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CHAPTER I 

INTRODUCTION 

Serious studies of the walking motions utilized by 

animals began over a century ago. The earliest attempts 

involved rigorous measurement of kinematic data from a 

walking animal and designing mechanisms which could 

duplicate this motion. These early studies were concerned 

primarily with the duplication of the motion, not the 

reasons why animals moved with a particular gait pattern. 

These early models were limited by the fact that their legs 

followed fixed patterns of motion and could not take 

advantage of isolated footholds or adapt to changing 

conditions. 

Legged locomotion developments remained in this stage 

for nearly seven decades until the mid-sixties, when 

computer control and new, lightweight actuating systems 

made construction and control of multidegree of freedom 

mechanisms more feasible. This need for control algorithms 

and flexible mechanisms was the primary stumbling block 

in the advancement of legged locomotion research. To fully 

exploit the advantages of legged locomotion over wheeled 

locomotion, the legs of the mechanism must have a suitable 

number of controllable degrees of freedom. This requires a 

1 
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minimum of three degrees of freedom for each leg, a total of 

12 for a quadruped mechanism and 18 for a hexapod. 

The interest in developing legged locomotion systems 

was rekindled by published reports which stated that over 

half of the earth's surface area is inaccessible to 

conventional wheeled and tracked vehicles [23]. However, 

most of this inaccessable land mass can be traversed with 

little difficulty by animals employing legged locomotion. 

The problem of how to control mechanisms so that they can 

achieve successful legged locomotion comparable to their 

biological counterparts remained to be solved. 

Typically, the control algorithms for legged locomotion 

mechanisms are constructed in several levels. The lowest 

levels control the details of locomotion, such as movements 

and monitoring of individual degrees of freedom, and sensor 

signal processing. The higher level tasks that must be 

performed are maintenance of balance, terrain sensing, 

determination of leg movement sequences, foothold selection, 

and path planning to name a few. It is these higher level 

tasks that require the most additional development before 

the goal of fully terrain adaptable systems can be realized. 

Recent literature deals with attempts to explain the 

reasons why animals utilize unique gaits for locomotion. 

The underlying motivation for these investigations is to 

gain understanding of the higher level control strategies 

that animals employ during their locomotion cycles. The 

final result of this work will be realized when man can 
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construct mechanisms and give them the decision-making 

capabilities that will allow them to move with the mobility 

and grace of their biological counterparts. The achievement 

of this goal will depend on man's ability to give these 

machines sensory capabilities, understanding, and 

adaptability of motion gait equivalent to that which is 

possessed by biological creatures. 

Literature Review 

Serious studies into the reasons why an animal utilizes 

a characteristic motion gait began in the mid-sixties. 

McGhee and Frank determined the criteria necessary for a 

idealized quadruped to maintain static equilibrium 

throughout a cycle period [18]. McGhee and Frank assumed 

that the body of the translating mechanism, or idealized 

animal, maintained a constant straight-line velocity. They 

further assumed that the dynamic effects caused by movement 

of the legs were negligible and that the quadruped's legs 

were capable of exerting any force required of them on the 

body. This reduced the problem of quadruped stability to a 

static form. The stability of the quadruped's body could be 

maintained by keeping the horizontal projection of the body 

cg within the polygon formed by the horizontal projection of 

the positions of al 1 feet that were in the support phase of 

their cycle and keeping at least three feet in a support 

phase at all times. This type of locomotion they defined as 

crawling. They then used an iteration technique to solve 
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for the timing and dimensional parameters that would satisfy 

the static equilibrium criteria over an entire cycle period. 

They found three nonsingular gaits that would satisfy the 

equilibrium criteria with one being defined as optimum as it 

satisfied the equilibrium criteria over a greater range of 

leg duty factors (S). 

Bessonov and Umnov extended this early work to include 

six-legged crawlers [8]. They used the same basic 

assumptions and static stability criteria that McGhee and 

Frank did in in their early study [18]. Bessonov and Umnov 

arrived at six nonsingular gaits that satisfied static 

equilibrium criteria for hexapods. McGhee and Iswandhi 

developed the algorithm further to include n-legged robots 

and investigated adaptive gaits that would allow locomotion 

in rough terrain environments while still maintaining static 

equilibrium for hexapods [19]. Another adaptive gait was 

developed by Hirose, Nose, Kikuchi, and Umetani based on 

these earlier works for crawling quadruped mechanisms or 

idealized animals [16]. 

Working mechanisms that utilize static equilibrium 

algorithms for stabilizing the crawler body have been 

constructed by various research groups. A quadruped 

crawling mechanism that negotiates stairways and other minor 

obstacles has been demonstrated [15,16]. Hexapods have also 

been developed and are in various stages of development 

[19,20]. The most ambitious of these projects is the 

ongoing development of the Adaptive Suspension Vehicle, a 



hexapod crawling vehicle that utilizes a human operator to 

determine gross motions with computer controls determining 

details of motion, such as leg placement and gait 

adaptations [ 23]. 

5 

While the static stability algorithm was being 

developed, other hypotheses explaining the way animals moved 

were being forwarded. Alexander and Jayes found that the 

animal gaits they studied rarely satisfied static 

equilibrium criteria, even at low translational velocities 

[4]. Two explanations were forwarded to account for this 

phenomenon. The first resulted from gait analysis of 

quadrupedal and bipedal animals. Alexander and Jayes 

modeled force data taken during gait trials using an 

infinite trigonometric series [S]. Using dimensional 

parameters measured during gait trials and assuming that the 

legs were massless, mathematical models were developed that 

estimated the energy cost of locomotion [1,4]. Using this 

model, the timing parameters that minimized energy 

expenditures were determined and found to be comparable to 

measured gait data. 

Jayes and Alexander used a different approach in their 

investigation of the slow speed locomotion of chelonians 

[17]. They expected the slow speed chelonians to use a gait 

that would maintain static equilibrium. What they found 

instead was that the chelonians moved in a trot-like walking 

gait with several periods in which only two legs were in a 

support phase. They calculated the vertical forces that 
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need to be exerted by the feet for an idealized chelonian to 

maintain equilibrium in constant velocity locomotion. 

Plotting this information over the cycle period, they found 

that the gradient of the forces approached infinity at two 

points in time for each of the chelonian legs. The 

conclusion they reached was that the chelonians found such 

an abrupt change in exerted vertical force impossible for 

their slow speed muscles to deliver. Modeling the vertical 

forces exerted by the feet of the chelonian with a 

trigonometric series, they calculated the values of the 

force skewness constants Ri and the time delay factors ~i 

that would minimize unwanted vertical displacements and 

unwanted angular displacements of the body using an 

idealized chelonian model. The results were very close to 

measured gait data. 

Significance of Research 

Most of the research cited in the previous section 

concerns itself with developing a simplified mathematical 

model to describe legged locomotion. This model is then 

used to determine a limited set of parameters that will 

eliminate or minimize one or more undesirable 

characteristics. The results are then compared to data 

gathered from trial runs of a biological counterpart. For 

example, Jayes and Alexander gathered timing and force data 

for several species of chelonians. Then using the physical 

dimensions that were measured from both living and dead 
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specimens, a model was developed for an ideal chelonian with 

massless legs and moving with a constant horizontal 

velocity. They then used this model to identify the optimal 

timing parameters ~i and force skewness factor Ri for a 

chelonian. Table I illustrates their findings and the 

comparison to measured data. The optimality in their 

findings comes from minimization of the calculated 

undesirable vertical and angular displacements of the 

chelonian body. However, this work proceeded under the 

assumption that the velocity of the body was constant and 

that the chelonians' gait was symetric, all S's are equal. 

Also, the effect of the duty factors Si were not 

investigated and the physical dimensions used for 

calculations were measured from chelonian specimens. 

Therefore, this work will have applications limited to 

chelonians and animals with very similar physical 

characteristics. 

Most of the work done by these research groups was 

concerned with the gaits of natural quadrupeds and the 

natural biped gait of humans. However, humans are also 

capable of quadruped locomotion. Quadruped locomotion is 

used by infant humans before their muscular structure and 

coordination are sufficiently developed to accommodate biped 

locomotion. Quadruped motion is also used by adults when 

negotiating certain obstacles where passage space is 

limited, footing is uncertain, or when the situation 

dictates, such as a soldier moving on a battlefield. It is 



TABLE I 

RANGES OF VERTICAL MOVEMENT, OF PITCH AND OF ROLL 
FOR A TYPICAL CHELONIAN WALKING AS 

SPECIFIED IN THE MODEL WITH 
SKEW FORCE PATTERNS AND 

DUTY FACTOR OF 0.83 

Parameter Gait 1 Gait 2 Gait 

7;;2 0.50 0.50 0.50 

7;;3 o.so 0.58 0.67 

7;;4 o.oo 0.08 0.17 

Ri o.oo 0 .16 0.34 

Resulting displacement ranges: 

3 

vertical 0.12R. 0.06"1. 0.12"1. 

roll angle 26° 16° 21° 

pitch angle oo so 14° 

8 



obvious that for a mechanism to achieve the mobility of a 

human, it should be capable of quadruped as well as biped 

1 ocomotion. At this point in time, the motion strategies 

employed by humans in quadruped locomotion have not been 

investigated. 

9 

There are three basic types of quadruped locomotion 

gaits that have been identified by researchers [2]. The 

first, the crawl, refers to gaits in which the crawler 

maintains at least three legs in support positions at all 

times during the motion cycles [17]. With proper force and 

position control, it is possible for an animal to eliminate 

unwanted displacements of its body. However, as was 

explained above, this gait is used only in artificial 

mechanism locomotion and in special cases of very low 

velocity animal locomotion, such as grazing animals. 

Quadruped walking is the gait type in which at least two of 

the four walker legs support the body of the walker at all 

times in the cycle period [ 2]. It is no longer possible to 

eliminate unwanted displacements, as static equilibrium can 

no longer be maintained. This is the locomotion type used 

by most quadruped animals at the normal translational speed 

for that species. Quadruped running is defined as any gait 

in which fewer than two legs support the body and exert 

force on the ground at any time during the motion cycles. 

This type of gait is used most often by animals when 

startled, scared, or otherwise excited when a great need for 

maximum speed is needed. However, some species of animals, 
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such as chelonians with their slow muscular speeds, are 

incapable of running. Since walking is the most common form 

of quadruped locomotion, this type of locomotion holds the 

greatest interest at this time. 

Even in a simplified model of quadruped locomotion, 

there are an immense number of parameters that can be varied 

and the effects on the quadruped studied. To investigate 

all possibilities would be a very exhaustive procedure. 

Furthermore, there will be as many different optimum sets of 

parameters as there are individual body types. Therefore, a 

study describing gross motion characteristics for an average 

subject, using mean values for physical dimensions measured 

from a control group, would be more practical and useful. 

Even with this constraint, a study which includes all 

parametric variations is a formidable task. 

Since studies of this mode of human locomotion have 

never been published, this study is introductory. With this 

in mind, the objectives were designed to provide a solid 

data base for future researchers to build on. 

Objectives 

The objectives of this study are the : 

1) Development of a mathematical model that adequately 

describes unwanted displacements of the human body during 

quadruped locomotion. 

2) Parametric study of human quadruped locomotion and 

identification of an optimum set of parameters that will 



minimize undesirable displacements of the body for 

straightline translational locomotion. 

3) Comparison of the information gained from the 

parametric study to data gathered from measurements of 

actual human performance. 

11 



CHAPTER II 

HUMAN QUADRUPED LOCOMOTION: ACTUAL 

PERFORMANCE AND MODEL DEVELOPMENT 

The development of a mathematical model describing any 

form of legged locomotion is nearly impossible without prior 

knowledge of the actual performance of the subject in 

question. The number of parameters involved in such a 

derivation is immense and threatens to overwhelm the 

researcher. However, if data is gathered and analyzed 

before beginning equation derivation, sound, simplifying 

assumptions can be made based on solid statistical data, 

which will reduce the task of equation development down to 

managable proportions. With this thought in mind, sets of 

videotapings were made of six adult human subjects, three 

male and three female, and sets of physical measurements 

were taken during the videotaping procedure. The subjects 

were each videotaped moving over a straightline 30 ft. 

course. The data taking procedures were designed to provide 

some insight into the timing and controlling mechanisms 

involved in human quadruped locomotion. 

Measured Data 

The data measured from the actual human performances 

12 



can be divided into two subgroups. The first, dimensional 

data, is a set of distance measurements that is used to 

13 

calculate or define the position of the support contact 

points (feet) of the quadruped, the position of the body cg, 

or the reachable area of the subject's four legs. The 

second type of data group is termed the gait timing 

measurements. This group includes all duty factors ($i) and 

time delay factors (~i) that describe the order and timing 

of leg movements. 

Physical Dimensions 

Measurements of the approximate physical parameters of 

the six adult subjects were made during the videotaping 

procedure. Figures 1-3 define the coordinate axes, the 

physical dimensions, and the leg number assignment as they 

were used in the measurement procedure. Due to the diverse 

sizes and body configurations of the subjects, all distance 

parameters were normalized by the body length of the subject 

to give a more accurate standard of comparison. The body 

length (~) was measured as the approximate distance from the 

hip joint of the subject to the shoulder joint of the 

subject. 

Many of the dimensional values needed to describe the 

physical dimensions of the subjects' are defined as being 

measured relative to the Cg of the quadruped's body. This 

position is unknown for the subjects tested. In their study 

of chelonians, Jayes and Alexander solved this problem by 
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Figure 2. Measured Physical Dimensions 
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Figure 3. Measured Physical Dimensions 
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suspending animals as bifilar pendulums and determining the 

Cg for each individual [17]. As the human subjects 

expressed some displeasure with this this method, a 

different approach was used in this study. A Cg for the 

trunk, head, and neck link was assumed using mean values 

obtained from cadaver studies by Dempster and Roebuck [12]. 

It was found that the mean Cg for this link was located at a 

point approximately 0.54lt from the hip joint in the x 

direction and approximately at mass center in they and z 

directions. This position was marked during the measurement 

procedures using an easily identifiable cloth strip. When a 

measurement relative to the Cg was required, it was taken 

relative to this assumed Cg. 

The mean values and standard deviations of the 

subjects' normalized dimensional measurements were 

calculated using the six adult subjects as the statistical 

group and are contained in Table II. 

Gait Timing Measurements 

The gait timing values were determined after the 

videotaping procedure from reruns of the videotape records. 

The timings were for the subjects moving in quadrupedal 

locomotion over a 30 ft. straightline course. The raw data 

timings were made by hand using a stopwatch, since more 

sophisticated equipment was not available. The raw data was 

recorded in units of seconds. To account for the obvious 

errors that would result from such a crude timing method, a 
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large number of timings was taken for each timing parameter. 

The mean values of the parameters were calculated for each 

subject. These mean values were used in all future 

calculations. 

The timings that completely define the leg movement 

order are the four duty factors for the four legs, Si, and 

the four time delay factors, ~i· Since ~l by definition is 

equal to zero, there are actually three time delay factors 

to be determined. By definition, Si and ~i are fractions of 

the cycle period T. Therefore, the mean values of the raw 

data measurements were normalized by the mean value of T for 

each subject. This produces dimensionless timing parameters 

that are compatible with the parameter definitions. 

The mean values and standard deviations of the 

normalized timing constants were then calculated using the 

mean values calculated for each of the six subjects as the 

statistical group. The results are also contained in Table 

II. 

Conclusions From Timings 

The human subjects, like the chelonians studied by 

Jayes and Alexander, did not move with a gait that could 

produce static equilibrium. There are several times within 

the cycle period in which only two of the subjects' legs are 

supporting the weight of the body. This is illustrated by 

Figure 4. The human quadrupeds actually moved with a 

walking type gait as was defined earlier in this work. 



TABLE II 

RESULTS OF TIMING AND DIMENSION MEASUREMENTS 
OF HUMAN QUADRUPED LOCOMOTION 

Parameter Mean value 

Dimensional: 

Y1,-Y2 0.336 

Y2,-Y4 0.286 

"1·"2 1.053 

A.3.A.4 -0.057 

/j_).. 1.109 

sx 1. 594 

Hx 1.121 

zm 0.931 

Timing: 

S1 0.72 

S2 0.71 

S3 0.63 

S4 0.62 

!'.; 2 0.51 

i'.;3 0.52 

i'.;4 o.oo 

lJ 1.143 

T 1.98 

Mixed: 

vx 1.596 
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an 

0.04 

0.05 

0.15 

0.05 

0 .11 

0.21 

0.13 

0.09 

0.06 

0.06 

0.05 

0.04 

0.03 

0.04 

0.05 

0.03 

0.66 

0.33 
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Mixed Parameters 

There is one parameter which is a mixture of the timing 

and dimensional parameters that can be determined from the 

videotape records. This parameter, the mean horizontal 

velocity of the subject's body, was determined by dividing 

the test course length by the time required to travel the 

entire course. To make this measure compatible with the 

dimensionless constants defined above, the mean velocity of 

the subject was normalized by 'l/T with the result being a 

dimensionless velocity constant for each subject. The mean 

value and standard deviation was calculated as before and is 

included in Table II with the other performance data mean 

values. 

Development of a Mathematical Model for 

Human Quadruped Locomotion 

The development of the mathematical description of 

human quadruped walking began with a definition of the model 

characteristics. Dempster et al. calculated in their 

studies of cadavers that, on the average, 57.9% of the human 

body's total mass is located in the trunk, head, and neck 

[12]. The rest of the mass is distributed among the rest of 

the body parts in the proportions 5.1% in legs 1 and 2 and 

15.9% in 1 egs 3 and 4. Using this as justification, it was 

assumed that the dynamic effects due to movement of the 

human quadruped legs are negligible compared to the forces 

neccessary to support the body in low velocity walking. 
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The equations of motion describing the angular and 

linear displacements of the human body can then be derived 

using relatively simple dynamics principles. Using the 

coordinate axes as defined earlier, the forces exerted by 

the leg points of contact on the ground, and the position 

vector of the points of contact relative to the body Cg, the 

linear and angular acceleration of the body Cg can be 

calculated as follows 

4 

.I Fi = m(d 2Pb/dt 2 ) (2.1) 
1=1 

4 

.l (FziYi-FyiZi) = Ixx(d2$/dt2) 
1=1 

(2.2) 

4 

l (FxiZi-FziXi) = IYY(d26/dt2) 
i=l 

(2.3) 

4 

.l (FyiXi-FxiYi) = Izz(d2w/dt2) 
1=1 

(2.4) 

where $, e, and w are the roll, pitch, and yaw angles of the 

body about the x, y, and z axes, respectively. 

A formidable problem remained in defining the forces 

exerted by the subject during the leg support phases. It 

would be logical to assume that a slow speed quadruped would 

move in a manner that would satisfy the static equilibrium 

criteria. However as was pointed out earlier, this is not 

the case. Animals seem to avoid the abrupt change in force 

gradient needed to maintain static equilibrium and settle 

for a compromise, a gait with no abrupt changes in the force 

gradients but timed in a fashion that minimizes unwanted 
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displacements [17]. Using a method published by Alexander 

and Jayes [5], the forces exerted by the legs during support 

phases of their cycle were modeled using a trigonometric 

series of the form 

where 

when 

00 

Fi = l Ansin(nTIDi) 
n=1 

An = arbitrary force constants 

Di = Cn-(r,;i-Si))/Si 

r,;i-si ~ n ~ r,;i 

(2.5) 

At all other times, when leg i is in a movement phase, the 

forces exerted by leg i equal zero. Alexander and Jayes 

include no cosine terms in the forcing function because of 

the requirement that the force terms diminish to zero at the 

end points of the leg i support phase. Furthermore, if the 

force curves are smooth without abrupt changes in gradient, 

all higher-numbered terms in the infinite series will 

approach zero. 

Vertical Forces 

Alexander and Jayes state that the first three terms in 

the infinite series should be sufficient to model the forces 

present in any set of vertical force data. This leaves a 

series function for vertical forces of the form 

Fzi Czi[sin(TIDi) + Risin(2TIDi) + Qisin(3TIDi)] (2.6) 

where Czi = Al of leg i 

R. = + A2/A1 ]. 

and Q· = A3/A1 ]. 



The ambiguous sign on the second series constant Ri comes 

from Jayes and Alexander's experiences with other quadruped 
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animals in which the absolute value of the skewness factor R 

was negative for the forefeet (legs 1 and 2) and positive 

for hindfeet (legs 3 and 4) [17]. Alexander and Jayes 

showed that this three term representation of horizontal 

forces reasonably duplicated force records of all gaits 

followed by men, dogs, and sheep [4]. Therefore, this 

representation is used in all further calculations. 

If the limitations placed on vertical forces exerted by 

a quadruped's legs are considered, some logical deductions 

can be made about the three constants Czi' Ri, and Qi. The 

vertical forces exerted by the ground on the leg contact 

points will always be positive, unless there is an adhesive 

attraction between the contact surface and the ground 

surface. By assuming no adhesive attraction is present, a 

limitation is placed on the values that Ri and Qi can take. 

Recognizing that Czi is positive, then for Fzi to be 

positive over the entire interval of the support phase, the 

inequalities 

and 

where 

must be satisfied. 

-0.5 ~ Ri ~ 0.5 

-B/3 < Q. < B 
- l. -

B = l-l2Ril 

(2.7) 

(2.8) 

The value of the constant Czi also can be calculated to 

some degree of accuracy by careful observation. It is 

proper to assume that the mean value of the vertical 



25 

acceleration is zero over the entire cycle period. This 

would maintain the relative position of the body with 

respect to the ground over subsequent cycles. For this to 

be true, the sum of the areas under the force vs. time 

curves of the terms in the vertical acceleration equation 

must be zero. Using Equation (2.1), the area under the 

vertical force curve for the entire cycle period would then 

be the integral equation 

4 T 

.l J Fzidt - mgT = 0 (2.9) 
]. = 1 0 

Upon integration of this equation, the result is 

4 

I (2.10) 
i=l 

If each leg is assumed to support 0.25 of the body's weight 

during the movement cycle, then 

(2.11) 

This is the form of Czi that was used in all subsequent 

calculations. 

Horizontal Forces 

The normal assumption made in the past by authors 

studying animal motion has been that the velocity of the 

animal is constant. It became obvious after reviewing the 

videotape records of the human crawling subjects that this 

was far from being an accurate assumption. Although some 

forward motion was maintained at all times, there appeared 

to be a cyclic acceleration and deceleration of the 
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subjects' bodies during the movement cycles. There were 

obvious significant horizontal forces that could not be 

ignored in any model developed to describe the human 

quadruped motion sequence. 

Alexander and Jayes developed equations describing the 

energy expenditures of quadrupeds and bipeds [1,4,6]. To 

describe the horizontal forces exerted by feet during 

locomotion, they developed an empirical relationship between 

the horizontal forces and vertical forces that closely 

approximates the results of force data records. The 

relationship is of the form 

where 

when 

Tc = [n-(~i-Si)/ 2 1 

~i-si in i ~i 

These horizontal forces will affect only the forward 

(2.12) 

velocity, the yaw angle, and the pitch angle of the human 

model body. 

The obvious reason for a subject to move with such an 

unsteady velocity is to use horizontal forces as a means to 

reduce pitching during the movement cycle. Yaw is 

effectively reduced to zero, if the horizontal forces were 

zero. Therefore, reduction of yaw angles cannot be the 

primary concern of the subject or the reason for horizontal 

force exertions of the feet. 

The empirical function described above results in a 

negative value for the horizontal force in the first half of 

a leg support phase with a minimum in the first quarter. 



Conversely, the second half of the support phase has a 

positive with a maximum in the final quarter of the support 

phase. This seems to support observations of videotape 

records in which the body of the crawler decelerates at the 

beginning of the support phases and accelerates near the 

end. 

Lateral Forces 

From the information gleened from previous papers 

regarding force data, the lateral forces Fyi exerted by the 

legs of walking animals were very small in magnitude 

compared with the vertical and horizontal forces 

[1,2,3,4,S,6,17]. Considering this evidence, the 1atera1 

forces were considered negligible for forward straightline 

locomotion. 

Calculation .£i Displacements and Orientations 

From Acceleration Equations 

Earlier in this chapter, the second derivatives of the 

position and orientation coordinates of the quadruped body 

were defined in Equations (2.1-2.4). The equations were 
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defined in terms of the forces exerted on the quadruped feet 

and the position of the feet relative to the body cg. 

Remember that the forces exerted by the ground on the legs, 

therefore also the moments generated due to the forces, are 

defined during the support phase of the cycle by a 

trigonometric series and are effectively zero during the 
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movement phase. This presents a major problem when trying 

to integrate over an entire cycle period to determine the 

anti-derivatives and calculate the position and orientation 

vectors. Either a different set of equations must be 

derived for each combination of support conditions during 

the cycle or some numerical method must be used to integrate 

the acceleration functions. 

Alexander and Jayes solve this problem by writing the 

acceleration equations in the form of a Fourier series 

[4,17]. They then integrate the sum of the series twice to 

obtain an infinite series for the displacement values. They 

can then find the linear and angular positions of the 

quadruped body at arbitrary times by summing the terms of 

the series at the specified times. They use the first SO 

terms of the series at each time step. Although this method 

can produce results accurate to a large mumber of 

significant digits, it requires 50 evaluations of a 

complicated series function at each time step. 

Rather than using this elegant, but also 

computationally intensive, method of solving the problem of 

the discontinuous force functions, methods of numerical 

integration were investigated. The simplest method that can 

be used is derived from the trapezoidal rule which states 

that 

(2.13) 

where 
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and n = desired number of integration steps 

with a estimated global error of 

Error = -(xh-x1 )h 2 f"(E)/12 (2.14) 

where x1 ~ E ~ xh 

over an integration interval [13]. This error estimation 

allowed the actual error to be bracketed which was an aid in 

choosing a suitable interval for the numerical integration. 

For the results that will be presented later, n was chosen 

to be 100. Since the integration interval is T, this would 

result in an error estimation of 

where 

Error = -8.333•10- 6 Tf"(E) 

0 ~ E ~ T 

for each integration. This accuracy was considered 

sufficient for the purpose of describing gross motion 

characteristics of the quadruped. 

(2.15) 

The values for the accelerations at each time step were 

calculated and these accelerations were integrated twice 

using the trapezoidal rule. This yielded estimates of the 

displacement and orientation coordinates of the quadruped's 

body at each time step value. 

Maintaining Function Continuity 

Care had to be taken during displacement calculations 

to maintain proper mean values of the accelerations, 

velocities, and position coordinates over the cycle 

interval. These mean values are chosen such that there is a 

cyclic continuity of motion over multiple cycle periods. 



30 

The mean values that need to be maintained are 

d 2 Z /dt 2 = dZm/dt m = 0 (2.16) 

zm = zb (2.17) 

d 2 X /dt 2 = 0 (2.18) m 

dXm/dt = Vx-r/9, (2.19) 

d 2 ¢ /dt 2 = d<l>m/dt = <l>m = 0 (2.20) m 

d 2 8 /dt 2 = d8m/dt = em = 0 (2.21) m 

d 2 ¢ /dt 2 = d\jlm/dt = Wm = 0 (2.22) m 

The mean values were preserved by first calculating the 

second derivatives of the displacements over the entire 

cycle and integrating these values twice. Then appropriate 

initial values were added to the values of the 

displacements, orientations, and their derivatives to 

produce the desired mean values. 



CHAPTER III 

PARAMETRIC STUDY OF HUMAN 

QUADRUPED WALKING 

The last chapter dealt with development of a 

mathematical model that would describe quadruped walking. 

The parameters contained in this model that affect 

orientation and displacement of the quadruped's body can be 

split into four major classifications. The first three 

parameter groups are the same groups defined in the data 

gathering procedures. The final classification group is the 

set of force parameters which defines the shape and 

magnitude of the forces exerted by the ground on the 

quadruped's legs. 

Using the previously defined mathematical model, the 

unwanted displacement and orientation values were calculated 

over an entire cycle period with a set of parameters which 

define a walking gait as the input to the procedure. After 

adjusting the mean values over the cycle period to the 

required values, the maximum and minimum deviations of the 

unwanted displacements and orientations from the mean values 

during one cycle period were determined. The basis for 

optimization was defined as a range of deviation from the 

required mean in an equation of the form 

31 



32 

Range = (Max-Min)/2 (3.1) 

The optimality of one set of parameters defining a gait over 

another set results from a comparison of these range values. 

The gait producing the smaller range is designated as the 

better of the two. 

Originally, an attempt was made to write a single 

optimization procedure, based on the complex search 

algorithm, which would converge on the optimum parameters 

that minimize the unwanted displacement ranges. There were 

several problems that thwarted this attempt. First, there 

is a mixture of units in the displacement and orientation 

values. The calculated displacements were in units of feet 

while the roll, pitch, and yaw angles were calculated in 

units of radians. Secondly, all parameters are not present 

in every set of displacement and orientation equations. 

Finally, there was very little difference in range values 

for several completely different sets of parameters. In 

other words, there is no clearcut minimum value on which the 

algorithm can converge. Due to these complications, the 

complex search algorithm did not converge to a solution at a 

rate that suited the needs of this study. 

Since one all-encompassing optimization was not 

feasible, a different method of evaluation needed to be 

developed. Toward this end, the characteristics of each of 

the unwanted displacements were analyzed. The relative 

effects of each parameter on the displacements and 

orientations were classified and rated in the order of their 
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relative importance. The parameters were then analyzed and 

assigned a value in the order resulting from this 

preliminary classification. In each case, the results of 

the previous parameter analysis procedures were used in 

subsequent parameter determinations. 

Simplifying Observations 

Even though the equations that described movement of 

the quadruped's body are in a simplified form, there are 

still 38 parameters in these equations that affect the 

magnitude and shape of the motion curves. Obviously, the 

optimization of such a large number of parameters would be 

an exhaustive procedure to undertake. The optimality being 

a minimization of unwanted displacements and orientation 

angles of the quadruped's body. Fortunately, analysis of 

the data resulting from measurements of actual human 

performance as well as the experiences of past researchers 

dealing with similar subjects leads to assumptions that 

reduce the complexity of parameter optimization to managable 

proportions. 

Gait Timing Observations 

There are nine timing parameters: s. and~· for each of 
1 1 

the four quadruped legs and the cycle period T. 

Optimization of these parameters alone would be a formidable 

task owing to the nonlinear relationship between these 

parameters and the unwanted displacements. There were two 



assumptions made that affected the timing parameters. The 

first was based on the results of the timing measurements 

contained in Table II. From these timings, a marked 

similarity between the forefeet duty factors (legs 1 and 2) 

and the hindfeet duty factors (legs 3 and 4) can be 

recognized. With Table II as evidence, it was assumed that 
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S1 = 

S3 = 

and ll = 

S2 = 

S4 = 

St/Sh 

St 

sh 

(3.2) 

(3.3) 

(3.4) 

for the purposes of optimization. 

Jayes and Alexander found in their studies of 

chelonians that the optimum time delay factors occurred when 

the cycle of forefeet and hindfeet pairs were a half cycle 

out of phase with each other. Although this reduces the 

possible leg movement order to two possibilities, 1423 and 

1324, there are an infinite number of combinations of these 

two leg movement orders that could be investigated. An 

assumption of this type can be justified, if a careful look 

is taken at Equations (2.2) and (2.3) and the known 

information about the dimensional parameters are used. 

The coordinate axes that were defined earlier in this 

study ensure that Y1 and Y3 will always be positive and Y2 

and Y4 will always be negative values. Referring to 

Equation (2.2), there will be a net cancellation of the 

moment exerted on the crawler body about the x axis if 

either the fore and hind leg pairs (1 and 2, 3 and 4) or the 

diagonal pairs (1 and 4, 2 and 3) have similar time delay 
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values. One of these pairings can be dismissed by 

considering Equation (2.3). The value of the position 

coordinates Xi will intuitively be positive for legs 1 and 2 

and negative for legs 3 and 4 during most of the motion 

cycle. As a result, moments about the y axis due to the 

vertical forces Fzi will tend to cancel one another if 

either left and right leg pairs (1 and 3, 2 and 4) or the 

diagonal leg pairs have similar relative phases. Only the 

diagonal pairings will provide partial cancellation of 

moments about both the y and x axes. Referring to the 

definition of quadruped walking, the two diagonal pairs will 

have to move out of phase with each other a sufficient 

amount such that at least two legs maintain contact with the 

ground at all times. Thus, leg 2 is assumed to be out of 

phase relative to leg 1 and leg 3 is assumed to be out of 

phase relative to leg 4 the amount of a half cycle. The 

resulting relationships were of the form 

and 

z; 2 = o.5 

1;3 = 1;2+Y 

1;4 = y 

This is the form used in all future procedures. 

(3.5) 

(3.6) 

(3.7) 

With these two assumptions, the timing parameters 

chosen for optimization were the parameters Sf, µ, y, and T. 

Quadruped Dimension Observations 

There are 12 dimensional parameters that have an impact 

on the calculated roll, pitch, yaw, and vertical 
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displacements of the quadruped body. These parameters are 

Yi and Ai for each of the four legs, the body mass, and the 

mass moments of inertia of the body about the major axes. 

Yi, m, the mass moments of inertia, and 6A are constants 

that are related to the limb lengths and physical 

characteristics of the individual quadruped. For this 

reason, these parameters were not considered to be variable 

parameters that were available for optimization. The values 

of these parameters, used in displacement calculations, were 

the mean values determined in the measurement procedures or 

were determined by other means that will be discussed later. 

This leaves only the relationship of the A's to b.A left 

to determine. Since the limb lengths are of similar length 

for the fore and hind foot pairs a reasonable assumption is 

that 

and 

Af = "-1 = "-2 

Ah = A3 = A4 

and can be related by defining a parameter a such that 

and 

Af = a6A 

Ah= (a-1)6A 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

reducing the number of variable dimensional parameters to 

one. 

Force Constant Observations 

Due to the lack of force records for quadruped human 

locomotion, assumptions that other authors have made 

concerning the 16 force parameters were used in this study. 
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Determination of Czi has already been discussed at some 

length earlier. Using information from Alexander and Jayes' 

investigations of other quadruped gaits, the values for Qi 

and Cxi are assumed to be equal for each of the four 

quadruped legs [4,17]. Similarly, the absolute values of Ri 

are assumed to be equal for all legs, but with a negative 

sign for the forelegs and a positive value for hindlegs. 

These assumptions leave three force parameters that can be 

varied independently to gage the effects on human quadruped 

motion. 

Mixed Parameter Observations 

The parameter Vx is a mixture of the timing and 

dimensional parameters as discussed earlier. No assumptions 

were made that affected the variable nature of this 

parameter. 

After all assumptions were made, nine parameters were 

left that could be varied independently in the optimization 

procedures that follow. 

Classification of Parameters 

This procedure began with the identification and the 

comparison of the proportionality constant values contained 

in Equations (2.1-2.4). The first constants determined were 

the mass moments of inertia of the quadruped model's body 

about the major axes. In earlier studies of animal gaits, 

the moments of inertia of a subject's body were determined 
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by suspending the subject as a bifilar pendulum and 

measuring the natural frequencies. Human subjects, however, 

expressed no wish to repeat this technique. Instead, 

approximate values for the mass moments of inertia were 

calculated using the results of cadaver studies by earlier 

groups [9,10,12]. These researchers presented their results 

in the form of constants Nx, Ny, and Nz such that the radius 

of gyration of a human body segment could be estimated as 

(3.12) 

The moment of inertia of the body segment about the a axis 

could then be estimated as 

I = mK 2 
aa a (3.13) 

where m = body segment mass 

and L = body segment length 

This method was used to calculate assumed values for the 

moments of inertia of the torso, neck, and head link about 

the defined axes with the results 

Ixx 0.0424mi 2 (3.14) 

Iyy = 0.263mi 2 (3.15) 

and Izz 0.205mi 2 (3.16) 

It was obvious that because of the body's small mass moment 

of inertia about the x axis that the roll angle would be the 

most sensitive unwanted displacement to parameter changes. 

Therefore, the roll angle range was the first unwanted 

displacement that was minimized. If this criteria is 

carried further, the yaw angle would be the next to be 

evaluated. However, a comparison of Equations (2.2) and 
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(2.4) indicates that the partial cancellation of net moment 

values due to the sign convention for Yi would be similar 

for both roll and yaw calculations. Therefore, an optimum 

set of parameters that minimizes roll would also be close to 

an optimum for yaw. 

Parameters Affecting Roll 

First, all parameters that affected the roll angle 

range of the quadruped's body needed to be determined and 

classified as to their relative effect on the roll range. 

Starting with the moment equation about the x axis, Equation 

(2.2), and the function describing the vertical forces 

exerted by the crawler legs, Equation (2.6), the parameters 

Si, µ, y, Ri, and Qi are obvious candidates for 

optimization. 

Since all time parameters are normalized by the cycle 

period, then if the value of h used in the integration 

procedure is also normalized by the cycle period, a simple 

relationship between the roll range and T is developed. The 

roll range will vary at a rate that is proportional to the 

square of the cycle period. Similarly, all other parameters 

that have a linear and therefore easily recognized 

relationship with the roll angle range were identified. The 

calculated roll range was actually a normalized value of the 

actual roll range by a factor such that 

where 

<l>act = 5 c<l>calc 

Sc = (m1T 2 )/Ixx 

(3.17) 

(3.18) 



This normalized roll range is the value that appears in the 

optimization procedures that follow. 
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The classification of the relative importance of each 

parameter to roll calculations was determined by trial and 

error simulations and experiences of past authors [17]. The 

results obtained from these trials placed sf as the 

parameter most sensitive to small deviations from the 

optimum value. The duty factor was closely followed in 

order by y, Ri, ~' and Qi. The parameters were determined 

in the order indicated by the preliminary trials. 

Parameters Affecting Vertical Displacement 

Care had to be taken to keep the vertical displacement 

in check while the parameters for minimum roll were worked 

out. Some parameter sets that produce small roll ranges 

result in relatively large vertical displacement ranges. 

Therefore, the displacement was watched during the roll 

optimization procedure to ensure unacceptable displacements 

did not occur. 

In a fashion similar to the roll range calculation, all 

parameters with linear relationships to the vertical 

displacement range were identified. The vertical 

displacement calculated was the actual displacement range 

normalized by these parameters such that 

(3.19) 

Since only the deviation of Z from the mean is important, 

the calculated Z is sufficient for analysis. 



Remaining Parameters 

The remaining four parameters are not contained in the 

equations governing roll angle or vertical displacement 

range. These must be determined by analysis of one of the 

other undesireable angular displacement ranges. Of these 

four parameters, only two appear in the equations governing 

yaw. The effects these two parameters have on yaw can 

easily be determined by referring to Equations (2.4) and 

(2.12). The two remaining parameters, Cxi and T, have a 

simple linear relationship with the yaw range. Therefore, 

the yaw range is reduced to zero if either parameter 

approaches zero. Since a zero value of T is physically 

impossible and videotape records reveal that Cxi does not 

equal zero, reduction of yaw ranges does not seem to be the 

primary concern of the quadruped. 
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Of all the undesirable displacements discussed thus 

far, only the equations describing the range of pitch angles 

contain all nine parameters earmarked for investigation. 

Referring to Equations (2.3), (2.6), and (2.12), it can be 

seen that the five parameters discussed earlier affect pitch 

ranges. However, cxi' T, a, and vx are also present in the 

equations defining the horizontal force and horizontal 

displacement of the feet. The moment arm terms, Xi and Zi, 

are not constants in Equation (2.3). Therefore, the actual 

values of Xi and Zi, not normalized ranges, are needed for 

pitch calculations. For this reason, the cycle period 



cannot be normalized out of pitch calculations. The cycle 

period is needed to convert the normalized values of 

calculated xi and zi into absolute distance values. 

By a set of trial and error procedures, it was found 

that the pitch range was most sensitive to variances in the 

parameter a, followed by Cxi• VX, and T. 

Determination of Parameter Relationships 
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As was stated earlier, the optimization of all nine 

parameters with one optimization procedure met with several 

insurmountable problems. Instead, a technique employing 

contour plotting was adopted. The parameters were varied 

and the resulting displacement ranges calculated for each 

set of parameters using a computer program written for a 

Harris 800 Super-mini computer. The listing of this program 

is contained in the Appendix A. The use of contour plotting 

allowed two parameters to be varied for each program run. 

The combinations of these two parameters that produced 

specified contour values of the displacement ranges could 

then be plotted (See Appendix B). By varying another 

parameter on each plot, the effects of a total of three 

parameters could be investigated at any one time. From 

these contour plots, relationships between parameters and 

equations describing the optimum combinations of parameters 

resulting in minimum displacement ranges were developed. 

The effects of the different parameters were analyzed in the 

order specified earlier. 



Determination of Forefeet Duty Factors 

The normalized roll angle ranges were calculated and 

contour plots were made for varying values of y and JJ with 

the assumption that R.=Q.=0. A plot was made for different 
l. l. 

values of Sf• The ratio JJ was confined to values that 

satisfy the criteria for walking type gaits. This limits 

the range of values that l-l and sf can take to the ranges 

and 

o.s ~sf < i.o 

sf < u ~ 2sf 

The y values range from -0.S to 0.5 which is adequate to 

cover all possible gaits that can be followed with the 

assumptions made. 

Figures 5-8 illustrate the results of this plotting 

procedure. These plots revealed that the minimum roll 

ranges occurred along a curve such that 
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(3.20) 

for all values of sf between o.s and 1.0. 

Using Eq ua ti on ( 3.20) to determine y, the inter v a 1 

steps for varying Sf and JJ were shortened and the minimum 

roll range calculated for each value of the duty factor 

along with the µ that the minimum occurred at. The results 

are contained in Table III. It is obvious from Table III 

that the roll ranges may be minimized when Sf=0.71. Based 

on this observation, sf is given a value of 0.71 for all 

future calculations. 

The range of vertical displacement was plotted in a 

similar manner to check the effect that sf, y, and l-l had on 
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MINIMUM NORMALIZED ROLL RANGES FOR VARYING VALUES 
OF Sf AND THE CORRESPONDING RATIO U 
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sf u 4> range(xl0- 3 ) 

0.66 1. 278 1. 715 

0.67 1.265 1. 289 

0.68 1.253 0.997 

0.69 1. 240 0.692 

0.70 1.230 0.504 

0.71 1. 218 0.425 

0.72 1.208 0.531 

0.73 1.198 0.640 

0.74 1.190 0.789 

0.75 1.183 0.903 

0.76 1.175 0.973 

0.77 1.168 0.999 

0.78 1.163 1.124 

0.79 1.155 1.158 

0.80 1.150 1.163 
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it. Figures 9-12 contain the results. If the plots of 

roll and vertical displacement are overlayed, it can be seen 

that parameters that result in minimum roll range correspond 

to maximum values of vertical displacement. However, the 

vertical displacement range is still comparatively small for 

all parameter sets plotted. 

Determination of the Relative Phase 

Once the value of Sf was determined, the next 

parameter, y, was treated similarly. The program source 

code was modified to calculate roll ranges for varying 

values of the relative phase and the vertical force skewness 

constant Ri while holding the force constant Qi equal to 

zero. Contour plots were formed for various values of the 

ratio u (See Figures 13-16). Comparison reveals that the 

relationship between y and the minimum roll range was 

changed significantly by the addition of the skewness factor 

Ri, and Equation (3.20) no longer holds true. At first 

glance, it would appear that the relationship between y, u, 

and the minimum roll ranges is linear. However, in the 

analysis that follows, this last statement is proven false. 

When a non-zero Ri is introduced into the vertical 

force functions, the force curves for each leg is skewed to 

the left if Riis positive and to the right if Riis 

negative. Obviously, it is this shift in the vertical 

forces that affects the optimum values of y. 

The key to developing the relationship between these 
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parameters is found by examining Equation (3.20) when Ri=O. 

This condition forces two events to occur at the same point 

in time. First, the diagonal leg pairs reach their point of 

maximum vertical force exertion at the same point in time. 

Secondly, the diagonal leg pairs reach the point when the 

moment impulse exerted on the body about the x axis equals 

one half of the total impulse exerted by the individual legs 

over the entire cycle at the same point in time. This 

second event is the event that holds and dictates the 

conditions for minimum roll range when Ri is non-zero. 

The diagonal leg pair 1 and 4 is used for the 

derivation that fol lows. Leg pair 2 and 3 can also be used 

with equivalent results. Referring to Equations (2.2) and 

(2.6), the total moment impulse exerted by a single leg 

during one cycle period is mgYi/4 when normalized by the 

cycle period. Since Fzi is zero unless the leg is in a 

support cycle, an equation of the form 

Y.JnF .dt = mgY./8 
J. 1 ZJ. ]. 

(3.21) 

where 

can be written and evaluated to find the normalized point in 

time that the moment impulse about the x axis equals one 

half of the total for each leg during a cycle period. 

Integrating Equation (3.21) using parameters from legs 1 and 

4, the result is for leg 1 

(3.22) 

and for leg 4 
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(Ri)cos(2nD4)+cos(nD4 )-Ri/2 = 0 

D. = [n-(r;;.-S.)]/S· 

(3.23) 

where 
l l l l 

By substituting the trigonometric identity 

cos(2X) = 2cos 2 (X)-l 

Equations (3.22) and (3.23) become for leg 1 

cos 2 (nD 1 )-(l/Ri)cos(TID 1 )-l = 0 

and for leg 4 

(3.24) 

(3.25) 

from which the cosine terms can be found using the quadratic 

equation. From experience, it was found that only one of 

the two roots found from the quadratic equation made 

physical sense. The value of Di can then be found from the 

root as 

Recalling the definition of Di and Equations (3.4) and 

(3.7), by substitution the relative phase becomes 

(3.26) 

(3.27) 

Checking the equations that resulted against the plotted 

information, this definition for y agrees exactly with the 

optimum y curve on the contour plots. Therefore, Yopt is 

defined as the value which relates the moment impulse about 

the x axis of diagonal leg pairs as stated above. 

Determination of the Force Skewness Constant 
~~~~~~~- -- ---

The skewness factor Ri was determined using contour 

plotting techniques similar to those used to define the 

relationship between y and the roll angle. The contour 
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plots were created by varying the skewness factor Ri and the 

vertical force proportionality constant Qi. A separate plot 

was made for selected values ofµ. 

However, before these plots could be constructed the 

relationship between y and the moment impulses of the legs 

needed to be rederived for non-zero values of Qi. Solution 

of the integral Equation (3.21), Equations (3.22) and (3.23) 

became for leg 1 

and for leg 4 

Substitution of the trigonometric identities 

and 

cos(2X) = 2cos 2 (X)-1 

cos(3X) = 4cos 3 (X)-3cos(X) 

then these equations become for leg 1 

W3 -(3R./4Q.)W 2 +[(3-3Q.)/4Q.]W+(3R./4Q.) = 0 
l. l l. l. l. l 

and for leg 4 

where 

W3 +(3Ri/4Qi)W 2 +[(3-3Qi)/4Qi]W-(3Ri/4Qi) = 0 

W = cos('ITDi) 

(3.30) 

(3.31) 

The three roots to the cubic Equations (3.30) and (3.31) 

were found using an iterative method called Bairstow's 

Method [13]. This method was chosen because it is stable 

for all equations having at least one real root, is 

computationally efficient, and is mathematically simple. 

Using Bairstow's Method, a real root of the cubic equations 

is found very quickly. When this real root is factored out 

of the original cubic equation, the final two roots can be 
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easily found from the remaining quadratic equation. From 

experience, it was found that only one of these roots has an 

absolute value of less than one, a requirement for W to make 

mathematical sense as a cosine function. The remaining 

roots were either complex or did not satisfy criteria. 

After the solutions were found, Equations (3.26) and (3.27) 

were used to calculate Yopt as before. 

The results of the plotting routines are contained in 

Figures 17-21. It is evident from these plots the the value 

of the roll angle range will be minimized at values of Ri 

that fall on the Ri=O axis. Therefore, Ri was assigned the 

value of zero for all future calculations. 

Determination of the Vertical Force 

Constant and the Duty Factor Ratio 

Again, the analysis procedure began with the 

construction of contour plots. This time the remaining two 

parameters that affect roll angle range, Qi and u were 

varied, within previously defined limits. The resulting 

plot is shown in Figure 22. Obviously, there is a 

mathematical relationship describing the combination of 

these parameters that produces a minimized roll value. This 

relationship, however, was not readily apparent. 

A similar plot was made by varying the same parameters, 

but with the vertical displacement range making up the 

contour lines, which resulted in Figure 23. The combination 

of parameters that produce minimum roll ranges and minimum 
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vertical displacement ranges were then plotted on the same 

graph (See Figure 24). The point where these two curves 

intersect was then determined from the graph. It was 
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assumed that this point of intersection defined the optimum 

values of Qi and l.1 for the quadruped, since both 

displacements were at minimums. This gives a value of 0.113 

and 1.152 to Qi and µ, respectively. Evaluation of 

Equations (3.26-3.27) and (3.28-3.31) yielded a relative 

time delay (y) of -0.0468. These were the values given to 

these parameters and carried over into subsequent 

calculations. 

Determination of a 

As was outlined earlier, to determine the last 

parameters, the pitch angle range was used as the quantity 

to be minimized. The parameters f3f, y, Ri, µ, and Qi 

remained unchanged from the optimums determined earlier. 

Following the order determined by the preliminary 

classification of parameters, a and Vx were varied and the 

normalized pitch range was calculated, while Cxi was held to 

zero. The results are presented in the form of a contour 

graph (See Figure 25). 

It would appear that the values of a and Vx which 

produce a small pitch range are related in a linear fashion. 

It was found that the optimum a for a value of Vx is such 

that the average values of Xi for diagonal leg pairs have 

equal absolute values but opposite signs during the legs' 
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support phases. Since the horizontal position of the legs 

at any time n, can be described by the equation 
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(3.32) 

during the leg support phase. And since when Cxi=O the Vx 

is constant, the body position is 

Xb(n) = v xn (3.33) 

Recalling Equations (3.10) and (3.11), the absolute values 

of the mean value of Xi will be equal for diagonal leg pairs 

when 

which upon testing, agrees with the contour plot data. 

Determination of the Horizontal 

Force Constant 

(3.34) 

The horizontal force constant Cxi was the next 

parameter that required evaluation. Allowing Cxi to take 

other values besides zero, allowed the cycle period T to 

enter into the equations governing pitch angle range, since 

Vx was no longer constant and Fxi was no longer equal to 

zero at all times. To aquire information, Vx and Cxi were 

varied and the affect these parameters had on pitch range 

was recorded in the form of contour plots. One plot was 

constructed for each of several selected values of T (See 

Figures 26-30). 

From this information, there appeared to be a linear 

relationship between the values of Vx and Cxi that resulted 

in minimum pitch ranges. However, this linear relationship 
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was not constant for all values of T. An exact relationship 

could not be determined with any confidence in the results. 

Instead, the parameters that produced minimum pitch ranges 

seemed to fit an equation of the form 

Using a trial and error technique to determine the two 

constants, Equation (3.35) became 

(3.35) 

(3.36) 

which agreed with the plotted data precisely. This equation 

predicted optimum Cxi to within +0.001% of the actual 

parameter value found from the graphed data. Therefore, Cxi 

was defined as in Equation (3.36) for all future uses. 

Determination of the Velocity 

Using Equation (3.36), the pitch angle ranges were 

calculated for varied values of Vx and T. The results were 

compiled in a electronic file in tabular form. This set of 

calculations revealed that for all cycle period values the 

range of normalized pitch was approximately 1.235•10- 2 when 

Vx=0.5 and steadily decreased in value to 1.111•10- 2 when 

Vx=2.5. A sample of the results is contained in Table IV. 

This suggests that the pitch range can actually be 

reduced if the distance travelled per cycle (Vx) is 

increased. Obviously, Vx cannot be increased indefinitely. 

Vx will have a limit, determined by the reachable workspace 

of the limbs of the quadruped. The maximum and minimum 

values of Xi during a leg's support phase cannot extend 



TABLE IV 

NORMALIZED PITCH RANGES AND CALCULATED HORIZONTAL 
FORCE CONSTANT FOR VARIED 

VALUES OF T and Vx 
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vx ex e range(x10- 2 ) 

Cycle Period = 1.2 sec. ----
o.so 0.4S3 1. 236 

1.00 0.90S 1.206 

1. so 1.3S8 1.17S 

2.00 1. 810 1.144 

2.SO 2.263 1.114 

Cycle Period = 2.0 sec. -----
o.so 0.363 1. 232 

1.00 0.72S 1.200 

1. so 1.088 1.169 

2.00 l.4SO 1.140 

2.SO 1. 813 1.113 

Cycle Period = 2.8 sec. ----
o.so 0.273 1.228 

1.00 O.S4S 1.192 

1. so 0.818 l.1S7 

2.00 1.090 1.124 

2.SO 1.363 1.108 
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beyond the boundaries of the reachable area. This leads to 

the following conclusion: the quadruped moves at the maximum 

mean velocity allowed by the workspace restrictions of the 

limbs so as to minimize the pitch angle range experienced by 

the quadruped's body. 

This assumption was tested by calculating the maximum 

and minimum Xi of each leg during the leg's support cycle, 

using various values of Vx and T. These values were 

compared to the reachable area of the limbs that were 

measured during the videotaping session (See Table II). 

From this procedure, some estimate of the allowable Vx could 

be made. Recall that the assumed Cg of the quadruped body 

is located a distance of 0.541t from the hip joint. Using 

Sx and Hx mean values from Table II and the assumption that 

the workspace is roughly symetric about the shoulder and hip 

joints, the following estimates of the maximum and minimum 

values of Xi can be made for the fore and hind legs 

xfmax = 0.459+Sx/2 = 1.256 (3.37) 

xfmin = 0.459-Sx/2 = -0.339 (3.38) 

xhmax = -0.541+Hx/2 = 0.020 (3.39) 

xhmin = -0.541-Hx/2 = -1.102 (3.40) 

Recognizing that the minimum and maximum positions Xi of the 

legs for each gait will occur at the beginning and the end 

of the legs' support phases, the maximum and minimum values 

were calculated for varied combinations of T and Vx. A 

shortened sample of the tabular output is contained in Table 

V. Defining the following variables 
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TABLE V 

REQUIRED WORKSPACE BOUNDARY VALUES 

vx xfmax xf min xhmax xhmin 

Cycle Period .::. .L.1. ~ 
1.000 0.886 0.138 -0.223 -0.866 

1.500 1.052 -0.070 -0.057 -1. 023 

2.000 1. 218 -0.278 0.109 -1. 179 

2.500 1.383 -0.486 0.241 -1.335 

Cycle Period = 1.6 sec ---
1.000 0.886 0.115 -0.223 -0.883 

1. 500 1.052 -0.104 -0.057 -1.047 

2.000 1. 218 -0.324 0.109 -1.211 

2.500 1.383 -0.543 0.274 -1.375 

Cycle Period = 2.0 sec -----
1.000 0.886 0.092 -0.223 -0.900 

1. 500 1.052 -0.140 -0.057 -1.073 

2.000 1. 218 -0.371 0.109 -1.245 

2.500 1.383 -0.602 0.274 -1.418 

Cycle Period .::. 2.4 ~ 

1.000 0.886 0.070 -0.223 -0.916 

1.500 1.052 -0.173 -0.057 -1. 096 

2.000 1. 218 -0.415 0.109 -1. 277 

2.500 1.383 -0.657 0.274 -1.458 



vfl = the allowable vx before xf max is exceeded 

vf2 = the allowable vx before xfmin is exceeded 

vhl = the allowable vx before xhmax is exceeded 

vh2 = the allowable Vx before xhmin is exceeded 

Table VI was constructed. It is obvious from Table VI that 

the mean velocity of the quadruped is most severely limited 

by Xhmin· Using the mean value of T for the six subjects 

tested of 1.98 seconds, then Vxmax is approximately 1.589 

for the modeled quadruped. 

Comparison .2.f the Model to Actual Performance 

The predicted parameter values, found during the 

optimization process, were compared to the measured mean 

values from the videotape records in Table VII. The 

predicted values of these parameters were very close to the 

actual values used by the tested subjects. The largest 

deviations occurred in the time delay factors ~i· However, 

even these deviations are relatively small. 
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The force constants cannot be compared to mean values 

because of the lack of data records available for 

evaluation. However, some observations can be made from the 

videotape record and conclusions drawn from the results of 

past works. Alexander found in his studies of the gaits of 

other quadruped species that the skewness factor (Ri) was 

negligible for most of the individuals he studied [1]. In 

another published report, Jayes and Alexander observed 

values of the constant Qi in the range 0.1 to 0.2 for 



T 

1. 20 

1. 60 

2.00 

2.40 

2.80 

TABLE VI 

ALLOWABLE VELOCITIES OF QUADRUPED BODY DUE TO 
WORKSPACE LIMITATIONS OF LIMBS 

vfl Vf2 vhl 

2.115 2.145 1. 730 

2.115 2.034 1.730 

2.115 1.930 1. 730 

2.115 1.842 1.730 

2 .115 1. 777 1.730 

TABLE VII 

COMPARISON OF MEASURED AND PREDICTED PARAMETER 
VALUES FOR HUMAN QUADRUPEDS 
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Vh2 

1. 755 

1. 667 

1. 585 

1. 515 

1.463 

Parameter Measured Value Predicted Value 

sf 0.714 0.710 

sh 0.625 0.616 

].l 1.143 1.152 

1;2 0.51 0.500 

1;3 0.52 0.453 

z;;4 0.00 -0.047 

ex 0.949 0.975 

vx 1.596 1. 589 

R. 
l. ? 0.000 

Qi ? 0.113 

cxi ? 1.157 
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several species of quadrupeds [4]. Both of these findings 

are consistent with the predicted values presented here. As 

for the parameter Cxi' no proof of the validity of the 

predicted value can be offered except indirectly through the 

results of the prediction of Vx. 

The differences between the predicted and actual 

parameters used by human quadrupeds can be explained by any 

number of possible error sources. First, due to the lack of 

more sophisticated and specialized instruments, measurements 

of parameters were taken using relatively crude equipment 

which may have introduced error into the measured values. 

Assumptions were made in the development of the model 

equations that could have resulted in a divergence between 

calculated and actual values of the displacement values. 

Primarily, the assumption of massless limbs and the ignoring 

of the dynamic effects due to limb movement is suspected of 

introducing error. The values of the mass moments of 

inertia and the location of the Cg of the body were values 

assumed from cadaver studies [9]. If the actual moments of 

inertia for the subjects differed, then this is another 

source causing deviations. 

Calculated Angular and Linear Displacements 

The actual unwanted displacements of the human 

quadruped's body were predicted using the optimum values of 

the parameters as defined in Table VII. The actual 

displacement predictions were found by first finding the 
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normalized displacement ranges, then calculating the 

normalizing factors for each individual subject, and then 

calculating the actual displacements using Equations (3.14-

3.17). Table VIII contains the resulting values. Figures 

31-43 (See Appendix C) illustrate the assumed forces exerted 

by each of the legs over the cycle period and the resulting 

normalized displacements when the quadruped is using the 

parameter values as previously determined in the 

optimization procedures. 



Subject # 

1 

2 

3 

4 

5 

6 

Mean 

TABLE VIII 

CALCULATED DISPLACEMENTS RANGES 
OF HUMAN QUADRUPED BODY 

Zb(ft.) 8 

0.024 7.2° 12.8° 

0.018 6.1° 10.8° 

0.004 1.40 2.4° 

0.006 2.0° 3.5° 

0.007 2.3° 4.1° 

0.008 2.s0 4.4° 

0.010 3.3° 5.8° 
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15.6° 

12.1° 

2.9° 

4.3° 

5.0° 

5.4° 

7.1° 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

This work describes a mathematical model developed for 

human quadruped locomotion studies. The model describes the 

unwanted displacements of the human body as it is moving 

with a specified gait pattern during straightline quadruped 

walking. The model has been simplified by the assumptions 

of massless legs, a rigid body link, and use of data 

measured during studies of actual human performance. 

This model was used to determine the optimum parameters 

defining the motion gait. Optimality was defined as the 

combination of gait parameters that resulted in a minimum 

unwanted displacement range of the quadruped body over one 

cycle period. The parameters that required optimization 

were first identified and isolated from the equations of the 

mathematical model. Beginning with a relatively large 

number of parameters, the number of parameters affecting 

displacements were reduced to a more managable amount. This 

was done by using assumptions based on measurement data and 

by identification of those parameters that are related to 

body shape and limb lengths and therefore not variable. 

A single optimization procedure did not yield 

satisfactory results. Instead, an alternative method was 
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developed and used. The displacements were classified as to 

their relative sensitivity to deviations from an optimum set 

of parameters. It was found that the roll angle range was 

by far the most sensitive. The parameters that affected the 

roll angle range were identified and classified as to their 

relative effect on the roll angle. Building on this, the 

roll was studied and the defined variable parameters that 

affected roll determined in such a way that would minimize 

the roll angle range and also keep the vertical displacement 

range within acceptable levels. 

The parameters that remained undetermined were found by 

minimization of the pitching angle range of the body. The 

parameters determined in the roll angle studies remained 

unchanged from the previous values. It was found that the 

idealized model which used these predicted parameters for 

locomotion had small values for the unwanted displacement 

ranges of the body. 

Comparison of the predicted parameters from the 

minimization process revealed that these values provided a 

close approximation of the actual parameters measured from 

recordings of actual human performance. There were small 

deviations between actual and predicted values that can be 

explained by individual differences in the subject's Cg, 

body shape and type differences, errors in measurement, 

errors in assumptions for deriving the mathematical model, 

or other unidentified error sources. However, the 

differences were small and the predictions sufficiently 



accurate to describe gross motion tendencies of humans that 

are employing a quadruped walking type gait for locomotion. 

This indicates that humans do indeed move in such a way as 

to minimize the unwanted vertical and angular displacement 

ranges of their body and also to avoid rapid changes in the 

forces exerted by their limbs. Whether the large force 

gradients are avoided because the human is unable to exert 

such rapidly changing forces or the exertion is merely 

physically uncomfortable, is unknown. 

This study lays the groundwork for future studies into 

the nature of locomotion. The methods employed here can 

also be used to study the gaits of other species of 

quadrupeds. The data measurements provide information that 

can be used in the development of more detailed models that 

do not include the assumption of massless limbs. 
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It is suggested that a future follow-up study be 

performed which includes a more detailed model development 

that accounts for the dynamic effects produced by limb 

motion. A complimentary study should also be undertaken 

that will extend this work to include the motion of human 

quadrupeds traveling on a curvilinear path. The motions of 

a quadruped that has a net acceleration is another area to 

be discussed. Adaptive strategies for the quadruped walking 

gait when the terrain is no longer smooth or obstacles are 

present is another subject that should be addressed in a 

future study. 



REFERENCES 

1. Alexander, R. M., "Optimum Walking Techniques for 
Quadrupeds and Bipeds," Journal of Zoology, Vol. 
192, 1980, pp. 97-117. 

2. Alexander, R. M., "The Gaits of Bipedal and 
Quadrupedal Animals," The International Journal 
of Robotics Research, Vol. 3, No. 2, Summer 1984, 
pp. 49-59. 

3. Alexander, R. M. and Jayes, A. S., "Vertical Movements 
in Walking and Running," Journal .2f Zoology, Vol. 
185, 1978, pp. 27-40. 

4. Alexander, R. M. and Jayes, A. S., "Optimum Walking 
Techniques for Idealized Animals," Journal of 
Zoology, Vol. 186, 1978, pp. 61-81. -

5. Alexander, R. M. and Jayes, A. S., "Fourier Analysis 
of Forces Exerted in Walking and Running," Journal 
tl Biomechanics, Vol. 13, 1980, pp. 383-390. 

6. Alexander, R. M. and Jayes, A. S., "A Dynamical 
Similarity Hypothesis for the Gaits of 
Quadrepedal Mammals," Journal .Q.f Zoology, Vol. 
201, 1983, pp. 135-152. 

7. An, K. N. and Chao, E. Y., "Kinematic Analysis of 
Human Movement," Annals of Biomedical 
Engineering, Vol. 12, 1984, pp. 585-597. 

8. Bessonov, A. P. and Umnov, N. V., "The Analysis of 
Gaits in Six-Legged Vehicles According to Their 
Static Stability," Proceedings .2.f CISM-IFToMM 
Symposium .£!!. Theory and Practice £!. Robots and 
Manipulators, Udine, Italy, 1973. 

9. Chaffin, D. B. and Anderson, G. B. J., Occupational 
Biomechanics, John Wiley and Sons, New York, New 

York, 1984, pp. 53-77. 

10. Chandler, R. F., Glauser, C. E., Mcconville, J.P., 
Reynolds, H. M., and Young, J. W., "Investigation 
of Inertial Properties of the Human Body," AMRL
TR-74-137, Aerospace Medical Research 
Laboratories, Ohio, 1975. 

90 



11. Clauser, C. E., Mcconville, J. T., and Young, J. W., 
"Weight, Volume, and Center of Mass of Segments 
of the Human Body," AMRL-TR-69-70, Aerospace 
Medical Research Laboratories, Ohio, 1969. 

12. Demptster, W. T., "Space Requrements of the Seated 
Operator," WADC-TR-55-159, Aerospace Medical 
Research Laboratories, Ohio, 1955. 

91 

13. Gerald, G. F. and Wheatley, P. 0., Applied Numerical 
Analysis, Addison-Wesley, Reading, Massachussetts, 
1984, pp. 245-274. 

14. Hildebrand, M., "Analysis of the Symetrical Gaits of 
Tetrapods," Folia Biotheoretica, Vol. 4, 1966, 
pp. 9-22. 

15. Hirose, S., Umetani, Y ., "Some Considerations on a 
Feasible Walking Mechanism as a Terrain Vehicle," 
Proceedings £i the 3rd CISM-IFToMM Symposium .2...!!. 
Theory and Practice £i Robots and Manipulators, 
Udine, Italy, 1978, pp. 357-375. 

16. Hirose, S., Nose, M, Kikuchi, H., and Umetani, Y, 
"Adaptive Control Gait of a Quadruped Walking 
Vehicle," Robotics Research: The First 
International Symposium, MIT Press, Cambridge, 
Massachussetts, 1984, pp. 253-277. 

17. Jayes, A. S. and Alexander, R. M., "The Gaits of 
Chelonians," Journal of Zoology, Vol. 191, 1980, 
pp. 353-378. 

18. McGhee, R. B., and Frank, A. A., "On the Stability 
Properties of Quadruped Creeping Gaits," 
Mathematical Biosciences, Vol. 3, No. 3, October 
1968, pp. 331-351. 

19. McGhee, R. B., and Iswandhi, G. I., "Adaptive 
Locomotion of Multilegged Robot Over Rough 
Terrain," IEEE Transactions .2...!!. Systems, Man, and 
Cybernetics, Vol. SMC-9, No. 4, April 1979, pp. 
176-182. 

20. Orin, D. E., "Supervisory Control of a Multilegged 
Robot,", International Journal of Robotics 
Research, Vol. 1, No. 1, Springl982, pp. 79-91. 

21. Pearson, K. G. and Franklin, R., "Characteristics 
of Leg Movements and Patterns of Coordination in 
Locusts Walking on Rough Terrain," International 
Journal of Robotics Research, Vol. 3, No. 2, 
Summer 1984, pp. 101-112. 



92 

22. Roebuck, J. A., Kroemer, K. H. E., and Thomson, W. G., 
Engineering Anthropometry Methods, John Wiley and 
Sons, New York, New York, 1975, pp. 52-70 and 173-
186. 

23. Waldron, J. W., Vohnout, V. J., Pery, A., McGhee, R. 
B., "Configuration Design of the Adaptive 
Suspension Vehicle," The International Journal of 
Robotics Research, Vo~3, No. 2, Summer 1984, 
pp. 37-48. 

24. Webb Associates, Anthropometric Source Book, Vol. 1, 
NASA 1024, National Aeronautics and Space 
Administration, Washington, D.C., 1978, pp. IV-1 
to IV-76. 

25. Wilson, D. M., "Insect Walking,", Annual Review of 
Entomology, Vol. 11, 1966, pp. 103-121. 



APPENDIXES 

93 



APPENDIX A 

DISPLACEMENT CALCULATION PROGRAM LISTING 

94 



95 

C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 1 ** 
C** FOR STUDY OF FOREFEET DUTY FACTOR ** 
C*********************************************************** 

13 

26 
15 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 
INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, I (lH,///) I) 
CONTINUE 
WRITE(3, *)'ENTER 
WRITE(3,*)'1= Zb 
WRITE(3,*)'4=YAW 
READ(3,*)BRNCH 

THE DESIRED PLOTTING OPTION' 
2=ROLL 3=PITCH' 

5=RESTART 6=END PROGRAM' 

IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201, 'ENTER NAME OF DATA FILE$' ,ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE VELOCITY Vx' 
READ(3,*)VXLST 
WRITE(3,*)'ENTER THE LAMBA RELATIONAL CONSTANT' 
READ(3,*)ALPHA 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

ENDIF 
IF(BRNCH.EQ.4.0R.BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE HOR. FORCE CONSTANT, Cx' 
READ(3,*)CFX 

ENDIF 
WRITE( 3, *)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA( 2)=BETA(l) 
WRITE(3,*)'ENTER THE SKEWNESS FORCE CONSTANT Ri' 
READ(3,*)R 
WRITE(3,*)'ENTER THE VERTICAL FORCE CONSTANT Qi' 
READ(3,*)Q 
DO 14 RATIO=BETA(l),2*BETA(l),0.05 

BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
DO 86 PHDIF=-0.5,0.5.0.05 

CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.l.OR.BETA(3).LT.0.5) GOTO 86 
IF (BRNCH.EQ.1) THEN 

CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 
ELSEIF(BRNCH.EQ.2) THEN 

CALL RLCALC(PHI,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.3) THEN 

CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 



ELSEIF (BRNCH.EQ.4) THEN 
CALL YWCALC(PHI,R,Q,CFX,RANGE) 

ENDIF 
WRITE(201,*)RATIO,PHDIF,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 2 ** 
C** FOR STUDY OF RELATIVE PHASE, GAMMA ** 
C*********************************************************** 

13 

26 
15 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 
INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, '(lH,///)') 
CONTINUE 
WRITE(3,*)'ENTER 
WRITE(3,*)'1= Zb 

THE DESIRED PLOTTING OPTION' 

WRITE(3,*)'4=YAW 
READ(3,*)BRNCH 

2=ROLL 3=PITCH' 
5=RESTART 6=END PROGRAM' 

IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201, 'ENTER NAME OF DATA FILE$' ,ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE VELOCITY Vx' 
READ(3,*)VXLST 
WRITE(3,*)'ENTER THE LAMBA RELATIONAL CONSTANT' 
READ(3,*)ALPHA 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

END IF 
IF(BRNCH.EQ.4.0R.BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE HOR. FORCE CONSTANT, Cx' 
READ(3,*)CFX 

END IF 
WRITE( 3, *)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA( 2)=BETA(l) 
WRITE(3,*)'ENTER THE RATIO Bf/Bh' 
READ(3,*)RATIO 
BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
WRITE(3,*)'ENTER THE VERTICAL FORCE CONSTANT Qi' 



READ(3,*)Q 
DO 14 R=-0.5,0.5,0.05 

DO 86 PHDIF=-0.5,0.5.0.05 
CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.1.0R.BETA(3).LT.0.5) GOTO 86 
IF (BRNCH.EQ.1) THEN 

CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 
ELSEIF(BRNCH.EQ.2) THEN 

CALL RLCALC(PHI,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.3) THEN 

CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.4) THEN 

CALL YWCALC(PHI,R,Q,CFX,RANGE) 
ENDIF 
WRITE(201,*)R,PHDIF,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 3 ** 
C** FOR STUDY OF VERTICAL FORCE SKEWNESS CONSTANT Ri ** 
C*********************************************************** 

13 

26 
15 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 
INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, '(lH,///)') 
CONTINUE 
WRITE(3 ,*)'ENTER 
WRITE(3,*)'1= Zb 
WRITE(3,*)'4=YAW 
READ(3,*)BRNCH 

THE DESIRED PLOTTING OPTION' 
2=ROLL 3=PITCH' 

5=RESTART 6=END PROGRAM' 

IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201, 'ENTER NAME OF DATA FILE$' ,ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE VELOCITY Vx' 
READ(3,*)VXLST 
WRITE(3,*)'ENTER THE LAMBA RELATIONAL CONSTANT' 
READ(3,*)ALPHA 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

ENDIF 
IF(BRNCH.EQ.4.0R.BRNCH.EQ.3) THEN 



WRITE(3,*)'ENTER THE HOR. FORCE CONSTANT, Cx' 
READ(3,*)CFX 

ENDIF 
WRITE(3,*)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA(2)=BETA(l) 
WRITE(3,*)'ENTER THE RATIO Bf/Bh' 
READ(3,*)RATIO 
BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
DO 14 Q=-0.33,1.0,0.05 

DO 86 R=-0.5,0.5,0.05 
PHDIF=GAMMAQ(BETA,R,Q) 
CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.1.0R.BETA(3).LT.0.5) GOTO 86 
IF (BRNCH.EQ.1) THEN 

CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 
ELSEIF(BRNCH.EQ.2) THEN 

CALL RLCALC(PHI,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.3) THEN 

CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.4) THEN 

CALL YWCALC(PHI,R,Q,CFX,RANGE) 
ENDIF 
WRITE(201,*)Q,R,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 4 ** 
C** FOR STUDY OF FORCE CONSTANT Qi AND RATIO ** 
C*********************************************************** 

13 

26 
15 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 
INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, '(lH,///)') 
CONTINUE 
WRITE(3, *)'ENTER 
WRITE(3,*)'1= Zb 
WRITE(3,*)'4=YAW 
READ(3,*)BRNCH 

THE DESIRED PLOTTING OPTION' 
2=ROLL 3=PITCH' 

5=RESTART 6=END PROGRAM' 

IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201, 'ENTER NAME OF DATA FILE$' ,ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE VELOCITY Vx' 
READ(3,*)VXLST 



WRITE(3,*)'ENTER THE LAMBA RELATIONAL CONSTANT' 
READ(3,*)ALPHA 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

ENDIF 
IF(BRNCH.EQ.4.0R.BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE HOR. FORCE CONSTANT, Cx' 
READ(3,*)CFX 

ENDIF 
WRITE( 3, *)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA(2)=BETA(l) 
R=O 
DO 14 RATIO=BETA(l),2*BETA(l),BETA(l)/20 

BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
DO 86 Q=-0.33,1.0,1.33/20 

PHDIF=GAMMAQ(BETA,R,Q) 
CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.1.0R.BETA(3).LT.0.5) GOTO 86 
IF (BRNCH.EQ.1) THEN 

CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 
ELSEIF(BRNCH.EQ.2) THEN 

CALL RLCALC(PHI,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.3) THEN 

CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.4) THEN 

CALL YWCALC(PHI,R,Q,CFX,RANGE) 
ENDIF 
WRITE(201,*)RATIO,Q,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 5 ** 
C** FOR STUDY OF LAMBA CONSTANT ALPHA ** 
C*********************************************************** 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 
INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 

13 CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, '(lH,///)') 
26 CONTINUE 



15 WRITE(3,*)'ENTER THE DESIRED PLOTTING OPTION' 
WRITE(3,*)'1= Zb 2=ROLL 3=PITCH' 
WRITE(3,*)'4=YAW 5=RESTART 6=END PROGRAM' 
READ(3,*)BRNCH 
IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201, 'ENTER NAME OF DATA FILE$' ,ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

ENDIF 
IF(BRNCH.EQ.4.0R.BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE HOR. FORCE CONSTANT, Cx' 
READ(3,*)CFX 

ENDIF 
WRITE(3,*)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA(2)=BETA(l) 
R=O 
Q=0.113 
RATIO=l.152 
BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
PHDIF=GAMMAQ(BETA,R,Q) 
CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.1.0R.BETA(3).LT.0.5) GOTO 86 
DO 14 VXLST=0.5,2.5,0.1 

DO 86 ALPHA=0,2.0,0.1 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
IF (BRNCH.EQ.1) THEN 

CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 
ELSEIF(BRNCH.EQ.2) THEN 

CALL RLCALC(PHI,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.3) THEN 

CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 
ELSEIF (BRNCH.EQ.4) THEN 

CALL YWCALC(PHI,R,Q,CFX,RANGE) 
ENDIF 
WRITE(201,*)VXLST,ALPHA,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** MAIN PROGRAM WLKDSP: VERSION 6 ** 
C** FOR STUDY OF LAMBA CONSTANT ALPHA ** 
C*********************************************************** 

REAL VXLST,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH,CT 
REAL CL,ALPHA,Q,R,RANGE,PHI(4),ZB(401),TIME(401) 



INTEGER BRNCH,I,M 
LOGICAL ABORT 
COMMON/ROBDATA/VXLST,ZBLST,Y,BETA,RATIO,XLAMBA,XH 

13 CALL PARADEF(CL) 
DO 26 I=l,5 

WRITE(3, '(lH,///)') 
26 CONTINUE 
15 WRITE(3, *)'ENTER THE DES IRED PLOTTING OPTION' 

WRITE(3, *)' 1= Zb 2=ROLL 3=PITCH' 
WRITE(3,*)'4=YAW 5=RESTART 6=END PROGRAM' 
READ(3,*)BRNCH 
IF (BRNCH.EQ.5.0R.BRNCH.EQ.6) GOTO 23 
CALL GETWFN(201,'ENTER NAME OF DATA FILE$',ABORT) 
IF (BRNCH.EQ.3) THEN 

WRITE(3,*)'ENTER THE CYCLE TIME(SEC.)' 
READ(3,*)CT 

ENDIF 
WRITE(3, *)'ENTER THE VALUE FOR BF' 
READ(3,*) BETA(l) 
BETA(2)=BETA(l) 
R=O 
Q=0.113 
RATIO=l.152 
BETA(3)=BETA(l)/RATIO 
BETA(4)=BETA(3) 
PHDIF=GAMMAQ(BETA,R,Q) 
CALL PHICAL(PHI,PHDIF) 
IF (BETA(3).GT.1.0R.BETA(3).LT.0.5) GOTO 86 
DO 14 VXLST=0.5,2.5,0.1 

ALPHA=(VXLST/(4*CL))*(BETA(l)+BETA(2))+0.5 
XLAMBA(l)=ALPHA*CL 
XLAMBA(2)=XLAMBA(l) 
XLAMBA(3)=(ALPHA-l)*CL 
XLAMBA(4)=XLAMBA(3) 
DO 86 CFX=0,2.0,0.1 

IF (BRNCH.EQ.1) THEN 
CALL ZBCALC(ZB,PHI,TIME,M,R,Q,RANGE) 

ELSEIF(BRNCH.EQ.2) THEN 
CALL RLCALC(PHI,R,Q,RANGE) 

ELSEIF (BRNCH.EQ.3) THEN 
CALL PTCALC(PHI,CYCTIM,CFX,R,Q,RANGE) 

ELSEIF (BRNCH.EQ.4) THEN 
CALL YWCALC(PHI,R,Q,CFX,RANGE) 

ENDIF 
WRITE(201,*)VXLST,CFX,RANGE 

86 CONTINUE 
14 CONTINUE 

CLOSE(201) 
23 IF (BRNCH.EQ.5) GOTO 13 

IF (BRNCH.NE.6) GOTO 15 
END 

c 
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C*********************************************************** 
C** SUBROUTINE PHICAL ** 
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C*********************************************************** 
SUBROUTINE PHICAL(PHI,PHDIF) 
REAL PHI(4),PHDIF 
PHI(l)=O 
PHI(2)=0.5 

c 
C USE RELATIVE PHASE GAMMA TO CALCULATE INDIVIDUAL LEG 
C PHASE RELATIONSHIPS 
c 

c 

PHI(4)=PHDIF 
PHI(3)=0.5+PHDIF 
IF (PHI(4).GT.l) THEN 

PHI(4)=PHI(4)-l.O 
ELSEIF(PHI(4).LT.O) THEN 

PHI(4)=PHI(4)+1.0 
ENDIF 
IF (PHI(3).LT.O) THEN 

PHI(3)=PHI(3)+1.0 
ELSEIF(PHI(3).GT.l) THEN 

PHI(3)=PHI(3)-l.O 
ENDIF 
END 

C*********************************************************** 
C** SUBROUTINE RLCALC => CALCULATE NORMALIZED ROLL RANGE ** 
C*********************************************************** 

c 

SUBROUTINE RLCALC(PHI,R,Q,RSPR) 
REAL PHI(4),TIME(401),VX,RBLST,Y(4),BETA(4),RATIO 
REAL XH,RLST,TM,PH,BT,VR(401),ARLST,VRLST,RHI,RS 
REAL RLO,RSPR,ZBLST,RL(401),AR(401),R,Q,XLAMBA(4) 
INTEGER HI,M,N 
COMMON/ROBDATA/VX,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
VRLST=O 
HI=INT(l.O/XH)+l 
RHI=-1000 
RL0=1000 
ARLST=O 
RLST=O 
DO 32 M=l,HI 

C CALC. TIME STEP, RESET ACC. TO ZERO FOR STEP 
c 

c 

TIME(M)=REAL(M-l)*XH 
AR(M)=O 
TM=TIME(M) 
DO 33 N=l,4 

C SET SKEWNESS FACTOR TO REQUIRED VALUE FOR FORELEGS 
c 

RS=R 
IF(N.EQ.l.OR.N.EQ.2) THEN 

RS=-R 
ENDIF 
PH=PHI(N) 



BT=BETA(N) 
c 
C CALCULATE ANGULAR ACCELERATION AT TIME 
c 

AR(M)=FORCEZ(TM,PH,BT,RS,Q) * Y(N) + AR(M) 
33 CONTINUE 
c 
C INTEGRATE ACCELERATION VALUES 
c 
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CALL DOUBLE(AR(M),VR(M),RL(M),ARLST,VRLST,RLST,XH) 
32 CONTINUE 

VRLST=-RL(HI) 
c 
C ADJUST ROLL TO VALUES REQUIRED FOR CONTINUITY 
c 

c 

DO 88 M=l,HI 
RL(M)=RL(M) + VRLST * TIME(M) 
VR(M)=VR(M)+VRLST 

C FIND MAX AND MIN OF ROLL ANGLE OVER CYCLE 
c 

IF (RL(M).GT.RHI) THEN 
RHI=RL(M) 

ELSEIF (RL(M).LT.RLO) THEN 
RLO=RL(M) 

ENDIF 
88 CONTINUE 

DO 89 M=l,HI 
RL(M)=RL(M)-(RHI+RL0)/2 

89 CONTINUE 
c 
C RANGE OF ROLL 
c 

RSPR=(RHI-RL0)/2 
END 

c 
C*********************************************************** 
C** FUNCTION FORCEZ => CALC VERT FORCE OF LEG AT TIME STEP** 
C*********************************************************** 

FUNCTION FORCEZ(TME,ZPHI,ZBTA,RS,Q) 
REAL FORCEZ,PI,C,GRAV,TME,ZPHI,ZBTA,RS,D,Q 
PI=3.1415926 
GRAV=32.174 
C=(3*GRAV*PI)/(8*ZBTA*(3+Q)) 
IF (ZPHI.GT.ZBTA) THEN 

IF (TME.LT.(ZPHI-ZBTA).OR.TME.GT.ZPHI) THEN 
FORCEZ=O.O 

ELSE 
D=(TME+ZBTA-ZPHI) * PI / ZBTA 
FORCEZ=C*(SIN(D)-RS*SIN(2*D)+Q*SIN(3*D)) 

ENDIF 
ELSEIF(TME.LT.ZPHI) THEN 

D=(TME + ZBTA - ZPHI) * PI / ZBTA 
FORCEZ=C*( SIN ( D )-RS*S IN( 2*D)+Q*S IN(3 *D)) 



c 

ELSEIF(TME.GT .(ZPHI+ 1-ZBTA)) THEN 
D=( TM E + Z BT A - Z PH I -1 ) * PI / Z BT A 
FORCEZ=C * (SIN(D) - RS * SIN (2*D) + Q*SIN(3*D)) 

ELSE 

END IF 
END 

FORCEZ=O.O 
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C*********************************************************** 
C** FUNCTION GAMMA4 => CALCULATES RELATIVE PHASE WHEN Q=O ** 
C*********************************************************** 

c 

FUNCTION GAMMA4(R, BTA, RAT) 
REAL GAMMA4,R,BTA,RAT,PI,COSA,C4,A 
PI=3.1415926 
IF (R.EQ.O) THEN 

GAMMA4=BTA*(l/RAT-l)/2 
ELSE 

C FIND ROOTS OF QUADRATIC FROM OBSERATIONS OF MOMENT IMPULSE 
c 

c 

IF (R.LT.O) THEN 
COSA=(-1/R - SQRT( 1/(R**2) + 4.0)) / 2.0 

ELSE 
COSA=(-1/R + SQRT( l/(R**2) + 4.0)) / 2.0 

END IF 
IF (COSA**2.EQ.O) THEN 

GAMMA4=BTA*(l/RAT-l)/2 
ELSE 

A = ATAN (SQRT(( 1-COSA**2 )/( COSA**2 ))) 
C4= A/PI 
IF (R.LT.O) THEN 

C4=1-C4 
END IF 
GAMMA4= BTA * ( l/RAT - C4*( 1/RAT+l )) 

END IF 
ENDIF 
END 

C*********************************************************** 
C** FUNCTION GAMMAQ => FINDS THE RELATIVE PHASE FOR NON- ** 
C** ZERO VALUES OF Q. USES BAIRSTOW'S METHOD TO FIND ** 
C** THE ROOTS OF THE CUBIC EQUATION FROM MOMENT ** 
C** IMPULSE OBSERVATION ** 
C*********************************************************** 

c 

FUNCTION GAMMAQ(BETA, RFC, QFC) 
REAL BETA(4),RFC,QFC,GAMMAQ,EQR,EQS,DELR,DELS,PI 
REAL B4,C2,C3,DEL,COSA(3),COSD,SQCK,A2,A3,A4,B2,B3 
PI=3.1415926 

C ITERATE TO FIND FIRST ROOT 
c 

IF (ABS(RFC).LT.0.001) THEN 
GAMMAQ=(BETA(3)-BETA(l))/2 

ELSE 



DEL=lOOO 
A2=-(3*RFC/(4*QFC)) 
A3=(3-3*QFC)/(4*QFC) 
A4=(3*RFC)/(4*QFC) 
EQR=O 
EQS=O 
DEL=lOOO 

161 IF (DEL.LT.lE-5) GOTO 162 
B2=A2+EQR 
B3=A3+EQR*B2+EQS 
B4=A4+EQR*B3+EQS*B2 
C2=B2+EQR 
C3=B3+EQR*C2+EQS 
DELR=(B4-B3*C2)/(C2**2-C3) 
DELS=(C3*B3-C2*B4)/(C2**2-C3) 
DEL=ABS(B3)+ABS(B4) 
EQR=EQR+DELR 
EQS=EQS+DELS 

GOTO 161 
162 CONTINUE 
c 
C COSA VARIABLES ARE ROOTS OF CUBIC 
c 

c 

COSA(l)=-(A2+EQR) 
SQCK=EQR**2+4*EQS 

C CHECK FOR COMPLEX ROOTS IN QUADRATIC REMAINDER 
c 

c 

IF (SQCK.LT.O) THEN 
COSA(2)=1000 
COSA(3)=1000 

ELSE 

C FIND ROOTS OF QUADRATIC REMAINDER 
c 

c 

COSA(2)=(EQR+SQRT(SQCK))/2 
COSA(3)=(EQR-SQRT(SQCK))/2 

END IF 

C FIND MATHEMATICALLY POSSIBLE ROOT 
c 

163 
c 

DO 163 I=l,3 
IF (ABS(COSA(I)).LT.1) 

COSD=COSA(I) 
END IF 

CONTINUE 

THEN 

C SOLVE FOR RELATIVE PHASE FROM ROOT OF CUBIC 
c 

B2=ATAN((l-COSD**2)/COSD**2) 
IF (COSD.LT.O) THEN 

B2=PI-B2 
END IF 
B2=(B2/PI) 
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c 

B4=1-B2 
GAMMAQ=(BETA(3)*B2-BETA(l)*B4) 

ENDIF 
END 
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C*********************************************************** 
C** SUBROUTINE PTCALC => FIND PITCH ANGLE RANGE FOR CYCLE ** 
C*********************************************************** 

c 

SUBROUTINE PTCALC(PHI,CYCTIM,CFX,R,Q,PTSPR) 
REAL PHI(4),TIME(401),VX,Y(4),BETA(4),RATIO,XLAMBA(4) 
REAL XH,TIM,PPH,BET,VPT(401),PTCH,APLST,VPLST,APT 
REAL PTLO,PTSPR,ZBLST,CYCTIM,XLMBA,XFT(4),XB(401) 
REAL PITCH(401),CFX,ZB(401),BODY,ASAVE,ACCP(401) 
REAL PHIHI,PTHI,R,Q,DUMMY,RS 
INTEGER II, IJ, IHI 
COMMON/ROBDATA/VX,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
ASAVE=O 
PTLST=O 
BODY=l.7083 
PTHI=-1000 
PTL0=1000 
APLST=O 
VPLST=O 

C FIND VARIABLE MOMENT ARMS FOR ANGULAR ACCELERATION CALC. 
c 

CALL ZBCALC(ZB,PHI,TIME,IHI,R,Q,DUMMY) 
CALL XBCALC(XB,PHI,IHI,BETA,XH,CFX) 
DO 103 II=l,IHI 

VB(II)=VB(II)+VX 
ZB(II)=ZB(II) * (CYCTIM**2) / BODY + ZBLST 
XB(II)= (CYCTIM**2) * XB(II) / BODY+ TIME(II) * VX 

103 CONTINUE 
DO 122 II=l,IHI 

c 
C RESET ACCELERATION VARIABLE FOR NEXT TIMESTEP 
c 

c 

APT=O 
TM=TIME(II) 
DO 123 IJ=l,4 

PPH=PHI(IJ) 
BET=BETA(IJ) 
XLMBA=XLAMBA(IJ) 

C CALCULATE THE FOOT POSITION RELATIVE TO THE BODY Cg 
c 

c 

XFT(IJ)=XOFFT(PPH,BET,XB,XLMBA,IHI,TM)-XB(II) 
RS=R 
IF (IJ.EQ.1.0R.IJ.EQ.2) THEN 

RS=-R 
ENDIF 

C CALCULATE THE ANGULAR ACCELERATION 
c 



APT=FORCEZ(TM,PPH,BET,RS,Q)*XFT(IJ) + APT 
APT=APT + FORCEX(TM,PPH,BET,CFX,RS,Q) * ZB(II) 

123 CONTINUE 
ACCP(II)=-APT 
ASAVE=ASAVE+ACCP(II) 

122 CONTINUE 
ASAVE=-ASAVE/IHI 

c 
C ADJUST TO REQUIRED MEAN VALUES 
c 

DO 124 II=l,IHI 
ACCP(II)=ACCP(II)+ASAVE 
CALL DOUBLE(ACCP(II),VPT(II),PITCH(II),APLST,VPLST 

*,PTLST,XH) 
124 CONTINUE 

VPLST=-PITCH(IHI) 
DO 178 II=l,IHI 

PITCH(II)=PITCH(II)+VPLST*TIME(II) 
VPT(II)=VPT(II)+VPLST 

c 
C FIND MAX AND MIN DEVIATION FROM MEAN DURING CYCLE 
c 

IF (PITCH(II).GT.PTHI) THEN 
PTHI=PITCH(II) 

ELSEIF (PITCH(II).LT.PTLO) THEN 
PTLO=PITCH(II) 

ENDIF 
178 CONTINUE 

PTSPR=(PTHI-PTL0)/2 
DO 179 II=l,IHI 

PITCH(II)=-(PHI+PL0)/2 
178 CONTINUE 

END 
c 
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C*********************************************************** 
C** SUBROUTINE XBCALC => CALCULATE POSITION DEVIATION ** 
C** OF Cg AWAY FROM THAT DUE TO Vx ** 
C*********************************************************** 

SUBROUTINE XBCALC(XB,PHI,HI,BETA,XH,CFX) 
REAL XB(401),PHI(4),XLST,TM,PH,BT,VELX,X,AXLST,VLST 
REAL BETA(4),XH,CFX,VB(401),AB(401),R,Q,AX,XHI,XLO,RS 
INTEGER HI 
VLST=O 
XHI=-1000 
XL0=1000 
AXLST=O 
XLST=O 
DO 26 I=l,HI 

TM=REAL(I-l)*XH 
AX=O 
DO 27 J=l,4 

IF (J.EQ.l.OR.J.EQ.2) THEN 
RS=-R 

ELSE 



c 

RS=R 
ENDIF 
PH=PHI(J) 
BT=BETA(J) 

C ACCELERATION OF Cg 
c 

AX=FORCEX(TM,PH,BT,CFX,RS,Q) + AX 
27 CONTINUE 

CALL DOUBLE(AX,VELX,X,AXLST,VLST,XLST,XH) 
XB(I)=X 
VB(I)=VELX 
AB(I)=AX 

26 CONTINUE 
VLST=-XB(HI) 

c 
C ADJUSTMENTS 
c 

DO 89 I=l,HI 
TM=REAL(I-l)*XH 
VB(I)=VB(I)+VLST 
XB(I)=XB(I)+VLST*TM 
IF (XB(I).GT.XHI) THEN 

XHI=XB(I) 
ELSEIF (XB(I).LT.XLO) THEN 

XLO=XB(I) 
ENDIF 

89 CONTINUE 
END 

c 
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C*********************************************************** 
C** FUNCTION XOFFT => CALCULATE POSITION OF FOOT RELATIVE ** 
C** TO BODY Cg GIVEN BODY POSITION AND PRESENT TIME ** 
C*********************************************************** 

c 

FUNCTION XOFFT(PH,BT,XB,XLMBA,IHI,TM) 
REAL XOFFT,PH,BT,XB(401),XLMBA,TINTRP,XBASE 
INTEGER IHI,IBASE,IBSHI 
TINTRP=(PH-BT+l)*(IHI-1) 

C VARIABLE USED IN AN INTERPOLATION PROCESS 
c 

c 

IF (PH.GT.BT) THEN 
TINTRP=(PH-BT)*(IHI-1) 

ENDIF 
IBASE=INT(TINTRP)+l 
IBSHI=IBASE+l 

C INTERPOLATE TO FIND BODY POSITION AT BEGINNING OF SUPPORT 
C PHASE 
c 

XBASE=(XB(IBSHI)-XB(IBASE))*(TINTRP-(IBASE-1)) 
*+XB(IBASE) 

IF ( PH.GT.BT ) THEN 
XOFFT=XLMBA + XBASE 



c 

ELSEIF ( TM.LT.PH) THEN 
XOFFT=XLMBA + XBASE - XB(IHI) + XB(l) 

ELSE 
XOFFT=XLMBA+XBASE 

END IF 
END 
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C*********************************************************** 
C** SUBROUTINE YWCALC => CALCULATE NORM. YAW ANGLE RANGES ** 
C*********************************************************** 

c 

SUBROUTINE YWCALC(PHI,R,Q,CFX,YSPR) 
REAL PHI(4),TIME(401), VX, YBLST,Y(4),BETA(4),RATIO,R,Q 
REAL XH,YLST,TM,PH,BT,VY(401),YAW,AYLST,VYLST,YHI 
REAL YLO,YSPR,ZBLST,YW(401),CFX,AY(401),XLAMBA(4) 
INTEGER HI,M,N 
COMMON/ROBDATA/VX,ZBLST,Y,BETA,RATIO,XLAMBA,XH 
VYLST=O 
HI=INT(l.O/XH)+l 
YHI=-1000 
YL0=1000 
AYLST=O 
YLST=O 
DO 32 M=l,HI 

TIME(M)=REAL(M-l)*XH 
AY(M)=O 
TM=TIME(M) 
DO 33 N=l,4 

PH=PHI(N) 
BT=BETA(N) 
IF(N.EQ.1.0R.N.EQ.2)THEN 

RS=-R 
ELSE 

RS=R 
ENDIF 

C ANGULAR ACCELERATION CALCULATION 
c 

AY(M)=-FORCEX(TM,PH,BT,CFX,RS,Q) * Y(N) + AY(M) 
33 CONTINUE 
c 
C INTEGRATION OF ACCELERATION FUNCTION 
c 

CALL DOUBLE(AY(M),VY(M),YAW,AYLST,VYLST,YLST,XH) 
YW(M)=YAW 

32 CONTINUE 
VYLST=-YW(HI) 

c 
C MEAN VALUE ADJUSTMENT 
c 

c 

DO 88 M=l ,HI 
YW(M)=YW(M) + VYLST * TIME(M) 
VY(M)=VY(M)+VYLST 

C DETERMINATION OF MAX AND MIN 



c 
IF (YW(M).GT.YHI) THEN 

YHI=YW(M) 
ELSEIF (YW(M).LT.YLO) THEN 

YLO=YW(M) 
ENDIF 
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88 CONTINUE 

c 

YSPR=(YHI-YL0)/2 
END 

C*********************************************************** 
C** FUNCTION FORCEX => HORIZONTAL FORCE OF A LEG CALC. ** 
C*********************************************************** 

c 

FUNCTION FORCEX(T,PH,BT,CFX,RS,Q) 
REAL FORCEX,T,PH,BT,CX,PI,BETA(4),VX,CFX,RS,Q 
PI=3.1415926 
IF (PH.GT.BT) THEN 

IF (T.LT.(PH-BT).OR.T.GT.PH) THEN 
CX=O 

ELSE 
CX=T-(PH-BT/2) 

ENDIF 
ELSEIF (T.LT.PH) THEN 

CX=T-(PH-BT/2) 
ELSEIF (T.GT.(PH+l-BT)) THEN 

CX=T-(PH+l-BT/2) 
ELSE 

CX=O.O 
ENDIF 
FORCEX=CFX*CX*FORCEZ(T,PH,BT,RS,Q) 
END 

C*********************************************************** 
C** SUBROUTINE ZBCALC => HORIZONTAL DISP RANGE OF BODY Cg ** 
C*********************************************************** 

c 

SUBROUTINE ZBCALC(ZB,PHI,TIME,HI,R,Q,ZSPR) 
REAL ZB(401),VX,ZBLST,Y(4),BETA(4),RATIO,XLAMBA(4),XH 
REAL PHI(4),ZLST,TM,PH,BT,VZ(401),Z,AZLST,VZLST,RS 
REAL ZHI,ZLO,ZSPR,AZ(401),R,Q,TIME(401),GRAV 
INTEGER HI,I,J 
COMMON/ROBDATA/VX,ZBLST,Y,BETA,RATIO,XLAMBA,XH 

C RESET VZLST,AZLST: HI=>SET ITERATION NUMBER: SET ZLST TO 
C INITIAL POSITION 
c 

c 

VZLST=O.O 
HI=INT(l.O/XH)+l 
ZHI=-100 
ZL0=100 
GRAV=32.174 
AZLST=O.O 
ZLST=O.O 
DO 22 I=l,HI 



111 

C SET TIME CONSTANT FOR PLOTTING, RESET ACCELERATION, SET 
C TEMP TIME VAR. 
c 

c 

TIME(I)=REAL(I-l)*XH 
AZ(I)=O.O 
TM=TIME(I) 
DO 23 J=l,4 

C SET TEMPORY VARIABLES FOR CALL TO FORCEZ, CALCULATE AZ 
C FOR THIS TS 
c 

PH=PHI(J) 
BT=BETA(J) 
RS=R 
IF (J.EQ.1.0R.J.EQ.2) THEN 

RS=-R 
END IF 
AZ(I)=FORCEZ(TM,PH,BT,RS,Q) + AZ(I) 

23 CONTINUE 
c 
C CALL TRAP. DOUBLE INTEGRATION ROUTINE TO CALCULATE THE 
C PO S. Z 
c 

AZ(I)=AZ(I)-GRAV 
CALL DOUBLE(AZ(I),VZ(I),Z,AZLST,VZLST,ZLST,XH) 
ZB(I)=Z 

22 CONTINUE 
VZLST=-ZB(HI) 
DO 78 I=l,HI 

ZB(I)=ZB(I)+VZLST*TIME(I) 
VZ(I)=VZ(I)+VZLST 
IF (ZB(I).GT.ZHI) THEN 

ZHI=ZB(I) 
ELSEIF(ZB(I).LT.ZLO) THEN 

ZLO=ZB(I) 
ENDIF 

78 CONTINUE 
ZLST=-(ZHI+ZL0)/2 
DO 77 I=l ,HI 

ZB(I)=ZB(I)+ZLST 
77 CONTINUE 

c 

ZSPR=(ZHI-ZL0)/2 
END 

C*********************************************************** 
C** SUBROUTINE WRTPARA ** 
C*********************************************************** 

SUBROUTINE WRTPARA(CL) 
REAL VX,ZLST,YF(4),BET(4),RATIO,XLAM(4),XH,CL 
COMMON/ROBDATA/VX,ZLST,YF,BET,RATIO,XLAM,XH 
LOGICAL ABORT 
CALL GETWFN(32, 'ENTER FILENAME TO BE SAVED$' ,ABORT) 
IF (ABORT) RETURN 
WRITE(32,*) VX,ZLST,RATIO,XH,CL 



DO 25 I=l,4 
WRITE(32,*)YF(I) 

25 CONTINUE 

c 

CLOSE(32) 
END 
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C*********************************************************** 
C** SUBROUTINE INKEYP ** 
C*********************************************************** 

SUBROUTINE INKEYP(CL) 
REAL VX,ZLST,YF(4),BET(4),RATIO,XLAM(4),XH,CL 
COMMON/ROBDATA/VX,ZLST,YF,BET,RATIO,XLAM,XH 
WRITE(3, '(lH,///)') 
WRITE(3, *)'ENTER THE VALUE FOR VELOCITY OF BODY' 
READ(3,*) VX 
WRITE(3,*)'ENTER THE VALUE FOR Z MEAN OF BODY' 
READ(3,*) ZLST 
WRITE(3, *)'ENTER THE VALUE FOR Y OF FEET' 
DO 27 I=l,4 

WRITE ( 3 '*) I y I 'I' I= I 
READ(3,*) YF(I) 

27 CONTINUE 

c 

WRITE(3,*)'ENTER VALUE OF DELTA LAMBA' 
READ(3,*)CL 
WRITE(3,*)'ENTER DESIRED TIMESTEP FOR ITERATION' 
READ(3,*) XH 
END 

C*********************************************************** 
C** SUBROUTINE RDPARAM ** 
C*********************************************************** 

SUBROUTINE RDPARAM(CL) 
REAL VX,ZLST, YF(4),BET(4),RATIO,XLAM(4),XH,CL 
COMMON/ROBDATA/VX,ZLST,YF,BET,RATIO,XLAM,XH 
LOGICAL ABORT 
CALL GETRFN(32,'ENTER NAME OF FILE TO BE READ$',ABORT) 
IF (ABORT) RETURN 
READ(32,*) VX,ZLST,RATIO,XH,CL 
DO 24 I=l,4 

READ(32,*) YF(I) 
24 CONTINUE 

c 

CLOSE(32) 
END 

C*********************************************************** 
C** SUBROUTINE PARADEF ** 
C*********************************************************** 

SUBROUTINE PARADEF(CL) 
REAL CL,VX,ZLST,YF(4),BET(4),RATIO,XLAM(4),XH 
COMMON/ROBDATA/VX,ZLST,YF,BET,RATIO,XLAM,XH 
INTEGER IBRNCH 

11 WRITE(3,'(1H,///)') 
WRITE(3, *)'ENTER CHOICE FOR PARAMETER DEFINITION' 
WRITE( 3' *)I l=READFILE 2=WRITEFILE 3=KEYBOARD' 



c 

WRITE(3, *)' 4=END INPUT ROUTINE' 
READ(3,*) IBRNCH 
IF (IBRNCH.EQ.1) THEN 

CALL RDPARAM(CL) 
ELSEIF (IBRNCH.EQ.2) THEN 

CALL WRTPARA(CL) 
ELSEIF (IBRNCH.EQ.3) THEN 

CALL INKEYP(CL) 
END IF 
IF (IBRNCH.NE.4) GOTO 11 
END 
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C*********************************************************** 
C** SUBROUTINE DOUBLE => DOUBLE INTEGRATION SUBROUTINE ** 
C*********************************************************** 

SUBROUTINE DOUBLE(ACC,VEL,POS,ALST,VLST,POSLST,STP) 
REAL ACC,VEL,POS,ALST,VLST,POSLST,STP 
VEL=VLST+((ACC+ALST)/2)*STP 
POS=POSLST+((VEL+VLST)/2)*STP 
ALST=ACC 
VLST=VEL 
POSLST=POS 
END 
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CONTOUR PLOTTING PROGRAM LISTING 
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C PROGRAM CONTOUR WILL PLOT A SIMPLE CONTOUR PLOT FROM A 
C FILE, DATAl, THAT IS PRODUCED FROM AN EXTERNAL PROGRAM IN 
C THE FORMAT: Y-AXIS, X-AXIS, CONTOUR FUNCTION. A SEPARATE 
C FILE, TITLES, THAT CONTAINS THE AXES MARKINGS AND CURVE 
C LABELS IS ALSO REQUIRED 
c 

c 

REAL Y(4,100),X(4,100),TGT(4),YVARB,XVARB,CONTOR,YLST 
*,XLST 

REAL CONLST,YOUT(lOO),XOUT(lOO),YLOW,YHIGH,XHIGH,XLOW 
INTEGER NP(4),NPLT,NOUT,I,J,K 
LOGICAL MARK1,MARK2,MARK3,MARK4,ABORT 
CHARACTER CURVMK(4)*8,MARK*8,TITLE*80,XLAB*60,YLAB*60 
CALL GETRFN(34, 'ENTER NAME OF DATA READ FILE$' ,ABORT) 
K=l 
OPEN(214,FILE='TITLES') 

C READ THE CURVE LABELS AND AXES TITLES FROM FILE 
C TGT => THE VALUES DESIRED FOR THE CONTOUR LINES, 4 MAX. 
c 

DO 39 I=l,4 
READ(214,*)TGT(I) 
READ(214,*)CURVMK(I) 

39 CONTINUE 

c 
c 
c 
c 
c 
50 
c 

NPLT=4 
READ(214,*)TITLE 
READ(214,*)XLAB 
READ(214,*)YLAB 
YLST=l2 
XLST=0.5 
CLOSE(214) 
CONLST=O 

READ THE VALUES FOR THE TRI-DIMENSIONAL PLOT 
YVARB IS THE Y-AXIS, XVARB IS THE X-AXIS, CONTOR IS THE 
Z-AXIS FUNCTION. READ UNTIL FILE END ENCOUNTERED 

READ(34,*,END=100) YVARB,XVARB,CONTOR 

C FIND THE LOW AND HIGH VALUES OF THE AXES 
C SCALING 

VALUES FOR PLOT 

c 
IF (K.EQ.l) THEN 

YLOW=YVARB 
YHIGH=YVARB 

ELSEIF(YVARB.GT.YHIGH) THEN 
YHIGH=YVARB 

ELSEIF(YVARB.LT.YLOW) THEN 
YLOW=YVARB 

END IF 
IF (K.EQ.l) THEN 

XHIGH=XVARB 
XLOW=XVARB 

ELSE IF (XV ARB.GT .XHIGH) THEN 
XHIGH=XVARB 



c 

ELSEIF (XV ARB.LT .XLOW) THEN 
XLOW=XVARB 

ENDIF 
K=K+l 

C FIND IF PRESENT AND PAST Z-AXIS FUNCTION STRADDLES A 
C DESIRED CONTOUR LINE VALUE 
c 

c 

DO 14 I=l,4 
MARKl=(CONTOR.GT.TGT(I)) 
MARK2=(CONLST.LT.TGT(I)) 
MARK3=(MARK1.EQ.MARK2) 
MARK4=(YVARB.EQ.YLST) 
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C IF YES INTERPOLATE TO FIND APPROXIMATE CONTOUR LINE POINT 
C THAT THIS INDICATES AND SAVE TO PLOTING MATRIX 
c 

IF (MARK3.AND.MARK4) THEN 
NP(I)=NP(I)+l 
X(I,NP(I))=((TGT(I)-CONLST)/(CONTOR-CONLST)) 
X(I,NP(I))= X(I,NP(I))*(XVARB-XLST)+XLST 
Y(I,NP(I))=YVARB 

ENDIF 
14 CONTINUE 
c 
C SAVE LAST READ VALUES FOR POSSIBLE FUTURE INTERPOLATION 
c 

CONLST=CONTOR 
YLST=YVARB 
XLST=XVARB 
GOTO 50 

100 CONTINUE 
CLOSE(34) 

c 
C DESIGNATE PLOTTING FILE AND SAVE MATRICES IN FORM THAT 
C IS COMPATABLE WITH QCKPLT LIBRARY SUBROUTINE 
c 

CALL GETWFN(201, 'ENTER THE PLOTFILE NAME$',ABORT) 
DO 16 I=l,4 

DO 18 J=l,NP(I) 
XOUT(J)=X(I,J) 
YOUT(J)=Y(I,J) 

18 CONTINUE 

c 

NOUT=NP(I) 
XOUT(NOUT+l)=XLOW 
XOUT(NOUT+2)=XHIGH 
YOUT(NOUT+l)=YLOW 
YOUT(NOUT+2)=YHIGH 
MARK=CURVMK(I) 

C WRITE PLOT TO FILE USING LIBRARY SUBROUTINES QCKPLT AND 
C ADDPLT 

IF (I.EQ.1) THEN 
CALL QCKPLT(XOUT,YOUT,NOUT,4,XLAB,YLAB,TITLE, 



* MARK,1,43) 
ELSE 

CALL ADDPLT(XOUT,YOUT,NOUT,MARK,1) 
END IF 

16 CONTINUE 
CLOSE(201) 
STOP 
END 

117 



APPENDIX C 

FORCES EXERTED BY LEGS AND BODY DISPLACEMENTS 
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Figure 31. Vertical Force of Leg 1 
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Figure 34. Vertical Force of Leg 4 
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