ox80 ;
is_put_pixel(O, row, (int)Points[n].X, 1, &CenterPix) ;

/* Find vertical line that best fits the po in ts * /
Line = FitLineToPoints(Points, n)

/* Show points of best fit line on display. • /

for(row = YStart; row <= YEnd; row++)

{

}

is_put_pixel(O, row,

(int)(Line.xlntercept + (Line.Slope * row) + 0.5),

1, &WhitePix) ;

retum(Line)

/* Find a best fit horizontal line in the window defined by

* XStart, XEnd, YStart, and YEnd.

*/
struct Line2D FindHorizontalLine(XStart, XEnd, YStart, YEnd)

int XStart, XEnd, YStart, YEnd ;

{
register int

n,
row,

column

/* Loop counter

/* Vidio frame row number

/* Vidio frame row number

int Column0fPixels[512) ;/* Array to hold one line of pixels. * /

struct Point2D

Points[512)

struct Line2D

Line ;

/* Array of points on the vertical line. * /

/* (see 2dspace.h for Line2D structure * /
/* Structure describing best fit line

.. ,
*/
*/

through Points. * /

/* For each column from YStart to YEnd ... * /
/* ... fill array of points with x and y coordinates. * /
for(column = XStart, n = O; column <= XEnd; column++, n++)

{
int CenterPix ; /* Column # of center of line. * /

/* Get a column of pixels * /
for(row = YStart; row <= YEnd; row++)

is_get_pixel{O, row, column, 1, &ColumnOfPixels[row])

103

}

}

/* Y coordinate = column number * /
Points(n].Y = (float)column ;

/* X coordinate = pixel number of center of line. * /
Points[n].X = LineCenter(ColumnOfPixels, YStart, YEnd)

/* CenterPix = contrasting grey scale to center pixel. * /
CenterPix = ColumnOfPixels[(int)Points[n].X] - Ox80 ;

i11_put_pixel(O, (int)Points[n].X, column, 1, &CenterPix)

/* Find horizontal line that best fits the points * /
Line = FitLineToPoints(Points, n)

/* Show points of best fit line on display. * /
for(column = XStart; column <= XEnd; column++)

{

}

is _put _pixel(O,

(int)(Line.xlntercept + (Line.Slope * row) + 0.5),

column, 1, &WhitePix) ;

retum(Line)

/* LineCenter()

* Given an array of points, find the center of the. non black points. * /
double LineCenter(Array, Lowerlndex, Upperlndex)

int Array(] ; /* Array of grey scales. * /
int Lowerlndex /* Lower array index limit for search for center. * /
int Upperlndex /* Upper array index limit for search for center. * /
{

register int

i, /* Loop counters, array indecies. */

int k, /* Array index * /
UpperShelf, /* Lower bounds of non black pixels. * /
LowerShelf, /* Upper bounds of non black pixels. * /
ValidLowerShelf = FALSE, / * Flag indicating that the lower

shelf has been found without errors. * /
ValidUpperShelf = FALSE ;/* Flag indicating that the upper

shelf has been found without errors. * /

static int

if(-1

InitialGuess = -1

InitialGuess)

/* Starting index for initial search.

(-1 indicates not set yet) * /

Initia!Guess = (Lowerlndex + Upperlndex) / 2

/* Look for white line, starting at Initia!Guess * /
/* Exit loop with k = index of a point on the line. * /
for(k = -1, i = j = InitialGuess;

(i > Lowerlndex) && (j < Upperlndex); i--, H+)
{

104

}

if(i > Lowerlndex)

{

}

if(Array[i] > 0)

{

}

k = i i

break ;

if(j < Upperlndex)

{

}

if(Array(j) > 0)

{

}

k = j ;

break ;

if(k < 0)

{
lnitialGuess = 256 ;

retum(-1.0) ; /"' error return * /
}

/"' LowerShelf = index of first dark pixel below Array[k] * /
for(i = k; i > Lowerlndex; i--)

{

}

if(Array[i] == 0)
{

}

ValidLowerShelf = TRUE

LowerShelf = i ;

break ;

/"' UpperShelf = index of first dark pixel above Array[k) * /
for(i = k; i < Upperlndex; i++)

{

}

if(Array[i] == 0)

{

}

ValidUpperShelf = TRUE

UpperShelf = i
break ;

/* If both shelves valid, return midpoint,

* else return 'not found' flag * /
if(ValidUpperShelf && ValidLowerShelf)

{

}else(

InitialGuess = (UpperShelf + LowerShelf) / 2 ;

return(((double)UpperShelf + (double)LowerShelf) / 2.0)

InitialGuess = 256 ;

105

return(-1.0) / * error return * /
}

}

/* Find a best fit vertical line in the window defined by

* XStart, XEnd, YStart, and YEnd.

* (same as FindVerticalLine but included for compatability with earlier

* versions of some software. * /
struct Line2D FindLine(XStart, XEnd, YStart, YEnd)

int XStart, XEnd, YStart, YEnd ;

{
return(FindVerticalLine(XStart, XEnd, YStart, YEnd))

}

106

APPENDIX C

VELOCITY MEASUREMENT PROGRAMS

107

/*Water.c

*/

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <iris.h>

#include <conio.h>

#include <v2tov3.h>

#include <malloc.h>
#include "BlobScan.h"

#define MAXBLOB 100

#define BLACK 0

#define WHITE 1
#define MAXWHITE 255

#define FRAME_ZERO 0

#define FRAME_ONE 1
#define MIN_BLOB_AREA 20

struct Filter

{
int rows

int cols ;

int divisor

int *coefs ;

}

int LowPassCoefs[] = { 1, 1, 1, 1 }

struct Filter LowPass = { 2, 2, 4, LowPassCoefs }

struct BV _Callnfo

{

int threshold

int height, width, area ;

float h _resolution, v _resolution

}

float xcenter[MAXBLOB][2], ycenter[MAXBLOB](2]

int Boarder[2][4] ;

int Frame = 1 ;

int top = 30 ;

int bottom = 450

int left = 30 ;
int right = 480

char calinfo_filename[] = "BY _Info.cal"

108

extern void FrameAdvance(int);

void main(void) ;

void tinue(void) ;

void moveit(void) ;

void acquire(int) ;

void convolve(int, int, struct Filter *)

void thresh(char *, int, int, int)

int MoveThreshold(void) ;

void acq_ave(void) ;

void fastwtr(int, float, float)

struct BV _ Callnfo *calibrate(struct BV _ Callnfo *)

void slo_wtr(struct BV _Callnfo *) ;

static void DrawBox(int, int, int, int, int, int)

void SkipFrames(int) ;

void WaitForTrigger(void)

void DrawArc(int, int, int, int, int, int, int)

void main()
{

int i, j

char c;
int m,n,d,filt[200];
int blobthr;

float res,wide;
struct BV _ Callnfo calinfo

BOOL FirstTime
FILE •me j

if(NULL == (file = fopen(calinfo_filename, "rb")))

{

}else{

}

FirstTime = TRUE ;

FirstTime = FALSE ;
fread (&calinfo, sizeof(calinfo), 1, file)

fclose (file) ;

is_initialize() ;

is_allocate(2) ;

is_select_ilut(O);
is_select_input_frame(O);

is_display(l);

filt(O) = O;

for(;;)

{
char c

109

if(FirstTime)

{

c = •c• ;
FirstTime = FALSE;

}else{

print!(" [C)alibrate [S]low [F]ast [Q)uit

/*

Clean Up:

}

/*

}
switch(c)

{
case 'c':

case 'C':

case •s•:

case 'S':

case 'f':

case 'F':

case 'q':

case 'Q':

}
}

is_ deallocate(2)

is_end();

c = getch() ;
printf("\n")

calibrate(&calinfo)

break

slo _ wtr(&calinfo)

break

fastwtr(&calinfo);

break

goto Clean Up

• calibrate() .,
struct BV _Callnfo *calibrate(calinfo)
struct BV _ Callnfo *calinfo

{

char c = '\O';
int b,i,j,n ;

float ave,width;

struct Blob *blob
struct List *bloblist

FILE *file ;

is_cursor(O) ;

is_select_input-'-frame(O) ;
is_ select_ output _frame(O)

is_select_ilut(O) ;

is_select_olut(O) ;

.,

110

?")

puts("Enter the VERTICAL pixel resolution in inches/pixel") ;

scanf(" %f", &{calinfo->v _resolution)) ;

puts("Enter the HORIZONTAL pixel resolution in inches/pixel")

scanf(" %f", &{calinfo->h_resolution)) ;
puts("Play tape of beads traveling at velocity to be measured");

acquire(!) ;

convolve(FRAME_ZERO, FRAME_ONE, &LowPass)

is_select_output_frame(FRAME_ONE) ;

calinfo->threshold = MoveThreshold() ;

thresh("i", 1, calinfo->threshold, 255) ;

is_perform_feedback(FRAME_ONE, 1)

is_select_output_frame(FRAME_ONE) ;

is_select_ilut(O) ;

is_select_olut(O) ;

puts("scanning image ... ") ;

DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ;

if(NULL -- (bloblist =

{

}

n = 0;
ave= 0

Scan(FRAME_ONE, WHITE, top, bottom, left, right)))

printf("Error scanning frame. \n")
return ;

for(blob = (struct Blob *)bloblist->Head;

(

}

blob->node.Succ; blob = (struct Blob *)blob->node.Succ)

if(blob->area > 20.0)
{

}

is_set_cursor_position((int)(blob->ycenter + .5),
(int)(blob->xcenter + .5))

is_ cursor(l) ;

puts("Include this blob in width average? (y/n)");

if('y' == getch())
{

}

width = (blob->maxcol - blob->mincol)

ave += width ;

n++;
printf("Width = bead diameter = %f pixels\n",

width) ;

111

}

if(O != n)

{

calinfo->width = ave / (float) n; ·

printf(" Average bead diameter = %d pixels\n", calinfo->width)
}

is_cursor(O);

if(NULL == (file = fopen(calinfo_filename, "wb")))

{

}else{

}

puts("calibrate(): unable to open cal. info. file")

fwrite(calinfo, sizeof(*calinfo), 1, file)

fclose(file) ;

return (calinfo)

void slo _ wtr(calinfo)

struct BY Callnfo *calinfo

{
int c

struct BlobMatch

{
struct Node node ;

struct Blob *beforeblob, *afterblob
}

int b, num,numframe,i,j,num2 = O;

float vel, v2 = O;
struct Blob *blobl, *blob2 ;

struct List *bloblistl, *bloblist2

struct BlobMatch *match

struct List MatchList

int Line[2] ;

int NumMatches
float SumXDistance, SumYDistance ;

float XDistance, YDistance ;

float SumXDistance _inches, Sum YDistance _inches

float XDistance _inches, YDistance _inches

float dt = 3.0 / 30.0 ;

InitList(&MatchList, NULL)

is _set _sync_ source(1)

is_select_ilut(O) ;

112

is _select_ olut(O)

puts("Locate FIRST frame of series to process and PAUSE VCR");

is_select_input_frame(O) ;

is_select_output_frame(O)

is_passthru() ; /"' image into buf 0 */
WaitForTrigger()

is_freeze_frame() ;

is_select _input _frame(l)

is_select_output_frame(l)

is_passthru() ;

SkipFrames(S) ;

is _freeze _frame()

is_frame_copy(l, 2)

is _set _sync _source(O)

convolve(FRAME_ZERO, FRAME_ONE, &LowPass)

is _select_ output _frame(FRAME _ONE) ;

thresh("i", 1, calinfo->threshold, 250) ;

is_perform_feedback(FRAME_ONE, 1)
is_select_output_frame(FRAME_ONE) ;

puts("scanning image ... ") ;
DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ;

if(NULL -- (bloblistl =

{

}

Scan(FRAME_ONE, WHITE, top, bottom, left, right)))

printf("Error scanning frame.\n")

return ;

is_select_input_frame(O) ;

is _select_ output_frame(O)

is_select_ilut(O) ;

is_select_olut(O) ;

is_frame_copy(2, 0) ;
is_select _ output_frame(FRAME _ZERO)

convolve(FRAME_ZERO, FRAME_ONE, &LowPass)

thresh("i", 1, calinfo->threshold, 250) ;

is_perform_feedback(FRAME_ONE, 1)

is_select_output_frame(FRAME_ONE) ;

113

puts("scanning image ... ") ;

DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ;

if(NULL -- (bloblist2 =

{

} .

Scan(FRAME_ONE, WHITE, top, bottom, left, right)))

printf("Error scanning frame.\n")

return ;

blob! = (struct Blob *)bloblistl->Head

while(blobl->node.Succ)
{

}

if(MIN_BLOB_AREA <= blobl->area)

{

}

DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5),

(int)(blobl->xcenter + 0.5),

(int)(blobl->ycenter + 10.5),

(int)(blobl->xcenter + 0.5),

360, MAXWHITE)

blob! = (struct Blob *)blobl->node.Succ ;

is_cursor(l) ;

blobl = (struct Blob *)bloblistl->Head ;

blob2 = (struct Blob *)bloblist2->Head ;

while((bloblistl->Head->Succ I= NULL) &&

{
(bloblist2->Head->Succ I= NULL))

r u blob! points to list header skip to 1st node. • /

if(NULL == blobl->node.Succ)

blobl = (struct Blob *)bloblistl->Head ;

r If blob2 points to list header skip to 1st node. ... I
if(NULL == blob2->node.Succ)

blob2 = (struct Blob *)bloblist2->Head ;

r Skip frame 1 blobs that are too small to be beads. ... I
if(MIN_BLOB_AREA > blobl->area)

{

}

Remove(&(blobl->node)) ;

blobl = (struct Blob *)blobl->node.Succ
continue ;

r Skip frame 2 blobs that are too small to be beads. ... I
if(MIN_BLOB_AREA > blob2->area)
{

Remove(&(blob2->node)) ;

114

}

blob2 == (struct Blob *)blob2->node.Succ

continue ;

printf("blob #%d at (row,col) (%8.lf,%8.lf)\n",
blobl->number, blobl->ycenter, blobl->xcenter)

printf("\tblob #%d at (row,col) (%8.lf,%8.lf)\n",
blob2->number, blob2->ycenter, blob2->xcenter)

DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5),

(int)(blobl->xcenter + 0.5),

(int)(blobl->ycenter + 5.5),

(int)(blobl->xcenter + 0.5),

860, MAXWHITE) ;

is_set_cursor_position((int)(blob2->ycenter + 0.5),

(int)(blob2->xcenter + 0.5))

printf("Match these two blobs?\n") ;

switch(getch())

{
case 'y':

case 'c 1:

is_set_graphic_position((int)(blobl->ycenter + 0.5),

(int)(blobl->xcenter + 0.5))

Line[O] = blob2->ycenter + 0.5 ;

Line[l) = blob2->xcenter + 0.5 ;

is_draw_lines(FRAME_ONE, 1, Line)

if(NULL === (match = (struct BlobMatch *)
malloc(sizeof(struct BlobMatch))))

{

}

printf("unable to allocate match.\n")

exit(l) ;

match->beforeblob =
(struct Blob *)Remove(&(blobl->node))

match->afterblob =
(struct Blob *)Remove(&(blob2->node))

Insert(&MatchList, &(match->node), NULL)

blob! = (struct Blob *)blobl->node.Succ
blob2 = (struct Blob *)blob2->node.Succ ;

break ;

Remove(&(blobl->node))
DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5),

(int)(blobl->xcenter + 0.5),
(int)(blobl->ycenter + 10.5).

115

case 'b':

default:

}
}

(int)(blobl->xcenter + 0.5),

360, BLACK) ;

DrawArc(FRAME_ ONE, (int)(blobl->ycenter + 0.5),

(int)(blobl->xcenter + 0.5),

(int)(blobl->ycenter + 5.5),

(int)(blobl->xcenter + 0.5),

360, BLACK) ;

blobl = (struct Blob *)blobl->node.Succ ;

break

Remove(&(blob2->node))

blob2 = (struct Blob *)blob2->node.Succ

break

blob2 = (struct Blob *)blob2->node.Succ

is_cursor(O);

NumMatches = 0 ;

SumXDistance = 0 ;

SumYDistance = 0 ;

SumXDistance_inches = 0.0 ;

SumYDistance_inches = 0.0 ;

for(match = (struct BlobMatch *)MatchList.Head;

{
match->node.Succ; match = (struct BlobMatch *)match->node.Succ)

float dx, dy, dist ;

float dx_inches, dy_inches, dist_inches

SumXDistance += dx = (match->afterblob->xcenter -

match->beforeblob->xcenter)

SumYDistance += dy = (match->afterblob->ycenter -

match->beforeblob->ycenter)

dist = sqrt((dx * dx) + (dy * dy)) ;

SumXDistance_inches += dx_inches = dx * calinfo->h resolution

SumYDistance_inches += dy_inches = dy * calinfo->v_resolution

dist_inches = sqrt(

(dx_inches * dx_inches) + (dy_inches * dy_inches))

printf("blob #%d to blob #%d = x[%.2f] y[%.2f] dist[%.2f]\n",

match->beforeblob->number,

match->afterblob->number,

dx, dy, dist) ;

printf("\tdistance = x[%.2f] y[%.2f] dist[%.2f] inches.\n",

dx_inches, dy_inches, dist_inches) ;

printf("\tVELOCITY = x(%.2f] y(%.2f] vel[%.2f]\n \n",

dx_inches / dt / 12.0,

dy _inches / dt / 12.0,

116

}

dist_inches / dt / 12.0)

NumMatches++

}

if(NumMatches I= 0)

{

}else{

}

XDistance = SumXDistance / (float)NumMatches ;
YDistance = SumYDistance / (float}NumMatches ;

XDistance inches = SumXDistance inches / (float)NumMatches

YDistance_inches = SumYDistance inches / (float)NumMatches

XDistance = YDistance = 0.0 ;

XDistance inches = YDistance inches = 0.0

printf("Average distance x[%.1f] y[%.1f] dist[%.lf]\n",
XDistance, YDistance,

sqrt((XDistance • XDistance) + (YDistance • YDistance)))

printf(" AVERAGE VELOCITY = x(%.2f] y(%.2f] vel(%.2f]\n \n",

XDistance_inches / dt / 12.0,

YDistance_inches / dt / 12.0,

sqrt((XDistance_inches " XDistance_inches) +

(YDistance_inches • YDistance_inches)) / dt / 12.0)

void tinue()

{

}

char c;

puts("Press any key to continue");

scanf(" %c" ,&c);

void moveit()

{

}

int frm;

puts("Enter: 0 to move buf 1 to buf O");

puts(" 1 to move buf 0 to buf 1");
scanf("%d" ,&frm);

if(frm) is_copy_region(0,1,0,0);

else is_copy _region(l,0,0,0);

void acquire(key)

int key;
{

117

}

char chr;

is_freeze_frame() ;

is_frame_clear(FRAME_ZERO) ;

DrawBox(FRAME_ZERO, MAXWHITE, top - 1, bottom + 1, left - 1, right + 1)

is_set_sync_source(EXT_SYNC);

is_passthru();

if(key)

{

}

puts("Enter any key to acquire an image.")

getch() ;

is _freeze _frame()

is_set_sync_source(INT_SYNC)

void convolve(source, dest, filter)

int source, dest ;

struct Filter *filter ;

{

}

if(filter->divisor == 0)

{

}else{

}

puts("Filter has not been initialized. Retrieve or create.");

return ;

printf("convolving image from buffer %d to buffer %d.\n",

source, dest) ;

is_ convolve(source, dest, filter->rows, filter->cols,

filter->coefs, filter->divisor)

void thresh(in_out,tbl,gr_lv,new)

char *in_ out ;

int tbl, gr _Iv, new ;

{

int i, red[256], green[256], blue[256]

if((gr_lv < 0) II (gr_lv > 255))

{

}

printf("thresh(): threshold level of %d is out of range!\n",

gr_lv) ;

exit(l) ;

for(i O; i < gr_lv; ++i)

red[i] = green[i] = blue[i] = 0

118

}

for(i = gr_lv; i < 256; ++i)

red[i] = green(i] = blue[i] = new

switch(in _ out[O])

{
case 'i':

case 'I':

case 10 1:

case '0':

default:

}

is_load_ilut(tbl, green)

is _select_ilut(tbl)

break

is_load_olut(tbl,red,green,blue);

is_select_ olut(tbl);

break ;

printf("thresh(): invalid parameter 1.\n")

int MoveThreshold()

{

}

char c;

static int threshold 128

puts(" Adjust threshold:[u]p, (U]p 10, [d]own, [D]own 10, <er> to quit");

thresh("o" , 1, threshold, 255)

while('\r' I= (c = getch()))

{

}

switch(c)

{
case 1u 1:

case 'd':

case 'U':

case 'D':

}

threshold++

break ;

threshold-­

break ;

threshold += 10

break ;

threshold -= 10

break ;

threshold = max(O, min(255, threshold)}

thresh("o" , 1, threshold, 255) ;

printf("Threshold chosen at grey level %d.\n'', threshold);

return(threshold) ;

119

void acq_ ave()

{

}

int numframes;

is_set_sync_source(l) ;

is_select_output_frame(O)

is _passthru() ;

puts("Key the number of frames to be averaged, <er> to acquire.")

scanf("%d" ,&numframes};

while(numframes--)

FrameAdvance(l);

is_set_sync_source(O);

DrawCross(x, y)

int x, y ;

{

}

int px, py, WhitePixel = 255

for(px = x - 5; px < x + 5; px++)

is_put_pixel(O, y, px, 1, &:WhitePixel)

for(py = y - 5; py < y + 5; py++)

is_put_pixel(O, py, x, 1, &:WhitePixel)

static void DrawBox(frame, color, top, bottom, left, right)

int frame, color, top, bottom, left, right ;

{
int array[8) ;

array[O) = top

array[l] = left

array[2) = top

array[3) = right j

array[4] = bottom

array[5) = right ;

array[6) = bottom

array[7) = left ;

is _set _foreground(color)

is_ set _graphic _position(bottom,

is_draw_lines(frame, 4, array) ;
}

void SkipFrames(count)

int count ;

{
unsigned csr

left)

120

}

count -= 2 ;

while(count-- > 0)
{

do{

csr = inpw(OUTCSR) ;

}while(!(((csr & Ox8000) != 0) && ((csr & Ox2000) == 0)))

do{

csr = inpw(OUTCSR) ;

}while(!(((csr & Ox8000) == 0) && ((csr & Ox2000) == 0)))

}

void W aitForTrigger()
{

getch() ;

}

void DrawArc(frame, cy, ex, y, x, angle, color)

int ex, cy, x, y, angle, color ;

{

}

is _set _foreground(color)

is_set_graphic_position(y, x)

is_draw_arc(frame, cy, ex, angle)

121

/* BlobScan.c

* Connectivity Analysis.

*
* Based on the article:

* Segmenting Binary Images

* Robotics Age, July/ August 1981,

* Vol. 3, No. 4, pp. 4-19

* by Robert Cunningham

* Robitics Research Program

* NASA Jet Propulsion Laboratory

* California Institute of Technology

* Pasadena, California

*/

#include <stdio.h>

#include <stdlib.h>

#include <malloc.h>

#include "BlobScan.h"

#define NextPrevRun(env) (env->PrevRun (struct Run *)env->PrevRun->node.Pred)

/* Run-length structure. * /

struct Run
{

struct Node node ;

struct VBlob *vblob

int startcol ;

int row;

int length ;

int number ;

}

static struct VBlob *NewVBlob(struct BlobScanEnvironment *, int, int, int, int)

static struct Run *NewRun(struct BlobScanEnvironment *,

struct VBlob * int, int, int)

static void GetLine(int, int [], int) ;

static int GetPixel(int, int, int) ;

static void Update(struct BlobScanEnvironment * BOOL)

static struct VBlob *LookUp(struct Run *) ;

static void statel(struct BlobScanEnvironment *)

static void state2(struct BlobScanEnvironment *)

static void state3(struct BlobScanEnvironment *)

static void state4(struct BlobScanEnvironment *)

static void state6(struct BlobScanEnvironment *)

static void state7(struct BlobScanEnvironment *)

static void Debug(struct BlobScanEnvironment *) j

static void FreeNodes(struct List *) ;

122

BlobScan(env)

struct BlobScanEnvironment *env

{
struct VBlob *vblob ;

struct VBlob *BGvblob

struct Run *run

int blobnum ;

/* Initialize the BlobScanEnvironment structure. * /

InitBlobScanEnvironment(env) ;

/* Clear the previous line array. * /
for(env->col = env->colstart; env->col <= env->colend; env->col++)

env->PrevLine[env->col] = 0 ;

/* Create and initialize background blob. * /
BGvblob = NewVBlob(env, GetPixel{env->frame, env->rowstart,

env->colstart), env->colstart, env->colend, env->rowstart)

Insert(&(env->vbloblist), &{BGvblob->node), NULL) ;

/* Create and initialize first and second run. * /
env->PrevRun =

NewRun(env, BGvblob, env->colstart,

env->rowstart, env->colend - env->colstart + 1)

Insert(&(env->runlist), &{env->PrevRun->node), NULL) ;

env->CurrentRun = NewRun(env, BGvblob, env->colstart,

env->rowstart + 1, 0)

Insert(&(env->runlist), &(env->CurrentRun->node), NULL) ;

for{env->row = env->rowstart + 1; env->row <= env->rowend; env->row++)

{
env->NewBlobFlag = FALSE ;

env->state = 0 ;

GetLine(env->frame, env->CurrentLine, env->row)

/* Set CurrentBlob and AboveBlob to the Background Blob. * /

env->CurrentVBlob = env->AboveVBlob = LookUp(env->PrevRun)

for{env->col = env->colstart + 1;

env->col <= env->colend; env->col++)
{

env->state = {env->state / 4) +

(4 * env->PrevLine[env->col]) +

123

}

}

(8 * env->CurrentLine[env->coi]) ;

env->PrevLine[env->col) = env->CurrentLine[env->col)

switch(env->state)

{
case 7:

case 8:

case 4:

case 11:

case 3:

case 12:

case 2:

case 13:

case 6:

case 9:

case 1:

case 14:

case 0:

case 15:

case 5:

case 10:

default:

}

state7(env)

break

state4(env)

break

state3(env)

break

state2(env)

break ;

state6(env)

break

statel(env)

break

break

printf("illegal state: %d\n", env->state)
exit(l) ;

Update(env, !NOEOL)

for(vblob = (struct VBlob *)env->vbloblist.Tai!Pred, blobnum = l;
vblob->node.Pred; vblob = (struct VB!ob *)vblob->node.Pred)

{

if(vblob->blob->node.Type == ACTUALBLOB _TYPE)
{

}else{

lnsert(&(env->bloblist), &(vblob->blob->node), NULL)

vblob->blob->number = blobnum++ ;

vblob->blob->xcenter = vblob->blob->sumcol /

vblob->blob->area

vblob->blob->ycenter = vblob->blob->sumrow /

vblob->blob->area

124

vblob->actualblob.number = O;

}
}

}

static void statel(env)

struct BlobScanEnvironment *env ;

{

struct VBlob *vblob, *vblob2

int i ;

int *int _ptr

static char *fmt

int here = 0 ;

env->HoleVBlob = env->AboveVBlob

NextPrevRun(env) ;

/"' AboveBlob will point to a VBlob containing an actual blob

* throughout the remainder of the function. * /
env->AboveVBlob = LookUp(env->PrevRun) ;

if(env-> New BlobFlag)

{

}else{

env->NewBlobFlag = FALSE ;

env->CurrentVBlob = env->AboveVBlob

env->CurrentVBlob->actualblob.perimeter +=
env->col - env->LeftEnd

if(env->CurrentVBlob == env->AboveVBlob)

{

}else{

env->HoleVB!ob->actualblob.sibling =
env->CurrentVBlob->actualblob.child

env->HoleVBlob->actualblob.parent = env->CurrentVBlob

env->CurrentVBlob->actualblob.child = env->HoleVBlob

(env->Current VBlob->actualblob.NumHoles)++ ;
env->CurrentVBlob->actualblob.perimeter -=

env->HoleVBlob->actualblob.perimeter

env->CurrentVBlob->actualblob.perimeter +=
env->AboveVBlob->actualblob.perimeter +
env->col - env->LeftEnd ;

if(env->AboveVBlob->actualblob.mincol <
env->CurrentVBlob->actualblob.mincol)

{

}

env->CurrentVBlob->actualblob.mincol =
env-> Above VBlob->actualblob.mincol

125

}

}
}

if(env->Above VBlob->actualblob.maxcol >

env->CurrentVBlob->actualblob.maxcol)

{

}

env->Current VBlob->actualblob.maxcol =
env-> Above VBlob->actualblob.maxcol

if(env->Above VBlob->actualblob.maxrow <
env->CurrentVBlob->actualblob.maxrow)

{

}

env->Current VB!ob->actualblob.maxrow =
env->Above VBlob->actualblob.maxrow

env->Current VB!ob->actualblob.area +=
env->Above VB!ob->actualblob.area

env->CurrentVBlob->actualblob.sumcol +=
env-> Above VB!ob->actualblob.sumcol

env->CurrentVBlob->actualblob.sumrow +=
env->Above VB!ob->actualblob.sumrow ;

env->CurrentVBlob->actualblob.sumcol2 +=
env->AboveVBlob->actualblob.sumcol2 ;

env->CurrentVBlob->actualblob.sumrowcol +=
env->AboveVB!ob->actualblob.sumrowcol

env->CurrentVBlob->actualblob.sumrow2 +=
env->Above VBlob->actualblob.sumrow2

if(env->AboveVB!ob->actualblob.NumHoles I= 0)

{

}

env->Current VB!ob->actualblob .NumHoles +=
env->Above VBlob->actualblob.N umHoles

vblob = env->AboveVB!ob->actualblob.child

while(vblob I= NULL)

{

}

vblob->actualblob.parent =
env->CurrentVBlob ;

vblob2 = vblob ;

vblob = vblob2->actualblob.sibling

vblob2->actualblob.sibling =
env->CurrentVBlob->actualblob.child

env->CurrentVBlob->actualblob.child =
env->AboveVBlob->actualblob.child

env->AboveVBlob->blob

(struct Blob *)env->CurrentVBlob

env->AboveVBlob = env->CurrentVBlob ;

env->HoleVBlob->actualblob.perimeter += env->col - env->LeftEnd

126

static void state2 (env)

struct BlobScanEnvironment *env

{

}

struct VBlob *vblob

if(env->NewBlobFlag)
{

}

env->CurrentVBlob = NewVBlob(env,

env->CurrentLine[env->CurrentRun->startcol),

env->CurrentRun->startcol, env->col, env->row)
Insert(&(env->vbloblist), &(env->CurrentVBlob->node), NULL) ;

Update(env, NOEOL) ;

env->CurrentVBlob->actualblob.perimeter += env->col - env->LeftEnd ;

env->AboveVBlob->actualblob.perimeter += env->col - env->LeftEnd ;

env->CurrentVBlob = env->AboveVBlob ;

static void state3(env)

struct BlobScanEnvironment *env
{

}

Update(env, NOEOL) ;

NextPrevRun(env) ;

env->CurrentVBlob = env->AboveVBlob LookUp(env->PrevRun)

static void state4(env)

struct BlobScanEnvironment *env ;

{

}

env->LeftEnd = env->col ;
NextPrevRun(env)

env->AboveVBlob = LookUp(env->PrevRun)

static void state6(env)

struct BlobScanEnvironment *env

{
struct VBlob *vblob

if(env-> NewBlobFlag)
{

}

env->CurrentVBlob = NewVBlob(env,
env->CurrentLine[env->CurrentRun->startcol),

env->CurrentRun->startcol, env->col, env->row)

Insert(&(env->vbloblist), &(env->CurrentVBlob->node), NULL) ;

env->NewBlobFlag = FALSE ;

Update(env, NOEOL) ;

env->CurrentVBlob->actualblob.perimeter += env->col - env->LeftEnd

127

}

env->AboveVBlob->actualblob.perimeter += env->col - env->LeftEnd

env->CurrentVBlob = env->AboveVBlob ;

NextPrevRun(env) ;

env->AboveVBlob = LookUp(env->PrevRun)

env->LeftEnd = env->col ;

static void state7(env)

struct BlobScanEnvironment *env

{

}

Update(env, NOEOL) ;

env->LeftEnd = env->col

env->NewBlobFlag = TRUE

/* Determine which VBlob a Run belongs to. * /

static struct VBlob *LookUp(run)

struct Run *run ;

{

}

struct VBlob *vblob

if(run->node.Type I= RUN_TYPE)

{

}

printf("INVALID RUN FOR LookUp(): run #%d type %d\n",

run->number, run->node.Type)
exit(l) ;

/* Chain through blob pointers until an actual blob is found. * /

for(vblob = run->vblob; vblob->blob->node.Type == VBLOB_TYPE;

vblob = (struct VBlob "')vblob->blob)

if(vblob->blob->node.Type != ACTUALBLOB_TYPE)
{

}

printf("ILLEGAL NODE TYPE FOR LookUp(): vblob #%d blobtype %d\n",

vblob->number, vblob->blob->node.Type) ;

exit(l) j

/* Return pointer to vblob containing the actual blob. * /

retum(vblob) ;

struct BlobScanEnvironment "'InitBlobScanEnvironment(env)

struct BlobScanEnvironment *env ;
{

128

}

InitList(&(env->vbloblist), VBLOBLIST _TYPE)

InitList(&(env->runlist), RUNLIST_TYPE) ;

InitList(&(env->bloblist), BLOBLIST_TYPE)

~nv->NumBlobs = 0 ;
env->NumVBlobs = 0

env->NumRuns = 0 ;

retum(env) ;

static struct VBlob *NewVBlob(env, color, colstart, colend, rowstart)

struct BlobScanEnvironment *env ;

int color, colstart, colend, rowstart

{

}

struct VBlob *vblob

struct Blob *ablob ;

env->NewBlobFlag = FALSE ;

if(NULL == (vblob = (struct VBlob *)malloc(sizeof(struct VBlob))))

{

}

perror("NewVBlob()")

exit(l) ;

/* Initialize Virtual Blob. * /

vblob->node.Type = VBLOB_TYPE

vblob->number = ++(env->NumVBlobs)

ablob = vblob->blob = &(vblob->actualblob)

/* Initialize Actual Blob. * /

ablob->node.Type = ACTUALBLOB_TYPE

ablob->number = ++(env->NumBlobs)

ablob->parent = NULL

ablob->child = NULL ;

ablob->sibling = NULL
ablob->color = color ;

ablob->perimeter = 0 ;

ablob->NumHoles = 0

ablob->area = 0 ;

ablob->sumrow = 0

ablob->sumcol = 0 ;
ablob->sumrow2 = 0 ;
ablob->sumcol2 = 0 ;
ablob->sumrowcol = 0

ablob->mincol = colstart
ablob->maxcol = colend ;

ablob->minrow = rowstart

ablob->maxrow = rowstart ;

retum(vblob) ;

129

static struct Run *NewRun(env, vblob, startcol, row, length)

struct BlobScanEnvironment *env ;

struct VB!ob *vblob ;

int startcol ;

int row ;

int length ;
{

}

struct Run *run

if(NULL == (run = (struct Run *)malloc(sizeof(struct Run))))
{

}

perror("NewRun()")

exit(l) ;

run->node.Type = RUN_TYPE

run->node.Pred = NULL

run->node.Succ = NULL ;

run->vblob = vblob ;
run->startcol = startcol

run->row = row ;
run->length = length

run->number = ++(env->NumRuns)

return(run) ;

static void GetLine(frame, buf, row)

int frame ;

int buf[] ;

int row

{

}

int

is_get_pixel(frame, row, O, MAXCOL, buf)

for(i = O; i < MAX COL; i++)
{

}

if(buf[i] !::: 0)

buf[i] = 1

static int GetPixel(frame, row, col)

int frame ;

int row, col ;

{
int pixel

is_get_pixel(frame, row, col, 1, &:pixel)

if(pixel != 0)

pixel = 1

130

retum(pixel)

}

static void Update(env, EOLflag)

struct BlobScanEnvironment *env

BOOL EOLflag i

{
double length, start ;

double frow = env->row

length = env->CurrentRun->length =
env->col - env->CurrentRun->startcol

env->CurrentRun->vblob = env->CurrentVBlob

env->CurrentVBlob->actualblob.perimeter += 2

start = env->CurrentRun->startcol

env->CurrentVBlob->actualblob.area += length ;

env->CurrentVBlob->actualblob.sumcol +=
length * ((length - 1) / 2 + start)

env->CurrentVBlob->actualblob.sumrow +=
length • frow ;

env->CurrentVBlob->actualblob.sumcol2
length •

((length - 1) •

+=

(start + (2 • length - 1) / 6) +
(start * start)

) j

env->CurrentVBlob->actualblob.sumrowcol +=
length * ((length - 1) / 2 + start) * frow

env->CurrentVBlob->actualblob.sumrow2 +=
length * frow • frow ;

if(env->CurrentRun->startcol < env->CurrentVBlob->actualblob.mincol)

env->CurrentVBlob->actualblob.mincol =
env->CurrentRun->startcol ;

if(env->col - 1 > env->CurrentVBlob->actualblob.maxcol)

env->CurrentVBlob->actualblob.maxcol = env->col - 1

env->CurrentVBlob->actualblob.maxrow = env->row ;

env->CurrentRun =
NewRun(env, env->CurrentVBlob, env->col, env->row, 0)

131

}

Insert(&(env->runlist), &(env->CurrentRun->node), NULL)

if(EOLflag != NOEOL)

{

}

env->CurrentRun->startcol = env->colstart

NextPrevRun(env) ;

static void Debug{env)

struct BlobScanEnvironment *env ;

{
static int firsttime = TRUE

static struct VBlob *Current ;

char c

int i ;

if(firsttime)

{

}

Current = (struct VBlob *)&(env->vbloblist)

firsttime = FALSE ;

is _set_ cursor _position(env->row, env->col)

for(;;)

{
struct VBlob *vblob

struct Run *run ;

printf("VBlobList:\n") ;

for(vblob = {struct VBlob *)env->vbloblist.Head;

{
vblob->node.Succ; vblob = (struct VBlob *)vblob->node.Succ)

printf("vblob #%d -> actualblob #%d", vblob->number,

(vblob->blob->node.Type == ACTUALBLOB _TYPE)?

vblob->blob->number :

((struct VBlob *)(vblob->blob))->blob->number) ;

if(vblob == Current)
{

printf(" (current)\n")

if(vblob->actualblob.parent != NULL)

printf("\tparent = vblob #%d "

vblob->actualblob.parent->number)

else

printf("\tparent = NONE ")

if(vblob->actualblob.child != NULL)

printf("\tchild = vblob #%d "

vblob->actualblob.child->number)

else

132

}else{

}
}

printf("\tchild = NONE ") ;

if(vblob->actualblob.sibling I= NULL)

printf("\tsibling = vblob #%d\n",

vblob->actualblob.sibling->number)

else

printf("\tsibling = NONE\n") ;

printf("\tcolor = %s\n",

(vblob->actualblob.color == 0) ?

"BLACK" : "WHITE") ;

printf("\tcolumn: min = %d max = %d "

vblob->actualblob.mincol,

vblob->actualblob.maxcol)

printf("\trow: min = %d max = %d\n",

vblob->actualblob.minrow,

vblob->actualblob.maxrow) ;

printf("\tperimeter = %d NumHoles = %d\n",

vblob->actualblob.perimeter,

vblob->actualblob.NumHoles)

printf("\ tarea = %£\n",

vblob->actualblob.area)

printf("\tsumcol = %-20£ sumrow = %-20£\n",

vblob->actualblob.sumcol,

vblob->actualblob.sumrow) ;

printf("\tsumcol2 = %-20£ sumrow2 = %-20£\n",

vblob->actualblob.sumcol2,

vblob->actualblob.sumrow2) ;

printf("\tsumrowcol = %-20£\n",

vblob->actualblob.sumrowcol)

printf(" \n")

switch(c = getch())

{
case 's1:

case 'p':

if(Current->node.Succ I= 0)

break ;

Current = (struct VBlob *)

Current->node.Succ

if(Current->node.Pred J= 0)

Current = (struct VBlob *)

Current->node.Pred

break ;

case '\x20':

case 'q':

default:

}

printf("\n \n")

return ;

exit(O) ;

printf("what?\n")

133

printf("\n")
}

}

struct List *Scan(frame, color, top, bottom, left, right)

int frame ; /* Frame number to scan (0 or 1). * /
int color ; /* Color of blobs to include in returned list. * /
int top, bottom,

{
left, right ; /* Boarder positions. * /

struct BlobScanEnvironment env

struct Blob *blob, *nextblob, *newblob

struct List *bloblist ;

env .frame = frame ;

env .rowstart = top ;
env .rowend = bottom

env .colstart = left ;
env .colend = right ;

if(NULL == (bloblist = AllocList()))

retum(NULL) ;

BlobScan(&env)

for(blob = (struct Blob *)env.bloblist.Head;

{

}

nextblob = (struct Blob *)blob->node.Succ; blob = nextblob)

if(blob->color == color)

{

}

if(NULL == (newblob = (struct Blob *)
malloc(sizeof(struct Blob))))

{

}

puts("Scan():unable to allocate new blob.") ;
retum(NULL) ;

*newblob = *blob

Insert(bloblist, &(newblob->node), NULL)

Clean U pBlobScan(&env)

134

return(bloblist)

}

void CleanUpBlobScan(env)
struct BlobScanEnvironment *env ;

{

}

FreeNodes(&(env->vbloblist))
FreeNodes(&(env->runlist)) ;

static void FreeNodes(list)

struct List *list ;

{
while(list->Head->Succ != NULL)

{
free(Remove(list->Head)) ;

}
}

135

r BlobScan.h *I

#ifndef STDDEFS_H

#include <stddefs.h>

#endif

#ifndef LIST_ H

#include "List.h"

#endif

FALSE #define NOEOL

#define NUMROWS

#define MAXROW

#define NUMCOLS

#define MAXCOL

480
NUMROWS-1

612

NUMCOLS-1

#define VBLOBLIST_TYPE 1

#define VBLOB_TYPE 2

#define BLOBLIST_TYPE 3

#define ACTUALBLOB _TYPE 4

#define RUNLIST _TYPE 5

#define RUN_ TYPE 6

struct Blob

{
struct Node node

struct VBlob
*parent,

*child,

*sibling ;

int number;

int color ;

int perimeter ;

int NumHoles ;

int mincol, maxcol, minrow,

float area, sumcol, sumrow ;

maxrow

double sumcol2, sumrow2, sumrowcol

float xcenter, ycenter ;

}

struct VBlob
{

struct Node node ;

struct Blob *blob ;

struct Blob actualblob
int number ;

}

136

/* BlobScan Environment structure. * /

struct BlobScanEnvironment

{

}

struct List vbloblist

struct List runlist ;
struct List bloblist

int NumBlobs ;
int NumVBlobs

int NumRuns ;
struct VBlob *CurrentVBlob, *AboveVBlob, *HoleVBlob

struct Run *CurrentRun, *PrevRun

int state, row, col, LeftEnd ;

BOOL NewBlobFlag ;

int frame, rowstart, rowend, colstart, colend ;

int CurrentLine(MAXCOL), PrevLine(MAXCOL)

extern BlobScan(struct BlobScanEnvironment *) ;

extern void CleanUpBlobScan(struct BlobScanEnvironment *) ;

extern struct BlobScanEnvironment

*InitBlobScanEnvironment(struct BlobScanEnvironment *)
extern struct List *Scan(int, int, int, int, int, int) ;

137

/* List.c * /

#include <malloc.h>

#include "List.h"

struct Node *InitNode(node, type, pri, name)

struct Node *node

UBYTE type

BYTE pri ;

char *name

{

}

node->Type = type ;

node->Priority = pri ;

node->Name = name ;

struct List *InitList(Iist, type)

struct List *list

UBYTE type;

{

}

list->Head = (struct Node *)&(list->Tail) ;

list->Tai!Pred = (struct Node *)&(list->Head)

list->Tail = NULL ;

list->Type = type ;

return(list) ;

struct Node *Insert(t_list, t_node, t_pred)

struct List *t _list ;

struct Node *t_node ;

struct Node *t_pred

{

}

struct

struct

{

}

if(NULL == t_pred)

t_pred = (struct Node *)&(t_list->Head)

t_node->Pred = t_pred ;

t node->Succ = t_pred->Succ

t_pred->Succ->Pred = t_node

t_pred->Succ = t_node ;

Node *Remove(node)

Node *node ;

(node->Pred)->Succ

(node->Succ)->Pred

return(node) ;

=
=

node->Succ

node->Pred

138

struct List * AllocList()
{

}

struct List *list

if(NULL != (list = (struct List *)malloc(sizeof(struct List))))
InitList(list, NULL)

return(list) ;

139

/* List.h * /

#ifndef NULL

#define NULL 0

#endif
typedef unsigned char UBYTE

typedef char BYTE ;

struct Node

{

}

struct Node *Succ

struct Node *Pred

UBYTE Type;
BYTE Priority

char *Name ;

struct List

{

}

struct Node *Head ;
struct Node *Tail ;

struct Node *TailPred
UBYTE Type;

extern struct Node *InitNode(struct Node *, UBYTE, BYTE, char *) ;

extern struct List *InitList(struct List *, UBYTE) ;

extern struct Node *Insert(struct List *, struct Node *, struct Node *)

extern struct List * AllocList() ;

140

VITA

Christine Theresa Rice

Candidate for the Degree of

Master of Science

Thesis: MEASURING CHARACTERISTICS OF RILL EROSION USING
IMAGE PROCESSING TECHNIQUES.

Major Field: Agricultural Engineering

Biographical:

Personal Data: Born in Lubbock, Texas, April 23, 1963, the daughter of
Harold J. and M Catherine Altendorf. Married to Christopher K.
Rice on December 28, 1985.

Education: Graduated from Putnam City West High School, Oklahoma City,
Oklahoma, in May, 1981; received Bachelor of Science Degree in Agri­
cultural Engineering from Oklahoma State University in December,
1985; completed requirements for the Master of Science Degree at
Oklahoma State University in December, 1987.

Professional Experience: Research Assistant, Department of Agricultural
Engineering, Oklahoma State University, January, 1986 to November,
1987.

Professional Organizations: American Sociey of Agricultural Engineers;
National Society of Professional Engineers; Oklahoma Society of
Professional Engineers.

