DESIGN OF A DEXTEROUS

MECHANICAL HAND

```
By
    TOMMY J. METZNER
                            N
Bachelor of Science in Mechanical Engineering
    OKlahoma State University
        Stillwater, OKlahoma
                1984
Submitted to the Faculty of the
    Graduate College of the
    OKlahoma State University
    in partial fulfillment of
        the requirements for
            the Degree of
            MASTER OF SCIENCE
                December 1987
```

$$
\begin{aligned}
& \text { Thesis } \\
& 1987 \\
& 45960 d \\
& \text { cop. } 2
\end{aligned}
$$

DESIGN OF A DEXTEROUS

MECHANICAL HAND

Thesis Approved:

An articulated hand model that can mimick human hand motion was designed, fabricated, and controlled. The hand consisted of three fingers. Two fingers were similar to the index finger of the human hand and the other finger is similar to the human thumb in terms of its relation to the palm. The hand has the capability to grasp objects with different shapes and physical properties. These objects include the following: egg, styrofoam cup, ball, and an aluminum can. The model is the first of its kind in that each finger is designed as a three-link, $3 R$ robot with a voidless workspace.

The model's fingers are moved by nine linear actuators and controlled with the the aid of an A / D board connected to 'a IBM-AT computer. The hand is portable which allows for it to be attached to the Unimate PUMA 700 robot.

I wish to express my sincere gratitude to all the people who assisted me in this work and during my stay OKlahoma State University. In particular, I am indebted to my major adviser, Dr. A. H. Soni for his intelligent guidance, invaluable help, and encouragement.

I am also thankful to committee member Dr. Gary Young for his cooperation during the couse of this work. I am thankful for the ideas, suggestions, and assistance of

Ken Fowler. I would also like to thank my brother, Ron Metzner, for his suggestions and advice on the electronics used in this project.

I am grateful for the cooperation given by steve Harris for the use of the MAE Lab.

Special thanks is due to the fluid Power Research Center for the use of their facilities and the school of Mechanical and Aerospace Engineering for the financial support of this work.

Finally, 1 am thankful to my mother and father for their continued support and encouragement during my stay at OKlahoma State University and also l am grateful to my father for his assistance on the mechanical drawings used throughout this thesis.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION. 1
II. DESIGN AND CONSTRUCTION 5
Finger Links 5
Palm Configuration 6
Actuation System 8
Sensors. 13
Demonstration Platform 15
III. LINEAR ACTUATOR CONTROL SYSTEM. 17
Control Circuit. 17
Control System Modeling. 19
IV. CONTROL ALGORITHM 21
Demonstration Mode 21
Teach Pendent Mode 22
V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 24
SELECTED BIBLIOGRAPHY. 28
APPENDIXES 30
APPENDIX A - DETAILED THUMB LINK DRAWINGS AND ASSEMBLY PHOTOGRAPHS 31
APPENDIX B - DETAILED FINGER LINK DRAWINGS AND ASSEMBLY PHOTOGRAPHS 36
APPENDIX C - DETAILED PALM PLATE DRAWINGS AND ASSEMBLY PHOTOGRAPHS 41
APPENDIX D - PALM-TO-FINGER LINK AND ASSEMBLY PHOTOGRAPH. 47
APPENDIX E - DETAILED PULLEY ASSEMBLY DRAWINGS AND PHOTOGRAPHS 50
APPENDIX F - DETAILED BASE-PLATE DRAWING AND PHOTOGRAPH 59
APPENDIX G - ACTUATION SYSTEM AND SUB-ASSEMBLY DRAWINGS AND ASSEMBLY PHOTOGRAPHS. 62
APPENDIX H - DEMONSTRATION PLATFORM DRAWINGS AND ASSEMBLY PHOTOGRAPH. 75
APPENDIX I - SENSOR CIRCUIT DIAGRAM 81
APPENDIX J - CONTROL CIRCUIT DIAGRAM. 83
APPENDIX K - SCREW TERMINAL CONNECTIONS 85
APPENDIX L - LIST OF CONTROL ALGORITHM 87

LIST OF FIGURES

Figure Page

1. Designed Mechanical Hand. 2
2. Pulley and Cable System 3
3. Electronic Hardware 4
4. Workspace for a 3 R Robot with Link Ratios of 0.4 0.2 , and 0.4 6
5. Palm Configuration. 7
6. Pulley Arrangement. 8
7. Cable Routing-Palm. 9
8. Cable Routing-Base Plate. 9
9. Forces Acting on a Simple Cube. 10
10. Typical Linear Force vs. Linear Rate at 20 C (L92421). 12
11. Typical Linear Force vs. Linear Rate at 20 C (L92121) 13
12. Typical Resistance Changes in Antistatic Foam 14
13. Sensor Locations. 15
14. Demonstration Platform. 16
15. Controller Circuit Layout 18
16. Open-loop Control System. 19
17. Closed-loop Control System. 20
18. Grasp for a Can 27
19. Grasp for a Ball. 27

CHAPTER I

I NTRODUCTION

The grasping capabilities of the end-effector on an industrial robot limits its application in the industrial environment. Since the human hand is capable of numerous grasps, an end-effector modeled after a human hand would be very desireable.

Numerous studies have been made on the kinematics and forces associated with articulated mechanical hands (1). The University of Utah and Massachusetts Institute of Technology are developing, probably the most proclaimed, a tendon operated, multiple degrees of freedom mechanical hand (2). This hand closely resembles the human hand in that it has an anthropomorphic geometry and its dexterity has reached the capacity of a human. Hitachi has developed a robot hand which employs the use of shape memory alloy (SMA) to control the actuation of the fingers and wrist. This method of actuation produced a highly efficient robot hand with a very lightweight mode of actuation (3).

The main goal of this research was to develop, construct, and control a dexterous mechanical hand that would exhibit prehension of an object. The complete system is shown in Figure 1.

Figure 1. Designed Mechanical Hand

There are only two basic categories of grip used in manufacturing work: the "three-fingered" grip and the "wrap-around" grip (4). Since only three fingers are required to facilitate these grips, the designed hand has only three fingers. Each finger is composed of three binary links modeled from the previous results using the concept of a 3 robot with a voidless workspace (5). The fingers are situated on the palm very similar to the fingers on the human hand. The fingers are actuated by a system of pulleys and cables and nine linear actuators as shown in figure 2 . Shown in Figure 3 is the entire mechanical hand mounted on a base which can be oriented in numerous positions. The motor control circuits (A), sensor circuit (B), and power supply (C) necessary for the control and actuation of the hand are
shown in Figure 3. Ribbon cable is used to connnect the hand and motors and sensors to the computer and control circuits.

The control algorithm is menu driven which allows for easy user interaction. The algorithm is coded in C since its execution speed is sufficient for the finger actuation.

Figure 2. Pulley and Cable System

Figure 3. Electronic Hardware

CHAPTER II

DESIGN AND CONSTRUCTION

Abstract

Nine linear actuators are used to control the movements of the finger links; in addition, force feedback is used to indicate stability of grasps on objects. Refer to the appropriate sections for detailed description of the control electronics and software.

Finger Links

The fingers are designed so that for the least joint motion a voidless workspace will exist. Previous research indicates that the link lengths a, b, and c ratios which produce this voidless workspace are $0.4,0.2$, and 0.4 respectively (5). The graph of the workspace envelop in a two dimensional plane is shown in Figure 5. The actual dimensional characteristics for each finger link are given in Appendixes A and B.

The finger links are constructed from 7075-T6 aluminum because of its high strength-to-weight ratio and machinability (6). Other aluminums such as 2024 and 6061 were considered but due to the physical properties of these aluminums, they were not used except where strength was not an important factor. The finger links form a revolute pair
by the use of a ball bearing and a pin. The decision to use ball bearings was based on the fact that low radial forces will be experienced and a reduction in frictional components is highly desireable. The finger links are machined thin for weight reduction. Because of the slow movement and low weight of the finger links, inertial effects were not considered during this study.

Figure 4. Workspace for a 3R Robot with Link Ratios of 0.4, 0.2, and 0.4.

Palm Configuration

The palm is constructed of the same material as the finger links. The main function of the palm is to provide a stable surface for grasping to take place and to anchor the
fingers. The configuration in which the fingers are anchored is important in such that the positions will limit the dexterity of the hand.

The configuration is based upon a geometrical intersection of three workspaces and in part by the anthropomorphic geometry of the human hand. The size of the hand is determined once again by the anthropomorphic geometry in addition to the fact that larger hands are more efficient in the industrial environment (7). The final configuration is shown in Figure 5.

Figure 5. Palm Configuration

Actuation System

The actuation system is the most important element which determines the mechanical performance of the mechanical hand. The actuation of the fingers is achieved by the use of a pulley-cable system. Miniature pulleys are installed within the finger joints and links. A special cable made of an aramid fiber is used because of its unique flexiblity characteristics and strength-to-weight ratio. The pulley inside each link is offset from the center of the link joint as shown in Figure 6. A moment is produce about the joint when tension is applied to the cable. The direction of tension corresponds to the direction of finger motion. With this simple system, it is quite easy to control the movement of the fingers.

Figure 6. Pulley Arrangement

The fingers cables are linked to the actuator by a system of cable routings on the palm and on the base plate of the mechanical hand. This routing is shown in Figures 7 and 8.

Figure 7. Cable Routing-Palm

Figure 8. Cable Routing-Base Plate

The method of providing adequate tension to the cables is accomplished through the use of linear actuators. The linear actuator is basically a stepping motor with a lag screw attached to it thus changing rotational motion to linear motion.

Before the linear actuators were selected, the maximum weight that the hand could successfully grasp was decided to be 3 lbf. After this weight is known it is necessary to calculate the required actuating forces which would provide acceptable grasp forces.

A cubical object weighing 3 lbf would require approximately 1.11 lbf of grasping force normal to the object. This is based on the following calculations (Refer to Figure 9):

Figure 9. Forces Acting on a Simple Cube

```
For a stable grasp &FX=\SigmaFy = \SigmaFz=ma=0
If equilibrium exists Fs1=Fs2=Fs3
Since \SigmaF=0
```

$3.0 * F s-m g=0$
$3 * \mu N=31 \mathrm{bf}$

For Rubber on steel $\boldsymbol{\mu}=0.9$
Therefore $\quad 2.7 * N=3.0$

$$
N=1.11 \mathrm{lbf}
$$

Where N is the normal force necessary to maintain a stable grasp.

Next, with the given pulley offset, it is necessary to determine the required tension produced in the cable to provide this calculated force. With an offset of 0.125 inches, simple calculations are made for a point 0.625 inches along the length of the finger from the joint. A moment of 0.694 in-lbf is required to produce a normal force of 1.11 lbf at this point. This would require an actuation force of 5.55 lbf.

With this force in mind, a selection of the mode of actuation is narrowed down substantially. A mode of actuation that is small and lightweight is highly desirable. After an extensive product search, a linear actuator was found to be the most appropriate mode of actuation because of its cost and force output. However, one concern is the size and weight of the linear actuator. Two different actuators were found that would produce the desired linear force and were small and lightweight. One actuator, Airpax K-92121, will produce an approximate force of 2.5 lbf and
will be used for the rotation of the fingers. The other actuator, Airpax K-92421, will produce an approximate force of 4.7 lbf and will be used for the finger link movements.

Obviously, an additional mechanism is required to produce an actuation force of 5.55 lbf. Using a simple lever mechanism, actuation forces up to 15.3 lbf can be obtained and at the same time serve as the link-up between the cable and actuator. Since the tension in the cable is a constant force as the linear actuator moves, the force will remain constant once the object makes point contact with the finger's surface. However, the force of the finger will vary according to the linear rate of the actuator shaft. The force output and linear rate of each actuator are shown in Figures 10 and 11. The actuators and mechanism system are shown in Appendix G.

Source: AMSI Corporation, 1986 Catalog.
Figure 10. Typical Linear Force vs. Linear Rate at 20 C (L92421)

Source: AMSI Corporation, 1986 Catalog.

Figure 11. Typical Linear Force vs. Linear Rate at 20 C (L92121)

Sensors

For stable grasping, defined forces must be transferred from the actuator by the fingers to the object being grasped. This can only be accomplished by some form of sensor and in this case a tactile sensor is used. Using conductive foam, a two fold purpose is achieved. One purpose, the foam acts as an artificial skin by conforming to an object's surface when grasped and secondly it gives the mechanical hand a sense of touch when the foam is properly utilized by acting as a force sensor.

The conductive foam has an approximate resistance value of 120000 ohms per unit area for a thickness of one-eighth of an inch. When the foam is compressed the resistance changes, therefore by constructing a simple circuit that
allows for the application of the voltage divider rule and using the foam as a resistor, the voltage output will change according to the applied force or pressure to the foam. By applying known loads to a specific sensor, the sensor is calibrated for a range of loads. The conductive foam is not flawless but it exhibits properties which allow it to be a very useful tactile sensor. it has some non-linearites and hystersis when large loads are applied to the foam or a load is applied for long periods of time. A typical curve illustrating the force versus resistance is shown in figure 12 (9). Appendix 1 shows a schematic drawing of the sensor circuit and gives details on the construction of the foam sensor.

Figure 12. Typical Resistance Change in Antistatic Foam

Twelve sensors are strategically placed on the finger links and palm as shown in Figure 13. This placement of sensors is based on the fact that for a stable grasp by a finger, specific contact points must be known.

Figure 13. Sensor Locations

Demonstration Platform

A platform is made that is used only for demonstrating the dexterous mechanical hand. The platform allows for the palm to be rotated by 90 degrees from side to side and tilted 45 degrees forwards or backwards. The platform's dimensions are given in Appendix G and the platform is
shown in Figure 14.

Figure 14. Demonstration Platform

LINEAR ACTUATOR CONTROL SYSTEM

Achieving similar dexterity of that of the human hand in terms of moving the fingers with the speed and the force necessary to successfully grasp an object is a very difficult task. The actuator control circuit and the sensor circuit play an important role in the control of the mechanical hand.

Control Circuit

The nine linear actuators are controlled by the use of the two Signetics SAA 1027 Stepper Motor Controller IC and a set of switching relays (Refer to Appendix J).

The nine linear actuators are four phase motors. By controlling the state of two phase pairs in terms of "on" or "off", the actuator is driven by the lC driver. Referring to Figure 15 , it readily can be seen that controlling the actuators is an easy task when utilizing a computer in conjunction with an analog-to-digital converter. Using the A/D screw terminal, communication between the controller and computer is established (10). By setting pin (2) high, 1, and setting pin (3) low, 0 , the direction of the linear motion is set (11). By causing pin (15) to go nigh, the
actuator will step each time it is sent a pulse via computer, hence, the speed of the screw rate is easily controlled in a computer program. In the case of the K-92421 the maximum screw rate is 0.50 in/sec and the K-92121 has a maximum screw rate of $0.85 \mathrm{in} / \mathrm{sec}$.

Since the K-92121 is a 12 volt motor and the K-92421 is a 5 volt motor, two independent stepper motor controllers are constructed. Bits 0 through 3 on digital $1 / O$ port 1 are used in controlling the speed and direction of the motors (Refer to Figure 15).

Source: Linear Data and Applications Manual Volume 1 Signetics Corporation, (1985).

Figure 15. Controller Circuit Layout

The selection of the motors is accomplished through the digital $1 / 0$ port 0 . Bits 1 through 6 are used in this case
to activate the relays. By placing relays in the motors' windings the circuit is broken; hence, each motor can be turned "on" or "off" at will. With an additional power supply, it is possible to control two or more motors simultaneously with this type of motor selection technique. The screw terminal connections are shown in Appendix K.

Control System Modeling

Two types of control systems are used in controliing the mechanical hand. An software open-loop control system (Figure 16) is incorporated during the use of the teach pendent mode and a software closed-loop system (Figure 17) is used during the use of the computer mode (12). The teach pendent and computer modes will be discussed at a later time.

Figure 16. Open-Loop Control System

Figure 17. Closed-Loop Control System

The software for the open-loop system is designed such that the motors are controlled by a single pulse each time an arrow key is pressed. The user has total control of the movement of each finger. The sensors are not used here except for referencing the force being exerted on the object.

The closed-loop system's feedback element is primarily the force sensor. Ideally, a grasped object is stable when symmetrically placed contact points have equal forces exerted on them. Using this theory, the software is developed so that the computer will search until the forces exerted on the object are equal according to the relative position of the finger joint contact point.

CHAPTER IV

CONTROL ALGORITHM

The control algorithm is written in "C" and is included in Appendix L. The algorithm is written in a modular format with the main program being subdivided into two segments, demonstration and teach pendent modes. The remainder of the program is composed of subroutines. This type of modular programming allowed for easy debugging.

Demonstration Mode

This mode is designed specifically for demonstration purposes. Four files were created using the teach pendent mode. The four objects grasped are an egg, styrofoam cup, aluminum can, and a ball. These objects were chosen because of their different physical properties such as weight, size, and fragility. The range of grasping capabilities are exhibited through the selection of these objects.

Another feature was installed in this mode that allows the user to replay the grasping motion of any object that has been previously grasped and its sequence of motions stored on file.

Teach Pendent Mode

The teach pendent mode allows the user to place an object on the palm and control the grasping manually or by computer. The resulting movements are saved on file under any given name so that the motions can be replayed if desired.

For manual control, the fingers are actuated one at a time by using the arrow keys on the keyboard. The direction of finger movement is indicated by the direction of the arrow. After a desired position has been obtained, the user is required to enter that position if it is to be used for later reference or playback. Feedback from the sensors is not utilized in this particular teach pendent mode.

The computer teach pendent mode is controlled by a closed-loop system. The user specifies a desired force applied to an object and the computer, using the feedback from the sensors, initiates a sequence of finger movements that will grasp the object. The force entered must remain between 0.0 and 1.0 lbf .

The algorithm is set-up so that the sensors are continually scanned in a predetermined sequence. This sequence was determined by experimentally using different sets of sequences. The sequence that gave the appropriate information so that a stable grasped could be obtained quickly was used.

The user also can control the speed of actuation. These speeds begin at $0 \%, 0.0$ in/sec, to 100%, $0.85 \mathrm{in} / \mathrm{sec}$, for
moving the fingers side to side and 0.0 in/sec to $0.5 \mathrm{in} / \mathrm{sec}$ for opening and closing the fingers. Medium speeds are suggested for optimum performance.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

There is much to learn from the prototype mechanical hand. The configuration of the finger locations with respect to the palm is a major consideration in the design of the hand. Different locations and the geometric design of the finger links change the grasping capabilities and dexterity of the mechanical hand. All configurations considered were graphically determined by hand. A computer simulation of a three-fingered mechanical hand is highly recommended in order to obtain the optimum finger-palm configuration for a given range of manipulative tasks.

Another important feature which will limit the dexterity of the mechanical hand is the accessible region of the individual fingers. In this case, the finger lengths were designed such that for specific joint rotations there existed a voidless workspace. With this characteristic the designed mechanical fingers could actually reach areas on the palm not accessible to a by fingers on a human hand of comparable size.

There are many modes of actuation available but systems that can deliver the appropriate forces, actuate the fingers at substantial speeds, and provide a small and ightweight
package are difficult to obtain and are often costly. The tendon operated actuation system provides a lightweight and efficient mode for finger movement. All control systems and drive components are located away from the actual mechanical hand which allows for various types of drive components and arrangement. The linear actuators selected provide an efficient means of moving the finger links and also deliver the required forces; however, due to unavoidable frictional components the speed is slower that desired. Servo motors could serve as an alternate choice for actuation but the control system would be much more complex and not as cost effective. Another mode of actuation considered was the use of shape memory alloy (SMA) (13). SMA was experimented with but found that an elaborate actuating and cooling system would be required. However, SMA does have excellent potential for this type of application assuming the appropriate research is formulated.

Another area which affects the overall performance of the mechanical hand is the type of sensor used on the fingers and palm. Although crude, the conductive foam has proven to be an excellent sensor for touch.

A much more sophisticated means of using a sensor, would be using piezo crystals to sense touch and detect objects being grasped. Arranging the piezo crystals into an array throughout the hand, the location of the signal from the crystal can be used to fill an array of $1^{\prime} s$ and $0^{\prime} s ;$ hence a two dimensional picture can be generated similar to that of
a computer vision system. This type of information would be excellent for artificial intelligence applications.

Optical sensors could be implemented as another source for touch and placement information. Potentiometers added to the hand would allow for a low cost and very accurate means of positioning the finger at selected points on an object. Addition of these potentiometers would require a mathematical model in terms of a kinematic analysis of the mechanical hand. Furthermore, for a much more sophisticated model, inertial effects and system damping should be fully developed into the mathematical model.

The task of designing an excellent dexterous mechanical hand requires a team effort. This research area comprises many areas of complexity and disciplines. Major areas which require research and development are configuration design, actuation system, control system, and sensors. Obviously, each of these areas are comprised of sub-groups and only can been dealt with by qualified persons.

The list for improvements and sophistication of the dexterous mechanical hand is long but the hand developed will manipulate a number of different objects successfully (Refer to Figures 18 and 19). The main scope of this project was to develop a working dexterous mechanical hand that can be used as a test bed for future research in this exciting area that has much potiential in the manufacturing environment and the biomedical field.

Figure 18. Grasp for a Can

Figure 19. Grasp for a Ball

1. Salisbury, J. K. "Kinematic and Force Analysis of Articulated Mechanical Hands." ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, 105(1983), pp. 35-42.
2. Jacobsen, S. C., Wood, J. E., Knutti, D. F., Biggers, K. B. "The Utah/MIT Dexterous Hand: Work in Progress", SDF/MIT 1st International Symposium of Robotics Research, Bretton Woods, NH 1983.
3. "Hitachi's Robot Hand." Robotics Age, July, 1984, pp. 18-20.
4. Wright, Paul K. and Mark R. Cutkosky. "Design of Grippers." Mechanical Design of Robots, Ed. Eugene 1. Rivin. New York: McGraw-Hill, 1988 1988, P. 98.
5. Laughlin, Gary Lynn. "Position Robot with One Degree of Redundancy." (Unpub. M.S. thesis, OKlahoma State University, 1986).
6. "Materials." Society of Automotive Engineers Handbook, Vol. 2 (1986), pp. 10.01-10.39.
7. Salvendy, Guariel. "Hand Size and Assembly Performance." American Institute of Industrial Engineers Transactions, 3, 1 (March 1971), Pp. 32-36.
8. Holzmann, W. and J. M. McCarthy. "Computing the Friction Forces Associated with a Three Fingered Grasp." Proceedings of the 1985 LEEE Conference on Robotics and Automation. St. Louis, PP. 594-600
9. Mallin, Jay. "A Simple Sense of Touch for Robotic Fingers." Robotics Age, November/December, 1983, pp. 24-27.
10. User's Manual for DT2801 Series Single Board Analog and Digital $1 / 0$ Systems. Malborough, Massachusetts: Data Translation, Inc., 1985.
11. Linear Data and Applications Manual Volume I. Sunnyvale, California: Signetics Corporation, 1985.
12. Acarnley, P. P. Stepping Motors: A Guide to Modern Theory and Practice. London and New York: The Institute of Electrical Engineers, 1982.
13. "Robot Hand with Shape Memory Musculature." LBM Technical Disclosure Bulletin, 28, 1 (June 1985), pp. 302-303.

APPENDIXES

APPENDIX A

DETAILED THUMB LINK DRAWINGS

AND ASSEMBLY PHOTOGRAPHS

APPENDIX B

DETAILED FINGER LINK DRAWINGS
AND ASSEMBLY PHOTOGRAPHS

APPENDIX C

DETAILED PALM PLATE DRAWINGS AND ASSEMBLY PHOTOGRAPHS

APPENDIX D

PALM-TO-FINGER LINK AND ASSEMBLY PHOTOGRAPH

APPENDIX E

DETAILED PULLEY ASSEMBLY DRAWINGS
AND PHOTOGRAPH

MATERIAL:			
7075 ALUMINUM	DESCRIPTION:	DRAWN BY,	SCALE $=1 / 1$
BLOCK, PULLEY	METZNER	DATE: $11-86$	

SIDE VIEW

GENERAL NOTES;

DIMENSION TOL: $\pm .0005$

MATERIAL:			
7075 ALUMINUM	DESCRIPTION.	DRAWN BY,	SCALE $=1 / 1$
PULLEY, BOTTOM	METZNER	DATE, $11-86$	

APPENDIX F

DETAILED BASE-PLATE DRAWING AND ASSEMBLY PHOTOGRAPHS

APPENDIX G

ACTUATION SYSTEM AND SUB-ASSEMBLY
DRAWINGS AND ASSEMBLY PHOTOGRAPHS

APPENDIX H

DEMONSTRATION PLATFORM DRAWINGS

AND ASSEMBLY PHOTOGRAPH

APPENDIX I

SENSOR CIRCUIT DIAGRAM

APPROXIMATE SENSOR RESISTANCE VALUES:

Rsi -- 42.6K	Rs 7	-- 32.0K
Rs2 -- 37.6 K	Rs8	-- 44.8 K
Rs3 -- 58.0K	Rs9	-- 48.8K
Rs4 -- 65.0K	Rs 10	-- 50.8 K
Rs5 -- 550k	Rsit	-- 30.8 K
Rs6 -- 860K	Rsi 2	-- 52.0K

APPENDIX J

CONTROL CIRCUIT DIAGRAM

APPENDIX K

SCREW TERMINAL CONNECTIONS

APPENDIX L

LIST OF CONTROL ALGORITHM


```
#include <dos.h>
#include <staio.n>
#include <math.h>
#define BLS printf("3[2J");
#define DELAY for(i=0;i<=30000;++i);
/* ASSIGN ADDRESSES FOR DATA TRANSLATION */
#define CMDREG Ox2ed /* TI-101 */
#define DATREG Ox2ec /* TI-100 */
#define STREG 0x2ed /* Tl-101 */
/* DEFINE CONSTANTS FOR D/A BOARD */
#define CMDMSK OX4
#define REDMSK 0x5
#define WRTMSK Ox2
#define GAIN OxO
#define REDNOW OxC
#define CCLEAR 0x1
#define CSTOP Oxf
#define CSOUT 0\times5
#define CDIOOUT 0x7
#define DIOPORTO 0x0
#define DIOPORT1 0xi
/* DEFINE MOTOR CONTROL CONSTANTS FOR 5 & 12 VOLT MOTORS */
\begin{tabular}{lll} 
\#define & BWRD5 & \(0 \times 4\) \\
\#define & FWRD5 & \(0 \times 5\) \\
\#define ZEROB5 & \(0 \times 0\) \\
\#define ZEROF5 & \(0 \times 1\) \\
\#define BWRDi2 & \(0 \times 10\) \\
\#define FWRD12 & \(0 \times 18\) \\
\#define ZEROB12 & \(0 \times 0\) \\
\#define ZEROFi2 & \(0 \times 8\)
\end{tabular}
/* DEFINE SENSOR CHANNEL CONSTANTS */
```



```
\begin{tabular}{lll} 
\#define A11 & \(0 \times 2\) \\
\#define A123 & \(0 \times 4\) \\
\#define A21 & \(0 \times 8\) \\
\#define A223 & \(0 \times 10\) \\
\#define A31 & \(0 \times 20\) \\
\#define A323 & \(0 \times 40\) \\
\#define ROT1 & \(0 \times 2\) \\
\#define ROT2 & \(0 \times 4\) \\
\#define ROT3 & \(0 \times 8\)
\end{tabular}
```

```
extern int getch();
int time;
int ctr1,ctr2,ctr3;
main()
l
    char data,file_name[15],motion,obj,resp,select;
    int control,dir,flag,fgr,fgr_lnk,filel[500],i,key,spd;
    float force1,forcea;
    short int port;
FILE *fP;
resp = 'Y';
BLS;
SET();
printf("%s%s%s%s%s%s%s",
    "This is the control program for the OSU DEXTEROUS HAND.",
    "The program is divided into two sections. One is for",
    "demonstration purposes which has several predetermined",
    "objects that are grasped when selected. The other section",
    "allows for the user to grasp a desired object. At this",
            "point, the user can specify a teach pendent or computer",
            "mode,");
printf("Press 'RETURN' to continue......");
key = getch();
while (resp == ' ' ' :' resp = = 'Y')
{
    BLS;
    printf("3[37m%s%s%s3[7; 37m%s",
                    "Select one of the following:",
                    "1 --> DEMONSTRATION",
                    "2 --> TEACH PENDENT",
                    "Enter --> n);
    scanf("%s",&select);
    if (select == '1')
    {
        BLS;
        printf("3[37m%s%s%s",
                        "Experimentation with five objects that have different physical",
                "properties has shown that obviously many grasps are possible.",
                "The most appropriate grasps have deen selected for demonstration.");
    3
    /* DEMONSTRATION MODE */
    while (select == '1')
    {
        SET_ZERO();
        selection: printf("3[37m%s%s%s%s%s%s3[7; 37m%s",
                        "Select one of the following objects: ",
                            "1 --> STYROFOAM CUP",
                            "2 --> EGG",
                            "3--> ALUMINUM CAN",
                        "4 --> BALL",
                            "Enter --> ");
        scanf("%s",&obj);
        /* PLAYBACK MOTION SEQUENCE ON FILE */
        switch (obj)
        {
        case '1':
            fP= fopen("styro_cup,dat", "r");
            READ_FILE(file1,"styro_cup,dat");
            fclose(fp);
```

```
    REPLAY(fileï);
    break;
        case'2':
            fp = fopen("egg.dat", "rn);
            READ_FILE(file1,"egg.dat");
            fclose(fP);
            REPLAY(file1);
            break;
        case'3':
            fp= fopen("alum_can.dat", "r");
            READ_FILE(file1,"alum_can.dat");
            fclose(fP);
            REPLAY(filei);
            break;
        case '4':
            fp= fopen("ball.dat", "r");
            READ_FILE(filel,"ball.dat");
            fclose(fP);
            REPLAY(filef);
            break;
        default:
            BLS;
            printf("3[37m%s%s3[7;37m%s",
                    "You did not enter one of the listed numbers.",
                    "Do you want to re-enter an object? (y-yes, n-no)",
                    "Enter --> ");
            scanf("%s",&resp);
            if (resp =='Y' i: resp = = 'Y')
            {
                        BLS;
                        select= '1';
            }
            else select = '0';
    }
```



```
{
    printf("3[37m%s3[7; 37m%s",
            "Do you want to try something else? (y-yes,n-no)",
            "Enter (y or n) --> ");
        scanf("%s",&resp);
        if (resp == 'Y' i: resp == 'Y')
    {
        select= '1';
        BLS;
    |
    else
    select = '0';
    }
3
BLS;
if (select == '0')
{
    printf("3[37m%s%s%s3[7; 37m%s",
            "Do you want to enter ",
            "TEACH PENDENT ",
            "mode? (y-yes, n-no)",
            "Enter ( y or n ) --> ");
scanf("%s",kresp);
if (resp == 'Y' i: resp == 'Y')
    select ='2';
else
```

```
    select = '0';
}
/* TEACH PENDENT MODE */
if (select == '2')
l
    BLS;
    printf("3[37m%s%s%s",
            "The hand is now in the teach pendent mode. The user has the",
            "option to control the actuation of the fingers or let the",
            "computer control the actuation.");
}
while (select == '2')
{
    SET_ZERO();
    select2: printf("3[37m%s%s%s3[7; 37m%s",
                    "Please select a control mode: ",
                    "1 --> USER",
                    "2 --> COMPUTER",
                    "Enter (1 or 2) --> ");
            scanf("%s",&select);
        BLS;
        printf("3[37m%s%s%s%s",
            "Enter the name of the file that you want to store",
            "the data in.",
            "Example: Filename.dat",
            "Enter --> ");
        scanf("%s",&file_name);
        BLS;
        printf("Control Begins.....");
        DELAY;
        BLS;
        printf("Place object on palm.....");
        printf("Press 'ENTER'");
        Key = getch();
        if ( Key != {3)
        {
        BLS;
        printf("Press 'ENTER' when ready.....");
        key = getch();
3
/* MANUAL CONTROL */
switch (select)
l
    case '1':
            PICTURE();
            control = O;
            ctr1 = 0;
            ctr2 = 0;
            ctr3 = 0;
            flag = 0;
            while(control == 0)
            {
            SET_ZERO();
            if(ctri != 0) BLS;
            printf(n%s%s%s%s",
            "Enter type of motion desired:",
                    "1 --> SIDE-TO-SIDE",
                    "2 --> OPEN-AND-CLOSE",
                    "Enter (1 or 2) --> ");
        scanf("%s",kmotion);
```

```
if(motion == '1')
{
    printf("%s%s"
            "Enter number of finger in which control is desired:",
            n--> n);
    scanf("%d",&fgr);
    fgr = fgr+40;
    file{[t+ctri] = fgr;
    MOTOR (fgr);
    printf("%d",file{[ctr1]);
}
else
{
    printf("%s%s",
            "Enter the number of the finger and link:",
            "Enter --> ");
    scanf("%d",&fgr_lnK);
    file{[++ctri]= fgr_lnk;
    MOTOR(fgr_lnk);
}
BLS;
printf("%s%s%s%s",
    "Enter rate of accuation:",
    "100% ......fastest",
    " 1% ......slowest",
    "Enter --> ");
scanf("%d",&spd);
time = 12000/spd;
/* speed conversion */
if (ctri == 1)
l
    BLS;
    printf("%s%s%s%s%s",
            "The arrow keys are used to control actuation.",
            "UP arrow OPEN",
            "dwn arrow CLOSE",
            "--> ROTATE RIGHT",
            "<-- ROTATE LEFT");
    printf("Depress 's' to save a desired position.");
    printf("Press 'RETURN' to continue.....");
    key = getch();
}
BLS;
printf("Begin Actuation.....(Press 's' to save)");
printf("working......");
data = 's';
while(data =='s' :! data =='S')
{
    key = getch();
    if (Key == 72)
    l
        dir = FWRD5;
MOVE(dir,time);
        file1[++ctri] = 1;
        flag = 1;
    }
    if (Key == 80)
    l
    dir = BWRD5;
MOVE(dir,time);
    file1[++ctri]=0;
    flag = 1;
}
if (Key == 75)
```

```
        {
        dir = BWRO12;
        MOVE(dir,time);
        file1[++ctri]= O;
        J
        if (key == 77)
        {
            dir = FWRDI2;
        MOVE(dir,time);
        file1[++ctri] = 1;
        }
        if (Key == 83 ;: Key == 115) data = 'a`;
    }
    printf("%s%s",
            "Do you want to control another finger? (y-yes, n-no)",
            "Enter (y or n) --> ");
    scanf("%s",&resp);
    if (resp == 'Y' i: resp == 'Y')
        control = 0;
    else
            control = 1;
    }
    WRITE_FILE(ctr1,filei,file_name);
    break;
case'2':
    BLS;
    printf("Enter a gripping force between 0.0 and 1.1 lbf:");
    printf("Enter --> ");
    scanf("%fn,&force1);
    BLS;
    printf("Actuation begins.....");
    SENSOR_READ(CHANL9,force2);
    /* CHECK ORIENTATION OF OBJECT */
    while (force2 < forcel)
    l
        CNTRL(CHANL 9, force2,fgr_lnk, dir,port,time);
        CNTRL (CHANL 1, force2,fgr_lnk,dir,port,time);
        CNTRL (CHANL 2, force2,for_lnk, dir,port,time);
        CNTRL (CHANL 3, force2, fgr_Ink,dir,port,time);
        CNTRL (CHANL 4, force2, fgr_lnk,dir,port,time);
        CNTRL(CHANL5, force2, fgr_Ink,dir,port,time);
        CNTRL(CHANL6, force2,fgr_lnk,dir,port,time);
        CNTRL (CHANL 7, force2,fgr_lnk,dir,port,time);
        CNTRL(CHANL8, force2,fgr_lnk,dir,port,time);
        CNTRL (CHANL10, force2,fgr_lnk, dir,port, time);
        CNTRL (CHANL 11,force2,fgr_lnk,dir,port, time);
        CNTRL(CHANL 12, force2,fgr_Ink,dir,port,time);
    }
    break;
default:
    printf("Re-enter a control mode: ");
    goto select2;
}
BLS;
printf("3[37m%s3[7;37m%s3[37m",
            "Do you want to RE-PLAY the sequence?",
            "Enter (y or n) --> ");
scanf("%s",&resp);
if (resp == 'Y' i: resp == 'Y')
{
READ_FILE(file1,file_name);
    REPLAY(file1);
```

```
        BLS;
        printf("3[37m%s3[7;37m%s",
                "Do you want to change modes?",
                "Enter (y or n) --> ");
        scanf("%s",&resp);
        if (resp == 'n' i: resp == 'N')
        select = '0';
        else
        l
        BLS;
        select = '2';
        }
    }
    BLS;
    printf("3[37m%s3[7;37m%s",
                "Do you want to rerun this program?",
                "Enter (y or n) --> ");
    scanf("%s",kresp);
    if (resp == 'n' :( resp == 'N')
    {
        BLS;
        printf("3[37m");
    }
3
3
```



```
/* CHECK FORCE TO DETERMINE WHICH FINGER TO MOVE */
ARGU(channel, force2, fgr)
short int channel;
int fgr;
float force2;
l
    float force3;
    short int channel2;
force3 = force2;
    if (channel == 3 :: channel == 4)
i
    if (channel == 3) channeil2 = CHANL4;
    else channel2 = CHANL3;
    SENSOR_READ(channel2,force2);
    while (force2 > (force3 + 1.0) :i force2 < (force3 - 1.0))
    {
        MOTOR (fgr);
        MOVE(fgr,time);
    }
}
    if (channel == 7 :: channel == 8)
l
    if (channel == 7) channel2 = CHANL8;
    else channel2 = CHANL7;
    SENSOR_READ(channel2,force2);
    while (force2 > (force3 + 1.0) :: forcez < (force3 - 1.0))
    i
        MOTOR (fgr);
        MOVE (fgr,t ime);
    l
```

J

```
if (channel == 11 :: channel == 12)
l
    if (channel == 11) channel2 = CHANL12;
    else channele = CHANL11;
    SENSOR_READ(channel2,force2);
    while (forcea > (force3 + 1.0) :: forcea < (force3 - 1.0))
    I
        MOTOR (fgr);
        MOVE(fgr,time);
    }
l
3
```


/* CONTROL FINGER BY CLOSED-LOOP FEEDBACK */
CNTRL(channel, force1,fgr, dir, port,time)
float force1;
int dir,fgr, time;
short int channel,port;
\{
float force2;
SENSOR_READ (channel,force2);
if (forcea < force1)
1
dir $=$ BWRD5;
while (force2 < force1)
\{
MOTOR (fgr) ;
MOVE(dir,time);
SENSOR_READ (channel, force2);
ARGU(channel,force2,fgr);
\}
1
else
1
dir = FWRD5;
while (force2 > force1)
1
MOTOR (fgr) ;
MOVE(dir,time);
SENSOR_READ (channel, force2);
ARGU(channel, force $2, f$ fr) ;
3
1
3

/* SELECT APPROPRIATE MOTOR */
MOTOR (fgr)
int fgr;
i
short int mtr;
int dump;
if(fgr = = 11) mtr = A11;
else

```
l
    if( fgr == 21 ) mtr = A21;
    else
    l
        if(fgr == 31) mtr = A31;
        else
        I
        if (fgr == 13) mtr = A123;
        else
        l
            if ( fgr == 23 ) mtr = A223;
            else
            l
                if (fgr == 33) mtr = A323;
            else
            I
                if (fgr == 41 ) mtr = ROT1;
                else
                l
                if ( fgr == 42 ) mtr = ROT2;
                else mtr = ROT3;
                3
                3
        3
        }
        }
    3
3
outp(CMDREG,CSTOP);
dump = inp(DATREG);
while(!(CMDMSK & inp(STREG)));
outp(CMDREG,CCLEAR);
while(!(CMDMSK & inp(STREG)));
outp(CMDREG,CDIOOUT);
while(WRTMSK & inp(STREG));
outp(DATREG,DIOPORTO);
while(WRTMSK & inp(STREG));
outp(DATREG,mtr);
3
```

```
/*----------------------------------------*/
```

/* move finger */
MOVE(dir,time)
int dir,time;
1
int dump,i,zero;
outp(CMDREG, CSTOP);
dump = inp(DATREG);
while(! (CMDMSK \& inp(STREG)));
outp(CMDREG,CCLEAR);
while(! (CMDMSK \& inp(STREG)));
outp(CMDREG,CDIOOUT);
while(WRTMSK k inp(STREG));
outp(DATREG, DIOPORT1);
while(WRTMSK \& inp(STREG));
outp(DATREG,dir);
for (i=0; i<=time; ++i);
outp(CMDREG, CDIOOUT);
while(WRTMSK \&inp(STREG));
outp(DATREG, DIOPORT1);
while(WRTMSK \& inp(STREG));
if(dir < 6)

```
    {
        if (dir == FWRD5)
        zero = ZEROF5;
    else
        zero = ZEROB5;
    l
    else
    {
        if (dir == FWRD12)
        zero = ZEROF12;
        else
        zero = ZEROB12;
    }
    outp(DATREG,zero);
    for (i=0;i<=time; i++);
}
    /*------------------------------------------*/
/* DISPLAY A PICTURE OF THE HAND DURING TEACH PENDENT MODE */
PICTURE()
{
    BLS;
    printf("%s3[32m\%s%s",
            n OSU DEXTEROUS HAND"
            3[ 37m% s 3 [ 32m%s 3 [ 37m%s 3[ 32m%s % s%s%s",
            " <-- Finger 2 ",
            "
            " i__: i__:",
            n
            "
```



```
    printf("%s%s%s%s",
        n
```



```
printf("3[37m")
}
                                    /*---------------------------------------------*/
/* READ A SAVED FILE FOR REPEAT OF MOTIONS */
READ_FILE(file1, name)
int filel[200];
char name[15];
f
    int k,n;
    FILE *fP;
    k=1;
```

```
fp= fopen(name, "r");
fscanf(fp,"%d",&n);
filel[k]=n;
while (k != (n+1))
{
    ++K;
    fscanf(fp,"%an,tfile1[k]);
}
fclose(fp);
}
/*---------------------------------------------*/
/* REPLAY A SET OF STORED MOTION CODES */
REPLAY(file1)
int file1[200];
{
    int fgr,fgr_lnk,j,key,no_elm,time;
    no_elm = file1[1];
j = 2;
    time = 500;
    while(j < no_elm)
l
key = getch();
    if (file{[j] == 11 :! filel[j] == 13 ;! file\[j] == 21)
    l
        fgr_lnk = filei[j];
        while(filei[j+1]== 0 :; filel[j+1]== 1)
        l
            if (file{[j+1]== 0)
            l
            MOTOR(fgr_lnk);
            MOVE (BWRD5, time);
            ++j;
            }
            else
            {
            MOTOR(fgr_lnk);
            MOVE(FWRD5,time);
                ++j;
            }
        3
    3
    if (file{[j] == 23 :i file\[j]== 31 :i file{[j]== 32)
        fgr_lnk = file{[j];
        while(filel{j+1]== 0:{ file{[j+1]== 1)
        l
            if (file{[j+1]== 0)
            I
            MOTOR(fgr_lnk);
            MOVE (BWRD5, time);
            ++j;
            l
            else
            l
            MOTOR(fgr_Ink);
            MOVE (FWRD5,time);
                ++j;
            3
        }
```

```
    }
    if (filel[j] == 41 ;: filel[j] == 42 i: file1[j] == 43)
    l
        fgr = filel[j];
        while(file1[j+1]== 0 :! file1[j+1]== 1)
        i
            if (file1[j+1]== 0)
            {
            MOTOR (fgr);
            MOVE(BWRD12,time);
            ++j;
        3
        else
        {
            MOTOR(fgr);
            MOVE(FWRD12,t ime);
            ++j;
        }
        }
    }
    ++j;
3
}
/*------------------------------------------*/
/* READ VOLTAGE OUTPUT FROM SENSOR */
SENSOR_READ(channel, force2)
short int channel;
float force?;
{
    int dump,x,y;
    float dataval,volt;
    outp(CMDREG,CSTOP);
    dump = inp(DATREG);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG,REDNOW);
    while(WRTMSK & inp(STREG));
    outp(DATREG,GAIN);
    while((WRTMSK & inp(STREG)));
    outp(DATREG, channel);
    while(!(REDMSK & inp(STREG)));
    x=inp(DATREG);
    while(!(REDMSK & inp(STREG)));
    y=inp(DATREG);
    dataval =y*256 + x;
    volt=10.07*(2.0*dataval/4096.0-1.0);
    if (channel == 1) force2 = (volt-1.11)/(-.0071); /* EQUATIONS ARE BASED */
    if (channel == 2) force2 = (volt-1.51)/(-.008); /* ON THE ASSUMPTION */
    if (channel == 3) force2 = (volt-2.4)/(-.013); /* THAT THE vOLTAGE */
    if (channel == 4) force2 = (volt-2.4)/(-.013); /* VARIES LINEARLY WITH */
    if (channel == 5) force2 = (volt-2.4)/(-.013); /* RESPECT TO THE FORCE.*/
    if (channel == 6) force2 = (volt-2.4)/(-.013); /* THE EQUATIONS ARE */
    if (channel == 7) forcez = (volt-1.51)/(-.008); /* DEVELOPED FROM CALI- */
    if (channel = = 8) force2 = (volt-1.11)/(-.0071); /* BRATION CONSTANTS OB-*/
    if (channel == 9) force2 = (volt-2.6)/(-.018); /* TAINED EXPERIMENTALLY*/
    if (channel == 10) force2 = (volt-1.51)/(-.0071);
    if (channel == 11) force2 = (volt-.8)/(-.004);
    if (channel == 12) force2 = (volt-1.2)/(-.0081);
}
```



```
/* RESET A/D BOARD */
SET()
I
    int v;
    outP(CMDREG,CSTOP);
    v = inp(DATREG);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG,CCLEAR);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG,CSOUT);
    while(WRTMSK % inp(STREG));
    outp(DATREG,2);
}
                                    /*-------------------------------------------*/
/* SET ALL DIGITAL I/O PORTS TO ZERO */
SET_ZERO()
{
int v;
    outP(CMDREG,CSTOP);
    v = inp(DATREG);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG, CCLEAR);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG, CDIOOUT);
    while(WRTMSK & inp(STREG)):
    outP(DATREG,DIOPORTO);
    while(WRTMSK & inp(STREG));
    outp(DATREG,O);
    while(!(CMDMSK & inp(STREG)));
    outp(CMDREG,CDIOOUT);
    while(WRTMSK & inp(STREG));
    outp(DATREG,DIOPORT1);
    while(WRTMSK & inp(STREG));
    outp(DATREG,O);
}
                                    /*---------------------------------------*/
/* WRITE ALL FINGER MOVE CODES TO FILE */
WRITE_FILE(ctr,file1,filename)
int ctr,filel[200];
char filename[15];
{
    int j;
    FILE *fP;
    fp = fopen(filename, "w");
    fprintf(fp,"%d",ctr);
    for(j=1;j<ctr;j++)
    l
    fprintf(fp,"%d",file1[j]);
    }
    fclose(fp);
1
```

```
vITA
    Tommy Joe Metzner
Candidate for the Degree of
Master of Science
```

Thesis: DESIGN OF A DEXTEROUS MECHANICAL HAND
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Bartlesville, OKlahoma, June 29, 1962, the son of Ronald D. and Patsy J. Metzner. Married to Renee Dysinger on March 28, 1987.
Education: Graduated from Sooner High School,
Bartlesville, OKlahoma, in May, 1980 Received
Bachelor of Science Degree in Mechanical
Engineering from OKlahoma State University in
December, 1984 . Completed requirements for the
Master of Science Degree in Mechanical
Engineering at OKlahoma State University in
December, 1987 .

