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PREFACE 

This study is concerned with measuring soil profiles and velocity using 

image processing techniques. The main objectives are to develop the apparatus 

and algorithms and test the system. This research has been completed at 

Oklahoma State University in the Agricultural Engineering Department. The 

apparatus and testing materials were constructed in the Ag Engineering 

Laboratories. The profiles used in this research were preformed and the 

velocities were limited to known parameters. This project did not measure actual 

field properties, but extensions of this research will. The image processing techni

ques are limited to the capabilities of an IBM-AT complete with accessory boards. 

I wish to extend my sincere thanks to my major advisor, Dr. Bruce Wilson, for 

his patience, guidance and assistance throughout the entire cource of study. 

Appreciation is also expressed to the other committee memberrs, Dr. Glenn A. 

Kranzler and Dr. Greg Hanson for their advice and suggestions and their assistance 

in the preperation of the fin al manuscript. 

A special note of thanks is given to Mark Appleman who was responsible for 

writing the majority of the software for the system and being available when 

problems occurred. His assistance and talents have been much appreciated. 

Thanks is also extended to Mr. Wayne Kiner and his staff, especially Robert 

Harrington, at the Agricultural Engineering Laboratory for their assistance in 

constructing the system apparatus. 

I would also like to thank my husband. Chris, for his understanding and 

patience thoughout this research, especially during the final stages. 
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CHAPTER I 

INTRODUCTION 

As water strikes the earth and flows over the land surface, soil particles are 

detached and transported. This process is generally referred to as water erosion. 

Although erosion is a natural geological process, society has greatly accelerated 

erosion rates with land disturbing activities associated with agriculture, urban 

development, silviculture and surface mining. 

Water erosion is damaging in many ways. Soil depth is decreased; plant 

nutrients are removed; texture is changed; structure is degraded; productive 

capacity is reduced; and fields are dissected. Sediments produced by erosion 

pollute streams and lakes and are deposited on bottom lands and in channels and 

reservoirs. 

The most apparent damage caused by water erosion is the removal of soil. 

Grant (1975) has indicated that erosion can vary from less than 1 metric ton/ 

hectare/year from land covered with perennial vegetation, either grass or trees, to 

more than 450 metric tons/hectare/year from bare, cultivated fields. Although any 

soil loss is a concern, topsoil loss is most important (Troeh et al., 1980). Topsoil is 

generally more friable and more permeable to water, air and roots than deeper soil, 

and contains more organic matter and fertility than subsoils. 

DeBoodt and Gabriels (1980) researched the severity of erosion on a world 

wide basis. Virtually every area in the world where food and fiber are produced 

must deal with water erosion. Of course the problem is worse in high rainfall areas, 

but not necessarily absent in low rainfall areas. In 1978, scientists from North 
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America, Africa, Australia and Europe met in Belgium to assess the world wide 

water erosion problem; all agreed that soil erosion is a universal threat to present 

and future crop production (DeBoodt and Gabriels, 1980). 

Soil erosion and subsequent deposition are also nonpoint pollution sources. 

They adversely affect the quality of our flu vial systems by changing the aquatic life 

in streams and rivers, reducing the storage capacity of reservoirs and lakes, clogging 

navigable waterways, and transporting land-applied chemicals which otherwise 

would not enter the stream ecosystem. Erosion related pollutants have been 

estimated to impose net damages of $3.2 to $13 billion per year in the United States, 

with a single value estimate of $6.1 billion (Clark et al., 1985). Considering these 

impacts, it is not surprising that the USGS Water Resource Division Memorandum 

No. 85.80 places a highest priority in expanding the data base on the processes 

governing erosion, sediment transport -and sediment deposition. 

As the result of advancing technologies, innovative instrumentation techni-

ques for gathering and expanding the erosion data base are possible. These techni-

ques have the potential to gather data more accurately and efficiently than current 

methods allowing for more comprehensive analyses of erosion processes. An impor-

tant advancing technology is low cost image processing systems. The application of 

this technology in quantifying erosion processes is the general thrust of this study. 

The specific objectives of this study are: 

I. To design and develop an apparatus to measure soil profiles and water 
velocity using image processing techniques, 

2. To test the system for measuring soil profiles using rigid, well-defined 
objects of known size and shapes and using actual soil profiles, 

3. To test the system for measuring water velocities using known velocities of 
small wooden beads. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

Advances in reducing water erosion are ultimately linked to obtaining a better 

understanding of the erosion process. Theoretical modeling can provide valuable 

insight into this process. Nevertheless, this work still relies on comparisons 

between predicted and measured values. As more fundamentally-based erosion 

models are proposed, the need to measure fundamental processes more accurately 

increases. This places a greater demand on instrumentation systems. 

In this chapter, a brief overview of erosion research will first be given to 

provide a historic perspective and to underline important physical processes. The 

remaining sections will focus on current instrumentation techniques for measuring 

soil erosion processes. Emphasis will be on techniques for measuring soil profiles 

and for estimating flow velocities in rills. 

Overview of Erosion Research 

History 

The first scientific investigations of erosion were carried out by the German 

soil scientist Wollny, between 1877 and 1895 (Hudson, 1981). Small plots were used 

to measure the effects of vegetation and surface mulches on rainfall interception 

and the deterioration of soil structure by erosion. Wollny also studied the effects 

of soil type and slope on erosion. In the United States, isolated cases of farmers 

3 



4 

implementing conservation practices were reported as early as 1850. Implementa

tion of conservation practices gradually increased to the turn of the century. In 

1907, the United States Department of Agriculture declared an official policy of 

land protection (Hudson, 1981). The United States is now a leader in soil erosion 

research. 

Bennet (1939), with the help of funds from Congress, was able to establish a 

network of ten field experiment stations between 1928 and 1933 to study runoff and 

erosion. During the next decade, this program expanded until forty-four stations 

were operating. This program was primarily experimental. Early theoretical 

work was done by Ellison (1944) who analyzed the mechanical action of raindrops 

on soil. 

In 1954, a national study was started to correlate the results of all the field 

experiments started by Bennett (Wischmeier, 1955). As a result of this study, the 

main features in the erosion process were identified and mathematically enumerated 

in the Universal Soil Loss Equation (Wischmeier et al., 1958). This work has had a 

major impact on the quantitative investigation of soil erosion. 

Erosion Process 

There are several types of water erosion including sheet erosion, rill erosion, 

gully erosion and streambank erosion. Sheet erosion is the removal of thin layers of 

soil by water acting over the entire surface area. Raindrop splash and surface flow 

are the mechanisms for detachment and transport of soil of sheet erosion. 

Raindrop splash is the primary detaching agent, and flow is the primary 

transporting agent (Troeh et al. 1980). 

Schwab et al. (1966) defines rill erosion as the removal of soil by water from 

small but well-defined channels or streamlets. Rills are formed by the concentra

tion of overland flow. Rill erosion is usually the form of erosion in which most of 
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the soil erosion occurs. In contrast to sheet erosion, both detachment and transport 

of soil in rills are dominated by runoff characteristics. 

When erosion channels become too large to be removed by ordinary tillage, 

they are then called gullies. Gullies are considered to be active as long as erosion 

keeps the sides bare of vegetation, and inactive when they have been stabilized by 

vegetation. 

Sheet, rill and gully erosion are active only during or immediately after 

rainstorms. Erosion along the banks of perennial streams occurs both during and 

between rainstorms. Stream banks erode either by runoff flowing over the side of 

the stream bank or by scouring and undercutting below the water surface. Bottom

land soils damaged by streambank erosion are usually more productive than any 

other soils in the area (Troeh et al., 1980). 

Measurement and Experimentation 

Data on soil erosion and its controlling factors can be collected in the field or, 

for simulated conditions, in the laboratory (Morgan, 1986). Attempts have been 

made to distinguish between measurement and experimentation (DePloey and 

Ga briels, 1980). DePloey and Ga briels (1980) defined measurements as the steps 

used to determine erosion rates with observed data. They are not conducted to 

study erosion mechanics. According to DePloey and Gabriels (1980), experiments 

are conducted to obtain a better understanding of the erosion process itself. Since 

experiments generally also involve measurements, it is difficult in practice to sepa

rate the two. 

Measurements are subject to error. No single measurement of soil loss can be 

considered as the absolutely correct value (Morgan, 1986). Errors are usually 

assessed in terms of variability. This requires replicating the experiment several 

times to determine the mean value of soil loss. In a review of field and laboratory 



6 

studies of soil erosion, Beasley et al. (1984) found typical values of 13 to 40 per cent 

for the coefficient of variation for soil loss. 

Experiments should be set up in such a way that they can be easily understood 

and repeated by other workers. Because of the natural variability in soils, it is 

sometimes difficult to have replicate runs. Additional errors may also arise due to 

different operators or to slightly different equipment, for example, different rain

fall simulators (Morgan, 1986). 

Techniques of Measuring Soil Profiles 

Introduction 

The soil surface profile is an important characteristic of erosion, especially 

rill erosion. In the last fifty years m:rny rillmeter and profile meters have been 

developed, resulting in a variety of ways to measure soil profiles. The following 

sections will describe the three most common techniques used in the United States: 

pin displacement units, height tranducers (probes), and non-contact profile meters. 

Pin Displacement Units 

Pin displacement units measure soil profiles by the displacement distance of 

pins as they are moved from a reference level to the soil surface. Although the 

basic principles for pin displacement measurements are the same, automation and 

technology used to run the system, record and analyze the data vary with different 

studies. An example of a pin displacement unit can be seen in Figure 1. 

Surface roughness for tillage effectiveness was measured by Kuipers (1957) 

using a board holding twenty vertical probes at 100 mm spacings. After these 

probes were lowered to the soil surface, twenty elevation readings were collected 

manually. The board was then moved to the next site at fixed intervals, depending 
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Figure 1. Pin Displacement Unit 
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on the surface area to be covered. Burwell et al. (I 963) used a point quadrant 

instrument similar to that of Kuipers (I 957) to measure soil surface elevation before 

and after preplant tillage. The soil surface elevations were measured to the nearest 

0.25 cm on a 5.08 cm by 5.08 cm grid for a 1.02 m by 1.02 m area. Eighteen 

measuring pins were gently lowered until all pins were resting on the soil surface. 

The height measurements were read from a scale board at the top of the measuring 

pins. The measuring pins were then raised and advanced 5.08 cm and lowered 

again to obtain a three-dimensional representation of the surface. 

Curtis and Cole (1972) measured soil loss from surface mined lands using a pin 

displacement unit. Their unit was a frame holding a row of 40 pins set 30 mm apart 

and arranged so they could move freely, vertically. The device was placed on 

preinstalled angle iron reference stakes. The pins were then lowered to the surface 

and a graph of a 1.2 m profile was exhibited. The graph was then recorded on film 

for later tabulation. In a similar manner, Foster and Meyer (1972) developed two 

rill meters which were used for estimation of soil movement in soil erosion studies. 

The profiles were determined by lowering the pins onto the soil and photographi

cally recording the data. The pin spacings for the meters were 6.4 mm over 190 mm 

and 25 mm over 3.5 m. 

McCool et al. (1976) reported on the use of a pin type instrument for measuring 

soil loss in rills. The instrument used 3 mm stainless steel pins on 12.5 mm centers. 

The working width of the unit was 1.83 m. The pin readings were recorded 

photographically and analyzed at a later time. 

Moore and Larson (1979) measured the soil surface profile to estimate micro

relief surface storage. The plot size was 102 cm by 102 cm. Spot measurements of 

surface elevation were taken on a 5 cm by 5 cm grid using the surface relief meter 

described by Allmaras et al. (1966). A horizontal bar holding 18 pins was lowered 

manually by a crank device until each pin touched the surface. Individual cross 
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sections were recorded photographically and digitized manually. 

McCool et al. (1981) revised and updated his rillmeter to make rill erosion 

measurements on cultivated fields and runoff plots. The pin spacing was the same 

as in his previous study, but the measuring rods were constructed of aluminum alloy 

welding rods, and the frame was stronger and more maneuverable. Photographic 

data were processed using a manual electronic digitizer which was connected to a 

desk-top calculator. A calculator program was written to determine the amount of 

soil eroded using the trapezoidal rule. 

A microprocessor automated rillmeter was developed by Radke et al. (1981). 

The rillmeter measured 312 surface elevations with sensing rods arranged in three 

rows of 104 rods each. The rods were spaced 1 cm apart within the row and 5 cm 

apart between rows. An electric motor was used to lower the grid of sensing rods. 

Electrical contacts were made when the rods were touching the soil surface. A 

micro-processor then scanned and stored the platform position of each sensing rod. 

Data were stored on magnetic casette tape. 

Highly-automated pin type rillmeters were developed by Hirschi et al. (1984) 

to measure soil surface heights. Two similar rillmeters were constructed of 

different sizes and pin spacings. One meter had a 13 mm pin spacing over a 1 meter 

width (72 pins), and the other had a 64 mm spacing over a 4.5 meter width (70 pins). 

Each had a measurement accuracy of :!:.... lmm. The mechanical movement of the 

pins was the same as the meter utilized by Moore (1979). The pins were lowered 

using a remote control circuit, thus eliminating the necessity of walking on the plot. 

Electronic sensing was used to determine the pin location. A stainless steel contact 

on the top of each pin connected wires in a parallel network to a voltmeter. The 

voltmeter was used to sense the voltage drop along a parallel network wire between 

the pin location and the lower bar.holding the pins. Computers were used to control 

the rillmeter, take data, process the data and stop the data collection. 
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Height Transducers 

An alternative method to pin displacement units is to use a single height 

transducer mounted on a carriage for lateral movement which moves across a plot. 

This method is typically similar to a pin displacement unit, in that a probe is 

lowered to the soil surface from a reference height. It differs, however, because 

only a single probe is used, and because contact between the probe and soil is the 

switching mechanism that determines the height readings. Figure 2 shows the basic 

concept of a height transducer. 

An automated soil surface profile-meter was developed by Schaf er and Lovely 

(1967). This system would automatically make and record a large number of point 

elevation readings over a distance of 2.1 mat 25 mm intervals. A prodding device 

rolled laterally along a horizontal beamextending across the frame length. Height 

readings were obtained by lowering the prod until it contacted the soil surface. A 

sensor would then actuate the prod bottom when the soil was touched. A recorder 

would record the distance the prod travelled to reach the surface. This same 

concept was extended by Currence and Lovely (1970) into a fully automatic 

recording profile-meter. This profile-meter allowed height readings to be taken on 

a 25 mm grid over an area of 1.5 m by 2.0 m. The travel distance of the probe was 

recorded using a card punch. Height readings recorded by the profilometer were 

accurate to + 0.127 cm. 

Mitchell and Jones (1973) used a device similar to Currence and Lovely (1970) 

to measure soil surface profiles. The device consisted of a carriage probe unit, a 

power supply control and a recording unit. It was designed to measure a 2.54 cm by 

2.54 cm grid for a surface of 0.91 square meters. The movement of the probe over 

the test area could be either completely automated or manually controlled. At each 

measurement point, the probe was driven downward until the sensing rod touched 
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the surface. When this happened, a snap action switch in the probe was activated 

by the pressure of the movable sensing rod on the soil surface. At that instant, the 

probe returned to the probe carriage and moved to the next position. The 

measuring system within the probe carriage was a ten turn rotational potentiometer 

which would send a voltage signal to the recording system when the probe was 

actuated. The recording system would then hold the voltage signal, convert it to a 

digital signal and place the digital signal on paper tape. 

Semi-automatic micro-relief meters to relate surface roughness to hydraulic 

roughness have been investigated by Heermann et al. (1969) and by Merva et al. 

(1970). To study shallow overland flow, profiles were recorded at close intervals. 

Heermann et al. (1969) obtained roughness measurements longitudinally down a 

furrow bottom at intervals of 3.2 mm for a distance of 2.9 m. Each digit on the 

vertical potentiometer was equivalent te 0.001 cm. The mechanical cycle was auto

matic and continuous. Merva et al. (1970) illustrated the difference between 

macro- and micro-surfaces. Spectral density analysis was applied to micro

surf ace profiles measured at 20 mm spacings over a distance of 3.0 meters in grass

land. Anisotropy of surfaces was estimated by comparing the spectra of cross and 

down slope profiles. 

Henry et al. (1980) developed a device for measuring soil surface profiles 

electromechanically. Using electronic controls and a battery powered printer, 

elevations and their horizontal locations were automatically printed on paper tape. 

The device consisted of a frame which served as a track for a horizontally powered 

carriage. Mounted on the carriage was a soil sensing probe which was driven up 

and down with a low inertia motor. A contact circuit controlled the probe motor to 

drive the probe down until either the bottom or the side of the sensor wire touched 

the soil. The motor would then reverse its direction. . As soon as the sensor wire 

cleared the soil, the motor would again go in the downward direction. This process 
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caused the probe tip to follow the contour of the soil surface. The output was sent 

to a battery powered strip chart recorder or a digital voltmeter and DC printer. 

Linear profiles of stabilized sand surfaces were measured using a linear vari

able differential transformer (LVDT), which was designed by Podmore and Huggins 

(1981). Elevation measurments were required to relate physical roughness with 

hydraulic roughness. A step size of 0.25 mm was chosen so that the effects of coarse 

sand and larger roughness elements could be measured. The profilemeter consisted 

of a frame and a cross carriage which held the vertical probe. The cross carriage 

would allow a total horizontal distance of 1.85 meters to be measured. The L VDT 

consisted of a central core and various coils sending a transformed output in current. 

The signal was then converted to a voltage output which resulted in a linear rela

tionship between core position and output voltage. The LVDT core was bonded to a 

sensing probe and measured sharply varying surface profiles with resolution of ±_ 

0.005 mm. Data were collected on magnetic tape and analyzed using a large central 

computer. 

Non-Contact Meters 

Another type of soil profile meters is one in which the measuring device never 

comes in contact with the soil surface. This relatively new approach has become 

more economically feasible in recent years because of the reduction in cost of 

hardware equipment. 

Harral and Cove (1982) developed an optical displacement transducer for the 

measurement of soil surface profiles. The transducer has a fast response opto-elec

tronic displacement moniter with a working range of±_ 150 mm for a point 600 mm 

from the sensing head. The device collected light from an illuminated spot using a 

semiconductor laser diode on the target surface and focused this onto a position

sensing photo-diode, giving an output related to the position of the target. As the 
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surface level changed, the focused image would move on the detector surface. The 

resolution of the system was ±.... 6 mm. 

An automated non-contact micro-relief meter was developed by Romkens et al. 

(1982) to measure profile elevations of the soil surface in field situations. The 

meter consisted of an optical probe which scanned the soil surface at a known 

tracking height in predetermined transects. Ball screws made horizontal movement 

of the carriage and vertical movement of the probe possible. A servo motor moved 

the probe vertically, while a 12 V DC motor moved the carriage. Displacements 

were recorded by encoders, which relayed electrical pulses for directional movement 

via digital subtractors to a cassette tape data logger. The plot area in which the 

probe system was able to move was 1 m by 1.15 m. The electronic components of the 

profiler consisted of a super pulser, an infared LED with phototransistor, a servo 

controller, a pulse counting system and a recording system. The super pulser gener

ated an analog voltage output which became more negative as the probe approached 

the soil surface. The probe would move up and down depending on the various 

voltage readings. The probe would stay at a constant height above the soil surface. 

The necessary location adjustment of the sensor to maintain that height was 

monitored and recorded automatically. A 250 point per meter transect could be 

completed in about 4 minutes. 

Another non-contact optical device was developd by Khorashahi et al. (1984) 

to measure soil surface elevations before and after artificial rainfall for erosion 

studies. The profiler consisted of a digital camera, a laser, and a mechanical drive 

train for horizontal movement. Calibration was done on the system using two 

artificial surface heights and the position of a camera-laser plate. Color and posi

tions did not affect the distance measurements. The accuracy of the height 

measurements was within±.... 1.95 mm. The surface that the system covered was 1.5 

m by 1.5 m. The digital camera and laser were mounted on an adjustable stand. A 
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stepper motor controlled by a logic board in a microcomputer was responsible for the 

horizontal movement. A prefabricated control board was used to interface the 

camera with the microcomputer. One section of this board controlled camera oper

ation and received the data, and the other section manipulated and transferred the 

data to the microcomputer. 

Techniques of Measuring Velocity in Rills 

Introduction 

Rills are usually very irregular in their cross section and grade, resulting in 

high spatial variabilities in hydraulic variables. Intense local velocities may result 

in significant erosion. Information on rill velocities is therefore needed to improve 

our understanding of the erosion process (Foster et al., 1984). Although there are 

many ways to measure fluid velocities, only those techniques that are readily 

applicable to flows in small open channels will be discussed. The techniques 

discussed are pitot tube measurements, hot film anemometry and dye measurements. 

Pitot Tube Measurments 

A pitot tube is a submerged tube which is oriented so that the axis is parallel to 

the flow of the fluid (Shames, 1982). The ambient pressure is measured through 

holes in the side of the tube, and the stagnation pressure which represents the total 

head is measured through a hole in the tip of the tube. 

The pitot tube can be used to determine velocity using the following special 

form of the Bernoulli equation 

v = ~ 2~p 

in which v is the velocity, p is the density of the fluid and .6.p is the difference in 
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pressure between the tip of the tube and the side holes. In this way, the magnitude 

of velocity is determined in a simple and straightforward fashion (Albertson et al., 

1960). 

A major problem in the use of an ordinary pitot tube is to obtain proper 

alignment of the tube with flow direction. The angle formed between the probe 

axis and the flow streamline at the pressure opening should be zero, but many times 

the angle may not be constant. The flow may be fixed in either magnitude or 

direction. Beckwith et al. (1982) show that the pitot tube is particularly sensitive to 

yaw. Although sensitivity is influenced by orientation of both impact and static 

openings, the latter probably has the greater effect. 

Vanoni (1946) found it necessary to measure water velocity when researching 

the transportation of suspended sediment by water. A pitot static tube was used 

with a diameter of 4.67 mm. The differential pressure on the tube was read to an 

accuracy of 0.03 cm on a water manometer. 

Vanoni and Brooks (1957) also used pitot tubes to study roughness and 

suspended load of alluvial streams and to measure vertical velocity profiles. Pitot 

tubes of diameter 4.76 mm and 6.35 mm were used in their studies. 

Hot Film Anemometry 

In hot film anemometery, velocities are determined by changes in the elec

trical resistance of a thin film of carefully constructed material (i.e. platinum, 

tungsten) surrounding a cylindrical element. The film is heated above the ambient 

temperature of the surrounding fluid by passing an electrical current through a 

resistance material. Flow of the fluid over the hot film cools it by forced convec

tion. The cooling of the film is a function of the velocity of the flow; temperature, 

density, viscosity, and thermal conductivity of the fluid; temperature, diameter, and 

length of the film backing material; and thickness of the film. If all but fluid 
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velocity are kept constant, the heated film is a transducer for measuring velocities 

(Richardson and McQuivey, 1968). 

The hot film anemometer has a very short response time, permitting it to pick 

up rapid fluctuations in velocity. Also, the probe of the device is very small, so 

rather than getting average values of velocity over a comparatively large region as 

in the case of the pitot tube, an average over a much smaller region can be taken and 

for all practical purposes, the measurements are considered valid for a point in the 

flow (Shames, 1982). 

Richardson and McQuivey (1968) used a hot film anemometer to measure 

turbulence in water. The probes used in this study had a thin coating of quartz 

fused over the platinum to insulate the conductor from the fluid. The coating 

eliminated stability problems caused by electrolysis and conductivity through the 

fluid medium. A method was developed for measuring turbulence in extremely 

dirty water. The method was based on a hypothesis that dirt and air bubbles 

accumulating on the sensor decrease the mean voltage for a given velocity, but in the 

domain of frequencies encountered in water, do not affect the frequency response 

of the sensor to velocity fluctuations. The hypothesis was experimentally verified 

using hot film anemometers by comparing turbulence measurements made in clean 

and very dirty water. 

Hot film anemometry and random signal analysis were used by Barfield et al. 

{1969) to measure the turbulent diffusivity in shallow open channel flows as 

affected by rainfall. Each quartz coated hot film probe required a unique calibra

tion curve. Calibration was done in a flume using pitot tube velocities and 

observed voltages from the hot film probes. The hot film anemometers were 

calibrated to an 0.0076 m/sec. 

Barfield and Henson {1971) discussed different cali bra ti on methods for hot 

film probes. Since calibration of the probes is one of the major problems associated 



18 

with the use of the anemometer, this was an important topic to discuss. Several 

calibration methods were discussed including two methods developed by the authors. 

In a laboratory study of rill hydraulics, Foster et al. (1984) used hot film 

anemometry to obtain velocity measurements and relationships. In addition, 

average velocity at a section was computed by dividing discharge rate at the section 

by flow area determined from water surface and rill cross-section elevations. A 

comparison of hot film velocities measured at several points and those obtained by 

average section velocities were within four percent. 

Wilson and Barfield (1986) used a constant temperature anemometer unit to 

measure the turbulent characteristics of pond flows. The probe used was 

cylindrical and relatively insensitive to the direction of the fluid velocity which 

was a necessity due to the possible fluctuations in the pond's recirculation pattern. 

Analog data from the anemometer were converted to a digital form and stored in 

data files using an IBM PC computer. The data were analyzed to obtain estimates 

of mean velocities, mean square values of velocity fluctuation, Eularian time scales 

and turbulent diffusion coefficients. 

Dye Method 

Another method commonly used to measure water velocities is a technique 

involving dye. Hydraulic variables in streams and rivers have been widely iden

tified using this method. Fluorescent dyes, utilized in dye dilution procedures, are 

economical, easy to handle and can be measured quantitatively in very low concen

trations. However, characterization of hydraulic parameters using fluorometric 

techniques has received only limited use in upland areas. 

While examining the effect of soil-surface configuration resulting from tillage 

tool marks on erosion, Young and Mutchler (1969) measured the flow velocity of 

water in small triangular furrows. The velocity was measured by injecting dye in 
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the stream at certain points and timing the advance of the dye front. Mean flow 

velocity was also measured by Gilley et al. (1986) using a fluorometer. A slug of 

dye was injected into the channel and the amount of time required for the concen

tration peak to pass a downstream point was determined. A time-concentration 

curve resulted from continuous pumping of the sample through the fluorometer flow 

cell. Mean flow velocity was obtained by dividing travel distance by time of travel. 

Line and Meyer (1978) measured average flow velocities along row furrows 

under intense simulated rainfall. An estimate of the velocity was obtained by 

introducing several drops of fluorescent dye onto the center of the flow surface and 

recording the time required for its peak to travel from a point 2 meters down to a 

point 8 meters down the furrow. Since dye-travel times determined by observation 

are subjective, a related laboratory study was conducted to correlate the field 

measured dye velocities to average flow velocities. Regression equations were 

developed and used to convert field dye results to average velocities. 



CHAPTER III 

INSTRUMENTATION SYSTEM 

Introduction 

A system has been developed to measure soil profiles and velocities in rills 

using image processing techniques. This system is incorporated into a large-scale 

laboratory apparatus designed for experiments that (1) require instrumentation 

techniques that are difficult to use in the field, (2) need control of erosion 

parameters to examine fundamental processes more accurately and/or (3) are 

conducted more efficiently in a laboratory setting because of cost and time 

constraints. The focus of this chapter is on the mechanical, electrical and struc

tural components of the measurement system including the erosion table, soil profile 

measuring equipment and velocity measuring equipment. Details of the system's 

software are given in the next chapter. 

Erosion Table 

The erosion table is located at the edge of the Oklahoma State University 

Campus in one of the Agricultural Engineering Department's research shops. It has 

been designed to conduct erosion studies on a 2.4 m by 9.8 m surface. A view of the 

erosion table from the upslope end of the plot is shown in Figure 3. A side view of 

the erosion table is shown in Figure 4. The sidewalls are constructed of 2.9 cm 

plywood supported by a metal frame with appropriate bracing at approximately 1.2 

m intervals. The plywood has been coated with a fiberglass sealant. 

20 



21 

Figure 3. View of Erosion Apparatus 
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As shown in Figure 4, two false floors support the erosion surface. The 

upslope floor is hinged so that it can rotate to obtain different slopes and spatially 

varying sideslopes. Fine tuning of surface profiles can be obtained by varying the 

depth of soil. The maximum possible uniform slope over the entire plot length is 

roughly 11 percent and roughly 19 percent for the adjustable section of the plot. 

Located above the erosion table is a rainfall simulator. This simulator has 

been designed to duplicate natural rainfall by matching of kinetic energy and 

momentum factors. Further information on the erosion table and rainfall simu

lator is given by Wilson and Rice (1987). 

The focus of this research is to measure erosion processes occurring on the 

erosion table. An important component of this system is the instrumentation rack 

shown mounted over the surface in Figure 3. Details of this component and the 

image processing hardware are given -in the next section. 

Soil Profile Measuring Equipment 

An important part of this study is the development of techniques for 

measuring surface topography. These measurements are made using a structured 

lighting technique. This technique requires that a well-defined stripe of light be 

projected onto the surface. The location of the stripe within the field of view of a 

camera is compared to some base value to obtain an elevation measurement. The 

support and movement of the light source and camera are done using the instrumen

tation rack. Image processing boards and software are used to analyze the data. 

The software component of this approach is described in the next chapter. 

Mechanical and hardware components are described here. 

Mechanical Driving System 

A schematic of the instrumentation rack is shown in Figure 5. The rack width 
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is roughly equal to the width of the erosion plot (i.e., 2.4 m). On top of the rack is a 

platform that supports the mechanical components of the structured lighting equip

ment. This platform can move laterally across the plot and is used to move the 

structured lighting equipment vertically. Movement in the x, y and z directions is 

powered by three Cyber Research's ESH 088 stepper motors. These motors provide 

a torque of about 780 mN-m with 1.8 degrees per step. The stepper motors are 

driven by Cyber Research's 3-amp stepping motor driver boards (ESH 082) which in 

turn are operated using an IBM PC-AT with a Cyber Research's controller board 

(ESH 080). 

Motion in the y and z directions is driven by precision racks and pinions. 

Figure 6 shows the driving mechanism for the z-direction. The racks (Reliance 

Gear Company RlOA standard rack) have a maximum adjacent tooth-to-tooth error 

of 0.010 mm. The y-direction pinion -has an outside diameter of 35.58 mm and 

travels 101.6 mm (4 inches) per revolution. One step of the stepper motor therefore 

results in a movement of 0.508 mm (0.02 inch). In the z-direction, a series of gears is 

used to allow for finer distance steps and to increase the holding and driving torque 

of the motor. In comparison to they-direction, the gear reduction is 4:1, so that one 

step results in a vertical movement of 0.127 mm (0.005 inch). The maximum travel 

distance in the z-direction is roughly 1.2 m ( 4 ft). A solenoid switch is used as a 

brake in the z-direction to hold the structured lighting equipment in place when the 

power is off. 

The instrumentation carriage must be capable of moving the entire length of 

the plot (i.e., 9.8 m). To reduce cost, movement in the x-direction is by a chain 

driven system. The carriage is mounted on adjustable aluminum tees that have 

been carefully leveled. A standard AMSI #25-lR roller chain is used to move the 

rack precisely and automatically. A gear is placed on the stepper motor and a shaft 

running down the center of the carriage is rotated to move the carriage. Chains are 
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Figure 6. Vertical Direction Driving Mechanism 
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mounted to both sides of the erosion table and matching gears on each side of the 

carriage are used to keep both ends moving together. One step in the x-direction 

results in a movement of 0.38 mm (0.015 inch). 

Travel distance in the x, y and z directions is also monitored using three Disc's 

Model 701FR-200-0CN-SS shaft encoders. These shaft encoders have a resolution 

of 200 pulses per revolution or 1.8 degrees of angular rotation. The shaft encoders 

are connected to the IBM PC-AT computer using the stepper motor driver boards 

previously discussed. By using appropriate software, stepper motors, and shaft 

encoders, the structured lighting equipment can be moved precisely to a desired 

(x,y,z) point over the plot. 

Image Processing System 

The main components of the structured lighting system are (I) a laser light to 

provide a well-defined stripe of light, (2) a video camera to sense the reflected light, 

and (3) computer boards in an IBM PC-AT to digitize and manipulate the image. 

These components are shown in Figure 5. The arrangement of the laser light and 

camera is shown in Figure 7. The horizontal distance between the laser and the 

camera is 0.43 m, and the laser is tilted at about a 45 degree angle. 

The laser light is Newport Corporation's SLD-1008 diode laser line projector. 

It is a self-contained unit that has a laser light source and lens to produce a well

defined stripe of light in the near infared range of 770 to 820 nm. On special 

request, the laser has an optimum focus length of 0.6 m (2 ft) which corresponds to a 

striped line of 0.3 m (1 ft) length with a width less than 1 mm. The laser light has 

an intensity of 2 mW and runs on 12 volts DC. 

A Hitachi KP 130 solid-state, black-and-white video camera is used in the 

instrumentation system. This camera has a sensor array with 384 horizontal and 

485 vertical picture elements. The camera has an interlaced scanning system and a 
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Figure 7. Structured Lighting Equipment 
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standard RS-170 output signal. It has the desired features of relatively low power 

requirements of 12 volts DC, low weight (1 lb) and small size (2.2" x 2.1" x 3.3"). 

Output signals from the camera are sent to a Data Translation DT-2851 frame 

grabber board located in an IBM PC-AT. This board has flash A/D converters that 

can digitize a video frame in 1 /30 of a second. Its resolution is 512 lines by 512 

pixels with 256 possible gray values. Limited processing on the board can be done 

such as frame averaging, frame addition and subtraction, and windowing. It also 

has two memory-map 256 Kbyte frame-store memory buffers to store two frames. 

An AST Advantage board with 1.5 Mbyte of RAM has been installed in the IBM 

PC-AT to store additional frames. The DT-2851 frame grabber can take input 

directly from a video camera or from a recorded tape using a video playback unit. 

Output from the frame grabber board is viewed on a Hitachi 12" black-and-white, 

solid-state VM-129 monitor. 

The computational speed of the system is increased using a Data Translation 

DT-2858 auxiliary frame processor board. This board has high speed direct inter

face to the frame grabber memory, pipelined arithmetic performance of 2.5 million 

multiplications per second 700,000 divisions per second, and 2.5 million addition per 

second and supports NxM convolutions, frame averaging, normalization and 

histograming operations. The DT-2858 board is located in a slot next to the frame 

grabber in the IBM PC-AT. 

The distance from the instrumentation rack to the soil surface can change 

significantly as the rack is moved, especially for steeply sloped surfaces. To keep 

the camera and laser light in focus, an ultrasonic distance measuring device has been 

placed on the bar holding the camera and laser as shown in Figure 7. The ultrasonic 

distance measurement system includes a sensor, a data acquistion card and software 

(purchased from ICS computer products). This equipment is used to obtain an 

average measurement of height in the vicinity of the camera. Based on this 
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measurement, the structured lighting bar is raised or lowered using the vertical 

stepper motor to maintain a height of roughly 0.43 m above the soil surface. 

Velocity Measuring Equipment 

An important erosion parameter is the flow velocity in rills. Image 

processing techniques to measure this parameter are developed in this study. 

Velocity is determined by the movement of small wooden beads as they float past a 

camera. Two frames containing the beads are taken at different points in time. 

Velocity is then calculated from a measured displacement distance and the time 

interval between the frames. Software algorithms for this procedure are discussed 

in Chapter IV. 

The camera, computer and image processing boards for the velocity measure

ments are the same as those used to measure soil profiles. Contrast between beads 

and background is enhanced by painting the beads with flourescent paint and using 

an ultra-violet bulb for a light source. The computational speed of the velocity 

measurement algorithm is too slow to run in real time. Therefore, the movement of 

the beads is first taped using an NEC high quality digital video cassette recorder 

(VCR). Once the process has been recorded, image processing algorithms are used 

to determine velocity. 

Several sizes and types of beads were tested. Styrofoam beads were too light 

and had a tendency to attract to each other. Bead diameters any larger than 5 mm 

would not travel at the water velocity, frequently catching themselves on the bottom 

or sides of the channel. Wooden beads of approximately 5 mm diameter floated 

very well and were easy to handle. Different colors of flourescent paints were 

tried to obtain the greatest contrast using an ultra-voilet light source. Flourescent 

yellow paint was selected. 



CHAPTER IV 

IMAGE PROCESSING SOFTWARE 

Introduction 

The successful application of an image processing system depends upon its 

software. Various algorithms and routines must be written to manipulate and 

analyze data obtained with the hardware described in Chapter III. Different 

programs are used here for the soil profile and the velocity measurements. Both 

programs have been developed utilizing-software functions supplied by Data Trans

lation. This software support package (OT-IRIS) will be briefly discussed. 

Algorithms used for profile and velocity measurements will then be described. The 

testing of the measurement algorithms will be discussed in Chapter V. 

DT-IRIS Software Functions 

OT-IRIS is a comprehensive image processing support package for the DT2851 

frame grabber board and the DT-2858 auxiliary processor board. The software 

package is composed of two sections: I) a command driven tutorial program which 

provides an interactive image processing environment and 2) an imaging subroutine 

library package which provides a set of imaging functions callable from most 

popular high level languages. For this particular image processing system, the C 

language has been chosen because of its computational speed and popularity. 

The OT-IRIS package includes important image processing techniques to 

manipulate images. Callable functions frequently used include routines for 

31 
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aquiring and displaying images, selecting frame buffers, modifying and selecting 

input and output lookup tables, and arithmetic operations such as adding and 

subtracting frames, and convolutions. Other important routines used extensively 

are those which do windowing and region operations, histograms and graphic over-

lays. DT-IRIS routines are accessible at link time. 

Soil Profile Software Algorithm 

Structured Lighting Concepts 

General. Surface topography is measured in this research using structured 

lighting techniques. This approach is commonly used in industrial settings when 

depth readings need to be incorporated into machine vision systems (Jalkio et al., 

1985; Swientek, 1986). The hardware C()mponents of our system are a laser source to 

project a well-defined stripe of light onto the surface, a camera to sense the 

reflected light, and image processing boards to digitize and manipulate images. 

Details of these components were previously given in Chapter III. 

A three-dimensional schematic of a structured lighting system is shown in 

Figure 8. A laser source at (x ,y ,z ) projects a well-defined stripe of light across a 
s s s 

block of fixed height situated on a flat surface. The light is gathered through a 

lens located at (0,0,0) and focused on a sensor located at a vertical height of F behind 

the lens. The sensor image of the striped light is shown in the inset of Figure 8. 

The image is digitized into a square grid (512 x 512) of discrete picture elements or 

pixels. Since the light is striking the block at an angle, there is a difference in pixel 

locations between the top of the block and that of the flat surface. Differences in 

these locations can be used to determine the height of the block. 

Geometry Considerations. Relating the difference in pixel locations to a block 

height is a geometry problem. To help clarify the geometry, two-dimensional views 
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of the y-z plane and the x-z plane are shown in Figure 9a and Figure 9b, respec-

tively. From Figure 9a, the pixel location for a point (y ,z ) on the surface can be 
0 0 

related to the location of the light source (assumed to be a point), the angle of the 

source and the vertical height. The angle of the source is defined as 

or 

tan9 
y 

y0 = y - (z - z ) tan9 s 0 s y 

Likewise, for the x-position 

x = x - (z - z ) tan9 
0 s 0 s x 

where the symbols are as shown in Figures 9a and 9b. 

(1) 

(2) 

(3) 

The location of points y and x on the sensor can be determined using defini-o 0 

tions for tana and tan,!3 (or similar triangles) as 

and 

x 
F 

0 z 
0 

where superscript i refers to the position on the image sensor shown in 

(4) 

(5) 

Figures 9, and Fis the distance from the receiving lens to the sensor, which is nearly 

equal to the focal length of the lens for large z . 
0 

By substituting relationships for y and x given by Eqs. 2 and 3, the above 
0 0 

equations can be rearranged as 

£. (y + z tan9 ) - F tan9 
z s s y y 

0 

(6) 

and 
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i F x = - (x + z tan9 ) - F tan9 
0 z s s x x (7) 

0 

The above equations can be used to determine the image position for any 

(x ,y ,z ) point on the surface of a projected laser line. Of greater interest in our 
0 0 0 

study is the difference in height relative to some reference elevation. It can be seen 

from Figure 8, for a line parallel to the y-axis, that a _difference in height 

corresponds to a shift in the pixels of the x-direction and is therefore of primary 

interest. Pixel differences at some elevation z=z relative to a reference elevation 
0 

of z=z f can be evaluated as re 

1 1 AX = X 
0 0 

i 
- x ref 

i i 
where x0 and xref can each be evaluated using Eq. 7 to obtain 

1 AX 
0 

= F(x + z tan9 ) [ 1.. --1- J 
s s x z0 zref 

i where Ax is the pixel difference as shown in the inset of Figure 8. 
0 

(8) 

(9) 

In measuring soil topography, our objective is to determine z=z for a 
0 

measured Axi. Therefore, Eq. 9 is rearranged as 
0 

z ref z = 
0 1 

AX Z f 
I + o re 

K z 
where 

K = F(x + z tan9 ) z s s x 

. 

(IO) 

(11) 

where K is a constant for a fixed laser source and for a projected line that is 
z 

parallel to the y-axis. If z f' K and Axi are known, the elevation of a point can re z o 

be determined by Eq. 11. Calibration procedures to determine K and z f are z re 
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discussed in Chapter V. 

Profile Measurement Software 

An important step in the profile measurement algorithm is identifying the 

location of pixels corresponding to the line projected by the laser shown in Figure 8. 

Since the source is infrared, some background lighting can be removed with an 

optical filter. Additional filtering is done with software as describe below. 

Differences in elevations are obtained using the midpoints of the laser line. 

The intensity of the laser light across the width of the line follows a Gaussian 

distribution which is symmetrical about the midpoint, with the brightest pixel 

located in the center. Although several methods can be used to locate the line, the 

one chosen for this project involves edge detection/enhancement of the line. Edge 

enhancement is implemented with spatial filter to increase the contrast between the 

laser line and the background. The filter is a lx9 convolution filter selected to use 

the slope of pixel brightness to enhance the edge of the laser line. A lx9 filter, 

rather than a more common 3x3 filter, is used to remove the effects of values above 

and below the center pixel. The specific values used for this filter are 

(-2,-2,l,2,2,2,l,-2,-2]. These values were determined by trial-and-error. 

After the original image is enhanced, a gray level threshold value is selected to 

remove background noise. Since the laser light corresponds to the brightest pixels 

in the image, a histogram of the image can be used to determine the appropriate 

threshold level. The width of the line appears to be between 4 and 9 pixels for our 

camera and lens and apparently varies with the intensity of the background lighting. 

Using 4 to 9 pixels, the appropriate gray level for thresholding would correspond to 

a value between 98.2% and 99.2% of the cumulative distribution of pixels. For the 

very low background lighting used in the tests described in this paper, a threshold 

gray level corresponding to 99% is used. 
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The final step in finding the midpoint is to determine the edges of the line. 

This is done by scanning from left to right and locating the first non-black pixel. 

Once this pixel has been found, the program looks both ways to find the first black 

pixels on either side of the non-black pixel. Both edges of the line can now be 

determined. Since the light intensity is symmetrical, the center of the line is found 

by averaging the two edge values. This center point is the x-direction value. The 

y direction value is determined by the row number of interest. 

The above steps describe the procedures used to determine the midpoint of a 

single scanning line. The algorithm repeats the process for the 300 most centered 

lines in an image (each image has 512 lines). The complete image can be analyzed 

in less than 6 seconds. 

Velocity Software 

Connectivity Analysis 

Velocity is measured by the displacement distance of small wooden beads with 

time. This requires that the location of beads within the image frame be deter

mined at various points in time. The connectivity analysis given by Cunningham 

( 1981 ), is the basis for identifying these locations. 

In Cunningham's (1981) analysis, the image is first partitioned into regions or 

"blobs" that correspond to objects, holes, or background in the scene. A blob is 

simply defined as a connected cluster of pixels which are the same color (i.e. black or 

white). Since a picture may be composed of a number of blobs, including one for 

the background, it can be most easily represented as a linked list of blob descriptors. 

Descriptors are records that contain information about a blob, such as its area, 

centroid, perimeter, number, gray level and possibly other shape information. 

A blob is obtained by determining whether a pixel is "connected" to its 

adjacent pixels. Adjacent pixels are connected if they are the same grey level. 



39 

There are several conventions in a rectangular grid to specify which pixels are 

adjacent, but for this research, a 6-connectivity convention was used. 

Run-length encoding is used to determine the blob number of a previously 

processed pixel. In the coding scheme, each unbroken run of O's or l's in a raster 

line of the image is described by a record that tells its starting (leftmost) column, its 

length, and blob number. The entire line is then described by a list of these 

run-length records which are allocated sequentially as the image is scanned. 

The connectivity analysis algorithm scans the image from left to right, top to 

bottom, updating the descriptors of each blob which intersect the current scan line. 

At the end of each run of O's or l's, the run-length list is updated and blob statistics 

are accumulated. If any pixel of the run just completed is 6-connected to a pixel of 

the same gray level on the previous line, an existing blob is extended to include this 

information. Otherwise, a new blob record is allocated. Each blob is assigned a 

unique number. Pixels belonging to the blob are labeled with this number in the 

run-length list. 

Velocity Algorithm 

The connectivity analysis and the DT-IRIS functions are used to determine 

velocity. Beads are first moved under the camera as a result of their velocities. 

The camera then "snaps" an image and sends a video signal to the computer where it 

is digitized using the Data Translation frame grabber board. The frame rate of the 

camera is one frame per 1/30 of a second. It is also possible for the camera to send 

a signal to a video cassette recorder to avoid real time processing. The VCR unit 

has the same frame rate as the camera. 

The video signal from the camera or the VCR unit is digitized into various 

gray levels by the frame grabber board. A 2x2 low pass convolution is used to filter 

out high frequency noise. A threshold gray level is then chosen by varying the 
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threshold value until blobs best depict the true size of the beads. This threshold 

value is held constant for all velocity measurements, which is a valid assumption for 

unaltered lighting conditions. 

After the threshold value has been selected, the user visually observes the 

beads as they flow past the camera and selects a frame for processing. This frame 

is stored in one of the on-board frame memory buffers, and a second frame is 

snapped three frames later. The second frame is stored in the other on-board frame 

buffer. 

For both frames, the low pass convolution filter and the threshold value are 

used to obtain binary images. The connectivity analysis is then done individually 

for the blobs (in this case the blobs are beads) in each frame, and blob statistics are 

determined. The user visually matches the blobs in the first frame with the 

appropriate blobs in the second frame. The displacement distance is defined as the 

distance between the centroids of each pair of blobs. The user can disregard any 

blobs that are in one frame but not in the next. 

The distance between the centroids of the blobs is converted from pixels to 

inches using a conversion factor which is determined in a calibration procedure 

described in Chapter V. Time lapse between images is calculated using the number 

of frames between snaps and the frame rate of 1/30 of a second. The velocity is 

simply the displacement distance divided by the time lapse. 



CHAPTER V 

EXPERIMENT AL PROCEDURES 

Introduction 

The testing of the system and algorithms for soil profile and velocity measure-

ments is done in two steps. First, the system is calibrated. After calibration, 

experiments to test the system hardware and software are performed. These tests 

are used to assess the capabilities of the image processing system. Calibration and 

experimental procedures are both described in this chapter. 

Calibration Procedures 

General 

Algorithms for soil profile and velocity measurements both require distance 

values in length units such as inches or millimeters. The profile algorithm uses the 

distance between the laser light line and a reference line, and the velocity measure-

ment algorithm uses the distance between the centroids of blobs. The image 

processing system inherently works with units in pixels, instead of more meaningful 

length units. Calibration procedures to convert pixel distances to length measure-

ments are discussed in this section. 

Conversion factors are required for the x, y and z directions for the soil 

profile measurements and the x and y directions for the velocity measurements. 

Calibration in the z-direction requires the determination of K and z f given in Eq. 
z re 
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10. It is described separately. Calibration procedures in the x and y directions are 

very similar and are discussed together. These procedures are conducted prior to 

the start of each run. 

Vertical Direction 

Two calibration factors, K and z f' are needed to calculate depth using Eq. z re 

10. The first step in the calibration procedures is to move the structured lighting 

equipment over a horizontal plate which is by definition at the reference elevation 

(i.e., zref). Two blocks of known heights are placed on the plate. The elevation at 

the top of these blocks can then be defined as (downward positive) 

and 

where z1 and z2 are elevations of the top of the first and second blocks, 

respectively, and h 1 and h2 are the heights (known) of these two blocks. 

(12) 

(13) 

Changes in pixel location between the reference plate and the top of each 

block can be defined directly from Eq. 9, or, 

i 
K [ z\ - zr

1
ef J ax 1 = z (14) 

and 

i 
K 

[ ;2 - zr
1
ef J ax2 z (15) 

i 1 where ax 1 and ax2 are the differences in pixel locations from the 

reference elevation to the elevations of the top of the first and second blocks. 

These differences can be determined by software and thus are known values. The 

definition of K given by Eq. 11 is used in the above equations. z 
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Using Eqs. 12 and 13, Eqs. 14 and 15 can be written as 

i 
K 

[ zref l _ hl - zr
1
ef J ~xl = z (16) 

and 

i 
K [ 1 I J ~x2 = z - h - -z-z ref 2 ref 

(17) 

We now have two equations (i.e., Eqs. 16 and 17) and two unknowns (K and z 

z f). The ratio of the above equations can be written as re 

To simplify typography a dimensionless variable v is defined as 

v = 

so that z f is calculated as re 

(18) 

(19) 

(20) 

The value for K can now be determined from Eqs. 16 or 17. Using Eq. 16, z 

K is calculated as z 

K z 1 
(21) 

K indirectly incorporates the conversion of pixels to a length measurement. 
z 

After K and z f are determined, the elevation of a reflected surface can be z re 

calculated directly from Eq. 10. 
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The algorithm to locate the laser light uses 300 of the most centered lines of an 

image. The solution of Eqs. 17 and 18 could then be obtained for each one of these 

300 lines.Different values for K and z fare possible because of slight imperfec-z re 

tions in the construction of mechanical components and possibly other factors. 

Scatter in values was avoided by fitting a least squares line to the observed points 

and by using the intercept values for estimating Ax; and Ax~. Corrections are also 

included to account for a laser line that is not perfectly parallel to the y-axis. 

Horizontal Plane (x and y directions) 

Conversion factors are also needed to convert pixel values to length measure-

ments in the x and y directions. These factors are determined without using the 

laser light. A card with two sets of parallel lines, one in the x direction and one in 

the y direction, is viewed from the camera. Both set lines are located by software. 

A least squares line is again fitted through points to account for slight imperfec-

tions. Distance in pixels between the parallel lines in the x and y directions is 

determined using the midpoints of the least squares lines. The conversion factors 

are then calculated as the ratio of known distances between parallel lines and 

measured pixel values. This calibration procedure is done at an elevation of z f" 
re 

Conversion factors are a function of the height of the surface being measured. 

This concept is illustrated in Figure 10 for the y direction. A similar figure could 

be drawn for the x direction. The origin is again at the lens. At the reference 

height, the conversion factors described in the previous paragraph can be used to 

determine the distance measurement between (O,z f) and (y f'z f) from a re re re 

measured pixel difference Ayi as 

K Ayi 
y,ref 

(22) 



z=-F 

z=z 0 

z=Zref 

Figure 10. 

(Y~ef ,-F) (0,-F) 
SENSING PLATE 

(0,Z0 ) 

Schematic Illustrating Change in K with Elevation 
y 
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where K f is the conversion factor from pixel-to-distance measurements y,re 

for the y direction at the reference height and other terms are as defined in Figure 

10. 

In Figure 10, consider the situation when the height of the surface has been 

moved to z=z . The pixel difference Ayi is constant, but the distance meas~rement is 
0 

now the difference between (0,z ) and (y ,z ). Using similar triangles, we can 
0 0 0 

write 

which can be substituted into Eq. 22 to obtain, 

K o z l 
y,ref zref 

1 Ay 

(23) 

(24) 

Equation 24 is used to calculate distance measurement for a measured pixel 

difference at elevations different than the reference height. It essentially adjusts 

the reference height conversion factor by the ratio of the surface and reference 

elevations. 

Likewise, for the x direction one would obtain 

x0 = [ Kx,rcf z::r ] ax' (25) 

where K f is the conversion factor from pixels-to-length measurements x,re 

for the x direction at the reference height, Axi is the pixel difference in the x 

direction (from zero) and other terms are as previously defined. 
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Testing Procedures 

Surface Profile Measurements 

General. Two sets of experiments were conducted to evaluate the accuracy and 

applicability of structured lighting techniques for measuring soil surface profiles. 

The first set of experiments used "precision", rigid objects. These objects were 

constructed precisely and represented well-defined shapes for evaluating accuracy. 

The second set of experiments used soil with pre-formed surface depressions to test 

the applicability of the system. 

The first step in the testing procedures was to calibrate the conversion factors 

discussed in the previous section. Stepper motors were used to move the structured 

lighting equipment as described earlier. Adjustment in the coordinate system was 

obtained from the number of steps and the distance traveled per step. Location of 

the laser line was determined by the algorithm previously described in Chapter IV. 

Because of the large amount of data that can be gathered by the system, separate 

programs were written to encode and store the data in a compressed format and to 

conduct subsequent analyses. 

Rigid Objects. Two different sets of blocks were used for the rigid object 

testing. The first set consisted of five square tubing blocks, each of a different 

height. The second set of blocks was made from solid square steel with milled 

trapezoidal surface notches of varying dimensions. Measurements of block dimen

sions were obtained using calipers with an accuracy of roughly 0.05 mm. The 

square tubing blocks were used to evaluate the accuracy of height measurements. 

The trapezoidal notched blocks were used to evaluate the accuracy of measured 

channel geometries. A schematic showing the dimensions of interest in the 

trapezoidal notched blocks is shown in Figure 11. 

Each block was measured eight times by the image processing system to check 
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Figure 11. Symbols of Trapezoidal Notches Used in Tables III and IV 
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the system for repeatability and accuracy. In all tests, the blocks were placed on 

the flat plate used to calibrate the system. The stepper motors were therefore not 

used to move the equipment in the x and y directions. Several tests, however, were 

made to check the stepper motor routines and evaluate the effects of moving the 

camera system vertically. 

The first four tests are similar to that illustrated in Figure 8 where the 

reference elevation and surface elevation of the block are in the same image. Block 

heights can then be evaluated directly by the pixel difference as illustrated in the 

insert of Figure 8. The only differences between the first four tests are due to the 

movement of the camera system vertically. Tests #5 through #8, however, store the 

baseline reference elevation in a data file at calibration. Elevations of the block 

surfaces are then determined from separate images and subtracted from the stored 

reference elevation to estimate block height. Differences in these four tests are 

again due to the movement of the camera system vertically. A summary of the 

conditions for each test is given below: 

I. Camera equipment was left in the same position as it was for calibration, 

2. Camera was moved up 500 steps and then down 500 steps (roughly 64 mm) to 
test stepping motor routines, 

3. Camera equipment was moved up 500 steps to account for changes in 
conversion factors with camera height, 

4. Camera equipment was lowered 250 steps (roughly 32 mm) from its original 
position to account for changes in conversion factors and to provide a 
larger vertical range on measured values, 

5. Repeat Test #l using reference elevation stored in data file, 

6. Repeat Test #2 using reference elevation stored in data file, 

7. Repeat Test #3 using reference elevation stored in data file, 

8. Repeat Test #4 using reference elevation stored in data file. 

Soil Profile. The ability of the structured lighting system to measure soil 

profiles was examined using two different soil types. A sandy soil and a loam soil 
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were placed in two large trays. A varying surface profile was formed in each soil. 

This profile was measured using both the structured lighting system and a pin 

displacement unit. A 0.3 m (I foot) section of the profile was measured. The 

spacing of the pins was 12.7 mm (0.5 inches). 

A disadvantage of evaluating the structured lighting system using soil profiles 

is the limited accuracy of determining the actual elevation of the soil. The 

accuracy of our pin displacement unit was estimated as roughly ±_2 mm. This value 

was obtained by taking several readings at the same site with different people. 

In this set of experiments, the structured lighting system was calibrated and 

then moved by stepper motors to the soil trays. Measurements were then taken in 

the region of interest. Elevations of the soil profile were gathered relative to the 

elevation of the calibration plate. The pin displacement unit determines the varia

tions in height (z direction) with distance in the y direction for a given x value. 

The structured lighting system measures the variation in height in the y direction, 

but the value for x varies with height as previously discussed. Therefore, it was not 

possible to match pin locations and structured lighting readings exactly. 

Reasonably close values could be obtained by making several passes of the struc

tured lighting system surrounding the pin locations and by selecting x locations that 

were closest to the pin values. 

Velocity Measurements 

Two testing procedures were conducted to evaluate the velocity measurement 

system. The first test was used to determine differences between measured 

velocities from a live camera and those obtained using a VCR playback unit. The 

second set of tests was done to evaluate the accuracy of the algorithm. 

Both testing procedures used the rotational speed of a conveyor belt driven by 

a variable speed motor to move the beads. Painted beads were glued randomly to 
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the belt. The camera was mounted in a stationary position over the belt and was 

calibrated for this position. The actual velocities of the beads were determined 

using a wheel tachometer and converting measured rpm values to linear velocities 

(m/s). The accuracy of the tachometer was roughly 0.009 m/sec. 

Ten different speeds were tested using the live camera, and ten different 

speeds were recorded onto video tape. The varying speeds were then played back 

and the algorithms were used to measure the velocity of the beads on tape. 

Although the speeds for live and taped velocities were different, comparisons are 

still possible by using differences between belt velocities and those measured. 

The precision of the velocity measurements was evaluated by repeating the 

taped velocities. Small discrepancies between measurements are possible, because 

each frame may have different beads. For each belt velocity, the bead velocity was 

measured eight times at varying points in time. The number of beads used in each 

measurement was then counted and an overall average velocity was determined. 

Standard deviation of the velocities was also determined for each speed. 



CHAPTER VI 

RESULTS AND DISCUSSION 

Introduction 

The results of the experimental testing are discussed in two sections. In the 

first section, the accuracy and applicability of the soil profile measuring system are 

evaluated. This section also includes an application of the system to a three-dimen

sional surface. The second section is used to present and discuss the results 

obtained with the velocity measuring system. 

Profile Measurements 

Rigid Objects 

A print of an image produced with structured lighting is shown in Figures 12a 

and 12b. Figure 12a shows a trapezoidal notched block used in the experiments. 

The corresponding image seen by the structured lighting system is shown in Figure 

12b. These figures clearly show the displacement of pixels in the x-direction caused 

by a difference in surface elevations. 

The results obtained for the five square tubing blocks are shown in Table I for 

all eight tests. Data shown in this table also incorporate possible errors in the 

vertical movement of the structured lighting equipment by the stepper motor. No 

definite trends can be seen with the results shown in Table I. The maximum 

difference in measured values for a given block was only 0.63 mm and a maximum 
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Figure 12a. View of a Trapezoidal Notched Block . 

Figure 12b. Corresponding Screen Image of Laser Linc 



Test 
ID 

* Actual 
#l 
#2 
#3 
#4 
#5 
#6 
#7 
#8 

Max. 
Diff. 

* Actual 

TABLE I 

ACTUAL AND MEASURED BLOCK HEIGHTS 
OF RECTANGULAR BLOCKS 

Block #l Block #2 Block #3 Block #4 Block #5 
(mm) (mm) (mm) (mm) (mm) 

12.80 25.04 37.69 50.37 62.08 
12.80 24.99 37.79 50.44 62.08 
12.95 25.04 37.64 50.29 62.03 
12.73 24.77 37.16 50.16 61.98 
12.75 24.84 37.69 +++ +++ 
12.83 24.79 37.52 50.19 61.98 
13.00 25.10 37.72 50.44 62.13 
13.00 25.04 37.69 +++ +++ 
12.67 25.02 37.59 50.32 61.90 

0.33 0.33 0.63 0.28 0.23 

value represents the best estimate possible using 
using instruments and equipment with limited precision. 

+++Laser light was outside the view of the camera. 
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difference for most blocks of roughly 0.30 mm. A summary of these measurements 

is given in Table II, using mean values and standard deviations. The mean value is 

within 0.1 mm of the actual value for each block height. 

The results for trapezoidal notched blocks are given in Table III and Table IV. 

Table III shows the height dimensions of the block and Table IV shows the width 

dimensions. Only mean and standard deviation values for the eight tests on these 

blocks are presented. Measurement accuracy for the geometry of these blocks is 

roughly equivalent to that obtained for the square tubing. The mean value for each 

geometric characteristic is within 0.15 mm of the actual value. 

The results of the rigid block tests indicate that structured lighting techniques 

are capable of measuring geometric characteristics with good accuracy. Maximum 

errors in measuring these characteristics are less than 1 mm for all runs. 

Differences between actual and measured mean values are less than 0.15 mm. 

Soil Profile 

The comparison of the soil profiles measured using the structured lighting 

system and the pin displacement unit for the sandy soil and loam soil are shown in 

Figure 13 and Figure 14, respectively. The uncertainty region(::!:._ 2 mm) of the pin 

displacement unit are shown around each point. As previously discussed, the 

results of the structured lighting technique gives the x, y, and z coordinates of a 

point. The plotted laser lines are they and z values calculated for the 0.3 m section 

for each soil type. Approximately 600 data points were used to construct each laser 

line. 

As shown by Figure 13 and Figure 14, the structured lighting technique values 

are within the accuracy of the pin displacement values. The trend of the pins in 

the sandy soil to be lower than the laser line is probably caused by pins sinking into 
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TABLE II 

SUMMARY OF HEIGHT MEASUREMENTS 

Actual Height Mean Value Std Dev. 
Block (mm) (mm) (mm) 

#l 12.80 12.84 0.128 
#2 25.04 24.95 0.128 
#3 37.69 37.60 0.196 
#4 50.37 50.31 0.119 
#5 62.08 62.02 0.082 



TABLE III 

ACTUAL AND MEASURED HEIGHT DIMENSIONS 
OF TRAPEZOIDAL NOTCHED BLOCKS 

Actual dimension Mean Value Std. 
a d a d a 

(mm) (mm) (mm) (mm) (mm) 

Block #6 44.45 19.02 44.34 19.02 0.180 
Block #7 44.32 25.22 44.27 25.15 0.168 
Block #8 44.32 31.77 44.27 31.67 0.164 
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Dev. 
d 

(mm) 

0.056 
0.113 
0.109 



TABLE IV 

ACTUAL AND MEASURED WIDTH DIMENSIONS 
OF TRAPEZOIDAL NOTCHED BLOCKS 

Actual dimension Mean Value Std. Dev. 
b c b c b c 

(mm) (mm) (mm) (mm) (mm) (mm) 

Block #6 41.80 12.62 41.78 12.75 0.187 0.250 
Block #7 47.47 25.04 47.45 25.12 0.171 0.174 
Block #8 51.90 37.63 51.97 37.64 0.026 0.038 
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Figure 13. Soil Profile for Sandy Soil 
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the surface. Therefore, the measured values of the pins tend to be lower than the 

laser values. 

The results of the rigid object and soil profile tests indicate that the structured 

lighting system is an alternative technique for measuring soil profiles. Additional 

runs have been made with wet and dry soils. No noticeable problems have been 

observed as long as water is not ponded on the surface. 

Applications 

Results previously discussed are limited to measuring a single profile. Addi

tional algorithms have been written to analyze the data gathered with several passes 

of the system. Three-dimensional views of the soil surface can then be obtained for 

a given soil area. The algorithms have been specifically written for use with the 

erosion table described in Chapter III, but could be easily modified for field work. 

A three-dimensional analysis of the soil surface is obtained using the stepper 

motors and software previously described. Successive measurements of a specified 

area are first made in the erosion table. This information is stored in encoded 

form. Data points are then analyzed to determine average height values for a 

specific grid. These results can be displayed graphically with two figures shown 

simultaneously on the screen. In Figure 15, an example of the two figures for a 0.3 

by 0;3 m area of the erosion table is shown. The first figure is a topographical view 

(x and y values) of varying gray levels. Each gray level represents a different 

height. As shown in Figure 15, a three-dimensional view of a rill can be seen from 

this representation. The bottom figure shows the cross-section of a specified slice 

of the three-dimensional view. The location of the slice is shown in the top figure. 

This slice can be rotated so that various cross-sections can be seen. 
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Figure 15. Topographical and Cross-sectional View of Soil Surface Area 



63 

Velocity Measurements 

Comparison Test 

A print of the final image of the velocity measuring algorithm is shown in 

Figure 16. The double circles represent the location of the beads which were 

snapped in the first frame. The blobs are the beads of the second snapped frame. 

The line between the first and second frame beads is the displacement of the 

centroids which results in the distance the bead has traveled. 

The results of the comparison between live measurements and taped measure

ments are shown in Table V. Although the actual velocities are different for the two 

types of measurements, a comparison can still be made by considering the accuracy 

of the velocity routines. The maximum difference using live processing is 0.006 

m/s and is 0.009 m/s using the recorded images. Both of these values fall within the 

measurement accuracy of the actual values. 

Results of this test show that there is no substantial difference for using the 

velocity system between live velocities and recorded velocities. This allows various 

flows to be recorded first and then analyzed at a more convenient time. 

Live data in Table V were also used to estimate the maximum velocity 

measurable with this particular algorithm. The maximum value was approximately 

0.914 m/s (3 ft/sec). At larger velocities, the beads are traveling so fast that they 

are not in successive frames. A fast velocity routine needs to be developed to 

measure speeds greater than 0.914 m/s. 

Accuracy Test 

The accuracy and precision of the velocity measuring system were determined 

by measuring the same speed eight different times. The results of these tests are 

shown in Table VI. Since the velocities were pre-recorded, it was possible to 
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Figure 16. Displacement of Beads for Velocity Algorithm 
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TABLE V 

COMPARISON OF LIVE AND RECORDED VELOCITIES 

Live Recorded 
Actual Measured Actual Measured 

Velocity Velocity Velocity Velocity 
(m/s) (m/s) (m/s) (m/s) 

0.411 0.416 0.360 0.360 
0.457 0.460 0.460 0.460 
0.478 0.478 0.527 0.521 
0.610 0.616 0.567 0.570 
0.668 0.668 0.582 0.579 
0.686 0.692 0.643 0.634 
0.734 0.734 0.725 0.722 
0.817 0.820 0.741 0.732 
0.863 0.863 0.811 0.811 
0.914 0.911 0.875 0.869 
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TABLE VI 

ACTUAL AND MEASURED VELOCITIES (m/s) 

True Number Average Average 
Run Speed of Blobs Max. Dev. Mean Standard 

# (±_0.009) per frame per frame Velocity Error 

I 0.340 5 to 7 0.004 0.340 0.005 
2 0.460 4 to 6 0.004 0.463 0.009 
3 0.570 4 to 6 0.004 0.570 0.004 
4 0.579 4 to 6 0.007 0.579 0.003 
5 0.634 4 to 5 0.009 0.637 0.002 
6 0.722 3 to 4 0.006 0.725 0.002 
7 0.811 2 to 4 0.006 0.808 0.003 
8 0.869 2 to 3 0.009 0.869 0.004 
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measure speeds at varying points on the tape, resulting in a different number of 

beads in each velocity calculation. A velocity for each bead was first calculated. 

The average of all beads in a frame was used to calculate a mean velocity, and the 

average of this value for eight frames was used to calculate the average mean 

velocity. 

The variability in bead speeds for individual frames is summarized by the 

average maximum deviation per frame in Table VI. These values were obtained by 

averaging the maximum deviation observed for the eight different frames. The 

largest average maximum deviation was only 0.009 m/s. indicating small variations 

between individual bead speeds for a given frame. 

The average mean velocity was obtained by averaging the mean velocity for 

eight different frames. As shown in Table VI, the average mean velocities were 

within the uncertainty of true speed values. The variability in mean velocities 

between frames is reflected in the standard errors given in Table VI. These values 

represent the standard deviation of the mean velocities about the average mean 

velocity. The small standard errors show that the system is consistent in its 

measured values. 

These results indicate that the velocity measuring system is an acceptable 

procedure for measuring the velocity of beads. The accuracy of the system is 

within±_ 10 mm/s. Additional tests are needed with flowing water before the tech

nique can be applied to rill flows. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

A study was conducted to quantify erosion processes using a low cost image 

processing system. The objectives of the study were (1) to design and develop an 

apparatus to measure soil profiles and water velocity using image processing techni

ques, (2) to test the system for measuring soil profiles using well-defined objects of 

known size and shapes and using actual soil profiles, and (3) to test the system for 

measuring water velocities using known velocities of small wooden beads. 

The image processing measuring system was incorporated into a large-scale 

laboratory apparatus. The mechanical, electrical and structural components of the 

measurement system, including an erosion table, soil profile measuring equipment, 

and velocity measuring equipment were described. The system is controlled by an 

IBM-AT. Data Translation's DT-2851 frame grabber and DT-2858 co-processor 

boards are used to digitize and manipulate images. 

Surface topography measurements are made using a structured lighting tech

nique. This technique requires that a well-defined stripe of light be projected onto 

the surface by a laser. Equations to determine elevation and the location of the 

stripe within the field of view of a camera are developed. Calibration procedures 

are also discussed. 

Image processing techniques to measure surface velocities are developed using 

the travel distance of small wooden beads in a specified time period. Travel 

distance is obtained by analyzing two frames at different points in time. Contrast 

between beads and background is enhanced by painting the beads with flourescent 
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paint and using an ultra-violet bulb for a light source. The computational speed of 

the velocity measurement algorithm is too slow to run in real time. Therefore, the 

movement of the beads is first taped using a NEC high quality digital video cassette 

recorder. 

Two sets of experiments were conducted to evaluate the accuracy and applica-

bility of structured lignting techniques for measuring soil surface profiles. The 

first set of experiments used rigid objects. These objects were constructed precisely 

and represented well-defined shapes for evaluating accuracy. The second set of 

experiments used soil with pre-formed surface depressions to test the applicability 

of the system. 

Two testing procedures were conducted to evaluate the accuracy of the 

velocity measurement system. The first tests were used to determine differences 

between measured velocities from a live camera and those obtained using a VCR 

playback unit. The second set of tests was done to evaluate the accuracy of the 

algorithm. 

Based on the experimental results, the following conclusions may be drawn. 

I. The results of the rigid block tests indicate that structured lighting 
techniques are capable of measuring geometric characteristics with good 
accuracy. Errors in measuring these characteristics were less than 1 
mm for all runs. 

2. The structured lighting is applicable to soil profiles. No noticeable 
problems have been observed as long as water is not ponded on the 
surface. 

3. There seems to be no substantial differences between live velocities and 
those recorded on video tape. 

4. The maximum velocity for which this particular algorithm can be util
ized is approximately 0.914 m/s (3 ft/sec). 

5. The velocity measuring system appeared to be a useful technique for 
measuring surface velocities. The accuracy of the system is at least + 
10 mm/s. -
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Recommendations for Future Research 

I. Perform surface measurements on actual rills in laboratory and field 
settings. 

2. Develop a rain/light shield for the camera and laser to protect them 
from water an·d to limit outside lighting for consistent thresholding. 

3. Design a portable system for field work. 

4. Test the slow water algorithm with open channel flows. 

5. Develop a fast velocity algorithm to measure accurately water velocities 
greater than 0.914 m/s. 
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/* BLineCal.c 

* Base Line Calibration 

*/ 

/* Standard Microsoft header files. * / 
#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <conio.h> 

#include <ctype.h> 

#include <io.h> 

/* Other header files. */ 
#include <iris.h> 

#include <stddefs.h> 

#include <baseline.h> 

#include <2dSpace.h> 

/* Define macros for vidio sync source. * / 
#define EXT_SYNC 1 

#define INT_SYNC 0 

/* Undefine the toupper macro so that the library function is used. * / 
#undef toupper 

/* Declarations of external functions called from this file. "'/ 

extern 

extern 

extern 

extern 

extern 

extern 

struct Line2D FindLine(int, int, int, int) ; 

WriteBaseLine(struct BaseLine *) ; 
ReadBaseLine(struct BaseLine *) ; 

double CalcZO(double, double, double) 

yoid InitCondition(void) 

void Condition(void) 

struct BaseLine BaseLine /* This is the BaseLine structure which 

is to be filled then saved to disk. "'/ 

extern double SetPoint 

main() 

{ 
char c ; 

int i, j, k, q 

printf("\n") 

printf(" 

printf(" 

printf(" 

printf("\n") 

*************************************************\n") 
* B a s e L i n e C a 1 i b r a t i o n *\n") ; 
*************************************************\n") 

is _initialize() 

is_reset() ; 

InitCondition() ; 
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} 

MakeBaseLine(&BaseLine) ; 

if(ERROR == WriteBaseLine(&BaseLine)) 
puts("*** error writing baseline ***") 

if(ERROR == ReadBaseLine(&BaseLine)) 

puts("*** error reading baseline ***") ; 

is_end() 

/* MakeBaseLine() 

* Fill a BaseLine structure. 

*/ 
MakeBaseLine(BaseLinePtr) 

struct BaseLine *BaseLinePtr 

{ 
/* Pointer to a BaseLine structure * / 

int n, 
temp, 

/* loop counter */ 

XStart = 40, 

XEnd = 480, 

YStart = 100, 

YEnd = 400; 

/* temporary storage 

/* minimum x value in window 

/* maximum x value in window 

/* minimum y value in window 

/* maximum y value in window 

float CalBlocklHeight,/* height of calibration block #1 

Ca1Block2Height ;/* height of calibration block #2 
*/ 
*/ 

struct Line2D 

Linea, 

Linel, 

Line2 

unsigned 

/* 
/* 

/* 
/* 

{see 2dspace.h for Line2D structure) */ 
structure describing zero reference line. 

structure describing cal. block #1 line. 

structure describing cal. block #2 line. 

*/ 

*/ 

*/ 

*/ 

MidY /* y value of the midpoint of each line * / 

*/ 
*/ 

*/ 
*/ 

double MidXO, /* x value of the midpoint of zero ref. line * / 

MidXl, /* x value of the midpoint of block #1 line. * / 

MidX2, /* x value of the midpoint of block #2 line. * / 

AvgSlope, /* average slope of the three lines. * / 
NewinterceptO, /* new x intercept using average slope. * / 

Newlnterceptl, /* new x intercept using average slope. * / 

Newlntercept2 ; /* new x intercept using average slope. * / 

/* Initialize beginning and end members of Base Line structure. * / 
BaseLinePtr->Begin = YStart 

BaseLinePtr->End = YEnd ; 

/* Initialize ILUT #6 for thresholding at 50 * / 

for(n = O; n < 256; n++) 

{ 
if(n < 50) 

is_load_ilut_sval(6, n, 0) 

else 

is_load_ilut_sval(6, n, n) 

} 
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/* Get line #0 (zero reference line) • / 

puts("\nPosition camera to view base line") 

puts(" press any key to continue.") ; 

Live(O) 

getch() 

is _freeze _frame() 

Condition() ; 

is_ display(l) 

LineO = FindLine(XStart, XEnd, YStart, YEnd) 

/* Get line #1 (calibration block #1) */ 
puts("\nPlace calibration block #1 in veiw") 

puts(" press any key to continue.") ; 

Live(O) 

getch() 

is _freeze _frame() 

Condition() ; 

is_display(l) 

Linel = FindLine(XStart, XEnd, YStart, YEnd) ; 

puts("What is the calibration block's heigth?") 

scanf(" %1"', &CalBlocklHeight) ; 

/* Get line #2 (calibration block #2) • / 

puts("\nPlace calibration block #2 in veiw") 

puts(" press any key to continue.") ; 

Live(O) 

getch() 

is _freeze _frame() 

Condition() ; 

is_display(l) 

Line2 = FindLine(XStart, XEnd, YStart, YEnd) 

puts("What is the calibration block's heigth?") ; 

scanf(" %1"', &Ca1Block2Height) ; 

/* Calculate the average slope of the three lines * / 
AvgS!ope = (LineO.Slope + Linel.Slope + Line2.Slope) / 3.0 

/* Calculate the X value at the midpoint of each line * / 
MidY = (BaseLinePtr->Begin + BaseLinePtr->End) / 2 ; 

MidXO = (LineO.Slope * MidY) + LineO.xlntercept 

MidXl = (Linel.Slope * MidY) + Linel.xlntercept 

MidX2 = (Line2.Slope • MidY) + Line2.xlntercept 

/* Using the X and Y values at the midpoint, calculate the 

* new intercept. 

*/ 
NewinterceptO = MidXO - (MidY * AvgSlope) 

Newlnterceptl = MidXl - (MidY • AvgSlope) 

Newintercept2 = MidX2 (MidY • AvgSlope) 

/* Print some diagnostics. * / 
printf("Slopes: (0)%.4f (1)%.4f (2)%.4f (avg)%.4f\n", 

LineO.Slope, Linel.Slope, Line2.Slope, AvgSlope) ; 
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} 

/* For each image row, calculate Xref, Zref, and K * / 
for(n = YStart; n <= YEnd; n++) 
{ 

} 

double DeltaXl, 

DeltaX2, 

V; 

/* pixels from line #0 to line #1 * / 
/* pixels from line #0 to line #2 * / 
/* intermediate variable (see 

derivation of equation) * / 

/* Calculate difference between baseline and lines 1 & 2 * / 
DeltaXl = New Intercept! - NewlnterceptO /* pixels * / 
DeltaX2 = Newlntercept2 - NewlnterceptO /* pixels "/ 

/* Calculate Xref in pixels * / 
BaseLinePtr->Xref[n) = (AvgSlope * n) + NewlnterceptO 

/* Calculate V (V has no units) * / 
V = (DeltaXl * Ca1Block2Height) / ( DeltaX2 * CaIBlocklHeight) 

/* Calculate Zref (same units as the CaIBlockHeights) * / 
BaseLinePtr->Zref[n) = 

((V * CalBlocklHeight) - Ca1Block2Height) / (V - 1.0) 

/* Calculate K * / 
BaseLinePtr->K[n) = 

DeltaXl / 

( (1.0 / (BaseLinePtr->Zref[n] - CalBlocklHeight)) · 

- (1.0 / BaseLinePtr->Zref[n]) ) ; 

/* Mark BaseLine structure as being loaded • / 

BaseLinePtr->Loaded = TRUE ; 
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/* FitLine.c * / 
/* Find the best fit line for an array of points in 2 dimensional space. * / 

/* Standard Microsoft header files. * / 
#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

/* Other header files. • / 

#include <2dspace.h> 

/* FitLineToPoints() 

* Find the line that best fits the given points. 

* This algorythm assumes the error of each point from a straight line 

* to be in the X direction. 

* NOTE that this function returns a structure. 

*/ 
struct Line2D FitLineToPoints(Points, NPoints) 

struct Point2D Points[) ; /* Array of 2 dimensional points * / 
int NPoints ; /* Number of points in Points[) * / 
{ 

unsigned int 

i ; /* loop counter */ 

struct Line2D 

Line ; 

/* (see 2dspace.h for Line2D structure) • / 

/* structure defining a line. * / 

double x, y, 

SigmaX, 

SigmaXX, 

SigmaY, 

SigmaYY, 

SigmaXY; 

/* temp. storage for point coordinates. • / 

/* Sum of x's 

/* Clear sums to zero. * / 

/* Sum of (x squared)'s 

/* Sum of y's 

/* Sum of (y squared)'s 

/* Sum of (x * y)'s 

SigmaX = Sigma Y = SigmaXX = Sigma YY = SigmaXY = 0 

/* For the array of points, 

/* sum x's, y's, x 11quared's, y 11quare's, and x*y's. 

for(i = O; i < NPoints; i++) 

{ 

} 

x = Points[i].X ; 

y = Points{i].Y ; 

SigmaX += x; 

SigmaY += y; 

SigmaXX += x * 
SigmaYY += y * 
SigmaXY += x * 

x 

y 

y 

/* Calculate best fit slope. * / 
Line.Slope = ( SigmaXY - (SigmaY * SigmaX / NPoints) ) / 

( SigmaYY - (SigmaY * SigmaY / NPoints) ) ; 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
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} 

r Calculate best fit x intercept. *I 
Line.xlntercept = ( SigmaX - (Line.Slope * Sigma Y) ) / NPoints 

/* Return the line structure. * / 
return (Line) ; 
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/* RWBaseLn.c */ 
/* Read Base Line and Write Base Line functions. * / 

/* Standard Microsoft header files. * / 

#include <stdio.h> 

#include <std!ib.h> 

#include <math.h> 
#include <io.h> 

/* Other header files. * / 

#include <stddefs.h> 

#include <base!ine.h> /* Includes the BLINEFILE macro. * / 

/* Define the maximum line length for the BaseLine text file. * / 

#define MAX_LENGTH 80 

/* Write a BaseLine structure to disk. * / 

ERRCODE WriteBaseLine(BaseLinePtr) 
struct BaseLine *BaseLinePtr ; /* Pointer to a BaseLine structure. * / 
{ 

int n; /* Loop counter 

FILE *fp /* Reference to file stream for writing.*/ 

/* Open the BaseLine file for writing in default mode (text). * / 
if(NULL == (fp = fopen(BLINEFILE, "w"))) 

{ 

} 

puts("*"'* error - unable to open BaseLine output file "'"'*") 
return(ERROR) ; 

/* Write the beginning and ending row number of the BaseLine. * / 

fprintf(fp, "Begin = %d\nEnd = %d\n", 

*/ 

BaseLinePtr-> Begin, BaseLinePtr-> End) 

} 

/* For each row, write Xref, Zref, and K to the BaseLine file. * / 
for(n = BaseLinePtr->Begin; n <= BaseLinePtr->End; n++) 
{ 

} 

fprintf(fp, "[%d] %f %f %f\n", 

n, 
BaseLinePtr->Xref(n], 

BaseLinePtr-> Zref[n J, 
BaseLinePtr->K[n]) ; 

fclose(fp) 
return(NOERROR) 

/* Read a BaseLine structure from disk. * / 
ERRCODE ReadBaseLine(BaseLinePtr) 
struct BaseLine *BaseLinePtr ; 

{ 
int 
FILE 

n· . 
*fp 

/* Loop counter 
/* Reference to file stream for writing.*/ 

*/ 
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} 

/* Open the BaseLine file for reading in default mode (text). * / 
if(NULL == (fp = fopen(BLINEFILE, "r"))) 

{ 

} 

perror("ReadBaseLine()") 

retum(ERROR) i 

/* Read the beginning and ending row number of the BaseLine. * / 
if(l I= fscanf(fp, " Begin = %d", &(BaseLinePtr->Begin))) 

{ 

} 

perror("ReadBaseLine()") ; 

fclose(fp) ; 

BaseLinePtr->Loaded = FALSE 

retum(ERROR) i 

if(l I= fscanf(fp, " End = %d", &(BaseLinePtr->End))) 

{ 

} 

perror("ReadBaseLine()") ; 
fclose(fp) ; 

BaseLinePtr->Loaded = FALSE 

retum(ERROR) i 

/* For each row, read Xref, Zref, and K from the BaseLine file. * / 
for(n = BaseLinePtr->Begin; n <= BaseLinePtr->End; n++) 

{ 

} 

fclose(fp) 

if(3 I= fscanf(fp, " [%*d] %If %If %If", 

&(BaseLinePtr->Xref[n]), 

&(BaseLinePtr->Zref[n]), 
&(BaseLinePtr->K[n]) )) 

{ 

} 

perror("ReadBaseLine()") ; 

fclose( fp) i 

BaseLinePtr->Loaded = FALSE 

retum(ERROR) ; 

/* Mark BaseLine structure as being loaded * / 
BaseLinePtr->Loaded = TRUE 

return(NOERROR) ; 
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/* ScaleCal.c 
* Calibrate the X and Y Scaling factors. 

*I 

#include <conio.h> 

#include <stdio.h> 

#include <iris.h> 

#include <stddefs.h> 

#include "draw.h" 

#include "measure.h" 

#include "2dSpace.h" 

#define LEFTEDGE 

#define RIGHTEDGE 

#define TOPEDGE 

#define BOTTOMEDGE 

100 

400 
100 

400 

extern void main(void) ; 

static int Window[] = { LEFTEDGE, RIGHTEDGE, TOPEDGE, BOTTOMEDGE } 

static int XWindow(] = ( LEFTEDGE, RIGHTEDGE, TOPEDGE + 80, BOTTOMEDGE - 80 } 
static int YWindow(] = { LEFTEDGE + 120, RIGHTEDGE - 120, TOPEDGE, BOTTOMEDGE } 

void main() 

( 

} 

is _initialize() 

is_reset() ; 

is_set_sync_source(l) 
is_select_input_frame(O) 

is_select_output_frame(O) 

is_display(l) ; 

is_set_foreground(127) ; 

if(NOERROR == ScaleCalibrate(O)) 

prin tf(" Calibration Successful.\ n") 

else 

printf("Calibration Unsuccessful. \n") 

IS_END(); 

ERRCODE ScaleCalibrate(Frame) 

int Frame ; 

( 
struct Line2D LeftLine, RightLine, TopLine, BottomLine ; 

double AvgVertica!Slope, AvgHorizontalSlope ; 
double MidLeftLineY, MidRightLineY, MidLeftLineX, MidRightLineX 

double MidTopLineY, MidBottomLiney, MidTopLineX, MidBottomLineX 

double DeltaX, DeltaY ; 
float XDistance, YDistance 

double XFactor, YFactor ; 

int Col0fPixels[512], RowOfPixels[512), col, row 

struct Point2D Pointsl[512], Points2(512) 

int CompPix ; 

int i ; 

int MinValue, MinCol, MinRow 
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is_load_mask(O) ; 
DrawBox(Window[O], Window[l), Window[2], Window[3)) ; 
DrawBox(XWindow[O], XWindow[l], XWindow[2], XWindow[3)) 
DrawBox(YWindow[O], YWindow[l), YWindow[2), YWindow[3]) 

is_load_mask(l) 
is_select_olut(7) 

is_passthru() ; 

printf("Place parallel lines in image ... \n") ; 

printf(" ... press any key to continue, <er> to exit.\n") 

if('\r' == getch()) 
return(NOERROR) 

is_acquire(O, 1) ; 

for(i = O, row = XWindow[2) + 1; row <= XWindow[3] - 1; i++, row++) 
{ 

} 

is_get_pixel(O, row, 0, 512, RowOfPixels) 

r Left side box. *I 
MinValue = 256 ; 

for(col = Window(O) + 1; col <= YWindow[O] -1; col++) 
{ 

} 

if(RowOfPixels(col] < MinValue) 
{ 

} 

MinValue = RowOfPixels[col] 

MinCol = col ; 

Pointsl[i).Y = (float)row ; 
Pointsl[i).X = (float)MinCol 

CompPix = RowOfPixels[MinCol) • Ox80 ; 
is_put_pixel(O, row, MinCol, 1, &CompPix) 

/* Right side box. * / 
MinValue = 256 ; 
for(col = YWindow[l) + 1; col <= Window[l) - 1; col++) 
{ 

} 

if(RowOfPixels[col) < MinValue) 
{ 

} 

MinValue = RowOfPixels[col] 

MinCol = col ; 

Points2[i].Y = (float)row ; 

Points2[i).X = (float)MinCol 
CompPix = RowOfPixels[MinCol) • Ox80 ; 
is_put_pixel(O, row, MinCol, 1, &CompPix) 

LeftLine = FitLineToPoints(Pointsl, i - 1) ; 
RightLine = FitLineToPoints(Points2, i - 1) ; 
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for(i = O, col = YWindow[O] + 1; col <= YWindow{l] - 1; i++, col++) 
{ 

} 

/* Top side box. * / 
for( row = Window[2] + 1; row <= XWindow[2] - 1; row++) 
{ 

is_get_pixel(O, row, col, 1, &(ColOfPixels{row])) ; 

} 

MinValue = 256 ; 

for(row = Window[2] + 1; row <= XWindow[2] - 1; row++) 
{ 

} 

if(ColOfPixels[row] < MinValue) 

{ 

} 

MinValue = ColOfPixels[row] 

MinRow = row ; 

Pointsl[i].X = (float)MinRow ; 

Pointsl[i].Y = (float)col ; 
CompPix = RowOfPixels[MinRow] A Ox80 ; 

is_put_pixel(O, MinRow, col, 1, &CompPix) 

/* Bottom side box. * / 
for(row = XWindow[3] + 1; row <= Window[3] - 1; row++) 
{ 

is_get_pixel(O, row, col, 1, &(Co!OfPixels[row])) ; 
} 

MinValue = 256 ; 

for(row = XWindow[3] + 1; row <= Window[3] - 1; row++) 
{ 

} 

if(Co!OfPixels[row] < MinValue) 
{ . 

} 

MinValue = Co!OfPixels[row] 

MinRow = row ; 

Points2{i].X = (float)MinRow ; 

Points2{i].Y = (float)col ; 

CompPix = ColOfPixels[MinRow] A Ox80 ; 

is_put_pixel(O, MinRow, col, 1, &CompPix) 

TopLine = FitLineToPoints(Pointsl, i - 1) ; 

BottomLine = FitLineToPoints(Points2, i - 1) 

AvgVerticalSlope = (LeftLine.Slope + RightLine.Slope) / 2 

AvgHorizontalSlope = (TopLine.Slope + BottomLine.Slope) / 2 

MidLeftLineY = MidRightLineY = XWindow[3] - XWindow[2] ; 

MidLeftLineX = (LeftLine.Slope * MidLeftLineY) + LeftLine.xintercept 

MidRightLineX = (RightLine.Slope * MidRightLineY) + 
RightLine.xintercept ; 
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} 

MidTopLineX = MidBottomLineX = YWindow[O) - YWindow[l) ; 

MidTopLineY = (TopLine.Slope * MidTopLineX) + TopLine.xlntercept 

MidBottomLineY = (BottomLine.Slope * MidBottomLineX) + 

DeltaX = MidRightLineX - MidLeftLineX ; 

DeltaY = MidBottomLineY - MidTopLineY 

BottomLine.xlntercept 

printf("Delta X = %.4f Delta Y = %.4f\n", DeltaX, Delta Y) 

printf("What is the distance between the two VERTICAL lines?\n") 

scanf(" %1"', &XDistance) ; 

printf("What is the distance between the two HORIZONTAL lines?\n") 

scanf(" %1"', &YDistance) ; 

XFactor = XDistance / DeltaX /"' inches per pixel * / 
YFactor = YDistance / DeltaY /* inches per pixel * / 
printf("X factor = %.6f Y factor = %.6f\n", XFactor, YFactor) 

if(ERROR == WriteScalingFactors(XFactor, YFactor)) 

return(ERROR) ; 

else 
return(NOERROR) 
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APPENDIX B 

SOIL PROFILE MEASUREMENT PROGRAMS 
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/"' Measure.c * / 

/* Standard Microsoft header files. 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 
#include <conio.h> 

#include <ctype.h> 

#include <io.h> 
#include <string.h> 

/* Other header files. • / 

#include <stddefs.h> 

#include <iris.h> 

#include <pcmotion.h> 

#include <measure.h> 

#include <topog.h> 

#include <udm.h> 

*/ 

/"' Stepping motor ramp table file names. * / 
#define RAMPTABLE_A "C:\ \PCMOTION\ \RAMPA.DAT" 
#define RAMPTABLE_B "C:\ \PCMOTION\ \RAMPB.DAT" 

#define RAMPTABLE_C "C:\\PCMOTION\\RAMPC.DAT" 

#define INITIAL_THRESHOLD 50 
#define UDM_TIMEOUT 1000 

extern int ermo ; 

extern void Condition(void) 

extern void InitCondition(void) 

extern double SetPoint ; 

struct BaseLine BaseLine 

float ImageXCenter = 512 

float ImageYCenter = 480 

/* baseline structure • / 

/ 2 ;/* pixel position * / 
/ 2 ;/"' pixel position * / 

double XScale, YScale ; 

double XStepSize = .0156 

/* x and y scaling factor, inches per pixel * / 
/* inches per step * / 

double YStepSize = .02 j /* inches per step • / 
double ZStepSize ; /* inches per step (not currently used) • / 
BOOL :poStep ; 

int ilutBuf[511] ; /* Input lookup table buffer (help from KAN) * / 
int xStepsPerSnap, 

yStepsPerSnap 

/* Do initialization and settup for call to Measure() * / 
void main(argc, argv) 

int argc ; 

char *argv(] ; 

{ 
int errcode 

switch(argc) 
{ 

/* argument count 

/* argument vectors 

/* Form: Measure <filename> * / 

*/ 
*/ 
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} 

case 2: 

DoStep = FALSE 

break ; 

/* Form: Measure <filename> STEP * / 
case S: 

if(O == strcmpi(argv(2], "STEP")) 

{ 

}else{ 

} 

DoStep = TRUE ; 
break ; 

DoStep = FALSE 

/* All other forms invalid. * / 

default: 

} 

printf("usage: Measure <filename> (STEP]\n") 

return ; 

/* Initialize stepping motor drivers. * / 
PCM_Init() ; 

if( 0 I= (errcode = 

{ 

} 

PCM_LoadRampTables(RAMPTABLE_A, RAMPTABLE_B, RAMPTABLE_C))) 

printf("error loading ramp tables, error code %d.\n", errcode) ; 
return ; 

/* Initialize image processing hardware. * / 
is _initialize() ; 
is_reset() ; 

InitCondition() ; 

/* Initialize ultra-sonic distance measurement device. * / 
UDM_Init(UDM_BASE) 

/* Read in BaseLine * / 
if(ERROR == ReadBaseLine(&BaseLine)) 

return ; 

/* Read in scaling factors * / 

if(ERROR == ReadScalingFactors(&XScale, &YScale)) 

return ; 

/* Do measurement. * / 
if(ERROR == Measure(argv(l])) 

printf("Measure Unsuccessful\n", &(*argv[l])) 

else 

printf("Measure Successful\n") 

is_end() 
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Measure( filename) 

char *filename 

{ 
int n, 

errcode, 

argument, 

XS tart, 

XEnd, 

YStart, 

YEnd, 

xsteps, 

ysteps, 

thresh = 

/* Loop counter, array index. * / 

/* Temporary storage for some functions 

return code. */ 
*/ 

/* Minimum frame column to look for line. * / 
/* Maximum frame column to look for line. * / 

/* Minimum frame row to look for line. * / 
/* Maximum frame row to look for line. * / 

/* Loop counter. * / 
/* Loop counter. * / 

INITIAL_ THRESHOLD /* Threshold for conditioning. * / 

static double 

TOPOG 

char 

XPos[512], /* X position relative to camera position. * / 
YPos[512], /* Y position relative to camera position. * / 
ZPos(512], /* Z position relative to camera position. * / 
xposition, /* X position of camera. * / 
yposition, /* Y position of camera. * / 
zposition = 0.0;/* Z position of camera. * / 

*tp 

c[2], 

command 

/* Pointer to file descriptor for an 

encoded topographic data file. * / 

/* 1 character + null byte command string. * / 
/* 1 character command. (1st char of c(]) * / 

if(NULL == (tp = open_topog_write(filename))) 
retum(ERROR) ; 

/* Set x, y, and z scaling factor for encoding. * / 
new_topog_xscale(tp, XScale) 

new _topog_yscale(tp, YScale) 
new_ topog_ zscale( tp, 0.001) ; 

/* Define search window for line. * / 
XStart = 50 ; 

XEnd = 450 ; 

YStart = BaseLine.Begin 

YEnd = BaseLine.End ; 

Live(O) 

do 

{ 
printf("\n\nCOMMANDS:\n") ; 

printf(" X n ... Moves the camera 'n' steps in the X direction.\n") ; 

printf(" 

printf(" 

printf(" 

printf(" 

Y n ... Moves the camera 'n' steps in the Y direction.\n") ; 

Z n ... Moves the camera 'n' steps in the Z direction.\n") ; 

M ..... Begin surface measurements.\n") ; 

Q ..... Quit.\n\n") ; 
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while(!kbhit()) 
{ 

UDM _ Start(UDM _BASE) 

printf("height = %.2f\r", 
UDM_Poll(UDM_BASE, UDM_TIMEOUT) 

* 1111. * .0000016) 
} 
printf("\ncommand:") 
scanf(" %s", c) ; 

switch( command = c[O)) 
{ 

case •x•: 

case 'X': 

scanf("%d", &argument) ; 

PCM_ MoveR(argument, 

break 

case 'y': 

case 'Y': 

scanf("%d", &argument) ; 

o, 

PCM_MoveR(O, argument, 

break 

case 'z': 
case 'Z': 

0) 

0) 

scanf("%d", &argument) ; 

PCM_MoveR(O, 0, argument) 

break 

case 'q': 

case 'Q': 

} 
goto quit 

}while('m' I= tolower(command)) 

printf("enter the number of steps per measurement in the x direction\n ") 

printf(" (1 or 2 is typical): ") ; 

scanf(" %d", &xStepsPerSnap) 

PCM_MoveR(O, -50, 0) ; 

PCM_Flag2() ; 

PCM_MoveR(O, 50, 0) ; 

PCM_Flag2() ; 

PCM_MoveR(-50, 0, 0) ; 

PCM_Flagl() i 

PCM_MoveR(50, O, 0) 
PCM_Flagl() ; 

/" For each step in the y direction, do ... * / 
for(ysteps = O; (yposition = (ysteps * YStepSize)) < 12.1;) 
{ 

/* For each step in the x direction, do ... * / 
for(xsteps = O; (xposition = (xsteps * XStepSize)) < 12.1;) 
{ 

/* Make the display live. * / 
Live(O) ; 
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/* Check to see if a key has been pressed. * / 
if(kbhit()) 

{ 

} 

/* If so then take action. * / 
switch(getch()) 

{ 
/* if key = <esc>, 

abort x steps, continue at next y step. * / 
case '\xlb': 

goto NextY ; 

/* if key = <return>, 

abort x and y steps. * / 
case '\r': 

goto quit ; 
} 

f* Snap this frame * / 
if(O != is_freeze_frame()) 
{ 

} 

printf(" ... retrying. \n") 

continue ; 

/* If stepping is enabled, step now and do processing 

while the camera stablizes. • / 

if(TRUE == DoStep) 
{ 

} 

PCM_Flagl() 

PCM_Flag2() 

PCM_MoveR(xStepsPerSnap, 0, 0) 

xsteps += xStepsPerSnap ; 

/* Do conditioning of image. • / 

Condition() ; 

is_display(l) ; 

/* Make a measurement. 

* Data goes into XPos[), YPos[), &; ZPos(]. • / 

MeasureLineDepth(O, &BaseLine, XPos, YPos, ZPos, 

XStart, XEnd, YStart, YEnd, XScale, YScale) 

/* Write each data point offset by the current camera 

* position to the encoded topog. file. * / 
for(n = YStart; n <= YEnd; n++) 
{ 

if(lOO.O I= ZPos(n)) 
{ 

if(NOERROR I= write_topog(tp, 

XPos(n] + xposition, 

YPos[n] + yposition, 
ZPos(n] + zposition)) 
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NextY: 

} 

} 

} 
} 

{ 

} 

printf("error writing topographical data. \n") 

return(ERROR) ; 

printf("x y z %.4f %.4f %.4f\n", 

xposition, yposition, zposition) 

/"' If stepping is enabled ... 

* make another pass. * / 
if(TRUE == DoStep) 

{ 

} 

PCM_Flagl() ; 

PCM_MoveR(-xsteps - 50, 120, 0) 

PCM_Flagl() ; 

PCM_MoveR(50, 0, 0) 

ysteps += 120 ; 

xsteps = 0 ; 

PCM_Flagl() ; 

/"' Close the topographic data file. * / 
quit: if(O I= (errcode = close_topog_write(tp))) 

} 

{ 
printf("error closing topographical data file '%d'\n", errcode) 

printf(" ... errno = %d\n", errno) ; 

perror("") ; 

return(ERROR) 

} 
return(NOERROR) 
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/"' baseline.h * / 

#ifndef BASELINE_ H 

#define BASELINE_ H 

struct BaseLine 
{ 

} i 

char Loaded 

int Begin, End 

double Xref[512) ; 

double Zref[512] 

double K[512) ; 

#define BLINEFILE 

#endif 

/* Structure loaded flag (set by 

MakeBaseLine and ReadBaseLine) * / 
/* Beginning and ending defined 

array members. 

/* Baseline pixel locations 

/* Baseline Zero on Z axis (heigth) 

/"' Calibration constant 

"C:\ \Measure\\ Calib\ \Baseline.cal" 

*/ 
*/ 

*/ 

*/ 
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r R WScales.c *I 

#include <stdio.h> 

#include <stddefs.h> 

#include <measure.h> 

#define SCALEFILE "C:\ \measure\ \calib\ \xyscales.cal" 

ERRCODE WriteScalingFactors(XScale, YScale) 

double XScale, YScale 
{ 

} 

FILE *fp ; 

if(NULL == (fp = fopen(SCALEFILE, "w"))) 
{ 

} 

puts("*** error - unable to open BaseLine output file ***") 

return(ERROR) ; 

fprintf(fp, "X Scale = %f (inches/pixel)\n", XSca!e) 

fprintf(fp, "Y Scale = %f (inches/pixel)\n", YScale) 

fclose(fp) ; 

return(NOERROR) 

ERRCODE ReadScalingFactors(XScale, YScale) 
double *XScale, *YScale 

{ 
FILE *fp ; 

double tXScale, tYScale ; 

if(NULL == (fp = fopen(SCALEFILE, "r"))) 
{ 

} 

puts("*** error - unable to open input file ***") 

return(ERROR) ; 

if(l I= fscanf(fp, " X Scale = %F (inches/pixel)", &tXScale)) 
{ 

}else{ 

} 

fclose(fp) ; 
return(ERROR) 

*XScale = tXScale 

if(l != fscanf(fp, " Y Scale = %F (inches/pixel)", &tYScale)) 
{ 

}else{ 

} 

fclose(fp) ; 

return(ERROR) 

*YScale = tYScale 
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} 

fclose(fp) ; 

return(NOERROR) ; 
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/* 2dSpace.h * / 

#ifndef TWODSPACE_H 

#define TWODSPACE_H 

struct Point2D 

{ 
float X, Y 

} 

struct Line2D 

{ 

} i 

double Slope 

double xlntercept 

double rSquared ; 

extern struct Line2D FitLineToPoints(struct Point2D [), int) 

#endif 
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/• Measure.h * / 

#ifndef MEASURE_H 

#define MEASURE_ H 

#include <stddefs.h> 

#include <baseline.h> 

#include "2dSpace.h" 

#define CalcZO(Zref, DeltaX, K) ((Zref)/(1.0+((DeltaX)*((Zref) / (K))))) 

extern ERRCODE 

extern ERRCODE 

extern ERRCODE 
extern ERRCODE 

extern ERRCODE 

extern struct Line2D 

extern struct Line2D 

extern struct Line2D 
extern double 

extern void 

extern void 

#endif 

WriteBaseLine{struct BaseLine *) ; 

ReadBaseLine(struct BaseLine *) ; 

WriteScalingFactors(double, double) 

ReadScalingFactors{double *, double *) 

ScaleCalibrate(int) ; 

FindLine(int, int, int, int) 
FindVerticalLine(int, int, int, int) ; 

FindHorizonta!Line(int, int, int, int) 

LineCenter(int [], int, int) ; 

Live(int) ; 

MeasureLineDepth(int, struct BaseLine * 
double [], double [], double [], 

int, int, int, int, double, double) ; 
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/* MeasureLineDepth() * / 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <iris.h> 

#include <conio.h> 

#include <ctype.h> 

#include <io.h> 

#include <measure.h> 

static int WhitePix = 255 

static int BlackPix = 0 ; 

extern float ImageXCenter, ImageYCenter 

/* MeasureLineDepth() 

* Measure the line depth in the window defined by: 

* XStart, XEnd, YStart, YEnd. 

* The coordinates of each point on the laser line are calculated 

* 
* 
* 
* 

*/ 

and adjusted for "perspective distortion" and stored in 

arrays X[], Y[), and Z[). Note that there is one set of coordinates 

for each image frame line from YStart to YEnd and they are stored 

in the X[), Y[], and Z[] array elements YStart to YEnd. 

void MeasureLineDepth(Frame, BaseLinePtr, X, Y, Z, 

XStart, XEnd, YStart, YEnd, XScale, YScale) 

int Frame ; /* Frame buffer number to process. * / 
struct BaseLine *BaseLinePtr /* Pointer to the BaseLine structure. */ 
double X[), Y[], Z[] ; 

int XStart, XEnd, YStart, YEnd ;/* Window limits to look for laser. * / 
double XScale, YScale ; /* Scaling factors to convert pixels to 

position (See ScaleCal()). * / 
{ 

register int 

n; /* Loop counter, array index. */ 

int LineArray[512]./* Buffer for image row. */ 
showx, /* Column to show center of laser line. * / 
show grey /* Grey level to show center of line. */ 

double zo, /* Calculated distance from laser line 

to camera. 

xPrime, /* Uncompensated x position of line. */ 
yPrime, /* Uncompensated y position of line. */ 
xAdj, /* X coordinate adjusted for distortion.*/ 

yAdj; /* Y coordinate adjusted for distortion.*/ 

/* Draw box to show window of interest. * / 
DrawBox(XStart - 1, XEnd + 1, YStart - 1, YEnd + 1) 

/* For each display row ... * / 
for(n = YStart; n <= YEnd; n++) 

{ 
/* Read a row of pixels into LineArray(]. * / 

*/ 
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} 
} 

is_get_pixel(Frame, n, 0, XEnd + 1, LineArray) 

/* Find the center of the line for this row. * / 
xPrime = LineCenter(LineArray, XStart, XEnd) 

printf("center of line 0 %3.lf\n", xPrime) ; */ 

/* If the center cannot be found then flag this set of 

* coordinates an invalid. LineCenter return -1.0 if it 

* cannot find the center of the line. The set of coordinates 
* is marked invalid by setting the Z[) array element to 100.0. 

*I 
if(-1.0 == xPrime) 

{ 
X(n] = Y[n) = Z[n) = 100.0 ; 

}else{ 

} 

/* yPrime is just the row number converted to a double. "/ 

yPrime = (double)n ; 

/* Determine frame column and grey level to show in frame.*/ 

showgrey = LineArray[showx = (int)xPrime] • Ox80 ; 

/* Invert pixel at line center. * / 

is_put_pixel(O, n, showx, 1, &:showgrey) 

/* Calculate distance from camera to laser line. * / 

ZO = CalcZO(BaseLinePtr->Zref(n], 

xPrime - BaseLinePtr->Xref(n], BaseLinePtr->K[n)) 

/* Adjust x and y for "perspective distortion". * / 
xAdj = {(xPrime - ImageXCenter) 

* ZO / BaseLinePtr->Zref(n)) + ImageXCenter ; 

yAdj = ((yPrime - lmageYCenter) 
* ZO / BaseLinePtr->Zref(n)) + ImageYCenter 

r Store coordinates in X[], Y[], and Z[) arrays. *I 
Z[n) = BaseLinePtr->Zref(n) - ZO ; 

X[n] = XScale * xAdj 

Y[n) = YScale * yAdj ; 
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f* FindLine * / 
/* Functions to find vertical and horizontal lines. * / 

/* Standard Microsoft header files. * / 
#include <process.h> 

#include <malloc.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

/* Other header files * / 
#include <iris.h> 

#include <stddefs.h> 

#include <2dSpace.h> 

/* Function prototypes * / 
struct Line2D FindLine{int, int, int, int) ; 

struct Line2D FindVerticalLine{int, int, int, int) ; 

struct Line2D FindHorizontalLine{int, int, int, int) 

double LineCenter{int [], int, int) ; 

static int WhitePix = 255 

static int BlackPix = 0 ; 

/* Find a best fit vertical line in the window defined by 

* XStart, XEnd, YStart, and YEnd. 

*/ 
struct Line2D FindVerticalLine{XStart, XEnd, YStart, YEnd) 

int XStart, XEnd, YStart, YEnd ; /* Window limits. * / 
{ 

register int 

n, /* Loop counter 

row /* Vidio frame row number 

int RowOfPixels[512) /* Array to hold one line of pixels. * / 

struct Point2D 

Points[512) 

struct Line2D 

Line ; 

/* Array of points on the vertical line. * / 

/ * (see 2dspace.h for Line2D structure * / 
/* Structure describing best fit line 

*/ 
*/ 

through Points. * / 

/* For each row from YStart to YEnd... * / 
/* ... fill array of points with x and y coordinates. * / 
for{row = YStart, n = O; row <= YEnd; row++, n++) 
{ 

int CenterPix ; /* Column # of center of line. * / 

/* Get a row of pixels * / 
is_get_pixel{O, row, 0, 480, RowOfPixels) 
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} 

} 

/* Y coordinate = row number * / 
Points[n).Y = (float)row ; 

/* X coordinate = pixel number of center of line. * / 
Points[n].X = LineCenter(RowOfPixels, XStart, XEnd) 

/* CenterPix = contrasting grey scale to center pixel. * / 
CenterPix = RowOfPixels[(int)Points[nJ.XJ • Ox80 ; 
is_put_pixel(O, row, (int)Points[n].X, 1, &CenterPix) ; 

/* Find vertical line that best fits the po in ts * / 
Line = FitLineToPoints(Points, n) 

/* Show points of best fit line on display. • / 

for( row = YStart; row <= YEnd; row++) 

{ 

} 

is_put_pixel(O, row, 

(int)(Line.xlntercept + (Line.Slope * row) + 0.5), 

1, &WhitePix) ; 

retum(Line) 

/* Find a best fit horizontal line in the window defined by 

* XStart, XEnd, YStart, and YEnd. 

*/ 
struct Line2D FindHorizontalLine(XStart, XEnd, YStart, YEnd) 

int XStart, XEnd, YStart, YEnd ; 

{ 
register int 

n, 
row, 

column 

/* Loop counter 

/* Vidio frame row number 

/* Vidio frame row number 

int Column0fPixels[512) ;/* Array to hold one line of pixels. * / 

struct Point2D 

Points[512) 

struct Line2D 

Line ; 

/* Array of points on the vertical line. * / 

/* (see 2dspace.h for Line2D structure * / 
/* Structure describing best fit line 

.. , 
*/ 
*/ 

through Points. * / 

/* For each column from YStart to YEnd ... * / 
/* ... fill array of points with x and y coordinates. * / 
for(column = XStart, n = O; column <= XEnd; column++, n++) 

{ 
int CenterPix ; /* Column # of center of line. * / 

/* Get a column of pixels * / 
for(row = YStart; row <= YEnd; row++) 

is_get_pixel{O, row, column, 1, &ColumnOfPixels[row]) 
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} 

} 

/* Y coordinate = column number * / 
Points(n].Y = (float)column ; 

/* X coordinate = pixel number of center of line. * / 
Points[n].X = LineCenter(ColumnOfPixels, YStart, YEnd) 

/* CenterPix = contrasting grey scale to center pixel. * / 
CenterPix = ColumnOfPixels[(int)Points[n].X] - Ox80 ; 

i11_put_pixel(O, (int)Points[n].X, column, 1, &CenterPix) 

/* Find horizontal line that best fits the points * / 
Line = FitLineToPoints(Points, n) 

/* Show points of best fit line on display. * / 
for(column = XStart; column <= XEnd; column++) 

{ 

} 

is _put _pixel(O, 

(int)(Line.xlntercept + (Line.Slope * row) + 0.5), 

column, 1, &WhitePix) ; 

retum(Line) 

/* LineCenter() 

* Given an array of points, find the center of the. non black points. * / 
double LineCenter(Array, Lowerlndex, Upperlndex) 

int Array(] ; /* Array of grey scales. * / 
int Lowerlndex /* Lower array index limit for search for center. * / 
int Upperlndex /* Upper array index limit for search for center. * / 
{ 

register int 

i, /* Loop counters, array indecies. */ 

int k, /* Array index * / 
UpperShelf, /* Lower bounds of non black pixels. * / 
LowerShelf, /* Upper bounds of non black pixels. * / 
ValidLowerShelf = FALSE, / * Flag indicating that the lower 

shelf has been found without errors. * / 
ValidUpperShelf = FALSE ;/* Flag indicating that the upper 

shelf has been found without errors. * / 

static int 

if(-1 

InitialGuess = -1 

InitialGuess) 

/* Starting index for initial search. 

(-1 indicates not set yet) * / 

Initia!Guess = (Lowerlndex + Upperlndex) / 2 

/* Look for white line, starting at Initia!Guess * / 
/* Exit loop with k = index of a point on the line. * / 
for(k = -1, i = j = InitialGuess; 

(i > Lowerlndex) && (j < Upperlndex); i--, H+) 
{ 
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} 

if(i > Lowerlndex) 

{ 

} 

if(Array[i] > 0) 

{ 

} 

k = i i 

break ; 

if(j < Upperlndex) 

{ 

} 

if(Array(j) > 0) 

{ 

} 

k = j ; 

break ; 

if(k < 0) 

{ 
lnitialGuess = 256 ; 

retum(-1.0) ; /"' error return * / 
} 

/"' LowerShelf = index of first dark pixel below Array[k] * / 
for(i = k; i > Lowerlndex; i--) 

{ 

} 

if(Array[i] == 0) 
{ 

} 

ValidLowerShelf = TRUE 

LowerShelf = i ; 

break ; 

/"' UpperShelf = index of first dark pixel above Array[k) * / 
for(i = k; i < Upperlndex; i++) 

{ 

} 

if(Array[i] == 0) 

{ 

} 

ValidUpperShelf = TRUE 

UpperShelf = i 
break ; 

/* If both shelves valid, return midpoint, 

* else return 'not found' flag * / 
if(ValidUpperShelf && ValidLowerShelf) 

{ 

}else( 

InitialGuess = (UpperShelf + LowerShelf) / 2 ; 

return(((double)UpperShelf + (double)LowerShelf) / 2.0) 

InitialGuess = 256 ; 
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return(-1.0) / * error return * / 
} 

} 

/* Find a best fit vertical line in the window defined by 

* XStart, XEnd, YStart, and YEnd. 

* (same as FindVerticalLine but included for compatability with earlier 

* versions of some software. * / 
struct Line2D FindLine(XStart, XEnd, YStart, YEnd) 

int XStart, XEnd, YStart, YEnd ; 

{ 
return(FindVerticalLine(XStart, XEnd, YStart, YEnd)) 

} 
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APPENDIX C 

VELOCITY MEASUREMENT PROGRAMS 
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/*Water.c 

*/ 

#include <stdio.h> 

#include <math.h> 

#include <string.h> 

#include <iris.h> 

#include <conio.h> 

#include <v2tov3.h> 

#include <malloc.h> 
#include "BlobScan.h" 

#define MAXBLOB 100 

#define BLACK 0 

#define WHITE 1 
#define MAXWHITE 255 

#define FRAME_ZERO 0 

#define FRAME_ONE 1 
#define MIN_BLOB_AREA 20 

struct Filter 

{ 
int rows 

int cols ; 

int divisor 

int *coefs ; 

} 

int LowPassCoefs[] = { 1, 1, 1, 1 } 

struct Filter LowPass = { 2, 2, 4, LowPassCoefs } 

struct BV _Callnfo 

{ 

int threshold 

int height, width, area ; 

float h _resolution, v _resolution 

} 

float xcenter[MAXBLOB][2], ycenter[MAXBLOB](2] 

int Boarder[2][4] ; 

int Frame = 1 ; 

int top = 30 ; 

int bottom = 450 

int left = 30 ; 
int right = 480 

char calinfo_filename[] = "BY _Info.cal" 
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extern void FrameAdvance(int); 

void main(void) ; 

void tinue(void) ; 

void moveit(void) ; 

void acquire(int) ; 

void convolve(int, int, struct Filter *) 

void thresh( char *, int, int, int) 

int MoveThreshold(void) ; 

void acq_ave(void) ; 

void fastwtr(int, float, float) 

struct BV _ Callnfo *calibrate(struct BV _ Callnfo *) 

void slo_wtr(struct BV _Callnfo *) ; 

static void DrawBox(int, int, int, int, int, int) 

void SkipFrames(int) ; 

void WaitForTrigger(void) 

void DrawArc(int, int, int, int, int, int, int) 

void main() 
{ 

int i, j 

char c; 
int m,n,d,filt[200]; 
int blobthr; 

float res,wide; 
struct BV _ Callnfo calinfo 

BOOL FirstTime 
FILE •me j 

if(NULL == (file = fopen(calinfo_filename, "rb"))) 

{ 

}else{ 

} 

FirstTime = TRUE ; 

FirstTime = FALSE ; 
fread ( &calinfo, sizeof( calinfo), 1, file) 

fclose (file) ; 

is_initialize() ; 

is_allocate(2) ; 

is_select_ilut(O); 
is_select_input_frame(O); 

is_display(l); 

filt(O) = O; 

for(;;) 

{ 
char c 
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if(FirstTime) 

{ 

c = •c• ; 
FirstTime = FALSE; 

}else{ 

print!(" [C)alibrate [S]low [F]ast [Q)uit 

/* 

Clean Up: 

} 

/* 

} 
switch(c) 

{ 
case 'c': 

case 'C': 

case •s•: 

case 'S': 

case 'f': 

case 'F': 

case 'q': 

case 'Q': 

} 
} 

is_ deallocate(2) 

is_end(); 

c = getch() ; 
printf("\n") 

calibrate( &calinfo) 

break 

slo _ wtr( &calinfo) 

break 

fastwtr( &calinfo); 

break 

goto Clean Up 

• calibrate() ., 
struct BV _Callnfo *calibrate(calinfo) 
struct BV _ Callnfo *calinfo 

{ 

char c = '\O'; 
int b,i,j,n ; 

float ave,width; 

struct Blob *blob 
struct List *bloblist 

FILE *file ; 

is_cursor(O) ; 

is_select_input-'-frame(O) ; 
is_ select_ output _frame(O) 

is_select_ilut(O) ; 

is_select_olut(O) ; 

., 
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puts("Enter the VERTICAL pixel resolution in inches/pixel") ; 

scanf(" %f", &{calinfo->v _resolution)) ; 

puts("Enter the HORIZONTAL pixel resolution in inches/pixel") 

scanf(" %f", &{calinfo->h_resolution)) ; 
puts("Play tape of beads traveling at velocity to be measured"); 

acquire(!) ; 

convolve(FRAME_ZERO, FRAME_ONE, &LowPass) 

is_select_output_frame(FRAME_ONE) ; 

calinfo->threshold = MoveThreshold() ; 

thresh("i", 1, calinfo->threshold, 255) ; 

is_perform_feedback(FRAME_ONE, 1) 

is_select_output_frame(FRAME_ONE) ; 

is_select_ilut(O) ; 

is_select_olut(O) ; 

puts("scanning image ... ") ; 

DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ; 

if(NULL -- (bloblist = 

{ 

} 

n = 0; 
ave= 0 

Scan(FRAME_ONE, WHITE, top, bottom, left, right))) 

printf("Error scanning frame. \n") 
return ; 

for(blob = (struct Blob *)bloblist->Head; 

( 

} 

blob->node.Succ; blob = (struct Blob *)blob->node.Succ) 

if(blob->area > 20.0) 
{ 

} 

is_set_cursor_position((int)(blob->ycenter + .5), 
(int)(blob->xcenter + .5)) 

is_ cursor(l) ; 

puts("Include this blob in width average? (y/n)"); 

if('y' == getch()) 
{ 

} 

width = (blob->maxcol - blob->mincol) 

ave += width ; 

n++; 
printf("Width = bead diameter = %f pixels\n", 

width) ; 
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} 

if(O != n) 

{ 

calinfo->width = ave / (float) n; · 

printf(" Average bead diameter = %d pixels\n", calinfo->width) 
} 

is_cursor(O); 

if(NULL == (file = fopen(calinfo_filename, "wb"))) 

{ 

}else{ 

} 

puts("calibrate(): unable to open cal. info. file") 

fwrite(calinfo, sizeof(*calinfo), 1, file) 

fclose(file) ; 

return ( calinfo) 

void slo _ wtr( calinfo) 

struct BY Callnfo *calinfo 

{ 
int c 

struct BlobMatch 

{ 
struct Node node ; 

struct Blob *beforeblob, *afterblob 
} 

int b, num,numframe,i,j,num2 = O; 

float vel, v2 = O; 
struct Blob *blobl, *blob2 ; 

struct List *bloblistl, *bloblist2 

struct BlobMatch *match 

struct List MatchList 

int Line[2] ; 

int NumMatches 
float SumXDistance, SumYDistance ; 

float XDistance, YDistance ; 

float SumXDistance _inches, Sum YDistance _inches 

float XDistance _inches, YDistance _inches 

float dt = 3.0 / 30.0 ; 

InitList(&MatchList, NULL) 

is _set _sync_ source( 1) 

is_select_ilut(O) ; 
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is _select_ olut(O) 

puts("Locate FIRST frame of series to process and PAUSE VCR"); 

is_select_input_frame(O) ; 

is_select_output_frame(O) 

is_passthru() ; /"' image into buf 0 */ 
WaitForTrigger() 

is_freeze_frame() ; 

is_select _input _frame(l) 

is_select_output_frame(l) 

is_passthru() ; 

SkipFrames(S) ; 

is _freeze _frame() 

is_frame_copy(l, 2) 

is _set _sync _source(O) 

convolve(FRAME_ZERO, FRAME_ONE, &LowPass) 

is _select_ output _frame(FRAME _ONE) ; 

thresh("i", 1, calinfo->threshold, 250) ; 

is_perform_feedback(FRAME_ONE, 1) 
is_select_output_frame(FRAME_ONE) ; 

puts("scanning image ... ") ; 
DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ; 

if(NULL -- (bloblistl = 

{ 

} 

Scan(FRAME_ONE, WHITE, top, bottom, left, right))) 

printf("Error scanning frame.\n") 

return ; 

is_select_input_frame(O) ; 

is _select_ output_frame(O) 

is_select_ilut(O) ; 

is_select_olut(O) ; 

is_frame_copy(2, 0) ; 
is_select _ output_frame(FRAME _ZERO) 

convolve(FRAME_ZERO, FRAME_ONE, &LowPass) 

thresh("i", 1, calinfo->threshold, 250) ; 

is_perform_feedback(FRAME_ONE, 1) 

is_select_output_frame(FRAME_ONE) ; 
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puts("scanning image ... ") ; 

DrawBox(FRAME_ONE, BLACK, top, bottom, left, right) ; 

if(NULL -- (bloblist2 = 

{ 

} . 

Scan(FRAME_ONE, WHITE, top, bottom, left, right))) 

printf("Error scanning frame.\n") 

return ; 

blob! = (struct Blob *)bloblistl->Head 

while(blobl->node.Succ) 
{ 

} 

if(MIN_BLOB_AREA <= blobl->area) 

{ 

} 

DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5), 

(int)(blobl->xcenter + 0.5), 

(int)(blobl->ycenter + 10.5), 

(int)(blobl->xcenter + 0.5), 

360, MAXWHITE) 

blob! = (struct Blob *)blobl->node.Succ ; 

is_cursor(l) ; 

blobl = (struct Blob *)bloblistl->Head ; 

blob2 = (struct Blob *)bloblist2->Head ; 

while((bloblistl->Head->Succ I= NULL) && 

{ 
(bloblist2->Head->Succ I= NULL)) 

r u blob! points to list header skip to 1st node. • / 

if(NULL == blobl->node.Succ) 

blobl = (struct Blob *)bloblistl->Head ; 

r If blob2 points to list header skip to 1st node. ... I 
if(NULL == blob2->node.Succ) 

blob2 = (struct Blob *)bloblist2->Head ; 

r Skip frame 1 blobs that are too small to be beads. ... I 
if(MIN_BLOB_AREA > blobl->area) 

{ 

} 

Remove(&(blobl->node)) ; 

blobl = (struct Blob *)blobl->node.Succ 
continue ; 

r Skip frame 2 blobs that are too small to be beads. ... I 
if(MIN_BLOB_AREA > blob2->area) 
{ 

Remove(&(blob2->node)) ; 
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} 

blob2 == (struct Blob *)blob2->node.Succ 

continue ; 

printf("blob #%d at (row,col) (%8.lf,%8.lf)\n", 
blobl->number, blobl->ycenter, blobl->xcenter) 

printf("\tblob #%d at (row,col) (%8.lf,%8.lf)\n", 
blob2->number, blob2->ycenter, blob2->xcenter) 

DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5), 

(int)(blobl->xcenter + 0.5), 

(int)(blobl->ycenter + 5.5), 

(int)(blobl->xcenter + 0.5), 

860, MAXWHITE) ; 

is_set_cursor_position((int)(blob2->ycenter + 0.5), 

(int)(blob2->xcenter + 0.5)) 

printf("Match these two blobs?\n") ; 

switch(getch()) 

{ 
case 'y': 

case 'c 1: 

is_set_graphic_position((int)(blobl->ycenter + 0.5), 

(int)(blobl->xcenter + 0.5)) 

Line[O] = blob2->ycenter + 0.5 ; 

Line[l) = blob2->xcenter + 0.5 ; 

is_draw_lines(FRAME_ONE, 1, Line) 

if(NULL === (match = (struct BlobMatch *) 
malloc(sizeof(struct BlobMatch)))) 

{ 

} 

printf("unable to allocate match.\n") 

exit(l) ; 

match->beforeblob = 
(struct Blob *)Remove(&(blobl->node)) 

match->afterblob = 
(struct Blob *)Remove(&(blob2->node)) 

Insert(&MatchList, &(match->node), NULL) 

blob! = (struct Blob *)blobl->node.Succ 
blob2 = (struct Blob *)blob2->node.Succ ; 

break ; 

Remove(&(blobl->node)) 
DrawArc(FRAME_ONE, (int)(blobl->ycenter + 0.5), 

(int)(blobl->xcenter + 0.5), 
(int)(blobl->ycenter + 10.5). 

115 



case 'b': 

default: 

} 
} 

(int)(blobl->xcenter + 0.5), 

360, BLACK) ; 

DrawArc(FRAME_ ONE, (int)(blobl->ycenter + 0.5), 

(int)(blobl->xcenter + 0.5), 

(int)(blobl->ycenter + 5.5), 

(int)(blobl->xcenter + 0.5), 

360, BLACK) ; 

blobl = (struct Blob *)blobl->node.Succ ; 

break 

Remove(&(blob2->node)) 

blob2 = (struct Blob *)blob2->node.Succ 

break 

blob2 = (struct Blob *)blob2->node.Succ 

is_cursor(O); 

NumMatches = 0 ; 

SumXDistance = 0 ; 

SumYDistance = 0 ; 

SumXDistance_inches = 0.0 ; 

SumYDistance_inches = 0.0 ; 

for(match = (struct BlobMatch *)MatchList.Head; 

{ 
match->node.Succ; match = (struct BlobMatch *)match->node.Succ) 

float dx, dy, dist ; 

float dx_inches, dy_inches, dist_inches 

SumXDistance += dx = (match->afterblob->xcenter -

match->beforeblob->xcenter) 

SumYDistance += dy = (match->afterblob->ycenter -

match->beforeblob->ycenter) 

dist = sqrt((dx * dx) + (dy * dy)) ; 

SumXDistance_inches += dx_inches = dx * calinfo->h resolution 

SumYDistance_inches += dy_inches = dy * calinfo->v_resolution 

dist_inches = sqrt( 

(dx_inches * dx_inches) + (dy_inches * dy_inches)) 

printf("blob #%d to blob #%d = x[%.2f] y[%.2f] dist[%.2f]\n", 

match->beforeblob->number, 

match->afterblob->number, 

dx, dy, dist) ; 

printf("\tdistance = x[%.2f] y[%.2f] dist[%.2f] inches.\n", 

dx_inches, dy_inches, dist_inches) ; 

printf("\tVELOCITY = x(%.2f] y(%.2f] vel[%.2f]\n \n", 

dx_inches / dt / 12.0, 

dy _inches / dt / 12.0, 
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} 

dist_inches / dt / 12.0) 

NumMatches++ 

} 

if(NumMatches I= 0) 

{ 

}else{ 

} 

XDistance = SumXDistance / (float)NumMatches ; 
YDistance = SumYDistance / (float}NumMatches ; 

XDistance inches = SumXDistance inches / (float)NumMatches 

YDistance_inches = SumYDistance inches / (float)NumMatches 

XDistance = YDistance = 0.0 ; 

XDistance inches = YDistance inches = 0.0 

printf("Average distance x[%.1f] y[%.1f] dist[%.lf]\n", 
XDistance, YDistance, 

sqrt((XDistance • XDistance) + (YDistance • YDistance))) 

printf(" AVERAGE VELOCITY = x(%.2f] y(%.2f] vel(%.2f]\n \n", 

XDistance_inches / dt / 12.0, 

YDistance_inches / dt / 12.0, 

sqrt((XDistance_inches " XDistance_inches) + 

(YDistance_inches • YDistance_inches)) / dt / 12.0) 

void tinue() 

{ 

} 

char c; 

puts("Press any key to continue"); 

scanf(" %c" ,&c); 

void moveit() 

{ 

} 

int frm; 

puts("Enter: 0 to move buf 1 to buf O"); 

puts(" 1 to move buf 0 to buf 1"); 
scanf("%d" ,&frm); 

if( frm ) is_copy_region(0,1,0,0); 

else is_copy _region(l,0,0,0); 

void acquire(key) 

int key; 
{ 
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} 

char chr; 

is_freeze_frame() ; 

is_frame_clear(FRAME_ZERO) ; 

DrawBox(FRAME_ZERO, MAXWHITE, top - 1, bottom + 1, left - 1, right + 1) 

is_set_sync_source(EXT_SYNC); 

is_passthru(); 

if(key) 

{ 

} 

puts("Enter any key to acquire an image.") 

getch() ; 

is _freeze _frame() 

is_set_sync_source(INT_SYNC) 

void convolve(source, dest, filter) 

int source, dest ; 

struct Filter *filter ; 

{ 

} 

if(filter->divisor == 0 ) 

{ 

}else{ 

} 

puts("Filter has not been initialized. Retrieve or create."); 

return ; 

printf("convolving image from buffer %d to buffer %d.\n", 

source, dest) ; 

is_ convolve(source, dest, filter->rows, filter->cols, 

filter->coefs, filter->divisor) 

void thresh(in_out,tbl,gr_lv,new) 

char *in_ out ; 

int tbl, gr _Iv, new ; 

{ 

int i, red[256], green[256], blue[256] 

if((gr_lv < 0) II (gr_lv > 255)) 

{ 

} 

printf("thresh(): threshold level of %d is out of range!\n", 

gr_lv) ; 

exit(l) ; 

for(i O; i < gr_lv; ++i) 

red[i] = green[i] = blue[i] = 0 
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} 

for(i = gr_lv; i < 256; ++i) 

red[i] = green(i] = blue[i] = new 

switch(in _ out[O]) 

{ 
case 'i': 

case 'I': 

case 10 1: 

case '0': 

default: 

} 

is_load_ilut(tbl, green) 

is _select_ilut(tbl) 

break 

is_load_olut( tbl,red,green,blue ); 

is_select_ olut(tbl); 

break ; 

printf("thresh(): invalid parameter 1.\n") 

int MoveThreshold() 

{ 

} 

char c; 

static int threshold 128 

puts(" Adjust threshold:[u]p, (U]p 10, [d]own, [D]own 10, <er> to quit"); 

thresh("o" , 1, threshold, 255) 

while( '\r' I= (c = getch())) 

{ 

} 

switch(c) 

{ 
case 1u 1: 

case 'd': 

case 'U': 

case 'D': 

} 

threshold++ 

break ; 

threshold-

break ; 

threshold += 10 

break ; 

threshold -= 10 

break ; 

threshold = max(O, min(255, threshold)} 

thresh("o" , 1, threshold, 255) ; 

printf("Threshold chosen at grey level %d.\n'', threshold); 

return(threshold) ; 
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void acq_ ave() 

{ 

} 

int numframes; 

is_set_sync_source(l) ; 

is_select_output_frame(O) 

is _passthru() ; 

puts("Key the number of frames to be averaged, <er> to acquire.") 

scanf("%d" ,&numframes}; 

while(numframes--) 

FrameAdvance(l); 

is_set_sync_source(O); 

DrawCross(x, y) 

int x, y ; 

{ 

} 

int px, py, WhitePixel = 255 

for(px = x - 5; px < x + 5; px++) 

is_put_pixel(O, y, px, 1, &:WhitePixel) 

for(py = y - 5; py < y + 5; py++) 

is_put_pixel(O, py, x, 1, &:WhitePixel) 

static void DrawBox(frame, color, top, bottom, left, right) 

int frame, color, top, bottom, left, right ; 

{ 
int array[8) ; 

array[O) = top 

array[l] = left 

array[2) = top 

array[3) = right j 

array[4] = bottom 

array[5) = right ; 

array[6) = bottom 

array[7) = left ; 

is _set _foreground( color) 

is_ set _graphic _position(bottom, 

is_draw_lines(frame, 4, array) ; 
} 

void SkipFrames(count) 

int count ; 

{ 
unsigned csr 

left) 
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} 

count -= 2 ; 

while(count-- > 0) 
{ 

do{ 

csr = inpw(OUTCSR) ; 

}while(!(((csr & Ox8000) != 0) && ((csr & Ox2000) == 0))) 

do{ 

csr = inpw(OUTCSR) ; 

}while(!(((csr & Ox8000) == 0) && ((csr & Ox2000) == 0))) 

} 

void W aitForTrigger() 
{ 

getch() ; 

} 

void DrawArc(frame, cy, ex, y, x, angle, color) 

int ex, cy, x, y, angle, color ; 

{ 

} 

is _set _foreground( color) 

is_set_graphic_position(y, x) 

is_draw_arc(frame, cy, ex, angle) 
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/* BlobScan.c 

* Connectivity Analysis. 

* 
* Based on the article: 

* Segmenting Binary Images 

* Robotics Age, July/ August 1981, 

* Vol. 3, No. 4, pp. 4-19 

* by Robert Cunningham 

* Robitics Research Program 

* NASA Jet Propulsion Laboratory 

* California Institute of Technology 

* Pasadena, California 

*/ 

#include <stdio.h> 

#include <stdlib.h> 

#include <malloc.h> 

#include "BlobScan.h" 

#define NextPrevRun(env) (env->PrevRun (struct Run *)env->PrevRun->node.Pred) 

/* Run-length structure. * / 

struct Run 
{ 

struct Node node ; 

struct VBlob *vblob 

int startcol ; 

int row; 

int length ; 

int number ; 

} 

static struct VBlob *NewVBlob(struct BlobScanEnvironment *, int, int, int, int) 

static struct Run *NewRun(struct BlobScanEnvironment *, 

struct VBlob * int, int, int) 

static void GetLine(int, int [], int) ; 

static int GetPixel(int, int, int) ; 

static void Update(struct BlobScanEnvironment * BOOL) 

static struct VBlob *LookUp(struct Run *) ; 

static void statel(struct BlobScanEnvironment *) 

static void state2(struct BlobScanEnvironment *) 

static void state3(struct BlobScanEnvironment *) 

static void state4(struct BlobScanEnvironment *) 

static void state6(struct BlobScanEnvironment *) 

static void state7(struct BlobScanEnvironment *) 

static void Debug(struct BlobScanEnvironment *) j 

static void FreeNodes(struct List *) ; 
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BlobScan( env) 

struct BlobScanEnvironment *env 

{ 
struct VBlob *vblob ; 

struct VBlob *BGvblob 

struct Run *run 

int blobnum ; 

/* Initialize the BlobScanEnvironment structure. * / 

InitBlobScanEnvironment(env) ; 

/* Clear the previous line array. * / 
for(env->col = env->colstart; env->col <= env->colend; env->col++) 

env->PrevLine[env->col] = 0 ; 

/* Create and initialize background blob. * / 
BGvblob = NewVBlob(env, GetPixel{env->frame, env->rowstart, 

env->colstart), env->colstart, env->colend, env->rowstart) 

Insert(&(env->vbloblist), &{BGvblob->node), NULL) ; 

/* Create and initialize first and second run. * / 
env->PrevRun = 

NewRun(env, BGvblob, env->colstart, 

env->rowstart, env->colend - env->colstart + 1) 

Insert(&(env->runlist), &{env->PrevRun->node), NULL) ; 

env->CurrentRun = NewRun(env, BGvblob, env->colstart, 

env->rowstart + 1, 0) 

Insert(&( env->runlist), &( env->CurrentRun->node), NULL) ; 

for{env->row = env->rowstart + 1; env->row <= env->rowend; env->row++) 

{ 
env->NewBlobFlag = FALSE ; 

env->state = 0 ; 

GetLine(env->frame, env->CurrentLine, env->row) 

/* Set CurrentBlob and AboveBlob to the Background Blob. * / 

env->CurrentVBlob = env->AboveVBlob = LookUp(env->PrevRun) 

for{env->col = env->colstart + 1; 

env->col <= env->colend; env->col++) 
{ 

env->state = {env->state / 4) + 

( 4 * env->PrevLine[env->col]) + 
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} 

} 

(8 * env->CurrentLine[env->coi]) ; 

env->PrevLine[env->col) = env->CurrentLine[env->col) 

switch(env->state) 

{ 
case 7: 

case 8: 

case 4: 

case 11: 

case 3: 

case 12: 

case 2: 

case 13: 

case 6: 

case 9: 

case 1: 

case 14: 

case 0: 

case 15: 

case 5: 

case 10: 

default: 

} 

state7( env) 

break 

state4( env) 

break 

state3( env) 

break 

state2( env) 

break ; 

state6( env) 

break 

statel(env) 

break 

break 

printf("illegal state: %d\n", env->state) 
exit(l) ; 

Update(env, !NOEOL) 

for(vblob = (struct VBlob *)env->vbloblist.Tai!Pred, blobnum = l; 
vblob->node.Pred; vblob = (struct VB!ob *)vblob->node.Pred) 

{ 

if(vblob->blob->node.Type == ACTUALBLOB _TYPE) 
{ 

}else{ 

lnsert(&(env->bloblist), &(vblob->blob->node), NULL) 

vblob->blob->number = blobnum++ ; 

vblob->blob->xcenter = vblob->blob->sumcol / 

vblob->blob->area 

vblob->blob->ycenter = vblob->blob->sumrow / 

vblob->blob->area 
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vblob->actualblob.number = O; 

} 
} 

} 

static void statel(env) 

struct BlobScanEnvironment *env ; 

{ 

struct VBlob *vblob, *vblob2 

int i ; 

int *int _ptr 

static char *fmt 

int here = 0 ; 

env->HoleVBlob = env->AboveVBlob 

NextPrevRun(env) ; 

/"' AboveBlob will point to a VBlob containing an actual blob 

* throughout the remainder of the function. * / 
env->AboveVBlob = LookUp(env->PrevRun) ; 

if( env-> New BlobFlag) 

{ 

}else{ 

env->NewBlobFlag = FALSE ; 

env->CurrentVBlob = env->AboveVBlob 

env->CurrentVBlob->actualblob.perimeter += 
env->col - env->LeftEnd 

if(env->CurrentVBlob == env->AboveVBlob) 

{ 

}else{ 

env->HoleVB!ob->actualblob.sibling = 
env->CurrentVBlob->actualblob.child 

env->HoleVBlob->actualblob.parent = env->CurrentVBlob 

env->CurrentVBlob->actualblob.child = env->HoleVBlob 

( env->Current VBlob->actualblob.NumHoles )++ ; 
env->CurrentVBlob->actualblob.perimeter -= 

env->HoleVBlob->actualblob.perimeter 

env->CurrentVBlob->actualblob.perimeter += 
env->AboveVBlob->actualblob.perimeter + 
env->col - env->LeftEnd ; 

if(env->AboveVBlob->actualblob.mincol < 
env->CurrentVBlob->actualblob.mincol) 

{ 

} 

env->CurrentVBlob->actualblob.mincol = 
env-> Above VBlob->actualblob.mincol 
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} 

} 
} 

if( env->Above VBlob->actualblob.maxcol > 

env->CurrentVBlob->actualblob.maxcol) 

{ 

} 

env->Current VBlob->actualblob.maxcol = 
env-> Above VBlob->actualblob.maxcol 

if( env->Above VBlob->actualblob.maxrow < 
env->CurrentVBlob->actualblob.maxrow) 

{ 

} 

env->Current VB!ob->actualblob.maxrow = 
env->Above VBlob->actualblob.maxrow 

env->Current VB!ob->actualblob.area += 
env->Above VB!ob->actualblob.area 

env->CurrentVBlob->actualblob.sumcol += 
env-> Above VB!ob->actualblob.sumcol 

env->CurrentVBlob->actualblob.sumrow += 
env->Above VB!ob->actualblob.sumrow ; 

env->CurrentVBlob->actualblob.sumcol2 += 
env->AboveVBlob->actualblob.sumcol2 ; 

env->CurrentVBlob->actualblob.sumrowcol += 
env->AboveVB!ob->actualblob.sumrowcol 

env->CurrentVBlob->actualblob.sumrow2 += 
env->Above VBlob->actualblob.sumrow2 

if(env->AboveVB!ob->actualblob.NumHoles I= 0) 

{ 

} 

env->Current VB!ob->actualblob .NumHoles += 
env->Above VBlob->actualblob.N umHoles 

vblob = env->AboveVB!ob->actualblob.child 

while(vblob I= NULL) 

{ 

} 

vblob->actualblob.parent = 
env->CurrentVBlob ; 

vblob2 = vblob ; 

vblob = vblob2->actualblob.sibling 

vblob2->actualblob.sibling = 
env->CurrentVBlob->actualblob.child 

env->CurrentVBlob->actualblob.child = 
env->AboveVBlob->actualblob.child 

env->AboveVBlob->blob 

(struct Blob *)env->CurrentVBlob 

env->AboveVBlob = env->CurrentVBlob ; 

env->HoleVBlob->actualblob.perimeter += env->col - env->LeftEnd 

126 



static void state2 ( env) 

struct BlobScanEnvironment *env 

{ 

} 

struct VBlob *vblob 

if(env->NewBlobFlag) 
{ 

} 

env->CurrentVBlob = NewVBlob(env, 

env->CurrentLine[env->CurrentRun->startcol), 

env->CurrentRun->startcol, env->col, env->row) 
Insert(&(env->vbloblist), &(env->CurrentVBlob->node), NULL) ; 

Update(env, NOEOL) ; 

env->CurrentVBlob->actualblob.perimeter += env->col - env->LeftEnd ; 

env->AboveVBlob->actualblob.perimeter += env->col - env->LeftEnd ; 

env->CurrentVBlob = env->AboveVBlob ; 

static void state3( env) 

struct BlobScanEnvironment *env 
{ 

} 

Update(env, NOEOL) ; 

NextPrevRun(env) ; 

env->CurrentVBlob = env->AboveVBlob LookUp(env->PrevRun) 

static void state4( env) 

struct BlobScanEnvironment *env ; 

{ 

} 

env->LeftEnd = env->col ; 
NextPrevRun(env) 

env->AboveVBlob = LookUp(env->PrevRun) 

static void state6( env) 

struct BlobScanEnvironment *env 

{ 
struct VBlob *vblob 

if( env-> NewBlobFlag) 
{ 

} 

env->CurrentVBlob = NewVBlob(env, 
env->CurrentLine[env->CurrentRun->startcol), 

env->CurrentRun->startcol, env->col, env->row) 

Insert(&(env->vbloblist), &(env->CurrentVBlob->node), NULL) ; 

env->NewBlobFlag = FALSE ; 

Update(env, NOEOL) ; 

env->CurrentVBlob->actualblob.perimeter += env->col - env->LeftEnd 
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} 

env->AboveVBlob->actualblob.perimeter += env->col - env->LeftEnd 

env->CurrentVBlob = env->AboveVBlob ; 

NextPrevRun(env) ; 

env->AboveVBlob = LookUp(env->PrevRun) 

env->LeftEnd = env->col ; 

static void state7(env) 

struct BlobScanEnvironment *env 

{ 

} 

Update(env, NOEOL) ; 

env->LeftEnd = env->col 

env->NewBlobFlag = TRUE 

/* Determine which VBlob a Run belongs to. * / 

static struct VBlob *LookUp(run) 

struct Run *run ; 

{ 

} 

struct VBlob *vblob 

if(run->node.Type I= RUN_TYPE) 

{ 

} 

printf("INVALID RUN FOR LookUp(): run #%d type %d\n", 

run->number, run->node.Type) 
exit(l) ; 

/* Chain through blob pointers until an actual blob is found. * / 

for(vblob = run->vblob; vblob->blob->node.Type == VBLOB_TYPE; 

vblob = (struct VBlob "')vblob->blob) 

if(vblob->blob->node.Type != ACTUALBLOB_TYPE) 
{ 

} 

printf("ILLEGAL NODE TYPE FOR LookUp(): vblob #%d blobtype %d\n", 

vblob->number, vblob->blob->node.Type) ; 

exit(l) j 

/* Return pointer to vblob containing the actual blob. * / 

retum(vblob) ; 

struct BlobScanEnvironment "'InitBlobScanEnvironment(env) 

struct BlobScanEnvironment *env ; 
{ 

128 



} 

InitList(&(env->vbloblist), VBLOBLIST _TYPE) 

InitList(&(env->runlist), RUNLIST_TYPE) ; 

InitList(&(env->bloblist), BLOBLIST_TYPE) 

~nv->NumBlobs = 0 ; 
env->NumVBlobs = 0 

env->NumRuns = 0 ; 

retum(env) ; 

static struct VBlob *NewVBlob(env, color, colstart, colend, rowstart) 

struct BlobScanEnvironment *env ; 

int color, colstart, colend, rowstart 

{ 

} 

struct VBlob *vblob 

struct Blob *ablob ; 

env->NewBlobFlag = FALSE ; 

if(NULL == (vblob = (struct VBlob *)malloc(sizeof(struct VBlob)))) 

{ 

} 

perror("NewVBlob()") 

exit(l) ; 

/* Initialize Virtual Blob. * / 

vblob->node.Type = VBLOB_TYPE 

vblob->number = ++(env->NumVBlobs) 

ablob = vblob->blob = &(vblob->actualblob) 

/* Initialize Actual Blob. * / 

ablob->node.Type = ACTUALBLOB_TYPE 

ablob->number = ++(env->NumBlobs) 

ablob->parent = NULL 

ablob->child = NULL ; 

ablob->sibling = NULL 
ablob->color = color ; 

ablob->perimeter = 0 ; 

ablob->NumHoles = 0 

ablob->area = 0 ; 

ablob->sumrow = 0 

ablob->sumcol = 0 ; 
ablob->sumrow2 = 0 ; 
ablob->sumcol2 = 0 ; 
ablob->sumrowcol = 0 

ablob->mincol = colstart 
ablob->maxcol = colend ; 

ablob->minrow = rowstart 

ablob->maxrow = rowstart ; 

retum(vblob) ; 
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static struct Run *NewRun(env, vblob, startcol, row, length) 

struct BlobScanEnvironment *env ; 

struct VB!ob *vblob ; 

int startcol ; 

int row ; 

int length ; 
{ 

} 

struct Run *run 

if(NULL == (run = (struct Run *)malloc(sizeof(struct Run)))) 
{ 

} 

perror("NewRun()") 

exit(l) ; 

run->node.Type = RUN_TYPE 

run->node.Pred = NULL 

run->node.Succ = NULL ; 

run->vblob = vblob ; 
run->startcol = startcol 

run->row = row ; 
run->length = length 

run->number = ++(env->NumRuns) 

return(run) ; 

static void GetLine(frame, buf, row) 

int frame ; 

int buf[] ; 

int row 

{ 

} 

int 

is_get_pixel(frame, row, O, MAXCOL, buf) 

for(i = O; i < MAX COL; i++) 
{ 

} 

if(buf[i] !::: 0) 

buf[i] = 1 

static int GetPixel(frame, row, col) 

int frame ; 

int row, col ; 

{ 
int pixel 

is_get_pixel(frame, row, col, 1, &:pixel) 

if(pixel != 0) 

pixel = 1 
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retum(pixel) 

} 

static void Update(env, EOLflag) 

struct BlobScanEnvironment *env 

BOOL EOLflag i 

{ 
double length, start ; 

double frow = env->row 

length = env->CurrentRun->length = 
env->col - env->CurrentRun->startcol 

env->CurrentRun->vblob = env->CurrentVBlob 

env->CurrentVBlob->actualblob.perimeter += 2 

start = env->CurrentRun->startcol 

env->CurrentVBlob->actualblob.area += length ; 

env->CurrentVBlob->actualblob.sumcol += 
length * ((length - 1) / 2 + start) 

env->CurrentVBlob->actualblob.sumrow += 
length • frow ; 

env->CurrentVBlob->actualblob.sumcol2 
length • 

( (length - 1) • 

+= 

(start + (2 • length - 1) / 6) + 
(start * start) 

) j 

env->CurrentVBlob->actualblob.sumrowcol += 
length * ((length - 1) / 2 + start) * frow 

env->CurrentVBlob->actualblob.sumrow2 += 
length * frow • frow ; 

if(env->CurrentRun->startcol < env->CurrentVBlob->actualblob.mincol) 

env->CurrentVBlob->actualblob.mincol = 
env->CurrentRun->startcol ; 

if(env->col - 1 > env->CurrentVBlob->actualblob.maxcol) 

env->CurrentVBlob->actualblob.maxcol = env->col - 1 

env->CurrentVBlob->actualblob.maxrow = env->row ; 

env->CurrentRun = 
NewRun(env, env->CurrentVBlob, env->col, env->row, 0) 
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} 

Insert(&(env->runlist), &(env->CurrentRun->node), NULL) 

if(EOLflag != NOEOL) 

{ 

} 

env->CurrentRun->startcol = env->colstart 

NextPrevRun(env) ; 

static void Debug{env) 

struct BlobScanEnvironment *env ; 

{ 
static int firsttime = TRUE 

static struct VBlob *Current ; 

char c 

int i ; 

if(firsttime) 

{ 

} 

Current = (struct VBlob *)&(env->vbloblist) 

firsttime = FALSE ; 

is _set_ cursor _position( env->row, env->col) 

for(;;) 

{ 
struct VBlob *vblob 

struct Run *run ; 

printf("VBlobList:\n") ; 

for(vblob = {struct VBlob *)env->vbloblist.Head; 

{ 
vblob->node.Succ; vblob = (struct VBlob *)vblob->node.Succ) 

printf("vblob #%d -> actualblob #%d", vblob->number, 

(vblob->blob->node.Type == ACTUALBLOB _TYPE)? 

vblob->blob->number : 

((struct VBlob *)(vblob->blob))->blob->number) ; 

if(vblob == Current) 
{ 

printf(" (current)\n") 

if(vblob->actualblob.parent != NULL) 

printf("\tparent = vblob #%d " 

vblob->actualblob.parent->number) 

else 

printf("\tparent = NONE ") 

if(vblob->actualblob.child != NULL) 

printf("\tchild = vblob #%d " 

vblob->actualblob.child->number) 

else 
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}else{ 

} 
} 

printf("\tchild = NONE ") ; 

if(vblob->actualblob.sibling I= NULL) 

printf("\tsibling = vblob #%d\n", 

vblob->actualblob.sibling->number) 

else 

printf("\tsibling = NONE\n") ; 

printf("\tcolor = %s\n", 

(vblob->actualblob.color == 0) ? 

"BLACK" : "WHITE") ; 

printf("\tcolumn: min = %d max = %d " 

vblob->actualblob.mincol, 

vblob->actualblob.maxcol) 

printf("\trow: min = %d max = %d\n", 

vblob->actualblob.minrow, 

vblob->actualblob.maxrow) ; 

printf("\tperimeter = %d NumHoles = %d\n", 

vblob->actualblob.perimeter, 

vblob->actualblob.NumHoles) 

printf("\ tarea = %£\n", 

vblob->actualblob.area) 

printf("\tsumcol = %-20£ sumrow = %-20£\n", 

vblob->actualblob.sumcol, 

vblob->actualblob.sumrow) ; 

printf("\tsumcol2 = %-20£ sumrow2 = %-20£\n", 

vblob->actualblob.sumcol2, 

vblob->actualblob.sumrow2) ; 

printf("\tsumrowcol = %-20£\n", 

vblob->actualblob.sumrowcol) 

printf(" \n") 

switch(c = getch()) 

{ 
case 's1: 

case 'p': 

if(Current->node.Succ I= 0) 

break ; 

Current = (struct VBlob *) 

Current->node.Succ 

if(Current->node.Pred J= 0) 

Current = (struct VBlob *) 

Current->node.Pred 

break ; 

case '\x20': 

case 'q': 

default: 

} 

printf("\n \n") 

return ; 

exit(O) ; 

printf("what?\n") 
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printf("\n") 
} 

} 

struct List *Scan(frame, color, top, bottom, left, right) 

int frame ; /* Frame number to scan (0 or 1). * / 
int color ; /* Color of blobs to include in returned list. * / 
int top, bottom, 

{ 
left, right ; /* Boarder positions. * / 

struct BlobScanEnvironment env 

struct Blob *blob, *nextblob, *newblob 

struct List *bloblist ; 

env .frame = frame ; 

env .rowstart = top ; 
env .rowend = bottom 

env .colstart = left ; 
env .colend = right ; 

if(NULL == (bloblist = AllocList())) 

retum(NULL) ; 

BlobScan( &env) 

for(blob = (struct Blob *)env.bloblist.Head; 

{ 

} 

nextblob = (struct Blob *)blob->node.Succ; blob = nextblob) 

if(blob->color == color) 

{ 

} 

if(NULL == (newblob = (struct Blob *) 
malloc(sizeof(struct Blob)))) 

{ 

} 

puts("Scan():unable to allocate new blob.") ; 
retum(NULL) ; 

*newblob = *blob 

Insert(bloblist, &(newblob->node), NULL) 

Clean U pBlobScan( &env) 
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return(bloblist) 

} 

void CleanUpBlobScan(env) 
struct BlobScanEnvironment *env ; 

{ 

} 

FreeNodes(&(env->vbloblist)) 
FreeNodes(&(env->runlist)) ; 

static void FreeNodes(list) 

struct List *list ; 

{ 
while(list->Head->Succ != NULL) 

{ 
free(Remove(list->Head)) ; 

} 
} 
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r BlobScan.h *I 

#ifndef STDDEFS_H 

#include <stddefs.h> 

#endif 

#ifndef LIST_ H 

#include "List.h" 

#endif 

FALSE #define NOEOL 

#define NUMROWS 

#define MAXROW 

#define NUMCOLS 

#define MAXCOL 

480 
NUMROWS-1 

612 

NUMCOLS-1 

#define VBLOBLIST_TYPE 1 

#define VBLOB_TYPE 2 

#define BLOBLIST_TYPE 3 

#define ACTUALBLOB _TYPE 4 

#define RUNLIST _TYPE 5 

#define RUN_ TYPE 6 

struct Blob 

{ 
struct Node node 

struct VBlob 
*parent, 

*child, 

*sibling ; 

int number; 

int color ; 

int perimeter ; 

int NumHoles ; 

int mincol, maxcol, minrow, 

float area, sumcol, sumrow ; 

maxrow 

double sumcol2, sumrow2, sumrowcol 

float xcenter, ycenter ; 

} 

struct VBlob 
{ 

struct Node node ; 

struct Blob *blob ; 

struct Blob actualblob 
int number ; 

} 
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/* BlobScan Environment structure. * / 

struct BlobScanEnvironment 

{ 

} 

struct List vbloblist 

struct List runlist ; 
struct List bloblist 

int NumBlobs ; 
int NumVBlobs 

int NumRuns ; 
struct VBlob *CurrentVBlob, *AboveVBlob, *HoleVBlob 

struct Run *CurrentRun, *PrevRun 

int state, row, col, LeftEnd ; 

BOOL NewBlobFlag ; 

int frame, rowstart, rowend, colstart, colend ; 

int CurrentLine(MAXCOL), PrevLine(MAXCOL) 

extern BlobScan(struct BlobScanEnvironment *) ; 

extern void CleanUpBlobScan(struct BlobScanEnvironment *) ; 

extern struct BlobScanEnvironment 

*InitBlobScanEnvironment(struct BlobScanEnvironment *) 
extern struct List *Scan(int, int, int, int, int, int) ; 
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/* List.c * / 

#include <malloc.h> 

#include "List.h" 

struct Node *InitNode(node, type, pri, name) 

struct Node *node 

UBYTE type 

BYTE pri ; 

char *name 

{ 

} 

node->Type = type ; 

node->Priority = pri ; 

node->Name = name ; 

struct List *InitList(Iist, type) 

struct List *list 

UBYTE type; 

{ 

} 

list->Head = (struct Node *)&(list->Tail) ; 

list->Tai!Pred = (struct Node *)&(list->Head) 

list->Tail = NULL ; 

list->Type = type ; 

return(list) ; 

struct Node *Insert(t_list, t_node, t_pred) 

struct List *t _list ; 

struct Node *t_node ; 

struct Node *t_pred 

{ 

} 

struct 

struct 

{ 

} 

if(NULL == t_pred) 

t_pred = (struct Node *)&(t_list->Head) 

t_node->Pred = t_pred ; 

t node->Succ = t_pred->Succ 

t_pred->Succ->Pred = t_node 

t_pred->Succ = t_node ; 

Node *Remove(node) 

Node *node ; 

(node->Pred)->Succ 

(node->Succ)->Pred 

return(node) ; 

= 
= 

node->Succ 

node->Pred 
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struct List * AllocList() 
{ 

} 

struct List *list 

if(NULL != (list = (struct List *)malloc(sizeof(struct List)))) 
InitList(list, NULL) 

return(list) ; 

139 



/* List.h * / 

#ifndef NULL 

#define NULL 0 

#endif 
typedef unsigned char UBYTE 

typedef char BYTE ; 

struct Node 

{ 

} 

struct Node *Succ 

struct Node *Pred 

UBYTE Type; 
BYTE Priority 

char *Name ; 

struct List 

{ 

} 

struct Node *Head ; 
struct Node *Tail ; 

struct Node *TailPred 
UBYTE Type; 

extern struct Node *InitNode(struct Node *, UBYTE, BYTE, char *) ; 

extern struct List *InitList(struct List *, UBYTE) ; 

extern struct Node *Insert(struct List *, struct Node *, struct Node *) 

extern struct List * AllocList() ; 
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