
SOME MODIFICATIONS AND EXTENSIONS -
OF KARMARKAR'S MAIN ALGORITHM

WITH COMPUTATIONAL

EXPERIENCES

by

BYEONG-SOO KIM • Bachelor of Science

Seoul National University

Seoul, Republic of Korea

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1987

. :: . .

.. : '

-OV.s1$
\C\e1
+(~ct~ c, .. ~.

SOME MODIFICATIONS AND EXTENSIONS

OF KARHARKAR'S HAIN ALGORITHM

WITH COMPUTATIONAL

EXPERIENCES

Thesis Approved:

Thesis Adviser

)~~
Dean of the Graduate college

ii

1275676

PREFACE

The Karmarkar algorithm and its modifications are

studied in this thesis. A modified line search algorithm

with extended searching bound to the facet of the simplex is

developed and implemented. Using this modification, a

modified row partition method is tested. Both algorithms

are coded in Fortran 77 and compared their performances with

the original Karmarkar algorithm. The modifications are

promising and other extensions are encouraged.

I wish to express my sincere appreciation to my major

adviser, Dr. D.W. Grace, for his guidance, concern, and

invaluable help. I am also thankful to my committee

members, Dr. J.P. Chandler and Dr. G.E. Hedrick for their

advice. A special thank goes to Mr. Yoon-sik Kim for his

kind help in English correction.

My parents deserve my deepest appreciation for their

patience, encouragement, and financial support.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1
From Dantzig to Karmarkar

The Simplex Method .
The Ellipsoid Algorithm
The Karmarkar Algorithm

Literature Review

1
1
3
4
7

II. EEVIEW OF KA."ltMAEKAE' S MAIN ALGOEITHM 1 1
.!..!.

Main Algorithm 14
Two Major Problems in Karmarkar's Algorithm 21

Feasibility· 21
Sliding Objective Function 22

III. SOME MODIFICATIONS 23

Practical Method for Transforming LP
Problem into Karmarkar's Form . 23

Algorithm 26
Line Search for the Potential Function on

the Transformed Feasible Region . . 26
Numerical Example 32

Some Methods for Calculating (BBT)-1 35
Rank-one Modification 35
Row Partition Scheme 37

IV. NUMERICAL RESULTS 41

V. DUALITY AND ITS APPLICATION TO THE UNKNOWN
OPTIMAL SOLUTION C* 49

Numerical Example

VI. SUMMARY, CONCLUSION, AND SUGGESTIONS FOR
FUTURE WORK

REFERENCES

Summary and Conclusion
Suggestions for Future Work

iv

51

56

56
58

60

Chapter Page

APPENDIXES . 62

APPENDIX A - THE PROGRAM LISTING OF KARMARKAR'S
ALGORITHM AND THE MODIFIED
ALGORITHM 63

APPENDIX B - THE OUTPUTS FOR THE MODIFIED LINE
SEARCH ALGORITHM 78

v

LIST OF TABLES

Table

I. The Comparison with Different Step Sizes

II. The Different Optimal Solution X* .

III. The Test LP Problems for Karmarkar's
Algorithm

IV. The Comparison Between the Karmarkar Algorithm
and the Modified Line Search Algorithm

Page

33

34

. 42

with Known C* 44

V. The Comparison Between the Karmarkar Algorithm
and the Modified Line Search Algorithm
with Unknown C* 45

VI. The Comparison Between the Modified Line Search
Algorithm and the Modified Row Partition
Method with Unknown C* . 47

VII. The Iterative Solutions for the Duality
Algorithm . . 51

vi

LIST OF FIGURES

Figure Page

1. The Simplex Method 2

2. The Ellipsoid Algorithm 4

3. Transformation via T, where a' = (1/3,1/3,1/3) 13

4. Transformation from the Equation (2) to
the Equation (4) via T 15

5. Rosen's Gradient Projection Method 16

6. Illustrations of Three Variables Problem in the
Transformed Space 19

7. Illustration of the Sequentially Improved
Solutions X . 20

8. The Extended Bound to the Facet of the Simplex 30

9. The Best Direction d and the Modified Direction
d' After Rank-One Operations 38

vii

CHAPTER I

INTRODUCTION

From Dantzig to Karmarkar

The Simplex Method

For solving a linear programming CLP) problem, the

well-known simplex method was developed by Dantzig [4]. The

procedure of the simplex method is summarized as follows

A linear programming problem has the form

Min CTX C,X E Rn

s.t. AX = b A is an m x n matrix, m < n

x >= 0

If an extreme point is X', then the matrix A can be

divided into [B,N], where Bis the basis with an m x m full

rank matrix comprised of the columns of coefficients of

the non-zero variables, and N is the non-basis with an

m x (n - m) matrix.

Now, by decomposing X into (XB,XN), AX= b can be

written as BXB + NXN = b. Therefore, crx = CeTXB + CNTXN

CeT B-1 N) XN If CNT - CsTB-lN is non-

negative, then X is an optimal extreme point.

The main algorithm proceeds as follows :

1. Find a starting solution X with basis B.

1

0
.:~ . If CNT - CaTB-IN is nonnegative, then stop.

Else pick the most positive component CaTB-laj - cj

".)
,_J • Let B-1 b = b' and JC = min { bi '/Yi J , YiJ > 0 }, where

yij is the i_th component of yj = B-laj.

4. Get the new extreme point X by calculating

Xa i = bi ' - :n:: Yi j for i=l, ... ,m

other Xi's are equal to zero.

5. Go to 2.

Figure 1 shows that the simplex method which traverses

the boundary of the feasible polytope.

solution
space

Figure 1. The Simplex Method

a contour of the
objective function

2

This algorithm solves the underdetermined system

AX = b by traversing the edges of the solution space from

one extreme point to another one in a systematic manner,

driven by the criterion that each move improves the

objective function.

3

In order to find a better algorithm than the commonly

used Dantzig simplex method [4], diverse linear programming

(LP) ideas have been essayed. One such attempt is the

ellipsoid algorithm developed by Khachiyan [9]. His

algorithm runs in polynomial time, whereas the simplex

method runs in exponential time only. Also, the geometric

interpretation of the ellipsoid algorithm is totally

different from the simplex method, in that it circumscribes

the solution space with a shrinking ellipsoid.

The ellipsoid algorithm is summarized as follows

1. A feasible region S is defined as S = {X : AX <= b },

where A, X, and b are defined as before.

2. Construct an initial ellipsoid EO which contains ~-

3. Construct a new ellipsoid Ek+l which fully c6ntains the

half-ellipsoid (0.5Ek).

feasible, then stop.

If the center of Ek+l is

4. The procedure will eventually terminate since the volume

of Ek will be contained in S as k goes to infinity;

The center of Ek is contained in S.

no solution.

Otherwise there is

Figure 2.

' ' ' '
il \.

' ' \.

4x
' \.

' '

The Ellipsoid Algorithm

4

'
' ' '

Figure 2 shows Khachiyan's ellipsoid algorithm which

starts with an initial hypersphere and successive

ellipsoids.

5

After the feasible solution (the center of Ek) is

found, one should formulate a feasible-point problem where

the feasible region is an arbitrary small volume containing

the feasible solution. This causes the number of

iterations to be very l~rge, thereby making this procedure

much more expensive than the simplex method.

The Karmarkar Algorithm

Finally, in 1984, Narendra Karmarkar [8] introduced a

new polynomial-time algorithm for complex LP problems

whose method requires less time-complexity than that of

Khachiyan's ellipsoid algorithm [9].

As a major advantage, Karmarkar's algorithm runs

within a polynomial-time bound; whereas, the well-known

simplex method requires exponential-time in the worst-case.

Because of this polynomial-time bound, the benefit of

Karmarkar's algorithm increases as the problem size grows

Karmarkar claimed that his algorithm performs 50 to 100

times faster than the simplex method on large-sized LP

problems.

Briefly, the Karmarkar algorithm works in the non

negative poly-dimensional space (e.g., the 1st quadrant

in a 2-dimensicnal problem) to find a direction toward the

This concept is in contrast to the simplex

method which traversea the vertices of the polytope

boundaries to find the optimal point: unlike the

conventional simplex method, the Karmarkar algorithm

attempts to find an objective-improving direction instead

of moving from one vertex to another in order to find the

optimal solution. Instead of enumerating extremely many

vertices in the worst-case large scale LP problems in the

simplex method, many computational iterations can be saved

if Karmarkar's algorithm is used.

6

However some specialists earlier argued [10] [11] that

Karmarkar used his experimental inputs only to favor his

approach, a view that is not shared by everyone. The

controversy regarding whether his algorithm is better than

the well-known simplex method has abated as the Karmarkar

algorithm has developed.

Since Karmarkar's algorithm came into existence rather

recently, some thought-provoking aspects of the concepts

have been noticed, such as the somewhat unclear

transformational process from the original LP problem to

canonical form as well as the possibility for modification

and improvement of the concept. Therefore, the main purpose

of this thesis is to clarify Karmarkar's original idea, to

design and to program a better modified algorithm, and to

compare its performance with Karmarkar's original algorithm.

In Chapter II, the main idea of Karmarkar's algorithm

is reviewed because it is entirely different algorithm for

linear programming and somewhat difficult to understand due

7

to several new concepts such as projective transformation,

potential function, and sliding objective function.

In Chapter III, the transformation process from general

LP problems to Karmarkar's main algorithm is explained

because he did not show exactly how to transform from the

general LP problems to the canonical form from which his

algorithm starts. For the next modification, a line search

(the Fibonacci method is used) for the "potential function"

is performed explicitly as Todd and Burrell [13~ suggested.

Here, the searching bound is extended to the facet of the

simplex rather than limiting the search to the inscribed

sphere of the simplex to observe how beneficial this

modification would be.

Chapter IV contains the comparison between the original

Karmarkar algorithm and the modified methods. Their

performance on relatively small LP problems is compared.

In the next chapter, duality is chosen as an extension

of Karmarkar's algorithm because duality is deeply related

with postoptimal analysis (infeasibility can be recovered by

duality) and it has great economic significance. Here, Todd

and Burrell's duality method [13] is examined.

The final chapter contains a summary, conclusions, and

suggestions for future work.

Literature Review

Since Dantzig [4] developed the well-known and popular

simplex method, a number of researchers before Karmarkar [8]

8

have tried to design a polynomial-time algorithm for linear

programming. One of these, Khachiyan [9], developed an

ellipsoid algorithm which has polynomial-time convergence.

Although his ellipsoid method was mathematically attractive,

it was not practical because it cost much more than the

simplex method to implement: the structure per each

iteration is totally different from the simplex method, and

unfortunately, the computation associated with each

iteration is more costly than that of the simplex method.

Also, the iteration count is usually very large.

Since Karmarkar [8] published his new polynomial-time

algorithm, some research regarding step size has been

reported. Kalantari [7] reported that faster convergence

is possible with a modified algorithm in which the step size

a varies with an improved step at each iteration. Todd and

Burrell [13] suggested a line search along the negative

gradient of the potential function, instead of fixing a at

every iteration.

Vandervei, et al. [15] proposed a linear transformation

of a feasible solution, which sets the transformed feasible

solution to be uniformly rescaled. They also proved a

convergence of this modified algorithm and provided a

stopping rule. On the other hand, Cavalier and Soyster [2]

considered the same modification and showed a better result

with small size LP problems. Also they examined ill

conditioned problems which caused some difficulties in

calculating the inverse of the matrix BBT , where B is the

9

matrix of the con5traint5 in Karmarkar'5 canonical form.

Cavalier and Schall [3], with the above modification,

propo5ed yet another algorithm for maintaining fea5ibility,

and made an efficient implementation with the row

partitioning 5cheme. But no convergence criterion wa5

provided and their method was re5tricted to inequality

con5traint5.

On the other hand, Gill et al. [5] pre5ented an

application of a barrier tran5formation to a linear program

and pointed out an equivalence between the barrier method

and Karmarkar's algorithm with a 5Uitable choice of a

barrier parameter. Also, they derived a formal equivalance

between the projected Newton search direction and the

direction of the projected gradient in Karmarkar's

algorithm.

Various research results have been reported with regard

to the unknown optimal objective value, C* (Min CTX.)

Lustig [11] proposed the "cutting objective method" to

update the value of the objective function at each iteration

and gained a good result. Todd and Burrell [13] devised the

duality algorithm by continually updating a lower bound

z <= C* and had dual optimal solutions as a by-product.

Also they proposed a method to transform the general LP

problem into Karmarkar's canonical form in which their

duality algorithm could be applied. While quoting from

Tomlin [14], Hooker [6] not only suggested the conversion

from a given arbitrary LP problem to Karmarkar's canonical

10

form but also gave a general survey of Karmarkar's main al

gorithm with numerical examples. Meanwhile, Anstreicher [1]

provided a totally different method for finding C* based on

the geometric viewpoint, and established a convergence

criterion.

CHAPTER II

REVIEW OF KARMARKAR'S MAIN ALGORITHM

In this chapter, the Karmarkar algorithm is reviewed in

order to provide a general understanding of the concept.

Let us consider the linear programming problem

Min CT X

s.t. AX = b

C,XERn

A is an m x n matrix.

This can be transformed into Karmarkar's canonical

form of

Min CTX'

s.t. AX' = 0

eT X' = 1

C , X' E Rn+l

A is an m x (n+l) matrix.

eT = (1 , 1 , ... , 1)

(1)

(2)

This transformation will be shown further in the next

chapter by using a projective transformation.

Now, by taking a new transform T such that

T (X ') = D- 1 X ' I e T D- 1 X ' where D = x' 1 0
x' 2

0 x'n+l

is a diagonal matrix with a feasible solution xo, where

xo = (xo l , ... , xO n + i) , the tr an sf ormation T maps the

11

initial feasible point into the center of the simplex.

Figure 3 of the next page shows the transformation on the

surf ace of Q2 = { X E R3

centering scheme.

3
Z xi = 1 } for this

i=l

Using the inverse mapping of T : T-1 (Y) = DY / eTDY,

where Y = T(X'), the above problem can be reorganized as

Min CTDY / eTDY

12

s.t ADY I eTDY = 0 (3)

eTDY / eTDY = 1 by substituting T-1 (Y) in

(2) for X'.

By maintaining eTY = 1, (3) can be rewritten as

Min CTDY

s.t. ADY = 0 (4)

eTY = 1

y >= 0 because of strict positivity of

eTDY.

But, optimizing CTDY is an approximation of

CTDY I eTDY even if C affects only the numerator. Also it

seems very hard to optimize with respect to a rational

function CTDY / eTDY.

To preserve the linearity of the objective function,

Karmarkar introduced the " potential function "

f Qn ---> R, f(X') =
n+l

j=l
n+l

ln (CT X' I Xj ') .

easy to show that f' (Y) = I ln (CTDY I yj
j=l

Then it is

n+l
- 2: ln Xj ' ,

j=l

z(0,0,1)

x(l,0,0)

z(0,0,1)

y(0,1,0)

Figure 3. Transformation via T, where
a' = (1/3,1/3,1/3)

13

14

where f' is the tran5formed potential function, where

Y = T(X'), and yj E Y .

Clearly, f is the sum of ratios of linear functions

which are transformed into another ratios of linear

functions via T. Also it transforms the potential

function into a new one. This is very important to show

that f (X') is decreased by a constant d > 0 in each

iteration of Karrnarkar's main algorithm. Formal

d~scription is summarized as follows

Theorem 1 : Let Y' be the point that minimizes CTDY over

B(ao, r) n Q', where 0 < a < 1 , and B is a

sphere centered at ao = (l/n+l, ... ' 1/n+l)

with radius r (r = 1 /~n(n+l) is the radius

of the largest inscribed sphere of the

Q' = { Y : ADY = 0 } n Qn.) Then

either (i) CTDY' = 0

or (ii) f' (Y') < = f' (ao) - d .

(proof) See Karmarkar's theorems.

Main algorithm

The procedure works with the system of (4). Any

feasible point in (3) is mapped into the center of the

simplex in (4), so that the direction of the negative

projected gradient of CTD over the intersection of the

polytope H = { Y : ADY = 0 } and the simplex

n+l
Qn = { Y yj = 1 } can be searched.

J. -1 -.

a=(l/3,1/6,1/2) b=(l/2,0,1/2) c=(0,1/2,1/2)

a'=(l/3,1/3,1/3) b'=(3/5,0,2/5) c'=(0,3/4,1/4)

Figure 4. Transformation from the Equation (2) to
the Equation (4) via T

15

Figure 4 shows the intersection between H and Q2 ,

where H = { (x ,y ,z) x + y - 2z = 0 } and

Q2 = { (x ' y ' z) x + y + z = 1 }. Here,

D=diag(l/2,1/6,1/3) is assumed as the initial feasible

solution. In Figure 4, the initial feasible point

a=(l/2,1/6,1/3) is transfbrmed into the center of the

simplex Q2 , and the boundary points b and c are

transformed into b' and c', respectively (b'= T(b) =

D-lb/eTD-lb = (4/3,0,1)/(7/3) = (4/7,0,3/7) , and c' =

T (b) = D- 1 c / e T D- 1 c = (0 , 4 , 1) / 5 = (0 , 4 / 5 , 1 / 5) .)

16

Having done with this transformation, the following

Rosen's "Gradient Projection" method [11] is used in order

to find the projected gradient vector over the Q' = H n Qn.

Figure 3. Rosen's Gradient Projection Method

17

Since the gradient Vf is followed uphill in Figure 5

because V f cannot be followed without passing out of

the solution space Vf should be projected onto the

boundary, giving an uphill direction (Mon the Figure 5.)

When ai is the outward pointing normal to the

constraint, then the magnitude of N = l'\/f :cos8

= ai T 'V f I : ai : , and the normalized direction of N

= ai I: ai : . And M can be calculated by using 'ijf and N.

M = Vf - N

ai ai T \J f
= V'f -

: ai : : ai :

= [I - ai (ai T ai) - 1 ai T] '\/ f (5)

For multiple active constraints, if (5) is applied to

the matrix B in which each column is the outward pointing

normal of an active constraint, then ai can simply be

replaced with B in the projection operator, giving

(I - B(BTB)-lBT), and the desired result can be obtained.

Now, the above method can be summarized by the

following algorithm (It is assumed that the minimization

problem is worked here) :

step 1 : Start with a feasible solution Xo', then Xo' goes

the center of the simplex by T.

step 2 Project CTD onto the affine null-space of the

feasible region.

: AD
B = , ____ 1

I I

: e : where A is an m x (n+l) matrix, and

D = diag(x1, ... ,xn+l) .

18

Then the projected gradient cp is

Cp = [I - BT (BBT) - 1 B JDC

step 3 By taking a step of length ar from the center,

the objective function can be improved (a E (0,1)

is a fixed parameter.)
Cp

Y = (1/n+l, ... ,1/n+l) - ar
: Cp:

step 4 Obtain next X' by using inverse of T.

X' = DY I eTDY

step 5 If CTX' = 0 or CTX'/ crxo <= 2-L then stop

m m n+l
(L=[Z Z lnz

j=l i=l
(: aj i : +l) + Z lnz

j=l
(:bj :+1)+ln2 nm]+l

is an input parameter defined in Khachiyan's

ellipsoid algorithm, where aji E A, and bj E b.)

Else go to step 2.

An example problem which has Karmarkar's canonical form

is

Min x1 - x2 - 2xs

S . t . Xl + X2 - 2 X3 = 0

:Xl + X2 + X3 = 1

Figure 6 shows the procedure of Karmarkar's main

algorithm in the transformed space. The triangle is the

simplex Q2, and the line segment (b'-a'-c') is the feasible

polytope. In the first figure, the initial feasible

solution xo = (1/3,1/3,1/3), -DC is the negative

gradient of the transformed objective function, and y1 is

the improved solution at the end of the first iteration.

a'= {1/3,1/3,1/3) b'= {2/3,0,1/3)
c'= (0,2/3,1/3) Y'= (.282,.384,.333)

a'= (1/3,1/3,1/3) b'= (.941,.0,.059)
c'= (.0,.519,.484) Y'= (.274,.366,.360)

Figure 6. Illustrations of Three Variables
Problem in the Transformed Space

19

Se~ond figure shows the tran~formed space after lO_th

iteration. The feasible polytope has been distorted by T,

and -DC is also reorganized. y10 is the improved solution

at the end of the 10_th iteration.

Figure 7 shows the sequence of Yi transformed back to

the corresponding Xi values in the (normalized) original

space. After 10_th iteration, the solutions are

X = (0.032, 0.635, 0.333), and CTX = 0.063 . They are

considerably close to the optimal solutions

X* = (0.0, 0.667, 0.333) and CTX* = 0.0 .

xO=(l/3,1/3,1/3) xl=(.282, .384, .333)
xl0=(.032, .635, .333)

Figure 5. Illustration of the Sequentially Improved
Solutions X

20

21

The optimal solution of the above algorithm is only for

(2) not (1). Also it assumes that the starting feasible

solution is known.

Two Major Problems in Karmarkar's Algorithm

Feasibility

The initial feasible solution can be found if the size

of the matrix A in (2) is small. But in large LP problems,

the initial feasible point cannot be found easily.

Therefore, the following two-phase problem can be used

phase 1 : Min CTX

s.t AX = b

phase 2 Min µ

s.t AX = b + µ(AXo - b) , where µ >= 0

According to Khachiyan and Karmarkar, it is known

that phase 1 has a feasible solution ifµ'(minµ)

satisfies the condition µ' <= 2-L .

First, by setting µ as xn+l the (n+l)th variable

of X', phase 2 can be formulated as

Min xn+l
phase 2'

s.t A'X' = b where A'=[A - (AXo -b) J,

and X' = (X , xn + 1) .

Here, X = Xo , xn+l (=µ = 1 can be taken as a feasible

solution in phase 2. By solving the system phase 2' with

Karmarkar's algorithm until the conditionµ' <= 2-L is met,

the initial feasible solution for phase 1 can be found.

22

Sliding Obiectiv~ Fun~tion

In the main idea, it is assumed that the value of the

objective function at the optimum was zero i.e. CTX* = 0.

Here, Karmarkar's original algorithm is extended for the

unknown optimal value of the objective function. The

algorithm is summarized as follows :

step 1. Start with 1 (-2L) and u (2L) as the lower and

upper bound, respectively.

step 2. Set tentative lower and upper bounds.

l' = 1 + 1/3(u - 1)

u' = u - 1/3 (u - 1)

c' = c - l'e

step 3. Assume that l' is the minimum value of the

objective function. And run the algorithm over c'.

step 4. (a) If the value of the objective function is less

than u', then set u = u', and determine new l', u',

and c' as in step 2.

(b) If a solution X with c'X < u has not been reached

;;vi tl-1in n (1-: + ln (n)) steps, ther: 1 ~ ,/ c' , .3..n.d setJ

1 = l', reset l', u', and c'.

step 5. Continue optimizing over c'.

In a total of O(nL) times, the optimal objective value

is reduced from 2L to 2-L. Therefore, the complexity for

this method is within a polynomial-time bound.

CHAPTER III

SOME MODIFICATIONS

In this chapter, some practical modifications cf

Karmarkar's main algorithm are considered.

Practical Method for Transforming LP Problem

into Karmarkar's Form

The general LP problem is of the form :

Min CT X C E Rn , X E Rn

s. t aj X <= bj

aj X >= bj , or (6)

aj X = bj where aj E A , bj E b E RM

and A is an M x n matrix.

By adding (or subtracting) slack variables ,

aj X + S.j = bj and dj = 1 if aj X
,. _

b.j ,_

aj X - Sj = bj and d; = -1 • .p
aj X bj where

"
J. .l. ~· -

'

Sj is a slack variable and dj is the coefficient of Sj

By setting A' = [A I'm J I'm = diag(dl, ... ,drn),

X ' = (X , S) E Rn + m S = { Sj } E Rm , and

C 'T = (Cl , , en , 0 , 0 , . . . , 0) E Rn + rn (m < = M) , (6) can

be transformed into :

Min C'TX'
(7)

s.t. A'X' = b

23

Now, a projective transformation T such as

Tx· : Rn + m - - - > Qn + m where

n+m+l
Qn + m = (y E Rn + m + l Yk = 1 }

k = 1

has the following properties.

1. = (xO l ' ... ' xo n +m) is a feasible solution to

the above (7) , Then

1 x' l
T:~ (x'1, ... ,x'n+m) = ------------------(---,

n+m xo 1

1 + :Z (X' k /XO k)

k=l

2. The inverse of T is

1

X 1 n+m
,-----,1)

xOn +m

... , yn+rn+l = - - - - - (xO 1 Yl

yn + rn + 1

... , x 0 n + m yn + m)

where Yi = (xi ' /xO i) I (1 +

n+m
yn+m+l - 1 - yl;

k=l

Especially, Tx (xO) = (1/n+m+l ,

n+m
Z xk'/xOk), and

k=l

, 1/n+m+l)

which maps the initial feasible point to the center of the

simplex.

By combining (7) and (8), (7) can be rewritten

as
n+m

24

Min Z Ci xO i Yi I yn + m + 1 (9)

s.t.

i=l
n+m

Z aj i xO i Yi I yn + m + l
i=l

n+m+l
Z Yi = 1

i=l

= bj (10)

(11)

25

If Min CTX' - C* for some optimum value C* in (7),

then,

Min CTX' - C* = 0

= = > Min (CT X' C*) = 0

n+m
==> Min (Z Ci xO i Yi I yn + m + l - C*) = 0

i=l

1 n+m
--··, Min ------- Ci xO i yi - C* yn + rn + 1 - 0

yn+m+l i=l

n+m
==> Min (Z Ci xO i Yi - C*yn+m+l = 0

i=l
n+m+l

---> Min Z Ci xoi Yi - 0 , where cn+m+l xOn+m+1 = -C*
i=l

By the same method, (11) is equivalent to

n+m

.: -1
..L.- .l.

n+m+l

- bj ~?n + rn + 1 - 0 ~vhic~h implies

2: ajiXoiyi = 0, where aj(n+m+l)xOn+m+l = -bj

i=l

By letting C"T = [C'T : C*] ,

DO = di a g (xo l , xO n +m -1) , and A" = [A' I "! • 1
i (; j

finally, the general LP problem (6) is transformed into

the following Karmarkar's canonical form :

Min C"TDOY

s.t. A"DOY = 0

n+m+l
Z Yi = 1

i = 1

which is equivalent to (2) in Chapter II by setting

c' = C"T DO and in r ,., \
\ "-) .

26

Algol·i thrn

step l Add slack variables if necessary in (6).

step 2 Start with a feasible solution xo E Rn+m in

(7). The starting feasible solution can be

found by using phase II in two-phase problem.

step 3 C'T = C"TDO

A' = A"DO

step 4 Let D = diag(y1, ... ,yn+m+l).

Originally, set D = (1/n+m+l, ... ,1/n+m+l) as

the center of the simplex Qn+m .

step 5 Same as from step 2 to step 5 in Karmarkar's

main algorithm. This time, A' is changed to A

and C' to C.

step 6 After exiting from step 5, calculate

Yi xO i
Xi =

yn +m+ 1

to find the optimal solution XE Rn in (6).

Line Search for the Potential Function on

the Tranformed Feasible Region

In Karmarkar's main algorithm, a new improved point is

found after moving along the negative gradient vector from

the center of the simplex.

Unfortunately, the best step size a in Karmarkar's

main algorithm is not known. In his theorem, he showed that

the potential function --

27

n+l
f (X) - 2 ln (C'TX'/xj) -- could be improved by a constant

j=l

6, where 6 =a - a2/2 - a2(n+1)/[n(1 a Jcn+l)/n], and

6 --> a - a2/2 - a2 /(1- a) as n --> ro (if a = .25 , then

6 = 1/8 as Karmarkar suggested).

But his theorem only shows that the potential

function can be decreased at least by a constant. This

decrease does not necessarily indicate that the maximum

improvement. can be gained at each iteration if a is fixed.

Instead of fixing a, the whole iteration count can be

reduced if the best step size a can be found at each

iteration.

Therefore, as suggested by Todd and Burrell [13], a

line search is performed for the potential function f' with

a negative projected gradient on the transformed space by T.

By Rosen's gradient projection method, a new gradient

direction cp can be set as cp = [I - BT(BBT)-lB] ~f' (Y)

for the potential function f' , where V f' is the gradient

vector of f', and yo = (1/n+l , , 1/n+l) is the

center of the simplex Qn .

The important fact is that along the line of the

gradient vector cp from Y, f' has one stationary point,

which is a minimizer.

(lemma) Let g(d) = f' (Y + dcp)

n+l n+l
= I ln CTD(Y + dcp)/(yi +dcp) - I ln Xi'

i=l i=l

wheredEHnQn, and D=diag(x1', ... ,xn+1').

28

If Y and d are not proportional, then g(d)

has at most one stationary point, which is a

minimizer.

The above lemma directly follows from Todd and

Burrell's lemma in which they follow cp from a feasible

point X' for the potential function f instead of f'.

In the original Karmarkar algorithm, the maximum

S$arching bound is the largest inscribed radius r of the

feasible region. Here, instead, the maximum searching

point is extended to the boundary of the region H n Qn

i.e. the facet of the simplex Qn. And it is not difficult

to find the intersection point where the facet and the

gradient vector cp meet.

For example, if the searching point follows the

negative gradient from the center of the simplex, one Yi,

which contains the largest positive element amax of cp,

goes to zero first (if more than one Yi have the same

maximum positive element amax , then they go to zero

together) for a positive constant t which satisfies

t amax - 1/n+l = 0

This means that the searching point is on the facet of the

simplex when the above Yi is zero.

Therefore, it is enough to solve the equation

yo - t cp = Yf a c e t

Yi o
If t =

amax

29

1
= --------- then

(n+l)arnax

1 1
Yi facet = ai

n+1 (n+l)amax

1 ai = ------ (1 ._
n+l amax

Figure 8 shows the largest inscribed radius r,

circumscribed radius R, and the negative gradient vector

- cp = (-1/3, 0, 1/3) which meets the facet of the

simplex at the point Yfacet 0, 1/3, 2/3). The

maximum searching bound from the center is yo - Rep which

can have the step size a = R/r =Jn/n+l /)1/n(n+l) = n if

the minimum value is attained on the vertex (In Figure 8,

the step size a= 1.16 .)

In performing a line search for the abo"ve extended

bound, the Fibonacci algorithm is used -- which is

originally used to find the minimum value of a single

variable for a nonlinear function. Here, the Fibonacci

algorithm is extended to the multi-variable function f by

following the given negative gradient vector from the center

to the facet of the simplex such that every variable changes

proportionally along the search line.

In this Fibonacci algorithm , the accuracy parameter

is set to be 0.001 and the final value Y is chosen to be

a strictly interior point of the simplex ; thereby Y is in

the feasible region.

Figure 8. The Extended Bound to the Facet
of the Simplex

30

31

On the other hand, Kalantari [8] has rather different

views for the development of the step size without finding

the minimum value of the potential function. Instead, he

devised better reductions in the potential function with a

suitable step size a, as it appears in the following

descriptions.

The relaxation of the original Karmarkar's form is

Min CTX C E Rn+l, X E Rn+l

s.t. AX = 0 A is an m x n+l matrix
(12)

eTX = n+l

Xi >= 0

Then the potential function for (12) is

n+l
fr = n ln cTX/cTe + Z ln 1/xi

i=l

Kalantari [8] developed the step size a to be

a* = n I [(n-1) + n~] with fr < ln (~ +l/~) - 1/~

where ~ = cTe I R :cp: , and 1/n <= ~ <= 1 . Then,

because of the monotonicity of a* in ~

1/2 < n I 2n-1 <= a* <= 1

Now, the transformed problem by T is

Min cTDX'

s.t. ADX' = 0

eTX' = n+l X' >= O

In (13) , the step size ad = n I [(n-1) + npd],

where ~d = CTDe I R:cp:

Since (12) and (13) have the same optimal value

(13)

(for the proof, see Kalantari's lemma), it is enough to

32

substitute ad for a at each iteration in Karmarkar's

main algorithm.

numerical example

Let us consider the following standard LP problem

Max Xl + X2 + X3 + X4

s. Xl + 2x2 '-'. - X3 + 3x4 <= 12

Xl + 3x2 + X3 + 2x4 <= 8

2x1 - 3x2 - X3 + 2x4 <= 7

Xi >= 0

Table I shows the different results of the above

problem with a starting point xo = (1.5, 1, 1, 1). Of

course, the maximization problem is changed into the

minimization problem by changing CTX to -CTX, and

transformed into Karmarkar's canonical form.

First, a = 0.25 is fixed as Karmarkar suggested. The

objective function CTX converges to zero very slowly.

After 10 iterations, CTX has the value less than 1.0 E-2.

Next, the line search method is tested with the same

starting point. As the table shows, the objective function

goes to zero dramatically faster than Karmarkar's. Only

after iteration 3, the value of CTX is less than 1.0 E-2,

and after 10 th iteration, it converges to zero within

1.0 E-7. It is noticed that only one a has the value less

than 1.0, which simply indicates that the potential function

has the minimum value beyond the inscribed sphere for most

33

TABLE I

THE COMPARISON WITH DIFFERENT STEP SIZES

Karmarkar line search

iter # objective a: objective a:
value value

1 .396664 .25 .105362 2.03
2 .354513 .25 .033346 1. 02
.3 .312053 .25 .008762

l. . l ,)

4 .270596 .25 .002113 1.16
5 .231554 0~

. .::. 0 .000531 1 • ') l

6 .196071 .25 .000139 1. 09
7 .164762 0~

. .::.0 .000036 1. 09
8 .137706 .25 .000010 1.10
9 .114643 .25 .000002 1. 17

10 .095155 .25 .0000003 1. 18

Kalantari

i+or '-"-- # objective a:
value

1 .309404 .784
2 .183344 .823
3 .094867 .846
4 .046508 .851
5 .022158 . 85.3
6 .010436 .854
7 .004891 .854
8 .002287 .854
Q .001068 .854 ._,

10 .000499 .854

34

iterationss

Final work is with Kalantari's a* with the same

starting solution point. The result shows that his method

works reasonably well compared with Karmarkar's, but still

shows a slower progress of convergency than the one from

the line search method.

The one important and interesting fact is that the

above problem shows different optimal solutions for each

method (here, "different" means not from the roundoff

errors, but from the different searching directions.)

TABLE II

THE DIFFERENT OPTIMAL SOLUTION X*

optimal x Karmarkar Modified Kalantari
Line Search

Xl 3.07037 3.74375 3.221551

x:~ 0.00017 0.00000 0.000906

X3 4.92812 4.25625 4.770294

X4 0.00033 0.00000 0.001812

35

Table II shows the different optimal solutions X* for

the above three methods.

From Table I~, it is concluded that each method has

different solutions respectively. This means that the

above problem has infinite optimal solutions for X because

the objective function meets not a vertex but a line or

facet of the feasible region.

Actually, if the well-known simplex method is used,

the solution will be either (5,0,3,0) or (0,0,8,0), which

means the objective function meets the hyperplane between

(5,0,3,0) and (0,0,8,0). Also, it shows different optimal

solutions if several different starting points are used.

This aspect is a good contrast to the simplex methods.

Some Methods for Calculating (BBT)-1

Rank-One Modification

During matrix calculations on each iteration, the

matrix

(BBT)-1 = (AD2 AT)-1

0

0

1/n+l

must be updated in Karmarkar's algorithm. The matrix

inversion requires on the order of O(n3) computation in

(14)

the iteration of both Karmarkar's main algorithm and the

simplex method. But in the simplex method, only one column

is changed from one iteration to the next -- only a rank-one

update is needed. Therefore the order is reduced to 0(n2).

36

Only the diagonal matrix D in (14) changes from step to

step. If only one element of D is changed , then the order

of (AD2AT) is O(n2) like that of simplex method; whereas,

changing all n diagonal elements of D requires O(n3).

Therefore the following "rank-one" strategy is needed if

some elements of D are to be changed.

When the inverse matrix M-1 is already obtained, the

following Sherman-Morrison formula (or rank-one update) is

derived in order to change some elements in M of the form

M + uvT for some vectors u and v.

(M + uvT) - 1 = (1 + M- 1 uvT) - 1 M- 1

- (1 - M- 1 uvT + M- 1 uvT M- 1 uvT)' M-1 . ..
= M- 1 - M- 1 uM- 1 vT (1 - Jr + n2 - .)

(M- 1 u) (M- 1 vT)
= M-1 - --------------- (15)

1 + 7t

where 7t = uTM-lv .

The whole procedure of (15) requires 3n2 computations

because it is needed only to calculate M-lu, M-lvT, and Jr

each requires order of 0(n2).

If (15) is applied to the equation

AD"2AT = (AD' AT) + (D"i i 2 - D'ii)ai ai T , where D' and D"

differ only in the i_th entry, and ai is the i_th column of

A, then the following equation which will be used in "rank-

one" algorithm is obtained.

[AD' 2 AT + dai ai T] - 1

d [(AD' 2 AT)- 1 ai)] [(AD' 2 AT) - 1 ai JT
(16)

1 + dai (AD' 2 AT) - 1 ai T

37

where d = D"ii2-D'ii2

In performing rank-one update, the following two steps

are needed instead of just setting Diik+l = xik+l at k+l th

iteration.

step 1. D' (k + 1) = a< k) D' < k) , where

a(k) = 1/n 2 JXJ(k+l)/xJ(k)

This "appropriately" scales D'< k+l)

step 2. for each i = 1, ,n

D'ii<k+1)
if [1/2,2]

Di i (k + 1 l

set D' ii (k+l) = Di i (k+l) , and make rank-one

update using the equation (16).

Figure 9 shows the best direction d (- \} f) , and the

modified direction d' after "rank-one" operations.

Karmarkar proved that the order of total number of

updating operations N in m steps is O(m {n) , thereby

reducing the order O(n3) to 0(n2. 5) for calculating BBT.

Row Partition Scheme

In Karmarkar's algorithm, the time required in

performing an iteration is dominated by the calculation of

the projective gradient vector cp = [I - BT(BBT)-lB JDC .

The bigger the program size grows, the more computational

effort is required in calculating cp (in fact, the

calculation time depends more on the number of constraints

than the number of variables.)

Therefore, the computation time can be reduced if some

Figure 9. The Best Direction d and the Modified
Direction d' After Rank-One
Operations

38

39

constraints are extracted at each iteration. To do this,

Cavalier and Schall [5] proposed the ''row partitioning

scheme." They divided the constraints into two sets such

as S- = { i : Si k + 1 < Si k } and S+ = { i : Si k + 1 > = Si k},

where sik+l and sik are slack variables at the k+l_th and

the k_th iteration, respectively. Then, the constraints for

S- are getting more binding at the k+l_th iteration than

those at the k_th iteration. Thus, only the constraints for

s- are attempted at the k+l_th iteration instead of the

whole set of constraints. This is the main idea of the row

partitioning scheme.

But, their method is restricted to the space in which

a linearly transformed solution for Karmarkar's algorithm is

uniformly rescaled; however, the convergence criterion has

not been proved. Also, the whole constraint set has only

the inequality form of AX <= b . Thus, the following

modified algorithm can be easily applied to Karmarkar's

original algorithm without any restrictions mentioned

above.

1. Let S be the set of the slack variables which are

obtained from the transformation scheme described in

Chapter III.

2. Run the phase II with the modified line search algorithm.

Then the initial feasible solution is obtained.

3. Set S- = S .

4. Run the phase I with S-

5 . Let s' = { i : Si < 0 } where i E s+ .

6. If S' = ¢ then

s+ = s+ - S'

goto 7.

C' ~ = s- u ~· 0 , goto 4.

7. Calculate S+ . If CX' < 1.0E-4 then stop, where X' is

the variables in the canonical form.

8. Calculate XO in the original (general) LP form.

9. Let xo be the new starting feasible solution for the

next iteration, and set S- = S - S+

10. Goto 4.

In the above algorithm, since the dimension of X' in

40

Karmarkar's canonical form varies after each iteration, the

old canonical form is no longer available in the next

iteration. Therefore, the new solution X' E ~+m+l in the

old canonical form is converted to X E Rn in the original

LP problem. Now, a new feasible solution is updated at the

beginning of every iteration to get a new canonical form.

CHAPTER IV

NUMERICAL RESULTS

In this chapter, the computational results for

Karmarkar's original algorithm and the modified method (a

line search for the potential function described in Chapter

III) are summarized.

The program, which represents the Karmarkar algorithm

and the modified version, is characterized as follows

- The program is coded in Fortran 77 using the double

precision option.

- The main body consists of two parts. The first part is

for solving the phase II problem to find the initial

feasible solutions; and the second part is for solving the

phase I problem to reach the optimal solution.

- It is intended to solve the general LP problem.

Therefore, the transformation scheme described in Chapter

III (a conversion from a general LP form into the

Karmarkar's canonical form is used.

- For practical purposes, µ = 1.0E-4 in the phase II and

ex = l.OE-4 in the phase I are chosen for the stopping

rules.

- Arbitrary LP problems can be solved with no prior

information about the optimal value of the objective

41

42

function.

- The maximum pivot strategy is used in getting the inverse

matrix (BBT)-1 at each iteration.

- The program has an option to follow the original Karmarkar

algorithm or the modified algorithm.

- In Karmarkar's original algorithm, the algorithm uses the

step size a = 0.99 in the direction of the negative

gradient. Therefore maximization problems should be changed

to minimization problems by negating the objective function.

All LP problems which were used as test problems are in

the form (6) in Chapter III. Table III contains the details

of the problems.

TABLE III

THE TEST LP PROBLEMS FOR KARMARKAR'S
ALGORITHM

problem rows columns slack total density

datl 9 2 9 1 • ... 1 18.1

dat2 6 10 6 16 27.1

dat3 7 12 7 19 23.3

dat4 27 32 19 51 7.4

dat5 42 62 29 91 4.9

dat6 36 33 36 69 5.3

dat7 25 101 17 118 5.2

datS 56 a~
v I 41 138 5.5

43

"Rows" means the number of general constraints,

"columns" represents the number of variables before the

transformation into Karmarkar's canonical form, and "total"

is equal to "columns" plus "slack," where "slack" is the

number of slack variables. Finally, "density" refers to the

percentage of non-zero variables in the matrix A.

Karmarkar's and the modified algorithm with the known

optimal value C* are compared in Table IV. The number of

iterations for the two phases is listed as phase II,

phase I, and total iterations. Under each heading, the

numbers on both sides of the same column indicate

Karmarkar's and the modified algorithm respectively. Here

"condition" means the condition number of the matrix BBT at

the final iteration defined as :B: :B-:, where :B: is the

matrix norm in Karmarkar's main algorithm. It is often

observed that the number of iterations is excessive in ill

conditioned problems; and "*" signifies that the optimal

solutions cannot be reached within 60 iterations.

Since the optimal value C* is generally unknown, the LP

problems should be solved without the preinformation of C*.

From the practical implementation viewpoint, the "cutting

objective method" suggested by Lustig [10] is used instead

of the "sliding objective method" which is primarily of

theoretical interest. Table V shows the results where no

knowledge of final optimal solutions is required.

But one critical problem arises when the "modified line

search" algorithm is applied to the "cutting objective

44

TABLE IV

THE COMPARISON BETWEEN THE KARMAR.KAR ALGORITHM AND
THE MODIFIED LINE SEARCH ALGORITHM

WITH KNOWN C*

problem phase II phase I total cond
iter iter iter #

datl 7 3 0 2 15 5 5.9E3 u

dat2 1 1 5 3 6 4 3.5E3

dat3 6 2 43 12 49 14 2.8E01

dat4 12 4 39 10 51 14 1. 1E11

dat5 10 3 ~L!. 0 4 10 64 13 2.8E7

date 33 11 * * * * 5.4E21

dat7 7 2 40 8 47 10 4.0E5

dat8 25 4 * 20 * 24 7.5E22

45

TABLE V

THE COMPARISON BETWEEN TEE KARMARKAR ALGORITHM AND
THE MODIFIED LINE SEARCH ALGORITHM

WITH UNKNOWN C*

problem phase II phase I total .simplex
iter iter iter

datl 7 3 a 3 16 6 5 v

dat2 1 1 6 3 7 4 8

dat3 6 2 42 12 48 14 8

dat4 12 4 32 9 44 13 6

dat5 10 3 42 12 52 15 46

dat6 33 11 * * * * 40

dat7 7 2 34 8 41 10 24

dat8 25 4 * 19 * 23 126

method." After finding the initial feasible solution from

phase II, the gradient vector of the "potential function"

46

f(xi) = (n+l) (cixi/CDY - 1) at the i_th component should

be calculated. But the value of CDY is zero under the

"cutting objective method", and it is impossible to find the

gradient vector. Therefore, the transformed objective

function CDY/eDY is used instead of the "potential

function." This substitution works well and is summarized

in Table V.

The iteration numbers of phase II in Table V are the

same as those of Table IV because the aim of phase II is

only to keep µ as small as possible. Also the number of

iterations in phase I indicates that there are no major

differences between the iterations in Table IV and Table V.

In phase II, both algorithms have relatively quick

convergence. This is in contrast to phase I where slower

convergence is observed in ill-conditioned problems such as

"dat6" and "dat8".

Overall, the result shows that the "modified line

search algorithm" has a much better convergence behavior

than Karmarkar's original algorithm. Even in severely ill

conditioned problems (except "dat6"), the modified version

shows a promising result -- whereas Karmarkar's reveals a

poor convergence behavior.

Finally, the comparison between the "modified line

search algorithm" and the "modified row partition method"

is shown in Table VI. Although the "row partition method"

47

TABLE VI

THE COMPARISON BETWEEN THE MODIFIED LINE SEARCH
ALGORITHM AND THE MODIFIED ROW PARTITION

METHOD WITH UNKNOWN C*

line search row partition exact

data loop optimal loop optimal solution
solution solution

datl 4 -14.2196 3 -14.2199 -14.22

dat2 3 -0.9998 3 -1.0000 -1. 0

dat3 12 0.00015 9 0.00000 0.0

dat4 11 -464.7528 11 -464.7530 -464.7531

dat5 14 -4317.996 13 -4317.997 -4318.0

dat6 * ·.k * * 156296.59

dat7 a -890.996 9 -890.999 -891.0 ...,

dat8 19 242595.67 * * 242594.96

48

fails tc.:l converge to the Qptimal solution in "dat8", it is

not because of the algorithm itself, but because of the

highly ill-conditioned problem (Actually the optimal

solution was not converged within CTX < 1.0E-4 in the

"modified line search method": the lowest value of CTX was

3.0E-4 at 20_th iteration. After that, the value of CTX

diverges.)

The number of iterations is almost same in both

algorithms. The computation time in the "modified row

partition method" must be faster than the computational time

in the "modified line search algorithm" because some

inactive constraints are not used at each iteration. Also,

the optimal solution is found more accurately in the

"modified row partition method." This may be regarded as

another advantage of the row partition algorithm.

CHAPTER V

DUALITY AND ITS APPLICATION TO THE UNKNOWN

OPTIMAL SOLUTION C*

The dual linear programming problem is defined

directly from the original (primal) linear programming

problem because the dual variables are associated with the

constraints of the primal LP problem.

The original Karmarkar canonical form is

Min C'TX' C' T E Rn +l X' E Rn +1

s.t. A'X' = 0 A' is an m x n+l matrix (17)

n+l
:z Xi = 1

i=l

The dual problem for (17) is defined as

Max z

s.t. A'TW + e z <= C' (18)

where WE Rm , z ER , e = (1,1, ... ,1) E Rn+l

Since W is the set of unrestricted variables,

Wi E W) = Wi ' - Wi " is set to be the difference between

two non-negative variables Wi ' and Wi Also z should be

changed to - z' to preserve the non-negativity of variables

(z always has a non-positive value because the minimum

4.9

50

optimal value of the primal objective function C'TX' is 0 .)

Therefore, (18) can be rewritten as

Max z

s.t. A'T(W' - W") - e z' <= C'

W' = { Wi l

W11 = { Wi II

Wi ' >= 0 } E Rm

Wi >= 0 } E Rm

and

, where (19)

Now, (19) is the usual general LP problem (6) before

transforming to Karmarkar's canonical form. But this method

doubled the basic variables and added m slack variables from

its dual form, thus, requiring much more computational

effort.

Here, Todd and Burrell's duality algorithm is

introduced. Their method does not require the redundant

variables, and can be worked easily with the unknown optimal

value C'* of C'TX'.

First, it is assumed that the optimal value of C'TX'

is known i.e. C'* = 0. In Todd and Burrell's method, the

sequential dual solutions are directly derived from (17)

by just setting

z = min { (C' - A' T W) j } ,

W = (A'D2A'T)-1A'D2C'

j = 1,2, ... ,n
(20)

Todd and Burrell showed that the potential function

could be decreased by a constant in each iteration in

Karmarkar's main algorithm. And the above equations for z

and W could be obtained as by-products in their proof.

- l . :_; Xl - XZ + 5 . 7 5 ;{7

Xl + X2 + 2 . 5 X3 - 4__ ... '7
·-~ .£~,,,.;

2.X.l + X2 +x4 - 7x7
Xl + 2xs 3x1

X2 + 2xs - 3x7
Xl + XZ + X3 + X4 + XS + X6 + X7

Then , the dual problem takes the following form

'\"T1 + 2~l2 + Y3 .; ~ + z
Yl + Y2 + Y4 + z .., ~

""'. ::iy1 + + z
4y2 + z

2y3 + z
2)r4 + z

-4. 5y1 - 7y2 -3y3 -3y4 + z

The iterative solutions with a

Table VII.

TABLE VII

THE ITERATIVE SOLUTIONS
ALGORITHM

iter ex

1 .204867
2 .169918
3 .085566
4 .028854
5 .007977
6 .002256
7 .000636
8 .000179
9 .000050

< =
<=
<=
< --
~=

< =
' =

- 99 -

- 1.5
1
0
0
0
0
5.75

is shown in

FOR THE DUALITY

..,
w

-.886141
-.412338
-.173773
-.079319
-.064546
-.015960
-.004443
-.001252
-.000353

51

= 0
= 0
- 0 -
= 0
= 1

52

After iteration 9, the optimal values of the primal

and dual variables are

X' = (.3999, .3199, .0000, .0000, .0400, .0800, .1600)

y = (-.4999, -.5000, .0001, .0000)

From the table, it is confirmed that both C'* of

primal and z* of dual converge to the real optimal

objective value 0. But this case is only for the known

optimal value C'* .

Now, the assumption that the optimal value C'* of

the objective functon C'TX' is known -- is dropped.

Karmarkar originally suggested the "sliding objective

method" to solve the case of the unknown optimal value C'*

and showed a polynomial-time convergence. But the "sliding

objective method" is not very attractive, especially for an

implementation on the computer. The initial lower (-2L)

and upper (2L) bound for C'* in his method is too low

and high, respectively; therefore, many iterations will be

required to update the tentative lower bound to isolate C'*·

Todd and Burrell' considered the equation

n+l n+l
C ' T X ' - C ' * = C ' T X ' - C ' * :2: Xi = z (Ci - C' *) Xi

i=l i=l

Since C'* is not known, they set the lower bound

n+l
z(k) < C'* , and updated C'TX' as Z (Ci - Z (k)) Xi at

i=l

the k_th iteration (initially, z(O) could be found by

solving the equations in (20). And z(O) is not too low as

the initial lower bound -2L in the "sliding objective

53

method.")

Also, they set W(k) = (A'D2A'T)-1A'D2 (C' - e z(k)) ,

and z' = min { (C' - A' T W) j } for j = 1, 2, ... , m

This updating method is plausible , since

n+l
Z (ci - z(k))xi converges to zero if z(k) converges to

i=l

real optimum C'* .

There are two cases in determining W(k+l) and z(k+l).

When z(k) >= z', the system for dual is not improved at the

k_th iteration. Therefore, z(k+l) = z(k) is taken. Also,

W(k+l) = W(k) -- since

n+l n+l
2: (Ci - Z (k)) Xi <= z (Ci - z ') Xi - - and W (k) has an

i=l i=l

improved solution.

If z(k) < z' , then obviously an improved dual optimal

value of z is obtained. In this case, z (k+l) =

n+l

'? , •

"' ' but,

W(k+l) cannot be taken as W(k) because Z (Ci - Z ') Xi i S

i=l

n+l
a improved solution for C'TX' than Z (Ci - Z (k)) Xi .

i=l

Therefore, W(k) has not improved, and a new improved

solution W(k+l) is obtained by solving the equation

W (k+ 1) = (A ' D2 A' T) - 1 A' D2 (C ' - e z ') .

Todd and Burrell proved that the above algorithm should

generate a sequential set of primal and dual solutions with

both the primal objective function C'TX' and the dual

objective function z, converging to the unknown optimum C'*·

More iterations are taken as expected if the same

problem with the unknown optimal objective value is run

(actually, after 10 iterations both primal and dual

objective value have been reduced with l.OE-3. But the

system works very well and both objective values converge

to C'* (=z*) as desired.

After C'* is found, the canonical form of (17) should

return to the general LP problem, thereby finding the

original optimal solutions C* and X* in (6). Of course,

Todd and Burrell described the algorithm which transforms

the general LP problem to the canonical form. But their

method depends on some upper bounds with the sum of input

data. Also, their algorithm requires a redundant

constraint, resulting in more computational effort.

54

Unfortunately, the modified algorithm, which is

described in chapter III, cannot be applied to this duality

algorithm because the C* in the general LP form must be

known in advance. In finding C* in the general LP problem,

another method -- which does not require the unnecessary

calculations for the dual solutions -- comes from

Lustig [10] (And this method is used in chapter IV.) First,

he simply sets crxo as the optimal objective value C*, where

xo is the initial feasible solution coming from phase II

problem. In general, CTXk is assumed as the unknown C* at

the k th iteration. After running Karmarkar's main

algorithm with the updated CTXk as cn+l in the canonical

form at the k+l th iteration, CTXk+l, which is closer to C*,

55

can be calculated.

This method is easy to implement. Also, it has

polynomial-time convergence if the initial feasible solution

xo is near the optimal solution. It is not proved that the

above method has polynomial-time convergence if the starting

point is not close to the optimum (Lustig stated that it may

be polynomial), but it works really well with some testing

LP problems as already shown in chapter IV.

CHAPTER VI

SUMMARY, CONCLUSION, AND SUGGESTIONS FOR

FUTURE WORK

Summary and Conclusion

In this study, Karmarkar's new polynomial-time

algorithm is introduce~. His algorithm runs in polynomial-

time whereas the simplex method requires exponential-time

for its iterative procedures on the worst-case problems.

Karmarkar's main algorithm starts from the canonical

form of

Min ex

s.t. AX = 0

n+l
~ Xi = 1

i=l

Although Todd and Burrell [13] devised an algorithm

which transformed the general LP form into the above

canonical form -- this method requires additional

computational effort due to unnecessary constraints and

variables. Since the exact transformation was not explained

clearly in Karmarkar's original paper, a conversion method,

which is based on Karmarkar's suggestion, is introduced in

this thesis. This transformation algorithm is totally

56

57

different from Todd and Burrell's method [13], but clarifies

Karmarkar's indirect suggestion for the above

transformation.

A line search, which extends the range of search to

the facet of the simplex, has been tested as a modification

of Karmarkar's main algorithm. The modified algorithm has

been coded in Fortran 77 and tested for eight LP problems.

The program accepts the general LP form and converts it

into the Karmarkar's canonical form. An initial feasible

solution is generated in phase II and used to get the

optimal solution in phase I. The program can handle the

unknown optimal value C* by using the "cutting objective

method."

The computational results show that the modified

algorithms require fewer iterations and give faster

convergence to the optimal solution than Karmarkar's

original method. In degenerate problems such as "dat6",

however, the inverse matrix of (BBT) is severely ill

conditioned and the optimal solution cannot be found within

low iteration counts. In this case, it is recommended to

replace the maximum pivot strategy with other methods such

as Cholesky factorization [5], QR factorization [13], or

another least square method [10] for calculating (BBT)-1.

Finally, Todd and Burrell's duality for Karmarkar's

canonical form is discussed. Both theoretical and

computational results show that the dual variables can be

generated. It also shows that their method can be applied

58

to the case of unknown C*.

Suggestions for Future Work

Karrnarkar's new polynomial-time algorithm can be

improved in many ways. The following suggested improvements

for the Karrnarkar algorithm should be achieved in the near

future.

1. A good initial feasible solution for phase II in

Karmarkar's main algorithm should be given for a fast

convergence to the optimal solution. Until now, the

starting point only depends on the phase II problem, and it

is not known whether the starting feasible solution is a

favorable one for the given system. If the initial point

lies near the optimal solution, the optimum will be found

with a few iterations and may not yield the large condition

number for the highly ill-conditioned matrix (BBT).

2. The best step size a is not known. Some recent

research shows that the results depend upon the step size a.

This implies that the step size of 0.25 in Karmarkar's

original paper might be improved. Also, faster convergence

occurs as the step size a increases to 1 for randomly

chosen test programs. But the mathematical proof is not

provided by anyone at the present time.

3. The most critical weakness in Karmarkar's algorithm

that it does not yield to postoptimal analysis. There

should be more work in the area of postoptimal analysis.

4. Although the dual variables can be generated with Todd

and Burrell's duality algorithm, their method is only

applied to the canonical form. In order to improve the

duality theory, a direct relationship between primal and

dual in the general LP form should be developed.

5. To be widely applied, Karmarkar's algorithm should

be modified to handle the degeneracy problems. Cholesky

factorization, least squares method, and QR factorization

have been tried to avoid the matrix (BBT), being severely

ill-conditioned. Applying the above methods is another

area of further work.

6. There may be possible extensions to integer

programming, branch and bound problem, multi-objective

functions, and even non-linear objective functions.

59

REFERENCES

[1] Anstreicher, Kurt M., "Analysis of a modified Karmarkar
Algorithm for Linear Programming," Yale School of
Organization and Management, Yale University,
August 1985.

[2] Cavalier, T.M., and Soyster, A.L., "Some Computational
Experience and a Modification of the Karmarkar
Algorithm," Department of Industrial and
Management System Engineering, The Pennsylvania
State University, February 1985.

[3] Cavalier, T.M., and Schall, ICC., "Implementing a
Projective Algorithm for Solving Inequality
Constrained Linear Programs," IMSE Working Paper
86-128, The Pennsylvania State University, 1986.

[4] Dantzig, George B., Linear Programming and Extensions,
Princeton University Press, Princeton, New Jersey,
1963.

[5] Gill, Phillip E.; Murray, Walter; Saunders, Michael A.;
Tomlin, J.A.; an.d Wright, Margaret H., "On
projected Newton Barrier Methods for Linear
Programming and an Equivalence to Karmarkar's
Projective Method," Technical Report Sol 85-11,
Systems Optimization Laboratory, Department of
Operations Research, Stanford University, July
1985.

[6] Hooker, J.N., "Karmarkar's Linear Programming
Algorithm" Interfaces 16: 4 July-August p 75-90,
1986.

[7] Kalantari, B., "Karmarkar's Algorithm with Improved
Steps," Technical Report LCSR-TR-80, Department
of Computer Science, Rutgers University, 1986.

[8] Karmarkar, N., "A New Polynomial-Time Algorithm for
Linear Programming," Combinatorica, vol. 4, No.
4, p 373-395, Nov. 1984.

[9] Khachiyan, L.G., "A Polynomial Algorithm in Linear
Programming," Doklady Akademiia Nauk SSSR 244:S,
p 1093-1096, 1979, translated in Soviet

60

Mathematics Doklady 20:1, p 191-194, 1979.

[1.0J Kozlov, Alex., "The Karmarkar Algorithm: Is It for
Real?" Siamnews, vol. 18, No. 6, Nov. 1985.

61

[11] Lustig, Irvin. J., "A Practical Approach to Karmarkar's
Algorithm," Department of Operations Research,
Stanford University, June 1985.

[12] Rosen, .J.B., "The Gradient Projection Method for Non
linear Programming," SIAM J. Appli. Math., p 181-
217, vol. 8, No. 1, March 1960.

[13] Todd, Michael J., and Burrell, Bruce P., "An Extension
of Karmarkar's Algorithm for Linear Programming
Using Dual Variables," Technical Report No. 648,
School of Operational Research and Industrial
Engineering, College of Engineering, Cornell
University, January 1985.

[14] Tomlin, J.A., "An Experimental Approach to Karmarkar's
Projective Method for Linear Programming,"
Ketron, Inc., Mountain View, California, 1985.

[15] Vanderbei, Robert J., Meketon, Marc S., and Freedman,
Barry A., "A Modification of Karmarkar's Linear
Programming Algorithm," AT&T Bell Laboratories,
Holmdel, New Jersey, 1985.

APPENDIXES

62

APPENDIX A

THE PROGRAM LISTING OF KARMARKAR'S ALGORITHM

AND THE MODIFIED ALGORITHM

63

64

C***
c *
C KARMARKAR'S ALGORITHM FOR LP PROBLEMS *
c *
C~**
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

PURP(JSE

THIS PROCEDURE FINDS THE OPTIMAL SOLUTIONS FOR LP
PROBLEMS OF THE FORM :

MIN C(l)X(l) + ... + C(N)X(N)

SUBJECT TO . A(I,l)X(l) + ... + A(I,N)X(N)<=,=,>=B(I)

I = 1, ... , M X(I) >= 0

METHOD

THIS PROGRAM IS BASED ON KARMARKl\.R'S MAIN
ALGORITHM AND THE MODIFIED ALGORITHM FOR THE UNKNOWN
OBJECTIVE VALUE C*.

THE METHOD IS AN ITERATIVE TECHNIQUE WHICH
CONSISTS OF TWO PHASES. IN THE FIRST PHASE, A POSITIVE
INITIAL FEASIBLE SOLUTION WILL BE OBTAINED.

THE GLOBAL OPTIMAL SOLUTION WILL BE FOUND IN THE
NEXT PHASE.

1.

2.

AFTER ENTERING THE VALUES OF C, A, AND B, THEN
THE SLACK VARIABLES ARE GENERATED AUTOMATICALLY.

THE PROBLEM IS CHANGED INTO KARMARKAR'S
C CANONICAL FORM.
c
C 3. THE INITIAL FEASIBLE SOLUTION IS OBTAINED BY
C SOLVING THE PHASE II PROBLEM.
c
C 3. WITH THE INTIAL FEASIBLE SOLUTION, THE OPTIMAL
C SOLUTION IS SEARCHED IN EACH ITERATION WITH THE
C PHASE I PROBLEM.
c
C 4. AFTER FINDING THE OPTIMAL SOLUTION IN
C KARMARKAR'S CANONICAL FORM , THE ORIGINAL SOLUTION
C FOR X IS FOUND.
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

65

USAGE

THE PROGRAM CONSISTS OF A MAIN PROGRAM AND TWO
SUBROUTINES, KARMA..~ AND INVERSE. THE MAIN PROGRAM
ESTABLISHES THE INTERACTIVE PART, THE GENERATED SLACK
VARIABLES, AND THE CONVERSION TO THE PHASE II PROBLEM.

SUBROUTINE KARMAR CONSISTS OF KARMARKAR'S MAIN
ALGORITHM AND THE MODIFIED ALGORITHM. SUBROUTINE
INVERSE rs USED TO FIND THE INVERSE OF A GIVEN MATRIX.

THE MAXIMUM DIMENSION FOR A IS 200 BY 200. IF
THE INPUT IS REQUIRED MORE THAN THIS MAXIMUM DIMENSION,
THE DIMENSION STATEMENT IN THE MAIN PROGRAM SHOULD BE
MODIFIED PROPERLY.

INPUT DATA

FIRST, THE VALUES OF THE NUMBER OF VARIABLES
AND CONSTRAINTS ARE ENTERED. NEXT INPUT DATA CONSISTS
OF C, OBJ_C, A, COND, AND B. EACH ROW HAS THE MAXIMUM
10 ELEMENTS OF C AND A. AFTER ENTERING THE LAST INPUT
OF C, THE INPUT FOR OBJ_C IS ENTERED. AFTER FINISHING
ENTERING THE I_TH INPUT OF A, THE CONDITION FOR THE
I_TH CONSTRAINT ('<=','>=',OR'==') IS ENTERED. AND
THE INPUT FOR B(I) IS ENTERED. ALL INPUT DATA USE FREE
FORMAT.

TABLEAU

N M
C(l)

A(l,1)

ACM,1)

OUTPUT

C(2) .
C(N)

A(l,2) .
A(l,N)

A(M,2) .
A(M,N)

C(lO)
OBJ_C

. A(l,10)
COND B(l)

. A(M,10)
COND B(M)

THE INITIAL FEASIBLE SOLUTION IS PRINTED. THE
IMPROVED SOLUTION PER EACH ITERATION IS SHOWN UNTIL
FINDING THE OPTI11AL SOLUTION. THE FINAL OPTIMAL
SOLUTION IS PRINTED WITH THE NUMBER OF ITERATIONS
IN KARMARKAR'S CANONICAL FORM. FINALLY, THE OPTIMAL
SOLUTION FOR THE ORIGINAL LP PROBLEM IS PRINTED BY
CONVERTING FROM KARMARKAR'S CANONICAL FORM INTO THE

66

C GIVEN GENERAL LP PROBLEM.
c
c
C DESCRIPTION OF MAJOR PAR.Al~ETERS
c -------------------------------
c
C N THE NUMBER OF VARIABLES X(I)
C Nl THE NUMBER OF THE TOTAL VARIABLES (BASIC +
C SLACK)
C M THE NUMBER OF CONSTRAINTS
C XXN THE REAL VALUE OF N1+1
C R RADIUS OF THE LARGEST INSCRIBED
C SPHERE OF THE SIMPLEX
C ALPHA STEP SIZE
C LINE BIT FOR THE ALGORITHM. IF LINE = 0 THEN
C KARMARKAR'S ORIGINAL ALGORITHM WORKS, ELSE THE
C MODIFIED ALGORITHM WORKS.
C IFLAG BIT FOR PHASE I AND PHASE II PROBLEM. IF
C IFLAG = 1, THEN SUBROUTINE KARMAR WORKS FOR
C THE PHASE II, ELSE FOR THE PHASE I.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

DESCRIPTION OF MAJOR VARIABLES

STARTX(I)
RES (I), RES1 (I)
A(J,I)
ORIGIN CI)

CC(I)
OBJ_C
COND(I)

NEWX(I)
CCl(I)
A1(J,I)
B(J,I)
BBCI, J)

DCCI)
CPl (I, ,J)
CP(I, J)
GRAD(I)
y (I)

THE INITIAL FEASIBLE SOLUTION
RESOURCE VECTOR b
INPUT MATRIX A
THE SOLUTION OF THE ORIGINAL LP
PROBLEM
COST VECTOR C
KNOWN OPTIMAL OBJECTIVE FUNCTION
CONDITION FOR THE CONSTRAINTS
'<=' , '>=' , OR '=='
NEW IMPROVED SOLUTION PER ITERATION
MULTIPLICATION OF CC(I) AND STARTX(I)
MULTIPLICATION OF A(J,I) AND STARTX(I)
MULTIPLICATION OF Al(J,I) AND NEWX(I)
tvl.ti.TRIX OF (ADDA) IN KARMARKAR' S MAIN
ALGORITHM
MULTIPLICATION OF CCCI) AND NEWX(I)
1"1ATRIX OF B(BB)
MATRIX OF I -B(BB)B
GRADIENT VECTOR OF [I - B(BB)B JDC
NEW IMPROVED POINT IN THE TRANSFORMED
SPACE

C**

double precision startx(200),res1(200),res(200),
* a(200,200),origin(200),cc(200),obj_c

character cond(200)*2

print *, '==> Enter the number of variables and
* constraints'

read t:, n,m
nl = n

j=l
print *, 'HIN : '

do while (j .le. n)

end do

i=l

if (j+9 .le. n) then
read*, (cc(i), i=j,j+9

else
read *,

end if
j=j+lO

cc(i), i=j,n),obj_c

print *, 'SUBJECT TO : '
do while (i .le. m)

k=l
do while (k .le. n)

if (k+9 .le. n) then
read*, (a(i,j), j=k,k+9

else
read *, a (i, j) , j =k, n) , cond (i) , res (i)

endif
k=k+lO

end do
if (cond (i) . eq. '> =') then

nl=nl+l
a(i,nl)= -1.

else if (cond(i) .eq. '<=') then
nl=nl+l
a(i,nl) = 1.

end if
i=i+l
if (i .le. m) then

print* '==>Enter the next row.'
end if

end do
print*, 'Want line search? ---(l(yes)/O(no))'
read *, line

nO=n
n=nl
do 20 i=l,n+l

startx(i) = 1.
20 continue

startx(n+l) = 1.

67

r. <"" ,..,'i' _, ..•.••. .:Jl!. J. UP THE PHASE II PROBLEM.

do 21 j=l,m
res 1 (j) = 0.
do 22 i=l,n

resl(j) = resl(j) + a(j,i)
22 continue

resl(j) = resl(j)
resl(j) = resl(j) - res(j)
a(j,n+l) = -resl(j)

21 continue

C FIND THE INITIAL FEASIBLE SOLUTION

call karmar(n+l,nO,m,a,startx,res,cc,O. ,l,line)

C FIND THE INITIAL OPTIMAL SOLUTION

obj_c = 0.
do 30 i=l,n

obj_c=obj_c + cc(i)*startx(i)
30 continue

C MAIN ALGORITHM

call karmar(n,nl,m,a,startx,res,cc,obj_c,O,line)

stop

end

68

C**
c *
c

c

THIS SUBROUTINE SOLVES KARivLA.RKAR' S MAIN
i\LGtJRITHM. *

*
C~***

subroutine
* karmar(n,nl,m,a,startx,res,cc,obj_c,iflag,line)

double precision startx(200),res(200),cc(200),obj_c,
* xxn,grad1,newx(200),bb(200,200),dc(200),
* b(200,200),cp(200,200)

double precision grad(200),y(200),alpha,r,edy,
* origin(200) cc1(200),a1(200,200),a(200,200),
* cp1(200,200) f,accu,fib(200),center(200),
* bound(200),bl(200),all(200),w(200),f1,f2,v(200)

double precision length(200),norm,norml,amax,
* s(200,200),ss(200,200),sl

x:~n = n + 1 ..

gradl = xxn * (xxn - 1.)
r = 1. I sqrt(gradl)

C TRANSFORMATION INTO KARMARKAR'S CANONICAL FORM

do 100 i=l,n+l
newx(i) = l./xxn
ccl(i) = cc(i)*startx(i)

100 continue

ccl(n+l) = -obj_c

do 200 i=l,m
do 210 j=l,n

al(i,j) = a(i,j)*startx(j)
210 continue

al(i,n+l) = -res(i) ·
200 continue

C INITIALIZATION OF BB

do 250 i=l,m
bb(i,m+l) = 0.
bb(m+l,i) = 0.

250 continue

bb(m+l,m+l) = 1. I xxn

C SET UP THE MAXIMUM FIBONACCI NUMBER

if (line .eq. 1) then
accu = .001
fib(l) = 1.0
fib(2) = 2.0

jj = 3
fibl = 0.
do while (fibl .lt. l./accu)

end do

fib(jj) = fib(jj-1) + fib(jj-2)
fibl = fib(jj)
jj = jj+l

jj = jj - 1
kk = jj - 2
ik = jj - 2
jjj = jj
end if

69

C MAIN LOOP

do 9000 loop=l,500

C........ INITIALIZATION OF B(M+l)

do 300 i=l,n+l
b(m+l,i) = 1.

300 continue

C........ CALCULATION OF DC

310

320

if (iflag .eq. 0) then
do 310 i=l,n+l

else

end if

dc(i) = ccl(i)*newx(i)
continue

do 320 i=l,n+l
de (i) = 0.

continue
dc(n) = newx(n)

C........ CALCULATION OF BB

do 400 j=l,m
do 410 i=l,n+l

b(j,i) = al(j,i)*newx(i)
410 continue
400 continue

do 500 j=l,m
do 510 i=l,m

bb(j,i) = 0.
do 520 k=l,n+l

if (b (j, k) . ne. 0. . and. b (i, k)
* .ne. 0.) then

bb(j,i) = bb(j,i)+b(j,k)*b(i,k)
endif

520 continue
510 continue
500 continue

C........ FIND CONDITION NUMBER

bb(m+l,m+l) = xxn
norm= 0.
do 550 i=l,m+l

do 560 j=l,m+l
norm= norm+ bb(i,j)*bb(i,j)

560 continue
550 continu.-e

norm = sqrt(norm)

70

C........ FIND INVERSE MATRIX OF BB BY CALLING INVERSE

call inverse(bb,rn)

C........ CALCULATION OF THE CONDITION NUMBER

bb(m+l,rn+l) = 1./xxn
norrnl = 0.
do 570 i=l,rn+l

do 580 j=l,m+l
norml = norml + bb(i,j)*bb(i,j)

580 continue
570 continue

norml = sqrt(norml)
norm = norm * norml

C........ CALCULATION OF PROJECTED GRADIENT

do 600 j=l,n+l
do 610 i=l,m+l

cpl(j,i) = 0.
do 620 k=l,m+l

if (b (k, j) . ne. 0.) then
cpl(j,i) = cpl(j,i)+b(k,j)*bb(k,i)

end if
620 continue
610 continue
600 continue

do 700 j=l,n+l
do 710 i=l,n+l

cp (j, i) = 0.
do 720 k=l,m+l

if (b (k, i) . ne. 0.) then
cp(j,i) = cp(j,i)+cpl(j,k)*b(k,i)

endif
720 continue
710 continue
700 continue

do 800 i=l,n+l
do 810 j=l,n+l

cp(i,j) = -cp(i,j)
810 continue
800 continue

do 820 i=l, n+l
cp(i,i) = cp(i,i) + 1.

820 continue

C........ CALCULATION OF GRADIENT VECTOR
do 920 i=l,n+l

71

grad(i) = 0.
do 930 j=l,n+l

grad(i) = grad(i) + cp(i,j)*dc(j)
930 continue
920 continue

C........ CALCULATION OF THE NORM OF GRADIENT VECTOR

gradl = 0.
do 1000 i=l,n+l

gradl = gradl + grad(i)*grad(i)
1000 continue

gradl = sqrt(gradl)

C........ CALCULATION OF Cp = Cp I :cp:

do 1010 i=l,n+l
grad(i) = grad(i) I gradl

1010 continue

C........ LINE SEARCH FOR THE POTENTIAL FUNCTION

if (line .eq. 1) then

C........ SEARCH FOR THE LARGEST ELEMENT OF Cp

gradl = grad(l)
do 1020 i=l,n+l

if (gradl .lt. grad(i)) then
gradl = grad(i)

end if
1020 continue

C. MAXIMUM SEARCHING BOUNDS

do 2100 i=l, n+l
center(i) = 1./xxn
bound(i) = (1.-grad(i)/gradl)/xxn
length(i) = (bound(i) - center(i))

2100 continue

C........ SEARCH FOR THE MINIMUM VALUE OF THE GIVEN
C........ FUNCTION

JJ = jjj
kk = jjj - 2
ik = jjj - 2
do 2200 i=l,n+l

bl(i) = length(i)
all(i) = fib(ik) * blCi) I fib(jj)
w(i) = center(i) + all(i)
v(i) = bound(i) - all(i)

2200 continue

72

call f(w,fl,dc,newx,n+l)
call f(v,f2,dc,newx,n+l)
ik = ik - 1
jj = jj - 1

do 2300 iter=2,kk+l
if (f2 .le. fl) then

do 2310 i=l,n+l
center(i) = center(i) + all(i)
bl(i) = bound(i) - center(i)
w(i) = v(i)
all(i) = fib(ik) * bl(i) I fib(jj)
v(i) = bound(i) - all(i)

2310 continue

else

call f(w,fl,dc,newx,n+l)
call f(v,f2,dc,newx,n+l)

do 2320 i=l,n+l
bound(i) = bound(i) - all(i)
bl(i) = bound(i) - center(i)
v(i) = w(i)
all(i) = fib(ik) * bl(i) I fib(jj)
w(i) = center(i) + all(i)

2320 continue
call f(w,fl,dc,newx,n+l)
call f(v,f2,dc,newx,n+l)

end if
ik = ik - 1
jj = jj - 1
if (ik .lt. 1) then

ik = 1
end if

2300 continue

C........ THE FINAL MINIMUM VALUE OF THE GIVEN FUNCTION

do 2400 i=l,n+l
y(i) = w(i)

2400 continue

end if

c END OF LINE SEARCH

C........ CALCULATION OF THE IMPROVED POINT

if (line .eq. 0) then
do 1100 i=l,n+l

y(i) = 1/xxn - alpha * r * grad(i)
1100 continue

endif

73

C........ FIND THE NEW SOLUTION BY USING INVERSE
C........ TRANSFORMATION

edy = 0.
do 1200 i=l,n+l

edy = edy + newx(i) * y(i)
1200 continue

do 1300 i=l,n+l
newx(i) = newx(i) * y(i) I edy

1300 continue

C........ CHECK STOPPING RULE

if (iflag .eq. 0) then
ex = 0.
do 1400 i=l,n+l

ex = ex + ccl(i) * newx(i)
origin(i) = startx(i) * newx(i)/newx(n+l)

1400 continue
print *, loop, ex, 'condition # = ',norm

C........ FIND THE NEXT OPTIMAL OBJECTIVE VALUE IF C* IS
C........ UNKNOWN

C........ PHASE I PROBLEM

1430

1410

*

ccl(n+l) = 0.
do 1430 i=l,n

ccl(n+l)=ccl(n+l)-cc(i)*origin(i)
continue
print*, ' The value of CX = ',-ccl(n+l)
write(3,1410) loop,cx,-ccl(n+l),norm
format(' loop= ',i3,' ex= ',£13.6,'

ex= ',fl3.5,' cond # = ',e20.10)
write(3,1420)

74

1420 format(' ------------------------------------

* '-------------------------')

C........ STOPPING RULE FOR THE PHASE I PROBLEM

if (abs(cx) .lt. 1.0E-4) then
write(3,1450)

1450 format(//' ***** The optimal solution ***')
obj_c = 0.
do 1700 i=l,n

obj_c=obj_c + cc(i)*origin(i)
1700 continue

write(3,1800) obj_c
1800 format(//' The final optimum = ',fl3.6)

do 1810 i=l,n
origin(i) = startx(i) * newx(i)/newx(n+l)
write(3,1820) i, origin(i)

1820
1810

format(/' x(' ,i3,') = ',f15.5)
continue
goto 3000

end if

75

e........ PHASE II PROBLEM

else
origin(n) = startx(n) * newx(n)/newx(n+l)
if (origin(n) .lt. 1.0E-4) then
goto 4000

end if
print*, ' loop= ',loop,origin(n), 'cond # = ',norm
write(3,9001) loop,origin(n),norm

9001 format(/' loop= ',i3,' origin= ',fl0.7,
* cond # = ',e20.10)

end if

9000 continue

C........ END THE MAIN LOOP

C........ THE INITIAL FEASIBLE SOLUTION

4000 print*· ' loop= ',loop,origin(n), 'cond # = ',norm
write(3,9001) loop,origin(n),norm
do 1500 i=l,n-1

startx(i) = startx(i) * newx(i)/newx(n+l)
feasi = feasi + cc(i)*startx(i)

1500 continue
print *, 'feasible value ex= ',feasi
write(3,1550) feasi

1550 format(/' Initial value of ex= ',f15.5)
write(3,1750)

1750 format(//)

3000 return

end

C**
c *
C SUBROUTINE INVERSE : *
c
c
c
c

THIS SUBROUTINE CALCULATES THE INVERSE OF
A GIVEN MATRIX.

*
* * * C**

subroutine inverse(bb,m)

double precision bb(200,200),t,tt,pivot(200)
integer ipvot(200),index(200,2)

do 50 j=l,m
ipvot(j) - 0

50 continue
do 55 i=l,m

t = 0.
do 56 j=l,m

if (ipvot(j) .ne. 1) then
do 57 k=l,m

if (ipvot(k) .eq. 0) then
if (t .lt. abs(bb(j,k))) then

irow = j
icol = k
t = abs(bb(j,k))

endif
else if (ipvot(k) .gt. 1) then

print*, 'singular matrix'
return

end if
57 continue

end if
56 continue

ipvot(icol) = ipvot(icol) + 1

if (irow .ne. icol) then
do 60 1=1,m

tt = bb(irow,l)
bb(irow,l) = bb(icol,l)
bb(icol,l) = tt

60 continue
end if

index(i,1) = irow
index(i,2) = icol

if (bb(icol,icol) .eq. 0.) then
print*, 'singular matrix'
return

end if

pivot(i) = 1. I bb(icol,icol)
bb(icol,icol) = 1.
do 65 1=1,m

bb(icol,l) = bb(icol,l) * pivot(i)
65 continue

do 70 11=1,m
if (11 .ne. icol) then

tt = bb(ll,icol)
bb(ll,icol) = 0.
do 75 l=l,m

bb(ll,l) = bb(ll,l) - bb(icol,l)*tt
75 ccn~inue

end if
70 continue

76

55 continue

85

do 80 l=m,1,-1
if (index (l, 1) . ne. index (l , 2)) then

jrow = index(l,l)
jcol = index(l,2)
do 85 k=l,m

tt = bb(k,jrow)
bb(k,jrow) = bb(k,jcol)
bb(k,jcol) = tt

continue
end if

80 continue

return

end

77

C**
c

c
c

THIS SUBROUTINE IS TO CALCULATE THE
MINIMUM OF THE TRANSFORMED OBJECTIVE FUNCTION

*
*
* * C**

subroutine f(xx,ff ,dc,newx,nn)

double precision xx(200),dc(200),newx(200),ff

ff = 0.

do 5000 i=l,nn
ff = ff + dc(i)*xx(i)

5000 continue

return

end

APPENDIX B

THE OUTPUTS FOR THE MODIFIED ALGORITHM

78

loop

1
2
3
4

DAT 1

Phase II

loop)A cond #

1
2
3

0.9931786
0.0258428
0.0000244

3.1E06
3.2E05
l.5E04

Initial Objective Value = -4.43341

ex

0.431350
0.008450
0.000358
0.000015

Phase I

ex

-14.03786
-14.21196
-14.21934
-14.21965

cond #

7.0E02
5.9E03
5.9E03
6.0E03

79

loop

1
2
3

DAT 2

Phase II

loop .)-' cond #

1
2

0.0005740
0.0000003

5.7E03
4.8E03

Initial Objective Value = 1.00000

ex

0.140280
0.033875
0.000091

Phase I

ex

-0.60111
-0.99878
-0.99984

cond #

4.4E03
3.7E03
3.5E03

80

DAT 3

Phase II

~~~:-----------~-----------~~=~-~--
1 
2 

0.0016027 
0.0000001 

1.1E05 
8.6E03 

The Initial Feasible Solution = 145646.27381 

Phase I 

-------------------------------------------------
loop ex ex cond # 
-------------------------------------------------

1 2009.378784 100814.02887 l.7E02 ., 1925.007202 49723.12023 1. OE02 ... 
3 1309.447998 9015.80799 6.lEOl 
4 234.125839 1588.45596 3.2E01 
5 46.895611 94.81730 2.8E01 
6 2.481863 15.74895 2.8E01 
7 0.425820 2.18240 2.8E01 
8 0.053919 0.46454 2.8E01 
9 0.012593 0.06331 2.8E01 

10 0.001685 0.00962 2.8E01 
11 0.000274 0.00088 2.8E01 
12 0.000022 0.00017 2.8E01 

81 



loop 

1 
') .... 
3 
4 
i:: 
~; 

6 
7 
8 
9 

10 
11 

DAT 4 

Ph.:i.se I I 

~~~~ ---- ----__ /!_ -----· ------===~ -~ -
1
2
3
4

0.9933052
0.8461444
0.0026256
0.0000016

5.9E06
3.2E06
3.1E06
5.8E06

Initial Objective Value = -64.53925

Phase I

ex ex ccnd ti:

1.919885 -161.88980 1.3E04
3.319170 -321.03095 1.5E04
2.633654 -·125. 28271 4.1E04
0.773621 -452.62355 4.6E05
0.161926 -458.19565 1.1E07
0.137451 -463.24368 9.8E07
0.023161 -464.08761 2.6E08
0.017945 -464.73441 1.1E09
0.000339 -464.74657 4.2E13
0.000124 -464. 7510 11 7.2E13
0.000050 -464.75282 2.3E14

82

loop

DAT 5

Phase II

~==~---------~-----------==~~-=-1
2

0.0110000
0.0000069

2.2E06
2.5E06

Initial Objective Value = -289.92699

Phase I

ex ex cond :It

1 1.483638 -467.99658 7.8E03
2 1.885336 -696.83533 7.6E03
3 1.195118 -846.34235 9.4E03
4 0.240044 -876.00422 l.9E04
5 0.117917 -890.18021 3.0E04
6 0.004640 -890.72835 2.7E04
7 0.001868 -890.94376 2.7E04
8 0.000399 -890.98866 2.9E04
9 0.000073 -890.99664 3.3E04

83

loop

DAT 7

Phase II

=~~~----------~------------=~~~-~-1
2
3

0.8894799
0.0037376
0.0000023

8.7E06
l.2E07
3.5E07

Initial Objective Value= -983.67871

Phase I

ex ex cond #
--

1 15.047611 -2515. 30.399 4.1E04
2 6.524582 -3189.02191 4.3E04
3 3.930912 -3608.10769 4.7E04
4 3.265923 -3976.85917 5.4E04
5 1.196356 -4116.28354 6.3E04
6 0.978393 -4239.69436 4.9E04
7 0.342909 -4284.22237 2.6E04
8 0.148122 -4303.54889 2.3E04
9 0.095927 -4315.97001 2.7E04

10 0.009758 -4317.22490 2.9E04
11 0.005256 -4317.89427 2.9E04
12 0.000628 -4317.97359 2.9E04
13 0.000152 -4317.99230 3.0E04
14 0.000033 -4317.99641 3.0E04

84

loop

DAT 8

Phase II

~~~~-----------..t:'------------=~~~-~-
1 
2 
3 
4 

0.9570915 
0.6648277 
0.0008999 
0.0000006 

3.7E08 
2.8E08 
5.8E08 
6.8E14 

Initial Objective Value = 558080.74102 

Phase I 

ex ex cond # 
---------------------------------------------------

1 1066.617920 412254.88963 2.7E19 
2 469.131012 348595.20346 2.8E19 
3 438.476196 289870.38084 2.8E19 
4 259.832062 255340.88190 3.4E19 
5 89.343163 243498.10460 4.5E19 
6 56.711308 236043.50115 5.7E19 
7 50.566032 229459.00759 7.1E19 
8 13.313293 227711.66164 l.OE20 
9 6.353201 226873.12672 1.3E20 

10 3.088514 226461.51388 1.6E20 
11 4.397704 225862.31110 2.0E20 
12 0.683417 225768.27016 3.2E20 
13 0.904609 225643.01792 3.3E20 
14 0.507882 225572.54604 4.8E20 
15 0.298861 225531.18967 6.3E20 
16 0.165659 225508.12011 l.1E21 
17 0.069543 225498.41380 1.6E21 
18 0.021103 225495.60711 3.5E21 
19 0.000568 225495.61190 8.3E21 
20 0.000298 225495.61426 8.3E21 

85 



i 

\ 
VITA 

Byeong-Soo Kim 

Candidate for the Degree of 

Master of Science 

Thesis: SOME MODIFICATIONS AND EXTENSIONS OF KARMARKAR'S 
MAIN ALGORITHM WITH COMPUTATIONAL EXPERIENCES 

Major Field: Computing and Information Science 

Biographical: 

Personal Data: Born in Seoul, Korea, February 27, 
1957, The son of Yeon-Soon and Hak-Yung Kim. 

Education: Graduated from Seoul High School, Seoul, 
Korea, in February, 1976; received the Bachelor 
of Science degree in Mathematics from Seoul 
National University, Seoul, Korea, in February, 
1981; completed requirements for the Master of 
Science Degree at Oklahoma State University in 
May, 1987. 




