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PREFACE
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CHAPTER |
INTRODUCT ION

Hashing Iis a well known technique for organizing
direct access files. It provides fast direct access to
data records stored either in maln memory or an external
devices such as disks.

Conventlonal hashing used as a file access technique
has the advantages of being simple and fast. To access a
record in a hash file, we first apply the hash function to
the key which results in an address to the leaf page,
where the record should be. The access time Is constant if
there is no overflow. Hashing is better Iin this aspect
than sequential access and tree access.

However, If a file grows by very large factors, or if
the record distribution over the avalilable storage Is not
uni form, the number of overflow records may be large and
therefore retrieval of records may be significantly
slowed down. On the otherlgand, if the fiie shrinks,
storage space iIs underuti?lzed. Such situations require
the file’'s rehashlng,‘which is costly, especially in a
multiuser environment[1].

Therefore, some novel hashing techniques have been



invented for files that grow and shrink dynamically. They
include dynamic hashing[14], extendible hashing[1],
virtual hashing[15], and bounded index exponential
hashing[{4]. With these techniques there are no overflow
records. They also allow for the extensibility of the hash
table and still guarantee efficiency of retrieval and
update operations. Assume that the allocated secondary
storage space is divided into buckets having a capacity of
b records. When a record Is to be inserted into a full
bucket, the latter is split into two buckets among which
the records are distributed. The "hash" function, which
locates a given record provided with a unique key, is
dynamically modlfied and the allocated storage space is
dynamically adjusted to the number of records actualiy
stored In the file.[12]

Dynamic hashing and extendible hashing employ an
Index to the data file. By using the hash function, a
bucket assocliated with the given unique record’s key can
be found. Once the bucket’'s address has been found,
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retrieval Iis fast: only one access to secondary storage is
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grows steadily, this Index, Inltlally avallable in core
memory, wlll eventually be partiy stored in secondary
storage. This will slow down searching and updating.

An extendible hashing Index Is Implemented by means



of a buddy system partition. The Index has 2**d entries
(where, d Is the depth of the directory), each of which
points to the bucket Iin which the records are stored.
Some of the entries may point to the same bucket. The d
most significant bits of H(K), where H is a hash function
and K is key, provide an adgress in the index. When a
bucket overfiows because of insertions, the corresponding
block in the address space is halved and a new bucket is
added. When a bucket gets underfilled because of
deletlons, the corresponding block Iis merged with iIts
buddy. When the data volume grows, the partition‘s depth
d eventually Increases. When this happens, then the Index
doubles In sizef[1].

Bounded Iindex exponential hashing, a new form of
extendible hashing, combines eiements of extendible
hashing with elements of spiral storage. Unlike extendibie
hashing, In bounded Index exponentlal hashing the index
size does not Increase. Rather, It is the data node that
doubles In slze so as to accommodate the overfliow, instead
of the node spiitting into two nodes. Thus, multipage
data nodes arlise as the file grows Iin size. Each time a
page within the data node overflows, the data node doublies
again. The doubllng, Just as the splitting did, divides
entries between pages on the basls of the value of the

next diglt of the key[4].



In contrast to the extendlbie hashing index, the
dynamic hashing index, implemented by means of a tree
structure, grows and shrinks more smoothiy, but the Iindex
node size Is larger than that of extendible hashing Index
entry. Each leaf of the tree contains a pointer to a
bucket. When a bucket overflows, the corresponding index
leaf becomes an internal node to which two new leaves are
appended, the left leaf pointing toward the original
bucket, the right leaf pointing toward a new bucket. When
two brother buckets get underfllled, they are merged into
one bucket and the corresponding index leaves are deleted,
thelr father now pointing toward the resulting bucket[14].

The virtual hashing schemes proposed are simlilar to
extendibie hashing but do not employ any Index. Retrieval
of record then may require only one access to secondary
storage. The price to be paid for this Is a very iow
storage utilizatlon, compared to the storage utillization
provided by dynamic hashing and extendibie hashing, which
Is In both cases approximately equal to In 2 = 0.69.

In order to prevent virtual hashing storage
utlillzation degradatlion, it Is suggested that splitting of
a bucket be deferred. However, the lIower bound on storage
utllization Is still low, and deletion of a record Is a
rather complicated operation when the file shrinks[12].

By using extendible hashing, there are no more than



two page faults necessary to locate a key and its
associated information even for files that are very large.
Therefore, extendibie hashing can be used in a large
database systems[1].

A B+ tree is a variant of the B-tree data structure.
B+ trees were designed to provide a way which Is suited
to both a random and sequential processing environment. A
B+ tree conslists of a set of records arranged in key order
In a sequence set, coupled with a B-tree Index set that
provides rapid access to the block containing any
particular key/record combination. In a B+ tree all the
key and record Iinformation Is contalned In the sequence
set[18].

The sequence set can be processed In a truly linear,
sequential way, providing efficlent access to records in
order by key.

The only difference between a simple prefix B+ tree
and a plaln B+ tree is that the latter structure does not
involve the use of preflxes as separators, while the
simple prefix B+ tree buillds an Iindex set of shortest
separators formed from key prefixes.

The simple prefix B+ tree bullds separators In the
index set that are smaliier than the keys In sequence set.
More separators can fit into a biock. To obtain this

compression and consequent increase In branching factor,



we must use an index set block structure that supports
variable length fields[18].

The goal of this thesis is to implement extendible
hashing and a B+ tree on a UNIX system and compare
per formance by examlining empirical results. Analysis will
include storage utillzation, random access cost,
sequential access cost, and insertion cost.

Chapter 11 and chapter 111 present descriptions of
extendiblie hashing and B+ tree respectively. Chapter 1V
shows the Iimpiementation and logic design for different
routines. Chapter V illustrates empiricai results and
discussion. A summary and concluslions are included in

chapter VI.



CHAPTER 11

EXTENDIBLE HASHING

An extendible hash flle Is a dynamic data structure
that Iis an alternative to B-trees for use as a database
index. In extendible hashing the user is guaranteed that
no more than two page faults are necessary to locate a key
and Its associated Informatlon even for files that are

very large.

therature Revlew

Michel Scholl[12] claims that the expected average
storage utiiizatlion for extendible hashing is 69.31 %. The
formulia to caicuiate the expected storage utilization for

sufficlently large number of Inputs Is given as follows:

. b
b+ 1
storage utilizatlion =

1
b i
l=b/2 + 1
where b Is block slze.
For sufficlently large number of Inputs, we have the

following expected storage utillzatlion of block sizes 2,

4, 8, 16, 32, and 64. For large block size, the Iimit



approaches In 2 = 69.31 %.

Block size Expected storage utilization
2 75.0 %
4 72.9 %
8 | 71.4 % '
16 70.4 %
32 69.9 %
64 69.8 %

Tamminen[7] claims that asymptotically extendible
hashing storage utilization is poorer than that of linear
hashing of Litwin[15]. The poor performance of extendible
hashing is due to an excesslive dependence of directory

slze on the existence of any random

vt

_cluster points. The
dependence Is lessened if ‘abnormal’ clusters only cause
the overflow of a page instead of doubling the directory.

Tamminen[6] studies the behavior of extendible
hashing without an assumption of randomness, i.e. he
represents some rough estimates of storage requirements
and processing costs in case of non random pseudokeys.

The |inear hashing of.EJtﬂlﬂmgnqwgg[§ggw!swsfignqiEle

\\lgrtﬁe sﬁ;é éense aémextendlbLeth§hlng.w[t does not

require a directory but must therefore routinely handle

o——

overflow. The method provides a good tradeoff between
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expected storage utilization and access time and is
efficlent.

Per formance aspects of extendible hashing have been
thoroughly analyzed both by analytical models and by
simulation[1,8]. These studies are based on the assumption
of a perfect randomlzatlion method. The hash function h
assocliates a random pseudokey K’ wlith each key K. Then,
whatever the distribution of keys, we can expect the
pseudokeys to be distributed nearly uniformly: about half
" the pseudokeys have first blt 0; about a quarter start
with 01, etc.

Fagin[1] and other analyze extendible hashing by
analytical models and by simulation, and compare the
per formance of extendible hashing with B-trees for access
time, Insert time, and storage utilization.

Mendelson(9) derlves per formance measures for
extendible hashing, and considers their implication on the
physical database design. A compiete characterization of
the probability distribution of the directory size and
depth is derived, and its Implications on the design of
the directory are studied. The expected input/output costs
of varlious operations are derived, and the effects of
varying physical design parameters on the expected average
operating cost and on the expected volume are studied.

Ellis(3) studied extendibie hashing and presents
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extendible hashing for concurrent operations and
distributed data.

Lomet(4) claims that the bounded index exponential
hashing has the important advantages over the most of the
other extendible hashing variants of both (i) providing
random access to any record of a flle In close to one disk
access and (11) having per formance which does not vary
with the flle size. It Is straightforward to impliement and
demands only a fixed and specifliable amount of main
storage to achieve this performance. Its underlying
physlical disk storage is readlly managed and record
overflow Is handled so as to Insure that unsuccessful

searches never take more than two accesses.

RadIx Search Trees

RadIx search trees are also known as digital search
trees, or trles, which examine a key one digit or letter
at a time, have long been known to provide potentiailly
faster access than tree search schemes that are based on
compar lsons of entire keys. It Is clear that radix search
trees are naturally extendible. By tracing the path, data
can be fetched. However, there are two major
disadvantages of radix search trees: (i) they waste space

by having to have redundant Iinformation, and (i1i) they are
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not balanced. The reason for this is that a radix search
tree usually contains space for many keys not in the tree.
Most of the time, the wasted memory space occurs at the
nodes near the bottom of the tree. Therefore, in
practice, radix search trees tend to be used only for
small files. Extendible hashing exploits the speed of
radix search trees without paying the penalty in memory
spacel[1].

Classlcal hash tables are not extendible. Their sizes
are intimately tied to the hash function used, and often
must be determlined before one knows how many records are
to be placed In them. A high estimate of the number of
records results Iin wasted space; a low estimate results in

costly rehashlng, that is, choice of_gAngumgiPle size, a

s VU

né@';;;ﬁw?ﬁﬁa¥78;;f;ﬁdJrglggngonwofwalinrecords.
- EQIE:A;Si;“hashlng accompl ishes two go;};t1]:
1. It makes the hash tables extendible, so that they
can adapt to dynamic files, and
2. It fills radix search trees uniformly, so that
they remain balanced and can Iimprove storage
utilizatlon.
in filgure 1 a simple radlx search tree over the
alphabet (0,1) Is presented.

Records are stored Iin the leaf nodes of the tree

according to the leading blts of thelr keys. When a leaf
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overflows, it Is simply replaced by an internal node to

which two leaves are attached.

0
‘ L110 L1111

Figure 1: Radix search tree

Speed of access to a radix search tree can be

increased iIf instead of comparing one digit of a key at a

time, the top levels of the tree are flattened into an

array of several pointers. The example In figure 2 is a
modiflied version of figure 1.
If we can afford to waste some more storage for
then the

redundant Information to improve access time,



00

01

10

11

7,00

LO1

L10

L1114

L111}

Figure 2: Radix search tree with the two top levels

000

are compressed to one.

Q01 Q10

100

101

110

LOO

LO1

L10

L1110

lL11i

Figure 3: Degenerate radix search tree.
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directory may be extended to a higher depth. This is shown
in figure 3.

To search for a record in the file, we first select
one of the pointers in the array according to the first
three bits of the key. The polnters will lead us to a leaf
page containing a record. Thus the access cost is

constant.
Extending Hash Tables

In classlical hashing, each entry of the directory
(hash table) polnts‘to a leaf page of fixed size. This
tradltional method has a disadvantage of not allowing
files to grow. When a leaf page overflows, we must use
another leaf page to store the overflow records. Allowing
overflow slows the search time. One way to eliminate
overflow leaf pages Is to tghgsh the records Into more
leaf pages. However, it wfll take O(n) time (where n iIs
th; number of records) to accomplish this task.

Extendible hashing uses the well-known "buddy system"”
for storage management. In flgure 4, the hash function
maps the key space s on to a large address space A. A
partition P splits A into m blocks; each block has one

leaf allocated for Its use and the dlirectory shows the
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correspondence between blocks and leaves[1].
Assuming that P is defined by m+1 boundaries

a(0),a(1),...., a(m) (m = 2**d), leaf LI contains all keys

4 a(1)>
3 a(z)" -—‘ﬂ
Hash Function v |
. -
S h LA
—— . .
Key Space . |
' VO
b a(m-1) —y
1 a(m2f ]
A

K: a(i)€=h(X)€a(i+1)

Address Space

Flgure 4: Hashing Into a large address space.

K with a(l-1) <= h(K) < a(l). This scheme Is flexible

because |If a leaf overflows, we can change the partition,
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perhaps by as little as shifting one boundary a(i), and
relocating onily those keys that are affected by this
shift. Therefore buddy system partitions have the
advantage that when a leaf overfiows,. the corresponding
biock in the address space is haived, a new leaf is added,
and only the keys in the halved biock are affected.
Halving any block of a buddy system partition leads to
another such partitlion. When a biock becomes unaerfilled
because of deletions, and when iIts buddy has enough room,
the two blocks can be merged easily Iinto one block.

Let the depth d of a buddy system partition be the
least Integer such that each member of the buddy system
partition is the union of some of 2**d equal sized
Intervals obtained by continued haivings. Thus, d is
minimal such that for each block [a(l),a(1+1)] of the
partition, (a(l)-a(l-1)) >= 2**(n -d). A directory with
2**d entries, some of which may point to the same page,
allows one to take the d most significant bits of hash
address h(K) as the index in the address space A =
{0, ..... ,2**d - 1) of the directory. When the depth of a
partition Increases, the directory doublies in a size.

Figure 4, gives an example on how to hash into a

large address space by using the buddy system.
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A Specific Extendible Hashing Scheme

One extendible hashing scheme Is described in this
section. Its most important characteristic Is its speed.
Even for very large files, there are never more than two
page faults necessary to locate a key together with its
associated Information.

Let h be a random hash functlon. If K Is a key, then K’' =
h(K) is the pseudokey assoclated with K under the hash
function h. Usually a pseudokey can be a fixed length such
as 32 bits. The hash function h can be randomiy selected
from a universal class of hash function, as defined by
Carter and Wegman. Then, whatever the distribution of
keys, we can expect the pseudokeys to be distributed
nearly uniformly: about half the pseudokeys have first bit
0; about a quarter start with 01, etc[11].

The data structure consists of two parts : a set of
buckets and the dlrectory.

The buckets(leaves) reside on secondary storage and

contaln keys and associated Information.

Directory

The number of bits of the pseudokey actually used to

index Into the directory Is cailed the depth d of the
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directory and changes as the file grows or shrinks. The
depth of the directory is an Integer "header" associated
with the directory. The array of pointers is of size 2**d.
The dlirectory contains an array of pointers to leaf pages.
Figure 5 shows an example of a hash file with directory
header = 2. Three pages of memory are allocated in this

case.

00 h(*)=0xx,..x %3P3g9a1

" >
h(*)=0xx..x

01 Ej

h(*)=10x..x _ S

11 n(*)=11x..x Page

A

Directory x represents 1 or O Leaf Pages

Figure 5: An example of extendible hashing with header = 2

In generai, the pointers are laid out as follows.

First, there is a pointer to a leaf that stores all keys K
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for which the pseudokeys K' = h(K) starts with d
consecutive zero bits. This is followed by a pointer for
all keys whose pseudokeys have their first d bits equal to
01, and then a pointer to all keys whose pseudokeys begin
with 10, etc., lexicographically. Thus altogether there
are 2**d pointers and the final pointer Iis for all keys
whose pseudokey begins with d consecutive ones.

To store a record with key equal to KO, h(KO) is
calculated first, and its first d bits extracted. Thus d
bits are used as an index to the pointer array(directory).
The pointer In the corresponding element of the directory

will point to a page where KO should be.
Leaf page (Bucket)

Each leaf page has a local depth d* for the leaf
page.ﬁmThe local deptﬁrd' may be ]ess thanvorvequal to the
gldﬁéjfdlrectory) depth d. The local depth d’ indicatés
that the pseudokeys of the records it contains égree oﬁly
in that number of bits. If d’ < d, that means mulitiple
directory entries wilil point to the same bucket. 2**(d -
d’) entrles will poilnt to that bucket. For example, the
local depth of page 1 In figure 5, is 1. This meahs there
are two pointers (which must be buddies) pointing to the

page. When a page splits into two, the local depths of the
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two split pages are Increased by one.

As In figure 5, when the leaf page 1 overfills then
it "splits™ Into two leaf pages, each with local depth
two. All keys whose pseudokeys begin with 00 appear on the
flrst of these pages, and all keys whose pseudokeys begins
01 appear on the other. The resu!t Is shown in figure 6.
The header of the directory Is the maximum of the local

depths of all the leaf pages.

2 2| 1
Page 1:
00 .
12 |
Page 2:
01 - h(*)=01xuox
10 I
5 Page 3:
h(*)=10x..x
119 - - Lal
- ' n(%)=11x..x
(;«cw
Directory "nf\\i Leaf Pages
~
Figure 6: Modification of figure 5, after splitting .
of page 1.

What happens if a leaf page overfllls and the local
depth of the leaf page equals the depth (header) of the

directory? The dlirectory has to double Its size so that
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the header(d) can be increased by one. For example if page
the example In figure 5 overflows, the directory (of

3
000 ,_ '5”
~“~“-—“““‘"*---T$ Page 1:
001 I
2
010 > Page 2:
Ly h(*)=01x..x
011 -
L 3
2 N Page 3:
100 3 i h(*)=100x.x
101 _ 'ﬂ
: h(*)=101x.x
110 ;
T
{ ‘ “.‘\\\ 2
111 \F_] Page 5:
h(*)=11x..x
Directory

Leaf Pages

Figure 7: lModification of figure 6, after doubling
directory.

pointers) must

increase its size. Each pointer spiits

into
two pointers pointing to the same page with the exception
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of the overflow page. The overflow page splits Into two
pages according to the (d+1)st blt of the pseudokey. The
global header is Increased by one.

Figure 7, shows the result of splitting of page 3.

The process of doubling the directory size is not
expensive because no leaf pages need to be touched (except
for the leaf page that caused the split and its new
sibling). This Is essentially a one pass algorithm that
proceeds by working from the bottom of the old directory
up to the top of the old directory.

By using extendible hashing, there Is at most one
page fault In locating the appropriate directory page.
Because the structure of the directory Is an array, the
location of each pointer can be determined by an easy
address computation. Further, there is at most one page
fault In obtaining the appropriate leaf page. So no more
than two page faults are necessary to locate a key and its
associated Information. In cases where the directory is
small, 1t can be kept In main memory.

The speed to Implement a reiational database
management system by usling extendible hashing Is
reasonable. 1f there are too many records that the
directory has to be stored In secondary storage, then
since the directory Is stored continuously, it can be

streamed into maln memory In large blocks. |If there are a
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few million keys, when the directory doubles, and if the
secondary storage device has a data transfer rate of
around a million bytes per second (roughly comparable to
that of IBM 3330 disk), then It Is straightforward to
estimate that the time Involved In doubling the directory
would be less than a second |If there were 400 records per
leaf page. Even Iin the extreme case of blllion keys, the
time invoived In doubling the directory would be less than
a minute[1].

The Iinternal structure of the leaves is independent
of the relatlonship between fhe pages. |If deletlions form
such a large proportion of the operations of an
applicatlion then space wili be saved by coalescing pages.
Thls can be accompllished by keeplng in the directory the
number of entrles on each page as well as the pointer to
the page. Then at each deletion, the total number of
entrles In the page deieted from together with an
approprlate sibling page can be checked without any extra
accesses. However, this additional compiexity will
probably not be justlifled for those appllicatlions where we
can expect new growth to raplidiy replace any deletlions.[1]

The scheme shows that extendible hashling provides a
dynamic flle structure that has a fast (constant) access

time and efficient Impliementation.
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Sequentiality

Hashing usually cannot support sequential processing
of a flle according to the natural order on the keys.
Sequential processing requires sorting, an O(nlogn)
operatlon which makes fast random access useless.

Sequential lty means two thlngs. In a weak sense it
means that the entlre set of keys (and corresponding data)
can be processed efficlently one at a time, where each
page of keys Is referenced only once. Sequentiality in the
usual stronger sense means that the order of sequential
processing coincldes with the natural order defined on the.
space of keys. it Is possible to store the set of keys-
within each leaf In a natural order, so that sequential
processing In natural order can be obtained for the cost

of linkilng all leaves, as opposed to sorting the entire

flle.



CHAPTER 111
B+ TREES

A new approach to external searching by means of
multiway branchlng was proposed in 1970 by Bayer and
McCreight[22]. They called this new kind of data structure
a B-tree.

B+ trees are probably the most widely used variant of
the origlinal B-tree. VSAM, IBM’'s general purpose B-tree
based organizatlion and access method, is a well known

example of using a B+ tree approach.
Motivation of B+ trees

The conventional B-tree Is good for Indexing dynamic
r;ndom access flles, but It has an apparent weakness in
the case that required sequential processing. To extract
all the keys In order a simple preorder traversal can be
used, but a significant amount of primary memory may be
required to stack all the nodes along a path from the root
to the leaf to avoid reading these nodes twice.

Additionaily, processing a "find next" operation may
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require tracing a path through several nodes before
reaching the desired key[21].

B+ trees were designed to remove these weakness and
provide a way that is suited to both a random and

sequential processing environment.
Characteristics of B+ trees

The characteristics of B+ trees are summarized by the
following:

1. All keys of B+ trees reélde in leaves (bottom

ievel).

2. Only the keys In the bottom ievel are associated
with data records.

3. Each leaf node of B+ trees has a iink field which
points to the next leaf node to the right, except
the rightmost leaf.

4. The index set has the structure of a B-tree.

A B+ trees consists of two Independent parts: (i) an
index set and (11) a sequence set. The structure of a B+
trees Is illustrated in figure 8.

The Index set conslists of separators that provide
Information about the boundarles between the blocks In the
sequence set of a B+ tree. The Index set can be used to

iocate the block iIin the sequence set that contains the



record corresponding to a certain key.

Random Index:
Access // . a B-tree
.
Sequential ' N
Access

Sequence Set

———p} ..—.? L I R e -—?

Figure 8: A structure of B+ trees.

The sequence set Is the base level of an Indexed
sequential flle structure. It contains ail the records in
the flle In a natural order.

A search in a B+ trees starts at the root but it is
confirmed oniy when a matching key is found at the leaf
level. Sequential processing begins at the leftmost leaf
and Is alded by foliowing the horizontal Iinks across the
leaves. The key values In a certain range can be
identlfied by locating the lower |Iimit of the range In the

bottom level and processing sequentlally untll the key
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value exceeds the hligher limit of the range.

Bayer and Unterauer[21] propose a refined structure,
the simple prefix B+ trees, which stores shortest
separators or prefixes of the keys rather than copies of
the actual keys, In the Index part of a B+ trees. The
ma jor advantage of a simple prefix B+ trees Is that it
decreases access time as well as saves space. According
to Bayer and Unterauer's[21] exper imental results, for
trees having betﬁeen 400 and 800 pages, simplie prefix B+
trees require 20-25 percent fewer disk accesses than a B+

trees.



CHAPTER 1V
ANALYSIS AND COMPARISONS

Extendible hashing and B+ tree has been implemented
under UNIX in the C programming language.

in order to anailyze and compare the performance of
extendible hashing with that of a B+ tree implementation,
the following four performance factors were measured:

1. Random access cost ( in terms of page faults);

2. Sequentijal access cost (in terms of number of

pages);

3. Insertlon cost ( In terms of page faults);

4. Space utilizatlon.

These measures are examined as functions of the
following three database and system parameters:

a. Database size (in terms of number of records);

b. Page size (in terms of number of recofds);

c. Buffer size (number of pages resident In primary

storage at a time).

a. Database size: The database sizes range from 1000 to

30000 records with an interval of 1000. Thirty thousand

random alphabets keys were chosen as record identliflier
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or keys.

b. Page size: The page size is the maximum number of
records that can reside in a single page; i.e., page
capacity. The page slizes range from 10 to 70 records
with an Interval of 10.

c. Buffer size: This parameter is used to count the

number of page faults. Buffer sizes range from 10 to 70

pages with an Interval of 10.

Extendibie Hashing

The structure used to Iimplement extendible hashing is
shown In figure 5 (chapter 11).
There are two main structures used:
1. Directory

2. Pages

1. Directory: Each entry In the directory has the address

of the particular page. Some entrles In the directory
might have the same value. If d Is the depth of the
directory then the total number of entries Iin the
directory Is 2*=*d.

2. Page: A binary tree Is used as the internal structure
of the page to store the keys In order and to get

sequential access in natural order. The page has fixed
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capaclity (or page size) in terms of number of records.
Each page Iis lIinked to the next page, except the last
page.

Initially, starting with a directory depth(d) of 1,
there are two entries In the directory (2**1 = 2) and two
pages. Thirty thousand keys were generated using the
system functlion random(). All keys were formed using
capital letters from A to Z. Each character In a key was
converted to a 5-blt binary number ranging from OOOOO(A)
to 11001(Z). These binary strings were concatenated to
form the pseudokey. For example the key AY would be
converted to 0600011000.

To calculate the address in the directory for the
key, the leftmost d bits were used from the pseudokey. d
was the current directory depth.

For example, If d is 7 then the leftmost 7 bits are
used, and the address is 0000011. So entry 3 in the
directory wouild have the page address for key AY. Since
this result directly glves the address of the page in the
directory, there Is no need to store any.keys in the

directory or IiIndex.

LOGIC DESIGN

Search: The baslc design of the search routine for
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extendible hashing is :

1.

2.

Read the key, K.

Determine the entry in the directory using the
above method.

Follow the pointer to a page P.

Search the binary tree in page P for key K.

If the key K is found then return successful else

return unsuccessful.

Insertion: The insertion routine for extendible

hashling
1.

2.

is:

Apply all five steps of search, using key K.

If the search is successful then return.

If by Inserting key K on page P, we would exceed
our page capaclty(page size), then go to step 7.

Otherwise, Insert the key K in a binary tree in

page P.

Increment the counter of number of records in page
P.

If key K has been successfully Inserted then

return eilse print Error and exit.

At this point, we know there_ls not sufficient
space on page P. Obtain new page P1.

Obtain a temporary area Q to store all records

appeared on page P, along with the new record.



9. Set the local depth of each P and P1 to d'+1,
where d° Is the old local depth of P.
10. After storing all records from page P erase all
records from page P.
11. If the new local depth of P is bigger than the
current diréctory depth d then doithe following:
a. Increase the depth d of the directory by one.
b. Double the slze of directory, and update the
pointers In obvious manner.
c. Set the count for number of records on page P
and P1 to zero.

12. Insert all records one at a time from temporary

area Q.
B+ TREES

The structure used to implement B+ tree is shown in
figure 8 (chapter I111).
There are two main parts of a B+ tree structure{
1. Index set
2. Sequence set

1.1ndex set: The Index set consists of separators that

provide information about the boundaries between the

blocks In the sequence set of a B+ tree.
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2.Sequence set: The sequence set Is the base level of a B+
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tree. It contains all of the records in the file. The
Sequence set Is made up of different pages that are |inked

to the next page except the rightmost page.

Loglc design

Search: The basic design of the search routine for B+
tree is:
1. Read the key K.
2. Start from the root of Index set and follow the
pointer, In the index set until the leaf page P is
found according to following rule:

Relation of search key and separator Decision

Key < Separator Go left
Key = Separator Go right
Key > Separator Go right

3. As the internal structure of page is binary tree,
search the binary tree of page P for the key K.
4. 1f the key, K Is found then return "successful"”

else return "unsuccessful”.

Insertion: The basic design of the insertion routine

for B+ tree lIs:
1. Appliy all four steps of above search routine.
2. |f the search was successful then return.

3. If by Inserting key K on page P, we would exceed
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11.
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our capacity(page size), then go to step 7.
Otherwise Iinsert the key in a binary tree in page
P.

Increment the counter of number of records on page
P.

|If key K has been successfully Inserted, then
return, else print error and exit.

At this polnt, we know there Is not sufficient
space on page P, obtaln a new page P1.

Obtaln a temporary area Q to store all records
that appeared on page P, along with the new
record.

Promote the root key R of blnary tree In page P to
the parent Index page Pl. By Inserting the key R
to the Index page Pl of page P, If count of number
of keys on page Pl will exceed the capacity of
page Pl then go to step 11.

Insert the key R to the Index page Pl at the
appropriate position and go to step 13.

Copy the index page Pl to the temporary area QI
with the promoted index key R at the appropriate
position. Obtaln a new Index page 1. If Pl Is the
root page then go to stepv12. Promote the middle
key R from the temporary area Ql to the parent

index page NI of page Pl. Copy the first half of



Ql to Pl and erase the rest of the information
from Pl. Copy the second half without the middle
key to the page | and update the pointers in the
obvious manner. If the page NI will overflow then
Nl becomes Pl and repeat the step 11, else go to
step 13.

12. Obtain a new index page RI. Copy the middle key of
QI to the first poslition in RI. RI Is the new root
page. Copy the first half of Ql to the page Pl and
the other half of Ql, without the middle key to
the page 1.

13. Update the pointers In obvious manner and Insert

all records one at a time from temporary area Q.
Page faults

There Is a buffer-ln primary memory that can hoid b
pages. Whenever we requlre a page not In the buffer, there
wlill be a page fault. A least recently used (LRU) page
management ailgorithm Iis used. For extendible hashing
directory page faults and for B+ tree Index page faults
are also considered.

The number of entrles (n) Iin the directory of
extendible hashing can reside on a single page given as

fol lows:
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n = page _slze/slze of polnter.
Only the size of the pointer Is considered because

directory contains only polinters.
Analysis

In this sectlon some analyflcal resuits concerning
the number of leaf pages and number of page faults for
accessing a record will be derlved.

Let us postulate a paged memory, with p equal to the
max Imum number of records that can reslide In a single page
and pb equal to the page slze In bytes. There is a buffer
in a primary memory that can hold b pages, and, whenever a
required page Is not In the buffer, there will be a page
fault. The total number of records will be n. The
parameters n, p, and b are common to both extendible
hashing and B+ tree.

Let UT(n) be the average occupancy Iin entries divided
by p. UT(n) will of course be different for extendible
hashing and the B+ tree. It Is assumed that each page has

exactly UT(n)*p entries.

Extendlible Hashlng

Let Ip be the number of leaf pages:
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ip = [n/7urny*p)

Number of directory entries (nd) = 2=*=*d

where d is directory depth.
1f dp is the number of directory pages,
dp = r(nd * size of pointer)/pb".

Now we can compute the probabilities dpf (page fault

referencing directory page) and Ipf (page fault

referencing leaf page): r’HBQ
{ N\
}nf (vé\n\?
Wxéw 9)
R
dpf = max(0, 1-b/dp) (v o &
S )\:{5’
and «\,«3, W
F

Ipf = max(0, 1-(max(1,b-dp))/1).
Kf) Lo
6‘
Finally, we have our approximation for expected

random access cost In terms of page faults for extendible

hashing :
random access cost = dpf + Ipf.

B+ tree
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Let db Is the depth of the B+ tree Index set:

(n+1)/2.

Y

where, m is the order of B-tree in index set.

db =1 + log

So, m=p + 1;
iIf Ip Is the number of leaf pages,

ip = [n/7utmy=py] .

The number of keys In the index (ni) = Ip - 1.

Let 1UT(nl) be the average occupancy of index page in
terms of number of keys divided by p.

If nip Is the number of index pages,
nip = [ ni/(1uT(ni)*p)7] .

Now we can compute the probablilties ipf (page faults
referencling Index page) and Ipf (page fault referencing

leaf page):

ipf = min(db, max(0,db-b/nip))

and
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Ipf = max(0, 1-(max(1,b-nip))/1).

Finally, the approximation for expected random access
in terms of page faults for B+ tree:

Random access cost = ipf + Ipf.



CHAPTER V

RESULTS AND DISCUSSION

The experimental resuits of both extendible hashing
and B+ trees are presented in this chapter. Figures and
tabies indicating empirical results are Iisted In the

Appendix.

Storage Utliization

The average storage utllization of both extendible
hashing and B+ trees approaches 68% regardliess of the page
size. Figure 10 and 15 as well as tabie Il and VII show
the empirical results of storage utililzation for both
extendibie hashing and the B+ trees.

As the page size increases the variations in storage
utilizatlon both for extendible hashing and for the B+
trees increase. Extendiblie hashing has hligher variations
in storage utilizatlon than that of the B+ trees.

As the database size increases, the variatlions In
storage utilization for both extendible hashing and B+
trees decreases.

Cyclical variations are observed in storage
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utilization performance. The reason Is that as pages
become full, storage utillzation increases. After some
time pages become completely full and are split almost
simultaneousiy and storage utllization decreases. After a-
while the page becomes full and storage utilization
Increases.

As llttle as 57% and as much as 76%, storage
utillzation for extendlible hashing is achleved, and for B+
trees the low Is 63% and high Is 70%.

Overall, the storage utlilzatlion for B+ trees is more

consistent than that of extendlible hashing.

Random Access Cost

Random access cost was measured in terms of page
faults. After Inserting a certaln number of records, 1000
records were accessed and the number of page to access
those records was measured. Flgure 11, 16, and 19 as well
as table 111, VIll, and X1 show the emplrical results.

It Is observed that the random access cost for
extendible hashing Is always less than that of the B+
trees access methods. The reason behind this is that In
extendibie hashing the key directly gives the directory
entry and that entry contalns the address of the page in

which the record should be. Since Iin a B+ trees access
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methods the Iindex set has to be traversed until the leaf
page Is found, there are more page faults required to
search the Iindex.

It is obvious that the higher the page size, the
lower the number of pages in the database. There are more
chances of getting the page from the buffer, which is in
resident memory, so there are fewer page faults.

In addition, It is observed that the higher the page
size, the lower the random access cost. As the page size
increases, the relative decrease In random access cost
also decreases. This Is found In both extendible hashing
and B+ trees access methods.

A step function |Is observed in random access cost
with an Increase In database size for both extendible
hashing and B+ trees. For extendible hashing, whenever the
directory size doubies In a slze, a step is observed; and
for B+ trees whenever the root page spilts (i.e. the
height of index set increases), a step Is observed.

It Is obvious that the higher the buffer size, the
more pages can reside In a resident memory. Hence there
are more chances of getting a page from the buffer,
resulting In fewer number of page faults. With an increase
In buffer size the corresponding decreasing number of page
faults is greater for extendible hashing than that of a B+

trees. The reason behind this is that more directory pages
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of extendible hashing can reslide In resident memory, so

fewer page faults are needed for searching the directory.

Insertion Cost

Insertlion cost was measured In terms of page faults.

After Inserting a certaln number of records, 1000 gﬁwﬁr()u’
additional records were Inserted and page faults were &Mt‘
measured during those insertions. The empirical results
are shown In flgure 12, 17, and 20 as well as table 1V,
IX, and XI1.

The foilowling observatlions were made for Insertion

cost:

1. The Insertion cost for extendible hashing Is
always less than that of B+ trees access methods.

2. For both methods, a§ the page slize Increases, the
insertion cost decreases; and as the page slze
increases, the corresponding decrease In insertion
cost also decreases.

3. A step functlion is observed for Insertion cost
with Increases in database slze for both
extendible hashing and B+ trees access methods.

4. The number of decreasing page faults with increase
in buffer size Is higher for extendible hashing

than that of B+ trees access methods.
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The reasons for the preceding observations are the

same as those explained for random access cost.
Sequential access cost

Sequential access cost is measured Iin terms of the’
number of pages In the database. Flgure 9 and 14 as well
as table | and VI show the emplrical results of sequential
access cost for both extendible hashing and the B+ trees
access methods.

It Is obvious that as the page size Iincreases, the
total number of pages In a database decreases. It is
observed that for the B+ trees method the decrease in the
number of pages with an increase In page slze Is more
consistent than that of extendible hashing. It Iis also
observed that with an Increase In the database size the
increase in the number of pages for B+ trees is more
nearly !inear than that of extendible hashing.

The reason behlind the above observations is the more
consistent storage utilizatlon of B+ trees than that of

extendible hashing.
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Directory slize(depth)

The knowledge of the distribution of the directory
size or depth Iis important for the design of an extendible
hashing file system. Since this size changes by factors of
two, Iits fluctuations may be quite significant. The
directory size is largely dependent on the existance of
clusters. An implementation of extendible hashing that
accomodate some overflow would lessen the frequency of
doubling the dlrectory.

The empirical results are shown In figure 13 and 17
as well as table V and X. |t is observed that the
corresponding decrease In the directory size with an
increase in page size also decreases. It is also observed
that the increase |In directory size with the increase in

database size Is a step function.



CHAPTER VI
SUMMARY AND CONCLUSION

Given that an Index resides on discs or drums,
searching It must be done by accessing secondary storage.
The time required to access secondary storage is the main
component of the total time required to retrieve
informatlon from databases[20]. Minimizing the number of
accesses to secondary storage iIs highly deslirable.

Extendlble hashing and B+ trees access methods are
two index sequentlial access methods that do not require
complete file reorganization. They can be very useful for
appliications that require random access and sequential

access In natural order.
Conclusions

The average storage utiilzation of both extendible
hashing and B+ trees Is about 68%. A B+ tree has more
consistent storage utillzatlion than that of extendibie
hashing. The performance of extendlble hashlng can be
degraded by the existence of a cluster.

The random access cost of extendible hashing Is
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always less than that of B+ trees. This can be still
further improved |If there is not an excesslve dependance
of the directory size on the exlstence of a cluster. There
are never more than two page faults necessary to locate a
key and Its assoclated Information for extendible hashing.

The sequential access cost of B+ trees methods is
more consistent than that of extendible hashing. This is
due to the fact that extendlible hashing results Iin more
varlatlons in storage utilization than B+ tree methods.

The Iinsertion cost of extendlible hashing is always
less than that of B+ trees methods. This Is due to a
max imum of one page fault to search an Index for a key in
extendible hashing.

If the directory slze Is small and can be kept Iin
primary memory, then there is a maximum of one page fault
to access a record In extendlible hashing. If an order
preserving hash function Is used that can break up
clusters, then there will be quite an improvement In

per formance for extendible hashing.

Suggested Future Work

The result Iin the thesis are obtained Just for search

and Insertion. it would be an iInteresting topic If

deletions were implemented. This topic Is left to future
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study.

In this study, a simple implementation of a B+ tree
Is compared to extendlble hashing with sequential access.
The results are based on comparisons of these two methods.
Ref inements of the Impiementation of elther or both
methods could produce different results, and couid be

sub ject of further study.



[1]

[21]

[31

[4]

[51]

[6]

L71]

[81]

[9]

[10]

SELECTED B IBL IOGRAPHY

Fagin, R., Nievergelt, N., Pippenger, N., and Strong
H. "Extendible Hashing - A fast access method
for dynamic files." ACM Transactlons on Database
Systems, 4, 3(Sept 1979), 315-344.

Bechtold, U., and Kuspert, K. "On the use of
extendible hashing.™ Information Processing
Letters, 19(1984), 21-26.

Ellls, C. "Extendible Hashlng for concurrent
operatlons and distributed data.* Proceddings of
the Second ACM SIGACT- SIGMOD Symposlium on
principle of database systems 21 - 23 March
1983, Atlanta, Georgla. 106-116.

Lomet, D. "Bounded Index exponential hashing."™ ACM
Transactions on Database Systems, 8, 1(March
1983), 136-165.

Tamminen, M. "The Extendible cell method for closest
polnt problems.™ BIT, 22(1982), 27-44.

Tamminen, M. "Order preserving extendible hashing and
bucket triles.™ BIT, 21(1981), 419-435.

Tamminen, M. "Extendible hashing with overfiow."
Information Processing Letters, 15, 2(1982),
227-232.

Yao, A. "A note on extendibie hashing.” Informatlion
Processing Letters, 11, 2(1880), 84-86.

Mendelson, H. "Analysis of extendible hashing." IEEE
transactlions on software engineering, SE 8,
6(Nov 1982), 611-619.

Stephen, H. "Multidimensional extendible hashing for
partial match queries." International Journal Of
Computer And Iinformation Sciences, 14, 2(1985),
73-83.

50



[11] Chang, C. "The study of an ordered minimal perfect
hashing scheme." Communication of the ACM, 27,
4(1984), 384-387.

51 [12] Scholl, M. "Newflle organization based on dynamic
hashing." ACM Transactlons On Database Systems,
6, 1(March 1981), 194-211.

[13] Knuth, D. The Art Of Computer Programming, vol 3
Sorting and Searching. Reading, MA : Addison -
Wesley, 1973.

[14] Larson, P. "Dynamic hashing." BIT, 18(1978), 184-201.

[15] Litwin, W. "Virtual hashing : A dynamically changing
hashing.” Proc. Very Large Databases Conf.,
Berlin, 1978, 517-523.

[16] Coffman, E. and Eve, J. "Flle structures using
hashing functions.” Communication of the ACM,
13, 7(July 1970), 427-436.

[17] Nakamura, T. and Mizoguchl, T. "An analysis of
storage utilization factor In block split data
structuring scheme." International Conference On
Very Large Databases 4 th , 1978, West Berlin,
Germany, Sept 13-15, 1978.

[18] Folk, M. and Zoelllck, B. File Structures : A
Conceptual toolkit. Reading, MA : Addison -
Wesley, 1987.

[19]1 Bell, D. and Deen, S. "Hash Trees Versus B-Trees."
The Computer Journal, 27, 3(1984), 218-224.

[20] Larson, P. "Linear Hashling with Overfiow-Handling by
Linear Probing." ACM Trans. on Database Systems,
10, 1(March 1985), 75-89.

[21] Grimson, J. and Stacey, G. "A Performance study of
Some Directory Structures for Large Files."
Informatlon Storage and Retrieval, 10(1974),
357-364.

[22] Bayer, R. and Unterauer, K. "Prefix B-~trees." ACM
Trans. on Database Systems, 2, 1(March 1977),
11-16.




[23] Bayer, R. and McCreight, E. "Organization and

Maintainance of Large Order

Indexes."™ Acta

informatica, 1(1972), 173-189.

52



APPENDI X

EMPIRICAL RESULTS

53



TABLE |

COMPARISONS OF SEQUENTIAL ACCESS COST

WITH NUMBER OF PAGES

Number of

Sequential Access Cost
(in terms of Number of Pages)

Extendible Hashing

Records B+ tree
1000 51 51
2000 100 98
3000 163 147
4000 198 195
5000 253 244
6000 307 296
7000 337 351
8000 366 395
9000 422 441
10000 489 484
11000 550 533
12000 602 595
13000 636 648
14000 678 705
15000 702 748
16000 728 792
17000 786 836
18000 831 886
19000 888 928

20000 960 987

21000 1033 1037

22000 1108 1083

23000 1190 1120

24000 1262 1172

25000 1319 1221

26000 1360 1278

27000 1393 1333

28000 1432 1387

29000 1465 1433

30000 1512 1478
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TABLE 11

COMPARISONS OF NUMBER OF RECORDS WITH
PERCENTAGE STORAGE UTILIZATION

Pecentage Storage Utilization
Number of - —_ —_

Records Extendlble Hashing B+ tree

1000 65.35 65.35
2000 66.66 67.86
3000 61.34 67.22
4000 67.34 68.52
5000 65.87 68.00
6000 65.14 67.03
7000 69.23 66 .57
8000 72.85 67.91
9000 71.08 68.55
10000 68.16 68.78
11000 66.66 68.64
12000 66.44 66.63
13000 68.13 66.60
14000 68.82 66.23
15000 71.22 67.03
16000 73.26 67.67
17000 72.09 68.17
18000 72.20 68.12
19000 71.32 68.54
20000 69.44 67.58
21000 67.76 67 .57
22000 66.18 67.55
23000 64.42 68.19
24000 63.39 67.77
25000 63.17 67.90
26000 63.72 67.60
27000 64.60 67.45
28000 65.17 67.27
29000 65.98 67.53

30000 66.08 67.74




TABLE 111

COMPARISONS OF NUMBER OF RECORDS

WITH RANDOM ACCESS COST

Number of

Random access cost
(in terms of page faults)

Records Extendible Hashing B+ tree
1000 832 911
2000 901 1101
3000 944 1397
4000 1107 1407
5000 1133 1554
6000 1141 1663
7000 1142 1658
8000 1147 1670
9000 1137 1674

10000 1142 1747

11000 1377 1753

12000 1379 1848

13000 1409 1885

14000 1644 1887

15000 1634 1869

16000 1663 1898

17000 1664 1887

18000 1643 1903

19000 1657 1907

20000 1646 1899

21000 1661 1932

22000 1660 1925

23000 1651 1948

24000 1662 2048

25000 1630 2043

26000 1647 2051

27000 1639 2051

28000 1633 2172

29000 1652 2159

30000 1613 2093
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TABLE 1V

COMPAR I SONS OF NUMBER OF RECORDS

WITH INSERTION COST

Number of

Insertion Cost

(in terms of page faults)

Records Extendible Hashing B+ tr
1000 985 1104
2000 1092 1357
3000 1163 1500
4000 1340 1547
5000 1337 1691
6000 1261 1736
7000 12569 1729
8000 1357 1735
9000 1398 1755

10000 1365 1821

11000 1549 1858

12000 1541 1983

13000 1665 1996

14000 1700 1952

15000 1731 1975

16000 1805 1977

17000 1766 1999

18000 1815 1987

19000 1862 2014

20000 1856 2031

21000 1844 2021

22000 1865 2021

23000 1845 2153

24000 1807 2139

25000 1760 2169

26000 1744 2166

27000 1740 2287

28000 1728 2260

29000 1731 2174

30000 1745 2189

ee
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TABLE V

COMPARISONS OF NUMBER OF RECORDS

WITH DIRECTORY SIZE

Number of Directory Slze
Records (for Extendiblie Hashing)
1000 128
2000 256
3000 256
4000 1024
5000 1024
6000 1024
7000 1024
8000 1024
9000 1024
10000 1024
11000 2048
12000 2048
13000 2048
14000 4096
15000 4096
16000 4096
17000 4096
18000 4096
19000 4096
20000 4096
21000 4096
22000 4096
23000 4096
24000 4096
25000 4096
26000 4096
27000 4096
28000 4096
29000 4096
30000 4096
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TABLE VI

COMPARISONS OF SEQUENTIAL ACCESS COST

WITH NUMBER OF PAGES

Sequentlal Access Cost
(in terms of Number of Pages)

Page Slze Extendible Hashing B

+ tree
10 2251 2227
20 1147 1105
30 702 748
40 585 552
50 409 447
60 342 366
70 332 310
TABLE VI

COMPARISONS OF PAGE SIZE WITH
PERCENTAGE STORAGE
UTIL1ZATION

Percentage Storage Utilli

Page Size Extendible Hashing B
10 . 66.63
20 65.38
30 71.22
40 64.10
50 73.34
60 73.09
70 64 .54

zatlion




TABLE VI1I

COMPARISONS OF PAGE SIZE WITH
RANDOM ACCESS COST

Random Access Cost
(in terms of Page Faults)

Page Slize Extendible Hashing B+ tree
10 1953 3179
20 1735 2151
30 1634 1869
40 1303 1660
50 1140 1634
60 1021 1418
70 987 1375

TABLE 11X

COMPARISONS OF PAGE SIZE WITH
INSERTION COST

Insertlon Cost
(in terms of Page Faults)

Page Slze Extendible Hashling B+ tree
10 2115 3477
20 1914 2332
30 1731 1975
40 1412 1735
50 1221 1672
60 1178 1478

70 1011 1455




10
20
30
40
50
60
70

TABLE X

COMPARISONS OF PAGE SIZE WITH
DIRECTORY SIZE

Directory size
(for Extendible Hashing)

1

6384
4096
4096
2048
2048
2048
1024

Buffer Size

TABLE XI

COMPARISONS OF BUFFER SIZE WITH

RANDOM ACCESS COST

Random Access Cost
(In terms of Page Faults)

Extendible Hashing

10
20
30
40
50
60
70

1782
1634
1500
1391
1306
1229
1173

2173
1869
1791
1705
1661
1604
1551

61



TABLE X11

COMPARISONS OF BUFFER SIZE WITH
INSERTION COST

Insertion Cost
(in terms of Page Faults)

Page Size Extendible Hashing B+ tree
10 1857 2244
20 1731 1975
30 1632 1878
40 1549 1802
50 1488 1750
60 1459 1693

70 1424 1632
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