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CHAPTER I 

INTRODUCTION 

It has been the ambition of the chemist and physicist working in 

the area of chemical physics to develop an easier approach in explaining 

the details of molecular interactions qualitatively and quantitatively. 

With this in mind, the Density Functional Theory ( OFT ) has been 

introduced and is lately becoming more popular. An interesting feature 

of the Density Functional Theory formalism is that it offers the 

possibility of invoking our chemical intuition in trying to understand the 

structure and energetics of molecules. This is primarily true because 

the focus of OFT is the ordinary three dimensional space, the space 

over which electron density is defined. In contrast to this is the 

traditional quantum chemistry approach where the sought-for ground 

state eigenfunction ~ 0 of the Hamiltonian is defined in the many­

electron Hilbert space. Therefore as the systems become more and more 

complex, especially in treating molecular interactions, the problems 

which arise using traditional techniques tend to mushroom. Here, by 

traditional quantum chemistry techniques, we mean molecular orbital 

calculations extended perhaps by configuration interaction studies. 

Therefore the need to understand the Density Functional formalism 

becomes more obvious especially in solving many-body problems such as 

molecular interactions. 

1 
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Within the OFT formalism, the remarkable achievement by 

Hohenberg and Kohn [ 1 ] establishes the fact that the total electronic 

energy of interaction for a given configuration of the fixed nuclei may 

be found by seeking the minimum value of an energy functional of the 

electron charge density. Indeed, the theory shows the existence of such a 

' functional whose value is al ways an upper bound to the electronic energy 

for all imaginable choices of the electronic charge density. At the 

present time, OFT formalism provides a rigorous quantum mechanical 

framework in which calculations of properties and electronic energies 

of a collection molecules are possible within certain approximation. It 

is in fact the interaction energy of molecules or fragments of molecules 

in their electronic ground state that we hope to investigate. By the 

electronic energy of molecules or fragments of molecules, we mean the 

ground state electronic energy:_ eigenvalue of the complete Hamiltonian of 

the system with all the nuclei of all the molecules fixed in place; that 

is, we seek the ground state electronic energy in the Born-Oppenheimer 

[ 2 ] approximation. In addition, we also need to add the Coulombic 

repulsion energy of the fixed nuclei to obtain the total energy of the 

entire system. The term "fragment of a molecule" or molecular 

fragment refers to a collection of nuclei whose internal coordinates do 

not change during the course of our consideration. The potential energy 

of interaction can be deduce as the difference between the total energy 

of the interacting system and the energy of each isolated fragment. 

Now, as the positions of the molecular fragments are changed, the total 

electronic and Coulombic repulsion energies of the system are 
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recalculated for each new configuration of the nuclei. The consequence 

of this is that a new potential energy is obtained for each new 

configuration of the nuclei. In other words, the potential energy itself 

depends on the position and orientation of the nuclei which make up the 

molecules. If we then plot the potential energy of interaction versus all 

the independent variables, the result is a potential energy surface. The _ .. 
intermolecular force, F., on the i th nucleus is related to the potential 

l 

energy by 
_.. -t­

F. = -V.V 
l l 

( I . I ) 

where V is the potential energy of interaction. In a word, we are 

considering the theory of intermolecular forces within the Density 

Functional formalism. 

Let us analyse the problem by first expressing the Hamiltonian 

assuming that we have applied the Born-Oppenheimer approximation so 

that what we are interested in is just the electronic energy of the total 

Hamiltonian. Consider the general case where we have a system of F 

interacting molecular fragments indexed by f = 1,2,3 ...... F with a total 

of N electrons and A nuclei. Now each of the fragments can consist of 

either a single nucleus (i.e for atoms) or a number of nuclei (i.e for 
.. th 

molecules) and some electrons. Say the f fragment consists of Af 

labeled nuclei and Nf labeled electrons. Now, to specify this particular 

fragment in space explicitly we needs 3Af nuclear coordinates. These 

nuclear coordinates can be divided into two sets. The first set consists 

of six external coordinates which are the center of mass coordinates _.. _ .. 
Rf and the Euler angles Qf. The other set consists of 3Ar6 internal 
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coordinates which we write as { -rf }. The electr:onics, Hamiltonian for 

the entire system can be written as: 

H= 2 

F 'Z -z e r -fi 2 a 
2{2 -V .+2 _.,. 

1. 2m 1 _.,. 
f=1 iEKf aETf.f r.- R 

l 

+ 2: 
I 

isf<fsf 

J 
a I 

i,jEl<f 

2 
e 

_.,. _.,. 
r. - r. 

l J 

2 
e 

_.,. _.,. 
r. - r. 

l J 

2 

ZaZbe 
+ 2 _.,. _.,. 
a<b IR3 -Rb ! 

a,bETf.c 
i 

~ 
) 

Note that in writing the Hamiltonian, we assume that all the electrons 

and nuclei in the system are labeled 1 to N and 1 to A respectively. 

Then we associate each set of the labeled electrons and nuclei with one 

of the fragments so that a particular set of labeled electrons and nuclei 

belong to a particular labeled fragment. All of these labeled electrons 

and nuclei belonged to one of the sets Kf and '1f respectively where f is 

the fragment label and f = 1,2, ... F. 

Let us analyse the Hamiltonian (Eqn (1.2)] term by term. Note 

that in the first line we first consider the electrons and nuclei within a 

given fragment f and then sum over all the fragments. The first terms 

are the kinetic energies of all the electrons in the system. The seconci, 

third and fourth terms in the Hamiltonian are the electron-nucleus, 

electron-electron and nucleus-nucleus Coulombic interactions 

respectively within each fragment. Finally, in the second line the terms 

refer to the corresponding inter-fragment interactions. On the other 

hand if one carries out the summations over all the nuclei and electrons 
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within each fragment fallowed by the summations over all the 

fragments, then the Born-Oppenheimer Hamiltonian becomes 

2 

"' N _if- 2 N A -Z8 e N 2 
e 

H=2-Vi+22 ----... -+2 
· 1 Zm · 1 1 I _.,_ R I i· <J· I _.,_ _.,_ i= i= a= r 1.- a r r i - j 

In accord with the indistiguisability of electrons, 

2 

A ZaZbe 

+2 ....... 
a(b IR8 -Rbl 

(I· 3) 
the Hamiltonian is 

clearly symmetric in the electron particle labels~ As we noted above 

each of the nuclear coordinates can be associated. with a particular _.,. 
fragment f and expressed in terms of the center of mass coordinates Rf' _.,. 
the Euler angles Qf and the set of internal coordinates { t' f } . We seek to 

determine the ground state energy by solving the eigenvalue problem 

_.,. _.,. 
H\110 ( Rf' Qf' {t'f}; xh x2, ... xN) = 

_.,. _.,. 
Eo( Rf' Qf' {t'f}) \110( Rf' Qf' {t'fhit,X2,···xN) (I· 4 J 
as a function of the center of mass coordinates and Euler angles for all 

the fragments. Note the dependence of the energy on the internal 

coordinates of each fragment. This dependence can be written in the 

form 
_.,. _.,. _.., _.,. _.., _.,. 

E = Eo( RhQhR2,n2, ... RF,QF; {t'1},{t'1}, ... {t'F} ). ( l · 5) 

_.., _.., 
We envision E0 to be a function of the R's and Q's, but still 

parameterized by the t''s. Once we find the solution this ground state 

energy is substracted from the ground state energy of each of the 

isolated fragments each of which also surely depends on the internal 

coordinates of that fragment. The potential energy of interaction can be 



written as: 

-ll> -ll> -ll> -ll> -ll> -ll> 

V( Ri,i'2i,R2S22, ... RF,.QF; {r1},{r1}, ... {rF} ) = 

-ll> -ll> _.,.. _.,. _.,. _.,. F 

E0( Ri,i'2i,R2,n2,···RF,QF; {r1},{r1}, ... {rF} ) - 2: E0( {Tf} ) 

f=1 

6 

Note that the parametric dependence on the internal coordinates still 

survives in the structure of the potential energy surface. Finally one 

has to make note that some of the external coordinates are ignorable so 

that in practice the potential energy of interaction does not depend on 

all the external coordinates for the system. In particular, the potential 

energy sure! y cannot depend on the center of mass of the entire system 

or its orientation in space. Therefore, in general the potential energy of 

interaction actually depends on_ 6F-6 variables. On the other hand, there 

are also special cases where the fragments involved in the interactions 

are atoms or linear molecules in which cases the ignorable coordinates 

must be determined individually. 

Now, let's suppose that we knew the normalized groundstate 

eigenfunction 'II 0 although in fact we generally do not. Then the ground 

state energy can be expressed as 

From this expression we can also write the ground state energy E0 

within the pure state density matrix formalism [ 3 ] : 

2 
11 3 2 (1) _.,. _.,. I 

E0 = - - J d r 2: "V p ( r, ~; r', e) _.,_ _.,_ + 
2m ~ r'= r, e= ~ 



2 
A -z e 

3 a 
J d r 2: _.,. _.,. 

a=1 I r - Ra I 

7 

(2) _.,. _.,. 

2 

ct> e 3 3 

p ( r) + - Jd rtf d r 2 -
1

-_-.,.---.,.-
1

-

2 rt rz 

p ( r 1, rz ) 

+ 

(I· 8) 

{1) _.,. _.,. 

where p ( r, ~; r'' e ) is the full one-electron reduced density matrix, 
(1) _.,. 

and p ( r ) is defined as the sum over the spin coordinate ~ of diagonal 

elements 
(1) -~ (1) _.,. _.,. 

p ( r ) = 2: p ( r,~; r,~ ) . (I· 9 J 
~ 

(2) _.,. _.,. 

Similarly, p ( rh r 2 ) are the diagonal elements of the two-electron 

reduced density matrix summed over the spin coordinates ~ 1 and ~2 

(2) _.,. _.,. (2) _.,. _.,. _.,. _.,. 

p ( rh r2 ) = 2: 2: p ( rh ~ h r2, ~2; rh ~ h rz, ~2 ) (I· I 0) 

~1 ~2 

In general, an nth order 11reduced11 density matrix element arising from a 

pure-state wavefunction 'It is 

In the expression above the x's correspond to the spin and the ordinary 

3-Dimensional space and spin coordinates of an electron i.e. 
_.,. 

x _.,. r, ~ 

Given the exact ground state eigenfunction 'It 0 , one may in 
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(1) (2) 

principle calculate p and p straightfowardly and thus obtain E0 

according to Eqn ( I · 8) . The important thing to notice here is that even 

if one did not know the exact form of the ground state wavefunction, all 

one would need to know to obtain E are the elements of the one- and 
0 

two-electron reduced density matrices. Can one use Egn ( ! • 8) by-passing 

explicit consideration of W? One might suggest using trial densities for 

both the one- and two- electron reduced density matrices motivated by an 

extension of the Rayleigh Ritz variational principal [ 4 ] which states 

* Eo ::;; f W trial H'1t trial dr (1 . J 2.) 

Then the extension of equation ( \ •I 2.) would apparently become 

3 2 (1) ..... _. 

E0 ~ - f d r 2. \7 Pt . l ( r, ~; r', e) 
2m ria 

_. _... + 
r'= r, e= ~ 

2 -z e 
3 a 

J d r 2. ->-
Ir: .. _ R 

a 

~ 
(2) .... --.. 

Pt . l ( r 1' r2 ) cu --. 3 3 ria 
Ptrial ( r ) + J d ri J d r2 ->- ->- + 

r - r 
J ~ 

( I· l 3) 

In other words, as one can vary the wavef unction in search for a 

minimum based on the Rayleigh-Ritz variational principle then one ought 
(1) 

to be able to do the same thing using the reduced density matrices p 
(2} 

and p provided both are derivable from a legitimate normalized trial 

wavefunction. This method was attempted in the past ignoring the 

proviso and problems of inconsistency arose because for some trial 
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functions the energy obtained was lower than the exact ground state 

energy E . This inconsistency tells us that in using the energy 
0 

expression Eqn (I• B), one cannot freely vary the densities in search for 

the minimum. One must guarantee that the trial one- and two- electron 

density matrices are derivable from the same N-electron wavefunction. 

In other. words, these density matrices have to be N-representable. 

It was not until late 1964 that Hohenberg and Kohn proposed the 

remarkable theorem which states that for a given local potential 
_.,. 

u( r ) there does exist an energy functional e(N,pN) of the electron 
-~ _.,. 

density pN( r ) such that for all N representable densities pN( r ), 

E ( N,pN ) is an upper bound of the exact electronic ground state 

eigenvalue E ( R ) • Thus 
0 -

with the equality sign being obtained for the true ground state density. _.,. 
Here, R stands for the collection of nuclear coordinates R and charges - a 
Za, a=i ,2 ... A. 

The remarkable point of the theorem is that in finding the ground 

state energy one just has to consider the diagonal elements of the one­

electron reduced density matrix. This can be anticipated for the 

expectation value of the local potential energy term in Eqn ( I · S ) 
2 

N A -z e a 
<'11122 _., _., 1'11) 

i=1a=1 I ri- R8 I 
which is written in terms of the diagonal elements of the one'.""electron 

reduced density matrix 
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3 

Id r2: -_-.,.---.,.--
1 r - Ra I 

On the other hand, it is not at all obvious how the kinetic energy and the 
(1) 

electrostatic repulsion energy terms may be expressed in terms of p 

Unfortunate! y in their original paper Hohenberg and Kohn on! y proved the 

existence of the energy functional but did not give a precise form of it. 

If in fact we knew the form of the energy functional then the problem of 

determining the ground state energy and the density for a particular 

local potential --i.e. a particular configuration of the nuclei-- would be a 

matter of minimizing the functional. One can envision doing this by 
(1) _.,. 

using trial densities p (- r ) in the known functional; still one must 
(1) -:- ... 

guarantee that the trial p Lr ) 's are N-representable, but as shown by 

Gilbert [ 5] this is easily done. The bottle neck in this program remains 

not knowing the exact energy functional. Many efforts have been made by 

researchers in this area trying to find the exact form of the ground 

state energy functional E( N,p; R). In fact, later developments [ 6] have 

shown that there is not just one functional but rather many such 

inequivalent functionals, all of which have the· upper bound property. In a 

sense, Hohenberg and Kohn discovered the existence of one such energy 

functional which according to these later developments had the 

limitation of being defined over what have come to be called 11 v­

representable 11 densities. 

Now let us derive an exact form of the energy functional based 

on the approach suggested by Levy [ 7 J. We begin with his definition of 
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energy functional 

min 

Here, what we envision is a search throughout the set of normalized N­

electron states { I 'I') } , each of which yielding the given electron 
PN 

density 

"" for one or more optimum states I 'I') for which the expectation value 
PN -

of H achieves a miniml.UTI. It then follows from the Rayleigh-Ritz 

variational principle that once the energy functional is obtained the 

subsequent search of e( N,pN;R ) over all N-representable pN(r) for the 

minimum value of the functional will necessarily yield the- exact 

eigenvalue E0 ( R ) . Consequently, one can then write the exact energy 

E0 ( R ) in the following fashion: 

min 

E0 ( R ) = { pN( ~ } [ e( N, pN; R ) ] 

From the expression above, one can notice that the computation of the 

ground state eigenvalue E0 ( R ) is cast into a two-tier variational search 

procedure: the innermost being a search over a set of N electron state 

vectors, all of which are constrained to yield a specified density, and 

the outermost a search over .all such N-electron densities. 

Using the Hamiltonian given in equation ( \·3) we find the energy 



functional E( N,pN(r) ;R ) to be 
2 

. N..t. 2 NA Ze mm -h 2 a 
E( N, pN; R) = { 1w> P } {P <wl 2:- V'i + 2: 2: -~ 

N N i=i Zm i=1a=1 I "'t:- R 

2 

N 9
2 A ZaZbe 

2--- +2 _,.._,.. 
i(j I~ --~j I a(b IRa-Rbl 

2 2 
N-t 2 N e 

t a 

(I· 18) 

=[ {lw> H <wl2:-V'. + 2:-- I"'> } 
PN PN ·r=t 2m 1 i<J" I _,.. __ ,.. I PN r. r. 

1 J 
_,.. _.,. 

e2 3 3 pN( r )pN( r') 
- - f d r f d r' _,.. _.,. ] 

2 lr-r' 

_,.. _.,.. _.,. 2 

e 2 3 3 pN( r )pN( r') A 2 3 pN( r ) ZaZbe 
+ 2: [ -Za e f d r _.,. J + L: _,.. _,.. _.,. 

Ir - Ral c1<h IRa-Rbl 

+ - J d r J d r' _,.. _.,. 
2 lr-r'I q,:1 

(I· I~) 

12 

The terms not depending upon the specific electronic wave function but 

only upon the charge density have been removed from the 

minimization prescription since the search is restricted to 

wavefunctions yielding the same charge density. Furthermore, the 

classical Coulombic self-interaction functional 
_.,. _,.. 

e2 pN( r )pN( r') 
3 3 " J(p)=-Jdrfdr _,.. _,.. 

2 I r - r' I 

(1.zo) 

has been aaded and approriately subtracted in order to define the 

following functional 
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4 2 2 
-n 2 e 

E ( N, pN) = [ { I w> } { <w 1 2 - v. + 2 I w> } -
o PN PN 2m i PN I r~ -"t. I 

1 J 

(I .21) 

Again, the construction of the E0 ( pN,N) envisions a search over all N­

electron state functions I'll) giving the specified electron density for 
PN 

one which minimizes the expectation value of the sum of electron kinetic 

energy and Coulomb repulsion operators. The complete energy functional 

E( N, pN; R) then becomes 
A 2 3 pN( r) 

. E( N, pN; R) = E0 ( N, pN) + J( pN( r )) + 2 [-Za e f d r _..,. _..,. ] 

a=1 I r - Ra I 
2 

A ZaZbe 

+2:--­
a<b IRa-Rbl 

(1.22) 

Let suppose that in carrying out the minimization procedure we 

"' find the optimum N-electron wave function I'll) so that E0 ( N, pN ) 
PN 

becomes 

"' _ ... 
I W) PN } - J ( PN ( r ) ) 

I C 1·23) 

Then it is possible to define the kinetic energy functional Eo,k 
2 

"' -'h 2 "' 

E k(N,pN)= <wl-V.J'll> ( 1.24' 
o, . PN 2m i PN J 

and also to define the exchange-correlation energy functional as 
N 2 

"' e "' _..,. 
Eoxc(N,pN)=p <wl2: _..,. _ ... l'll>p -J(pN(r) (1.25) 

' N . <. I r. - r. I N 
1 J 1 J 
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Note that at this point it is only E that can be defined. Only after the o,xc 

introduction of a model Hartree-Fock reference state lcf>) may the 

individual terms, that is the exchange term 

N 2 e _ ... 

e0 ,)N,pN) = p -<<P 12: _ _ I <I>> p - J( pN( r ) ) ( I · 2 b) 
N "("I ... ..., . N l.J ri-rj 

and the correlational term 

N 2 
"' e 

N 2 
"' . e 

Eo c( N, PN) = p ('lll2: _ ... _ ... 
' N . <. j r. - r. 

l'll>p -<<1>12: _ ... _ ... lcf>> 
I N i (j I r i - r j I 1 .J 1 .J 

be defined. 
(\. 2-:+') 

In finding the exact ground state energy, having obtained the 

form of the energy functional, one must carry out the minimization of _,.. 
this known energy functional_ with respect to the density p( r ) . In other 

words, the exact ground state eigenvalue for a fixed configuration of the 

nuclei is then to be found in tlie search over all N electron densities 

pN(r) for the minimum value of the functional. Using the energy 

functional defined in Eqn (1. 22), we have that 

§~ ( R~ = l f:} [ e ( N, f N ; R) l 
\\1 lh - t f N) [to ( N ~ fN) -t J (jN) 

A •;' 

-t L, (- Zqe7- f dr jN~J }] 
Cl= 1 I Y' - Ra\ 

A '2. 

+ Z· ~~Zt:-~· 
0~0 J Ra - R.b\ 

( l' 2 8) 
Note that in carrying out the minimization of the functional, each 

different nuclear configuration ( R ) results in a different N electron 
"' density denoted by pN( R ) . The ground state energy becomes 



15 

A 
"' "'. 23 

E0 ( R) = e0 ( N, pN( R)) + J( pN( R )) + 2 [-Zae f d r 

2 a=i 
A ZaZbe 

+2 (1.29) 
a<b IRa-Rbl 

Using Eqn ( I 1 6) and realizing an expression similar to Eqn ( I· '2.~ obtains 

for each isolated fragment, we find the potential energy of interaction 

can be written as 

v ( R I I ..Q i I R 2 I .Q 7. .. • . RF I .Q F : ~ t I }, ~ L 2} p - .. \ tF 1 ) == 
A· rJ 

~ "' ~( 1.j l3 ~) ~ o ( N ' f N ( !3: J} + J ( f N ( 13:) } + f;:-( - 'Z a e. 01 rl f-~ Q \ 

--?..{~o(N, fNt(Rf )T JCjNf(Rf l) 
.f- : ' . . 

+Z, [-zCjezJc1 5rfNrLF;Ri)J} 
q e [nf} · I r - RC4 l 

+z L ~ 
I ~1<f ~ F q e.{,!} bE. \fYl.r,} 

__.. -
I RQ - Ric, \ 

Each of the F independent minimizations carried out for the isolated 

molecules--the asymptotic positions being indicated by R --necessarily 
"' -of 

yields the ground state energy E and density pN for a molecular 
0 f f 

fragment. Each fragment is in fact specified by the nuclear 

configuration and charges 

Baf .= { Rao, Za } , a e { '1f } ( I . 3 I J 
and the number of electrons Nf. Of course, there is the obvious 
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restriction that 
F 

~ Nf= N (I· 3 2 J 

In addition, we must also presume that the partition of the N electrons 

among the F isolated- molecules is the one yielding the lowest total sum 

of their electronic energies. Finally, we note that only the inter­

fragments nuclear repulsion energy terms survive in taking the energy 

difference in Eqn (I·~) • 

Any N representable charge density may be written in terms of 

superimposing the optimum densities of the molecular fragments and 

then allowing that charge distribution to relax. In this manner we can 

write the variational density appearing in Eqn (I ·.30) as 

~ F ("'W ~ ~ ~ -· JN ( r ) .;. ~ .f ~ ( r ·, Rf , _a 1- , \ Lf ~ ) + b.f Cr) 
. t- I f ( I · 3g ) 

where the translated optimum density for molecule f is 

,......,,. -~ ~ ~ . - ..... ...... ~ 

fN ( r; Rt, ~f' ttf ~) ~ JNf(~ ~ R.;-, Q.~ ~ t l'Pr) ~}-7 R+ 
f ~~~ 

5 1j 1. ~ t 'Lf J 
( I, 34) 

Note that Eqn ( t . 3 4 ) defines ~p in terms of the variational charge 

density pN( r.,) and the exact molecular charge densities ;N ( r.,) 
f 

assumed found in the asymptotic optimizations. The fact that ~p can be 

defined in this manner assists us in doing the computation because we 

may then use those charge densities for all the molecular fragments 

found by the traditional quantum chemistry calculations and focus 



attention on ll.p which is to be found variationally. Of course, we must 

also make sure that due to charge conservation 

f d3rll.p(r~ =O (1.3s) 
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Using the expression Eqn (t·S'3) for the density pN(f ), we can then write 

the original statement of Eqn ( \ · 3 O) in terms of ll.p and express the 

potential energy of interaction as a search over the N representable fl.p's 

Since we have assumed already that the charge densities of the isolated 

molecules are known, the variational search in Eqn (1 ·3b) concerns only 

terms inside the first curly brackets and results in an optimum ll.p and a 

minimum value of this bracket. The terms outside the flrst curly 

brackets can be identified as the electrostatic interaction energy due to 

the rigid ( i.e. frozen) charge density of the isolated fragments. This 
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electrostatic energy can be evaluated at .the outset. The terms inside the 

variational search in 6.p can be classified as quantum corrections 

( involving the functionals E 0 ( N, p ) ) and induction energy. 

In practice to find the potential energy of interaction given in 

Eqn ( I·:,' ) is virtualy impossible for two reasons. Firstly, is the 

difficulty in finding the exact energy functional E 0 ( N, PN ) . Second! y, 

is the difficulty in carrying out the search for the optimum 6.p. What is 

clearly needed is a way of approximating density functional 

calculations. We shall adopt the Gordon-Kim ( GK ) [ 8 1 approach. In 

the Gordon-Kim model, in addit~on to using an approximate functional for ·-
E 0 ( N, pN ) , the variational search over 6.p is never carried out to 

obtain the optimum charge density. Rather, with the charge densities 

for the isolated molecular .fragments obtained from the traditional 

quantum chemical calculations, the charge density for the interacting 

system is approximated simply as the superposition of those molecular 

charge densities, rigidly translated and rotated with each molecule. In 

other words, we set 6.p ( rt-) = 0 and thereby yield the possibility of 

computing induction energy. To be sure in the GK model, the potential 

energy of interaction becomes simply 
F . r ..... ..., 

VC !S) = E..o(NJ ~Jr-tr)- Z ~o(Nt,JN+) 
f- \. . ' +.::- I ':2 

± Z } e~[Jb·Jd3r1 J"'p•)fNfi{1')]+ L. Z :;,azt.,e1 
I ~f<f'~F l . l ¢' - ~I I O€YJ;t ~tJtt' \Ra - RJ. . 

·- ,..., ~ 

-r:Z. {-LaJ ~3rJ~1Cl-*)) + L_. (-z., jd'rJNf')), 
~€rf\.1 \~-Ral b€~f' -· \r-~' 

(1 .3 ':f) 
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Even after doing this approximation, the point still remains 

that none of these functionals e0 , eok' eox' eoc is known explicitly in 

term of N and p. Thus, Gordon and Kim suggested that each of the 

energy functionals above be approximated by the corresponding one 

obtained from the extended electron gas. In other words they consider 

the asymptotic limit (N-ko) for each of the energy functionals: 

jd 3 r J 1.c.;~p) 
c I ·40) 

Here the extended electron gas Hartree-Fock state on which the 

e k and e approximate expressions are built is the Slater o, o,x 

determinant of plane waves filling the Fermi sea [ 9 ] . Corrections to 

these formulas based upon density gradient expansions are given below. 

Explicit expressions of the integrand Ecor(p) for various ranges of the 

density p are given by Parker, Snow, and Pack [ 10 ] . With 
3 _1/3 

rs = (47ra0 p/3) where a0 is the Bohr radius, we have in atomic 

Rydberg uni ts: 

for high density, r 5 S: 0. 7 

_tc.orrCfs) = -0·0311 in r.s -0·048t 0.009 r~ ~J'> rs-O·Otrs 

(1 ·41) 



for intermediate density, 0. 7 < r 5 < 10 

~c0..-,..(rs) = - 0 · 0 Gl 5f;> + O 0 J 8C?S. tn r5 

cl. 42) 

for low density, r 5 ~ 10 

20 

t- ( -1 · - '3/2 - 2 -5/z 
Ce,.orr v~) =-o. 43Brs tl·3Zi:,rs - 1·47r!) - 0·4Y's 

c). 43) 

In using the above expressions the density is not a constant as 

in the extended ( i.e. infinite ) electron gas. Instead for finite electron 

systems p is considered a function of position. Finally, then the potential 

energy of interaction in the GK model becomes 
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Gordon and Kim found in their original calculations that 

dispersion energies \Vere not accurately given by the electron gas model 

itself. Thus they devised a 11Drude Model11 (essentially coupled 

oscillators) to account for the long range interaction energy and 

attempted to join these results to the shorter range electron gas result. 

There are t \VO sources for error in adopting the extended electron gas 

energy expressions. Besides the inhomogeneity of the density leading to 

gradient expansion corrections, one also needs to make corrections 

because the system considered has a finite number of electrons. Recent 

\Vork by Pearson and Gordon [ .. 11 ] is directed to\Vard including gradient 

correction terms in the kinetic energy f unctio~al. Pioneering \Vork by 

Rae [ 12] introduced a finite N correction to the Gordon-Kim model in 

his consideration of the self-exchange energy. Waldman and Gordon [ 13 ] 

considered the possibility of correcting all three functionals for finite 

N by simply introducing a scaling coefficient depending on N and 

determined by comparing the extended electron gas results \Vith the self­

consistent-field results for N-electron atoms and ions. Ho\Vever, they 

concluded that \Vith the explicit inclusion of the dispersion energies via 

the Drude model, the correlation energy functional should be neglected. 

As a result Waldman and Gordon obtain finite N corrections only for 

the kinetic and exchange energy functionals in the form of N-dependent 

multiplicative factors of e0 k(p) and e0 x(p). 
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Other modifications of these functionals, notably by Parr and 

his co-workers, have also been proposed. The latest review by Parr [14] 
I 

. shows all the correction terms to the extended electron gas energy 

functionals. In his review, the expression for the kinetic energy 

functional take the form 

(I .45) 

where Ta is the kinetic energy of the free electron gas ( the Thomas­

F ermi [ 15] ) result and is given in Eqn {I· 38). T 2 is 1/9 of the original 

Weizsacker correction [ 16 ] and in atomic units is 

T 4 is the fourth order correction as given by Hodges [ 1 7 ] , namely 

f4[f]= 54~ ( 3 w~)~jd3r/s[(]ft-?s(?)(Jf+ ~(JTJ 
(I ·4T-) 

The exchange functional takes the form 

K[p] = Ka [p] + K2 [p] ( 1·49) 

where Ka [p] is the exchange energy. of the free electron gas ( the Dirac 

[ 18] result) and is given in Eqn (1·3,). K2 is 

kz [j 1 "' - 3/"T ( .3/rr) \13 f J d~~ 1~,4~~~; 2 
(I .49) 

where fJ is a constant of the order of 1 a which can be determined in 

several ways. One way is known Xa{J method. Alternatively, taking {J=a 

if one lets the coefficient of the Dirac exchange result depend on the 



23 

number of electrons N, then one gets the exchange energy of the Xa 

theory [ 19 ] defined as 

k x o< ( ! ) "" ( i<O( ( N ) J f 4/ 3 d 3 r- (I· 50) 

Further refinements introduce coefficients which depend on N for all 

these various terms. Finally, the correlation energy functional take 
1·4t-1·43 

takes the form shown in Eqn ( } . A bibliography of these functional 

modifications is included in the Appendix. ~ • 

The central problem attacked in this thesis is the representing 

of the electron density p( ~) as a linear combination of elementary 

functions. Having done this we ultimately wish to use these expansion in 

computing the potential energy surfaces using Gordon-Kim model. 

However, even though the explicit form of the potential energy of 

interaction based on the Gordon-Kim model has. been given above 

( Eqn (I. 44)) , in carrying out the calculations in this thesis. we will 

consider only the electrostatic part of the energy expression. In other 

words, we are considering only the Coulombic. interaction energy 

J 
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The electrostatic energy by itself is in fact playing a bigger role in the 

understanding of the structure of large molecules and their interactions 

with smaller reactants. Here we have in mind the "Molecular 

Electrostatic Potentials11 ( MEP) introduced by Tomasi [20] in the early 

1970's. One computes the electrostatic potential using the total charge 

density of a molecule and examines those regions where- .this potential 

is rather large. This idea was used subsequently by many groups in 

predicting, for example;,. the conformation of · bio-polymers or the 

reaction site of a drug. Two -sources of .particular note are the 1982 

review article by· Tomasi and the volume Chemical Aeplications of 

Atomic and Molecular Electrostatic: Potentials edited by Politzer and 

Truhlar [ 2'1 ] appearing in 1981. Beyond MEP, however, these 

expansions of p( 1°l which we investigate in thiS thesis will be used in 

the · complete density functional calculations for the total electronic 

energy of interaction. From there on, by using the complete form of the 

energy expression and obtaining the electronic energies for various 

configurations of the nuclei, we hope to determine the potential energy 

surface. 

Let us next outline our approach to the problem of computing 

the electrostatic interaction energy using Eqn ( I · S I ) • Basically there 

are three major tasks, that we need to do to· be able to compute the 

electrostatic interaction energy. These can be- summarizes as follows: 

1) Obtain the charge dens! ties at various points in space for the 

isolated molecular fragments involved in the interaction. The way we 

handle this problem is by numerically tabulating the charge densities at 
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various points in space knowing the wave function of the particular 

molecular fragment. This is discussed in detail in Chapter 2. 

2) Flt the charge densities of each isolated fragment. as linear 

combination of Slater-type functions. The fitting routine is discuss in 

Chapter 3 and our experience in using the routine is discussed in 

Chapter 4. 

3} Evaluate the electrostatic energy of interaction for the water-dimer 

using the Slater function expansions of the charge density of a water 

molecule. The results are discussed in Chapter 5. 



CHAPTER II 

GENERATING CHARGE DENSITIES FOR ATOMS 

AND MOLECULES AND EXPANDING f (r) IN 

SPHERICAL SLATER FUNCTIONS 

As mentioned in the previous chapter, the first task in 

determining the electrostatic interaction energy between two or more 

interacting molecular fragments is to obtain the electronic charge 

density for each individual fraf7ment. The charf7e densitv can be obtained 
0 0 J 

either from experiment or it can be generated knowing the wavefunction 

for the particular fragment. We will generate the densities using the 

Hartree-Fock ( HF) approximate wavefunctions [ 22] . We will limit 

ourselves to a single Slater determinant wave function obtained from a 

self-consistentfield calculation. 

Consider a wavefunction of the form of a single Slater 

determinant 

1 
.6. = -

0 vN! 

"'At ( Xt } "'A/ X1 } ••••••• "'AN ( X1 ) 

"'At ( X2 ) "'A2 ( X2 ) ••••••• "'AN ( X2 ) 
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( Z ·I) 
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Here the '/J's are the orthonormal molecular spin orbitals obtained as 

solution of the coupled Hartree-Fock equations. The orthonormality 

among the molecular spin orbitals can be written as 

* J dx l/J/.... ( x ) l/J/... . ( x ) 
1 J 

3 * = J d r 2. l/J/.... ( r, ~) l/JA. ( r, ~ ) = 6/..../.... 
~ 1 J 1 J 

c 2. z) 

"x. 11 denotes the space and spin coordinates of electron i. The 
1 

determinant can also be written in a more compact form 

1 (]' 
6.o= V N! 2. (-!) p p ~2_. •••••• _N ( II l/J/...i ( xi) ) 

- i112····1N 

= A ( N ) ( II l/J/.... ( xi ) ) ( ri , 3 ) 
1 

where the P's are operators which permute the particle labels among 
·-

themselves and the sum is over all NI such permutations. Here, the 

operator 

1 a 
A( N) = -2. (-1) PP V N! 12 ....... N 

i 1 i2 •••. iN 
(2.4) 

is called the antisymmetrizer. Given any wave function w, we can 

obtain the corresponding one-electron density matrix as 

(1) 

p ( xh x1') = N J dx2 ... dxN p( xhx2···xN; ~t' ,x2, ... xN) l 2' S ) 

where the full density matrix 



Using the wavefunction '-It given in Eqn ( '2 · I ) , we get 

p 

1 

vN! 

t/JA.1 ( xi') 

\jJA ( X2 ) 
1 . 

* \jJA2 ( X1') ••••••• \jJAN ( Xi') 

1/1;....2 ( X2 ) •• • •••• t/J;....N ( X2 ) 

2 

t/J;....2 ( X1 ) • • • • t/J;....N ( X1 ) 

\jJA2 ( X2 ) •••• \jJAN ( X2 ) 

(2 . 1-) 
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Expanding the determinant we get (N!) terms, each term is made up of 

the product of 2N spin orbitals. The factors may be paired-off according 

to particle labels and thus generally involve two different orbital 

labels so that one can write 

(1) ' f (x,.,x 1.) . 

~ ..:.L , r .... ;- "f ~ ~x,) "f; c')('f) ~ A.\c"'i> ~~' L><i) ••• "fi, (~N) ~ ,<>C. N; + .. ·} 
,(_N-l). l I .. I '· '2. .-""'lo . l\olN ~N' 

. CZ· 8) 
However, using the orthonormality of the spin orbitals in carrying out 

the integrations over dx. i=2 ...... N, for a term in Eqn ( '2· 8 ) not to 
l . 

vanish, the orbital label of each \jJ (x.) has to match up with its 
* µi l 

conjugate \jJµ' (xi), i = 2,3, .... N. The matching of the (N-1) orbital 

labels for particles 2,3 .... N forces orbital labels of particle 1 to match 
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also in the non-vanishing terms. In short all the orbital labels have to 

match for the integral not to vanish. Now, with a particular orbital 

A. assigned to particle 1 If.IA ( x1 ) If.I~ ( x;), one can still permute the 
j j j 

matched orbital labels on the remaining of the (N-1) factors in 

\~ "" L } 1T ~ M K(X~) 'P ).11<. (Xk) .1 ,Li k € A,-·· ).j-' '~+I"•·~ 
~-2 (2.·9) 

among the (N-1) particles k=2,3 ... N. This can be done in (N-1)! ways. 

Then, cancelling the factors of the ( N-1 ) ! and considering all choices 

for the orbital assigned to particle 1, we are left with 

(2.· \OJ 

with the summation over the occupied spin orbitals which make up the 

Slater determinant. The density can be deduced from here by letting x'=x 

and summing over the spin coordinates. Thus, dropping the particle label 

11 1 ", we write 

( 2 · \I) 
In practice each molecular spin orbital for the single 

determinant Hartree-Fock state is written as the product of a spatial and 

a spin factor 

If.IA('?) = 'll /\ ( f ) Xm ( ~ ) ( Z . \ 2 ) 
s 

and is express as linear combination of atomic orbitals (LCAO). Thus, 

Cz. 1 3; 

where cpa is an atomic spin orbital also factored as 
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-. 
ct>=<PA(r)x (~) c__2·14) a ms 

<PA is a member of the spatial orbital basis set and is of the form of 

Slater- or Gaussian- type functions or some other functions used to 

expand th~ atomic orbitals. Notationwise we use Greek and Latin 

letters in refering to molecular and atomic orbitals respectively, and 

lower case and capitals in reference to spin and spatial orbitals. In the 

general LCAO expansion, the density given in Eqn ( 2 • 1 O) becomes 

J c ~ ) '° z L z L L c q 11 cf/\ er:, 'i l] [ L:. c.;(\ z{;; r, 7!] 
7 /\, Cf 0 

Here, P ab is an element of the so-called Hartree-Fock density matrix: 

'*' Z Ca/\ Cb/\, ( ?. . \ 6) 

7'..-

In particular for a closed-shell HF wavefunction with the ansatz that the 

molecular spin orbitals factor as in Eqn (2. 1"2) .we find 

tp~\~) x (f) = 
i\I\ s 

ZL. 

zz 
/\ V\;1 .$I 

rz 
l A 

~ 
' \ .. 

Then with the understanding that each of the spatial orbitals /\ is doubly 
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(2..\8) --
Here A and B run over the atomic spatial orbitals and 

( 2· 19) 

To this point p( r .. ) has been the number density of electrons. Realizing 

that it is the charge density which enters directly into our electrostatic 

energy calculations, we subsequently let p( f ) stand for electronic 

charge density. The two densities are of course, related by a factor of 

( -e } 

We have written a Fortran computer program based on Eqn (2·18) 

that will compute the charge density at any point in space given all the 

necessary input parameters. The input parameters are the atomic spatial 

orbitals II>/\ themselves and the expansion coefficients CA/\" The basis 

functions are Slater-type orbitals (STO) of the form 

~ ~ => f. A ( r - RA ) ::. R n ( \ r' -RA ) ) y A_, M ( e A) cp ~ ) 
( 2. 20) 
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where 
-'/2 n + Y'2. n - J -3 r 

rz (r) =(2n~) (2;) · r e , 
I') (2.·2') 

3 is the optimum exponent determined in the SCF calculation and 
m 

yl 
-~ 

(el\'¢,A) is a normalized spherical harmonics centered at RA. 

Thus, each spatial orbital basis function 
-~ 

is determined by its center 

RA and the three quantum number n,l,m. The output of this program is 

-~ -~ the charge density p0 ( r ) at a set of selected points r 1. 

The points r:; are selected to lie along certain lines ( e.g. bond 

directions ) and in certain planes ( e.g. the molecular plane ) and on 

certain spheres ( e.g. sphere,~ centered at the nuclei ) . It is important 

that we select a 11representati ve11 sample of points in order that the 

tabulated charge density values accurately reflect the structure of the 

charge distribution. One of our aims is to understand better how such a 

representative sample of points is to be selected. Anticipating that the 

fitting program ( to be discussed in Chapter III ) requires the tabulated 

charge density at the minimal number of symmetry related points, we 

can limited the points r~ to reflect. the spatia~ symmetry of the atom or 

molecule under consideration. In the case of atoms we need only be 

concerned with the positioning of the points along the given line. For 

diatomic molecules the selected points need to be chosen only in a 

particular half-plane. Again, of course, we must be concerned with 
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which points are selected in the half-plane. However, for general 

molecules--even small molecules like H20--onl y experience can dictate 

how best to select the set of representative points, which lie along 

lines, in planes, and on spheres. 

We try to fit the tabulated charge density by a linear 

superposition of spherical Slater-type functions (STF) ~ 

~ ~ . ~;()~+3 ~ ~ Vl; -~;l~-R,I 
p ( r ) :; ~ 'l 1 ·- I r - R I l e . 

J (,-:;; I 4 ~c Ylj+'2.)~ . l"2· 22) 

Each of the spherical Slater functions -
P: ~ , + 2 e- ¥> ·, 1 t= - R i \ 
i:: \r-R·, \ 

4n-(nit2) ~ _.,... 

is specified by its position Ri' inverse range f3 i' and the power ni 

associated with the prefactor. The numerical factor 

@>ini+:; 

4 tt ( V\'\+1.) ~ 
insures that each Slater function is normalized so that 

Jd 3r r _Jl?; n;u If -t I '1; e- !'>'• 1 "P -R'; I J 
L 4\T(nj t1) ~ 

(7..24) 

1 • 
C.'2.'ZS) 

qi is th~ fractional charge associated with this particular Slater 

function. As we shall explain in the next chapter, the inverse range f3. , 
-~ 1 

charge qi and the location Ri are chosen by a least square fitting 

procedure of the linear superposition to the numerical data of the charge 

density. Some constraints may be imposed on the fitting procedure. The 

fact that 

( Z. ·Z'-) 



34 

where Q is the total electronic charge of the atom or molecule, implies 

that we may want to require 

z q, "' Q. 
i =I 

(2· Z-=F) 

Some interesting features about the Slater function include that _.,. 

we 7c:~:;t~ :n:c?~ ;~~iti~n;_i~t~f:~~I~ -Ri } 
q_ r~o0 l 4rr(n+l)( ( 2. 28) 

Furthermore, although each Slater function is spherically symmetric, by 

pairing these functions together and imposing constraints on their 

positions and coefficients one can simulate the directional behavior of a 

p-type function. To illustrate this directional behavior consider placing 

two Slater fl.inctions at 11a11 and 11-a11 along the zaxis. In doing so, we 

impose the constraint that the coefficients have the same magnitude but 

opposite sign. Consider then 

f ( -~ r t) - ~ r -t n - ~ r - 1 
h r ; d ) -= l r-t e - r_ e. J 

where 

(2·Z~J 

,----~~~~~~~~~· ~'~~~~~~~~~~~~-

r :t = J X 1 + ~ '.l--t (z. :f'. 0.) 2. :. J Y"'- -t a 2 -~ 20.V CO!>(;} 

(z.30) 
and note that one can write this combination of Slater functions as 
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Now, consider the behavior of f n ( r ~~ ) for r.,. ) > a; the distances may be 

conventionally written 
v r ± ::;. r [_ 1 -t Cl /r 2 ;- 2 Cl/r cos e J 2 

Jy 
- r [ t + Cf/r ( 0!r ~ 2 eos G ) 2 

Using a Taylor series expansion, we can write 

so that 

c 2· 32) 

r± ('J rC I -t Y2CVr (ct;r T '.lc...osS)) 

c 2· 34) 
Then 

f n ( r:"; QI :. (- I) n 1-i~ \ e -f r [ l .. Y:i. 'Yr t CVr - 2 Ul s 8 n 

_ e~r t I_,.. Y2o/r( <1/t" +:i_ c..o,sfl j 
n 'C)IJ l -~"( l+ Y2q/r2) [ j6oc..o.;,.6 -~aco~~J} 

=(-\) ~n e 'd~. - e 
~ " r t:< r ( I -t- Y2 a 7Y'" 2 ) [ '.\l} 

= (-I )n %~n le- r '2.sl VI h C13a.to.1&1j • 

( 2. 35) 
Since a/r is also small we have, assuming {Ja is small, that 

'::>.' (-1 )I"\ (j.%11>" e - ~r ( 2 ~Q Ck>S @-) 

- '2 ~O C..Osfi ( l"'I"\ - t1r'H) e-~r 
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The 11cos e11 dependence is the signature of the p-like orbital behavior 

along the z-axis. We can offset the centers of two Slater functions along 

any line and obtain the desired directed lobe behavior. 

There are various other reasons for choosing the Slater type 

functions ( STF ) in expanding the charge density. First of all is the use 

of these functions in evaluating the integrals in closed form in the 

electrostatic energy calculation. One might raise the question of why 

not use the exact expansion Eqn ( '2. · I 8) for the charge density instead of 

fitting p( r.,.) to linear combination of spherical Slater-type functions, 

since Slater-type orbitals with the same radial functions appear directly 

in Eqn ( z:z I). The answer is mainly because the orbitals appear as 

brhnear forms in p( ~) with some terms having orbitals on two 

different centers; this leads to the problem of evaluating four-centers 

integrals in calculating the electrostatic repulsion integrals. 

Furthermore, there are many terms in the exact expansion ( Eqn (:Z.· 1~ ) 

of the charge density; that is given N basis functions , there will be 
2 

N (N+ 1) /2 terms and [N (N+ 1) /2] integrals to evaluate. These 

problems do not arise when one expands the charge density as a linear 

superposition of spherical Slater-type functions, since as is shown in 

Appendix A, the electrostatic energy of interaction can be expressed in 

closed form. 

Another reason for expanding the charge density in terms of 

spherical STF's is their behavior at the centers where they are placed. 

If one examines 
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( 2·3-=T) 

he finds this limit does not exist. This can be shown by noting that 

.R.,{ Wl ~ c -0( \ 1>-~ ] ) = ~ ('(")-") _ «(·t? r it \ ~Ji'-~J 
~ ""'~ v e r~~ R I ?' -~ l ) "-

n ~ ~ ~~Ir-~\ 
:: ~~-o<(P-Rle 

~-12.: C2.38) 

Now, since the unit vector depends on the angles c:p,e, the limit will 

depend on the direction of approach to the center. This type of behavior 

is indeed characteristic of the charge density at the nucleus of the atom 

and is due to the singularity in the Coulomb potential energy. Thus, the 

set of the STF's used to fit the charge density will satisfy this so­

called cusp condition. Futhermore the atomic shell- like structure can 

also be formed using a linear superposition of these functions with 

various powers in the prefactors I r - R In. In a nut shell, most of the 

characteristic behaviors of the charge density can be satisfied by 

expanding the charge density in terms of spherical STF's. 

We conclude this chapter with a brief review of other attempts 

at fitting the charge density. Rys et al [ 23 ] and Yanez et al [ 24 ] 

suggest a fit in terms of a linear combination of Gaussian functions. 

Yanez and his collaborators express the charge density in the form 

·where. 

ca- k c "'k , Ir"> - Rj ll -
~12 -? ~ 'l. J 

( 0 k/iT) expL-oK(r-Rj) 
(2 ,40) 
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The basis function .Q. can be either a contracted or a primitive Gaussian 
J 

function but each is associated with a single center. In fitting the 

charge density, besides making sure that the basis functions be 

normalized 

J S2j o\3y- - (2.41) 

they also imposed a constraint so that the summation of the optimum 

p. 's will be equal to the number of electrons 
J 

~ ~J =N ('2·42) 

Furthermore, knowing that in a molecular environment atoms have the 

tendency to expand led them to introduce scaling so that 

I -?\ ;f ( r J = 

where s A is a scale factor f~r atom A. The scale factors may also be 

varied in the least squares fitting procedure and may or may not be 

associated with the electron number constraint. Even though formally 

they suggested using contracted Gaussians in the expansion, in practice 

they limit themselves to the primitive Gaussian of the form given in 

Eqn ( 2 · 4 0) . On the other hand, besides investigating Gaussian-type 

expansions, Rys et al also suggest that polynomials in~ defined on an 

interval (ai ,bi) be used in expanding the charge density 

h' 
_Q L = [ 1 i - Y'2 Cai +bi) l 1 

Cl; ~ ri ~ b; 
( z. 44) 

The purpose of using polynomial functions is to reduce the computational 

time during the optimization procedure. In both the methods of Rys et al 
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and Yanez et al, a least squares fitting procedure is used so that 

is a minimum subject to the normalization constraint and perhaps some 

other constraints. This leads to optimum values of the parameters. 

Again expanding the charge density in terms of linear 

combinations of Gaussian functions Hall and Smith [ 25 ] suggest that 

since the main interest is the energy, the criteria for finding the 

optimum parameters in the set of Gaussian functions should be based on 

minimizing the difference between the exact and the fitted electric field. 

Thus they seek, by least squares fitting, to minimize 

The expression on the right can be transformed and written in terms of 

* the, fitted charge density p (r) and the exact charge density p(r), 

. ~ = ~ j d r, J o\r z (fCr) -.f'C~)(l:<~)-lC z)) 

\ r, - r '"2 I ( 2. 4 t) 

In short, Eqn (l· 4 7) is a least squares fitting of the electron density 

with 1 I I r 1-r2 I as a weighing. function. 

In comparing the methods of expanding charge density in terms 

of Slater or Gaussian functions, we find that one major shortcoming of 

using the Gaussian functions is that they do not have the cusp behavior 

at the center of Gaussian. Therefore fitting the charge density very 

close to the nucleus may be inaccurate due to this behavior. This 
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problem was noted by Smith and Hall in their paper. On the other hand, 

as we have already seen, Slater type functions do have required cusp 

behavior at the center. 

Finally, one should note that there are other methods of 

representing the charge distributions, most notably the point charge 

model. The difference between this model and the models that we 

discussed previously is that, instead of fitting the given density directly 

using spatially extended functions such as Slaters or Gaussians, the 

electrostatic potential due to this density may be fit in terms of a linear 

combination of point charges. In this model, the electrostatic potential _..,. 
at certain discrete points { Ra } in space is found exactly using 

3 P< r"'l 
V{ R ) =J· · d r -----a _ ... 

I r: ... _ R 1 
a 

(~·48) 

Then, using this same formula except that the density p( r~ is replaced 

by 

(z.4c:>) 

one obtains 

( 2. SO) 

Momany [ 26 J, Cox and William [ 27 J, Ray et al [ 28 J use a least 

squares fitting over a finite grid { R } to minimize a 

_ ... 
with the optimum choice of the parameters { qi, Ri }. One major 
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problem of this method is that since the point charge potential di verges -.-
at the R1 's, the final result depends on the choice of grid. Alternatively, 

Brobjer and Murrell [ 29 ] prefer to determine the positions and the 

charges of the point charge model by fitting the molecular multipole 

moments obtained el ther from experiment or by calculation. 



CHAPTER III 

MATHEMATICAL ASPECT OF THE FITTING TECHNIQUE 

In this chapter, our discussion will be focused upon the fitting 

procedure. As discussed in the previous chapter, we generate the charge 

densitv at selected ooints in soace from a known wave function of the 
J • • 

molecular fragment. Our task next is to fit this tabulated charge 

density in terms of a linear superposition of spherical Slater-Type 

Functions (STF) . Mathematically, we write 

11 -~ 
_.,. _.,. _.,. ni -fJ I r~- R I _ -~ 

p ( r ) = "" a. I r - R. I e i i = Pf· t ( a. fJ. y. ; r ) ~l l l l l l 

- . i=i ( 3 .\) 
where we have absorbed the qi into a new linear fitting parameter 

( 3 .'2.) 

In general, a., {3., y., i=i,2, ....... 11 are determined using the least 
l l l 

squares fitting minimization procedure described below. The fitted 

-~ 
function Pfit can be thought of as not only a function of r but also a 

function of all 311 parameters involved in· the fitting. Anticipating 

however that not all the a's, f3's and y's are independent, we write 

42 
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Therefore, a total of 311 or less parameters are needed to be determined 

in the fitting routine. We have gathered the parameters into sets so that 

the set a consists of only the a i: 

a = { ai i=1,2, ... NA} ( 3 ,4) 

Similarly, for the sets f3 and y 

f3 = { f3 i i=i ,2, ... NB } ('3.S) 

and 

y = { yi i=i,2, ... NC} ( 3 ,f,) 

Note that NA = NB = Ne = 11 • Now, within each of the given sets, one 

has the option of varying all the parameters at once or holding some 

fixed ( i.e. "frozen" ) and allowing only a subset to vary. Futhermore, 

within these sets { a } , { f3 } and { y } , one may also relate some of the 

parameters among themselves, say, because of symmetry constraints. 

These relationships among the parameters then allow us to express 

them in terms of smaller sets of parameters, the a's for the a's, b's 

for the f3's and e's for the y's. The a's, b's and e's are our independent 

parameters. In other words, each of the parameters a. , f3 . , and yk is 
1 j 

written as a function of another set of parameters a., b ., and ck, 
1 j 

respectively so that one has 

a.= a. ( a 1, a2, •••• a ) 
i i nA 

f3i =,Bi ( bh b2, .... bng ) 

Y· = y. ( ch Cz, .... c ) 
1 l nc 

(3,7) 

( 3, 8) 

( 3.9) 

Consider the subset of parameters in the set a that are allow to 
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vary. We denote this subset by 

* * * * a = { a. , a. , •••• a. } = { ai, a2 , ... aM } 
11 12 ~MA A 

(3.\0) 

Similarly we denote the subsets of the f3 and y parameters that are 

* * allowed to vary by f3 and y : 

* * * * f3 = { {3. , fi. , .... (3. } = { f31, f32, •••• {3M } 
11 12 1M B 

B 

(3, I I) 

* * * * Y = { Y· , Y· , •••• Y· } = { Y1 ' Y2 , ••• YM } 
11 12 1Mc c . 

(3.\2) 

Note that the subscripts ih i2 , ••• correspond to the place labels on the 

parameters that are allowed to vary in the sets a, f3 and y. But not all 

* * * of the parameters in the sets a , f3 and y are independent. Some of 

them are related to one. another within the same set where these 

relationships are expressed in terms of the independent parameters, the 
·-

a 's, b's and e's. Therefore, for the a parameters out of nA independent 

parameters in the set a, in g~neral only a subset of them is allowed to 

vary; we denote this subset by 

* * * * a = { a . , a . , .... a. } = { ah a2 , •••• a }; m ~ n 
J1 J2 Jm ma a a 

a (-s.13) 

Similarly, for the f3 and y parameters, only a subset of the independent 

parameters, that is the b's and e's, is allowed to vary. Let these 

independent parameter sets be denoted 

* * * * b = { b . , b . , •••• b. } = { bh b2 , •••• bm }; 
J 1 J2 Jm b 

b b 

* * * * c = { c . , c . , .... c . } = { ch c2 , · · · .cmc}; 
J1 J2 Jm 

c 

m ~n c c 
'(3. l 5) 
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* * * The relationship between the elements in the sets a , f3 and y and the 

* * * independent parameters a , b and c can be expressed schematically 

* * I * \ a =a ta J 

p* = p* ( b *) 

* * * y =y (c ) 

(3, If,) 

(3.18) 

* * * It is the set of independent parameters, the a 's, b 's and c 's which 

are the independent variables used in the fitting routine. Once we get the 

optimum value of all these independent parameters we can compute 

* * * a 's, f3 's and y 's according to the above scheme. One advantage of 

the option relating parameters to some other independent parameters 

appears in symmetry considerations of the charge density. We can 

guarantee that symmetry-related parameters are constrained to be equal 

in fitting the charge densities having symmetry properties; this is. 

especially useful in fitting molecular charge densities. Another 

advantage of this option is that one can reduce the number of 

parameters involved in the fitting routine. One then hopes that the 

fitting routine will converge faster 
-»-

The dependence of the center of the Slater function Ri on the y 

parameter occurs explicitly in the form 

-»- _.,. ,... 
R. ( y.) = R. + y. r ( e, cp ) 

l l LO l ( S. I 9) 

Here Rio is the initial center for the Slater function and r( e, cf:>) 

defines the direction along which line the center may be changed. The 
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angles ei and ct\ are specified a priori. The fitting routine optimizes 

the parameter yi (which may be negative or positive) as the function 

11slides along11 the specified line. 

Finally, we impose the normalization or charge conservation 

constraint that 

3 _.,. 

J d r Pfit ( r ) = N ( -e ) ( '3. zo) 

In principle this single additional constraint may be included in the least 

squares optimization by the Lagrange multiplier technique. We found 

such an approach impractical however. Rather, among the set of a 

parameters that are not explicitly varied we chose a subset 

a = { ak , ak , .••..• ak } = { ah a2, •..• aNf'x } 
1 2 Nfix 1 

(3.21) 

which is nevertheless allowed to change in order to satisfy the above 

constraint. Using Eqn (3.1) for Pfit( r) we obtain explicitly 

J 3 _.,. 
d r Pfit( r) = 

_.,. _.,. 
N _.,. _.,. n. -{3. I r - R. ( y.) I 
2: a. I r - R. ( y.) I i e i i i 
i=l l l l 

= ~ a. 4rr ( ni + 2 ) ! 
i=1 i = N (-e) 

n. + 3 
{3 l 

Then making the ansatz that 

- - -- - -
o<,:. 0(2= "· · o<N · = ~ 

r'" 



we found that each of these "nornalization fixed" a's is given 

1 
a.=--

J Nfix 

n. + 3 
f3 l 

4rr ( n. + 2 ) l 
l 

N 
' N ( -e ) - 2: ai 

i=1 

n. + 3 
f3 l 

4rr ( n. + 2 ) l 
l 
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( 3. 24) = 
Here we envision all these parameters in the re la ti vel y small set a to 

' be equal by symmetry. The sum 2: in Eqn ( 3. 2i is over all the other a' s 
- -- -

( including the frozen one ) not in a. As a consequence the a's are 

* * functions of the a's and {J's to be varied, i.e. the set a and {J • In turn, 

- * the a's depend on the independent variational parameters in the sets a 

* and b . Schematically we write 

-- ~ [ ~it ( a)< ), ¥i. Cb'" )J " ~ ( o ~/ b" ) 
· cs.zs) _.,. 

Consider that there are a total of P data { p 0 ( r 1 ) , 
-rr, !=1,2 .•.• P} that we want to fit. Let us write Pfit in the form 

11 _.,. ~- _.,. 
Pfit( a, {3, y; r 1 ) = ~ fi ( ai, Pp yi ; r 1 ) !=1,2, .... P 

i=1 
where _.,. _.,. 

_.,. _.,. n. -f3. I r - R. ( y.) I _.,. I i i i i 
f. (a.,{J.,y. ;r1 )=a. lr-R.(y.) e 

l l l l l l l ( 3 ·_2b) 
The least squares fitting procedure to determine the parameters 

requires us to minimized the function 

p 'l 
_.,. _.,. 2 

<I> ( a, {3, y) = 2: [ Po ( rI ) - 2: fi ( ai' Pp Yi ; rr ) ] 

Let define the set 11 
1=1 i=1 ( 3. 2 f ) 

* * * 11={a U{J Uy } (3.28) 
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to be the union of all M = MA +M8+Mc parameters that are unfrozen. 

Similarly, let define the set A. as the union of all m = ma +mb +me 

independent parameters 

* * * A.={a Ub Uc } 

As mentioned before the a's, {3's and y's explicitly occuring in Eqn (3· 2.1) 

are functions of the independent a's, b's, and c.'s. In the spirit of 

focusing upon the independent unfrozen parameters we write 

p 
_.,. _.,. 2 

q, ( A. ) = 2 [ Po ( rI ) - Pfit ( A. ; rI ) ] 
I=i (3.30) 

_.,. 
where Pfit ( A. ; rI ) is defined in equation (3 .26). In carrying out the 

minimization procedure of equation (:3. 40), one also has to consider the 

* * normalization constraint so tJiat, as stated above, the a and b appear 

* * -not only in a and f3 but also in a. 

To carry out the minimization of ct>( A. ) , consider changing A. to 

A. + 6.A.. In doing so, let us think of the set A. as an mx 1 column matrix 

* * * made up of the completely independent a ·' b and c with 

m = ma +mb +me. Note that the column matrix A. is is constructed in 

* * such a way that the a 's are arrange first followed by the b 's and the 

* c 's i.e 

. . . .,, • " c '\ b ,. C I C. 2. • .. • WI,. J VV\o ,; .. 

(3. 31) 
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Similar! y, consider the set !::..>.. represented by another m x 1 column 

matrix. For a given point >.. in the parameter space, our immediate 

goal is to find !::..>.. such that 

if>(>..+!::..>..)< if>(>..) 

where 
p 

_.., _.., 2 

If> ( >.. + !::..>.. ) = 2 [ Po ( rl ) - Pfit ( >.. + !::..>..; rl ) ] 
I=1 

What we would ultimately like is to find the global ·minimum of IP( >.. ) • 

In practice we must be content with a stepwise procedure for continually 

reducing IP{ >.. ) • To begin our discussion we consider a Taylor series 

expansion of IP{"A+l::.."A) about the point >... Considering only up to the first 

order terms, we get 

i apfit 

j=i a>..j 

Carrying out the indicated multiplication we have 

m m opf"t 
2 2 _ 1 

i=1 j =1 a>... 
l 

p 

(=3.34) 
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or in matrix form 

4> ( A. + ~A. ) = A - 2Q T ~A. + ~A. T C ~A. 
approx o ( 3 . 3 5 ) 

Here, A is a scalar 
0 p 2 

Ao= L, r f ., ( (:t ) - f f.t ( A ~ r "!: ) J = } ( A.) 
'T- I 
-- (3·3'-) 

while Q is an m x 1 matrix whose i th ~lement is 

~ _,, _,, J Of +H \ 
& t ~ ~ ( po ( r r ) - f f1~ l /\- : r I ) o)... i 

1:1 J ?\. 
(8.3-=7) 

d C . t . t . h .. th 1 t . an is a symme r1c m x m ma r1x w ose lJ e emen is 
p 

c i J. = .z 0 r tit I d t fi t I 
I=1 dAt A o/\.j A, (3·38) 

Note that the partial derivative with respect to the "A's can be written in 

the explicit form 

--
(3.39) 

(3·40) 

(3. 41) 
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( 3.42) 

In the spirit of our remarks concerning the normalization constraint it 

should be appreciated that 

ffit[ .. o<./" ... 0( ( ••• o<f ... J ... J 
(3.4:3) 

::: _:g_,. f fit [ ••• ~~ • . . p( (." ~~ .. ) ... 1 
'dfi - (3.44) 

and 

Therefore the approximation to the exact ~(A+AA) is quadratic in AA; 

Written in more explicit form Eqn (3-35) becomes 

~ qfpro~ (.A+ b /\.) YY'I "'1 

= A 0 - 2 '2!.. G.; b."A- T Z., 0 /YA.; C"j 
\: 1 I :::- ' J - ' 

~7'.j 

( 3.45) 

The minimum of ~approx (A+AA) can be· found by taking the partial 

derivatives with respect to AA.k' k=1,2 •••• m and equating each of them 

to zero: 

6 ¥. C( ppr0~ '::. - 2 Q I< i" 

'7l6"A'< to r \c. = I / 2 / • ~ · VV) • 

But Cik =Cki implies that 
IV) 

d -~ Ct e pro}( -2G.r. 1- 2 z C~j 6/\.J - 0 -::: 

o A ?\.1< 
j =-1 

to~ k-= ' .12 < A fl 
yY) (3.4-=r-) 

In matrix form we can write this set of m equations 
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(g. 48) 

Now, if C- l exists then the unique solution is 

(3·49) 

and therefore 

~op pr-o/\ ( )\ + ~ /\ J - ~ 0 f\'..-~ ~ 
T - I t t:\ 'T c c..-' \Tc c-1 °' - Ao - 2 & C G., a J ,....., 

=- Ao - 0.. Tc-I Q... :: ~ [7') - & "T (__, Q (3. Sc) 

If c-1 is positive definite then clearly 

(3.5 l) 

and moreover this value is the minimum value of <P approx ( A ) . 

But what we have done is to minimize <P approx· What we are 

interested in doing is to find fl.A. which ensures 

( 3. s 2) 
_1 

In general the solution fl.A = C Q which minimize <P approx does not 

guarantee the inequality ( Eqn ( 3' · 52 )) be satisfied. However, we can 

adapt this approach to our real purpose by letting 

where R-l is a positive definite matrix and a is a positive number. For 
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then it can be shown that the inequality (Eqn (3 S2.)) can be satisfied with 

an appropriate choice for a. Indeed, one can then express q>(.A+A.A) using 

the definition for A.A in Eqn (:3 · 53) as , 

1>C7\+6.X) = Ao-:ZG.To- R-JQ -t'0''2Qi(R-1)Tc.·R-1& -t Oce-z) 

i 
==- - Ao - 2 er Q. R Q -t 0 c er- 2 ) 

( '3 ,54) 

When a is small enough then the linear term in Eqn ( 3 · 5 4 ) must 

dominate to the extent that all the higher order terms can be considered 

negligible. Consequently, one can write 

- l CA) 
(3 .SS) 

which implies 

With the redefinition of A.A according to Eqn ( 3. 5 '3 ) , the 

question that arises is how to pick R- i and a and therefore A.A in an 

optimal way. At this point we are going to use the Marquardt 

algorithm [ 30 ] to find R-i and a. Basically, the Marquardt algorithm 

is a compromise between the steepest descent and the Gauss method in 

the least squares fitting procedure. To begin with, consider 

cs.s-:r) 

where the matrix B can be any symmetric, positive definite and non­

singular m x m matrix and /\ is some constant. The matrix C is 
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defined as in Eqn (3·39) and is Hermitian ( in fact it was symmetric 

since all its element are real h To be specific the recommend choice of 

the matrix B is given by the prescription 

VC;j ~ ,VI JZi ~ 6 
B iJ. ==- {) 

1 , Nb rcii < c 

0 -t'r ; -:I= j (3.SS) 

-6 
where e = 10 in the appropriatiate units. Eqn ( 3·51- ) can also be 

written In the form 

-1 -1 
R = B[ B CB + A ]B 

Since C is symmetric then the term B-1CB-1 is also symmetric. Let 

(3. GO) 

where U is an orthogonal tranf ormation matrix and S is the diagonal 

matrix of the eigenvalues of B-1ca-1. Thus, since 

B-1CB-1 = usuT 

we have for R 

R = B[ usuT + AUUT ]B 

= BU[ S + A JUT BT 

Then a little matrix algebra lead to the required inverse: 

R-1= ( uTaT )-1 [ s +Ai ( 1 (BU }-t 

=(BT)-1U[S+ Aif1 UTB-1 

= ( 8 -l ) T ( U-1) T [ s + Ai f 1 u-18-1 

= ( U -1B-1) T [ S + Ai ( 1 U -i8-1 

= GT [ S + Ai f 1 G ( '3 . G 3 ) 

where 



-1 -1 

G= U B 
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Note that the requirement that R - l be positive definite is that for all 

vectors X, 

Clearly 

so that R-! is positive definite provided [ S + /\1 r 1 is positive 

definite. This in turn will be true provided 

that is, /\ must be larger than the negative of the smallest eigenvalue of 
-1 -1 B CB • Therefore the elements of the sought-for matrix R, are 

L. ( r. r ) ", ~ [ [ S t I\ 1 ]- i} r. () . 
'-1 '"' "" . k. L '-1 ,x. j I<.. .t 

The fact that 
(3.f;;t) 

[s+ A1] - I 

ls diagonal implies _, 

( R_, ) ;j - L., ~ k; ( S k + /\) ~ ~ 1cj 
k (3.68) 

Let summarize the Marquardt algorithm step by step. 

1) Start with an initial guess for the /\, a and the elements of the 

matrix A.. Marquardt suggest to put /\ = 0.01 and O' = 1.00 

2) Construct the matrices B and C which are defined in Eqn (:3· 5S) and 

Eqn ( 3 · 38) respectively. 
_1 

3) At the start of the ith iteration , find the matrix R defined in 

Eqn (3.&8). 



-1 2 T -1 
R. = ( Ci + AB. ) = G [ S + A 1 ] G " 

l l 

( Note that the subcript i here and below labels the i th iteration. ) 

4) Using the result for Ri in step (3) and letting ai = 1, find 
_1 

A.Al = ul Ri Qi 

Let 
(1) 

.A = .A1 + A.A1 

and evaluate 
(1) (1) 

cp :c;11(.A ). 
(1) (1) 
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5) If IP < <I>1 = c;l1( .Ai), then accept Al+ 1 = .A and replace A with the 

maximum of the two numbers O.OiA or E where E is a small positive 
-7 

number, say 10 . Then return: to step 2 and begin the next iteration. 
(1) 

6) If <I> ::?!: <I>1 and 

[ (A.A) T{ 
------- < o.s 
[ ( QT Q) { (AA) T (A.A) } ] 

then replace A with 1 OA and return to step 3. Otherwise replace a by 

a /2 and return to step 4 evaluating 

-1 
c;l1 ( ).. + uR Q. ) 

1 

which according to our proof must, for small enough u, eventually 

become less than <I>( .A1 ) . 

Once this condition is satisfied accept A.i+i = A.1 + A.A1 

The iteration procedure continues lll1til AA--that is all the 6.Ai 

components--are smaller than a preassigned constant. The final point A.f 
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in the parameter space is then accepted as giving the optimum <I> and 

thus the "best fit" to the data { p 0 ( r 1 ) } . 



CHAPTER IV 

GETTING THE BEST FIT TO THE CHARGE DENSITY 

With the fitting routine tools available ( i.e. fitting method and 

computer program ) which have been discussed in the previous chapter, 

the question that arises next is how one can utilize these tools to the 

maximum capacity in order to get the best flt to a given tabulated 

charge density. Therefore, our attention in this chapter will be focused 

on guiding the reader toward finding an optimum fit to the charge 

density. Frankly speaking, from the experience that we have, this is not 

an easy task. Indeed, most of our research time has been spent on just 

fitting the charge density. In retrospect, we hope that we can at least 

devise some guidelines based upon this experience on how to fit the 

charge density for any molecular fragment. The importance of getting a 

good fit is obvious since we are going to use the fitted density in the 

energy computations; our calculations indicate the energy ls very 

sensitive to the fit. 

Of course, ·the charge density depends upon the approximate wave 

function for the fragment. Beyond that, the numerical representation of . 

this density depends on our choice of points at which to tabulate it. In 

Chapter II we discussed the various geometric figures which we may use 

to arrange the points. Still one has to learn by experience how best to 

set up the parameters for these figures, such as the length of a line or 

58 
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the radius of a sphere on which the points are arranged. Despite the 

importance of ensuring the the tabulated density is 11representative 11 , our 

focus here is on optimizing the a, f3 and y parameters in fitting a given 

tabulation of the charge density. 

As we have mentioned in the Chapter III, in fitting the charge 

densities our main objective is to minimize the function 

p ~ ~ \2 
~(~/~-'O) = Z (fo(r"I.) -f+it(O\,,j2>,0':-rr)/ 

I.=1 

In other words, we search for the sets of parameters a, f3 and y in the 

parameter space so that q, (a_,f.J, y) is a minimum. The sought-for 

minimum is the global minimum in the parameter space and not a local 

minimum. The distinction is that the global minimum is the absolutely 

smallest value of q,, whereas a local minimum refers to a relative 

minimum in the parameter space within the vicinity of the initial guess 

of the parameters. One can think of the surface q, as embedded within a 

multi-dimensional parameter space whose dimension equals the number 

of independent parameters used in fitting the charge density. We 

anticipate many local minima on this multi-dimensional surface and out 

of these local minima only the one having the absolutely lowest value is 

the global minimum. Finding .the set of parameters that will lead to q, 

being the global minimum is not easy. The reason is because the very 

structure of the program (i.e. the Marquardt algorithm) forces q> to 

converge to a near minimum; but this does not imply we have reached 

the global minimum. In fact given so many local minima, chances are 

small the global minimum is actually found. It is therefore important 

that one. should start with a good initial guess to the parameters so as to 
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get, if not the best, at least a very good fit. We hope to present in this 

chapter a method of doing this. Each resulting fit can be characterised 

by a root mean square (RMS) value 

(6 p)RMS = 

Presumably the smaller (6p) RMS the better the fit. 

Basically, all the factors which affect the convergence of the 

fitting routine fall under two categor!es: 

1) The number, type and initial location of spherical Slater Functions 

used to expand the charge, densities. Note that we distinguish the 
-',.. _.,. n. 

different types of Slater functions by the power ni on I r - R I 1• Thus 

_'!'le 11.eed to plan a' priori on constructing inner shells, lone paii:-s 

directed bonds, etc. by a judicious choice of the expansion functions. 

2) The initial guess to and the manipulations of the parameters, i.e all 

the a's, {:3's and y's. Among these possibilities are included such 

options as: 

a) Freeze some of the parameters and optimize only the remaining 

subset. For instance, we might begin by superimposing atomic densities 

to form the molecular expansion, keeping the inner shell atomic 

parameters frozen and allowing only the valence shell parameters to be 

reoptimized. 

b) Relate the some of parameters to one another , thus reducing the 

total number of independent variables. Symmetry consideration, for 

instance, reduce the number of independent parameters involved in the 

optimization. Another way of reducing the number of parameters is by 
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using subsets of "even-tempered" functions in which the f3 parameters 

are related to one another. Typically, within a given subset we require 

f3i+ 1 = df3 i where d is a fixed ratio factor. 
-

c) Impose the normalization constraint on different choices of the a 

parameters 

All of these manipulations on the parameters have been discussed in the 

previous chapter. Changing any one of the factors mentioned above in the 

fitting routine will lead to a different set of "optimum" parameters a, f3 

and y corresponding to a different local minimum. 

Before presenting an illustration of our method, let us mention 

some guidelines that we use in fitting the charge densities of the neon 

atom and the water molecule. We presume these will become part of the 

general guidelines. 

1) With the charge density to be fitted is generated from Hatree-Fock 

orbitals "1A.'s written as a LCAO of STO's, we look at the elements of 

the density matrix associated with a given center and consider those 

elements whose values are large ( say )0.1 ) . From the location of 

these elements in the density matrix we deduce the types and the initial 

exponents of the Slater functions on a given center. The computer 

program that we have written to generate p0 ( r~ from the Hartree-Fock 

wavefunctlon isolates the elements in the density matrix that are large 

enough ( say )0.1). 

2) We try to use as few parameters as possible to begin with. This can 

be done by using the concepts of even-tempered functions and symmetry. 

Then, as needed, and guided by our comments above, we add one or two 
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additional functions at a time in an attempt to reduce ( Ap )RMS· 

3) We use the results of previous fits and see whether one can freeze 

some of the parameters that one is sure of. Also we check whether there 

are any improvement to the previous fit by adding just one new function 

at a time. 

4) We plot the charge density difference Ap=pn(Po ( and, for atoms 
2 

r Ap, the radial charge density difference ) to get a visual insight into 

how well the fit spatially reflects the actual charge density. 

Sometimes almost equally good ( Ap ) RMS values are found for two 

different fits where one clearly does not spatially mimic the true 

density. In such instances this fit can be eliminated from attempts at 

further refinements by our visual inspection. 

5) For fitting charge densities of molecules, we first center the 

functions on nuclei; then we try adding some functions along the bonds 

and in the region of lone pairs. We also have the option that the centers 

of these functions are allow to slide back and forth along the bond. We 

have used these options to fit the charge density of the water molecule 

and make incremental improvements in the successive fits. 

Listed Table I thru IV are the results of several fits to the neon 

charge density. Each table presents three different convergent fits 

illustrating various factors which affect the optimization routine. From 

these results one can conclude that the 11optimum11 parameters in fitting a 

given tabulated charge density are not unique. The set of points to be fit 

is the same for all the different fits in Table I thru IV. We fit 121 

points equally spaced 0.05 a.u. apart along a given line begining at the 
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TABLE I 

COMPARING FITS USING DIFFERENT INITIAL GUESS TO BETA PARAME 

------------------------------------------------------------NAME 1 ni BETA I C >BETA F < >CHARGE Cq> RMS 

------------------------------------------------------------FIT 1 

FIT 2 

FIT 3 

1 2 
2 1 
3 0 
4 2 

1 2 
2 1 
3 0 
4 2 

1 2 
2 ,.1 
3 0 
4 2 

8.17317 
38.5607 
18. 6251 
4.28342 

7 .12658 
45.1088 
18.0662 
4.05819 

6 .12958 
25.1088 
19. 0662 
4.05819 

6.647 
20.4538 
18.6266 
4.2834 

6.98474 
31.7256 
19.7124 
4.40599 

6.60143 
28.825 

19.6592 
3.83593 

TABLE II 

-4.50032 1.30E-02 
0.3~769 

-2.4102 
-3.4472 

-3.86389 4.89E-03 
0.01529 

-2.03346 
-4.11793 

-5.13395 2.02E-03 
0.02489 

-2.05002 
-2.84092 

COMPARING FITS USING DIFFERENT # OF FIXED BETA PARAMETER 

NAME 

FIT 5 
ALL 
BETA 
FREED 

FIT 6 
ONE 
BETA 
FIXED 

FIT 4: 
TWO 
BETA 
FIXED 

i ni !NIT. BETA FINAL BETA CHARGE Cq} RMS 

1 2 
2 1 
3 0 
4 2 

1 2 
2 1 
3 0 
4 2 

1 2 
2 1 
3 0 
4 2 

7 .12658 
45.1088 
18. 0662 
4.05819 

7.12658 
45.1088 
18.0662 
4.05819 

7.12658 
45.1088 
18. 0662 
4.05819 

6.98474 
31.7256 
19.7124 
4.40599 

6.2955 
19.7955 
18.0662 
3.48537 

6.49209 
19.7647 
18.0662 
4.05819 

-3.86389 4.89E-03 
0.01529 

-2.03346 
-4.11793 

-5.90009 1.21E-02 
0.57722 

-2.64152 
-2.03561 

-5.04272 1.36E-02 
0.58014 

-2.64152 
-2.8959 
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TABLE III 

COMPARING FITS USING DIFFERENT # OF SLATER FUNCTION 

------------------------------------------------------------NAME i n. INIT. BETA FINAL BETA CHARGE Cq) RMS 
1 ------------------------------------------------------------FIT 7 

FOUR 
SLATER 
FUNCT. 

FIT 8 
FIVE 
SLATER 
FUNCT. 

FIT 9 
SIX 
SLATER 
FUNCT. 

1 2 
2 1 
3 0 
4 2 

1 2 
2 1 
3 0 
4 2 
5 2 

1 2 
2 1 
3 0 
4 2 
5 2 
6 2 

7 .12658 
45.1088 
18.0662 
4.05819 

7 .13738 
29.9629 
18.0822 
4.05713 
8.80599 

7.13738 
29.9629 
18.0822 
4.05713 
8.80599 

5.006 

TABLE 

6.98474 
31.7256 
19.7124 
4.40599 

7 .1898 
15.9272 
11.7398 
7.71514 
8.5358 

7.22602 
20.7308 
18.-5159 
4.93756 

7.499 
5.54416 

IV 

COMPARING FITS USING DIFFERENT TYPES 

-3.86389 4.89E-03 
0.01529 

-2.03346 
-4.11793 

-20.1803 8.26E-02 
5.90839 

-9.62635 

OF 

0 .19196 
13.7063 

-60.3589 7.20E-03 
0.37261 

-2.45372 
-23.927 
44.5888 
31.7782 

SLATER FUNCTION 

------------------------------------------------------------
NAME i n. INIT. BETA FINAL BETA CHARGE Cq> RMS 1 

------------------------------------------------------------
FIT 1 0 1 2 7 .12658 6.87312 -4.18175 3.92E-03 

2 2 35.1088 47.3045 0.01036 
3 0 18.0662 19.7283 -2.02855 
4 2 4.05819 4.30895 -3.80007 

FIT 1 1 1 2 7.12658 6.98474 -3.86389 4.89E-03 
2 1 45.1088 31.7256 0.01529 
3 0 18. 0662 19.7124 -2.03346 
4 2 4.05819 4.40599 -4.11793 

FIT 12 1 1 7 .12658 33. 0949 0.00037 2.91E-01 
2 1 45.1088 17.953 2.37344 
3 0 18. 0662 14.8003 -4.80522 
4 2 4.05819 4.16347 -7.56859 
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origin. The self consistent field wave function that we use to generate 

the charge density at this selected set of points is given by Clementi 

(31 ] . In fitting the charge density we try to illustrate the factors that 

can lead the fitting routine to converge to a different point in the 

parameter space. The set of y parameters is not allowed to vary since 

all the Slater functions remain centered on the Neon nucleus. 

Furthermore, one should note the computer program chooses all the 

initial variable a parameters based on the initial guesses of the f3 

parameters by performing a linear fit. Therefore, in this and all atomic 

cases, one would normally have to make initial guesses only for the f3 

parameters. The initial guesses for the fJ parameters and the final 

convergent values for the {J's and charge q's along with the ( IY..p )RMS 

are shown for for different fits in Table I thru IV. 

The first three fits ( Table I ) illustrate that choosing different 
. . 

initial guesses for the f3 ( thus a different set of a ) parameters leads 

to different convergence points in the parameter space; thus one obtains 

different results even though the number and· types of Slater functions 
_..., 2 _.,. 

are the same. Fig 1 presents Ap( r ) = Pfit-po and Fig 2 r Ap( r), each 

as a function of r, for the three fits listed in Table I: While all three 

fits are acceptable ( the amplitudes of all three are less than 
3 

0.08e/(bohr) in Fig 1 and 0.02e/(bohr) in Fig 2 ) Fits 2 and 3 

appear much better than Fit 1 ( in Red ) . Visual inspection of Fits 2 

and 3 leads us to prefer Fit 3 ( in Green ) although the distinction is 

not this time as striking. These conclusions are consistent with the 

( IY..p )RMS results found in Table 1. 
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In a similar manner Fits 4 thru 6 ( Table II ) illustrate that 

using the same functions as before, one again obtains different fits by 

freezing one or more of the f3 parameters, keeping the initial guesses 
2 

the same for all of them. The corresponding plots of 6.p and r 6.p are 

presented in Fig. 3 and Fig. 4 respectively. From the figures we see 

that Fit 4 ( in Black ) is somewhat superior to both Fit S ( in Red ) and 

Fit 6 ( in Green ) . Indeed, Fit 4 is obtained by optimizing all four f3 

parameters while Fits S and 6 freeze one and two f3 parameters 

respectively. As expected better ( 6.p )RMS values are obtained with 

fewer f3 parameters frozen. Of course, the routines take longer ( more 

CPU time) to converge with more free parameters. 

Fits 7 thru 9 illustrate that using different numbers of Slater 

functions leads to yet another set of results. These results are 
2 

presented in Table III and the plots of 6.p and r 6.p are given in Figures 

5 and 6. Obviously Fit 8 ( in Red ) may be immediately discarded from 

consideration; indeed its ( 6.p )RMS value is more than an order of 

magnitude greater than those for Fits 7 and 9. The point to be made here 

is that from the visual inspection alone candidate Fits for further 

improvements can be either kept or rejected. Of the remaining two the 

fit involving the four Slater functions ( in Black ) is visually superior 

than the six Slater functions ( in Green ) . Again this conclusion is 

supported by the ( 6.p )RMS values in Table III. While intuition might 

suggest the better fit al ways obtains with the larger number of 

expansion functions, such a conclusion is clearly erroneous. There are in 

fact other factors--indeed those mentioned before--which play a crucial 
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role in determlnlflt the best flt. 

Finally, Flt 10 thru 12 ( Table IV ) illustrate effect of uslflt. 

different types of Slater fl.D'lCtions. The plots are soown in Figures 7 and 

· 8. Fit 12 ( ( Ap )RMs=0.3, in Green ) may clearly be discarded. It 

appears that the L shell ls not adequately represented by only one 

fl.D'\Ctlon with n=2. The other two fits appear equally good on these 
2 

graphs. We have magnified these llp and r llp( r ) graphs in Figures 9 

ard 10 to find that Fit 10 ( in Red ) is slightly better by visual 

inspection ( Fit 12 ( in Green ) goes off-scale in these magnified 

graphs ) . Again this is borne out by the ( Ap )RMS values in Table IV. 

Note that these are only some of the fits that we have generated 

for the purpose of illustrating the factors affecting the convergence 

point in the parameter space. In fact, the fitting routine is very 

sensitive to slight changes in the factors listed above. Therefore, one 

can arrive at an almost endless number of different fits. With all these 

results, the question is how to select the best fit. There are two 

criteria used in choosing the best fit. The first criterion is to select 

the fit giving the lowest root mean square ( Ap )RMS value, consistent 
2 

with a good visual plot of r llp( r ). This will at least tell us the best 

minimum that we obtained even though it might not be the globai 

minimum that we are searching for. The second criterion is that all 

the qj be less than the total number of electrons in the system. In other 

words, the charge is envisioned as divided among the Slater functions; 

in the atomic fits this corresponds to the shell-like structure. Note that 

this criterion was imposed based on our intuitive notion of more elegant 
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results, something which camot be required mathematically. Fits 

2(=4=7=11), 3 and 10 all satisfy our intuitive notion that there are 

two K-shell and eight L-shell electrons in Neon. Of these three Flt 3 

satisfies best our visual criterion and has the smallest ( tip ) RMS and 

is selected as our best fit. 

As a conclusion to this chapter let us mention again that 

fitting the charge densities for atom and molecules is not an easy task. 

There are still a lot of things that need to be done in order to 

understand better the structure of the multi-dimensional parameter 

space. With such understanding, hopefully one can determine even better 

algorithms in searching for the global minimum. On the other hand, we 

should also re-emphasize that since we are going to use the fits in the 

electrostatic energy calculation, picking the set of points to be fitted 

play a most important role. We must make sure that the number and the 

locations of the chose points in the molecular space are sufficient to 

represent the structure of the charge distribution. This assurance is 

rather difficult to pin down when one tries to fit the charge density of 

molecules. We did face what we believe to be this problem in trying to 

flt the charge density of the water molecule; lt turns out that the dipole 

moments that we found for the fitted densities are always greater than 

the one obtained using the wave functions directly. Clearly, we need to 

explore the question of picking representative points further. 



CHAPTER V 

ELECTROSTATIC ENERGY CALCULATION FOR WATER DIMER 

In this chapter we use our best flt to the charge density of the 

water molecule to find the electrostatic energy of interaction of a water 

dimer as a function of the configuration. To start with, we present the 

structure of a single water molecule used in the calculation. This 

geometry is shown in Fig 11 and remains fixed throughout the 

calculation. The wave function used to generate the charge density we 

are going to flt is given by Aung and Pitzer [ 32 ] . This wavefunction 

( designated III in reference 32 ) was calculated by the SCF method 

using atomic Slater-type orbital (STD) basis functions. Our interest is 

to find the electrostatic energy of interaction for a general orientation of 

two water molecules, but we present results only for the orientations 

where the dipole moments of each are either parallel or antiparallel. 

For each case we observe the change in the electrostatic energy as a 

function of the distance between the oxygen atoms R00 for two choices 

( o0 and 90° ) of the dihedral angle · cp, between the planes of the two 

molecules. 

The number of points fitted is 576. The points are picked to lie 

on three spheres ( radius r = 0.1, 0.5, 1.0 a.u.) centered at the oxygen 

nucleus, three spheres ( r = 0.1, 0.25, 0.5 a.u.) around one hydrogen 

nucleus and two spheres ( r = 0.25, 0.5 a.u.) centered approximately 
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Figure 11. Geometry of a single water molecule. 
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half way along the OH bond. In addition we chose points along the OH 

bond line both between the two nuclei and with somewhat smaller 

density on the other side of each nucleus. Also points were chosen to 

cover trapezoidal figures 1 ying in the molecular ( xz ) plane and the two 

perpendicular ( xy and yz ) planes. Finally a trapezoidal figure 

perpendicular to the molecular plane and containing the OH bond 

encloses another set of chosen points. Note that the selected points all 

favor just one region of the molecule. The correct symmetry of the 

fitted charge density is guaranteed by the constraints imposed in the 

fitting routine. A perspective plot of the points at which the density is 

tabulated is given in Figure 12. The number of Slater functions used to 

expand the charge density is eight: one at each of the hydrogen nuclei, 

four at the oxygen nucleus and one along each of the OH bonds. The 

functions centered at the nuclei remain fixed in place while the bond 

functions are allowed to slide back and forth along the bond direction 

seeking their optimum location. In Table V are the optimum Slater 

function parameters obtained for the fit. Note that the optimum 

positions of the bond functions are behind the oxygen nucleus ( z < 0 ) . 

The figures ( 13, 14, 15 ) present ~p = Pfit - p0 , where both p's are 

the ( negative valued ) electron density in the xz, yz and xy planes 

respectively. Only half planes are presented,· the remaining portion may 

be inferred from symmetry. It is clear from Fig. 13 that in the vicinity 

of the hydrogen nucleus ( x = 1.43 a.u., z = 1.11 a.u. ) there is more 

negative charge ( ~p < 0 ) represented by Pfit than there should be 

according to p 0 • This fact is also reflected in the expansion coefficient 



TABLE V 

RESULT OF FIT TO THE WATER MOLECULE CHARGE DENSITY 
USING 8 SLATER FUNCTIONS 

POSITION OF THE SLATER FUNCTIONS: 

# X-COORD Y-COORD Z-COORD 

1 
2 
3 
4 
5 
6 
7 
8 

-1.4315 
1.4315 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0933 
0.0933 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

1 .11 09 
1 • 11 09 
0.0000 
0.0000 
0.0000 
0.0000 

-0.0723 
-0.0723 

# POWER< n .;_ CHARGE( qv EXPONT<!'t> RMS 

1 
2 
3 
4 
5 
6 
7 
8 

0 
0 
0 
1 
2 
2 
2 
2 

-0.8152 
-0.8152 
-2.2222 

0.0759 
0.0612 
0.0340 

-3.1592 
-3.1592 

1. 95927 
1. 95927 
14.9915 
18.4195 
18.8413 
18.8239 
4.20211 
4.20211 

0.0821 

DIPOLE MOMENT IN X-DIRECTION = 0.000 A.U. 
DIPOLE MOMENT IN Y-DIRECTION = 0.000 A.U. 
DIPOLE MOMENT IN Z-DIRECTION = 0.867 A.U. 
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qH = 0.8(-e) presented in Table V; generally population analysis place 

perhaps 0.5(-e) on the hydrogen nucleus. Furthermore there is a region 

where ~p is strong! y negative located along the extension of the OH 

bond behind the oxygen nucleus, that is in the region for which .z ~ -

0.11 a.u. with 0.5 a.u. < x < 2.0 a.u •. This excess negative charge is 

due to the position of the bond functions optimizing 11behind11 the oxygen 

nucleus. There is a smaller region near the z-axis where ~p is positive 

indicating a depletion of electrons. The presence of the "bond functions" 

behind the oxygen we believe is an attempt to get into the lone pairs. Of 

course they are constrained to the xz plane and therefore cannot really 

simulate the lone pairs. In fact the presence of these excess negative 

charge behind the oxygen nucleus serves to increase the dipole moment 

of the water molecule. To be sure, the negative charge excess around the 

hydrogen would decrease the dipole moment and so the fact that we have 

.an even larger moment than the wavefunction gives, indicates that the 

charge behind the oxygen in the xz plane is far excessive. 

Looking in the yz plane ( Fig. 14 ) we find the positive region 

of ~p indicating that the lone pairs are not adequate! y represented by our 

expansion functions. In fact, we have not included any spherical Slater 

functions in the yz plane and have thus paid price for the absence. 

In the xy plane (Fig 15 ) ~p is always negative indicating more 

charge placed near the oxygen than is in the wavefunction description. 

Since the spherical Slater functions are centered at the atomic nucleus, 

this biased behavior of ~p is not total! y unexpected. 

The dipole moment computed using the fit was 0.87 a.u. 
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whereas the value that Aung and Pitzer obtained directly with their 

wave function was 0. 7 S a. u. The experimental dipole moment of H20 is 

0. 71 a.u. The calculation of the dipole moment can be carried out 

easily when the charge density is expanded in terms of Slater-type 

functions. The electronic contribution to the dipole moment is 

'YL J ........:... _tY, -t 3 ~ ~ ·ill· - P. · 1· ~r - 2 · \ -) -, , -;r ·1 r I I z ( r - R i ) i1c ~·. I r - R i l e cl: ( 
1=1 4it(J\jt2) 1• 

--" 
l'\j t 3 -I f:: I ~. ' -; R "Ii - ~ ·, I ,.. - . i 

r' -1 Ir - i I e 
4 rr l (li + 2 J • 

But for each term "i" the first integral vanishes since the integrand has _.,. 
odd parity with respect to inversion in the center Ri. Therefore one is 

left with 

. -
' - ' 

The total dipole moment is, of course, the sum of the electronic and 

nuclear dipole moment 
~ 'Y\.. -7 

--D n e t ::. .Z <t: R ·, -+ 
I :::. I 

The dipole moment of the molecule effects the leading (dipole­

dipole) term in the asymptotic electrostatic interaction energy. The 

exact electrostatic energy of interaction for any molecular configuration 
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is given in Egn ( 1. 51 ) . With the electronic charge densities expanded in 

terms of Slater functions we need to evaluate integrals such as 

j J ~ n ' · ~ l r -:t. I !;;? • 10- fti I 
.- _d3 r'" d3r I I ~ ) I _...J r\J - ri -- '"' e- 1-'J J 

_- ~r_-~R_i~-l~r'~--R_j_l~e~~~--'::c__~-
/r- ,~I 

an cl ,.,.I~ 
~ 

--:, R; In~ - pr r - R1· 

j d 5 r 
r - e 

l p - ~ 

Ri I 

( 5-4) 

( 5. 5) 

These integrals can be evaluated in closed form and the result are given 

in Appendix A. A Fortran program has been written to compute the 

electrostatic energy of interactions based on the algebraic expressions. 

The results of the calculation of the electrostatic energy of 

interaction are given in Tables VI and Vil for various internuclear 

distances R for the dipole moments parallel and antiparallel 
00 

respectively. Each Table contains entries for both cp=0° and ¢=90° cases 

For the dipole moments parallel we present in Fig. 16 the electrostatic 

interaction energy curves for cp=0° ( in Black ) and ¢=90° ( in Red ) as a 

function of R00• Also on the same graph is plotted the dipole-dipole 
2 

interaction energy ( in Green ) , Edd= -2p /R00, which of course, 

is independent of cp. In computing the dipole-dipole contribution to the 

energy we have used p=0.87 a.u., the dipole moment value obtained with 

the fit. It is apparent from Fig 16 that for R00 < 5.0 a.u. the dipole­

dipole contribution is only a fraction of the total electrostatic 

interaction energy. For R00 ) 6.0 a.u., however, this dipolar 

contribution is better than 93% of the total electrostatic interaction 



TABLE VI 

RESULTS FOR THE CALCULATION OF THE ELECTROSTATIC 
INTERACTION ENERGY FOR WATER-DIMER 

<PARALLEL DIPOLE MOMENTS) 

-----------------------------------------PHI ROO ENERGY 
<RADIAN) <BOHR) <HARTREE) 
-----------------------------------------
O.OOOOOD+OO 0.40000D+01 -0.63123D-01 
O.OOOOOD+OO 0.42000D+01 -0.47814D-01 
O.OOOOOD+OO 0.44000D+01 -0.36631D-01 
O.OOOOOD+OO 0.46000D+01 -0.28438D-01 
O.OOOOOD+OO 0.48000D+01 -0.224050-01 
O~OOOOOD+OO 0.50000D+01 -o .179350-01 
O.OOOOOD+OO 0.52000D+01 -o .14596D-01 
O.OOOOOD+OO 0.54000D+01 -0.120770-01 
0.000000+00 0.56000D+01 -o .10154D-01 
0.000000+00 0.58000D+01 -0.866670-02 
O.OOOOOD+OO 0.600000+01 -0.750020-02 
O.OOOOOD+OO 0.620000+01 -0.65710D-02 
0.000000+00 0.64000D+01 -0.58193D-02 
O.OOOOOD+OO 0.66000D+01 -0.520160-02 
O.OOOOOD+OO 0.68000D+01 -0.46864D-02 
0.000000+00 0.70000D+01 -0.425060-02 
0.000000+00 0.72000D+01 -0.38771D-02 
O.OOOOOD+OO 0.74000D+01 -0.35535D-02 
0.000000+00 0.76000D+01 -0.327000-02 
O.OOOOOD+OO 0.780000+01 -0.301970-02 
0.000000+00 0.80000D+01 -0.279690-02 
0.000000+00 0.820000+01 -0.25973D-02 
O.OOOOOD+OO 0.84000D+01 -0.24175D-02 
O.OOOOOD+OO 0.860000+01 -0.225490-02 
O.OOOOOD+OO 0.880000+01 -0.21071D-02 
0.000000+00 0.900000+01 -0.197230-02 
O.OOOOOD+OO 0.92000D+01 -0.18490D-02 
0.000000+00 0.94000D+01 -0.17360D-02 
O.OOOOOD+OO 0.96000D+01 -0.16321D-02 
O.OOOOOD+OO 0.980000+01 -o .153640-02 
0.000000+00 0.100000+02 -0.14481D-02 
0.000000+00 0.10200D+02 -0.13664D-02 
0.000000+00 0.10400D+02 -0.129070-02 
O.OOOOOD+OO 0.10600D+02 -0.12206D-02 
0.000000+00 0.10800D+02 -0.11554D-02 
0.000000+00 0.110000+02 -0.109480-02 
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TABLE VI (CONTINUE) 

-----------------------------------------
PHI 

<RADIAN) 
ROO 

<BOHR) 
ENERGY 

<HARTREE) 
-----------------------------------------

0 .157080+01 0.400000+01 -0.626190-01 
0 .157080+01 0.420000+01 -0.475050-01 
0.157080+01 0.440000+01 -0.364560-01 
0.157080+01 0.460000+01 -0.283500-01 
0.157080+01 0.480000+01 -0.223740-01 
0 .157080+01 0.500000+01 -o .179.390-01 
0.157080+01 0.520000+01 -0 .1462'10-01 
0.157080+01 0.540000+01 -0.121140-01 
0 .157080+01 0.560000+01 -o. 1 01970-01 
0.157080+01 0.580000+01 -0.871130-02 
0 .157080+01 0.600000+01 -0.754410-02 
0.157080+01 0.620000+01 -0.661290-02 
0.157080+01 0.640000+01 -0.585840-02 
0.157080+01 0.660000+01 -0.523760-02 
0.157080+01 0.680000+01 -0.471930-02 
0.157080+01 0.700000+01 -0.428040-02 
0.157080+01 0.720000+01 -0.390400-02 
0.157080+01 0.740000+01 -0.357760-02 
0 .157080+01 0.760000+01 -0.329180-02 
0 .157080+01 0.780000+01 -0.303920-02 
0.157080+01 0.800000+01 -0.281440-02 
0 .157080+01 0.820000+01 -0.261310-02 
0 .157080+01 0.840000+01 -0.24317"0-02 
0.157080+01 0.860000+01 -0.226760-02 
0.157080+01 0.880000+01 -0.211860-02 
0 .157080+01 0.900000+01 -0.198270-02 
0.157080+01 0.920000+01 -0.185840-02 
0.157080+01 0.940000+01 -0.174450-02 
0.157080+01 0.960000+01 -0.163980-02 
0 .157080+01 0.980000+01 -o .154340-02 
0 .157080+01 0.100000+02 -0.145450-02 
0.157080+01 0.102000+02 -0.137220-02 
0 .157080+01 0.104000+02 -0 .129610-02 
0.157080+01 0.106000+02 -0.122540-02 
0.157080+01 0.108000+02 -0.115980-02 
0.157080+01 0.110000+02 -0.109880-02 

91 



TABLE VII 

RESULTS FOR THE CALCULATION OF THE ELECTROSTATIC 
INTERACTION ENERGY FOR WATER-DIMER 

<ANTIPARALLEL DIPOLE MOMENTS) 

-----------------------------------------PHI 
<RADIAN) 

ROO 
<BOHR) 

ENERGY 
<HARTREE) -----------------------------------------

O.OOOOOD+OO 0.40000D+01 -o. 30302D-01 
0.000000+00 0.42000D+01 -0.28599D-01 
O.OOOOOD+OO 0.44000D+01 -0.23932D-01 
O.OOOOOD+OO 0.46000D+01 -0 .18540D-01 
O.OOOOOD+OO 0.48000D+01 -0 .13465D-01 
O.OOOOOD+OO 0.50000D+01 -0.91235D-02 
O.OOOOOD+OO 0.52000D+01 -0.56178D-02 
0.00000D+OO 0.540000+01 -0.29012D-02 
0.000000+00 0.560000+01 -0.865980-03 
O.OOOOOD+OO 0.580000+01 0.610890-03 
0.000000+00 0.600000+01 0.164650-02 
0.000000+00 0.620000+01 0.234260-02 
0.000000+00 0.640000+01 0.278340-02 
0.000000+00 0.660000+01 0.303610-02 
O.OOOOOD+OO 0.680000+01 0.315310-02 
0.000000+00 0.700000+01 0.317420-02 
0.000000+00 0.720000+01 0.312960-02 
0.000000+00 0.740000+01 0.304140-02 
0.000000+00 0.760000+01 0.292570-02 
0.000000+00 0.780000+01 0.27942D-02 
0.000000+00 0.800000+01 0.265490-02 
0.000000+00 0.820000+01 0.25137D-02 
0.000000+00 0.840000+01 0.237420-02 
0.000000+00 0.860000+01 0.223900-02 
0.000000+00 0.880000+01 0.210960-02 
0.000000+00 0.900000+01 0.198690-02 
0.000000+00 0.920000+01 0.187120-02 
0.000000+00 0.940000+01 0 .1 76270-02 
0.000000+00 0.960000+01 0.166120-02 
0.000000+00 0.980000+01 0.156640-02 
0.000000+00 0.100000+02 0.147800-02 
0.000000+00 0.102000+02 0 .139570-02 
0.000000+00 0.104000+02 0.131910-02 
0.000000+00 0.106000+02 0 .124770-02 
0.000000+00 0.108000+02 0.118120-02 
0.000000+00 0.110000+02 0.111910-02 
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TABLE VII <CONTINUE) 

-----------------------------------------PHI ROO ENERGY 
<RADIAN) <BOHR) <HARTREE> 
-----------------------------------------0.157080+01 0.400000+01 -0.565280-01 
0 .157080+01 0.420000+01 -0.407350-01 
0 .157080+01 0.440000+01 -0.288800-01 
0.157080+01 0.460000+01 -0.200020-01 
0 .157080+01 0.480000+01 -o .133800-01 
0.157080+01 0.500000+01 -0.847110-02 
0 .157080+01 0.520000+01 -0.486220-02 
0 .157080+01 0.540000+01 -0.223870-02 
0 .157080+01 0.560000+01 -0.359440-03 
0 .157080+01 0.580000+01 0.960410-03 
0 .157080+01 0.600000+01 0 .186260-02 
0 .157080+01 0.620000+01 0.245550-02 
0 .157080+01 0.640000+01 0.282150-02 
0 .157080+01 0.660000+01 0.302320-02 
0 .157080+01 0.680000+01 0.310740-02 
0.157080+01 0.700000+01 0.310940-02 
0 .157080+01 0.720000+01 0.305500-02 
0 .157080+01 0.740000+01 0.296360-02 
0 .157080+01 0.760000+01 0.284880-02 
0 .157080+01 0.780000+01 0.272080-02 
0 .157080+01 0.800000+01 0.258640-02 
0.157080+01 0.820000+01 0.245080-02 
0 .157080+01 0.840000+01 0.231710-02 
0 .157080+01 0.860000+01 0.218750-02 
0 .157080+01 0.880000+01 0.206350-02 
0 .157080+01 0.900000+01 0. 194570-02 
0 .157080+01 0.920000+01 0. 183450-02 
0 .157080+01 0.940000+01 0.173000-02 
0.157080+01 0.960000+01 0.163200-02 
0.157080+01 0.980000+01 0.154050-02 
0.157080+01 0.100000+02 0.145500-02 
0.157080+01 0.102000+02 0.137510-02 
0.157080+01 0.104000+02 0.130070-02 
0 .157080+01 0.106000+02 0.123120-02 
0.157080+01 0.108000+02 0.116640-02 
0 .157080+01 0.110000+02 0.110590-02 

-----------------------------------------



ENERGY (Hartree) 

0. 00 ~ 
-0. 0, -1 

4 
-0 • 02 ~ I 

I 
.I 
l 

-0. 03 ~ 
~ 

-0. 04 ~ 
4 

-0. 05 ~ 
i , 

-0. 06 j 
-0. 07 j ly-r-r ·r-r,-·rr-r.-,-·-1-~r•1-r1.-r-r -r ·r-r ,.-r-rT•·r-r-r 

4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 
R (bohr) 

00 

Figure 16. Total electrostatic interaction energy as a function of R for 
00 

0=0° (Black), 0=90° (Red) and the dipole-dipole interaction energy 

for parallel dipole moments(Green). 

\!) 

.p... 



95 

energy. Moreover, the <t>=0°and <t>=90° curves are essentially 

indistinguishable for this parallel dipole case. However, an important 

point to be made here is that such a conclusions cannot be extended to 

other orientations of molecules. 

Consider the case of the dipoles being antiparallel, the 

corresponding three ( <t>=0° (in Black) <t>=90° (in Red), dipolar (in 

Green) ] graphs for which are presented in Fig. 17. Here, the total 

electrostatic energy for R < 7 .S a.u. is significantly different from 
00 

the dipole-dipole contribution alone. To be sure, for R < 6.0 a.u. the 
00 

dipolar and total electrostatic energies have opposite signs and are 

orders of magnitude different. The total electrostatic energy ( for both 

the <t>=0° and <t>=90° orientations ) for this antiparallel case rise through 

zero to reach a maximum at about 7 .0 a.u .. The dipolar energy is still a 

factor of four times the total electrostatic energy at R = 6.0 a.u .. For 
00 

this antiparallel case the two become comparable ( within 10% ) only for 

R > 8. 0 a. u.. Clearly the convergence of the multi pole expansion of 
00 

the interaction energy does depend on whether the dipoles are parallel or 

antiparallel. More generally we conclude that such multipole expansions 

are sensitive to the geometry of the interacting molecules, and thus 

must be used with caution in computing the electrostatic energy of 

interaction. Jeziorski and Van Hammet [ 33 J have reported for yet 

another geometrical orientation of the water dimer that the dipolar 

energy contibution is only about 80% that of the total electrostatic 

interaction energy as distant as R = 9.0 a.u .. 
00 

Another clear orientation dependence is seen in comparing the 
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¢=0° and ¢=90° curves for the parallel and antiparallel dipole cases. 

As mentioned before for the parallel dipole case the total interaction 

energy is essentially the same for these two ~ >s ( viz the Red and the 

Black of Fig. 16 ) . In fact, one finds that this apparent cp independence 

holds for R as small as 2.0 a.u. Although no physical significance 
00 

can be drawn from the electrostatic curves for R values 
00 

corresponding to the molecules overlapping, we have nevertheless 

presented the electrostatic energy curves down to R = 1.0 a.u. in 
00 

Figures 18 and 19 for the parallel and antiparallel dipole cases 

respectively. ( As before, the ¢=0°, 90° and dipolar curves are 

presented in Black , Red and Green. ) On the other hand for the 

antiparallel dipole situation the ¢=0° and ¢=90° curves begin to diverge 

below 4.0 a.u .. Investigating the curves in Fig. 19 for smaller values of 

R00 , we find that they are in fact qualitatively different below R00 = 4.0 

a.u .. This is due, of course to the impending Coulombic singularity in 

the ¢=0° curve at R = 2.2 a.u. as one pair of hydrogen nuclei 
00 

approach the other. Clearly, this singularity is avoided in the ¢=90° 

( antiparallel ) case. Once again the necessity for computing the total 

electrostatic interaction energy and avoiding the multipole moment 

expansion is apparent. 

For 4.0 a.u. < R < 6.0 a.u. the electrostatic interaction 
00 

energy is a significant portion of the potential energy of interaction. 

Still, the induction and quantum corrections ( given by the kinetic and 

exchange-correlation energy functionals in the density functional 

formalism ) are of the same order of magnitude in this range of R00• 
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For R00 > 6.0 a.u. in the case of the strongly polar molecule ( e.g. 

water ) , the electrostatic energy in fact is most prominent, although 

dispersion energy cannot be neglected until R > 10.0 a.u. For 
00 

R00 < 4.0 a.u. the quantum corrections can surely not be ignored. Here, 

the kinetic and exchange-correlation functionals must be considered in 

the density functional formalism; the highly-repulsive part of the 

potential energy characterizing the short-range interaction must be 

associated with the kinetic and exchange energy contributions of these 

functionals, just as the long range dispersion energy ought to be obtained 

from the correlation energy functional. Of course, in the original Gordon 

-Kim model calculations, although the short-range repulsions between 

non-polar species was adequate! y described, the long-range dispersion 

energy could not be extracted from the model. This, of course, suggest 

only that the functionals employed in these calculations were not 

sufficiently accurate in treating the long-range forces, and does not 

discredit the density functional formalism itself. 

In this thesis we have focused our attention on representing 

charge densities by an expansion in terms of Slater functions. These 

electrostatic energy calculations are easily done once these expansions 

are made. But the expansions are also the necessary input to our density 

functional programs which evaluate the quantum corrections. In a future 

time hopefully these calculations will be able to be done routine! y and 

the potential energy surfaces mapped out. 
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APPENDIX A 

COULOMB INTEGRALS 
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The classical coulomb energy of interaction is given in 

terms of the six dimensional integral 

\ 
L 

i 

\ 
L 
j 

n.+3 
fl. l 

q.·q.·-1 __ _ 
1 J 47r(n.+2)! 

1 

n.+3 
fJ. J 

47r(n .+2 ) ! 
J -

x 

+ + ni + + + n. + 

I !r1 -Ri I exp{-{Ji lr1 -Ri I · ltz-Rj l Jexp{-pj lf;-Rj IJ 
d3r1d3r2---------------­

+ + 
lr1 - r2 I 

(A.1) 

where we have expanded p A and Pg in spherical Slater functions. 

Thus the evaluation of the electrostatic Coulombic energy reduces 

to carrying out the six-dimensional integrals occuring under the 

doublesums. 

The general form of the above integrals reduces in special 

cases to a somewhat simpler form when, for instance, one of the 

charges is a point charge so that the limit as {J-~ may be taken. In 
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fact will deal with this and other special cases on an individual 

basis. The results for the special cases really do not require a 

diiferent approach, but just a careful attention to the limiting values 

of the parameters used. In any event it is clear that the final 

expression for the Coulombic interaction energy of the two charge 

distributions is of the form 

W AB= ) ) qi ·qj ·C(ni,p>i,~i'nj,,Bj,;j) (A.2) 

iEA jEB 

-+ -+ 
where C(n. ,p>. ,R. ,n. ,p>. ,R .) contains the information about the 

1 1 1 J J J 

parameters and positions defining the Slater functions: 

-+ -+ 

n.+3 
,8. l 

l 

n.+3 
p>. J 

J 
C(ni',B i'Ri ;n j ,p j ,R j) = Cij = ----x 

4rr (n. +2) ! 
1 

4rr(n.+2)! 
J 

-+ -+ ni -+ -+ -+ -+ n . -+ -+ 
!r1-R. I exp{-p>. I r 1-R. I ·I r 2 -R ·I Jexp{-p> ·I r 2 -R. I) 

1 1 1 J J J 

(A.3) 

The deri vtltions have been given elsewhere; we here simply 
---!" __,,., 

present the result for C( n., p>., R., n., f3., R. ) both in its general 
l l l J J J 

form and for particular limiting values of the parameters. In 

general we have 
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_1 -{1+-1--xtr 
R. . 4 (n.+2} ! (n .+2} ! 
lj l j 

(ni+1)! (p-q+2)! (nj+i+q)! n.+i-p 
--------. (f].R .. ) i 

(ni+1-p)!q! (p-q}l 1 lJ 

(n.+1)! (p-q+2)1 (n.+1+q)! 1 J i n .+ -p 
-------- ·(f] .R .. ) J 

(nj+i-p}!q!(p-q}! J lJ 

(A.4) 

First consider the special case of f3 j-t-oo that is Pg ( 7) is a point 

charge. We find 
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n.+1 
1 (n.+1)! (p+1) n.+1 \ l 

n.+1-p} l (.BiRi} i + ·(,BiRij) i L_ (n.+1-p)! 
p=t l 

(A.5) 

We note the expected result obtains if the second charge 

distribution becomes point-like, that is f3. -t>oo also. Then the 
1 

exponential factor goes to zero and Cij = 1/Rij. 

Now we consider the special case in which f3. = f3 :. with 
1 J J 

{3. = f3. = {3, we have 
1 J 
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(n j +q + 1) !(p-q+2) ! 1 } 
2qq! {p-q)! J 

( A.6) 

Thus we have considered all possible choices of f3. and f3 . when the 
l J 

distance R. . is different from zero. Each result is a simple 
lj 

algebraic expression involving at worst finite sums. When R .. =O, 
lj 

but {3. :f f3. we get 
l J 
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The special case with one of the f3's -+ oo may be obtained from 

(A. 7) For instance, if f3i -J>c:o only the second set of terms survive 

with the limit 

C. . (n. ,{3. -J>c:o,n. ,{3. ,R .. =0) = 
lJ 1 1 J J lJ 

f3. 
J 

(A.8) 

We note that any power ni can be used in representing the point 

charge since no remnant remains in the final result. Obviously, if 

the second charge becomes more and more localized by having 

f3. -+ oo the results itself becomes singular as it indeed must. 
J 

The final special case to be considered is that with R .. =O 
lJ 

and f3. = f3 . = f3. This time the integral is 
1 J 
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