
PERFORMANCE EVALUATION OF

OUTER JOIN OPERATIONS

ON ADDS SYSTEM

By

WEN FONG LEE
11

Bachelor of Science in Arts & Sciences

Oklahoma State University

Stillwater, Oklahoma

1983

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the degree of
MASTER OF SCIENCE

May, 1987

PERFORMANCE EVALUATION OF

OUTER JOIN OPERATIONS

ON ADDS SYSTEM

Thesis Approved:

Dean of the Graduate College

ii

1275683 j

PREFACE

This paper describes the performance evaluation of an

outerjoin operation on the ADDS system. It includes the

definition of outerjoin, the algorithms used, the test

results, and the recommendation of the evaluation.

I would like to express sincere gratitude to my major

adviser, Dr. Yuri Breitbart, for his guidance, motivation,

and invaluable help. I am also thankful to Dr. Donald D.

Fisher and Dr. Michael J. Folk, for their insightful sugges

tions and encouragement during the course of this work. An

extra thank you must go to Dr. G. E. Hedrick for agreeing to

serve on my committee as a last minute substitute.

Special thanks are due to Amoco Research Center and its

library, for allowing me to do my research and use their

facilities during the course of this work.

My deepest gratitude to my wife Helen for her encour

agement, for her love, and for just being there.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION.

1.1 Background Information .•
1.2 Approaches•.
1.3 Scope and Limitations ..

page

1

1
4
5

II. DEFINITIONS AND TERMINOLOGY .•. 7

2.1 Relational Structure Terminology
2.2 Null value .•.•••.•....
2.3 Outer-join Definitions .•.....

7
9

10

III. NESTED LOOP METHOD •• 14

IV.

3.1 Nested Loop • • . • . 15
3.1.1 Nested Loop Using Block Factor 18

3.2 Sort/Nested Loop. • . . • • • 20

SORT/MERGE METHOD • 24

4.1 Sort/Merge Method for Join. • • . . . 25
4.2 Sort/Merge Method for Outer-theta-join. . 29

V. ANALYSIS AND EVALUATION OF OUTERJOIN METHODS. 37

5.1 No Dynamic Storage. . . • 39
5.2 Use of Dynamic Storage. • . . . • 46

5.2.1 Block the Outer Relation . 52
5.2.2 Block the Inner Relation • 52

5.3 Checking for no Possible Join . . • . 57

VI. CONCLUSION AND FUTURE RESEARCH ••

6.1 Conclusion ••..••
6.2 Future Research ..•.•

BIBLIOGRAPHY •

APPENDIXES • .

iv

60

60
65

66

69

Chapter page

APPENDIX A - RELl AND REL2 RELATIONS. 69

APPENDIX B - SORT/NESTED LOOP METHOD (BLOCKING
OUTER RELATION). 74

APPENDIX c - SORT/NESTED LOOP METHOD (BLOCKING
INNER RELATION). 76

APPENDIX D - SORT/MERGE METHOD (BLOCKING
OUTER RELATION). 78

APPENDIX E - SORT/MERGE METHOD (BLOCKING
INNER RELATION). 81

APPENDIX F - FUNCTION TO CHECK POSSIBLE JOIN. 84

APPENDIX G - RECOMMEDED METHODS 85

APPENDIX H - EXAMPLE OF ONE QUERY CAN BE DONE
IN TWO WAYS. 86

APPENDIX I - EXAMPLE OF THE SORT/NESTED LOOP
OPERATION. 89

APPENDIX J - EXAMPLE OF THE SORT/MERGE
OPERATION. 91

APPENDIX K - NESTED LOOP OUTERJOIN ALGORITHM. 93

v

LIST OF TABLES

Table Page

I. Ojoin (TABLEl, TABLE2) where A = u
(no dynamic storage). 40

II. Ojoin (TABLEl, TABLE2) where A < u
(no dynamic storage). 40

III. Ojoin (TABLEl, TABLE2) where A > u
(no dynamic storage). 41

IV. Ojoin (TABLEl, TABLE2) where A = U AND B < v
(no dynamic storage). 41

v. Ojoin (TABLEl, TABLE2) where A = u
(block outer relation, blocksize = 50). 47

VI. Ojoin (TABLEl, TABLE2) where A < u
(block outer relation, blocksize = 50). 47

VII. Ojoin (TABLEl, TABLE2) where A > U
(block outer relation, blocksize = 50) . . . 48

VIII. Ojoin (TABLEl, TABLE2) where A = u AND B < v
(block outer relation, blocksize = 5 0) . 48

IX. Ojoin (TABLEl, TABLE2) where A = u
(block outer relation, block size = 50) 52

x. Ojoin (TABLEl, TABLE2) where A < u
(block outer relation, blocksize = 50) 52

XI. Ojoin (TABLEl, TABLE2) where A > u
(block outer relation, blocksize = 50) . . . 53

XII. Ojoin (TABLEl, TABLE2) where A = u AND B < v
(block outer relation, blocksize = 50) . . . 53

vi

LIST OF FIGURES

Figure Page

1. C.P.U. time per Join Tuple .. 43

2. The Number of Inputs per Join Tuple . 44

3. The Number of Comparisons per Join Tuple. • 45

4. The Percentage of Inputs Saved Relatively to
Blocksize • • . • . • . • • • • . . 48

5. The Number of Inputs with respect to the Size of
the Relations (Block Outer Relation) •••...• 49

6. The Number of Inputs with respect to the Size of
the Relations (Block Inner Relation). • • 50

7. C.P.U. Time per Tuple (Block Outer Relation). 54

8. C.P.U. Time per Tuple (Block Inner Relation). 55

vii

CHAPTER I

INTRODUCTION

1.1 Background Information

In today's business environment, the ability to share

and integrate data so as to provide useful information plays

an important part in the decision making process. This

ability is made possible by a relational database management

system. One of the important functions of a relational

database management system is to perform relational opera

tions. The performance of the relational database manage

ment system is determined by the amount of time used to gen

erate information. At present, there is no commercially

available relational database system that provides outerjoin

relational function (in a single step). The main objective

of this thesis is to answer complex outerjoin queries,

expressed in a nonprocedural language on a distributed data

base system, with better performance than the conventional

database system.

JOIN is a relational operation which is used to merge

two or more relations to form a bigger relation based on

some conditions or restrictions. In order to integrate the

data from pieces of distinct data files into a single data

1

2

file one needs to use the JOIN operation. However, one

should be careful in using the operation. Under some cir

cumstances this operation can provide less information, that

an "unmatched tuple" in the relations to be joined may not

participate in the result of the JOIN. In other words, if a

tuple in one of the original relations does not match any

tuples in the other (under the join-defining predicate),

then that tuple will not appear in the join result [12].

Therefore, some information will be lost, and maybe impossi

ble to reverse the operation to produce the original rela

tions before the JOIN operation. For example, suppose we

have two relations, PARTS and SUPPLIERS.

PARTS SUPPLIERS

p# pname s# s# sname city

pl Gear sl sl Ajax London

p2 Nut s2 s2 Acme Paris

p3 Bolt s4 s3 Ace Rome

Note: PARTS table has part p3 whose supplier number s4 is

not in SUPPLIERS table, and the SUPPLIERS table has a

supplier s3 which does not appear in the PARTS table.

A join of the two tables, PARTS and SUPPLIERS shown

above, where PARTS.s# = SUPPLIERS.s#, would result in the

following table.

p# pname PARTS.s# SUPPLIERS.s# sname city

pl Gear sl sl Ajax London

p2 Nut s2 s2 Acme Paris

Projecting this table on Parts and Suppliers respec

tively, one will not obtain the original tables. Therefore,

some data on Parts and Suppliers was lost while performing

Join operation.

A special kind of join called outerjoin, by contrast,

does not lose such information. The outerjoin operation

appends special additional tuples to the result of the cor

responding join operation. "There is one such additional

tuple in each of the original relations; it consists of a

copy of that unmatched tuple, extended with null values in

the other attribute positions" [12].

The outerjoin operation was first introduced by Heath

[14], and has been formally defined by Lacroix and Pirotte

[21], Codd [10], Rosenthal and Reiner [24], and Date [12].

Proposals for supporting outerjoin in SQL/DS were presented

in [7] and [12].

3

The outerjoin operation introduces null values (denoted

by "?") in the join of the two relations which are supposed

to contain no null value. If they do contain null values,

then the joins will be based on the logic rules given in

Chapter 2.

Outerjoin is sometimes referred to as theta outerjoin.

Theta (6) denotes one of the comparison operators =, t, >,

4

>=, <, and <=. In this research, outerjoin with the "="

operator is called outer-equal-join, and the rest are simply

referred to as outer-theta-join or outer-8-join.

An example of outer-equal-join of the PARTS and

SUPPLIERS tables shown earlier, where PARTS.s# =

SUPPLIERS.s#, would result in the following table.

p# pname PARTS.s# SUPPLIERS.s# sname city

pl Gear sl sl Ajax London

p2 Nut s2 s2 Acme Paris

p3 Bolt s4 ? ? ?

? ? ? s3 Ace Rome

1.2 Approaches

A few algorithms for the join operation have been pre-

sented and discussed in [3], [4], and [28]. Since the join

operation is closely related to the outerjoin operation, we

will be using the join algorithms [28] available to design

and implement the outerjoin algorithms.

The easiest and best known join method is the nested

loop algorithm [28] which, without indexing, has an execu-

tion time proportional to n**2 for relations of cardinality

n [28]. Another popular join method, based on sorting and

merging, can reduce this time to a*n*log n, where a is a

constant [3]. A better join method, based on hashing [2],

[28], can further reduce the time to b*n, where bis also a

constant. However, this last method allows the performance

of semijoins only [28]. Semijoin is not directly applicable

in an outerjoin operation due to the way outerjoin is

defined (definition in Chapter 2). In this paper, we will

not analyze the semijoin algorithms to perform outerjoin.

1.3 Scope and Limitations

5

The primary scope of this research is to examine and

evaluate nested loop and sort/merge method of outerjoin

algorithms. We use ADDS [5] to conduct performance evalua

tion of these methods. All programs are written in the PL/I

language and on IBM 3090 VM machine. ADDS data structures

will be used in all routines. We present the performance

evaluation results and their analysis for the following test

cases:

(1) outer equal-join with one restriction:

(2) outer-theta-join with one restriction:

(3) outer equal-join with multiple restrictions:

(4) outer theta-join with multiple restrictions.

The performance evaluation is based on the following

characteristics:

- total C.P.U. time.

- total I/O time.

- total number of comparisons.

- storage requirements.

As a result of our analysis, we conclude that neither

the nested loop nor the sort/merge outerjoin method is the

best algorithm for the outer-theta-join operations. The

6

choice of the algorithm depends on (1) join attributes (uni

que or non-unique), (2) join condition(s), (3) the number of

resulted join tuples, if one can predict, and (4) the size

of the relations.

The thesis contains 6 chapters: Chapter 1 introduces

the concept and background information of outerjoin; Chapter

2 presents the definitions and terminologies used in this

paper; Chapter 3 discusses the nested loop outerjoin method;

Chapter 4 explains the sort/merge outerjoin method; and

Chapter 5 analyzes the results; and Chapter 6 summarizes and

present the conclusion of the thesis.

CHAPTER II

DEFINITIONS AND TERMINOLOGY

In this chapter, we define outerjoin operation and

illustrate the definition with examples. Before we define

Outerjoin, we will present the relational structure termi-

nology and the concept of 'null' values. The assumptions

and the technical terms are discussed as appropriate.

2.1 Relational Structure Terminology

A domain is a set of values of similar type: for exam-

ple, all possible part serial numbers for a given inventory.

A domain is simple if all its values are atomic (nondecompo-

sable by the database management system} [10].

Let D1,D2, ••..• ,D be n (n > O } domains (not necesn

sarily distinct}. The cartesian product x {D.: i =
l

1,2, ...• ,n} is the set of all n-tuples <t 1 ,t 2 , ••• ,tn> such

that ti belongs to D1 , t2 belongs to D2, .••• ,tn belongs to

Dn. A relation R is defined on these n domains if it is a

subset of this cartesian product. Such a relation is said to

be of degree n [10].

In place of the index set (1,2, •••. ,n) we may use any

unordered set, provided we associate with each tuple

7

8

component not only its domain, but also its distinct index,

which we shall call its attribute. An attribute represents

the use of a domain within a relation. That is, n distinct

attributes of a relation of degree n distinguish the n

different uses of the domains upon which the relation is

defined (the number of distinct domains may be less than n).

A tuple then becomes a set of pairs(A,v), where A is an

attribute and v is a value drawn from the domain of A,

instead of a sequence <v 1 ,v2 , ••• ,v > (10].
n

A relation consists of a set of tuples, each tuple hav-

ing the same set of attributes. If the domains are simple

then such a relation will have the following properties

[10] :

(1) there is no duplication of rows(tuples);

(2) the row order is insignificant;

(3) the column (attribute) order is insignificant;

(4) all table entries are atomic values.

The extended cartesian product of two relations S and

P, S x P, is the set of all tuples t such that t is the con-

catenation of a tuple s belonging to S and a tuple p belong-

ing to P. The concatenation of a tuples= (s 1 , •.. ,sm) and

a tuple p = (Pm+l'"""'Pm+n)-in that order-is the tuple

t=(s1, •.• ,s ,p +1 , .. ,p +). m m m n

9

2.2 Null value

'Null' is a special value indicating that data is miss-

ing or not applicable [7]. The null value is outside the

normal range of values for its column (i.e., it is not the

same as any valid number of string}. Whenever a null data

value participates in an arithmetic operation (+,-,*,/}, the

result is the null value. Whenever a null value participates

in a comparison predicate with any value (including another

null value }, the truth value of the predicate is "unknown"

(represented by"?" }. If a predicate whose value is"?"

participates in a boolean expression, the following 3-values

logic truth table applied.

AND

T
F
?

T F ?

T F ?
F F F
? F ?

OR

T
F
?

T F ?

T T T
T F ?
T ? ?

NOT

T
F
?

F
T
?

If the WHERE-clause of a query, applied to a row of a

table or join, evaluate to the 11 ? 11 truth-value, the WHERE-

clause is treated as FALSE (i.e., is not true} in this

paper. The unary operator does not have any effect on the

null value {i.e., if xis null, then +x and -x are also con-

sidered to be null}. Thus, if an employee has the null

value for salary, that employee is not selected by any of

the following search conditions:

WHERE SALARY > 1000

WHERE SALARY < 1000

WHERE SALARY = 1000

WHERE NOT (SALARY = 1000)

10

There is no consistency as to whether the rows with

null values in the join-columns should participate in the

join operation [7] and the duplicate joined all-null tuples

should be eliminated [12]. As for this paper, the null

values in the join-columns will participate in the join

operation. Null tuples are treated as normal tuple with null

values and the duplicate joined all-null tuples will not be

eliminated.

2.3 Outer-join Definitions

To define outer-join, let us assume two relations

Rl(A,Bl) and R2(B2,C) with attributes Rl.A, Rl.Bl, R2.B2,

R2.C. For simplicity we assume that the left to right order

of attributes within a relation is significant. Assume that

Rl.Bl and R2.B2 may validly be compared with each other. Let

theta denote any one of the operators =, *' <, <=, >, >=,

that applies to Rl.Bl and R2.B2. Define J to be the theta

join of Rl on Bl with R2 on B2;

J = Rl { Bl theta B2 } R2

We assume that the attributes of J inherit their names from

the corresponding attributes of Rl and R2; i.e., the attri

butes of J are A, Bl, B2, and C. And we also assume that

11

these names are all distinct. Define ~Rl as follows:

~Rl = Rl - J {A,Bl}

Where J{A,Bl} is the projection of J on A and Bl, and "-" is

the set's difference operator. ~Rl is thus the set of tuples

of Rl not appearing in the projection of Jon (A,Bl), the

set of "unmatched" tuples of Rl, with respect to the join J.

Similarly, define ~R2 as follows:

~R2 = R2 - J {B2,C}

Then the outer-theta-join of Rl on Bl with R2 on B2, written

OJOIN * (Rl, R2) WHERE Rl.Bl theta R2.B2

is defined to be equal to the expression

J union ~Rl x (?,?)) union ((?,?) x ~R2

where "?" denotes the null value, as before, and "X" denotes

the extended cartesian product.

There are also left and right outer-theta-joins. The

left outer-theta-join of Rl on Bl with R2 on B2 is defined

as:

J union ~Rl x (?,?))

Similarly, the right outer-theta-join of Rl on Bl with R2 on

B2 is defined as:

J union ((?,?) x ~R2

12

In this paper, if theta is equality, we normally refer

to the outerjoin operation as outer-equal-join. Otherwise,

we refer to the outerjoin operation as outer-theta-join.

Example 1

Consider the following database in which relation S

represents suppliers and relation P represents parts

S (S#, CITY)

P (P#, CITY)

Sample values:

s p

S# CITY P# CITY

Sl London Pl London
82 Paris P2 Oslo
83 ? P3 ?
84 NY P4 NY
85 SFO PS LA

The outer-equal-join of these two relations on S.CITY

and P.CITY i.e., the relation

OJOIN * (S, P) WHERE S.CITY = P.CITY

produces the following relation, called it SXP.

SXP

S# S.CITY P# P.CITY

Sl London Pl London
82 Paris ? ?
83 ? ? ?
84 NY P4 NY
85 SFO ? ?

P2
P3
P5

Olso
?
LA

13

Tuples 3 and 7 show that a null value is not equal to a

null value. Using the same query and relations in example

1, the results for left and right outer-theta-join are as

follow:

SXP

S# S.CITY P# P.CITY

Sl London Pl London
82 Paris ? ?
S3 ? ? ?
S4 NY P4 NY
S5 SFO ? ?

(left outer-theta-join)

SXP

S# S.CITY P# P.CITY

Sl London Pl London
S2 Paris ? ?
S3 ? ? ?
S4 NY P4 NY
S5 SFO ? ?
? ? P2 Olso
? ? P3 ?
? ? P5 LA

(right outer-theta-join)

CHAPTER III

NESTED LOOP METHOD

The simplest way to implement an outerjoin operation is

by using the nested loop algorithm. This algorithm is con

sidered to be the most inefficient uniprocessor join algor

ithm by (28], but it is well suited for parallel execution

(28]. The parallel execution of the nested loop algorithm

described and evaluated in (28] is not used to evaluate the

outerjoin operation. But the idea of parallel execution of

nested loop algorithm on a uniprocessor is used. In parallel

execution with P processors, each having (b+l) pages of

local memory, the smaller relation is chosen as the external

one (i.e. outer relation) and is sequentially distributed

among P processors in blocks of (b-1) pages. Then, the sec

ond (internal) relation is broadcasted page by page to P

processors. Therefore, each processor joins each (b-1) page

block of the external relation with the entire internal

relation (28].

For a uniprocessor, we can read in the (b-1) pages of

the outer ~elation into the main memory. Then the internal

relation is read a page at a time to perform join operation

on tuples from this page with each of the tuples from the

14

15

outer relation in memory. The process continues until all

the pages in the outer relation have been read. In this

case, instead of having P processors, it is like having

(b-1) processors: and the number of pages is equal to the

outer relation divided by (b-1) pages, which is even smaller

than the number of distributed pages using parallel process

ing method assuming that (b-1) is greater than P.

3.1 Nested Loop

First, we look at a simple nested loop algorithm for

the outerjoin operation.

Algorithm 3.1 is a simple nested loop Outerjoin algor

ithm. It means that, for every tuple (tuplel) reads in from

filel (outer loop), all tuples from file2 (inner loop) are

read. If tuplel does not match any of the tuples(tuple2) in

file2, then tuplel is joined with a rtull tuple of tuple2. A

null tuple is a tuple with null values (described in Chapter

2) for its attributes. When a tuple in file2 matches a tuple

from filel, that tuple2 is then marked used. After all the

tuples (tuplel) from filel are compared with all tuples

(tuple2) in file2, file2 is scanned through one more time to

pick up all the unmatched (or unmarked used) tuples (tuple2)

and join each of them with a null tuple of filel.

/* f ilel - contains tuples from outer relation
* f ile2 - contains tuples from inner relation
* f ile3 - output relation
* tuplel - tuple from f ilel or outer relation
* tuple2 - tuple from file2 or inner relation
w WHERE - function to evaluate where clause
*/

OPEN FILE(filel) INPUT;
READ FILE(filel) INTO(tuplel);
DO WHILE(NOT eofl);

tuplel used at least once = false;
OPEN FILE(file2) INPUT;
READ FILE(file2) INTO(tuple2);
DO WHILE(NOT eof2);

IF WHERE(predicates) THEN DO;
tuplel used at least once = tf~e;
WRITE FILE(file3) FROM(tuplel I I tuple2);
mark tuple2 used in file2;

END;
READ FILE(file2) INTO(tuple2);

END;
IF not tuplel used at least once THEN

WRITE FILE(file3) FROM(tuplell nulls2);
READ FILE(filel) INTO(tuplel);

END;
OPEN FILE(file2) INPUT;
eof2 = FALSE;
READ FILE(file2) INTO(tuple2);
DO WHILE(NOT eof2);

IF tuple2 did not mark used THEN
WRITE FILE(file3) FROM(nullsll ltuple2);

READ FILE(file2) INTO(tuple2);
END;

ALGORITHM 3.1 - NESTED LOOP OUTERJOIN

16

To compute the cost of algorithm 3.1, we assume N num-

ber of tuples in filel and M number of tuples in file2.

Other notations use in computing the costs in this paper are

as follow:

I I/O time per tuple.

E Execution time per "Where clause" evaluation

(or per comparison).

O Total I/O time for outputs.

~ Other overhead costs.

Cost = (N * I) + (N * M * I) + (N * M * E) +

M * I) + 0 + ~ ;

17

(3.1)

The two significant variables are the input time and

the "where clause" evaluation time. The total I/O time for

output is not significant because the total number of tuples

written out is fixed no matter what methods you used. There

fore the I/O time for output cannot be reduced. Hence, what

is left for improvements are the I/O time for inputs and

"where clause'' evaluation time. For the next few sections,

we try to minimize the .number of inputs and the number of

"where clause'' evaluations which in turn reduce the I/O time

and evaluation time respectively.

Cost (3.1) for algorithm 3.1 is easily reduced to

Cost = (N * I) + (N * M * I) + (N * M * E) + 0 + ~

(3 • 2)

by eliminating the last scan through file2. Then, we have to

introduce a test to capture all the unmatched tuples

(tuple2) in file2. The way to do the testing is to check for

unmatched and unmarked used tuples (tuple2) in the last pass

(for the last tuplel), and join them with the null tuple of

tuplel. See Appendix K for the algorithm.

18

3.1.1 NESTED LOOP USING BLOCK FACTOR

In algorithm 3.1, the tuples are read in one at a time

and only one tuple from each relation is in memory at any

one time. In this section, we assume that B pages of memory

are available. As discussed earlier, we use the idea of par-

allel execution for the nested loop method on a uniprocessor

system. Assuming that one tuple per page, we read in B

tuples at a time, making the relation into blocks of tuples.

First, we block the relation on the outer loop. (From

now on, the relations on the outer loop and inner loop will

be referred as outer relation and inner relation respec-

tively.}

Algorithm 3.2 divides the outer relation into block(s}

of B tuples, except maybe the last block. For every tuple

read in from inner relation, the tuple is evaluated with all

the tuples in the block. The I/O cost of algorithm 3.2 is

N+M 171'
and therefore linear when M ~ B. Using the same variables

in Cost (3.2), the cost for algorithm 3.2 is:

Cost = (N * I } + l M/Bl (N * I } + (N * M * E} + o + b... I (3.3)

/* f ilel - contains tuples from outer relation
* f ile2 - contains tuples from inner relation
* f ile3 - output relation
* eofl - end of filel (initially false)
* eof2 - end of file2 (initially false)
* tuplel - tuple from f ilel or outer relation
* tuple2 - tuple from f ile2 or inner relation
* factor - B pages of memory available
* WHERE - function to evaluate "where clause"
* tuplel used at least once - tuplel used indicator
* tuple2-used-- tuple2-used indicator
* - (initially set to false)
* TOTtuplel - total number of tuples in outer relation
* TOTtuple2 - total number of tuples in inner relation
*/

OPEN FILE(filel) INPUT;
READ FILE(filel) INTO(tuplel);
DO WHILE(NOT eofl);

count = O;
DO WHILE(NOT eofl & count <factor);

TOTtuplel = TOTtuplel - l;
count = count + l;
tup buf (count) = tuplel;
tuplel used at least once(count) = false;
READ FILE(filel) INTO(tuplel);

END;
OPEN FILE(file2) INPUT;
eof 2 = FALSE;
READ FILE(file2) INTO(tuple2);
DO J = 1 TO TOTtuple2;

DO I = 1 TO count;
IF WHERE(predicates) THEN DO;

tuple2 used(J) = true;
tuplel-used at least once(count) = true;
WRITE FILE(file3) FROM(TUP_BUF(I) I ltuple2);

END;

19

ELSE IF TOTtuplel = 0 & NOT tupli~ used(J) THEN
WRITE FILE(file3) FROM(nullsl ltuple2);

END;
READ FILE(file2) INTO(tuple2);

END;
DO I = 1 TO count;

IF NOT tuplel used at least once(I) +~EN
WRITE FILE(fileJ) FROM(tup_buf(I) I lnulls2);

END;
END;

ALGORITHM 3.2 - NESTED LOOP OUTERJOIN WITH BLOCKING

20

The nested loop algorithm with blocking has been con

sidered the fastest known algorithm to perform a cartesian

product between two relations by [25]. [25] also stated that

in the worst case, the I/O costs of nested loop algorithm

with blocking are better than I/O costs of merging algorithm

by a factor of about B.

All these algorithms (3.1 & 3.2) require order of N by

M operations (i.e. the cartesian product of the two rela

tions) for all cases of outerjoin operation. This is not

desirable when the total number of output tuples is less

than the cartesian product of the two relations. Before we

introduce the sort/merge algorithm, we would like to present

a similar algorithm to sort/merge algorithm called sort/

nested loop algorithm. The difference between the sort/

merge and the sort/nested loop algorithm is that the later

does not perform merging or create any intermediate rela

tions.

3.2 SORT/NESTED LOOP

To improve the nested loop algorithm, we introduce

sorting to both relations. That is, we sort both relations

based on some attributes in the predicates.

By introducing sorting on both relations, we eliminate

those tuples that have no possibility of joining at all from

the loops. For example, we have 2 Suppliers & Parts rela

tionship relations from STOREl and STORE2, and we perform an

outerjoin on the two relations (with outerjoin condition:

21

STOREl.s# = STORE2.s#).

STOREl STORE2

S# P# S# P#

s3 pl sl p2
s5 p3 s2 p6
s5 p7 s5 p4
s8 p5 s5 p9
s9 p2 s5 p8

s7 p9

Without sorting, using the nested loop method discussed

in the previous section, requires 25 iterations. With sort-

ing on the s# column in ascending order, we reduce the num-

ber of iterations from 30 to 19. See Appendix I for details.

In Algorithm 3.3, the attributes x and y represent all

attributes with the same Relationship R in the predicates of

the outerjoin. The attributes x and y can be the same attri-

butes and represent at least one attribute from each rela-

tion. For example, Rl.a = R2.a and Rl.b = R2.c and Rl.d <

R2.e then x is {a, b} and y is {a, c}.

/* for simplicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* eor outer - end of outer relation
* eor inner - end of inner relation
*/

pos = pos + l;
READ outer; READ inner(pos);
DO WHILE(not eor outer);

DO WHILE(not (eor outer or eor
outer.x R inner.y));

IF outer.x < innef fY or R is
output (outer nulls);
READ outer;

END;

inner or

'>' or '>='

ELSE IF outer.x > inner.y THEN
IF not used(pos) THEN DO;

output (nulls I I inner);
used(pos) = true;

END;
pos = pos + l;
READ inner(pos);

END;
END;
IF not (eor_outer or eor inner) THEN DO;

curpos = pos;
tpl not used = true;

THEN

DO UNTIL(eor_inner or not outer.x R inner.y);
IF outer RR inner THEN DO;

output (outer I I inner);
used(pos) = true;
tpl_not_used = false;

END;
pos = pos + l;
READ inner(pos);

END;
IF tpl not used T~~N

output (outer I I nulls);
pos = curpos;
READ inner(pos);
READ outer;

END;
ELSE IF not eor outer THEN

END;

DO UNTIL (eor outir);
output (outer I nulls);
READ outer;

END;

DO WHILE(not eor inner);

END;

IF not used(pos) +~EN
output (nulls I I inner);

pos = pos + l;
READ inner(pos);

ALGORITHM 3.3 - SORT/NESTED LOOP

22

The cost for this sort/nested loop algorithm cannot be

23

computed easily, because it is actually breaking the nested

loops into pieces of single loop. For each matching tuple,

there is a single loop for the remaining matching (at least

'FIRST CONDITION', which is discussed in the next chapter)

tuples in the inner relation.

Cost = (M + Ni + No) * (E + I) + 0 + ~ (3. 4)

where N. is the remaining matching tuples in the inner
l

relation for each ith single loop; No is beginning unmatched

tuples of the inner relation; M is the total number of outer

tuples; E and I is the execution and input time respec-

tively, and O is the output time.

The algorithms with blocking of outer and inner rela-

tions using sort/nested loop method are shown in Appendix B

and C respectively.

CHAPTER IV

SORT/MERGE METHOD

In this chapter, we will look into another type of join

method, the sort/merge method. This join algorithm has been

considered to be better than the nested loop method in terms

of the number of operations by [28]. This algorithm employs

a sort of the operand relations on the join attributes, fol

lowed by merge-type operation of the two sorted relations to

complete the join [28]. The implementation of the sort/merge

join is slightly more complex than it seems from this simple

description. If neither of the two join attributes is an

unique key to its relation (i.e. the join implements a

many-to-many relationship), intermediate relations may have

to be built. Therefore this is normally considered to be a

more complex algorithm than the nested loop methods (without

any sorting). (Note: we are assuming many-to-many relation

ship in implementing the join.)

The sort/merge equal-join algorithm [18] sorts the

relations based on the join attributes. The algorithm then

scans through both relations from the top until it reaches a

point where the join attributes from both relations are

equal or either one of the relations runs out. Assuming

24

25

that it reaches a point where the join attributes from both

relations are equal, then it continues to find more matching

tuples from the inner relation and performs the join opera

tion. At the same time, these matching tuples from the inner

relation are stored in intermediate storage. These tuples in

the intermediate storage are then used to join with the

tuples from the outer relation if their join attributes are

equal to the attribute of the first tuple that satisfies the

join condition. The intermediate storage for the matching

tuples from the inner relation can be as large as the inner

relation, which occurs in the worst case. Hence, we can say

that the size of the intermediate storage is influenced by

the choice of the inner and outer relations.

4.1 Sort/Merge Method for Outer-equal-join.

We modify the sort/merge join algorithm into a sort/

merge outer-equal-join algorithm. This is easily done by

joining the tuple with null tuple from the other relation

when the tuple is determined to be non-joined tuple.

/

/* outer, inner : the two relations to be joined.
* outer~, inner~ : buffers for the last read elements.
* outer~.f, inner~.g : the join attributes.

26

* current : a variable indicating the current join value.
* intermediate : holds intermediate tuples
*I
sort(outer by f); sort(inner by g); (step 1)
READ outer; READ inner;

DO WHILE NOT (eor inner OR eor outer OR
oute?".f * inner~g);

IF outer~.f < innet~.g THEN DO
OUTPUT (outer~ I I inner~.nulls);
read(outer);

END
ELSE DO

OUTPUT (outer~.nulls I I inner~);
read(inner);

END
END:
IF NOT (eor inner OR eor outer) THEN DO;

(step 2)

(* Cartesian product of joining subrelations *)
intermediate= '';
current := outer~.f; (step 3)
DO UNTIL(inner~~g f curre£t OR eor_inner);

OUTPUT (outer I inner);
intermediate= intermediate+ 'inner~';
read(inner);

END;
read(outer); (step 4)
WHILE(outer~.f =current AND NOT (eor_outer));

FOR EACH irec IN !ntir~ediate DO
OUTPUT (outer I irec);

read(outer);
END

END
UNTIL eor outer OR eor inner

END.

ALGORITHM 4.1 - SORT/MERGE OUTER-EQUAL-JOIN

First, the algorithm (Algorithm 4.1) scans through both

relations until it finds the matching tuples and proceeds to

the third step, and at the same time the unmatched tuples

are joined with the null tuples. In the third step, it

tries to find as many matching tuples from relation 2 as

27

possible until the join condition is not met. During the

third step, all the tuples that satisfy the join condition

are kept in intermediate storage for later use in the fourth

step. In the fourth step, the next outer tuples are joined

with all the intermediate tuples if the next outer tuple is

equal to the current outer tuple. The process is repeated

until both relations are exhausted. With exception to step

2, this sort/merge outer-equal-join algorithm is exactly

like the sort/merge equal-join algorithm.

For example, if you have an outer-equal-join on RELl.A

and REL2.A on the following tables:

RELl REL2

A B

1 1
2 4
2 3

The first tuple in RELl is not equal to the first tuple

in REL2, so you advance to the second tuple in REL2 because

the first tuple of REL2.A is less than first tuple of

RELl.A, and first tuple of REL2 is joined with null tuple of

RELl. The second tuple of REL2.A is equal to the first

tuple of RELl.A, therefore, the second tuple of REL2 is kept

in intermediate storage and join with the first tuple of

RELl. Then the third tuple in REL2 is compared with first

tuple from RELl. Since the third tuple of REL2.A is equal to

the first tuple of RELl.A, it is also kept in the intermedi-

ate storage and join with the first tuple of RELl. So, the

28

intermediate storage contains two tuples from REL2. There

are no more tuples from REL2, so we go on to the next step.

That is to see if the next (second) tuple of RELl.A is equal

to the first tuple of RELl.A. If they are, the second tuple

of RELl is joined with all the tuples in the intermediate

storage. The algorithm terminates because both relations

run out of tuples. The resulting table from the above aper-

ations is as follow:

RELl.A RELl.B REL2.A REL2.B

? ? 1 1
2 2 2 4
2 2 2 3
2 3 2 4
2 3 2 3

The cost of I/O (CI) for the sort/merge Outer-equal-

join algorithm is

CI = (M + N) * I + O; (4 . 1)

The cost of comparisons (CC) for the sort/merge Outer-

equal-join algorithm in the worst case is (19]

CC = (M + N - 1) * E; (4.2)

29

The minimum comparisons for the sort/merge Outer-equal-join

algorithm is

CC = N*E: (4.3)

(note: Comparisons within the same relation is not included

in the cost.)

So far, the assumption is that there is an infinite

amount of main storage, which is not necessarily true in the

real environment. Therefore, all the intermediate tuples

may have to be stored in a secondary storage. This inevita

bly decrease the performance of the sort/merge outerjoin

significantly.

4.2 Sort/Merge Method for Outer-theta-join.

To do an outer-theta-join using the sort/merge method

is not a simple task. It is found to be a very complex and

time consuming algorithm by [28]. We use the idea of sort/

merge to implement the outer-theta-join. This outer-theta

join method breaks the predicate's structure into three

parts. The first part of the predicate is called 'FIRST

CONDITION' predicate, which is the main condition where the

sort/merge is applied. The second part is called the 'LESS

THAN CONDITION', which is the less than condition for ele

mentary predicates contained in the 'FIRST CONDITION'. The

'LESS THAN CONDITION' is used to eliminate unmatched tuples

from the relations. The last part is called the 'SECOND

CONDITION' or 'REMAINING CONDITION', which consists of the

remaining join conditions not in the 'FIRST CONDITION'.

30

Since the 'FIRST CONDITION' will be used as the main

condition for the sort/merge algorithm, then the relation

will be sorted based on the attributes in the 'FIRST

CONDITION'. The criteria for 'FIRST CONDITION' are based on

the following conditions:

(1) have only one kind of relational operator;

(2) select all predicates with "=" operator;

(3) if none of (2), select all predicates with operator

of the same type;

(4) predicates selected with key attributes are placed

first.

Evaluation of the predicates will be from left to right and

terminates if any predicate returns false. Example of how

an outerjoin query is set up for the sort/merge algorithm is

as follow:

Let the query be as

Ojoin * (Rl, R2 where Rl.x = R2.x and

Rl.y = R2.y and

Rl.z < R2.z

(assuming that x and y are key attributes)

Then

a) FIRST CONDITION is

Rl.x = R2.x and Rl.y = R2.y

b) LESS THAN CONDITION is

Rl.x < R2.x or (Rl.x = R2.x and Rl.y < R2.y)

c) SECOND CONDITION is

31

Rl.z < R2.z

Note: if there is no SECOND CONDITION then evaluating

SECOND CONDITION is always true.

The sort/merge algorithm for outer-theta-join can be

written by combining the outer-equal-join algorithm with the

sort/nested loop algorithm and some additional modifica-

tions. Assuming that there is no dynamic storage, the

intermediate relation will be kept in inner relation using

virtual indexes on the tuples. That is, we cursor the

indexes of the first and last tuples from the inner relation

(the intermediate tuples) which satisfied the 'FIRST

CONDITION'.

/* for simplicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* outer.x - the 'FIRST CONDITION' attributes for outer
* relation
* inner.y - the 'FIRST CONDITION' attributes for inner
* relation
* R - Relation, i.e xRy, for the 'FIRST CONDITION'
* RR - Relation for the 'SECOND CONDITION'
* n inner - total number of inner tuples.
* p=outer - pth outer tuple.
* p inner - pth inner tuple.
* start inner - first inner tuple that satisfies the FIRST
* inner~used - indicate whether inner tuple used or not.
* outer.used - indicate whether outer tuple used or not.
* current - current outer tuple.
* lookahd - look ahead inner tuple.
* WHERE - evaluates the predicates.
* FIRST - FIRST CONDITION predicate.
* SECOND - SECOND CONDITION predicate.
* LESS - LESS THAN CONDITION predicate.
* ++ - increment by one.
*/

READ outer;

READ inner;
DO WHILE(not(eor outer and eor inner);

DO WHILE(not (eor_outer or eor inner
or WHERE(FIRST}));

IF WHERE(LESS) THEN DO;
output(outer I nulls);
READ outer;

END;
ELSE IF not eor_t'nner THEN

output(nulls I inner);
READ inner(++p_inner);

END;

DO;

END;
IF not (eor outer or eor inner)

start inner = p inner;
CURRENT = outerT
outer.used = 'O'B;

THEN

DO UNTIL(eor inner or WHERE(FIRST});
IF WHERE(SECOND) r~EN DO;

output (outer· I inner);
mark inner used;

END;
outer.used = 'l'B;
lookahd = inner;
READ inner(++p_inner);

END;
IF not outer.used THEN

output (outer I nulls);
I* */
/* is the next remaining outer tuple */
/* equal to the current outer tuple */
/* Or satisfies the 'WHERE' evaluation */
/* */

READ outer;
outer.used = false;

32

(STEP 1)

(STEP 2)

(STEP 3)
DO WHILE(not eor outer and (outer.x = current.x

or WHERE(FIRST))) ;
MORE = true;
IF no SECOND CONDITION THEN

DO I = start_inner TO p_inner-1;
READ inner(i);
output (outer I I inner);
mark inner used;

END;
outer.used = true;

END;
ELSE
DO I = start_inner TO p_inner-1;

READ inner(I);
IF WHERE(SECOND) r~EN DO;

output (outer I inner);
mark inner used;

outer.used = true;
END;

END;
IF not outer.used then

output (outer I I nulls);
READ outer;
outer.used = false;

END;
ADVAN = true;

IF (not eor outer and R is not '=' and

33

(STEP 4)

{p inner-1) > start inner) THEN DO;
IF WHERE(FIRST) on lookahd THEN DO;

p inner = start inner + l;
reset eor innerT
ADVAN = false;

END;
READ inner(p_inner);

END;
(STEP 5)

IF no second condition and ADVAN is true THEN DO;
DO I = start inner TO p inner-1;

READ inner(I); -
IF not inner.used +HEN

output (nulls I I inner);
END;
READ inner(p_inner);

END;
END;
ELSE IF not eor outer THEN
DO WHILE (not eot outer);

output (outer It nulls);
READ outer;

END;
ELSE IF not eor inner THEN
DO WHILE (not eor inner);

IF not inner.used +HEN
output (nulls I I inner);

READ inner(++p_inner);
END;

END;
END;

END;

ALGORITHM 4.2 - SORT/MERGE OUTERJOIN

(STEP 6)

(STEP 7)

Let us examine the sort/merge outerjoin Algorithm 4.2.

Step 1. This step eliminates all non-possible join tuples.

34

These eliminated tuples are joined with the appropiate null

tuple. For all the outer and inner tuples· eliminated, the

number of iterations reduced is equal to the cartesian pro

duct of the outer and inner tuples eliminated.

Step 2. In this step, try to join the outer tuple with as

many inner tuples as possible before it is eliminated from

the process. But the inner tuples that matched (fully or

partially, called the intermediate tuples) with the outer

tuple are not necessarily eliminated after step 3. The rea

son is if there is a 'SECOND CONDITION' and the 'FIRST

CONDITION' is not an equal type of condition, then there is

a possibility that the outer tuple might match the intermed

iate tuples.

Step 3. In this part, use the case when the attributes of

the 'FIRST CONDITION' of the next remaining outer tuples and

the current outer tuple are equal. Then by transitive defi

nition i.e. if c =a and a= b then c = b [20], the next

remaining outer tuple is equal to the inner tuples of step 2

as far as the 'FIRST CONDITION' is concerned. If there is

not 'SECOND CONDITION' then all the intermediate tuples are

joined with the next remaining outer tuple without having to

do any comparison. The real advantage is when there is a

large number of intermediate tuples from step 2, let say k,

then k comparisons are saved(at least partially, if there

is a 'SECOND CONDITION').

Step 4. In this part, try to determine whether there is any

35

possibility for the remaining outer tuple to match the

intermediate tuples of step 2. This is done by having a loo

kahead tuple. If the next remaining outer tuple does not

satisfy the lookahead tuple on the 'FIRST CONDITION', then

there is no possible join for the next remaining outer tuple

to match with the intermediate tuples of step 2.

Step 5. In this part, all the unused intermediate tuples of

step 2 and 3 are joined with the null tuple.

Step 6. Join all the remaining outer tuples with null tuple

when the end of inner relation has been encountered.

Step 7. Join all the remaining inner tuples with null tuple

when the end of outer relation has been reached.

36

The cost of I/O (CI) for the above algorithm is

(for j = 1 to M) (4. 4)

where N. is the intermediate tuples for the jth iteration.
J

The cost of comparisons (CC) depends on the type of outer-

join operations. For outer-equal-join the cost of compari-

sons is the same as the cost of comparisons for sort/merge

equal-join algorithm (COST 4.2). The Cost of comparisons for

outer-theta-join (non-equal) is between N*E and M*N*E.

N*E <= CC <= M*N*E

The above algorithm assumes no primary storage for the

tuples. Dynamic storage can be used to hold intermediate

tuples, but if the storage for the intermediate tuples is

larger than the memory available then there is a problem.

This problem can be solved by splitting the operation into a

few outer-join operations that have enough memory to hold

the intermediate tuples. (This is very similar to blocking

the inner relation with dynamic storage.) For methods using

blocking on outer and inner relations see Appendix D and E

respectively.

CHAPTER V

ANALYSIS AND EVALUATION OF OUTERJOIN METHODS

In this chapter, we analyze each of the algorithms pre

sented in earlier chapters. For the purpose of testing, we

introduce two tables or relations called RELl and REL2

(Appendix A). The values of these two tables are randomly

generated. Each table has five columns, naming A, B, C, D, E

for RELl and U, V, W, X, Y, z for REL2. For simplicity, all

the values are assumed to be positive integers.

The algorithm is analyzed to see how well it performs

against outer-join queries of:

a) one predicate of equal condition.

b) one predicate of less than condition.

c) one predicate of greater than condition.

d) multiple predicates of theta conditions.

Again, for simplicity the queries are as follow:

For one predicate of equal condition the outer join query is

OJOIN * (RELl, REL2) WHERE RELl.A = REL2.U and, the

query for one predicate less than condition is

OJOIN * (RELl, REL2) WHERE RELl.A < REL2.U and, the

query for one predicate great than condition is

37

OJOIN * (RELl, REL2) WHERE RELl.A > REL2.U and, for

multiple predicates of theta conditions are

OJOIN * (RELl, REL2) WHERE RELl.A = REL2.U AND

RELl.B < REL2.V

38

For each of the above queries, the query is run for 10

times on an outerjoin algorithm to get the average results.

The results that are recorded for measuring the performance

of the outer join algorithm are:

1) the number of tuples in the outer relation;

2) the number of tuples in the inner relation;

3) the number of 'read's performed;

4) the actual number of comparisons;

5) the total number of joins performed;

6) the total number of outerjoin tuples produced;

7) the average C.P.U. time, in seconds, required to perform

the outer-join operation.

For the purpose of comparison, the following variables

and values are used:

1) The relation sizes are 100 tuples for outer relation,

and 150 tuples for the inner relation;

2) The blocksize is 50 tuples if blocking is used;

3) Each tuple is 30 bytes;

4) The I/O buffer is lOk bytes;

5) The size of the VM machine is 2m bytes;

6) C.P.U. time is measured in seconds, and only the actual

operation of outerjoin will be measured. Sorting time

39

for the relations is not included in the computation.

5.1 No Dynamic Storage

The results obtained from the above queries for algor

ithms which did not use dynamic storage, as in this

research, are presented in table I, II, III, and IV.

Since the nested loop method (NL) is the simplest and

easiest way to implement outerjoin, it is used as the con

trol method to determine how well the other methods perform

relatively.

Table I shows that sort/merge method (SM) has the least

number of inputs (or reads) and NL has the most (the maximum

inputs using the formula in [26]). The sort/nested loop

method (SN) has 96.96% less inputs and 98.28% less compari

sons than NL. With SM, we save 98.27% inputs and 99.0% com

parisons. In respect of C.P.U. time, SN is about 4.5 times

and SM is about 3.6 times faster than NL. Looking at figure

1, SM is definitely the best, followed by SN, in terms of

C.P.U. time and number of joins for outer-equal-join quer

ies. Figure 2 shows that the number of comparisons stays the

same with respect to number of joins for NL and SM. As for

SN, the number of comparisons increases as the number of

joins increases. Figure 3 shows the number of inputs with

respect to the number of joins.

Method

used

NL

SN

SM

Method

used

NL

SN

SM

TABLE I

OJOIN * (TABLEl, TABLE2) WHERE A = U
(NO DYNAMIC STORAGE)

Number of tuples Number of Total
output

outer inner inputs comparisons JOlnS tuples

100 150 15100 15000 112 156

100 150 462 260 112 156

100 150 259 150 112 156

TABLE II

OJOIN * (TABLEl, TABLE2) WHERE A < U
(NO DYNAMIC STORAGE)

Number of tuples Number of Total.

outer inner inputs comparison's
output

JO LOS tuples

100 150 15100 15000 7943 7945

100 150 8292 8093 7943 7945

100 150 8096 7796 7943 7945

40

Average
C.P.U

(sec)

2.2630

0.4790

0.1180

Average
C.P.U

(sec)

3.6760

2.6240

2.7810

Met bod

used

NL

SN

SM

TABLE III

OJOIN * (TABLEl, TABLE2) WHERE A > U
(NO DYNAMIC STORAGE)

Number of tuples Number of Total
output

outer inner inputs comparisons JOlnS tuples

100 150 15100 15000 6945 6948

100 150 7292 6946 6945 6948

150 100 7099 4829 6945 6948

TABLE IV

Aver.age
C.P.U

(sec)

3.6440

2.3280

2-5120

OJOIN * (TABLEl, TABLE2) WHERE A = U AND B < V
(NO DYNAMIC STORAGE)

Mee hod Number of tuples Number of Total Average
output C.P.U

used outer inner input.s comparisons JO ins tuples (sec)

NL 100 150 15100 15000 7 243 2. 80 70

SN 100 150 459 260 7 243 0.4920

SM 100 150 458 l 51) 7 243 0.5160

41

0

.3
-0
Cl> --(/)
(].)

z

0
.-~~~~~~~~~~~~~~~~~~~~~----y-0

0
<D

\
\
\
\
\
\

\

\

\
\

\

\

\
\

\

\

\

\

\

\

\
\

\ \

\ \
\
\
\
\

\

\
\

\

\

\ \

\ \
\ \

\
\

\

\

\ \

\ \

\ \

0
0
0
;t

0
0
0
N ,,---

0
0
0
0 (/)

z
0
J

0 LL
00
0 0::::
ro w

m
2
:J oz

0
0
({)

0
0
0
~

0
0
0
N

\\
r-~~~~~-.~~~~~_:_--,-~~~~_:_---..::....i-o

N 0

Q)

H
;::)
bO

·H
µ,

42

20000 INPUTS (tuples) Nested Loop Sort/Nested Looi? Sor!L'Merg~ _ _

15000 -I
~/p

././ p:-"'

10000-

5000-

~~
//

~~r

_//
~~

/?'
/fr.

~~?'
/~?'

,4~r
~,...

o~
0

I

2000
I

4000
I

6000
I

8000
I

10000
NUMBER OF JOIN tuples

l
12000

Figure 2. The Number of Inputs per Join Tuple

l
14000 16000

.t:>
w

NUMBER OF COMPARISONS Nested Loop Sort/Nested Looe Sor!.{Merg~ _ _
20000--~~~--~

15000--j ////////

10000 -

5000-

//
/

0 IC I
0 2000

/

///

I
4000

/

//
/·

l
6000

///

/

I
8000

I
10000

NUMBER OF JOIN TUPLES

I
12000

Figure 3. The Number of Comparisons per Join Tuple

l
14000 16000

.!::>

.!::>

For non-equal outerjoin queries, as shown in TABLE II

and III, we save about 50% of inputs and comparisons when

using SN and SM.

45

The number of tuples in the outer and inner columns on

TABLE III are different for SM because of the '>' condition

which is not handled by the algorithm directly. The SM han

dles the '>' condition by swapping the outer and inner rela

tions so that the '>' condition(s) become '<' condition(s).

The results of the query are not affected by the swapping.

(For example of these effects, see Appendix H).

The results for query 4 (multiple predicates query) is

shown in TABLE IV. As we might expect, SM and SN are better

than NL. Notice that the C.P.U. time for SN is slightly bet

ter than the C.P.U. time for SM. For an outer-equal-join

(fully or partially), the results in terms of C.P.U. time

depends largely on the relations and the number of joins. As

we have seen earlier, the difference between SN and SM is

the way they handle the intermediate tuples. SN does not

handle intermediate tuples, that is the inner tuples that

match the outer tuple, are not kept for re-use in looping

the outer relation as it is done in SM. The cursor of the

inner relation for SN always returns to the position of the

first matching inner tuple after each loop. SN always has

better results if the intermediate tuples in SM have to be

reused in the operation, that is, backing up to the previous

tuples starting from the first intermediate tuple, making

the process like that of SN. Since SM has a higher overhead

46

than SN, SN has a better result. However, this is not true

if the intermediate tuples are joined with more than one

outer tuple or never reused(only in the case when intermed

iate tuple is more than one).

5.2 Use of dynamic storage

The next two sections present the test results for

algorithms that use some form of dynamic storage.

As mentioned earlier, using some form of dynamic sto

rage can improve the outerjoin operation. The dynamic sto

rage is fixed because we can not assume infinite amounts of

dynamic storage. Therefore, the fixed dynamic storage is

not used to hold the intermediate tuples in SM.

First we would like see how blocking on outer relation

can improve or in some cases worsen the algorithms. TABLE V,

VI, VII, and VIII show the results for query 1, 2, 3, and 4

respectively.

If you compare the results of TABLE V with TABLE I,

you'll see that NL improved the most, more than 50%, in

C.P.U. time. This is due to the idea of (b - 1) processors

described in chapter 3. In this case, 50 tuples from the

outer relation in memory are going against one tuple from

inner relation at a time.

Method

used

NL

SN

SH

Method

used

NL

SN

SH

TABLE V

OJOIN * (TABLEl, TABLE2) WHERE A = U
(BLOCK OUTER RELATION, BLOCKSIZE = 50)

Number of tuples Numbci:- of Total
output

outer inner inputs compai:-1sons JOlnS tuples

100 150 400 15000 112 156

100 150 418 228 112 156

100 150 409 300 112 156

TABLE VI

OJOIN * (TABLEl, TABLE2) WHERE A < U
(BLOCK OUTER RELATIO~, BLOCKSIZE = 50)

Numbei:- of tuples Numbci:- of Total
output

outer inner lnputs compai:-1sons JOlDS tuples

100 150 400 15000 794 3 794 5

100 150 320 8063 7943 7945

100 150 3166 7866 794 J 7945

47

Average
C.P.U

(sec)

l. 0100

0.6160

0 .1000

Average
C.P.U

(sec)

1.7630

2.6710

I J. 0 780

Method

used

NL

SN

SM

TABLE VII

OJOIN * (TABLEl, TABLE2) WHERE A > U
(BLOCK OUTER RELATION, BLOCKSIZE = 50)

Number of tuples Number of Total
output

inputs - tuples outer inner comparisons JO ins

100 150 400 15000 6945 6948

100 150 350 6847 6945 6948

150 100 7209 4939 6945 6948

TABLE VIII

Average
C.P.U

(sec)

1.6670

2.4330

2. 7260

OJOIN * (TABLEl, TABLE2) WHERE A = U AND B < V
(BLOCK OUTER RELATION, BLOCKSIZE = 50)

Hethod Number of tuples Number of Total Average
output C.P.U

used outer inner inputs compariso;-is JOins tuples (sec)

NL 100 150 400 15000 7 243 1. 1540

SN 100 150 418 228 7 243 0.5270

SK 100 l so 508 306 7 243 0.3890

48

% INPUTS SAVED
100----~~~~~~~~~~~~~~~~~~~~-,

90

80

. 70

60

50

40---~~~--~~~---~~~-.-~~~--~~~~

0 20 40 60 80
BLOCKSIZE

Figure 4. The Percentage of Inputs Saved Relatively to
Blocksize

100

.!::>
l.D

6 O O INPUTS (TOTAL TUPLES = 250)

500

400

300

200--~--~~---~-.-~--,---~-..-~--~~---~-

50 60 70 80 90 100 110
TUPLES IN OUTER RELATION (BLOCKSIZE = 50)

Figure 5. The Number of Inputs Affected by Size of
Relations (Block Outer Relation)

120 130

\.11
0

4 SO INPUTS (TOTAL TUPLES = 250)

400

350

300

2so~~~-.--~~,--~--.~~---r~~-.-~~--,-~--i

120 140 160 180 200 220
TUPLES IN INNER RELATIONS (BLOCKSIZE = 50)

Figure 6. The Number of Inputs Affected by Size of
Relations (Block Inner Relation)

240 260

lJl
f-'

52

5.2.1 Block the Outer Relation

SN has a slight improvement in the number of inputs and

comparisons but not in C.P.U. time. In fact, the C.P.U. time

increases. The increase in C.P.U. time is due to the number

of SN operations (total number of outer tuples divided by

the blocksize) it has to perform which in this case is 2.

First with the initial 50 tuples of the outer relation and

the inner relation, and second with the next 50 tuples of

the outer relation and inner relation. The same thing hap

pens to SM, although its performance is not worse than with

out the dynamic storage. Therefore, we can conclude that

blocking on outer relation does not help SN or SM.

5.2.2 Block the Inner Relation

You have seen the results for blocking on outer rela

tions. In this section, you will see how blocking on the

inner relation can improve the algorithms. The results for

query 1, 2, 3, and 4, using the blocking on an inner rela

tion, are shown in TABLE IX, X, XI, and XII respectively.

Method

used

NL

SN

SH

Method

used

NL

SN

SH

TABLE IX

OJOIN * (TABLEl, TABLE2) WHERE A = U
(BLOCK INNER RELATION, BLOCKSIZE = 50)

Number of tuples Number of Total
output

outer 1nner inputs comparisons JOlnS tuples

100 150 450 15000 112 156

100 150 360 268 112 I 156

100 150 360 258 112 156

TABLE X

OJOIN * (TABLEl, TABLE2) WHERE A < U
(BLOCK INNER RELATION, BLOCKSIZE = 50)

Number of tuples Number of Total
output

outer 1nner inputs comparisons JOlnS tuples
.

100 150 450 15000 7943 7945

100 150 358 7888 7943 7945

100 150 358 2640 7943 7945

53

Average
c. p. u
(sec)

1.0500

0.0852

0.1700

Average
C.P.U

(sec)

1.7650

1.3460

0.9010

Met: hod

used

NL

SN

SM

TABLE XI

OJOIN * (TABLEl, TABLE2) WHERE A > U
(BLOCK INNER RELATION!·.· BLOCKSIZE = 50)

Number of t:uples Number of Tot: al
out: put

. out:er tnner ioput:s comp.art sons JOtns tuples

100 150 450 15000 6945 6948
.

100 150 450 6867 6945 6948

150 100 319 2427 6945 6948

TABLE XII

Average
C.P.U

(sec)

1. 6880

1.2750

1.1490

OJOIN * (TABLEl, TABLE2) WHERE A = U AND B < V
(BLOCK INNER RELATION, BLOCKSIZE = 50)

.

Method Number of tuples Number of Total Average
output: C.P.U

used out: er inner inputs comparisons JO ins t:uples (sec)

NL 100 150 450 15000 7 243 1.2210

SN 100 150 360 268 7 243 0.0950

SH 100 150 360 264 7 I 243 0 - 1800

54

C.P.U. TIME (sec) Nested Loop Sort~sted Looi? Sor!.{Merg~ __

6 --.---.

5

4

3

2

1

/

0 /
0 2000

//

//

//
.,,.. --- _,............ - - -,, ,, // - - -

// //
/ _.,,...,,,..,,..

/ / _.,,...,,,..,,..
/y/""'

//

4000 6000 8000 10000 12000 14000
TOTAL OUTPUT TUPLES

Figure 7. C.P.U. Time per Tuple (Block Outer Relation)

16000

V1
V1

2 C.P.U. TIME (sec) Nested Loop ~t~~ .!:.9..21? ~or!LM~g~ _ _

1 . 5

0.5

1

---- -----/ / - ------
/ ---

/ ------ -
/ / ------ -

/ ------ '
/ ~--- '

/ ---~ '
/ / ------ '

/ /
/ //

// //
//
/

0--------------.opo------------.-------.-----.-------.----~

0 1000 2000 3000 4000 5000 6000 7000 8000
TOTAL OUTPUT TUPLES

Figure 8. C.P,U Time per Tuple (Block Inner Relation)

Vl
O"\

57

NL performs almost the same as when blocking on outer

relation is used, except that blocking on inner relation

results in more inputs, thereby causing a slight increase in

C.P.U. time. The number of inputs is relatively dependent on

the number of tuples in outer and inner relation and the

blocksize. For blocking on inner relation, the formula is

inputs =outer relation * (inner relation/blocksize) + inner

relation. For blocking on outer relation, the formula is

inputs = outer relation + inner relation * (outer relation/

blocksize). If we hold the blocksize constant, then you

will see how the size of outer and inner relation affect the

number of inputs in the NL algorithms. See Figure 5 and 6.

Blocking on inner relation does improve the algorithm

in all the categories (inputs, comparisons, and C.P.U.

time), except for outer-equal-join queries. Theoretically

speaking, blocking on an inner relation should improve the

outer-equal-join queries too. If the number of intermediate

tuples is small or the attributes are unique key attributes,

then blocking has no effect at all because it does not take

advantage of the inner tuples already in memory.

As for SN, blocking on inner relation improve the

algorithm in all the categories and queries, except the num

ber of comparisons for queries with equal join conditions.

5.3 Checking for no possible join

It is possible that queries do not produce any join

tuples. We can check to determine whether there is any pos-

58

sibility for the relations to have join tuples. Prior to

initiating the query, if no join tuple is produced, then

forfeit the entire outerjoin process and simply join the

relations with null tuples. However, checking procedure is

applicable to the 'sort' methods only. The ways to deter

mine whether there is any possibility for the relations to

have join tuples are:

1) For the equal-join condition, select the larger

between the two first tuples of outer and inner rela

tions. If the larger value of the tuple is greater

than the last tuple of the lesser value's relation

then we can say that there is no possible way to have

a joined tuple for the two relations;

2) For queries with the 'less than' (or 'less than equal

to') condition, if the first tuple of the outer rela

tion is not less than (or less than equal to) the last

tuple of the inner relation, then there is no possible

join in the two relations;

3) For queries with the 'greater than' (or 'greater than

equal to') condition, if the first tuple of the inner

relation is not less than (or less than equal to) last

tuple of the outer relation, then there is no possible

join in the two relations.

The algorithm to do the checking is in Appendix F.

59

This checking algorithm is cost-effective and only adds

3 reads and 2 comparisons to the outer-join operation. If

there is no possibility of join in the outer-join operation,

then the saving is at least (the total number of tuples - 2)

comparisons, depending on the type of outer-join algorithms

used.

CHAPTER VI

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

Basically, there are three types of algorithms to

implement the outer-theta-join operation. The three algor

ithms are 1) nested loop, 2) sort/nested loop, and 3) sort/

merge methods. The nested loop, with no dynamic storage, is

considered to be the worst by many people [28] because of

the nature of the algorithm. But with dynamic storage, the

nested loop can be very good (Figure 7), especially for the

non-equal condition(s) type of outerjoin queries, even

though the number of comparisons remains the same for all

queries (Figure 3). The big saving is in the number of

inputs for the operations (Figure 2). Figure 4 shows the

percentage of inputs saved when the blocksize is increased

from 2 to 100 tuples, for relations RELl and REL2 presented

in appendix A. The sort/hested loop algorithm produces the

most consistent results for all the queries; that is, the

number of inputs, the number of comparisons and C.P.U. time

increase almost proportionally with respect to the number of

joins. It is definitely much better than the nested loop

60

61

algorithm (Figure 1), especially when you have a small num

ber of joined tuples or unique key attribute(s) on outer-e

qual-join queries. (When the join condition results in

cartesian product of the two relations, the sort/nested loop

method produces the same results as the nested loop algor

ithm.) The sort/nested loop algorithm reduces the unneces

sary passes through the tuples that have no possibility of

making the join condition(s). Therefore, sort/nested loop

has fewer inputs and comparisons than the nested loop algor

ithm. The overhead for sorting is 1) select attributes to be

sorted on, 2) sort the relations, and 3) build the necessary

predicates for the algorithm. Unless the relations are very

small, the sort/nested loop is faster with the overheads

involved in setting up the relations. Especially with

today's sorting algorithms, the relations can be sorted in

the order of n(log n) [19].

The sort/merge outer-join algorithm uses the idea of

sort/merge algorithm [19]-that is, it performs like the

sort/nested loop outer-join algorithm. The difference is

that when it finds the first possible matching tuples from

the outer and inner relations, it keeps all the inner tuples

that are likely to match the current outer tuple as the

intermediate tuples. These intermediate tuples are then used

against the remaining outer tuples that are equal to the

current outer tuple or the outer tuples that are likely to

match them. This saves the k outer remaining tuples that are

likely to match from going through the same inner tuples

62

again. For queries with multiple predicates of different

conditions, it is necessary to go through the same intermed

iate tuples, although only partially in this case. This is

because the intermediate tuples have satisfied the 'FIRST

CONDITION' and only the 'SECOND CONDITION' is not known yet.

This algorithm works well for outer-equal-join queries with

duplicate tuples in both relations. For queries of relations

with no duplicate tuples, both sort/nested loop and sort/

merge produce the same results in terms of inputs and com

parisons. The sort/nested loop algorithm produces a better

C.P.U. time than sort/merge algorithm if both produce the

same results for inputs and comparisons, because sort/merge

algorithm has a higher overhead than the sort/nested loop

algorithm.

Since there is no such thing as an infinite amount of

main memory, a fixed amount of main memory is used to

improve the outerjoin algorithms. The relation is blocked

according to the amount of main memory available (equal to

the blocksize) for the operation. By blocking either the

outer or inner relations, the nested loop algorithm seems to

improve the most on the number of inputs and C.P.U. time.

The number of comparisons stays the same because of the

presence of nested loops. Blocking on outer relation for

sort/nested loop and sort/merge algorithms does not seem to

help the algorithms (Figure 7). Instead, it worsens (in gen

eral, except maybe for outer-equal-join queries) the results

due to the number of times the process is performed (one

63

block of outer relation per inner relation). The number of

times the process is performed can be easily reduced to one

for sort/nested loop. This is similar to using the algor

ithms without any blocking or main storage. Therefore,

blocking on outer relation is not recommended for sort/

nested loop or sort/merge algorithms. On the other hand,

blocking on inner relation does improve the sort/nested loop

and sort/merge algorithms (Figure 8). However, the number

of processes required to perform the outerjoin operation is

equal to the size of inner relation divided by the block

size. Since the blocking is on inner relation, the intermed

iate tuples are in memory and reduce the number of inputs

that are normally required for each reference to an

intermediate tuple with no blocking on the inner relation.

This is why blocking on inner relation is better than block

ing on outer relation for sort/nested loop and sort/merge

algorithms.

If the size of the inner relation is equal to the

blocksize, then performing outerjoin queries using sort/

merge is the best. If the size of the inner relation is

greater than the blocksize, the number of processes required

to perform the outerjoin is greater than one using the

sort/nested loop or sort/merge blocking inner relation

algorithms. With some modifications to these algorithms,

the number of processes can be reduced to one. The modifica

tion is not easy because of the condition that exists when

the intermediate tuples are split into different blocks. It

64

is rather difficult to back up to the previous block and

hold the current block. If the number of intermediate tuples

is less than or equal to the blocksize the window blocking

method can be used to move the active block as neccessary.

There is another thing that we can do with the rela

tions in sorted order. That is, we can perform a quick check

on the two relations to see whether there is any possibili

ties for the two relations to have joined tuples. If we det

ermine that it is not possible to have any joined tuple,

then we do not have to go through the operation. Instead, we

can just join all the tuples from the outer and inner rela

tions with null values. In this way, we have the minimum

number of inputs (i.e. the number of outer and inner rela

tions) and zero comparison.

Lastly, we conclude that there is no one best algorithm

for the outer-theta-join operations with multiple predi

cates. The choice of the algorithm depends on (1) join

attributes (unique or non-unique), (2) join condition(s),

(3) the number of resulted joined tuples, if it can be pred

icted, and (4) the size of the relations. Our recommenda

tion for choosing the type of algorithms to a query is sum

marized in Appendix G.

6.2 Future Research

In this thesis we only perform tests on two tables/re

lations and a blocksize of 50 tuples. There are other tests

required to provide a reliable recommendation. These tests

include:

1) using different relations, but holding the relation

sizes constant;

2) using relations of different sizes;

3) using relations of different sizes and holding the

output constant;

4) using different blocksizes;

5) holding the relation size constant, and changes the

output for the same query.

65

BIBLIOGRAPHY

[l] Aho, A.H, c. Beeri, and J. Ullman, The Theory of Joins
in relational Data Bases , Proc. 19th IEEE symp.
on Foundation of Computer Sci., (1977) 107-113.

[2] Babb, E., "Implementing a Relational Database by Means
of Specialized Hardware." ACM Transactions on
Database Systems 4, 1 (March 1979), 1-29.

[3] Blasgen, M.W, and Eswaran, K.P., "Storage and Access in
Relational Databases." IBM Syst.J. 16,4 (1977),
363-378.

[4] Boral, H., D.J. DeWitt, D. Friedland, and W.K. Wilkin
son, "Parallel algorithms for the execution of
relational operations." Tech. Rep. 402, Computer
Science Dept., Univ. of Wisconsin, Madison, Janu
ary 1980.

[5] Breitbart, y., P. Olson, and G. Thompson, "Database
Integration in a Distributed Heterogenous Database
System", Int'l Conf. on Data Engineering, Los
Angeles, Ca, February 1986, 301-310.

[6] Ceri,S., and G. Pelagatti, "Correctness of Query Execu
tion Strategies in Distributed Databases", ACM
Transactions on Database Systems 8, 4 (December
1983), 577-607.

[7] Chamberlin, D.D., "A Summary of User Experience with
the SQL Data Sublanguage", Proc. Int'l. Conf. on
Database, Aberdeen, Scotland, July 1980, 181-203.

[8] Chapman, J.A., "Logical Data Base Design for Relational
Data Base Systems", Naval Postgraduate School,
Monterey, California, June 1978.

[9] Codd, E.F., "A Relational Model of Data for Large
Shared Data Banks", ACM Transactions on Database
Systems 13, 6 (June 1970), 377-387.

(10] Codd, E.F., "Extending the Database Relational Model
to Capture More Meaning", ACM Transactions on
Database Systems 4, 4 (December 1979), 397-434.

66

67

(11] Date, C.J., An Introduction to Database Systems, Third
Edition, Addison-Wesley, 1981.

(12] Date, C.J., ''The Outer Join", Proc. Second Int'l.
Conf. on Databases, Cambridge, England, September
1983, 76-106.

(13] Dayal, u., "Processing Queries with Quatifiers: A Hot
iculture Approach", PODS, Atlanta, Georgia, March
1983, 342-353.

(14] Heath, I.J. IBM internal memo (April 1971).

(15] Hsiao, c.c., "Highly Parallel Processing of Relational
Databases", Purdue University, West Lafayette,
Indiana, August 1983.

(16] Kim, W., "On Optimizing a SQL-like Nested Query", ACM
Transactions on Database Systems 7, 3 (September
1982), 443-469.

(17] Kim, W., D. Reiner, and D. Batory, eds., Query Pro
cessing in Database Systems, Springer-Verlag,
1984.

(18] Kim, w., D. Reiner, and D. Batory, eds., Query Pro
cessing in Database Systems, Springer-Verlag,
1985.

(19] Knuth, D.E. The Art of Computer Programming vol. 3:
Sorting and Searching. Addison-Wesley, Reading,
Mass., 1973.

(20] Levy, L.S. Discrete Structures of Computer Science ,
John Wiley & Sons Inc., New Y?rk, 1980.

[21] Lacroix, M., and A. Pirotte, "Generalized Joins",
SIGMOD Record 8, 3 (September 1976) 14-15.

(22] Lohman, G., D. Daniels, L. Haas, and R. Kistler, Sel
inger, P., "Optimization of Nested Queries in a
Distributed Relational Database", in VLDB 1984.

[23] Maier, D., The Theory of Relational Databases , Compu
ter Science Press, Rockville, Maryland, 1983.

(24] Rosenthal, A., D. Reiner, Extendirtg the Algebraic
Framework of Query Processing to Handle Outer
joins, Computer Corp. of America, Cambridge, Mas
sachusetts, 1984.

(25] Sacco, G.M. "Fragementation: A Technique for Efficient
Query Processing", ACM Transactions on Database
Systems 11, 2 (June 1986), 113-133.

68

(26] Selinger, P.G., "Access· Path Selection in Distributed
Database Management Systems", IBM Research Labora
tory, San Jose, California, 1980.

(27] Ullman, J.D. Principles of Database Systems. 2nd
Ed., Rockville, Maryland, 1976.

(28] Valduriez, P., and G. Gardarin, "Join and semijoin
Algorithms for Multiprocessor Database Machine."
ACM transactions on Database Systems 9, 1 (March
1984), 133-161.

(29] Vankirk, Dale., "User-friendly interface to The Roth
Relational Database", Air Force Institute of Tech
nology, Wright-Patterson Air Force Base, Ohio;
1983.

APPENDIXES

69

APPENDIX A

TABLEl AND TABLE2 RELATIONS

RELATION TABLEl

A 15 c D E ,.
------------ ------------ ------------ ------------ ------------ ------------•52 970 71 852 457 975 179 925 567 5•8 723 811 980 835 34 763 577 80 39• 817 264 373 557 624 38 88 917 •76 500 394 806 619 51 646 879 448 463 29 61 673 67 274

26 56 262 812 666 813 571 195 538 263 960 128 739 S:ia 639 972 185 27
68 37 768 362 376 525 350 34 922 471 72 232 219 509 935 804 922 815

140 3 22 I :?5 82 136 166
658 849 852 697 629 42

95 122 904 75 560 1150 773 334 432 70 489 417
58 169 924 9•1 640 4 1 1
45 294 424 130 446 143

368 535 .:S26 . "' 7~9 . !3
267 157 571 168 203 879
632 648 311 145 540 108 40 822 840 641 803 602
798 331 936 541 452 668 458 120 885 468 345 173 174 392 535 521 6 661
378 667 404 56 772 372
s5a '797 667 489 203 402
196 868 536 110 117 695 129 964 806 99 806 161 521" 379 957 734 I 31 682 259 196 63 495 265 207 661 774 840 878 684 63 903 799 102 ..i59 449 3!!5 330 737 326 637 854 Sil 718 900 73 756 818 732
473 531 661 459 108 269 572 518 200 452 209 184
620 34 665 770 _477 437
603 892 537 491 887 900 683 131 678 68 143 215 466 623 6i7 303 I 1 228

70

71

A • c 0 E ,,
------------ ------------ ------------ ----------.-- ------------ ------------604 .7 664 983 532 413

503 685 227 665 969 . 77
897 827 56 109 892 8• 256 650 892 677 •2a 372
101 635 737 67• 854 HSI
291 235 366 0 143 290
842 652 563 229 •54 748

64 603 822 •62 133 138
505 281 164 150 725 980
526 851 36 162 271 941
178 182 426 590 803 815 344 379 318 516 86 524
552 593 306 552 4159 167
596 740 640 234 768 400 706 695 4• 606 531 682 612 461 285 39 536 •95 1153 284 •59 285 955 913 104 896 202 371 7 231
139 561 480 891 156 201
248 631 991 899 749 12
373 284 555 337 33S 22 879 471 916 15 651 635 469 93 119 766 302 9• •4S S41 8S1 60S 278 6S9
130 278 748 •68 655 17
879 S36 572 904 863 267
207 765 18S 134 748 737

51 6SO 293 652 101 647
968 617 868 977 343 605
953 207 8S9 •08 384 428
489 a i.a 137 740 353 318
268 543 497 246 650 1114
565 604 757 us 578 S27 491 149 537 642 493 627

73 208 936 793 858 377 240 623 6 400 697 278 161 ISO 472 51 522 784
940 •SS 493 895 838 530
196 0 194 973 S63 710
50S 17S 215 410 129 765
862 814 368 761 435 230 201 ·goo 660 865 143 270 317 •S 189 813 874 660 331 808 737 698 S90 915 819 211 58 895 664 545
899 569 824 194 789 139 725 100 761 <W7 733 772 920 272. 636 :rs 1 260 272 795 241 573 507 589 522 865 297 374 274 659 33 296 84 743 915 832 494 652 545 152 957 857 481 23 411 726 950 114 -449 . 880 466 39 542 18 536 987 305 804 207 276
2•6 929 654 685 991 917 . I
525 890 441 787 281 872 836 158 224 617 192 890

72

RELATION TABLE2

u v • x y z ------------ ------------ ------------ ------------ ------------ ------------10• 7 66• 113 532 •13 S03 HS 221 HS Ht 77 197 121 .. IOI 112 I• 251 HO H2 677 •21 372 101 . 135 737 17• IS• Ill 291 23S 311 0 IC3 210 8'2 IS2 513 221. •5• 7&1 •• 103 122 •12 133 131 sos 211 II• 150 725 HO SH ISi 31 112 271 941 171 112 •21 510 103 llS
3•• 371 311 511 H 52• 5!2 593 301 S52 •It 167 SH 740 140. 234 711 &OO 701 HS •• IOI S31 182 112 •61 2115 39 531 •95 113 28' •st 215 955 913
10• HI 202 371 7 231
139 Sil •80 HI ISi 201 248 131 HI llH 7•t 12 373 211• SSS 337 33S 22 171 •71 Ill 15 151 . 13S
•6' 13 111 761 302 •• 445 5'1 1151 605 2711 151 130 271 7•11 ... 155 17
179 53& 572 104 1163 267 207 765 185 134 741 7.37 51 650 293 652 101 647"
5168 117 1169 177 3C3 6os
953 207 Bst 408 36' 421 489 81• 137 7•0 353 311 211 5•3 497 248 150 19• 565 604 757 145 579 527
•II 149 537 142 .. 3 127 73 208 936 793 esa 377
240 123 I coo H7 2711 161 150 472 51 522 714
940 455 &93 195 1138 530 196 0 ,,. 173 sn 710 sos 175 215 &IQ 129 715
862 81' 368 761 435 230 201 too 660 865 143 270 317 45 IH 113 174 660 331 IOI 737 15911 590 115 119 211 58 895 664 545
899 569 82& 194 71!9 139 725 100 761 4.47 733 772
1120 27'2 i3i. 3i I 260
272 795 241 573 507 589 522 965 297 374 274 6!9

33 2H =· 743 9!5 !32 494 652 S•S 152 957 857 481 23 41 I 726 950 114
••9" HO 461 39 542 II
536 187 305 104 ·207 276 246 129 654 HS HI 917
525 190 ••1 717 211 172
131 151 224 117 ISIZ 190

73

IJ v w x v z ------------ . ------------ ------------ ------------ ------------ ------------452 970 71 852 457 975 179 925 567 548 723 811 980 835 34 763 577 so 394 817 26' 373. 557 624 38 88 917 478 500 394 806 619 51 646 879 448 463. 29 61 673 67 274 26 56 262 812 666 813 571 195 538 263 960 128 739 838 1539 972 185 27 68 37 768 362 378 525 350 34 922 471 72 232 219 509 935 804 922 815 140 322 125 82 136 166 658 849 852 &97 629 42 95 122 904· 75 560 160 773 334 432 70 489 417 5a "169 924 941 640 411 45 294 424 130 446 i43
368 535 626 70 729 63 267 157 571 168 203 879 632 648 311 145 540 108 40 822 840 641 803 602 798 331 936 541 452 668 458 120 885 468 345 173 174 392 535 521 6 661 378 667 404 56 772 372 558 797 667 489 203 402 196 868 536 110 1I7 695 129 964 806 99 806 161 521 379 957 734 131 682 259 196 63 495 265 207 661 774 840 878 684 63 903 799 162 459 449 385 330 737 326 637 854 512 718 900 73 756 818 732 473 531 661 459 108 269 572 516 :?00 452 209 184
620 34 665 770 477 437
603 892 537 491 887 900 683 131 678 68 143 215 466 623 697 303 1 1 228 583 734 651 998 331 854 954 645 226 733 18 I 851 637 210 529 456 916 627 620 562 93 76 210 140 '90 511 579 238 659 577 576 379 778 481 797 253 713 769 836 283 471 337 114 168 858 5711 229 998 866 657 306 :?2 604 807 310 685 492 242 802
933 275 93 27!! 200 944
272 480 725 331 82 213 541 a6a 94 444 71 486 175 532 4 936 692 277 •SS 130 439 366 144 850 751 931 ·812 665 765 788

74

u .,, w x " z ------------ ------------ ------------ ------------ ------------ ------------571 •03 310 •72 •65 11 319 6•1 8•2 187 721 99• 130 522 30• '458 165 668
•9• 91• 600 195 529 939 63 621 10 139 306 355 211 212 .. , 977 110 612 748 148 . 92• 885 0 5 562 725 ao5 418 26 106
405 889 398 115 717 494
980 255 •83 684 130 333 147 301 73i 550 185 634
843 882 110 385 321 327
858 871 154 142 78& 300 211 642 995 494 57 658 200 864 HI 258 857 14
634 810 783 799 795 995
966 181 648 853 804 743
683 463 •78 181 4 341
581 637 220 166 429 210

95 912 161 485 910 98&
856 427 11 465 381 491
514 32 792 273 630 693 aoz 571 582 877 140 174
586 11 17 243 853 161
416 614 104 841 432 882
533 569 370 584 720 284
8:?9 362 444 191 485 406
867 162 797 60 59 249
346 934 341 437 40 274
398 204 886 124 643 .. 1
564 9:?2 804 235 509 . 990
188 848 731 740 603 97
83 921 403 614 196 767

624 351 813 386 684 496

APPENDIX B

SORT/NESTED LOOP METHOD

(BLOCKING OUTER RELAITON)

/* for simpilicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* outer.x - the 'FIRST CONDITION' attributes for outer
* relation
* inner.y - the 1 FIRST CONDITION' attributes for inner
* relation
* R - Relation, i.e xRy, for the 'FIRST CONDITION'
* RR - Relation for the 'SECOND CONDITION'
* n outer - total number of outer tuple.
* p=~uter - pth outer tuple.
* p inner - pth inner tuple.
* inner.used - indicate whether inner tuple used or not.
* used(i) - indicate whether outer ith tuple used or not.
*/

GET outer;
DO UNTIL(not eor(outer));

/* find the first matching tuple of outer in
inner relation */

p inner = l;
GET inner(p inner);
n outer = OT
DO I= 1 TO blksize WHILE(not eor(outer));

n outer = n outer + l;
used(I) = false;
GET outer(!);

END;

p_inner = l;
p_outer = l;

75

DO UNTIL(eor(inner) & pouter> n outer);
DO WHILE(not (eor(outer) or p_outer < n_out~r)

or outer(p outer) .x R inner.y)) ;
IF outer(p-outer).x < inner.y or

R is '>1 or '>=' THEN
IF not used(p outer) then

output (outer I I nulls);
p_outer = p_outer + l;

END;
ELSE IF outer(p outer).x > inner.y

IF eor(outer) and t'nner.used
output (nulls I inner):

p inner = p_inner + l;
READ inner(p_inner);

END;
END;

THEN
then

IF not (eor(outer) or eor(inner)) THEN DO;
curp inner = p inner;
tpl not used =-true;
DO UNTIL(eor(inner) or

not outer(p outer).x R inner.y);
IF outer RR-inner THEN DO;

output (outer 11 inner);
mark inner(p inner) used;
tpl_not_used-= false;

END;
p inner = p inner + l;
GET inner(p=inner);

END;
IF tpl not used TH?N

output Touter I I nulls);
p inner = curp inner;
GET inner(p inner);
GET outer; -

END;
ELSE IF p outer <= n outer THEN

DO WHILE (pouter-<= n outer);
IF not used(p_out,f)-THEN

output (outer I nulls);
p outer = p outer + l;

END;- -
ELSE IF eor(outer) and not eor(inner) then

DO WHILE(not eor(inner));
IF (not inner.usjQ) THEN

output (nulls I inner);
GET inner;

END;
END;
ELSE IF not (eor(inner) and eor(outer)) THEN

reset eor(inner);
END;

END;

76

APPENDIX C

SORT/NESTED LOOP METHOD

(BLOCKING INNER RELATION)

/* for simpilicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* outer.x - the 'FIRST CONDITION' attributes for outer
* relation
* inner.y - the 'FIRST CONDITION' attributes for inner
* relation
* R - Relation, i.e xRy, for the 'FIRST CONDITION'
* RR - Relation for the 'SECOND CONDITION'
* n inner - total number of inner tuples.
* p-outer - pth outer tuple.
* p inner - pth inner tuple.
* outer.used - indicate whether outer tuple used or not.
* used(i) - indicate whether inner ith tuple used or not.
*/
GET inner;
DO UNTIL(not eor(inner));

p outer = l;
GET outer(p outer);
n inner = o;
DO I= 1 TO blksize WHILE(not eor(inner));

n inner = n inner + l;
used(I) = false;
GET inner(I);

END;

p_outer = l;
p_inner = l;

77

DO UNTIL(eor(outer) & p inner > n inner);
/* find the first matching tuple-of inner in

outer relation */
DO WHILE(not (eor(inner) or p inner < n_inner)

or inner(p inner).x R outer~y));
IF outer.x-< inner(p inner).y or

R is '>' or '>=' THEN
IF eor(inner) and n9t outer.used THEN

output (outer I I nulls);
GET outer;

END;
ELSE

IF eor(inner) and t"nner(p_inner).used
output (nulls I inner):

p_inner = p_inner + l;
END;

THEN

END;
IF not (eor(inner) or eor(outer)) THEN DO;

curp inner = p inner;
tpl not used =-true;
DO UNTIL(p inner = n inner or

outer.x R inner(p inner}.y);
IF outer RR inner THEN DO;

output (outer I I inner);
mark inner(p inner) used;
tpl not used-= false;

END; - -
p_inner = p_inner + l;

END;
IF tpl_not_used a~Q eor(inner)

output (outer I I nulls);
p inner = curp inner;
GET outer; -

THEN

END;
ELSE IF p inner <= n inner THEN

END;
END;

DO WHILE (p inner<= n inner);
IF not used(p_innjt)-THEN

output (nulls I inner);
p inner = p inner + l;

END;- -
ELSE IF eor(inner) and not eor(outer) then

DO WHILE(not eor(outer));
IF (not outer.usjQ) THEN

output {outer I nulls);
GET outer;

END;
END;
ELSE IF not (eor(outer) and eor(inner)) THEN

reset eor(outer);

78

APPENDIX D

SORT/MERGE METHOD (BLOCKING OUTER RELATION)

/* for simpilicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* outer.x - the 'FIRST CONDITION' attributes for outer
* relation
* inner.y - the 'FIRST CONDITION' attributes for inner
* relation
* R - Relation, i.e xRy, for the 'FIRST CONDITION'
* RR - Relation for the 'SECOND CONDITION'
* n outer - total number of outer tuple.
* p=outer - pth outer tuple.
* p inner - pth inner tuple.
* inner.used - indicate whether inner tuple used or not.
* used(i) - indicate whether outer ith tuple used or not.
*!

GET outer;
DO UNTIL(not eor(outer));

p inner = l;
GET inner(p inner);
n outer = o;
DO I= 1 TO blksize WHILE(not eor(outer));

n outer = n outer + l;
used(I) = false;
GET outer(I);

END;

p inner = l;
p-outer = l;
DO UNTIL(eor(inner) & p outer >

/* find the first outer tuple and
/* inner tuple that statisf ied
/* the relation R.

79

n outer);
*7
*/
*/

DO WHILE(not (eor(outer) or p outer "< n_outer)
or outer(p outer).x R inner~y))~

IF outer(p outer).x < inner.y or
R is '>1 or '>=' THEN
IF not used(p_outjf) then

output (outer nulls);
p_outer = p_outer + l;

END;
ELSE IF outer(p outer).x > inner.y THEN

IF eor(outerT and t'nner.used then
output (nulls I inner):

p inner = p inner + l;
GET inner(p=inner);

END;
END;
IF not (eor(outer) or eor(inner)) THEN DO;

start inner = p inner;
tpl not used = true;
DO UNTIL(eor(inner) or not outer(p_outer).x R

inner.y);
IF outer RR inner THEN DO;

output (outer 11 inner);
mark inner(p inner) used;
tpl not used-= false;

END; - -
p inner = p inner + l;
GET inner(p=inner);

END;
IF not outer(p_outjr).used THEN

output (outer I nulls);
I* */
/* Is the next remaining outer tuple */
/* equal to the current outer tuple */
/* Or satisfies the 'WHERE' evaluation */
/* */

p outer = p outer + l;
outer(p outer).used =false;
more = false;
DO WHILE(not eor(outer) and (outer.x = current.x

or WHERE(FIRST))) ;
MORE = true;
IF no SECOND CONDITION THEN

DO I = start inner TO p inner-1;
GET innerTi); - ·
output (outer(p outer) I I inner);
mark inner usedT

END;
outer(p outer).used =true;

END; -
ELSE
DO I = start inner TO p_inner-1;

GET inner(I);
IF WHERE(SECOND) THEN DO;

output (outer(p_outer) I I inner);

80

mark inner used;
outer(p_outer).used =true;

END;
END;
IF not outer(p outer).used then

output (outer(p outer) I I nulls);
p outer = p outer + l;
outer(p_outer).used =false;

END;
/* */
/* Determine whether to advance to new */
/* inner tuple or back to the */
/* start inner + l inner tuple */
/* *I

ADVAN = true;
IF (not eor(outer) and R is not '=' and

(p inner-1) > start inner) THEN DO;
IF WHERE(FIRST) on lookahd THEN DO;

p inner = start inner + l;
reset eor(inner);
ADVAN = false;

END;
GET inner(p_inner);

END;
/* */
/* join all unused inner tuples with */
/* nulls tuple. */
/* */

IF no second condition and ADVAN is true THEN DO;
DO I = start inner TO p inner-1;

GET inner Tr); -
IF not inner.used THEN

output (nulls I inner);
END;
GET inner(p_inner);

END;
END;
ELSE IF p outer <= n outer THEN

END;
END;

DO WHILE (pouter<= n outer);
IF not used(p_outjf)-THEN

output (outer I nulls);
p outer = p outer + l;

END;- -
ELSE IF eor(outer) and not eor(inner) then

DO WHILE(not eor(inner));
IF (not inner.usj9) THEN

output (nulls I inner);
GET inner;

END;
END;
ELSE IF not (eor(inner) and eor(outer)) THEN

reset eor(inner);

81

APPENDIX E

SORT/MERGE METHOD (BLOCKING INNER RELATION)

/* for simpilicity the following is assumed.
* outer relation is sorted based on x.
* inner relation is sorted based on y.
* outer - outer relation.
* inner - inner relation.
* outer.x - the 'FIRST CONDITION' attributes for outer
* relation
* inner.y - the 'FIRST CONDITION' attributes for inner
* relation
* R - Relation, i.e xRy, for the 'FIRST CONDITION'
* RR - Relation for the 'SECOND CONDITION'
* n inner - total number of inner tuples.
* p=~uter - pth outer tuple.
* p inner - pth inner tuple.
* outer.used - indicate whether outer tuple used or not.
* used(i) - indicate whether inner ith tuple used or not.
*/

GET inner;
DO UNTIL(not eor(inner));

p outer = l;
GET outer(p outer);
n inner = oT
DO I= 1 TO blksize WHILE(not eor(inner));

n inner = n inner + l;
used(I) = false;
GET inner(!);

END;

p_outer = l;
p_inner = l;
DO UNTIL(eor(outer) & p inner >

/* find the first outer tuple and
/* inner tuple that statisf ied
/* the relation R.

82

n inner);
*7
*/
*/

DO WHILE(not (eor(inner} or p inner < n_inner}
or inner(p inner}.x R outer~y} };
IF outer.x-< inner(p inner}.y or

R is '>' or '>=' THEN
IF eor(inner} and

1
n
1
ot outer.used THEN

output (outer nulls);
GET outer;

END;
ELSE DO;

IF eor(inner} and t"nner(p_inner}.used THEN
output (nulls I inner):

p_inner = p_inner + l;
END;
END;
IF not (eor(inner) or eor(outer} } THEN DO;

start inner = p inner;
outer~used = true;
DO UNTIL(p inner = n inner or

outer.x R inner(p inner}.y);
IF outer RR inner THEN DO;

output (outer I I inner);
mark inner(p inner) used;
outer.used =-false;

END;
p inner = p inner + l;

END;- -
IF outer.used and jor(inner) THEN

output (outer I nulls);
/* */
/* Is the next remaining outer tuple */
/* equal to the current outer tuple */
/* Or satisfies the 'WHERE' evaluation */
/* */

GET outer;
outer.used = true;
more = false;
DO WHILE(not eor(outer) and (outer.x = current.x

or WHERE(FIRST)}) ;
MORE = true;
IF no SECOND CONDITION THEN

DO I = start_innet TO p_inner-1;
output (outer I I inner(!));
mark inner used;

END;
outer.used = true;

END;
ELSE
DO I = start inner TO p inner-1;

IF WHERE(SECOND} +~EN DO;
output (outer I I inner(!)};
mark inner used;
outer.used = true;

END;
END;

83

IF not outer.used then
output (outer I I nulls);

GET outer;
outer.used = false;

END;
/* */
/* Determine whether to advance to new */
/* inner tuple or back to the */
/* start_inner + 1 inner tuple */
/* */

ADVAN = true;
IF (not eor(outer) and R is not '=' and

{p inner-1) > start inner) THEN DO;
IF WHERE(FIRST) on lookahd THEN DO;

p inner = start inner + l;
ADVAN = false;

END;
END;

/* */
/* join all unused inner tuples with */
/* nulls ·tuple. */
/* */

IF no second condition and ADVAN is true THEN DO;
DO I = start inner TO p inner-1;

IF not inner(I).ujjd-THEN
output (nulls inner(!));

END;
END;

p_inner = start inner;
END;
ELSE IF p inner <= n inner THEN

END;
END;

DO WHILE (p inner<= n inner);
IF not used(p_innjt)-THEN

output (nulls I inner);
p inner = p inner + l;

END;- -
ELSE IF eor(inner) and not eor(outer) then

DO WHILE(not eor(outer));
IF (not outer.usj9) THEN

output (outer I nulls);
GET outer;

END;
END;
ELSE IF not (eor(outer) and eor(inner)) THEN

reset eor(outer);

84

APPENDIX F

FUNCTION TO CHECK FOR POSSIBLE JOINS

IN THE RELATIONS

/*
* Function: Check possible join

*
* outer.x - attributes of the outer relation
* inner.y - attributes of the outer relation
* ret bit - return bit
*I
Get outer;
Get inner;
ret bit = false;
IF 1 FIRST CONDITION' is true THEN

ret bit = true;
ELSE IF-'=' condition THEN DO; /* = */

IF outer.x < inner.y THEN DO; /* DATAl < DATA2 */
Get last outer

/* IS LAST DATAl >= FIRST DATA2 THEN POSSIBLE JOIN */
IF outer.x >= inner.y THEN

ret_bit = true;
END;
ELSE DO; /* DATAl > DATA2 */

Get last inner
/* IS FIRST DATAl <= LAST DATA2 THEN POSSIBLE JOIN */

IF outer.x <= inner.y THEN

END;
END;

ret bit = true;

ELSE IF '<' ('<=') condition THEN DO;/*<, <= */
Get last inner
IF outer.x < inner.y (outer.x <= inner.y) THEN

ret_bit = true;
END;
ELSE IF '>' ('>=')condition THEN DO;/*>, >= */

· Get last outer
IF outer.x > inner.y (outer.x >= inner.y) THEN

ret bit = 'true;
END;
RETURN(ret_bit);

END Function

85

APPENDIX G

RECOMMENDED METHODS

a) No dynamic storage.

Conditions

1. Equal join conditions
2. Unique key with one

predicate.
3. Non-unique key with

one predicate.
4. Unique key with

multiple predicates.
5. Non-unique key with

multiple predicates.

Recommeded Methods

sort/merge outer-equal-join
sort/nested loop

sort/merge

sort/nested loop

sort/merge

b) Blocksize greater than one but less than both relations.

Conditions

1. Equal join conditions
2. Unique key with one

predicate and e
condition.

3. Non-unique key with
one predicate and
e condition.

4. Unique key with
multiple predicates
and '=' FIRST CONDITION.

5. Non-Unique key with
multiple predicates
and '=' FIRST CONDITION.

6. Other conditions.

Recommeded Methods

sort/merge outer-equal-join
nested loop

nested loop

sort/nested loop

sort/merge

nested loop

c) Blocksize greater than either relations.
(Note: make the smaller relation the inner relation)

Conditions

1. Equal join conditions
2. Unique key with '='

as the FIRST CONDITION.
3. Other conditions.

Recommeded Methods

86

sort/merge outer-equal-join
sort/nested loop

sort/merge

APPENDIX H

EXAMPLE OF ONE QUERY CAN BE DONE IN TWO WAYS

Let the outerjoin query be

ojoin (Tl,T2) where Tl.a > T2.a

Let Tl and T2 be the following relations:

Tl

1
2
3
4

T2

1
2
3
4
5
6

First, look at the query bjoin (Tl,T2) where T2.a < Tl.a

(Tl and T2 sorted in ascending order)
Tl.a T2.a

1
2
3
4

T2.a

1
2
3
4
5
6

Tl.a

~ w===~ ~
3 L====> 3
4 > 4
5
6

===> Tl.a

* 1
2
3
4

87

> T2.a

?
1
1
1

T2.a Tl.a ===> Tl.a > T2.a

1 1 1 ?
2 r 2 2 1
3 > 3 3 1
4 > 4 4 1
5 3 2
6 4 2

T2.a Tl.a ===> Tl.a > T2 .a

1 1 1 ?
2 2 2 1
3 ~> 3 3 1

* 4 4 4 1

* 5 3 2
* 6 4 2

4 3
? 4
? 5
? 6

Now, we look at the query ojoin (Tl,T2) where Tl.a > T2.a
and see whether it is different from doing ojoin (Tl,T2)
where T2.a < Tl.a

(Tl and T2 are sorted in descending order)
Tl T2

4
3
2
1

T2.a

j 11~
2
1

>
>
>
>
>
>

6
5
4
3
2
1

Tl.a

6
5
4
3
2
1

===> Tl.a > T2 .a

* ? 6

* ? 5

* ? 4
4 3
4 2
4 1

88

89

T2.a Tl.a ===> Tl.a > T2.a

4 6 ? 6
3

~>
5 ? 5

2 4 ? 4
1 3 4 3

2 4 2
> 1 4 1

3 2
3 1

T2.a Tl.a ===> Tl.a > T2.a

4 6 ? 6
3 5 ? 5
2

L>
4 ? 4

* 1 3 4 3
2 4 2
1 4 1

3 2
3 1
2 1
1 ?

* indicate unmatched tuple which is joined with null tuple.

APPENDIX I

EXAMPLE OF THE SORT/NESTED LOOP OPERATION

The operation of outerjoin on STOREl and STORE2 where the
STOREl.S# = STORE2.S# using sort/nested Loop. Let relation
STOREl and STORE2 of Suppliers & Parts relationship as fol
low:

(1)
(5)
(9)

(14)
(19)

STOREl

S# P#

s3 pl
s5 p3
s5 p7
s8 p5
s9 p2

(2)
(3)

(4,10,15)
(6,11,16)
(7,12,17)
(8,13,18)

STORE2

S#

sl
s2
s5
s5
s5
s7

P#

p2
p6
p4
p9
p8
p9

The numbers in parenthesis indicate the order of the tuples

are read in and compared. For example, (1) is read in first

and compared with (2).

Operations Results of operations

(1) and (2) ==> ? ? sl p2
(1) and (3) ==> ? ? s2 p6
(1) and (4) ==> s3 pl ? ?
(5) and (4) ==> s5 p3 s5 p4
(5) and (6) ==> s5 p3 s5 p9
(5) and (7) ==>. s5 p3 s5 p8
(5) and (8) ==>
(9) and (10) ==> s5 p7 s5 p4
(9) and (11) ==> ss p7 s5 p9
(9) and (12) ==> s5 p7 s5 p8
(9) and (13) ==>

90

91

(14} and (15} ==>
(14} and (16} ==>
(14} and (17} ==>
(14} and (18} ==> ? ? s7 p8
(14} ==> s8 p5 ? ?
(19} ==> s9 p2 ? ?

The resulted output:

STOREl.s# STOREl.p# STORE2.s# STORE2.p#

? ? sl p2

? ? s2 p6

s3 pl ? ?

s5 p3 s5 p4

s5 p3 s5 p9

s5 p3 s5 p8

s5 p7 s5 p4

s5 p7 s5 p9

s5 p7 s5 p8

? ? s7 pB

s8 p5 ? ?

s9 p2 ? ?

To see how the sort/merge algorithm is different from the
sort/nested Loop algorithm for the above example, see Appen
dix J.

APPENDIX J

EXAMPLE OF THE SORT/MERGE OPERATION

The operation of outerjoin on STOREl and STORE2 where the

STOREl.S# = STORE2.S# using the Sort/Merge algorithm. Let

relation STOREl and STORE2 of Suppliers & Parts relationship

as follow:

STOREl

(1) [

(5) [

(6)
(8)

S#

s3
s5
s5

s8
s9

P#

pl
p3
p7

p5
p2

]

J
(2) [
(3) [

(4) [

(7)

STORE2

S#

sl
s2
s5
s5
s5

s7

P#

p2
p6
p4
p9
p8

p9

]
]

l
In order to understand the Sort/Merge algorithm, you have to

imagine that the tuples are divided into groups of tuples of

the same kind. The groups are then merged together, as fol-

low:

Operations

(1) & (2) ==>
(1) & (3) ==>
(1) & (4) ==>

Results of the operations

? ? sl p2
? ? s2 p6
s3 pl ? ?

92

93

(5) & (4) ==> s5 p3 s5 p4
s5 p3 s5 p9
s5 p3 s5 p8
s5 p7 s5 p4
s5 p7 s5 p9
s5 p7 s5 p8

(6) & (7) ==> ? ? s7 p9
(6) ==> s8 p5 ? ?
(8) ==> s9 p2 ? ?

The resulted output:

STOREl.s# STOREl.p# STORE2.s# STORE2.p#

? ? sl p2

? ? s2 p6
--

s3 pl ? ?

s5 p3 s5 p4

s5 p3 s5 p9

s5 p3 s5 p8

s5 p7 s5 p4

s5 p7 s5 p9

s5 p7 s5 p8

? ? s7 p8

s8 p5 ? ?

s9 p2 ? ?

I*
*
*
*
*
*
*
*
*/

APPENDIX K

NESTED LOOP OUTERJOIN ALGORITHM

f ilel - contains tuples from outer relation
f ile2 - contains tuples from inner relation
f ile3 - output relation
tuplel - tuple from f ilel or outer relation
tuple2 - tuple from f ile2 or inner relation
last tuplel - the last tuple from outer relation

- indicator
WHERE - function to evaluate where clause

OPEN FILE(filel) INPUT;
READ FILE(filel) INTO(tuplel);
DO WHILE(NOT eofl);

tuplel used at least once = false;
OPEN FILE(file2) INPUT;
READ FILE(file2) INTO(tuple2);
DO WHILE(NOT eof2);

IF WHERE(predicates) THEN DO;
tuplel used at least once = tt~e;
WRITE FILE(file3) FROM(tuplell ltuple2);
mark tuple2 used in file2;

END;
ELSE IF last tuplel and

tuple2 did not mark used THEN QO;
WRITE FILE(file3) FROM(nullsll ltuple2);

END;
READ FILE(file2) INTO(tuple2);

END;
IF not tuplel used at least once +HEN

WRITE FILE(file3) FROM(tuplell lnulls2);
READ FILE(filel) INTO(tuplel);

END;

94

\
VITA

WEN FONG LEE

Candidate for the Degree of

Master of Science

Thesis: PERFORMANCE EVALUATION OF OUTERJOIN OPERATION ON
ADDS SYSTEM

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Malaysia, May 26, 1959, the son
of Meng Teik Lee. Married to Soon Har Chan on Sep
tember 14, 1984.

Education: Graduated from Ibrahim Secondary School,
Sungai Patani, Kedah, Malaysia, in 1979; received
Bachelor of Science in Arts & Sciences degree in
Computing and Information Sciences from Oklahoma
State University in December, 1983; completed
requirements for the Master of Science degree at
Oklahoma State University in May, 1987.

Professional Experience: Teaching Assistant,
Department of Computing and Information Sciences,
Oklahoma State University, August, 1982, to May,
1986; Research Scientist, Amoco Production Com
pany, Tulsa, Oklahoma, May, 1985, to present.

