IMPACT OF DECLINING FARM INCOME AND RAPID PETROLEUM DEVELOPMENT UPON PUBLIC SERVICE EXPENDITURES IN RURAL COMMUNITIES OF WESTERN OKLAHOMA FROM 1975 TO 1984

> By RONALD ARTHUR LOEWEN Bachelor of Arts Phillips University Enid, Oklahoma 1984

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1987

Thesis 1987 L827;

.

UNIVERSIT

IMPACT OF DECLINING FARM INCOME AND RAPID PETROLEUM DEVELOPMENT UPON PUBLIC SERVICE EXPENDITURES IN RURAL COMMUNITIES OF WESTERN OKLAHOMA FROM 1975 TO 1984

Thesis Approved:

Dean Graduate College the

#### ACKNOWLEDGEMENTS

There are several people whose assistance and support was instrumental in conducting this study and to whom I am grateful: my adviser, Dr. Gerald A. Doeksen, for his guidance, Dr. Dean F. Schreiner, Dr. Michael Woods, and Dr. James R. Nelson, for their advice and comments, Dr. Daryll E. Ray, for his advice on certain econometric problems, and Larry Watkins, for helping me get through my computer work during a time when the data center was in a state of transition. I am grateful to Dr. James E. Osborn and the Department of Agricultural Economics at Oklahoma State University for the financial support necessary for me to pursue this degree. I would also like to thank Dr. David Henneberry, Dr. Francis M. Epplin, and Dr. Daniel Tilley for their interest and encouragement in areas besides my research.

Throughout my education, my parents have provided moral and financial support which has been invaluable. I thank them for their unfailing love and understanding.

iii

### TABLE OF CONTENTS

| Chapte | r                                                                                                                                     | Page                             |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| I.     | INTRODUCTION                                                                                                                          | l                                |
|        | Statement of Problem<br>Study Area<br>Objectives and Procedures                                                                       | 1<br>4<br>6                      |
| II.    | THEORETICAL CONSIDERATIONS AND<br>RELATED RESEARCH                                                                                    | 8                                |
|        | Introduction<br>Community Economics<br>Economic Impact of Rapid Resource<br>Development                                               | 8                                |
|        | Export Base Theory<br>Community Demographics<br>Migration Theory<br>Migration Research<br>Demographic Impact of Rapid Resource        | 9<br>12<br>12<br>12              |
|        | Development<br>Community Services<br>Public Goods<br>Economic Analysis of Service                                                     | 13<br>14<br>14                   |
|        | Expenditures<br>Impact of Rapid Resource Development<br>upon Community Services<br>Modeling Community Service Expenditures<br>Summary | 14<br>18<br>19<br>23             |
| III.   | INSPECTION OF HISTORICAL DATA                                                                                                         | 25                               |
|        | Introduction<br>Income<br>Population<br>Volume of Sales<br>Community Revenue and Expenditures                                         | 25<br>25<br>30<br>32<br>34       |
| IV.    | THE MODEL                                                                                                                             | 45                               |
|        | Introduction<br>Methods<br>Income<br>Population<br>General Fund Revenues<br>Community Service Expenditures                            | 45<br>45<br>49<br>50<br>53<br>55 |

Chapter

#### v. EMPIRICAL RESULTS ..... 60 Estimation of the Model ..... 60 Per Capita Income ..... 60 Population ..... 63 General Fund Revenues ..... 64 Community Service Expenditures ..... 64 Simulation Results ..... 71 Per Capita Income ..... 73 Population ..... 79 Revenues and Expenditures ..... 80 Summary ..... 82 SUMMARY AND CONCLUSIONS ..... VI. 85 Summary of the Model Results ..... 86 Summary of Simulation Results ..... 87 Policy Implications ..... 88 Limitations of the Study and Research Implications ..... 89 A SELECTED BIBLIOGRAPHY ..... 93

Page

### LIST OF TABLES

| Table | Page                                                                                                                                                                                                    |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I.    | Per Capita Income, Mining Income, Farm<br>Income, Manufacturing Income, and<br>Income from Transfer Payments<br>for Selected Counties<br>from 1975 to 1984                                              |
| II.   | Population for Selected Communities<br>from 1975 to 1984 31                                                                                                                                             |
| III.  | Volume of Sales for Selected Communities<br>from Fiscal 1975 to 1984 in<br>Thousands of 1980 Dollars                                                                                                    |
| IV.   | General Fund Revenues for Selected Communities<br>from Fiscal 1975 to 1984 in 1980 Dollars 35                                                                                                           |
| ν.    | Total and Per Capita Community Service<br>Expenditures for Selected<br>Communities from Fiscal<br>1975 to 1984 in 1980<br>Dollars                                                                       |
| VI.   | Total and Per Capita Expenditures of Selected<br>Communities for Administration, Fire<br>Protection, Police, Solid Waste<br>Disposal, Streets, and Parks<br>from Fiscal 1975 to 1984<br>in 1980 Dollars |
| VII.  | Average Population and Average Per Capita<br>Expenditures in 1980 Dollars for<br>Selected Communities from<br>Fiscal 1975 to 1984                                                                       |
| VIII. | Estimated Equations for Per Capita Income 61                                                                                                                                                            |
| IX.   | Estimated Equations for Community Service<br>Expenditures                                                                                                                                               |
| х.    | Simulation Estimates for Sample Communities<br>From 1979 to 1984                                                                                                                                        |

### LIST OF FIGURES

| Figu | ire   |      |       |    |    |    |      |    |    |     |       |     |   |    |    |    |    |     |        |   |     | • | Pag | je |
|------|-------|------|-------|----|----|----|------|----|----|-----|-------|-----|---|----|----|----|----|-----|--------|---|-----|---|-----|----|
| ı.   | Study | Area | • • • | •• | •• | •• | <br> | •• | •• | • • | • • • | ••• | • | •• | •• | •• | •• | • • | <br>•• | • | • • | • | ••  | 5  |

#### CHAPTER I

#### INTRODUCTION

#### Statement of the Problem

The provision of public services in rural communities consists of more than providing an adequate level of service at a minimal cost. Because many policies affecting a community's population and income fall under the control of federal and state governments, the tools left to a community with which to influence its own development are limited. Communities are left a great deal of control in the provision of public services, hence community service programs are important instrument used by local decision makers to manage community development (5). Community service expenditures have a direct impact upon the quality of life in rural communities and help determine the attractiveness of a community to potential inmigrants, businesses, and investors. To plan the investment in and operation of community services, local decision makers need quality information about existing and projected levels of population and income.

The local economies of many communities in rural Oklahoma are based on the industries of petroleum extraction and agriculture. Farm income is subject to

great year-to-year fluctuations. Traditionally, per capita farming income has been lower than the per capita income of urban Americans. Until recently farmers had been making steady progress towards reaching an equal economic footing with their urban counterparts. Agriculture is currently in a crisis which has the potential to reshape rural America. Activity in the "oil-patch" has experienced several boomand-bust cycles. These cycles are a recurring phenomena in the Oklahoma petroleum industry. The effect of this phenomena may not be fully appreciated by decision makers at all levels of policy making in Oklahoma.

Rapid resource development can challenge the planning efforts of rural community leaders. Rapid resource development in rural areas can often be characterized as an energy impact cycle (16). An energy impact cycle is made up of three distinct periods: 1) pre-impact, 2) impact, and 3) post-impact. The pre-impact is associated with stable activity in the energy sector. During impact, activity in the energy sector accelerates rapidly. Postimpact experiences a slowdown in the energy sector. This can vary in intensity from a gradual abatement in activity to a sudden shutdown.

In a period of rapid resource development, local decision makers must have quality data and the analytical tools necessary to utilize these data effectively in decision making. The potential costs of mistakes made in planning investments in community service facilities are

great. During an energy impact, such as an oil boom, a great deal of uncertainty exists concerning population and income levels from one year to the next. Will the next year bring yet more growth or will things "go bust"? Small communities in rural areas are often ill equipped to cope with the large influx of migration usually associated with the impact period. If a community's service capabilities are too small, serious problems can result. For example, during the oil boom in Texas' Permian Basin in the 1950s, the sewerage system of Odessa was so overwhelmed by the burgeoning population that raw sewerage flowed in the streets, resulting in associated health problems (14). On the other hand, communities which rely too heavily upon projections made by extrapolating current trends during a period of unusually high growth may overinvest in community service facilities and be plaqued by a large debt which cannot be serviced when the expected growth does not materialize. One southwestern Oklahoma town is today faced with just such a problem due to its funding of what proved to be an unneeded water project. Another town in this same area paid for the construction of a hospital which was full during the impact period but now operates at only 40% capacity.

The American petroleum industry is today in the postimpact period of an energy impact cycle which was precipitated by the Iranian Revolution of 1979. Given the volatility of the Middle East, America's ever-growing

dependence on imported oil, and the evaporation of federal funds for research of alternative energy sources, another energy impact cycle may appear. If this occurs decision makers in rural communities will be faced with problems similar to those which arose during the most recent energy impact. By studying community service expenditures during the recent energy impact cycle future decision makers will be better prepared to handle the difficulties which arise from rapid resource development.

#### Study Area

The study area was limited to the western portion of Oklahoma to insure that the sample communities would have similar economic structures. Goodwin (8) found significant differences in the community service cost functions between the eastern and the western half of the state. All counties west of I-35, excluding those which are part of a Standard Metropolitan Statistical Area (SMSA), were considered. If the proportion of total county employment in 1980 made up by employment in agriculture was less than that for the state as a whole, the county was discarded. The same process was repeated for employment in the mining sector. The result was a contiguous area of eleven counties. These counties are Beckham, Blaine, Custer, Dewey, Ellis, Harper, Kingfisher, Major, Roger Mills, Washita, and Woodward.





From these counties a sample of twenty communities was chosen. This sample accounts for about one-third of the communities in the area. These communities were judged to be the major communities of their respective counties based on size or if the community was the county seat. Those communities with a unique economic structure, such as Weatherford, home of Southwestern Oklahoma State University, and those with incomplete data on community service expenditures, such as Clinton, were excluded. The communities included in the sample are Elk City, Erick, Sayre (Beckham county), Okeene, Watonga (Blaine county), Arapaho, Thomas (Custer county), Seiling, Taloga (Dewey county), Arnett, Shattuck (Ellis county), Laverne (Harper), Hennessey, Kingfisher (Kingfisher county), Fairview (Major county), Cheyenne (Roger Mills county), Burns Flat, Cordell (Washita), Mooreland, and Woodward (Woodward county). These communities were examined over a ten year period (1975-1984) which includes each of the three stages of the energy impact cycle and the recent agricultural crisis.

#### Objectives and Procedures

The general objective of the study is to examine community service expenditures in rural communities of Western Oklahoma during the recent energy impact cycle and agricultural crisis. The specific objectives are:

- determine when each of the stages of the energy impact cycle occurred, when the agricultural crisis began to affect farm income, and how the sample communities were affected,
- identify those factors which influenced community service expenditures in the study area,
- quantify the impact of falling farm income and the energy impact cycle upon community service expenditures in the study area,

These objectives were met by three procedures. The study will:

- examine historical data on personal income, community population, community revenues, and community expenditures of the sample communities over the study period,
- use regression analysis to estimate a model of community service expenditures for rural communities of Western Oklahoma, and
- 3) conduct a simulation analysis using the coefficients estimated by the regression model to evaluate separately the impact of the drop in farm income and the energy impact cycle upon community service expenditures.

#### CHAPTER II

# THEORETICAL CONSIDERATIONS AND RELATED RESEARCH

#### Introduction

Analyzing community service expenditures requires an understanding of the economic and demographic characteristics of a community as well as the implications of the public goods nature of community services for economic analysis of community service expenditures. This chapter reviews theory and research on community economics, community demographics, and community services separately and then looks at research which unifies these three topics and models community service expenditures.

#### Community Economics

### Economic Impact of Rapid Resource

#### Development

Rapid development of a rural area's natural resources, such as is characteristic of an oil boom, affects all aspects of an area's economy. Researchers have documented large increases in employment, income, local business activity, property values, and prices associated with the construction and operation of large-scale energy facilities

and coal mining in the mountain states and the northern great plains. Much of this research has been reviewed by Leistritz, Murdock, and Leholm (12). Besides employing local labor, large energy projects draw substantial numbers of migrants into the impact area. Employers in other sectors of the impact area's economy have to increase wages as labor becomes scarce. Secondary employment is encouraged by purchases of supplies, materials, and services needed for construction and operation of the energy facility. This cycle of spending and respending is known as the multiplier effect. This scenario is similar to that which occurs in petroleum producing regions of the southern plains.

On the other hand, the crisis in agriculture is a long-term problem. Agricultural input and output markets are well developed in farming areas and are not subject to the extreme short run changes observed in the energy sector and industries supplying the energy sector during an energy impact cycle.

#### Export Base Theory

Export base theory is an effective tool for explaining and projecting changes in employment and income which result from a change in the activity of a basic sector, such as mining or agriculture (41). A basic industry or sector is one whose level of activity is, to a large extent, independent of the general level of economic activity within a region or community. Only those sectors

which export a large amount of their output to other areas appear to be basic over the long-run (36). A secondary or nonbasic industry is one whose output is used in the area where it is produced. Basic income is that which is earned by companies exporting their goods and services to other areas while nonbasic income flows from an area's basic industries to an area's nonbasic industries. This interaction between basic and nonbasic industries is the foundation of the economic life of a region or community (30).

The role of basic sectors in an area's economy can be described in as simple a manner as the ratio of employment or income in nonbasic sectors to that in basic sectors. This is known as a derivative-basic ratio or a multiplier (30). The employment multiplier can be interpreted as the number of jobs that can be expected to be added to an area's nonbasic sectors given an increase in basic sector employment by one job. Likewise, the income multiplier is the amount of additional nonbasic income expected from a one dollar increase in basic income. For example, if the total employment of a community is 1500 jobs and 500 of those jobs are in basic sectors, then the employment multiplier of that community is 2. An assumption of much work done in export base theory is that the theory is most appropriate for smaller regions which are open to trade and do not have diverse economies (41).

The method used to separate basic and nonbasic activity, referred to as bifurcation, can have an effect upon the results of an export base study. The most accurate method is to directly survey each firm in the study area to see where production goes (30). This is very costly and time consuming. Bifurcation can be done less expensively, and less accurately, by indirect methods of estimating basic activity. The location quotient and minimum requirements techniques recognize that an individual sector may produce goods both for export and local use and thus be neither completely basic nor completely nonbasic. These methods estimate what proportions of each sector can be considered basic. A less accurate approach is the assignment or assumption method. This method simply assumes a sector to be entirely basic or entirely nonbasic based upon an a priori judgment. Although the assumption method is often used in research, the potential errors can be enormous (36).

Several regression studies utilizing time-series data have found a strong statistical association between basic and nonbasic sectors suggesting a causal link from basic to nonbasic activity. Yet the time lag between a change in basic activity and the corresponding change in nonbasic activity is not well understood (7). Leistritz, Murdock, and Leholm (12) report that low employment multipliers are often associated with the first year or two of large-scale resource development. Apparently large amounts of supplies and materials are imported into the impact area until businesses develop the capability to produce these locally. In a review of export base studies, Williamson (41) found a lag of zero to six months usually gave the best correlation between basic and nonbasic economic activity.

#### Community Demographics

#### Migration Theory

The neoclassical model of migration views wage differentials between regions as the major stimulus to migration (31). This is somewhat restrictive. Other factors such as climate, public services, psychic distance, amenities, availability and quality of information, social benefits, and the like enter into the decision to migrate. A more complete theory of migration might state that migrants have heterogeneous preferences and react to differences in expected utility. Applying this ideal theory of migration is easier said than done. Due to the ready availability of economic data, most migration research underestimates the importance of non-economic variables affecting migration (31).

#### Migration Research

Mead (15) estimated a simultaneous equations model of migration and employment growth for a sample of nonmetropolitan regions in the United States. Migrants were assumed to consider the migration decision as an investment decision. His results show migration to both affect and be affected by income and employment growth. High income areas exhibiting high rates of employment and income growth showed the highest inmigration rates.

#### Demographic Impact of Rapid

#### Resource Development

Murdock, Leistritz, and Schriner (17) reviewed research concerning demographic changes associated with rapid growth in rural areas of the West. In general, migrants moving into the impact areas were young adults with few dependents. Those who had families often came to the impact area alone. Besides differences related to age, resource-related inmigrants were not found to be that much different from local residents or migrants in general. The authors analyzed population changes over a ten-year period in communities located in counties which were sites of large resource development projects. Communities with initial populations of less than 1000 showed an average population gain of 282 persons during this period. Those with an initial population between 1000 and 2500 gained an average of 1290 persons while those with populations greater than 2500 gained an average of 3535 persons. Although other factors affecting migration were not held constant, the data suggest that larger towns within impact areas exert more draw with respect to inmigration than smaller towns. This could be due to a more highly developed service structure which renders larger towns more attractive living places to potential inmigrants.

Community Services

#### Public Goods

Research into the provision of public services is complicated by the public goods aspects of public services. Day (4) defines a public good as one which meets one of three conditions: a) consumption by one does not inhibit consumption by another, b) external effects can accrue to non-constituents (i.e., free-riders), and c) production of the good is carried out by a decreasing cost industry. Tiebout (35) opts for a simpler definition; "... a public good is one which should be produced, but for which there is no feasible method of charging the consumers." Samuelson (32) refers to public goods as "collective consumption goods." His definition of a public good coincides to the first of Day's three conditions.

#### Economic Analysis of Service

#### Expenditures

Public services are usually neither pure public goods nor pure private goods. For example, police protection is more nearly a pure public good than water service. Water service is provided so that the more water a customer uses, the more that customer pays. The amount an individual pays for police protection is not affected by how often an individual requires police assistance. The most important aspect of public goods with respect to economic analysis is that resource allocation takes place in a non-market environment. Traditional concepts of supply and demand, price per unit, and the definition and actual measurement of per unit output are quite complex when dealing with public services. The problems associated with measuring the quantity and quality of output impede the application of traditional production economics to the analysis of public services. It is likely that local government officials simply try to match revenues with expenditures given the constraint of maintaining a satisfactory level of service with little regard for marginal costs (42).

Ohls and Wales (20) attempted to circumvent the problems of measuring output and price by making certain assumptions of how demographic variables affect state and local service expenditures. Prior to this study research on public service expenditures was unclear on whether demographic variables affect expenditures by influencing demand or supply. The authors felt that it is most likely that demographic variables influence the cost of providing the service while income represents a budget constraint and thus affects demand. Costs were assumed to be independent of the level of service provided. Total public service expenditures observed were assumed to represent an equilibrium between supply and demand. The demand for state and local services was assumed to be a linear function of

income and the price of the service. Price was stated as a function of factor prices and the demographic variables assumed to affect the cost of the service. This allowed Ohls and Wales to estimate a function stating total service expenditures as the product of the price and demand functions built with the help of their simplifying assumptions and, using the parameters estimated by regression analysis, calculate income and price elasticities of demand for state and local services.

The data used were for local expenditures, highway expenditures, and education expenditures within the 48 contiguous states. Demand for both local services and education was found to be inelastic with respect to price while demand for highways was more responsive to price. Income elasticities ranged from 0.6 to 0.9 for all three categories. The low price elasticity of demand could be interpreted as supporting the hypothesis mentioned earlier that local officials equate revenue with expenditures subject to providing a satisfactory level of service.

Schmandt and Stephens (33) used a novel measure of public service output. They held that per capita municipal expenditures only indicate that one community is spending more or less than another and bears no necessary relationship to actual output. A detailed breakdown of municipal functions was used as a measure of the quality of output; the greater the number of functions performed by a community, the higher the level of service provided.

Expenditures made by Milwaukee county communities on police protection, fire protection, solid waste disposal, and general government were analyzed. The results indicate economies of large scale in these services, especially for general government. The major factor affecting local spending was found to be the resources available to a community to pay for public services. Expenditures were positively associated with population, service quality, density, the percent of land area developed, and the age of the community.

Hitzhusen (9) used the American Insurance Association schedule for grading municipal fire defense as a guide for defining the quality of fire protection provided in 70 Texas communities. He felt that relying solely upon per capita expenditures as a measurement of output could lead to questionable policy recommendations with respect to economies of scale. A general fire protection cost-output model was constructed relating fire protection expenditures to population, dwelling density, the proportion of the population made up by transients, Blacks, Germans, and Mexicans, the proportion of housing accounted for by multiunits and older buildings, the amount of commercial property, climatic conditions, and base salary differentials. The value of burnable property was found to be more closely associated with cost differentials between communities than population. Size economies were indicated up to a population of about 10,000.

#### Impact of Rapid Resource Develop-

#### ment upon Community Services

Researchers have had difficulty documenting or quantitatively measuring service level changes which have occurred in energy impact areas of the West. The fiscal impacts of rapid resource development can be defined as the locally financed agency costs which would not have been expected without resource development less any increase in revenues that can be attributed to development. The largest fiscal impact is usually felt in the first two or three years of development before the taxable assessed value of local property rises enough to provide more funding (18).

Milburn, Walker, and Knudson (16) studied the effects of the recent oil-boom upon acute health care delivery systems of rural oil and gas producing communities in Texas. Surveys and interview questionnaires were used to gather information from health care employees, local officials, and residents concerning local health care capabilities and the quality of service during the preimpact, impact, and post-impact stages of the oil-boom. Most changes occurred during impact. In this period the incidence of automobile accidents, physical abuse, drug and alcohol abuse, and work-related injuries were at their highest. Although improvement in health care equipment and facilities was made possible during impact by the greater financial capabilities associated with the higher incomes of the impact period, manpower was strained to meet the

increased demand for acute health care. Due to this upgrading of physical facilities, acute health care systems were judged better in the post-impact stage than they had been prior to the oil-boom. The study however did not deal with the financing of the construction of these facilities. Although some communities do have better facilities than during the pre-impact period, they may be having difficulty servicing their debt during post-impact.

#### Modeling Community Service Expenditures

Williford (42) used income and population predictions from a simulation model of the Oklahoma and Texas panhandles developed by Eckholm (5) and a public service expenditure model estimated using regression analysis to project future public service expenditures for communities in the region. His objective was to evaluate the impact of the reduced availability of groundwater for irrigation use upon the provision of public services in rural communities. His hypothesis, that the reduction in agricultural income and associated outmigration would lead to a reduction in community expenditures, was supported by the model.

Williford tried to use time-series data for some communities, but found large year-to-year fluctuations in expenditures which could not be explained by the model. A linear and a power model were estimated for water and sewer, street maintenance, police protection, and fire protection. Both models used community population and

county per capita income as independent variables. In addition, the linear model included a variable for the percent change in community population from 1960 to 1970 while the power model used the ratio of the community's 1970 population to that of 1960. Only the population variable was significant in all ten of the estimated expenditure functions. All three of the variables were significant in only the linear function for total expenditures. Expenditures were positively related to population and per capita income (where it was significant) and negatively related to the change in population variable.

Projections were made for service expenditure levels for communities of various initial populations ranging from 2500 to 20,000. Results were estimated from 1978 to 2010. The projections of the two models differed. The linear model projections decreased less directly with respect to a reduction in population and in some instances did not respond to a decline in population at all. Williford judged the linear model to be the most reliable. The projections revealed that per capita expenditures will increase over time while total expenditures decline. The model projected that smaller communities would be less capable of reducing expenditures in response to declining population. Williford attributed this to the fact that capital intensive services make up a greater proportion of the total expenditures of small communities.

Goodwin (8) analyzed expenditures in 80 Oklahoma communities with populations of 10,000 or less. General econometric models relating operation and maintenance costs to local economic and demographic characteristics and particular types of industrial development were estimated. Separate equations were estimated for expenditures on water and sewer, sanitation, street maintenance, police protection, fire protection, parks and recreation, general administration, and total expenditures. The independent variables included population, per capita income, manufacturing employment, and a dummy variable indicating whether the community was in western or eastern Oklahoma. The model for total expenditures also included a variable indicating if water or sewer services were operated by the municipality.

Population was the only variable which was significant in all of the models. Per capita income was significant in the water and sewer, street maintenance, parks and recreation, and general administration models. Manufacturing employment was found to have a significant influence only on expenditures for street maintenance. The location variable indicated that fire protection and street maintenance are less expensive in western Oklahoma. Goodwin also tested if different industry types were associated with different costs of providing community services. The results were inconclusive except with respect to food

products manufacturing which appeared to increase community service costs by more than \$500 for every new employee.

Shapiro, Morgan, and Jones (34) developed a simple three-equation model to test the hypothesis that industrial expansion substantially raises community service costs. Using cross-sectional data from 25 Texas panhandle counties, a simple economic base model for the county level was estimated. Total employment was stated as a linear function of basic employment, total county population was stated as a linear function of total employment in the county, and total county, municipal, and educational expenditures for the county were stated as a cubic function of total county population. Basic employment was identified by the assignment method to be employment in agriculture, mining, and manufacturing. Several of the counties studied had no employment listed for mining and manufacturing due to disclosure restrictions. Because employment reported for these two sectors was highly correlated, they were handled together as a single sector. An earlier study had shown "little difference in service quality, cost and consumer satisfaction among counties with varying populations and population densities" in the Texas panhandle. Consequently, it was decided that expenditure levels provided an accurate indication of the actual output of services without any adjustment for quality.

Average and marginal community service expenditure curves were derived from the parameters estimated by the

model. Employment expansion in the mining/manufacturing sector was found to have a greater impact upon average community service expenditures than an equal expansion of agricultural employment. The model predicts greater declines in per capita expenditures for industrial expansion compared to agricultural expansion up to a county population of 57,000. The authors conclude that, contrary to their initial hypothesis, industrialization and the resulting increase in population lead to "rather sharp declines in average and marginal expenditures" for the Texas Panhandle.

#### Summary

This chapter has reviewed theory and research of economics, demographics, and public services at the community level. Some general conclusions can be gleaned from the review which have implications for modeling community service expenditures. Export base theory was examined as a tool for modeling a community's economy. Basic income levels were judged to serve as reliable predictors of total income in the short-run, especially for small areas with simple economies open to a great deal of interregional trade. This is characteristic of the communities in the sample. The section on demographics focused on migration. Migration can be treated as an investment decision by the potential migrant. Areas experiencing high income levels and rapid income growth can

expect high levels of inmigration. Several regression studies of public service expenditures were reviewed. Population was consistently the most important determinant of public service expenditures followed by per capita income. These conclusions will provide the theoretical basis for the construction of the model in Chapter IV.

#### CHAPTER III

#### INSPECTION OF HISTORICAL DATA

#### Introduction

To formulate the model, data on personal income, population, general fund revenue, and public service expenditures for the sample communities have been collected. In this chapter, this data will be examined to identify any trends during the study period. This will be helpful in determining the magnitude and duration of the energy impact cycle and the agricultural crisis.

#### Income

Personal income levels for each of the counties in which the sample communities are located are presented in Table I. County personal income is reported annually by the Bureau of Economic Analysis (39) (40). The income figures, like all dollar amounts used in this study, are given in 1980 dollars. Per capita income and income from transfer payments are reported by place of residence while income from agriculture, mining, and manufacturing is reported by location of industry.

Per capita income varied in a uniform manner across counties during the study period. Most of the counties

#### TABLE I

#### PER CAPITA INCOME, MINING INCOME, FARM INCOME, MANUFACTURING INCOME, AND INCOME FROM TRANSFER PAYMENTS FOR SELECTED COUNTIES FROM 1975 TO 1984 IN 1980 DOLLARS

|               | 1975      | 1976      | 1977     | 1978   | 1979  | 1980   | 1981   | 1982  | 1983   | 1984   | ave.  |
|---------------|-----------|-----------|----------|--------|-------|--------|--------|-------|--------|--------|-------|
| Per Capita Ir | ncome     |           |          |        |       |        |        |       |        |        |       |
| Beckham       | 5891      | 6783      | 7367     | 7376   | 8074  | 7844   | 8851   | 8718  | 7094   | 6610   | 7461  |
| Blaine        | 6811      | 6655      | 7102     | 7183   | 7867  | 7855   | 7800   | 8207  | 8031   | 8196   | 7571  |
| Custer        | 7207      | 7264      | 7332     | 7703   | 8131  | 8358   | 8796   | 9377  | 8377   | 8018   | 8057  |
| Dewey         | 7750      | 7817      | 8224     | 7565   | 8385  | 8644   | 9630   | 9771  | 8827   | 9304   | 8587  |
| Ellis         | 7177      | 8331      | 8025     | 7574   | 8053  | 9200   | 9782   | 9925  | 10300  | 10264  | 8865  |
| Harper        | 8352      | 9918      | 7839     | 11300  | 12995 | 11755  | 10732  | 11728 | 10104  | 10924  | 10572 |
| Kingfisher    | 8010      | 7620      | 7353     | 7982   | 9270  | 9933   | 10296  | 10289 | 9182   | 9173   | 8914  |
| Maior         | 6948      | 6730      | 7579     | 7624   | 8573  | 8634   | 10293  | 9708  | 8761   | 8998   | 8382  |
| Roger Mills   | 7199      | 7352      | 8248     | 7334   | 8134  | 7034   | 7741   | 7156  | 7211   | 6899   | 7352  |
| Washita       | 5746      | 6060      | 6151     | 6658   | 7823  | 6946   | 6682   | 6695  | 6238   | 6186   | 6495  |
| Woodward      | 7508      | 7848      | 8372     | 7591   | 8154  | 8670   | 9649   | 9600  | 8325   | 8249   | 8370  |
| Average       | 7145      | 7489      | 7599     | 7808   | 8562  | 8625   | 9114   | 9198  | 8405   | 8442   | 8239  |
| % change      |           | 4.81      | 1.47     | 2.75   | 9.66  | 0.74   | 5.67   | 9.22  | -8.62  | 0.44   |       |
| Mining Income | e (thousa | ands of d | lollars) |        |       |        |        |       |        |        |       |
| Beckham       | 4121      | d         | 9315     | 11311  | d     | d      | d      | 58153 | 23687  | 17984  | 20762 |
| Blaine        | 2040      | 3545      | 4826     | 5374   | 5966  | 7815   | 8481   | 10130 | 6102   | 4621   | 5890  |
| Custer        | 2806      | 3710      | 4371     | 5968   | d     | 12283  | 24127  | 42264 | 18581  | 16444  | 14506 |
| Dewey         | 2807      | 3632      | 3646     | 2616   | 4587  | 6189   | 11213  | 11112 | 5831   | 3974   | 5561  |
| Ellis         | 5099      | 6389      | 8239     | 8736   | 10147 | d      | d      | d     | d      | 18011  | 9437  |
| Harper        | 1750      | 1945      | 1961     | 1760   | 2952  | 2769   | 2300   | 3006  | 1592   | 1538   | 2157  |
| Kingfisher    | 11997     | 14115     | 18063    | 16690  | 24305 | 35605  | 54694  | 46579 | 26733  | 23089  | 27187 |
| Maior         | 4062      | 5671      | 8209     | 7462   | 11952 | 11949  | 14611  | 14575 | 8094   | 7559   | 9414  |
| Roger Mills   | d         | 2637      | 4854     | 4722   | d     | d      | d      | 10377 | 4105   | 3259   | 4992  |
| Washita       | 1021      | 968       | 2832     | 4947   | 8019  | 14017  | 21341  | 21430 | 8432   | 5695   | 8870  |
| Woodward      | 16884     | 23468     | 31729    | 30012  | 40076 | 52796  | 79059  | 84626 | 42964  | 6975   | 40859 |
| Average       | 5259      | 6608      | 8913     | 9054   | 13501 | 17928  | 26978  | 30225 | 14612  | 9923   | 13826 |
| % change      |           | 25.65     | 34.88    | 1.58   | 44.15 | 32.79  | 50.48  | 12.04 | -51.66 | -32.09 |       |
| Ū             |           |           |          |        |       |        |        |       |        |        |       |
| Farm Income   | (thousand | ds of dol | lars)    |        |       |        |        | 70/0  | 4/04   | 4400   | F/00  |
| Beckham       | 3603      | 7758      | 4443     | 9481   | 15086 | 6096   | 1666   | 3960  | 1691   | 1192   | 2498  |
| Blaine        | 12230     | 5590      | 4194     | 8164   | 13947 | 7661   | 4202   | 9060  | 5012   | 5819   | 1000  |
| Custer        | 20757     | 15508     | 3895     | 16448  | 23797 | 13494  | 6266   | 12675 | 6662   | (553   | 12/06 |
| Dewey         | 8077      | 5807      | 3897     | 4693   | 7977  | 3570   | 2956   | 3587  | 1476   | 2188   | 4423  |
| Ellis         | 3509      | 8215      | 1078     | 2758   | 5514  | 1892   | 1853   | 2031  | 2081   | 3661   | 3259  |
| Harper        | 9109      | 14499     | 1511     | 18821  | 22447 | 18980  | 14314  | 16784 | 7465   | 10912  | 13484 |
| Kingfisher    | 22790     | 13015     | 378      | 13366  | 17801 | 12688  | 4632   | 13367 | 4920   | 5537   | 10849 |
| Major         | 11715     | 5200      | 5736     | 9611   | 15526 | 10443  | 7019   | 10654 | 5585   | 6742   | 8823  |
| Roger Mills   | 7979      | 6012      | 4290     | 2619   | 5843  | 1915   | 1868   | 1988  | 1363   | 1512   | 3519  |
| Washita       | 14089     | 12450     | 8481     | 15557  | 27694 | 8844   | 1161   | 8125  | 5561   | 2461   | 10222 |
| Woodward      | 12787     | 6610      | 5120     | 4316   | 7578  | 4179   | 1341   | 3089  | 2142   | 1581   | 4864  |
| Average       | 11513     | 9151      | 3911     | 9621   | 14837 | 8160   | 4298   | 7756  | 5787   | 4451   | (149  |
| % change      |           | -20.52    | -57.26   | 146.00 | 54.21 | -45.00 | -47.33 | 80.46 | -51.17 | 17.53  |       |

TABLE I (Continued)

| ······         | 1975     | 1976     | 1977      | 1978  | 1979  | 1980  | 1981    | 1982  | 1983  | 1984  | ave.  |
|----------------|----------|----------|-----------|-------|-------|-------|---------|-------|-------|-------|-------|
|                |          |          |           |       |       |       | <u></u> |       |       |       |       |
| Manufacturing  | Income   | (thousar | ds of do  | lars) |       |       |         |       |       |       |       |
| Beckham        | 2200     | 2195     | 3539      | 3745  | 4063  | 2914  | 3411    | 4499  | 3297  | 3719  | 3363  |
| Blaine         | 7679     | 8754     | 9046      | 9849  | 10404 | 9784  | 9361    | 9264  | 9151  | 9613  | 9291  |
| Custer         | 11628    | 16937    | 18158     | 19343 | 22102 | 20031 | 26142   | 25158 | 24228 | 32387 | 21611 |
| Dewey          | 184      | 195      | 203       | 241   | 221   | 172   | 190     | 229   | 224   | 249   | 211   |
| Ellis          | 1068     | 972      | 1080      | 1082  | 1270  | 1705  | 1971    | 2179  | 3076  | 1850  | 1624  |
| Harper         | 118      | 97       | 92        | 103   | 116   | 84    | 288     | 231   | 117   | 114   | 136   |
| Kingfisher     | 1828     | 1916     | 2310      | 2519  | 2923  | 3194  | 3507    | 3311  | 3061  | 2908  | 2748  |
| Major          | 3428     | 4091     | 4393      | 5016  | 5664  | 4884  | 7105    | 5584  | 4880  | 5468  | 5051  |
| Roger Mills    | 95       | 113      | 127       | 160   | 336   | 147   | 57      | 59    | 65    | 117   | 128   |
| Washita        | 1834     | 2005     | 2069      | 2411  | 3286  | 3761  | 2902    | 2749  | 2542  | 2560  | 2612  |
| Woodward       | 5616     | 6784     | 6374      | 6429  | 6293  | 5987  | 5362    | 4460  | 4124  | 5014  | 5644  |
| Average        | 3243     | 4005     | 4313      | 4627  | 5152  | 4788  | 5481    | 5248  | 4978  | 5818  | 4765  |
| % change       |          | 23.50    | 7.69      | 7.28  | 11.35 | -7.07 | 14.47   | -4.25 | -5.14 | 16.87 |       |
| Transfer Payme | ents (tl | nousands | of dollar | s)    |       |       |         |       |       |       |       |
| Beckham        | 22494    | 23143    | 23418     | 22962 | 23693 | 24616 | 25426   | 27518 | 30680 | 30223 | 25417 |
| Blaine         | 14213    | 14634    | 15199     | 15537 | 15738 | 16374 | 16996   | 17814 | 19143 | 19360 | 16501 |
| Custer         | 24599    | 25982    | 27426     | 27611 | 28309 | 29701 | 29635   | 31340 | 34012 | 33974 | 29259 |
| Dewey          | 6600     | 6954     | 7356      | 7456  | 7717  | 8148  | 8696    | 9164  | 9697  | 9792  | 8158  |
| Ellis          | 5913     | 6156     | 6335      | 6372  | 6645  | 7054  | 7657    | 8272  | 8787  | 8661  | 7185  |
| Harper         | 5078     | 5258     | 5416      | 5348  | 5443  | 5807  | 6041    | 6401  | 6687  | 6982  | 5846  |
| Kingfisher     | 12410    | 12973    | 13279     | 13699 | 14353 | 15631 | 15602   | 16659 | 17193 | 17773 | 14957 |
| Major          | 7104     | 7676     | 8030      | 8058  | 8276  | 8608  | 8940    | 9552  | 10044 | 10454 | 8674  |
| Roger Mills    | 4584     | 4788     | 5170      | 5085  | 5348  | 5456  | 5815    | 6184  | 6665  | 6696  | 5519  |
| Washita        | 13847    | 14436    | 14655     | 14513 | 15006 | 15887 | 16043   | 17557 | 19092 | 18691 | 15973 |
| Woodward       | 14574    | 15420    | 16355     | 16127 | 17231 | 17940 | 19044   | 21313 | 23385 | 22776 | 18417 |
| Average        | 11947    | 12493    | 12967     | 12979 | 13433 | 14111 | 14481   | 15616 | 16853 | 16853 | 14173 |
| % change       |          | 4.57     | 3.79      | 0.09  | 3.50  | 5.05  | 2.62    | 7.84  | 7.92  | 0.00  |       |

d - data not available due to disclosure restrictions.

Source: U. S. Department of Commerce. Local Area Personal Income 1974-1979. Southwest Region. Washington: Bureau of Economic Analysis, U. S. Government Printing Office, 1981. Local Area Personal Income 1979-1984. Southwest Region. Washington: Bureau of Economic Analysis, U. S. Government Printing Office, 1986. achieved their highest per capita income levels in 1981 or 1982. Two reached their highest levels in 1979, one did so in 1977, and another did in 1983. Although none of the counties reached their highest per capita income levels in 1984, seven of the eleven counties' 1984 per capita income was higher than their respective average per capita income levels for the entire study period. Average per capita income for all counties grew at a steady pace during the late 1970s, increased rapidly between 1978 and 1979 and again from 1980 to 1982. County per capita income fell after peaking in 1982. The per capita income data indicate a pre-impact period from 1975 to 1978, an impact period from 1979 to 1982, and a postimpact period beginning in 1983.

Mining income is assumed primarily to be income earned by petroleum extraction although income from other extractive industries in the area, such as gypsum extraction, is included in mining income. The pattern observed is similar to that seen in per capita income. The only county which did not show its highest level of mining income in 1981 or 1982 showed no mining income at all during these years due to disclosure laws. This county was one of the two counties whose 1984 mining income was higher than its average mining income over the ten years of the study period. Undoubtedly, this county's average was biased downwards due to the missing observations. Average county mining income grew rapidly until 1982 and then declined rapidly. The only difference between the pattern seen in per capita income and in mining income
was that the changes in mining income were much more pronounced and somewhat more uniform across counties.

County farm income was generally higher from 1975 to 1979 than it was from 1980 to 1984. Average annual county farm income was \$9,807,000 from 1975 to 1979. This fell to \$5,690,000 from 1980 to 1984, a drop of almost 42%. All of the counties had their highest or second highest levels of farm income for the study period in 1979. The same was true for nine of the counties in the years of 1975 and 1976. Six counties reached their lowest farm income in 1976 or 1977, while the other five did so in the 1980s. Average county farm income varied greatly from one year to the next. The only discernible pattern was that all the average farm income levels of the 1970s, except for 1977, were higher than those of the 1980s.

Manufacturing income was lower than the other three basic sectors. Average manufacturing income was higher than average farm income and average mining income in only two counties. The manufacturing income levels of Custer county were unusually high for this area. The percent change in average county manufacturing income levels indicates less variation across time in the county manufacturing income levels than in those of farming or mining.

Income from transfer payments showed much less variation than the other three basic sectors. Transfer payments consist of income from payments to individuals by the Federal and state governments other than payments to farmers which are

included in farm income. Transfer payment income grew steadily throughout the study period. 1981 through 1983 saw somewhat higher growth while no change occurred between 1983 and 1984. What was interesting about income from transfer payments is not so much its pattern of change as its share of total county income relative to the other basic sectors. All but two of the counties had a higher average level of transfer payments over the study period than farm income. Average annual income for all counties from transfer payments over this period was \$14,173,000 while farm income was only \$7,749,000. Average annual mining income was \$13,826,000. While this was slightly less than that of transfer payments, there are several missing observations for mining income. It is safe to say that transfer payments account for a much greater share (nearly twice as much) of total county income than farming and at least as great a share as mining. While it remains to be seen if transfer payments play as great a role as agriculture and petroleum in driving the local economies of western Oklahoma, transfer payments certainly make up a significant proportion of total income for this area.

# Population

Community population estimates made by the Oklahoma Employment Security Commission (21) are presented in Table II. Estimates are for July 1 of each year except 1980. The 1980 estimates are for April 1. Data in the table show that

## TABLE II

## POPULATION FOR SELECTED COMMUNITIES FROM 1975 TO 1984

| Year       | 1975  | 1976  | 1977  | 1978  | 1979  | 1980  | 1981  | 1982  | 1983  | 1984  |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            |       |       |       |       |       |       |       |       |       |       |
| Arapaho    | 600   | 650   | 700   | 750   | 850   | 851   | 1000  | 1150  | 1200  | 1250  |
| Arnett     | 750   | 750   | 750   | 750   | 750   | 714   | 800   | 850   | 900   | 850   |
| Burns Flat | 1400  | 1650  | 1850  | 2050  | 2200  | 2431  | 3000  | 3700  | 3600  | 3400  |
| Cheyenne   | 800   | 800   | 750   | 750   | 900   | 1207  | 1500  | 1800  | 1800  | 1700  |
| Cordell    | 3100  | 3100  | 3000  | 3000  | 3100  | 3301  | 3800  | 4200  | 4200  | 3900  |
| Elk City   | 7800  | 7900  | 8200  | 8600  | 9100  | 9579  | 11400 | 13200 | 13900 | 13800 |
| Erick      | 1150  | 1150  | 1150  | 1250  | 1300  | 1375  | 1550  | 1750  | 1850  | 1800  |
| Fairview   | 3100  | 3000  | 3000  | 3200  | 3400  | 3370  | 3600  | 3700  | 3700  | 3500  |
| Hennessey  | 2200  | 2200  | 2250  | 2250  | 2250  | 2287  | 2400  | 2600  | 2600  | 2600  |
| Kingfisher | 4100  | 4200  | 4300  | 4300  | 4200  | 4245  | 4600  | 5000  | 5100  | 5000  |
| Laverne    | 1300  | 1350  | 1400  | 1450  | 1500  | 1563  | 1600  | 1650  | 1650  | 1550  |
| Mooreland  | 1200  | 1250  | 1250  | 1250  | 1300  | 1383  | 1500  | 1550  | 1550  | 1400  |
| Okeene     | 1350  | 1350  | 1350  | 1350  | 1500  | 1601  | 1650  | 1700  | 1700  | 1650  |
| Sayre      | 2600  | 2600  | 2700  | 2700  | 3000  | 3177  | 3500  | 3900  | 4100  | 4100  |
| Seiling    | 1050  | 1100  | 1100  | 1100  | 1100  | 1103  | 1150  | 1250  | 1250  | 1200  |
| Shattuck   | 1450  | 1500  | 1500  | 1600  | 1700  | 1759  | 1900  | 2050  | 2050  | 1950  |
| Taloga     | 300   | 300   | 350   | 400   | 450   | 446   | 500   | 550   | 550   | 550   |
| Thomas     | 1450  | 1450  | 1450  | 1450  | 1500  | 1515  | 1700  | 1900  | 2000  | 2100  |
| Watonga    | 3800  | 4000  | 4200  | 4200  | 4200  | 4139  | 4300  | 4600  | 4600  | 4300  |
| Woodward   | 10900 | 11700 | 12400 | 13000 | 13300 | 13610 | 15200 | 16300 | 16300 | 15100 |
| Total      | 50400 | 52000 | 53650 | 55400 | 57600 | 59656 | 66650 | 73400 | 74600 | 71700 |
| % change   |       | 3.17  | 3.17  | 3.26  | 3.97  | 3.57  | 11.72 | 10.13 | 1.63  | -3.89 |

Source: Oklahoma Employment and Security Commission. Unpublished Population Estimates. Oklahoma City: State of Oklahoma, 1985. community population grew steadily until 1982. All twenty communities grew in population from 1981 to 1982. After 1982 it is hard to generalize across communities. Some continued to grow on into 1984, while others reached their highest population for the study period in 1982 or 1983. The greatest increase in total population occurred between 1980 and 1981 while the only decrease occurred between 1983 and 1984. This suggests that the impact of the oil boom upon population occurred during fiscal years 1981, 1982, and 1983. This impact was one to one-and-a-half years behind the impact period suggested by the income data.

## Volume of Sales

Community sales volume (Table III) is computed by dividing the community's sales tax receipts by the corresponding sales tax rate. Both the tax rate and tax receipts are reported by the Oklahoma Tax Commission (23). Community sales volume is an indicator of the general level of economic activity within a community. Sales volume for almost all of the communities increased until reaching a peak in fiscal year 1982 and declined thereafter. In only one community, Cheyenne, was 1983 sales volume greater than 1982. Only Taloga experienced a decline in sales volume from 1981 to 1982. All twenty communities had greater sales volume in 1982 than in 1984. The change in community sales volume follows more nearly the pattern seen in per capita income than that observed for population.

#### TABLE III

#### FY75 FY76 FY77 FY78 FY79 FY80 FY81 FY82 FY83 FY84 Arapaho Arnett Burns Flat Cheyenne n.a. n.a. Cordell Elk City Erick Fairview Hennessey Kingfisher Laverne Mooreland Okeene Sayre Seiling Shattuck Taloga Thomas Watonga Woodward

## VOLUME OF SALES FOR SELECTED COMMUNITIES FROM FISCAL 1975 TO 1984 IN THOUSANDS OF 1980 DOLLARS

n.a.- data not available

Source: Oklahoma Tax Commission. <u>City Sales Tax Payments Ended June 30, 19</u>. Oklahoma City: State of Oklahoma, 1975-1984.

## Community Revenues and Expenditures

General fund revenues and community expenditures are taken from reports filed by the communities with the State Board of Equalization (23). While the data in Table IV reports general revenue in 1980 dollars, these figures have not been adjusted to reflect differences in tax rates between communities or across time. General fund revenues followed the same general pattern found in per capita income and community sales volume. Revenue increased slowly up to fiscal year 1980 and then rose sharply between 1980 and 1982. All but one of the study communities took in greater revenue in 1982 than in 1980. Some communities nearly doubled their revenue from 1980 to 1982. Most of the communities had lower revenue in 1983 than the year before, although five communities actually had higher revenues in 1983. Seven communities had higher revenue in 1984 than 1983 or 1982, but, in general, 1982 was the peak revenue year for most of the communities.

Community service expenditures are reported in three categories. These are personal services, operation and maintenance, and capital outlay. Personal services and operation and maintenance expenditures were summed and are presented in Table V as current community service expenditures. These grew steadily in the late 1970s and increased rapidly in the early 1980s. However, there is no obvious peak year. Of the 14 communities with observations

#### TABLE IV

## GENERAL FUND REVENUES FOR SELECTED COMMUNITIES FROM FISCAL 1975 TO 1984 IN 1980 DOLLARS

|            | FY75    | FY76    | FY77    | FY78           | FY79   | FY80    | FY81 | FY82    | FY83    | FY84    |
|------------|---------|---------|---------|----------------|--------|---------|------|---------|---------|---------|
|            |         |         |         |                |        |         |      |         |         |         |
| Arapaho    | n.a.    | 9975    | 13535   | 23442          | n.a.   | 23629   | n.a. | 42054   | 41822   | 50284   |
| Arnett     | n.a.    | 115333  | n.a.    | 120457         | n.a.   | 126369  | n.a. | 156647  | 138468  | 121257  |
| Burns Flat | n.a.    | 34237   | 38126   | 86994          | n.a.   | 141064  | n.a. | 297510  | 275186  | 207849  |
| Cheyenne   | n.a.    | 86726   | 119151  | 138733         | n.a.   | 160162  | n.a. | 225594  | 222781  | 202414  |
| Cordell    | n.a.    | 347660  | 320445  | 358379         | n.a.   | 376831  | n.a. | 603180  | 571571  | 550278  |
| Elk City   | 1619527 | 1587933 | 1353596 | 1506417        | n.a.   | 1828353 | n.a. | 3479087 | 2289095 | 1601313 |
| Erick      | 194535  | 215976  | 230641  | 251127         | n.a.   | 342452  | n.a. | 293104  | 239945  | 176565  |
| Fairview   | n.a.    | 429201  | 434652  | n.a.           | 429993 | 504415  | n.a. | 539556  | 473072  | n.a.    |
| Hennessey  | 393961  | 395202  | 411907  | 430063         | n.a.   | 650648  | n.a. | 1113673 | n.a.    | n.a.    |
| Kingfisher | 527603  | 610005  | 622167  | 766026         | n.a.   | 868171  | n.a. | 1030777 | 1176231 | 1235390 |
| Laverne    | n.a.    | 157277  | 162468  | 163748         | n.a.   | 164242  | n.a. | 179044  | 162016  | 168902  |
| Mooreland  | n.a.    | 90742   | 95042   | 92362          | n.a.   | 97765   | n.a. | 108244  | 121651  | 126677  |
| Okeene     | n.a.    | 88575   | 87440   | 100347         | n.a.   | 90748   | n.a. | 152153  | 138935  | 138572  |
| Sayre      | 240679  | 246270  | 335254  | 397503         | n.a.   | 410600  | n.a. | 532006  | 533943  | 404734  |
| Seiling    | n.a.    | 132999  | n.a.    | 16501 <b>3</b> | n.a.   | n.a.    | n.a. | 207638  | 220686  | 223744  |
| Shattuck   | n.a.    | 297919  | n.a.    | 239538         | n.a.   | 302591  | n.a. | 391482  | 338372  | 337381  |
| Taloga     | n.a.    | 52102   | n.a.    | 71151          | n.a.   | 84712   | n.a. | 114457  | 114353  | 97188   |
| Thomas     | n.a.    | 80684   | 78085   | 87082          | n.a.   | 111115  | n.a. | 156522  | 136386  | 165949  |
| Watonga    | n.a.    | 640279  | 503014  | 737377         | n.a.   | 806203  | n.a. | 1007669 | 1111078 | 1045841 |
| Woodward   | n.a.    | 2604757 | 2835490 | 3364310        | n.a.   | 3431740 | n.a. | 6831098 | 5498353 | 4004388 |

n.a.- data not available.

Source: Oklahoma State Board of Equalization. <u>Estimate of Needs and Financial Statement for Fiscal</u> Year. Oklahoma City: State of Oklahoma, 1985.

## TABLE V

## TOTAL AND PER CAPITA COMMUNITY SERVICE EXPENDITURES FOR SELECTED COMMUNITIES FROM FISCAL 1975 TO 1984 IN 1980 DOLLARS

|            | FY75   | FY76   | FY77   | FY78   | FY79   | FY80    | FY81 | FY82    | FY83    | FY84           |
|------------|--------|--------|--------|--------|--------|---------|------|---------|---------|----------------|
| Arapaho    | n.a.   | 1757   | 1606   | 3395   | n.a.   | 12110   | n.a. | 19784   | 22270   | 21055          |
| per capita |        | 2.93   | 2.47   | 4.85   |        | 14.25   |      | 19.78   | 18.56   | 17.55          |
| Arnett     | n.a.   | 61062  | n.a.   | 66498  | n.a.   | 56592   | n.a. | 55640   | 77850   | 51597          |
| per capita |        | 54.75  |        | 88.66  |        | 75.46   |      | 69.55   | 86.50   | 57.33          |
| Burns Flat | n.a.   | 24528  | 27562  | 48554  | n.a.   | 73574   | n.a. | 162170  | 188177  | n.a.           |
| per capita |        | 17.52  | 16.70  | 26.25  |        | 33.44   |      | 54.06   | 52.27   |                |
| Cheyenne   | n.a.   | 38471  | n.a.   | 124587 | n.a.   | 115223  | n.a. | n.a.    | n.a.    | n.a.           |
| per capita |        | 48.09  |        | 166.12 |        | 128.03  |      |         |         |                |
| Cordell    | n.a.   | 221594 | 173466 | 188487 | n.a.   | 199036  | n.a. | 210460  | 431185  | 353986         |
| per capita |        | 71.48  | 55.96  | 62.83  |        | 64.21   |      | 55.38   | 102.66  | 84.28          |
| Elk City   | 964969 | 789674 | 936275 | 728834 | n.a.   | 1203778 | n.a. | 1384872 | 1945539 | 1176100        |
| per capita | 125.32 | 101.24 | 118.62 | 88.88  |        | 132.28  |      | 121.48  | 139.97  | 84.61          |
| Erick      | 129432 | 147304 | 110954 | 148905 | n.a.   | 152625  | n.a. | 169881  | 135743  | 119199         |
| per capita | 107.86 | 128.09 | 96.48  | 129.48 |        | 117.40  |      | 109.60  | 73.38   | 64.43          |
| Fairview   | n.a.   | n.a.   | 315208 | n.a.   | 330573 | 315618  | n.a. | 402632  | 367523  | n.a.           |
| per capita |        |        | 105.07 |        | 103.30 | 92.83   |      | 111.84  | 99.33   |                |
| Hennessey  | 249106 | 245101 | 246847 | 258222 | n.a.   | 331777  | n.a. | 645429  | n.a.    | n.a.           |
| per capita | 115.86 | 111.41 | 112.20 | 114.77 |        | 147.46  |      | 268.93  |         |                |
| Kingfisher | 383167 | 393554 | 430183 | 481826 | n.a.   | 669172  | n.a. | 656308  | 690965  | 742958         |
| per capita | 95.79  | 95.99  | 102.43 | 112.05 |        | 159.33  |      | 142.68  | 135.48  | 145.68         |
| Laverne    | n.a.   | 95707  | 104481 | 113195 | n.a.   | 102082  | n.a. | n.a.    | 98774   | 98829          |
| per capita |        | 73.62  | 77.39  | 80.85  |        | 68.05   |      |         | 59.86   | 59.90          |
| Mooreland  | n.a.   | 85543  | 69707  | 96004  | n.a.   | 85089   | n.a. | 88207   | 88018   | 100942         |
| per capita |        | 71.29  | 55.77  | 76.80  |        | 65.45   |      | 58.80   | 56.79   | 65.12          |
| Okeene     | n.a.   | 70240  | 42580  | 59379  | n.a.   | 73057   | n.a. | 80854   | 79540   | 119406         |
| per capita |        | 52.03  | 31.54  | 43.98  |        | 48.70   |      | 49.00   | 46.79   | 70.24          |
| Sayre      | 112924 | 129574 | 153613 | 209792 | n.a.   | 335621  | n.a. | 239876  | 405064  | 253605         |
| per capita | 43.43  | 49.84  | 59.08  | 77.70  |        | 111.87  |      | 68.54   | 98.80   | 61.86          |
| Seiling    | n.a.   | 58243  | n.a.   | 50679  | n.a.   | 43448   | n.a. | 54387   | 57345   | 98699          |
| per capita |        | 55.47  |        | 46.07  |        | 39.50   |      | 47.29   | 45.88   | /8 <b>.</b> 96 |

|            | FY75 | FY76    | FY77   | FY78   | FY79 | FY80    | FY81 | FY82    | FY83    | FY84    |
|------------|------|---------|--------|--------|------|---------|------|---------|---------|---------|
| Shattuck   | n.a. | 180986  | n.a.   | 161255 | n.a. | 142863  | n.a. | n.a.    | 224464  | 208214  |
| per capita |      | 124.82  |        | 107.50 |      | 84.04   |      |         | 109.50  | 101.57  |
| Taloga     | n.a. | 22471   | n.a.   | 26242  | n.a. | 31688   | n.a. | 39757   | 58368   | 63102   |
| per capita |      | 74.90   |        | 74.98  |      | 70.42   |      | 79.51   | 106.12  | 114.73  |
| Thomas     | n.a. | 34491   | 32401  | 29774  | n.a. | 43415   | n.a. | 99375   | 93823   | 106679  |
| per capita |      | 23.79   | 22.35  | 20.63  |      | 28.94   |      | 58.46   | 46.91   | 53.34   |
| Watonga    | n.a. | n.a.    | 360238 | 363184 | n.a. | 514492  | n.a. | 483402  | 567027  | 556169  |
| per capita |      |         | 90.06  | 86.47  |      | 122.50  |      | 112.42  | 123.27  | 120.91  |
| Woodward   | n.a. | 1222271 | n.a.   | n.a.   | n.a. | 1895318 | n.a. | 2357809 | 2741235 | 2914808 |
| per capita |      | 112.14  |        |        |      | 142.51  |      | 115.12  | 168.17  | 178.82  |

TABLE V (Continued)

n.a.- data not available.

•

Source: Oklahoma State Board of Equalization. <u>Estimate of Needs and Financial Statement for Fiscal</u> Year. Oklahoma City: State of Oklahoma, 1985. for each year from 1982 to 1984, one reached its highest expenditure level in 1982, six did so in 1983, and seven did so in 1984. This more closely resembles the pattern found in population than in income, sales volume, or revenue. It is more difficult to find a pattern in per capita expenditures. They varied greatly both across communities and across time for particular communities. Per capita expenditures were higher in the 1980s than in the 1970s.

Total and per capita expenditures for administration, fire protection, police protection, solid waste disposal, street maintenance, and parks are reported in Table VI. Expenditures on management, town clerk, treasurer, attorney, and municipal court were grouped together as administrative expenditures. Total administrative expenditures were higher in the last three years of the study period. Per capita administrative expenditures show no systematic pattern. Both total and per capita expenditures on fire protection increased over time. The same was true of police expenditures, solid waste disposal expenditures, and, to a lesser degree, expenditures on street maintenance. The highest average per capita expenditure on street maintenance occurred in 1980 rather than later in the study period as was the case with the other services. Park expenditures were the most difficult to reach general conclusions about. Only half of the ten communities reporting park expenditures reached their highest spending levels in one of the last three years of the study period.

## TABLE VI

## TOTAL AND PER CAPITA EXPENDITURES OF SELECTED COMMUNITIES FOR ADMINISTRATION, FIRE PROTECTION, POLICE, SOLID WASTE DISPOSAL, STREETS, AND PARKS FROM FISCAL 1975 TO 1984 IN 1980 DOLLARS

| Administration         Cordell       n.a.       17282       16873       17086       n.a.       17044       n.a.       17808       20843       19748         p. cap.       5.57       5.44       5.70       5.50       4.69       4.96       4.70         Elk City       94408       93573       96895       116937       n.a.       132836       n.a.       284577       156355       153400         p. cap.       12.26       12.00       12.27       14.26       14.00       14813       12327       12.26       9.00       24.96       11.25       11.04         Fairview       n.a.       18871       19364       n.a.       19827       22109       n.a.       25080       24798       n.a.         p. cap.       6.09       6.45       6.20       6.50       6.97       6.70       Henessey       2318         Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14765         p. cap.       6.81       6.41       6.62       5.92       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7384                                                                                                                                                                                                 |               | FY75         | FY76   | FY77   | FY78   | FY79       | FY80   | FY81       | FY82   | FY83   | FY84   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--------|--------|--------|------------|--------|------------|--------|--------|--------|
| Administration         Administration           Cordell         n.a.         17282         16873         17086         n.a.         17044         n.a.         17808         20843         19748           p. cap.         5.57         5.44         5.70         5.50         4.69         4.96         4.70           Elk City         94408         93573         96895         116937         n.a.         132836         n.a.         284577         155355         153200           p. cap.         12.26         12.00         12.27         14.26         14.60         14813         14408         16824         9.30         9.10         11.53           Fairview         n.a.         18871         19364         n.a.         19827         22109         n.a.         25080         24798         n.a.           Hennessey         28119         27784         28811         31573         n.a.         21234         n.a.         2726         13899         14765           Mooreland         n.a.         8603         7834         7947         n.a.         21234         n.a.         15016         4.94         2.73         2.90           Mooreland         n.a.         13413                                                                                                            | Administratio | n            |        |        |        |            |        |            |        |        |        |
| Can Lett       Intal.                                                                          | Condoll       | " <b>n</b> o | 17282  | 16977  | 17086  | <b>n</b> a | 170//  | <b>n</b> a | 17808  | 208/3  | 107/8  |
| L. Cap.       1.70       1.44       1.70       1.70       1.74       1.70       1.70       1.70       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75       1.75                                                                                                                                                              |               | 11.a.        | 5 57   | 5 44   | 5 70   | 11.4.      | 5 50   | a.         | / 40   | / 04   | / 70   |
| Elk City       94406       9535       9689       11637       11.6.1       12635       11.04       12.0       12.27       14.26       14.60       24.96       11.25       511.04         Erick       14113       16491       16406       21836       n.a.       1114       n.a.       14408       16841       21329         p. cap.       11.76       14.34       14.27       18.99       16.24       9.30       9.10       11.53         Fairview       n.a.       18871       19364       n.a.       18272       22109       n.a.       25080       24798       n.a.         p. cap.       13.17       12.63       13.10       14.03       20.40       23.18       23.18         Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14785         Mooreland       n.a.       8603       7834       7947       n.a.       34162       n.a.       61691       78107       68211         p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         y. cap.       1.32       5.42       5.36                                                                                                                                                                                              | p. cap.       | 0//09        | 07577  | 04905  | 114077 |            | 172074 |            | 4.07   | 4.90   | 4.70   |
| p. cap.       12.20       12.27       14.25       14.20       24.36       11.25       11.25         Erick       14113       16491       16406       21836       n.a.       21140       n.a.       14408       16841       21329         p. cap.       1.0.7       14.34       14.27       18.99       16.24       9.30       9.10       11.53         Fairview       n.a.       18871       19364       n.a.       19827       22109       n.a.       25080       24798       n.a.       n.a.       14.08       16841       21329         p. cap.       6.09       6.45       6.20       6.50       6.97       6.70       Hennessey       23.18         Kingfisher       27248       26268       27804       22739       n.a.       42734       n.a.       7569       n.a.       8071       8001       8404         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       38721       n.a.       61691       78107       68211         p. cap.       5.32       5.32       5.39       7.64       11.39 </td <td>ELK LITY</td> <td>94408</td> <td>40.00</td> <td>40.07</td> <td>110937</td> <td>n.a.</td> <td>132830</td> <td>n.a.</td> <td>204577</td> <td>100000</td> <td>155490</td>             | ELK LITY      | 94408        | 40.00  | 40.07  | 110937 | n.a.       | 132830 | n.a.       | 204577 | 100000 | 155490 |
| Erick       14/15       164/9       164/0       21836       n.a.       21114       n.a.       14/16       164/0       162/4         p. cap.       1.76       14.34       14.27       18.99       16.24       9.30       9.10       11.153         p. cap.       6.09       6.45       6.20       6.50       6.97       6.70         Hennessey       28319       27784       28811       31573       n.a.       45910       n.a.       55626       n.a.       n.a.         p. cap.       6.81       6.41       6.62       22739       n.a.       21234       n.a.       22726       13899       14785         p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8404         p. cap.       5.32       5.32       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       13643       32684       n.a.       38721       n.a.       136466       162836       180584       1.659       1.0.18                                                                                                                                                                                                    | p. cap.       | 12.20        | 12.00  | 12.21  | 14.20  |            | 14.00  |            | 24.90  | 11.20  | 01700  |
| p. cap.       11.76       14.34       14.27       18.99       10.24       9.00       9.00       11.35         Fairview       n.a.       18871       19364       n.a.       19827       22109       n.a.       25080       24798       n.a.         p. cap.       6.09       6.45       6.20       6.50       6.97       6.70         Hennessey       28319       27784       28811       31573       n.a.       45910       n.a.       55626       n.a.       n.a.         p. cap.       13.17       12.63       13.10       14.03       20.40       23.18         Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14785         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       6071       8001       8044         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       38721       n.a.       n.a.       46827       53765         p. cap.       10.71       10.33 <td>Erick</td> <td>14115</td> <td>16491</td> <td>16406</td> <td>21856</td> <td>n.a.</td> <td>21114</td> <td>n.a.</td> <td>14408</td> <td>16841</td> <td>21529</td>                                   | Erick         | 14115        | 16491  | 16406  | 21856  | n.a.       | 21114  | n.a.       | 14408  | 16841  | 21529  |
| Fairview       n.a.       1982/1       19364       n.a.       1982/2       22109       n.a.       25080       24/98       n.a.         p. cap.       6.09       6.45       6.20       6.50       6.97       6.70         Hennessey       28319       27784       28811       31573       n.a.       45910       n.a.       55626       n.a.       n.a.         p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8404         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61619       78107       68211         p. cap.       5.32       5.32       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       13413       n.a.       13646       162836       180584         p. cap.       10.71       10.33       10.09                                                                                                                                                                                                               | p. cap.       | 11.76        | 14.34  | 14.27  | 18.99  | 40007      | 16.24  |            | 9.30   | 9.10   | 11.55  |
| p. cap.       6.09       6.45       6.20       6.50       6.97       6.70         Hennessey       28319       27784       28811       31573       n.a.       45910       n.a.       5626       n.a.       n.a.       n.a.       n.a.       13.17         Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14785         p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8404         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       6827       53765         p. cap.       7.91       7.78       9.22       10.18       11.69       10.8826       10.8826       180584       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98                                                                                                                                                                                                 | Fairview      | n.a.         | 18871  | 19364  | n.a.   | 19827      | 22109  | n.a.       | 25080  | 24798  | n.a.   |
| Hennessey       28319       27784       28811       31573       n.a.       45910       n.a.       55626       n.a.       n.a.         p. cap.       13.17       12.63       13.10       14.03       20.40       23.18         Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14785         p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       61691       78107       68211         p. cap.       5.32       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       64627       53755         p. cap.       7.91       7.78       9.22       10.18       11.68       11.68       14.084       12.099       11.08       11.09       8.98       9.99       11.08         Fire Protection       10.71       10.33       10.09       8.28       9.26                                                                                                                                                                                              | p. cap.       |              | 6.09   | 6.45   |        | 6.20       | 6.50   |            | 6.97   | 6.70   |        |
| p. cap.13.1712.6313.1014.0320.4023.18Kingfisher27248262682780422739n.a.21234n.a.227261389914785p. cap.6.816.416.625.295.064.942.732.90Moorelandn.a.860378347947n.a.7569n.a.80018404p. cap.7.176.276.365.825.385.165.42Sayre13843135591401320637n.a.34162n.a.616917810768211p. cap.5.325.225.397.6411.3917.6319.0516.64Watongan.a.n.a.3164332684n.a.38721n.a.n.a.4682753765p. cap.7.917.789.2210.1811.69Woodwardn.a.116173120898n.a.n.a.134135n.a.136466162836180584p. cap.10.7110.3310.098.989.9911.08Fire ProtectionCordelln.a.283302859328091n.a.28711n.a.1541527815223249p. cap.9.149.229.369.267.568.4710.68Elk City8811099069107191110885n.a.125345n.a.15415278151223249p. cap.11.4412.7013.5713.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hennessey     | 28319        | 27784  | 28811  | 31573  | n.a.       | 45910  | n.a.       | 55626  | n.a.   | n.a.   |
| Kingfisher       27248       26268       27804       22739       n.a.       21234       n.a.       22726       13899       14785         p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8404         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       68211         p. cap.       7.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       16.46       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       10.71       10.33       10.09       8.98       9.99       11.08         Elk City       88110       9069       107191                                                                                                                                                                                                          | p. cap.       | 13.17        | 12.63  | 13.10  | 14.03  |            | 20.40  |            | 23.18  |        |        |
| p. cap.       6.81       6.41       6.62       5.29       5.06       4.94       2.73       2.90         Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8004         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       68211         p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       116173       120898       n.a.       38721       n.a.       n.a.       46827       53765         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136456       162836       180584         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191                                                                                                                                                                                                          | Kingfisher    | 27248        | 26268  | 27804  | 22739  | n.a.       | 21234  | n.a.       | 22726  | 13899  | 14785  |
| Mooreland       n.a.       8603       7834       7947       n.a.       7569       n.a.       8071       8001       8404         p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       68211         p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       n.a.       46827       53765         p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       .cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n                                                                                                                                                                                                   | p. cap.       | 6.81         | 6.41   | 6.62   | 5.29   |            | 5.06   |            | 4.94   | 2.73   | 2.90   |
| p. cap.       7.17       6.27       6.36       5.82       5.38       5.16       5.42         Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       68211         p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       n.a.       64627       53765         p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       10.71       10.33       10.09       8.98       9.99       11.08         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       124151       223249                                                                                                                                                                                                    | Mooreland     | n.a.         | 8603   | 7834   | 7947   | n.a.       | 7569   | n.a.       | 8071   | 8001   | 8404   |
| Sayre       13843       13559       14013       20637       n.a.       34162       n.a.       61691       78107       68211         p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       n.a.       46827       53765         p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       n.a.       28330       28593       28091       n.a.       28711       n.a.       13655       24848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       15415       278151       223249         p. cap.       11.44       12.70       13.57 <td>p. cap.</td> <td></td> <td>7.17</td> <td>6.27</td> <td>6.36</td> <td></td> <td>5.82</td> <td></td> <td>5.38</td> <td>5.16</td> <td>5.42</td>                                             | p. cap.       |              | 7.17   | 6.27   | 6.36   |            | 5.82   |            | 5.38   | 5.16   | 5.42   |
| p. cap.       5.32       5.22       5.39       7.64       11.39       17.63       19.05       16.64         Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       n.a.       n.a.       64627       53765         p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection         10.071       10.33       10.09       8.98       9.99       11.08         Fire Protection          10.79       1355       28091       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       1                                                                                                                                                                                                                                 | Sayre         | 13843        | 13559  | 14013  | 20637  | n.a.       | 34162  | n.a.       | 61691  | 78107  | 68211  |
| Watonga       n.a.       n.a.       31643       32684       n.a.       38721       n.a.       n.a.       46827       53765         p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a. <t< td=""><td>p. cap.</td><td>5.32</td><td>5.22</td><td>5.39</td><td>7.64</td><td></td><td>11.39</td><td></td><td>17.63</td><td>19.05</td><td>16.64</td></t<>                                          | p. cap.       | 5.32         | 5.22   | 5.39   | 7.64   |            | 11.39  |            | 17.63  | 19.05  | 16.64  |
| p. cap.       7.91       7.78       9.22       10.18       11.69         Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       0       8.98       9.99       11.08       8.98       9.99       11.08         Cordell       n.a.       28330       28593       28091       n.a.       28711       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       0.349       2.37       1.67       2.28       1.90 <t< td=""><td>Watonga</td><td>n.a.</td><td>n.a.</td><td>31643</td><td>32684</td><td>n.a.</td><td>38721</td><td>n.a.</td><td>n.a.</td><td>46827</td><td>53765</td></t<>                                 | Watonga       | n.a.         | n.a.   | 31643  | 32684  | n.a.       | 38721  | n.a.       | n.a.   | 46827  | 53765  |
| Woodward       n.a.       116173       120898       n.a.       n.a.       134135       n.a.       136466       162836       180584         p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection       0       8.98       9.99       11.08         Cordell       n.a.       28330       28593       28091       n.a.       28711       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       2.26       4.89       3.09       3.21       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       5496       n.a.       12091 <td< td=""><td>p. cap.</td><td></td><td></td><td>7.91</td><td>7.78</td><td></td><td>9.22</td><td></td><td></td><td>10.18</td><td>11.69</td></td<>                                                       | p. cap.       |              |        | 7.91   | 7.78   |            | 9.22   |            |        | 10.18  | 11.69  |
| p. cap.       10.71       10.33       10.09       8.98       9.99       11.08         Fire Protection         Cordell       n.a.       28330       28593       28091       n.a.       28711       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795 </td <td>Woodward</td> <td>n.a.</td> <td>116173</td> <td>120898</td> <td>n.a.</td> <td>n.a.</td> <td>134135</td> <td>n.a.</td> <td>136466</td> <td>162836</td> <td>180584</td>                              | Woodward      | n.a.         | 116173 | 120898 | n.a.   | n.a.       | 134135 | n.a.       | 136466 | 162836 | 180584 |
| Fire Protection         Cordell       n.a.       28330       28593       28091       n.a.       28711       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5.04       5.04         Kingfisher       77274 </td <td>p. cap.</td> <td></td> <td>10.71</td> <td>10.33</td> <td></td> <td></td> <td>10.09</td> <td></td> <td>8.98</td> <td>9.99</td> <td>11.08</td>                                                       | p. cap.       |              | 10.71  | 10.33  |        |            | 10.09  |            | 8.98   | 9.99   | 11.08  |
| Cordell       n.a.       28330       28593       28091       n.a.       28711       n.a.       28739       35563       44848         p. cap.       9.14       9.22       9.36       9.26       7.56       8.47       10.68         Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       147607       n.a.       138880       160313       188907         p. cap.                                                                                                                                                                                                           | Fire Protecti | on           |        |        |        |            |        |            |        |        |        |
| p. cap.9.149.229.369.267.568.4710.68Elk City8811099069107191110885n.a.125345n.a.154415278151223249p. cap.11.4412.7013.5713.5213.7713.5520.0116.06Erick4188272919182621n.a.2464n.a.209932372556p. cap.3.492.371.672.281.901.351.751.38Fairviewn.a.699414683n.a.988710930n.a.62294431n.a.p. cap.2.264.893.093.211.731.201.421.471.471.40Hennessey1686279541051961n.a.5496n.a.12091n.a.n.a.n.a.p. cap.0.781.271.870.872.445.041.4037.04Kingfisher77274841198139594472n.a.147607n.a.138880160313188907p. cap.0.580.520.791.201.421.311.26Sayre985012383995411572n.a.15503n.a.213661362014282p. cap.3.794.763.834.295.176.103.323.48Watongan.a.n.a.4379942787n.a.45020n.a.7228753483 <t< td=""><td>Cordell</td><td>n.a.</td><td>28330</td><td>28593</td><td>28091</td><td>n.a.</td><td>28711</td><td>n.a.</td><td>28739</td><td>35563</td><td>44848</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cordell       | n.a.         | 28330  | 28593  | 28091  | n.a.       | 28711  | n.a.       | 28739  | 35563  | 44848  |
| Elk City       88110       99069       107191       110885       n.a.       125345       n.a.       154415       278151       223249         p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a.       n.a.         p. cap.       0.78       1.27       1.87       0.87       2.44       5.04         Kingfisher       77274       84119       81395       94472       n.a.       147607       n.a.       138880       160313       188907       30.19       31.40                                                                                                                                                                                                   | p. cap.       |              | 9.14   | 9.22   | 9.36   |            | 9.26   |            | 7.56   | 8.47   | 10.68  |
| p. cap.       11.44       12.70       13.57       13.52       13.77       13.55       20.01       16.06         Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a.       n.a.         p. cap.       0.78       1.27       1.87       0.87       2.44       5.04       5.04         Kingfisher       77274       84119       81395       94472       n.a.       147607       n.a.       138880       160313       188907         p. cap.       19.32       20.52       19.38       21.97       35.14       30.19       31.40       37.04         Mooreland       n.a.       <                                                                                                                                                                                                        | Elk City      | 88110        | 99069  | 107191 | 110885 | n.a.       | 125345 | n.a.       | 154415 | 278151 | 223249 |
| Erick       4188       2729       1918       2621       n.a.       2464       n.a.       2099       3237       2556         p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       12091       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       n.a.       13019       31.40       37.04         Kingfisher       77274       84119       81395                                                                                                                                                                                     | p. cap.       | 11.44        | 12.70  | 13.57  | 13.52  |            | 13.77  |            | 13.55  | 20.01  | 16.06  |
| p. cap.       3.49       2.37       1.67       2.28       1.90       1.35       1.75       1.38         Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a. <tdt< td=""><td>Erick</td><td>4188</td><td>2729</td><td>1918</td><td>2621</td><td>n.a.</td><td>2464</td><td>n.a.</td><td>2099</td><td>3237</td><td>2556</td></tdt<>                 | Erick         | 4188         | 2729   | 1918   | 2621   | n.a.       | 2464   | n.a.       | 2099   | 3237   | 2556   |
| Fairview       n.a.       6994       14683       n.a.       9887       10930       n.a.       6229       4431       n.a.         p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a.         p. cap.       0.78       1.27       1.87       0.87       2.44       5.04         Kingfisher       77274       84119       81395       94472       n.a.       147607       n.a.       138880       160313       188907         p. cap.       19.32       20.52       19.38       21.97       35.14       30.19       31.40       37.04         Mooreland       n.a.       692       655       983       n.a.       1566       n.a.       2128       2025       1953         p. cap.       0.58       0.52       0.79       1.20       1.42       1.31       1.26         Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.                                                                                                                                                                                                            | p. cap.       | 3.49         | 2.37   | 1.67   | 2.28   |            | 1.90   |            | 1.35   | 1.75   | 1.38   |
| p. cap.       2.26       4.89       3.09       3.21       1.73       1.20         Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       n.a. <td>Fairview</td> <td>n.a.</td> <td>6994</td> <td>14683</td> <td>n.a.</td> <td>9887</td> <td>10930</td> <td>n.a.</td> <td>6229</td> <td>4431</td> <td>n.a.</td> | Fairview      | n.a.         | 6994   | 14683  | n.a.   | 9887       | 10930  | n.a.       | 6229   | 4431   | n.a.   |
| Hennessey       1686       2795       4105       1961       n.a.       5496       n.a.       12091       n.a.       130880       160313       188907       n.a.       160313       188907       n.a.       160313       188907       n.a.       1700       1.40       11.40       1700       10010       10010       10010                                                                                                                                                    | p. cap.       |              | 2.26   | 4.89   |        | 3.09       | 3.21   |            | 1.73   | 1.20   |        |
| p. cap.       0.78       1.27       1.87       0.87       2.44       5.04         Kingfisher       77274       84119       81395       94472       n.a.       147607       n.a.       138880       160313       188907         p. cap.       19.32       20.52       19.38       21.97       35.14       30.19       31.40       37.04         Mooreland       n.a.       692       655       983       n.a.       1566       n.a.       2128       2025       1953         p. cap.       0.58       0.52       0.79       1.20       1.42       1.31       1.26         Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.83       4.29       5.17       6.10       3.32       3.48         Watonga       n.a.       n.a.       43799       42787       n.a.       45020       n.a.       72287       53483       59474                                                                                                                                                                                                                                                                                                                                                                   | Hennessey     | 1686         | 2795   | 4105   | 1961   | n.a.       | 5496   | n.a.       | 12091  | n.a.   | n.a.   |
| Kingfisher       77274       84119       81395       94472       n.a.       147607       n.a.       138880       160313       188907         p. cap.       19.32       20.52       19.38       21.97       35.14       30.19       31.40       37.04         Mooreland       n.a.       692       655       983       n.a.       1566       n.a.       2128       2025       1953         p. cap.       0.58       0.52       0.79       1.20       1.42       1.31       1.26         Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.83       4.29       5.17       6.10       3.32       3.48         Watonga       n.a.       n.a.       43799       42787       n.a.       45020       n.a.       72287       53483       59474                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p. cap.       | 0.78         | 1.27   | 1.87   | 0.87   |            | 2.44   |            | 5.04   |        |        |
| p. cap.       19.32       20.52       19.38       21.97       35.14       30.19       31.40       37.04         Mooreland       n.a.       692       655       983       n.a.       1566       n.a.       2128       2025       1953         p. cap.       0.58       0.52       0.79       1.20       1.42       1.31       1.26         Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.83       4.29       5.17       6.10       3.32       3.48         Watonga       n.a.       n.a.       43799       42787       n.a.       45020       n.a.       72287       53483       59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kingfisher    | 77274        | 84119  | 81395  | 94472  | n.a.       | 147607 | n.a.       | 138880 | 160313 | 188907 |
| Mooreland         n.a.         692         655         983         n.a.         1566         n.a.         2128         2025         1953           p. cap.         0.58         0.52         0.79         1.20         1.42         1.31         1.26           Sayre         9850         12383         9954         11572         n.a.         15503         n.a.         21366         13620         14282           p. cap.         3.79         4.76         3.83         4.29         5.17         6.10         3.32         3.48           Watonga         n.a.         n.a.         43799         42787         n.a.         45020         n.a.         72287         53483         59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p. cap.       | 19.32        | 20.52  | 19.38  | 21.97  |            | 35.14  |            | 30.19  | 31.40  | 37.04  |
| p. cap.       0.58       0.52       0.79       1.20       1.42       1.31       1.26         Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.83       4.29       5.17       6.10       3.32       3.48         Watonga       n.a.       n.a.       43799       42787       n.a.       45020       n.a.       72287       53483       59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mooreland     | n.a.         | 692    | 655    | 983    | n.a.       | 1566   | n.a.       | 2128   | 2025   | 1953   |
| Sayre       9850       12383       9954       11572       n.a.       15503       n.a.       21366       13620       14282         p. cap.       3.79       4.76       3.83       4.29       5.17       6.10       3.32       3.48         Watonga       n.a.       n.a.       43799       42787       n.a.       45020       n.a.       72287       53483       59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n can         |              | 0.58   | 0.52   | 0.79   |            | 1.20   |            | 1.42   | 1.31   | 1.26   |
| p. cap. 3.79 4.76 3.83 4.29 5.17 6.10 3.32 3.48<br>Watonga n.a. n.a. 43799 42787 n.a. 45020 n.a. 72287 53483 59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Savre         | 9850         | 12383  | 9954   | 11572  | n.a.       | 15503  | n.a.       | 21366  | 13620  | 14282  |
| Watonga n.a. n.a. 43799 42787 n.a. 45020 n.a. 72287 53483 59474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n can         | 3 70         | 4 76   | 3.83   | 4_20   |            | 5.17   |            | 6.10   | 3.32   | 3.48   |
| 10 05 10 10 10 10 72 16 81 11 63 12 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vatonga       | n 9          | n a    | 43799  | 42787  | n.a.       | 45020  | n.a.       | 72287  | 53483  | 59474  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n con         |              |        | 10 95  | 10 10  |            | 10.72  |            | 16.81  | 11.63  | 12.93  |

TABLE VI (Continued)

|               | FY75      | FY76   | FY77   | FY78          | FY79   | FY80   | FY81 | FY82   | FY83   | FY84   |
|---------------|-----------|--------|--------|---------------|--------|--------|------|--------|--------|--------|
| Fire Protecti | ion (Cont | 'd)    |        |               |        |        |      |        |        |        |
| Woodward      | n.a.      | 139511 | n.a.   | n.a.          | n.a.   | 232131 | n.a. | 298216 | 347680 | 374354 |
| p. cap.       |           | 12.80  |        |               |        | 17.45  |      | 19.62  | 21.33  | 22.97  |
| Police        |           |        |        |               |        |        |      |        |        |        |
| Cordell       | n.a.      | 41496  | 41614  | 43771         | n.a.   | 47789  | n.a. | 60750  | 69420  | 81420  |
| p. cap.       |           | 13.39  | 13.42  | 14.59         |        | 15.42  |      | 15.99  | 16.53  | 19.34  |
| Elk City      | 139048    | 151768 | 165484 | 163596        | n.a.   | 241859 | n.a. | 322391 | 588776 | 416839 |
| p. cap.       | 18.06     | 19.46  | 20.95  | 19.95         |        | 26.58  |      | 28.28  | 42.36  | 29.99  |
| Erick         | 25667     | 24446  | 20407  | 20501         | n.a.   | 24604  | n.a. | 34793  | 39671  | 33193  |
| p. cap.       | 21.39     | 21.26  | 17.75  | 17.83         |        | 18.93  |      | 22.45  | 21.44  | 17.94  |
| Fairview      | n.a.      | 62744  | 71333  | n.a.          | n.a.   | 116871 | n.a. | 137319 | 141746 | n.a.   |
| p. cap.       |           | 20.24  | 23.78  |               |        | 34.37  |      | 38.14  | 38.31  |        |
| Hennessey     | 44331     | 49709  | 51119  | 53868         | n.a.   | 76639  | n.a. | 129324 | n.a.   | n.a.   |
| p. cap.       | 20.62     | 22.60  | 23.24  | 23.94         |        | 34.06  |      | 53.89  |        |        |
| Kingfisher    | 88403     | 85612  | 100165 | 103993        | n.a.   | 127791 | n.a. | 145780 | 153196 | 150670 |
| p. cap.       | 22.10     | 20.88  | 23.85  | 24.18         |        | 30.43  |      | 31.69  | 30.04  | 29.54  |
| Mooreland     | n.a.      | 38676  | 39670  | 39203         | n.a.   | 49397  | n.a. | 52342  | 51914  | 59228  |
| p. cap.       |           | 32.23  | 31.74  | 31.36         |        | 38.00  |      | 34.89  | 33.49  | 38.21  |
| Sayre         | 53925     | 58462  | 70633  | 61752         | n.a.   | 76020  | n.a. | 105625 | 120165 | 107120 |
| p. cap.       | 20.74     | 22.49  | 27.17  | 22.87         |        | 25.34  |      | 30.18  | 29.31  | 26.13  |
| Watonga       | n.a.      | n.a.   | 89599  | 93908         | n.a.   | 118241 | n.a. | 125073 | 142755 | 150547 |
| p. cap.       |           |        | 22.40  | 22.36         |        | 28.75  |      | 29.09  | 31.03  | 32.73  |
| Woodward      | n.a.      | 184164 | n.a.   | n.a.          | n.a.   | 379382 | n.a. | 489166 | 569186 | 581401 |
| p. cap.       |           | 16.90  |        |               |        | 28.53  |      | 32.18  | 34.92  | 35.67  |
| Solid Waste D | isposal   |        |        |               |        |        |      |        |        |        |
| Cordell       | n.a.      | 40542  | 41599  | 45286         | n.a.   | 55490  | n.a. | 80592  | 207476 | 107899 |
| p. cap.       |           | 13.08  | 13.42  | 15.10         |        | 17.90  |      | 21.21  | 49.40  | 25.69  |
| Elk City      | 96903     | 102471 | 86200  | 60781         | n.a.   | 55216  | n.a. | n.a.   | n.a.   | n.a.   |
| p. cap.       | 12.58     | 13.14  | 10.91  | 7.41          |        | 6.07   |      |        |        |        |
| Erick         | 16290     | 28806  | 26287  | 22083         | n.a.   | 27444  | n.a. | 42329  | 34558  | 19054  |
| p. cap.       | 13.58     | 25.05  | 22.86  | 19.20         |        | 21.11  |      | 27.31  | 18.68  | 10.30  |
| Fairview      | n.a.      | 116433 | 112738 | n.a.          | 125375 | 77457  | n.a. | 107745 | 108223 | n.a.   |
| p. cap.       |           | 37.56  | 37.58  |               | 39.18  | 22.78  |      | 29.93  | 29.25  |        |
| Hennessey     | 65469     | 43757  | 45910  | 46607         | n.a.   | 58529  | n.a. | 105627 | n.a.   | n.a.   |
| p. cap.       | 30.45     | 19.89  | 20.87  | 20.71         |        | 26.01  |      | 44.01  |        |        |
| Kingfisher    | 51448     | 50323  | 53377  | 60967         | n.a.   | 78956  | n.a. | 115286 | 122282 | 97740  |
| p. cap.       | 12.86     | 12.27  | 12.71  | 14.18         |        | 18.80  |      | 25.06  | 23.98  | 19.16  |
| Watonga       | n.a.      | n.a.   | 30456  | 3221 <b>3</b> | n.a.   | 32568  | n.a. | 36915  | 39583  | 40862  |
| p. cap.       |           |        | 7.61   | 7.67          |        | 7.75   |      | 8.58   | 8.61   | 8.88   |
| Woodward      | n.a.      | 87150  | n.a.   | n.a.          | n.a.   | 127030 | n.a. | 144767 | 155422 | 160669 |
| p. cap.       |           | 8.00   |        |               |        | 9.55   |      | 9.52   | 9.54   | 9.86   |
| Streets       |           |        |        |               |        |        |      |        |        |        |
| Cordell       | n.a.      | 51424  | 12690  | 11881         | n.a.   | 8971   | n.a. | 9805   | 31877  | 12431  |
| p. cap.       |           | 16.59  | 4.09   | 3.96          |        | 2.89   |      | 2.58   | 7.59   | 2.96   |
| Elk City      | 166896    | 123649 | 149692 | 94123         | n.a.   | 275400 | n.a. | 196641 | 415762 | 169395 |
| p. cap.       | 21.67     | 15.85  | 18.95  | 11.48         |        | 30.26  |      | 17.25  | 29.91  | 12.19  |

TABLE VI (Continued)

|                       | FY75   | FY76  | FY77   | FY78   | FY79       | FY80   | FY81     | FY82               | FY83   | FY84   |
|-----------------------|--------|-------|--------|--------|------------|--------|----------|--------------------|--------|--------|
| Streets (Cont         | inued) |       |        |        |            |        |          |                    |        |        |
| Frick                 | 16290  | 28806 | 26287  | 22083  | n a        | 27444  | n.a.     | 42329              | 34558  | 19054  |
| n can                 | 13 58  | 25 05 | 22 86  | 19 20  |            | 21 11  | m.u.     | 27 31              | 18 68  | 10 30  |
| Fairview              | na     | 58182 | 61881  | n a    | 53773      | 65508  | na       | 97567              | 88220  | n a.   |
| n can                 | mai    | 18 77 | 20 63  |        | 16 80      | 19 27  | mai      | 27 10              | 23 84  |        |
| Hennessev             | 45283  | 54605 | 43132  | 50843  | n a        | 34341  | na       | 109866             | n a    | na     |
| n can                 | 21 06  | 24 82 | 10 61  | 22 60  | ma.        | 15 26  |          | 45 78              |        |        |
| p. cap.<br>Kinafisher | 45210  | 53010 | 67002  | 77083  | na         | 122201 | na       | 08120              | 121611 | 120727 |
| n con                 | 45217  | 12 07 | 15 05  | 17 03  | a.         | 20 10  |          | 21 22              | 27 85  | 23 67  |
| p. cap.               | 11.50  | 12.93 | 17212  | 17.75  |            | 1/454  |          | 15021              | 15497  | 17670  |
| mooretand             | n.a.   | 12,00 | 10 45  | 13940  | n.d.       | 14030  | n.d.     | 10 01              | 10 12  | 11 20  |
| p. cap.               | 10075  | 25507 | 10.00  | 70905  |            | 107724 | <b>.</b> | 21710              | 47574  | /0770  |
| Sayre                 | 19035  | 20090 | 42309  | 39093  | n.a.       | 7/ //  | n.a.     | 21319              | 15 51  | 49370  |
| p. cap.               | 7.52   | 9.04  | 10.30  | 14./0  |            | J4.44  |          | 94071              | 1/0776 | 12.04  |
| watonga               | n.a.   | n.a.  | 93232  | 80742  | n.a.       | 26 / 9 | n.a.     | 20 22              | 70 55  | 27 01  |
| p. cap.               |        |       | 23.31  | 19.22  |            | 20.40  |          | 20.22              | 32.33  | 27.91  |
| woodward              | n.a.   | n.a.  | n.a.   | n.a.   | n.a.       | 154058 | n.a.     | 194944             | 47 70  | 2300/1 |
| p. cap.               |        |       |        |        |            | 11.58  |          | 12.85              | 15.78  | 14.15  |
| Parks                 |        |       |        |        |            |        |          |                    |        |        |
| Cordell               | n.a.   | 5061  | 4634   | 4071   | n.a.       | 3338   | n.a.     | 4856               | 9511   | 7853   |
| p. cap.               |        | 1.63  | 1.49   | 1.36   |            | 1.08   |          | 1.28               | 2.26   | 1.87   |
| Flk City              | 32579  | 13585 | 32416  | 20796  | n.a.       | 86161  | n.a.     | 58091              | 144048 | 57143  |
| p. cap.               | 4.23   | 1.74  | 4.10   | 2.54   |            | 9.47   |          | 5.10               | 10.36  | 4.11   |
| Frick                 | 8280   | 7526  | 4864   | 29649  | n.a.       | 8609   | n.a.     | 11879              | 12754  | 14331  |
| p. cap.               | 6.90   | 6.54  | 4.23   | 25.78  |            | 6.62   |          | 7.66               | 6.89   | 7.75   |
| Fairview              | n.a.   | n.a.  | 16576  | n.a.   | 39806      | 28074  | n.a.     | 22416              | 28526  | n.a.   |
| n. can.               |        |       | 5.53   |        | 12.44      | 8.26   |          | 6.23               | 7.71   |        |
| Hennessev             | 5549   | 6680  | 9929   | 7626   | n.a.       | 3053   | n.a.     | 28213              | n.a.   | n.a.   |
| n can                 | 2.58   | 3.04  | 4.51   | 3.39   |            | 1.36   |          | 11.76              |        |        |
| Kinafisher            | 48295  | 47947 | 48424  | 72761  | n.a.       | 80584  | n.a.     | 62036              | 63379  | 71306  |
| n can                 | 12 07  | 11 69 | 11 53  | 16 92  |            | 19,19  |          | 13.49              | 13.98  | 12.43  |
| P. Cap.               | n 9    | 1660  | 1573   | 1474   | na         | 1044   | n.a.     | 887                | 844    | 814    |
|                       |        | 1 33  | 1 26   | 1 18   |            | 0.80   | ma       | 0.59               | 0.54   | 0.53   |
| p. cap.               | 22/6   | 6082  | 3770   | 102/0  | n a        | 20477  | na       | 18005              | 21415  | 4741   |
| Sayre                 | 0.94   | 2 3/  | 1 /5   | 3 80   | n.a.       | 6 83   |          | 5 14               | 5 22   | 1 16   |
| p. cap.               | 0.00   | 2.54  | 17047  | 215/7  | <b>n</b> . | 40380  | n 2      | 2706/              | 27888  | 3/677  |
| waconga               | n.a.   | n.d.  | 11005  | 5 17   | 11.d.      | 47507  | n.d.     | ۲,21704<br>۲ ۲ ۲ ۵ | × 04   | 7 5/   |
| p.cap.                |        | 77007 | 4.4/   | 7.13   |            | 107007 |          | 200/02             | 100471 | 160440 |
| Woodward              | n.a.   | 13991 | 120108 | 134231 | n.a.       | 123295 | n.a.     | 17 40              | 100031 | 0 04   |
| p. cap.               |        | 6.79  | 13.52  | 10.83  |            | 9.27   |          | 12.19              | 11.57  | ¥.00   |

n.a.- data not available.

Source: Oklahoma State Board of Equalization. <u>Estimate of Needs and Financial Statement for Fiscal</u> Year. Oklahoma City: State of Oklahoma, 1985.

Table VII lists the average population and average per capita expenditures for the sample communities over the study period. These figures should give some indication of the long-run relationship between expenditures and population for the sample communities. Per capita total expenditures show a positive relationship with population. Seven of the ten larger communities spent an average of at least \$100 per capita while only two of the ten smaller communities did so. If the twenty communities were providing the same quantity and quality of service, a negative relationship between population and per capita expenditures would be expected due to economies of scale. The fact that per capita expenditures actually rise with population indicates that public service output is greater in the larger communities of the sample. This could be attributed to larger communities providing a larger variety of services, producing a greater output of particular services, or a combination of both. Of the services examined, per capita expenditures on administration, police expenditures, and street maintenance appear to bear no relationship to population. Park expenditures show a slight tendency to be higher in larger communities. Only fire protection expenditures clearly rise with population. This could be due to a greater amount of volunteer fire protection in smaller communities. Solid waste disposal expenditures actually decline as community size increases. A reasonable conclusion is that each of the communities provide a comparable level of service and the declining per capita

## TABLE VII

## AVERAGE POPULATION AND AVERAGE PER CAPITA EXPENDITURES IN 1980 DOLLARS FOR SELECTED COMMUNITIES FROM FISCAL 1975 TO 1984

| community  | pop.  | total  | admin. | fire  | park  | police | s.w.d. | street |
|------------|-------|--------|--------|-------|-------|--------|--------|--------|
|            |       |        |        |       |       |        |        |        |
| Taloga     | 429   | 86.78  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Arnett     | 800   | 72.04  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Arapaho    | 886   | 11.48  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Seiling    | 1143  | 52.19  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Cheyenne   | 1193  | 114.08 | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Mooreland  | 1371  | 64.29  | 5.94   | 1.01  | 0.90  | 34.28  | n.a.   | 10.73  |
| Erick      | 1400  | 103.34 | 13.19  | 2.02  | 9.05  | 19.87  | 19.76  | 12.93  |
| Laverne    | 1493  | 69.95  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Okeene     | 1514  | 48.90  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Thomas     | 1650  | 36.33  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Shattuck   | 1736  | 105.48 | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Hennessey  | 2331  | 145.10 | 16.09  | 2.05  | 4.44  | 29.72  | 26.91  | 24.85  |
| Burns Flat | 2471  | 33.37  | n.a.   | n.a.  | n.a.  | n.a.   | n.a.   | n.a.   |
| Sayre      | 3150  | 71.39  | 11.03  | 4.34  | 3.35  | 25.53  | n.a.   | 14.54  |
| Fairview   | 3338  | 102.47 | 6.48   | 2.73  | 8.03  | 30.97  | 32.71  | 21.07  |
| Cordell    | 3500  | 70.97  | 5.22   | 9.10  | 1.57  | 15.52  | 22.26  | 5.81   |
| Watonga    | 4243  | 109.27 | 9.36   | 12.20 | 6.91  | 27.63  | 8.19   | 24.95  |
| Kingfisher | 4450  | 123.68 | 5.09   | 26.87 | 13.91 | 26.59  | 17.38  | 19.51  |
| Elk City   | 9988  | 114.08 | 14.08  | 14.33 | 5.21  | 25.70  | 10.02  | 19.70  |
| Woodward   | 13729 | 151.35 | 10.20  | 18.83 | 10.72 | 29.64  | 9.29   | 13.84  |

n.a.- data not available.

s.w.d.- solid waste disposal.

Source: Oklahoma State Board of Equalization. <u>Estimate of Needs and Financial Statement for Fiscal</u> <u>Year</u>. Oklahoma City: State of Oklahoma, 1985. and Oklahoma Employment and Security Commission. Unpublished Population Estimates. Oklahoma City: State of Oklahoma, 1985. solid waste disposal expenditures associated with increasing population are a result of economies of scale.

#### CHAPTER IV

#### THE MODEL

# Introduction

The influence of changes in basic income upon community service expenditures during the energy impact cycle and agricultural crisis will be examined more closely by a model composed of separate equations for income, population, community revenues, and community expenditures. These equations will be estimated using regression analysis on data pooled across the sample communities and throughout the ten years of the study period. Much of the data were reported in chapter III. Before proceeding with the equations, the standard regression model will be briefly reviewed.

## Methods

Regression analysis is a statistical technique whereby changes in one variable are explained by changes in other variables (19). Regression analysis estimates a statistical relation between a dependent variable and an independent variable or set of independent variables. A multiple

regression model could be stated as follows:

 $Y = a + b_1 X_1 + b_2 X_2 + \dots + b_n X_n + e$ 

In the above equation, Y is the dependent variable, the  $X_i$ (i = 1,2, ..., n) are the independent variables, the  $b_i$  are the coefficients, a is the intercept, and e is the error or disturbance term. The estimating procedure of least squares chooses the intercept and the coefficients such that the sum of the squared residuals is minimized. Each coefficient is equal to the covariance between its dependent variable and the independent variable divided by the variance of the dependent variable. A coefficient measures the rate of change in the expected value of the dependent variable with respect to one independent variable when all other independent variables are held constant. The classical linear regression model has five assumptions:

 the dependent variable can be calculated as a linear function of a specific set of independent variables, plus a disturbance term,

2) the expected value of the disturbance term is zero,
3) the disturbance terms have constant variance and are not correlated with one another,

4) the observations on the independent variables can be considered fixed in repeated samples,

5) the number of observations are greater than the number of independent variables and no linear relationship exists among the independent variables (10). The capability of a model to account for the variation in the dependent variable can be measured by the coefficient of multiple determination,  $R^2$ . This is the ratio of variation explained by the independent variables to the total variation. Since the procedure of least squares minimizes the sum of squared residuals (the unexplained variation) it automatically maximizes  $R^2$ .

Once the equations comprising the model have been estimated according to the relationships hypothesized, they will be reformulated without those variables whose coefficients were either not statistically significant or not of the hypothesized sign. Expenditure equations without the lagged capital expenditures variable will be estimated to take advantage of the greater number of observations this allows to be included in the analysis. The study by Shapiro, Morgan, and Jones (34) found an equation using a cubed population term to be the best predictor of county service expenditures. Consequently, equations employing a cubed population term as well as those other variables found to be significant will be estimated for all expenditure categories.

Those equations judged to be the most statistically sound will be evaluated using a Chow test to see if the relationship between the dependent variable and the independent variables remains stable over time. A simple discussion of the Chow test appears in Kennedy (10) while a more rigorous definition can be found in an article by

Chow (1). A Chow test involves computing a F-statistic to test whether a linear relationship remains stable from one period to another. One must estimate three equations, one for the first time period, one for the second, and one over both time periods. The error sums of square (SSE) of the two unconstrained regressions are summed and then subtracted from the SSE of the constrained regression (i.e., the regression run over both time periods). This figure is divided by the number of parameters used in the regression (P). The result is divided by the sum of the SSEs of the two unconstrained regressions divided by the total number of observations in both periods (N) less twice the number of parameters in the equation. This gives one an F-statistic with which to test whether the sets of coefficients of the two unconstrained equations are significantly different. The F-statistic can be stated as:

## [SSE(constrained) - SSE(unconstrained)]/P SSE(unconstrained)/(N - 2P)

If the results of the Chow test indicate a significant difference between the model's coefficients from one time period to another, indicator variables will be used to arrive at a form of the model which can be applied to the entire study period. These final equations will be used to examine what impact different levels of basic income would have had upon expenditures for communities of various sizes over the study period.

#### Income

County per capita income is an important independent variable in the population, revenue, and expenditure models. Finding a reliable relationship between county per capita income and income in basic sectors is the first step in modeling the impact of changes in basic sectors such as agriculture and petroleum upon community service expenditures. Although community specific income data would be ideal, data limitations force the assumption that county per capita income is equal to community per capita income for all communities within that county. The model for county per capita income is constructed as an export base model. Basic income for communities in this area is assumed to be that from agriculture, mining, manufacturing, and transfer payments. The equation is hypothesized to take the following form:

PCY = a + bFY + cMY + dTP + eMFY

(1)

where

PCY - county per capita income,

FY - county per capita farm income,

MY - county per capita mining income,

TP - county per capita income from transfer payments,

MFY - county per capita manufacturing income. H0: b,c,d,e > 1. There are two reasons why a per capita income model is preferred to a model estimating total income. First, it provides a direct estimate of per capita income without having to construct a separate model for county population. The other reason is that total county income is highly correlated with county population which in turn is highly correlated with transfer payments. This association between population and transfer payments is likely to result in an unduly large coefficient for transfer payments in a total income model.

## Population

The population of a community in any one year will depend upon the community's population in the previous year, fertility and mortality rates, and migration. A simple population model could be stated as:

P = a + bLP + cLPSQ + dPCY + ePN + fCTY (2) where

P - community population,

LP - community population in the previous year,

- LPSQ community population in the previous year squared,
- PCY county per capita income,
- PN population of the nearest larger community divided by the distance between the two communities,

CTY - change in total community income.

H0: b,c,d,f > 0; e < 0.

The coefficient for lagged community population (LP) could be interpreted as one plus the difference between the birth rate and the death rate. This equals the rate of natural population change. The other variables are hypothesized to affect population by their influence upon migration. While variables such as per capita income may influence fertility and death rates, it is assumed that these effects are negligible.

Per capita income serves as an indicator of how much a migrant could expect to earn if he could find a job in the community. The change in total income (CTY) is an indication of the likelihood that a prospective inmigrant could in fact find a job in the community. In computing CTY, total community income is calculated by multiplying county per capita income by community population. These estimates of total community income are then used to compute CTY. A high rate of growth in income should reflect a growing local economy and therefore increasing local employment opportunities. The higher the rate of income growth, the less risky inmigration is, thus increasing a prospective migrants expected utility of moving into the community. The longer a community has been experiencing sustained growth the lower the risk associated with inmigration. Also, by then potential inmigrants will more likely have heard of job opportunities in the community. Conversely, migrants will probably not move away immediately at the outset of an economic downturn, but will

be increasingly liable to move away the longer an economic downturn is sustained. This indicates that the change in total income for the previous two or three years may be more appropriate than simply using the amount of income change from the most recent year.

Previous research suggests that larger communities have more draw with respect to migration than smaller communities in the same area (17). The previous year's population may affect current population not only via the rate of natural population change, but also by influencing migration. If communities with larger populations are more attractive to migrants than smaller communities, then a squared term of the previous year's population (LPSQ) should be positively related to current population. If a community is close to a larger community, this larger community may attract migrants which would normally have settled in the smaller community. If however the nearest larger community is very far away, a small, isolated community would experience more inmigration than if it were located close to a larger, more developed community. Therefore a variable accounting for the size of the nearest larger community adjusted by the distance between it and the community in question may help explain migration. The variable included in the model (PN) is hypothesized to have a negative affect upon migration into a community.

During an economic downturn, recent inmigrants should be more likely to leave than longtime residents.

Communities which attracted large amounts of migrants during an impact period should experience a correspondingly large amount of outmigration if the local economy begins to decline. The implication is that LPSQ and PN may have coefficients with the opposite sign as hypothesized during the post impact period.

## General Fund Revenues

Over the long-run, community revenues and community expenditures must be equal, but in the short-run substantial differences may occur. Community general fund revenues come from several sources. For most communities in the sample, the source of greatest importance is sales tax receipts. The next three most important sources are usually the alcohol and beverage tax, franchise taxes, and, for communities which operate their own utilities, municipal utility receipts. Other sources of revenue may include occupation taxes, dog taxes, the sale and/or rental of municipal property, licenses and permits, fines, transfers from public works authorities, oil and gas royalties, and revenue exogenous to the community such as gifts, donations, and revenue sharing.

The revenue provided by some of these sources, such as the alcohol and beverage tax, could be stated as a simple function of community population. Such is the case of municipally operated utilities, depending on the similarity of rate structures from one community to the next and

whether the community does in fact operate its own utilities. Some revenue sources depend upon the total economic activity of the community and the willingness of the community to pay for services (i.e., tax themselves). Sales tax receipts and franchise tax revenues belong to this category. The revenue equation is stated as:

REV = a + bTYTR + cPCPCY + dW + eS + fSW (3) where

REV - total community general fund revenues,

- TYTR total community income multiplied by the sales tax rate,
- PCPCY- percent change in per capita income from the previous calendar year to the current calendar year,
- W an indicator variable for the presence of a municipal water utility,
- S an indicator variable for the presence of a municipal sewerage utility,
- SW an indicator variable for the presence of a municipal solid waste disposal utility.

H0: b,c,d,e,f > 0.

Total income is an indicator of the economic resources available to the community. The sales tax rate guages a community's willingness to pay for services and directly affects sales tax revenue. Total income multiplied by the tax rate (TYTR) measures both the community's ability and willingness to pay for community services. The rate of change in per capita income (PCPCY) is a reflection of local economic activity which could affect several revenue sources, most notably sales tax receipts. The indicator variables (W) (S) (G) account for the presence of municipal utilities. Municipally operated utilities may be a source of substantial revenue. These variables will be tested in two forms. In one case they will be "zero" if no such utility is operated by the municipality or "one" if it is. In the other case the community's population will be used rather than "one" if a community operates a utility. This is because utility revenue is a function of population.

# Community Service Expenditures

The model for expenditures will estimate current expenditures for several different types of services as well as total service expenditures. Data from all twenty of the sample communities are used to estimate the equation for total expenditures while only half of the sample communities reported data for specific services. These services are administration, fire protection, police protection, parks, and street maintenance. The general form of the function for all services is:

$$CX = a + bP + cPSQ + dPCP + ePCY + fPCPCY$$
(4)  
+ gPN + hTR + iLK

```
where
```

CX - current community service expenditures,

P - community population on the first day of the fiscal year,

PSQ - community population squared,

PCP - percent change in community population,

PCY - per capita income,

PCPCY- percent change in per capita income,

- PN population of the nearest larger community divided by the distance between the two communities,
- TR community sales tax rate,
- LK capital expenditures in the previous fiscal year.

H0: b,d,e,f,h > 0; c,g,i < 0.

Observed levels of community service expenditures are assumed to represent an equilibrium between supply and demand. The equation uses variables assumed to affect both supply and demand and attempts to estimate an equilibrium level of current expenditures without explicitly deriving separate supply and demand functions. Nevertheless, some of the independent variables are assumed to affect the cost of providing services and thus influence supply while other variables influence a community's ability and willingness to pay for services and thus influence demand.

The most obvious variable affecting cost is community population (P). The more people a community has, the more that community will have to spend to provide a given per capita level of service. The rate of population change (PCP) should also increase costs. High rates of inmigration may be accompanied by higher crime rates and other phenomena associated with higher per capita service needs. Another variable affecting cost is the proximity of a large neighboring community (PN). Small communities may rely upon a large neighbor to provide some services. For example, residents of a small community may commute to a larger one in order to enjoy better recreational facilities. Such a community would be able to spend less on parks than a similar community in a more isolated setting. PN should be negatively related to expenditures.

It is likely that all of the study communities are in the declining cost portion of the long-run average cost curve. Evidence presented in Chapter III indicated scale economies in solid waste disposal. If these communities do have the potential of decreasing costs with an increase in size then, in the long-run, total expenditures should increase at a decreasing rate as population increases. A variable of population squared (PSQ) should bear a negative relation to expenditures. However, an increase in population from one year to the next may not necessarily lead to the immediate attainment of long-run economies of scale. Indeed, short-run diseconomies may be experienced as the community moves past the least cost point of its shortrun average cost curve. For example, per capita police expenditures would fall if population increased and total police expenditures remained constant. Therefore a drop in per capita expenditures could be attributed to economies of scale when in fact it is due to a drop in per capita output of the service. Conversely, the achievement of economies of scale could be misinterpreted as a drop in output. Unfortunately, the data at hand do not allow a distinction

between these two possible causes of changes in per capita expenditures.

Capital expenditures are assumed to enhance the quality of community service facilities and thus lower operating expenditures. It is hoped that capital expenditures from the previous year (LK) will help explain some scale economies. Although capital expenditures may influence current expenditures for several years to come, the effects of capital expenditures can only be examined upon current expenditures for the following year due to gaps in the data. These gaps also significantly decrease the number of observations available for regression. Lagged capital expenditures should lower current expenditures by moving the community further down its long-run cost curve. The coefficient of LK should therefore be negative.

Per capita income (PCY) is expected to be positively related to expenditures. Its influence, however, is not felt by determining costs but by affecting demand. The more affluent a community the more money it can spend on community services. Per capita income is an indication of the budget constraint faced by the community. The local sales tax rate (TR) is a reflection of preference. The higher the tax rate the more willing a community may be to spend money on community services.

Another variable which may affect demand is the rate of change of per capita income (PCPCY). Residents may be more willing to spend money for local services during a

period of increasing affluence due to the greater confidence in the community's future. Such feelings would be reinforced if the community is experiencing long-term income growth. PCPCY will be tested not only for the year at hand but for a moving average of both the previous two years and the previous three years.

#### CHAPTER V

## EMPIRICAL RESULTS

In Chapter IV, the theoretical considerations of Chapter II and the data discussed in Chapter III were combined to construct models to estimate county per capita income, community population, community general fund revenue, and current community service expenditures. Several hypotheses were discussed regarding the determinants of these dependent variables. The Statistical Analysis System (SAS) was used to estimate the model and test the hypotheses developed in the previous chapter. Following the discussion of these results is an example of an application of the model.

# Estimation of the Model

The figures given in parentheses below the coefficients estimated by the regression models are the significance levels of the coefficients. They give the probability of finding a t-statistic for the variable with a greater absolute value. Thus the lower the figure the greater the significance of the variable.

## Per Capita Income

Four regression equations for per capita income are listed in Table VIII. Use of the Chow test suggested separate

#### TABLE VIII

r

| Y     | INT     | FY      | TP      | MY      | MFY     | DV      | N  | <u></u> 2 |
|-------|---------|---------|---------|---------|---------|---------|----|-----------|
| PCY   | 2626    | 1.16    | 1.04    | 3.11    | 1.21    |         | 54 | .73       |
| 79-84 | (.0160) | (.0001) | (.0002) | (.0001) | (.0059) |         |    |           |
| РСҮ   | 4317    | 1.13    | 1.02    | 1.20    | 0.82    |         | 41 | .64       |
| 75-78 | (.0003) | (.0001) | (.1750) | (.0001) | (.1150) |         |    |           |
| PCY   | 2381    | 1.21    | 2.81    | 1.26    | 1.34    |         | 96 | .70       |
| 75-84 | (.0020) | (.0001) | (.0001) | (.0001) | (.0001) |         |    |           |
| PCY   | 3076    | 1.17    | 2.15    | 1.03    | 1.04    | 698     | 96 | .75       |
| 75-84 | (.0001) | (.0001) | (.0001) | (.0001) | (.0017) | (.0001) |    |           |

#### ESTIMATED EQUATIONS FOR PER CAPITA INCOME

## Explanation of symbols:

Y - dependent variable,

INT- intercept,

FY - county per capita farm income,

TP - county per capita transfer payments,

MY - county per capita mining income,

MFY- county per capita manufacturing income,

DV - dummy variable indicating impact and post impact periods,

N - number of observations,  $R^2$  - R-square,

PCY- Per capita income.

Figures in parentheses are the significance levels of the coefficient listed above.

equations for 1975 through 1978 and for 1979 through 1984. The first time period corresponds to the pre-impact period identified in Chapter III while the second period corresponds to the impact and post-impact phases of the energy impact cycle. The equation for pre-impact (75-78) has a high intercept (4317) and low coefficients. In fact the coefficient for manufacturing income is less than one, nonsensically indicating that an additional dollar of per capita income in this sector adds less than a dollar to county per capita income. Three of the variables' coefficients reach their lowest levels in the pre-impact model, while the coefficient for mining income reaches its next-to-lowest value. The low coefficients combined with the high intercept and low  $R^2$  suggest that the variables do a poor job of explaining changes in per capita income in the pre-impact period. The equation for the later time period (79-84) has a much lower intercept (2626) and a very high coefficient for per capita mining income.

Two equations span the entire study period. One simply uses the same variables as the first two equations. This however does not satisfy the requirements of the Chow test. The other rectifies this by using an indicator variable which adds 698 to the intercept during the impact and postimpact periods. The coefficient for mining income is quite low in this equation, suggesting that the indicator variable serves as a proxy for the effects of higher mining income from 1979 to 1984. Although this is a poor

substitute for a coefficient which accurately models the effects of mining income, the indicator variable is necessary to reach a form of the equation which is valid for the entire study period.

The coefficient for farm income is fairly consistent across the four equations. The coefficient for transfer payments is low in the two equations modeling separate time periods and high in the two equations modeling the entire study period. Based on these conflicting results, the role of transfer payments in the local economies of this area is difficult to determine. Given the lack of variation observed in transfer payments, it could be that this variable serves primarily the role of part of the intercept. If so, the validity of the coefficient for transfer payments is doubtful for even small changes. <u>Population</u>

Community Population (P) was found to depend on population in the previous year (LP), the change in total community income over the previous two years (CTY), and an indicator variable which added .10014 to the growth rate for the year of 1981 (D81).

P = -1.52 + 1.0188(LP) + .0000248(CTY) + .10014(D81). (.9260) (.0001) (.0001) (.0001)No other variables, including the intercept, were found significant. The inclusion of the indicator variable was necessary because of a non-random distribution of the residuals. This was identified by a visual inspection of the residuals plotted against time. Even with the indicator variable, the Chow test indicated great year-to-year instability in the model. No solution could be found to this problem. Despite the high  $R^2$  (.997), obviously some important determinant of population change was not identified.

## General Fund Revenues

The function estimated for general fund revenues is: Revenue = -7070 + 0.60(TYTR) + 61.58(W) + 77.87(SW). (.8456) (.0001) (.0001) (.0001) Total community income multiplied by the local sales tax rate (TYTR) and the presence of a municipally operated water (W) and/or solid waste (SW) utility were found to significantly influence general fund revenues. The percent change in per capita income (PCPCY), the presence of a municipally operated sewerage facility (S), and the intercept were not significant. The high R<sup>2</sup> (.970) indicates a good fit.

# Community Service Expenditures

The functions estimated for community service expenditures are reported in Table IX. Three equations are presented for total current expenditures. The R<sup>2</sup> values ranged from .93 to .96. In the first equation a squared population (PSQ) term was used. The positive sign of PSQ's coefficient indicates that total current expenditures rise with population at an increasing rate. This does not lend support to the notion mentioned earlier that communities of this size are in a decreasing portion of their long-run
### TABLE IX

# ESTIMATED EQUATIONS FOR COMMUNITY SERVICE EXPENDITURES

| Y  | INT     | Р       | PSQ     | PCB      | PCY     | LK      | TR | N   | <u>2</u> |
|----|---------|---------|---------|----------|---------|---------|----|-----|----------|
| тс | -362733 | 170.59  | .0077   |          | 33.03   | -3.03   |    | 63  | .93      |
|    | (.0708) | (.0001) | (.0005) |          | (.1322) | (.0001) |    |     |          |
| TC | -511975 | 285.67  | 017     | .0000011 | 36.26   | -2.51   |    | 63  | .93      |
|    | (.0264) | (.0029) | (.3548) | (.1813)  | (.0988) | (.0001) |    |     |          |
| TC | -305222 | 162.37  | 0109    | .0000007 | 24.64   |         |    | 127 | .96      |
|    | (.0001) | (.0001) | (.0033) | (.0001)  | (.0005) |         |    |     |          |
| AD | - 11678 | 13.77   |         |          |         |         |    | 66  | .82      |
|    | (.0067) | (.0001) |         |          |         |         |    |     |          |
| FR | -81166  | 24.03   |         |          | 6.11    | 99      |    | 39  | .90      |
|    | (.0044) | (.0001) |         |          | (.0949) | (.0605) |    |     |          |
| FR | -84277  | 21.74   |         |          | 6.85    |         |    | 69  | .88      |
|    | (.0002) | (.0001) |         |          | (.0150) |         |    |     |          |
| FR | -90460  | 36.18   | 0026    | .0000001 | 5.56    | 67      |    | 39  | .91      |
|    | (.0121) | (.0121) | (.2528) | (.2091)  | (.1292) | (.2363) |    |     |          |
| FR | -98467  | 40.64   | 0037    | .0000002 | 5.71    |         |    | 69  | .90      |
|    | (.0002) | (.0001) | (.0062) | (.0024)  | (.0299) |         |    |     |          |
| ΡK | -36028  |         | .00098  |          | 6.52    | -1.11   |    | 40  | .82      |
|    | (.1796) |         | (.0001) |          | (.0699) | (.0004) |    |     |          |
| PK | - 75307 | 31.17   | 0045    | .0000002 | 5.96    | 58      |    | 40  | .86      |
|    | (.0162) | (.0087) | (.0146) | (.0028)  | (.0666) | (.0666) |    |     |          |
| РК | -81776  | 30.88   | 0047    | .0000003 | 6.72    |         |    | 70  | .84      |
|    | (.0011) | (.0004) | (.0002) | (.0001)  | (.0097) |         |    |     |          |
| PL | -44308  | 15.12   | .0013   |          | 9.29    | 24      |    | 39  | .98      |
|    | (.0655) | (.0009) | (.0001) |          | (.0018) | (.1597) |    |     |          |
| PL | -64362  | 12.33   | .0014   |          | 12.80   |         |    | 68  | .96      |
|    | (.0048) | (.0014) | (.0001) |          | (.0001) |         |    |     |          |
| PL | -90054  | 51.41   | 005     | .0000003 | 8.59    | .099    |    | 39  | .99      |
|    | (.0002) | (.0001) | (.0012) | (.0001)  | (.0004) | (.5179) |    |     |          |

65

| TAB | LE | IX | (Continued) |
|-----|----|----|-------------|
|     |    |    | <b>\</b>    |

| <u>Y</u> | INT      | Р       | PSQ     | PCB      | PCY     | LK      | TR      | N  | <u></u> 2 |
|----------|----------|---------|---------|----------|---------|---------|---------|----|-----------|
| PL       | - 111251 | 49.56   | 0048    | .0000003 | 11.76   |         |         | 68 | .97       |
|          | (.0001)  | (.0001) | (.0001) | (.0001)  | (.0001) |         |         |    |           |
| sw       | -65849   | 11.58   |         |          | 12.80   |         |         | 51 | .75       |
|          | (.0143)  | (.0001) |         |          | (.0004) |         |         |    |           |
| sw       | - 78071  | 33.95   | 0039    | .0000002 | 10.30   |         |         | 51 | .79       |
|          | (.0088)  | (.0017) | (.0129) | (.0082)  | (.0029) |         |         |    |           |
| ST       | -168886  | 46.03   | 00167   |          | 9.89    | 34      | 26457   | 39 | .86       |
|          | (.0002)  | (.0001) | (.0002) |          | (.0369) | (.0662) | (.0321) |    |           |
| ST       | -130251  | 34.65   | 00099   |          | 10.42   |         | 16604   | 69 | .81       |
|          | (.0003)  | (.0001) | (.0038) |          | (.0067) |         | (.1137) |    |           |
| ST       | - 185440 | 58.41   | -0036   | .0000001 | 9.92    | 26      | 27566   | 39 | .86       |
|          | (.0007)  | (.0036) | (.2720) | (.5504)  | (.0384) | (.2747) | (.0293) |    |           |
| ST       | - 168245 | 62.08   | 0055    | 0000002  | 9.41    |         | 19417   | 69 | .83       |
|          | (.0001)  | (.0001) | (.0030) | (.0125)  | (.0109) |         | (.0563) |    |           |

Explanation of symbols:

Y - dependent variable,

INT- intercept,

P - community population,

PSQ- community population squared,

- PCB- community population cubed,
- PCY- county per capita income,
- LK lagged capital expenditures,
- TR sales tax rate,
- N number of observations,

R<sup>2</sup> - R-square,

TC - total current community service expenditures,

AD - current administrative expenditures,

FR - current fire protection expenditures,

PK - current park expenditures,

PL - current police expenditures,

SW - current solid waste disposal expenditures,

ST - current street expenditures.

average cost curve. The relationship of this variable (PSQ) to economies of scale is not clear because of the problems in comparing per unit service output between communities. The significance level of the per capita income variable (.1322) was marginal. Capital expenditures of \$100 were estimated to decrease current expenditures in the following year by \$303.

The second equation used a cubic form of population. The significance level of per capita income (.0988) was somewhat better than in the first equation, while the significance levels of the squared population term (.3548) and the cubed population term (.1813) were poor. The third equation used the same variables as the second except for the lagged capital expenditures variable. Consequently, the number of observations used to estimate this equation (127) was much greater than that used to estimate the first two equations (63). The significance levels of all the variables were better than the previous equations and the  $R^2$  (.96) was the highest of the three.

Only one equation for administrative expenditures is presented. In no cases were the sales tax rate, lagged capital expenditures, per capita income, or any of the polynomial forms of the population variable significant. The equation indicates that annual administrative expenditures increase by \$13.77 for each additional resident in a community. The  $R^2$  of .82 was somewhat low but acceptable.

Four equations are given for fire protection expenditures. The variable for lagged capital expenditures was significant when used with a linear form of the population variable. The second equation resembled the first equation for fire expenditures in the values of the coefficients. The most notable difference was the change in the significance level of the per capita income variable from .0949 to .0150 when the lagged capital expenditure variable was dropped. In the third and fourth fire protection expenditure equations a cubic form of the population variable was used. In the third equation the significance levels of population squared, population cubed, per capita income, and lagged capital expenditures were all unsatisfactory. When the lagged capital expenditures variable was dropped the values of the coefficients changed very little, yet the significance levels improved dramatically. The  $R^2$  values for the fire protection equations ranged from .88 to .91.

A linear form of population was not found significant in explaining annual park expenditures. The first equation listed for park expenditures had three significant variables: population squared, per capita income, and lagged capital expenditures. The second equation used a cubic form of population. The absolute value of the lagged capital expenditures variable was about half of that in the first park expenditure equation. The last equation was similar to the second except for the absence of lagged capital

expenditures, the greater number of observations, and the improved significance levels of the remaining variables. The  $R^2$  values for the three equations were .82, .86, and .84.

The four equations presented for police expenditures had the highest  $R^2$  values for any of the service categories. These ranged from .96 to .99. Unlike most of the other equations, lagged capital expenditures did not assert itself in any of the police expenditure equations. In the first police equation the value of the lagged capital expenditures variable's coefficient was small and its significance level was poor. In the third equation, lagged capital expenditures was clearly not significant. The second equation reported for police expenditures implied that police expenditures increase with population at an increasing rate. Perhaps larger communities in the sample provided a greater quantity or better quality of police protection. The analysis at the end of Chapter III however provided no support for a positive long-run relationship between community size and police protection output. An alternative explanation for the positive coefficient of population squared is that the energy impact was associated with both rising population and rising crime rates. The coefficient may, therefore, reflect a short-run affect of the energy impact. This was supported by the generally higher per capita police expenditures reported for the impact and post-impact periods. These were given in Table VI of Chapter III.

The lagged capital expenditures variable was not significant in any form of the solid waste disposal expenditures function. The R<sup>2</sup> values for the solid waste disposal equations (.75 and .79) were the lowest for any of the service categories studied. The first equation had a linear form of the population variable. Solid waste disposal expenditures were estimated to increase by \$11.58 for each new resident and by \$12.80 for each one dollar increase in per capita income. The value of the per capita income variable fell to 10.30 in the equation using a cubic population term. The significance levels of all the variables in both of the solid waste disposal expenditure functions were satisfactory.

The four equations for street expenditures had the distinction of being the only functions in which the sales tax rate was significant. The significance level of the sales tax rate was worse and the value of its coefficient was less when the lagged capital expenditure variable was not present. The first two equations used a quadratic form of population. The coefficient of the population squared variable was negative. This is consistent with the last portion of Chapter III which presented support of long-run economies of size in solid waste disposal. The last two equations used a cubic form of population. Population squared and population cubed were significant only when the lagged capital expenditures variable was not used.

# Simulation Results

To estimate the influence of both the oil boom and declining farm income upon community revenues and expenditures, a simulation analysis was performed using these equations. Simulation analysis is a numerical technique for conducting experiments which involves certain types of mathematical and logical models that describe the behavior of an economic system over time. In this case the models used are those estimated by the regression analysis, the economic unit is a community, the time period is the last half of the study period, and the experiment consists of determining what affect different levels of farm and mining income would have had upon community revenues and expenditures. To demonstrate the use of the model upon communities of varying sizes, three of the sample communities, Fairview, Kingfisher, and Mooreland, were chosen to be used in the simulation. Estimates were made for three different situations: 1) a baseline assuming no change in basic income levels, 2) a scenario assuming no energy impact, and 3) a scenario assuming no drop in farm income during the 1980s. By comparing scenarios 2 and 3 to the baseline, an estimate is obtained of the impact of the area's two major economic events of the past decade, the energy impact and the farm crisis, upon community revenues and expenditures.

To compute per capita income assuming no energy impact, the peak observed in mining income during the early 1980s was leveled off. The difference between county mining income for 1984 and for 1978 was divided by the number of years between the observations (6) and the result was added to the 1978 figure successively to reach adjusted levels of mining income for each year from 1979 to 1984. Because the dummy variable was judged to serve as a proxy for higher mining income in the 1980s, its coefficient was dropped from the equation for the no-energy-impact scenario. Consequently, the intercept used to estimate per capita income assuming no-energy-impact was less by 698 than that used to estimate the baseline and the no-decline-in-farm-income scenario.

To estimate per capita income assuming no-decline-infarm-income during the 1980s, average farm income from 1980 to 1984 was set at the same level as 1975 to 1979. Rather than using the same figure for each year during the 1980s, the observed farm income levels from 1975 to 1979 were substituted for the 1980 to 1984 figures. This was done to retain the great year-to-year variability characteristic of farm income. To model conditions during the 1980s somewhat more closely, the pre-1980 farm income figures were placed in years during the 1980s to insure that the level of farm income from one year to the next would follow the same pattern observed during the 1980s. The highest level of farm income from 1975 to 1979 replaced the highest level of farm income during the 1980s, the second highest level of farm income from 1975 to 1979 replaced the second highest level during the 1980s, and so on.

The simulation results are reported in Table X. For each of the three communities, there are five rows of figures. The first row (a) gives the baseline estimates, the second row (b) gives the estimates assuming no energy impact cycle, and the third row (c) gives the percent difference between the baseline and the no-energy-impactcycle estimates. The figures in the third row indicate the magnitude of the affect of the energy impact cycle upon the sample community. The fourth row (d) lists the estimates assuming no decline in farming income and the last row (e) gives the percent difference between the fourth row estimates and the baseline. This gives an indication of the impact of the agricultural crisis upon the sample community. The first six columns report results for the last six years of the study period. This period coincides with the drop in farm income and the impact and post-impact periods of the energy impact cycle. The final column reports the annual average of the estimates over these six years.

# Per Capita Income

The results of the simulation for per capita income show a large drop in income assuming no oil boom and a moderate rise assuming no decline in farm income. The largest difference between the baseline and the no-oil-boom scenario occurred in 1981 and 1982. The estimates of the average annual impact of the oil boom upon per capita

#### TABLE X

## SIMULATION ESTIMATES FOR SAMPLE COMMUNITIES FROM 1979 TO 1984

| Year       | 1979   | 1980   | 1981   | 1982   | 1983   | 1984   | Average |
|------------|--------|--------|--------|--------|--------|--------|---------|
| Per Capita | Income |        |        |        |        |        |         |
| Fairview   |        |        |        |        |        |        |         |
| a)         | 9859   | 9241   | 9195   | 9323   | 8057   | 8437   | 9019    |
| b)         | 8640   | 8014   | 7691   | 7862   | 7283   | 7718   | 7868    |
| c)         | -14.11 | -15.31 | -19.55 | -18.57 | -10.62 | -9.32  | -14.58  |
| d)         | 9859   | 9893   | 9610   | 9688   | 8107   | 8407   | 9261    |
| e)         | 0.00   | 6.59   | 4.32   | 3.78   | 0.62   | -0.37  | 2.49    |
| Kingfisher |        |        |        |        |        |        |         |
| a)         | 9391   | 10008  | 10460  | 10164  | 8225   | 8160   | 9401    |
| b)         | 8218   | 8092   | 7339   | 7827   | 7233   | 7462   | 7695    |
| c)         | -14.27 | -23.68 | -42.51 | -29.86 | -13.72 | -9.35  | -22.23  |
| d)         | 9391   | 10841  | 10123  | 10486  | 8799   | 8722   | 9727    |
| e)         | 0.00   | 7.68   | -3.32  | 3.07   | 6.52   | 6.44   | 3.40    |
| Mooreland  |        |        |        |        |        |        |         |
| a)         | 8656   | 8689   | 9455   | 9424   | 7944   | 6535   | 8450    |
| b)         | 7212   | 6509   | 6021   | 5843   | 5883   | 5837   | 6217    |
| c)         | -20.02 | -33.49 | -57.04 | -61.29 | -35.03 | -11.96 | -36.47  |
| d)         | 8656   | 9165   | 9607   | 9634   | 8159   | 6715   | 8656    |
| e)         | 0.00   | 5.19   | 1.59   | 2.18   | 2.64   | 2.69   | 2.38    |
| Population |        |        |        |        |        |        |         |
| Fairview   |        |        |        |        |        |        |         |
| a)         | 3337   | 3449   | 4005   | 4186   | 4104   | 4107   | 3865    |
| b)         | 3342   | 3404   | 3386   | 3435   | 3464   | 3515   | 3424    |
| c)         | 0.16   | -1.35  | -18.29 | -21.85 | -18.49 | -16.86 | -12.78  |
| d)         | 3439   | 3662   | 4074   | 4128   | 4050   | 3996   | 3892    |
| e)         | 2.97   | 5.81   | 1.68   | -1.40  | -1.32  | -2.78  | 0.83    |
| Kingfisher |        |        |        |        |        |        |         |
| a)         | 4656   | 4999   | 5719   | 5875   | 5822   | 5769   | 5473    |
| b)         | 4544   | 4671   | 4655   | 4711   | 4785   | 4830   | 4699    |
| c)         | -2.47  | -7.02  | -22.85 | -24.73 | -21.66 | -19.43 | -16.36  |
| d)         | 4669   | 5076   | 5770   | 5878   | 5794   | 5648   | 5473    |
| e)         | 0.28   | 1.52   | 0.89   | 0.05   | -0.48  | -2.14  | 0.02    |
| Mooreland  |        |        |        |        |        |        |         |
| a)         | 1289   | 1353   | 1562   | 1626   | 1602   | 1577   | 1501    |
| b)         | 1260   | 1255   | 1240   | 1241   | 1258   | 1280   | 1256    |
| <b>c)</b>  | -2.32  | -7.83  | -26.04 | -31.05 | -27.29 | -23.15 | -19.61  |
| d)         | 1305   | 1385   | 1581   | 1628   | 1598   | 1511   | 1501    |
| e)         | 1.19   | 2.34   | 1.18   | 0.09   | -0.22  | -4.35  | 0.04    |

TABLE X (Continued)

| Year             | FY80            | FY81    | FY82    | FY83    | FY84    | FY85    | Average |
|------------------|-----------------|---------|---------|---------|---------|---------|---------|
|                  |                 |         |         |         |         |         |         |
| General Fu       | ind Revenues    |         |         |         |         |         |         |
| Fairview         |                 |         |         |         |         |         |         |
| a)               | 1057296         | 1021798 | 1163573 | 1361317 | 1384799 | 1443811 | 1238766 |
| b)               | 958472          | 915180  | 937085  | 1068627 | 1150737 | 1230235 | 1043389 |
| c)               | -10.31          | -11.65  | -24.17  | -27.39  | -20.34  | -17.36  | -18.54  |
| d)               | 1071273         | 1104670 | 1212973 | 1390869 | 1379621 | 1426500 | 1264318 |
| e)               | 1.30            | 7.50    | 4.07    | 2.12    | 038     | -1.21   | 2.24    |
| Kingfisher       |                 |         |         |         |         |         |         |
| a)               | 1275366         | 1598855 | 1958530 | 1971660 | 1814732 | 1798074 | 1736203 |
| b)               | 1144556         | 1308539 | 1307702 | 1394636 | 1433924 | 1477298 | 1344443 |
| c)               | -11.43          | -22.19  | -49.77  | -41.37  | -26.56  | -21.71  | -28.84  |
| d)               | 1277332         | 1672037 | 1921083 | 2020559 | 1903617 | 1856554 | 1775197 |
| e)               | 0.15            | 4.38    | -1.95   | 2.42    | 4.67    | 3.15    | 2.14    |
| Mooreland        |                 |         |         |         |         |         |         |
| a)               | 659857          | 669073  | 752303  | 757141  | 665533  | 580858  | 680809  |
| 5)<br>b)         | 546090          | 607010  | /53206  | /30756  | 461866  | 486857  | 4700/1  |
| c)               | -20.83          | -36 05  | - 65 08 | -72 17  | -64 10  | - 10 31 | -/3 07  |
| ر)<br>م)         | -20.80          | 700477  | 744707  | 77//02  | -44.10  | - 17.J1 | 43.07   |
|                  | 001519          | 709033  | 100193  | 774402  | 003200  | 569074  | 097440  |
| e)<br>Tatal Quan | U.25            | 5.72    | 1.00    | 2.23    | 2.00    | 1.39    | 2.34    |
| lotal Curr       | ent Expenditure | es      |         |         |         |         |         |
| Fairview         |                 |         |         |         |         | (74070  |         |
| a)               | 384166          | 381548  | 441767  | 464526  | 424468  | 431939  | 421402  |
| b)               | 354695          | 346260  | 336275  | 345998  | 334984  | 351408  | 344937  |
| c)               | -8.31           | -10.19  | -31.37  | -34.26  | -26.71  | -22.92  | -22.29  |
| d)               | 395653          | 421345  | 459484  | 467253  | 419847  | 421371  | 430826  |
| e)               | 2.90            | 9.45    | 3.86    | 0.58    | -1.10   | -2.51   | 2.20    |
| Kingfisher       |                 |         |         |         |         |         |         |
| a)               | 516527          | 568119  | 655536  | 664868  | 611436  | 607063  | 603925  |
| b)               | 475693          | 486115  | 465859  | 483839  | 477062  | 487479  | 479341  |
| c)               | -8.58           | -16.87  | -40.72  | -37.42  | -28.17  | -24.53  | -26.05  |
| d)               | 517910          | 587924  | 652661  | 673122  | 622594  | 605164  | 609896  |
| e)               | 0.27            | 3.37    | -0.44   | 1.23    | 1.79    | 031     | 0.98    |
| Mooreland        |                 |         |         |         |         |         |         |
| a)               | 100745          | 110342  | 157445  | 165190  | 125539  | 87496   | 124459  |
| b)               | 61163           | 43150   | 29049   | 24802   | 28140   | 30045   | 36058   |
| c)               | -64.72          | -155.72 | -442.00 | -566.04 | -346.12 | -191.22 | -294.30 |
| d)               | 102947          | 126437  | 163722  | 170629  | 130305  | 83106   | 129525  |
| a)               | 2 1/            | 12 73   | 3 83    | 3 10    | 3 66    | -5 28   | 3.38    |
|                  | 2.14            | 12.13   | 5.05    | 5.17    | 5.00    | 5.20    | 5.50    |
| Administra       | it ion          |         |         |         |         |         |         |
| Fairview         | 7/070           | 75045   | 17/74   | 15047   | 1/07/   | // 075  | / 1579  |
| a)               | 54272           | 55815   | 45471   | 43703   | 44004   | 44013   | 41330   |
| b)               | 34341           | 35195   | 54947   | 35622   | 20021   | 20/24   | 374/5   |
| c)               | 0.20            | -1.76   | -24.39  | -29.03  | -24.47  | -22.20  | • 16.94 |
| d)               | 35677           | 38748   | 44421   | 45165   | 44091   | 43347   | 41908   |
|                  | 7 0/            | 7 57    | 2 1/    | -1 77   | -1 60   | -7 57   | 1 11    |

### TABLE X (Continued)

| Year       | FY80           | FY81    | <u>FY82</u> | FY83    | FY84    | FY85    | Averag       |
|------------|----------------|---------|-------------|---------|---------|---------|--------------|
| Administra | tion (cont'd.) |         |             |         |         |         |              |
| Kingfisher |                |         |             |         |         |         |              |
| a)         | 52435          | 57158   | 67073       | 69221   | 68491   | 68133   | 6375         |
| b)         | 50893          | 52642   | 52421       | 53192   | 54211   | 54831   | 5303         |
| c)         | -3.03          | -8.58   | -27.95      | -30.13  | -26.34  | -24.26  | -20.0        |
| d)         | 52614          | 58219   | 67775       | 69262   | 68105   | 66095   | 6367         |
| e)         | 0.34           | 1.82    | 1.04        | 0.06    | -0.57   | -3.08   | -0.0         |
| Mooreland  |                |         |             |         |         |         |              |
| a)         | 6072           | 6953    | 9831        | 10712   | 10382   | 10037   | 899          |
| b)         | 5672           | 5603    | 5397        | 5411    | 5645    | 5948    | 561          |
| c)         | -7.04          | -24.08  | -82.16      | -97.98  | -83.92  | -68.76  | -60.6        |
| d)         | 6292           | 7393    | 10092       | 10740   | 10326   | 9128    | 899          |
| e)         | 3.50           | 5.96    | 2.59        | 0.26    | -0.53   | -9.96   | 0.3          |
| Fire Prote | ction          |         |             |         |         |         |              |
| Fairview   |                |         |             |         |         |         |              |
| a)         | 55804          | 54005   | 65777       | 70589   | 60134   | 62186   | 6141         |
| b)         | 47562          | 44622   | 42018       | 44255   | 40919   | 45007   | 4406         |
| c)         | -17.33         | -21.03  | -56.55      | -59.51  | -46.96  | -38.17  | -39.9        |
| d)         | 58021          | 63102   | 70120       | 71829   | 59303   | 60184   | 6376         |
| e)         | 3.82           | 14.42   | 6.19        | 1.73    | -1.40   | -3.33   | 3.5          |
| Kingfisher |                |         |             |         |         |         |              |
| a)         | 81273          | 92956   | 111705      | 113069  | 98635   | 97624   | <b>992</b> 1 |
| b)         | 70803          | 72701   | 67195       | 71755   | 69295   | 71842   | 7059         |
| c)         | -14.79         | -27.86  | -66.24      | -57.58  | -42.34  | -35.89  | -40.7        |
| d)         | 81555          | 97870   | 110505      | 115340  | 101958  | 98256   | 1009         |
| e)         | 0.35           | 5.02    | -1.09       | 1.97    | 3.26    | 0.64    | 1.0          |
| Mooreland  |                |         |             |         |         |         |              |
| a)         | 3039           | 4657    | 14448       | 15627   | 4967    | -5228   | 62           |
| b)         | - 7482         | -12407  | - 16076     | - 17273 | - 16630 | - 16466 | - 1438       |
| c)         | -140.62        | -137.54 | -189.87     | -190.47 | -129.87 | -68.25  | -142.7       |
| d)         | 3387           | 8613    | 15902       | 17109   | 6353    | -5430   | 76           |
| e)         | 10.27          | 45.93   | 9.15        | 8.66    | 21.81   | -3.72   | 16.          |
| Parks      |                |         |             |         |         |         |              |
| Fairview   |                |         |             |         |         |         |              |
| a)         | 46334          | 43228   | 47573       | 49787   | 40674   | 42645   | 4504         |
| b)         | 38190          | 34567   | 32228       | 33832   | 30207   | 33591   | 3370         |
| c)         | -21.33         | -25.06  | -47.61      | -47.16  | -34.65  | -26.95  | -33.         |
| d)         | 47289          | 49492   | 50886       | 51813   | 40604   | 42208   | 4704         |
| e)         | 2.02           | 12.66   | 6.51        | 3.91    | -0.17   | -1.04   | 3.9          |
| Kingfisher |                |         |             |         |         |         |              |
| a)         | 53501          | 59871   | 67511       | 66556   | 53172   | 52562   | 588          |
| b)         | 44870          | 44871   | 39705       | 43354   | 39846   | 41677   | 4238         |
| c)         | -19.24         | -33.43  | -70.03      | -53.52  | -33.44  | -26.12  | -39.3        |
| d)         | 53587          | 63540   | 65582       | 68740   | 56843   | 55368   | 6061         |
|            | 0.1/           | F 77    | -2 0/       | 3 18    | 6 46    | 5.07    | 2.0          |

TABLE X (Continued)

| Year         | FY80     | FY81    | FY82    | FY83    | FY84    | FY85    | Average |
|--------------|----------|---------|---------|---------|---------|---------|---------|
| Parks (cont' | d.)      |         |         |         |         |         |         |
| Mooreland    |          |         |         |         |         |         |         |
| a)           | 9030     | 10534   | 19672   | 20628   | 10249   | 325     | 11740   |
| b)           | - 1264   | -6091   | -9678   | - 10854 | - 10236 | -10096  | -8037   |
| c)           | -814.30  | -272.95 | -303.26 | -290.05 | -200.12 | -103.22 | -330.65 |
| d)           | 9353     | 14363   | 21042   | 22075   | 11621   | 313     | 13128   |
| e)           | 3.46     | 26.66   | 6.51    | 6.56    | 11.81   | -3.90   | 8.51    |
| Police Prote | ction    |         |         |         |         |         |         |
| Fairview     |          |         |         |         |         |         |         |
| a)           | 127770   | 123565  | 137650  | 143742  | 126785  | 130271  | 131630  |
| b)           | 113572   | 107910  | 103619  | 106968  | 100946  | 107440  | 106742  |
| c)           | -12.50   | -14.51  | -32.84  | -34.38  | -25.60  | -21.25  | -23.51  |
| d)           | 130561   | 136943  | 144288  | 146573  | 126002  | 128153  | 135420  |
| e)           | 2.14     | 9.77    | 4.60    | 1.93    | -0.62   | -1.65   | 2.69    |
| Kingfisher   |          |         |         |         |         |         |         |
| a)           | 156163   | 171719  | 194314  | 194601  | 170516  | 169124  | 176073  |
| b)           | 139630   | 141252  | 132007  | 139109  | 133919  | 137702  | 137270  |
| c)           | -11.84   | -21.57  | -47.20  | -39.89  | -27.33  | -22.82  | -28.44  |
| d)           | 156480   | 179133  | 191581  | 198461  | 176590  | 172166  | 179068  |
| e)           | 0.20     | 4.14    | -1.43   | 1.94    | 3.44    | 1.77    | 1.68    |
| Mooreland    |          |         |         |         |         |         |         |
| a)           | 47094    | 49942   | 66785   | 68759   | 50480   | 32996   | 52676   |
| b)           | 28987    | 20526   | 14202   | 12148   | 13281   | 13594   | 17123   |
| c)           | -62.46   | -143.32 | -370.25 | -466.03 | -280.11 | -142.73 | -244.15 |
| d)           | 47712    | 56760   | 69269   | 71301   | 52863   | 32679   | 55097   |
| e)           | 1.30     | 12.01   | 3.59    | 3.57    | 4.51    | -0.97   | 4.00    |
| Solid Waste  | Disposal |         |         |         |         |         |         |
| Fairview     | •        |         |         |         |         |         |         |
| a)           | 98989    | 92375   | 98225   | 101959  | 84805   | 88552   | 94151   |
| b)           | 83443    | 76149   | 71806   | 74562   | 67487   | 73645   | 74515   |
| c)           | -18.63   | -21.31  | -36.79  | -36.74  | -25.66  | -20.24  | -26.56  |
| d)           | 100170   | 103187  | 104336  | 105960  | 84820   | 88034   | 97751   |
| e)           | 1.18     | 10.48   | 5.86    | 3.78    | 0.02    | -0.59   | 3.45    |
| Kingfisher   |          |         |         |         |         |         |         |
| a)           | 108272   | 120142  | 134265  | 132283  | 106850  | 105717  | 117921  |
| b)           | 91961    | 91819   | 81995   | 88890   | 82144   | 85596   | 87067   |
| c)           | -17.74   | -30.85  | -63.75  | -48.82  | -30.08  | -23.51  | -35.79  |
| d)           | 108423   | 127088  | 130542  | 136439  | 113873  | 111196  | 121260  |
| e)           | 0.14     | 5.47    | -2.85   | 3.05    | 6.17    | 4.93    | 2.82    |
| Mooreland    |          |         |         |         |         |         |         |
| a)           | 59874    | 61038   | 73263   | 73607   | 54385   | 36061   | 59705   |
| b)           | 41055    | 31999   | 25579   | 23312   | 24021   | 23687   | 28276   |
| c)           | -45.84   | -90.75  | -186.42 | -215.75 | -126.41 | -52.24  | -119.57 |
| d)           | 60060    | 67501   | 75429   | 76318   | 57091   | 37600   | 62333   |
|              | 0.31     | 9.58    | 2.87    | 3.55    | 4.74    | 4.09    | 4.19    |

| TABLE X (Continued) |        |        |        |         |        |         |  |  |
|---------------------|--------|--------|--------|---------|--------|---------|--|--|
| FY80                | FY81   | FY82   | FY83   | FY84    | FY85   | Average |  |  |
|                     |        |        |        |         |        |         |  |  |
| 93687               | 05755  | 121663 | 142810 | 1200/// | 1321/6 | 11018/  |  |  |
| 81125               | 81716  | 89072  | 107231 | 103598  | 109546 | 95381   |  |  |
| -15.48              | -17.18 | -36.59 | -33-18 | -24.56  | -20,63 | -24.60  |  |  |
| 96537               | 108430 | 127826 | 145081 | 128130  | 129815 | 122636  |  |  |
| 2.95                | 11.69  | 4.82   | 1.57   | -0.71   | -1.80  | 3.09    |  |  |
| 140680              | 163038 | 186019 | 194868 | 173441  | 172162 | 171701  |  |  |
| 125597              | 134848 | 127558 | 142383 | 138062  | 141579 | 135004  |  |  |
| -12.01              | -20.90 | -45.83 | -36.86 | -25.63  | -21.60 | -27.14  |  |  |
| 141011              | 169867 | 183695 | 198292 | 178774  | 174567 | 174367  |  |  |
| 0.23                | 4.02   | -1.27  | 1.73   | 2.98    | 1.38   | 1.51    |  |  |

61553

11992

63804

3.53

-413.29

55306

22885

57420

3.68

-141.67

39837

23113

-72.36

39627

-0.53

Explanation of symbols:

<u>Year</u>

Streets Fairview

a) b)

c)

d)

e)

a) b)

c)

d)

e) Mooreland a)

b)

c)

d) e)

Kingfisher

a) - baseline,

36171

20193

-79.13

36685

1.40

b)- estimates assuming no energy impact,

c)- percent difference between baseline and estimates assuming no energy impact,

53186

-644.94

55369

3.94

7140

d)- estimates assuming no drop in farm income,

38566

12707

44548

13.43

-203.49

c)- percent difference between baseline and estimates assuming no drop in farm income.

47437

16338

49576

4.24

-259.15

income ranged from 14.58% for Fairview to 36.47% for Mooreland. The average annual drop in per capita income due to the decline in farm income ranged from 2.38% for Mooreland to 3.40% for Kingfisher.

## Population

Population was estimated using the results of the simulation for per capita income. The dummy variable which raises the growth rate by .10014 in 1981 was judged to be primarily a result of the oil boom. While it was used to estimate the baseline and the no-decline-in-farm-income scenario, it was dropped from the equation when estimating population under the assumption of no oil boom. The results indicate that the oil boom had a very large affect upon population. The average difference between the baseline estimates and the no-oil-boom scenario ranged from 12.78% to 19.61%. The largest differences occurred after 1980. The drop in farm income was estimated to have had a very slight impact upon community population. The average decline was less than 1% for all three communities. This is probably because the farming sector relies on the labor of longtime residents and proprietors who are less likely to leave a community than the highly mobile labor force of the petroleum industry. As the crisis in agriculture persists it will be interesting to observe the long-term affect upon population in this area.

## <u>Revenues and Expenditures</u>

These estimates for per capita income and population were used to estimate levels of general fund revenues and service expenditures for these three communities. The results are similar to those for per capita income and population; large increases in revenue and expenditures due to the oil boom and small to moderate declines due to the drop in farm income. In both the per capita income and population simulations, Fairview showed the least change due to the oil boom while Mooreland showed the most. This persists in the revenue and expenditure results. The changes estimated for Mooreland are, however, so large as to warrant further inspection. In the case of fire protection and park expenditures, the estimates for Mooreland assuming no oil boom are negative. The increases in Mooreland's expenditures attributed to the oil boom range from 60.66% in the case of administrative expenditures to 330.65% for park expenditures. Mooreland also shows surprisingly large changes relative to those estimated for the other two communities due to the change in farm income. This is probably a result of the very large negative intercepts found in the expenditure equations and Mooreland's small population. The conclusion is that the model, while its coefficients were estimated using data which included observations from very small communities, is unreliable when used to estimate expenditures for very small communities. The following discussion of the

estimates of revenues and expenditures will be limited to Kingfisher and Fairview.

Like the estimates of per capita income and population, the changes in revenue and expenditures attributed to the oil boom are greater for Kingfisher than Fairview. General fund revenue estimates for the energy impact were over 18% higher than those for the baseline in the case of Fairview and over 28% higher in the case of Kingfisher. The increase in total expenditures for both communities was estimated to be about 25%. Of the six expenditure categories, only administrative expenditures were estimated to have increased at a rate less than that of expenditures as a whole. The increases in police protection and street maintenance were only slightly greater than those of total expenditures while those for fire protection, parks, and solid waste disposal show greater increases than those for total expenditures. Regarding the change in farm income, the average drop in revenue and expenditures is in every case greater for Fairview than for Kingfisher. Once again, the rate of change in administrative expenditures is less than the rate of change for total expenditures while the rate of change for the other five expenditure categories is greater.

It is not clear whether these differences in the rates of change in the funding of different services are a reflection of the characteristics of the services involved, of community preferences to shift larger shares of

increasing (decreasing) revenues to (away from) certain services during a period of growth (decline), or of some anomaly in the model itself. It could be theorized that the demand for fire protection and solid waste disposal rise at a greater rate than that for other services during an energy impact and that communities experiencing an unexpected rise in revenue may be more liable to allocate this windfall to "luxury" services such as parks. Yet the fact that these three services fall at as fast a rate due to the drop in farm income as they rise due to the energy impact indicates these differences in rates of change in the funding of particular services cannot be attributed to a community's proclivity to favor certain services during a period of increasing revenue. Such an interpretation would lead to the inconsistent conclusion that communities slight these same services during a period of decreasing revenue.

#### Summary

Equations for county per capita income, community population, general fund revenues, and community service expenditures were estimated by regression analysis. A Chow test was used to test for year-to-year changes in regime in each of the models. In those cases where regime changes were indicated, it was hoped that respecification of the model or the inclusion of time-related indicator variables would remedy the problem. Only with the per capita income model was remedial action found to be of value. In the case of the other equations it can only be pointed out which ones are and are not valid for the entire study period and kept in mind when interpreting the results. The models for street, police, fire, and administrative expenditures showed no regime changes over the study period. All of the other models showed some change of regime. Most were stable during the seventies (pre-impact) and unstable during the eighties (impact and post-impact). The population model was unstable throughout the entire study period.

Table IX lists those equations found to best explain community service expenditures. All but one of the equations had very high negative intercepts. This has been the case in previous studies where regression analysis was used to estimate community service expenditure functions (8). The variables for the percent change in per capita income (PCPCY), the percent change in population (PCP), and the proximity of a neighboring community with a larger population (PN) were not significant in any of the equations. Population (P) was significant in all of the equations and per capita income (PCY) was significant in all but one. The variable for capital expenditures in the previous year (LK) was significant in at least one of the equations for all but two of the service categories. It is interesting to note that where LK was significant in an equation with a cubic population term, the value and significance levels of the other variables increased in almost every case when LK was removed from the equation.

The sales tax rate (TR) was only significant in the case of street expenditures. The R<sup>2</sup>s of the equations are all satisfactory. They range from .75 to .98.

Using the coefficients estimated by the model, a simulation analysis was performed on three of the sample communities. The results indicated that the energy impact had a large influence upon per capita income, community population, general fund revenues, and community service expenditures. It was estimated that the decline in farm income experienced in the early 1980s had a small to moderate impact upon community revenues and expenditures. The major determinant of community revenues and expenditures was population. As discussed earlier, the short-run impact of the agricultural crisis upon population has been small, therefore the estimated impact of the agricultural crisis upon community revenues and expenditures was also small. This may not remain to be the case as the crisis in agriculture persists and long-time residents come under more pressure to seek employment outside of agriculture.

#### CHAPTER VI

# SUMMARY AND CONCLUSIONS

This study examined public service expenditures in rural communities of Western Oklahoma during a period of rapid resource development and declining farm income. The primary objective of the study was to evaluate the impact of the energy impact cycle and the farm crisis upon rural community service expenditures of a sample of twenty Western Oklahoma communities. This was accomplished in three ways: 1) demographic, economic, and community finance data from the sample communities for 1975 to 1984 were examined, 2) a regression model explaining income, population, revenue, and expenditure levels was developed, and 3) an application of this model was used to quantify the respective impacts of the energy impact cycle and the farm crisis upon community service expenditures. The results of the study should help the planning efforts of community decision makers by providing estimates of how changes in the two major basic industries of the area, petroleum extraction and agriculture, affect the determinants of community service expenditure levels.

### Summary of the Model Results

Separate models were estimated for county per capita income, community population, general fund revenues, and current community service expenditures. Expenditure functions were estimated for total current community service expenditures and current expenditures in six service categories. These were administration, fire protection, parks, police, solid waste disposal, and streets. These models were estimated by regression analysis using data from twenty sample communities over a period of ten years. Community service expenditure levels were obtained by forms filed annually by the community with the State Board of Equalization. Because of accounting practices, the models for the six expenditure categories were able to utilize data from at most ten of the sample communities.

County per capita income was hypothesized to depend upon per capita levels of basic income. Basic income was assumed to be that from farming, mining, manufacturing, and transfer payments. Within the study area, income from mining comes primarily from petroleum extraction. Use of a Chow test indicated a change in the form of the per capita income function from the pre-impact period (1975-1978) to the impact and post-impact periods (1979-1984). This was accounted for by the use of a time-related dummy variable. Population in the previous year, the change in total community income over the previous two years, and a dummy variable for the sudden rise in population between 1980 and 1981 were found to significantly affect community population. The variable for population in the previous year was assumed to account for the natural population change while the change in total community income was related to migration. General fund revenues were explained by total community income multiplied by the sales tax rate, the presence of a municipally-operated water utility, and the presence of a municipally-operated solid waste disposal utility.

Population turned out to be the most important determinant of community service expenditures. In some cases, a squared or cubed form of the population variable best explained community service expenditure levels. Per capita income was also significant for most expenditure categories. Capital expenditures in the previous year lowered operating costs for some services. The local sales tax rate significantly affected only street expenditures.

# Summary of Simulation Results

The coefficients resulting from the regression analysis were used for a simulation analysis using data from three of the sample communities. Results were estimated for three different situations: 1) a baseline, 2) no energy impact, and 3) no farm crisis. By comparing the

estimates of the two latter scenarios to those of the baseline, the influence of the energy impact and the drop in farm income upon community revenue and expenditures was measured.

The magnitude of the increases due to the energy impact were estimated to be much greater than the size of the decreases due to the farm crisis. The average annual increases in community revenue and expenditures due to the energy impact estimated for Fairview and Kingfisher ranged from 16.94% to 40.78%. In the case of the decline in farm income, the estimated average annual decreases in revenue and expenditures for these two communities ranged from -0.07% to 3.98%. The impact of the crisis in agriculture may grow if low farm income persists over the next several years.

# Policy Implications

During impact the rise in income precedes the rise in population, while during post-impact the drop in income precedes the drop in population. During the post-impact period, the major determinant of general fund revenue drops while the major determinant of community service expenditures, population, remains high. This points out that the early post-impact period, before outmigration begins as a reaction to the drop in income, is a time with great potential to cause problems for rural communities' ability to provide services. Most of the sample communities reacted successfully to this by raising their sales tax rates during this period. Another strategy for dealing with the declining population and dwindling tax revenues of a post-impact period may be for communities to provide services jointly. If the agricultural crisis continues, such a strategy may become yet more attractive to communities.

Local decision makers need to recognize energy impact cycles as natural, recurring phenomena. Oil-booms do not last forever. It is important that communities not overinvest in public service facilities during the early portion of an impact period. The beginning of the impact period, when the rise in income precedes the initiation of rapid inmigration, is a time during which communities could take advantage of a short-term surplus in revenue generating capacity. There is the potential to develop a policy to save the excess revenue of the impact period for use during post-impact, thus avoiding the necessity of raising local tax rates while local incomes are falling. Such a policy should be in place prior to the beginning of the next energy impact cycle to be successful.

Limitations of the Study and Research Implications

The results of the study are obviously limited by the size of the sample. Only communities of a similar population range and with an economy similar to that found in Western Oklahoma could be expected to display similar

results. The poor quality of the data used is also a consideration. The population estimates are "very unpublished" and the community finance data are subject to differences in accounting techniques and definitions from one community to another and even from year to year in the same community.

In the early stages of this study, an attempt was made to model per capita community service expenditure levels. This attempt proved to be unsuccessful. A more detailed understanding of the effect of community characteristics such as population and income upon per capita levels of community service expenditures would help account for changes in the per capita output of a service. The inability to compare service quality from one community to another when relying solely upon expenditures as a measure of service output limits the usefulness of modeling even per capita levels of community service expenditures. Such a dilemma could be approached by using survey data on service facilities and consumer satisfaction, but it is not clear whether it would be worth the expense of doing so.

The fact that three of the four independent variables used in the county per capita income model measure income by place of industry while the dependent variable is reported by place of residence introduces some inaccuracy into the model. Future attempts to model county per capita income using Bureau of Economic Analysis (BEA) data should use a per capita income variable calculated with the "personal income by place of residence" figure reported by BEA less the appropriate resident adjustment figure. The result would be a per capita income variable consistent with the basic income levels used as independent variables.

To assist year-to-year planning, more time-series studies are needed. The results of those cross-sectional studies which are available are of questionable value in making short-term projections. Future studies which pool cross-sectional and time-series data should address the statistical problems which arise from the simultaneous presence of heteroskedasticity and autocorrelation. A stronger emphasis on the statistical methods used in estimating community service expenditure functions could help untangle short-run and long-run effects and result in models more useful in both short-range and long-range planning.

Progress in statistical techniques will not however be of much value without better data. Of particular value in distinguishing between short- and long-run changes would be community specific data on existing service facilities and annual capital expenditures. More reliable annual population estimates would also be useful. The collection of primary data, including interviews with current and past community leaders, would strengthen our understanding of what strategies communities use to deal with a variety of challenges including energy impact cycles. This could also enable researchers to identify which strategies were or were not successful. A study to determine if it would be justifiable to invest the time and expense of building and maintaining a statewide database of community level statistics is needed.

This study is limited to current expenditures, ignoring the difficulties of planning capital expenditures and investments in public facilities. It is probably in this area that the challenges of managing local resources during an energy impact are greatest. Improper administration of the current expenditures of a community may only last a matter of months while investments based on faulty expectations may leave a community strapped with an impossible debt load.

One assumption used to construct the model was that reported levels of current community service expenditures represent an equilibrium between supply and demand. This should not be misconstrued as implying that local decision makers apply the concepts of supply and demand explicitly in determining expenditure levels. It is hoped that the use of expenditure functions by this study rather than supply and demand functions will not discourage the consideration of demand and marginal costs by local decision makers.

#### A SELECTED BIBLIOGRAPHY

- ( 1) Chow, G. C. "Tests of Equality between Sets of Coefficients in Two Linear Regressions." <u>Econometrica</u>, Vol. 28:3 (July, 1960), pp. 591-605.
- (2) Clayton, Kenneth C. and David Whittington. "The Economics of Community Growth: An Impact Model." <u>Southern Journal of Agricultural Economics</u>, Vol. 9:1 (July, 1977), pp. 63-69.
- ( 3) Council of Economic Advisers. <u>Economic Report of the</u> <u>President</u>. Washington: U. S. Government Printing Office, February, 1985.
- (4) Day, Lee M. "Community Facilities and Services: An Economic Framework for Analysis." <u>American Journal</u> <u>of Agricultural Economics</u>, Vol. 50:5 (December, 1968), pp. 1195-1205.
- ( 5) Eckholm, Arthur Lee Roy. "Regional Economic Adjustment to the Depletion of Groundwater and Petroleum: High Plains of Texas and Oklahoma." (Unpublished Ph.D. dissertation, Stillwater, Oklahoma: Oklahoma State University, Department of Agricultural Economics, 1975.)
- ( 6) Eddleman, B. R. "Financing Public Services in Rural Areas: A Synthesis." <u>American Journal of</u> <u>Agricultural Economics</u>, Vol. 56:5 (December, 1974), pp. 959-963.
- (7) Gerking, Shelby D. and Andrew M. Isserman. "Bifurcation and the Time Pattern of Impacts in the Economic Base Model." <u>Journal of Regional</u> <u>Science</u>. Vol. 21:4 (November, 1981), pp. 451-467.
- (8) Goodwin, Harold L., Jr. "Estimation of the Municipal Government Costs of Community Services for Rural Oklahoma Communities." (Unpublished M.S. thesis, Stillwater, Oklahoma: Oklahoma State University, Department of Agricultural Economics, 1975.)
- ( 9) Hitzhusen, Frederick J. "Some Measurement Criteria for Community Service Output and Costs: The Case of Fire Protection in Texas." <u>Southern Journal of</u>

- (10) Kennedy, Peter. <u>A Guide to Econometrics</u>. Cambridge, Mass.: The MIT Press, 1984.
- (11) Krutilla, John C., Anthony C. Fisher and Richard E. Rice. <u>Economic and Fiscal Impacts of Coal</u> <u>Development</u>. Baltimore: The Johns Hopkins University Press, 1978.
- (12) Leistritz, F. Larry, Steve H. Murdock and Arlen G. Leholm. "Local Economic Changes Associated with Rapid Growth." <u>Coping with Rapid Growth in Rural</u> <u>Communities</u>. ed. by B. A. Weber and R. E. Howell. Boulder: Westview Press, Inc., 1982, pp. 25-62.
- (13) Leistritz, F. L., S. H. Murdock, N. E. Toman and T. A. Hertsgaard. "A Model for Projecting Localized Economic, Demographic, and Fiscal Impacts of Large-Scale Projects." <u>Western Journal of</u> <u>Agricultural Economics</u>. Vol. 4:2 (December, 1979), pp. 1-15.
- (14) Malamud, Gary W. <u>Boomtown Communities</u>. New York: Van Nostrand Reinhold. 1984.
- (15) Mead, Arthur C. "A Simultaneous Equations Model of Migration and Economic Change in Nonmetropolitan Areas." <u>Journal of Regional Science</u>. Vol. 22:4 (November, 1982), pp. 513-527.
- (16) Milburn, Lonna, Mary Walker and Yvonne D. Knudson. <u>Acute Health Delivery, Energy Impact and Rural</u> <u>Texas</u>. Austin: Texas Rural Health Field Services Program, June, 1985.
- (17) Murdock, Steve H., F. Larry Leistritz and Eldon Schriner. "Local Demographic Changes Associated with Rapid Growth." <u>Coping with Rapid Growth in</u> <u>Rural Communities</u>. ed. by B. A. Weber and R. E. Howell. Boulder: Westview Press, Inc., 1982, pp.63-96.
- (18) Murray, James A. and Bruce A. Weber. "The Impacts of Rapid Growth on the Provision and Financing of Local Public Services." <u>Coping with Rapid Growth</u> <u>in Rural Communities</u>. ed. by B. A. Weber and R. E. Howell. Boulder: Westview Press, Inc., 1982, pp 97-113.
- (19) Neter, John, William Wasserman and Michael H. Kutner. <u>Applied Linear Regression Models</u>. Homewood, Illinois: Richard D. Irwin, Inc., 1983.

- (20) Ohls, James C. and Terence J. Wales. "Supply and Demand for State and Local Services." <u>The Review</u> <u>of Economics and Statistics</u>. Vol. 54:4 (November, 1972), pp. 424-429.
- (21) Oklahoma Employment and Security Commission. Unpublished Population Estimates. Oklahoma City: State of Oklahoma, 1985.
- (22) Oklahoma State Board of Equalization. <u>Estimate of</u> <u>Needs and Financial Statement for Fiscal Year</u>. Oklahoma City: State of Oklahoma, 1985.
- (23) Oklahoma Tax Commission. <u>City Sales Tax Payments Ended</u> <u>June 30, 1975</u>. Oklahoma City: State of Oklahoma, 1975.
- (24) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1976</u>. Oklahoma City: State of Oklahoma, 1976.
- (25) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1977</u>. Oklahoma City: State of Oklahoma, 1977.
- (26) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1978</u>. Oklahoma City: State of Oklahoma, 1978.
- (27) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1979</u>. Oklahoma City: State of Oklahoma, 1979.
- (28) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1980</u>. Oklahoma City: State of Oklahoma, 1980.
- (29) <u>Sales Tax Collections Returned to</u> <u>Cities and Towns in Fiscal 1984</u>. Oklahoma City: State of Oklahoma, 1984.
- (30) Palmer, Edgar Z., et. al. <u>The Community Economic Base</u> <u>and Multiplier: Case Studies in the Great Plains</u>. Lincoln: University of Nebraska Printing Division, September, 1958.
- (31) Richardson, Harry W. <u>Regional Economics</u>. Urbana: University of Illinois Press, 1979.
- (32) Samuelson, Paul A. "The Pure Theory of Public Expenditure." <u>The Review of Economics and</u> <u>Statistics</u>. Vol. 36:4 (November, 1954), pp. 387-389.

- (33) Schmandt, Henry J. and G. Ross Stephens. "Measuring Municipal Output." <u>National Tax Journal</u>. Vol. 13:4 (December, 1960), pp. 369-375.
- (34) Shapiro, Barry I., Larry C. Morgan and Lonnie L. Jones. "The Impact of Employment Expansion on Rural Community Expenditures: A Small Area Model." <u>Southern Journal of Agricultural Economics</u>. Vol. 9:1 (July, 1977), pp. 57-69.
- (35) Tiebout, Charles M. "A Pure Theory of Local Expenditures." <u>Journal of Political Economy</u>. Vol. 64:5 (October, 1956), pp. 416-424.
- (36) \_\_\_\_\_. "Exports and Regional Economic Growth." Journal of Political Economy. Vol. 64:2 (April, 1956), pp. 160-164.
- (37) \_\_\_\_\_. "Community Income Multipliers: A Population Growth Model." <u>Journal of Regional</u> <u>Science</u>. Vol. 2:1 (Spring, 1960), pp. 75-84.
- (38) <u>The Community Economic Base Study</u>. Supplementary Paper No. 16. New York: Committee for Economic Development, December, 1962.
- (39) U. S. Department of Commerce. Local Area Personal Income 1974-1979. Southwest Region. Washington: Bureau of Economic Analysis, U. S. Government Printing Office, 1981.
- (40) <u>Local Area Personal Income 1979-1984.</u> <u>Southwest Region</u>. Washington: Bureau of Economic Analysis, U. S. Government Printing Office, 1986.
- (41) Williamson, Robert B. "Predictive Power of the Export Base Theory." <u>Growth and Change</u>. Vol. 6:1 (January, 1975), pp. 3-8.
- (42) Williford, George H. III. "Effects of the Declining Groundwater Supply in the Northern High Plains of Oklahoma and Texas on Community Service Expenditures." (Unpublished M.S. thesis, College Station, Texas: Texas A&M University, Department of Agricultural Economics, 1976.)
- (43) Woods, Michael D. "A Simulation Model for Rural Communities in Oklahoma." (Unpublished Ph.D. dissertation, Stillwater, Oklahoma: Oklahoma State University, Department of Agricultural Economics, 1981.

## VITA

## Ronald Arthur Loewen

## Candidate for Degree of

#### Master of Science

Thesis: IMPACT OF DECLINING FARM INCOME AND RAPID PETROLEUM DEVELOPMENT UPON PUBLIC SERVICE EXPENDITURES IN RURAL COMMUNITIES OF WESTERN OKLAHOMA FROM 1975 TO 1984

Major Field: Agricultural Economics

Biographical:

- Personal Data: Born in Enid, Oklahoma, February, 24, 1961, the son of John A. and Ramona Loewen.
- Education: Graduated from Pioneer High School, Waukomis, Oklahoma, in May, 1979; received Bachelor of Arts Degree in Political Science and German from Phillips University in May, 1984; completed requirements for the Master of Science degree at Oklahoma State University in December, 1987.
- Professional Experience: Teaching Assistant, Foreign Language Department, Phillips University, August 1983, to December, 1983; Teaching Assistant, Department of Agricultural Economics, Oklahoma State University, August, 1984, to December, 1984; Research Assistant, Department of Agricultural Economics, Oklahoma State University, January, 1985, to August, 1986.