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PREFACE 

The Karmarkar algorithm and its modifications are 

studied in this thesis. A modified line search algorithm 

with extended searching bound to the facet of the simplex is 

developed and implemented. Using this modification, a 

modified row partition method is tested. Both algorithms 

are coded in Fortran 77 and compared their performances with 

the original Karmarkar algorithm. The modifications are 

promising and other extensions are encouraged. 
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CHAPTER I 

INTRODUCTION 

From Dantzig to Karmarkar 

The Simplex Method 

For solving a linear programming CLP) problem, the 

well-known simplex method was developed by Dantzig [4]. The 

procedure of the simplex method is summarized as follows 

A linear programming problem has the form 

Min CTX C,X E Rn 

s.t. AX = b A is an m x n matrix, m < n 

x >= 0 

If an extreme point is X', then the matrix A can be 

divided into [B,N], where Bis the basis with an m x m full 

rank matrix comprised of the columns of coefficients of 

the non-zero variables, and N is the non-basis with an 

m x (n - m) matrix. 

Now, by decomposing X into (XB,XN), AX= b can be 

written as BXB + NXN = b. Therefore, crx = CeTXB + CNTXN 

CeT B-1 N ) XN If CNT - CsTB-lN is non-

negative, then X is an optimal extreme point. 

The main algorithm proceeds as follows : 

1. Find a starting solution X with basis B. 

1 



0 
.:~ . If CNT - CaTB-IN is nonnegative, then stop. 

Else pick the most positive component CaTB-laj - cj 

".) 
,_J • Let B-1 b = b' and JC = min { bi '/Yi J , YiJ > 0 }, where 

yij is the i_th component of yj = B-laj. 

4. Get the new extreme point X by calculating 

Xa i = bi ' - :n:: Yi j for i=l, ... ,m 

other Xi's are equal to zero. 

5. Go to 2. 

Figure 1 shows that the simplex method which traverses 

the boundary of the feasible polytope. 

solution 
space 

Figure 1. The Simplex Method 

a contour of the 
objective function 
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This algorithm solves the underdetermined system 

AX = b by traversing the edges of the solution space from 

one extreme point to another one in a systematic manner, 

driven by the criterion that each move improves the 

objective function. 
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In order to find a better algorithm than the commonly 

used Dantzig simplex method [4], diverse linear programming 

(LP) ideas have been essayed. One such attempt is the 

ellipsoid algorithm developed by Khachiyan [9]. His 

algorithm runs in polynomial time, whereas the simplex 

method runs in exponential time only. Also, the geometric 

interpretation of the ellipsoid algorithm is totally 

different from the simplex method, in that it circumscribes 

the solution space with a shrinking ellipsoid. 

The ellipsoid algorithm is summarized as follows 

1. A feasible region S is defined as S = {X : AX <= b }, 

where A, X, and b are defined as before. 

2. Construct an initial ellipsoid EO which contains ~-

3. Construct a new ellipsoid Ek+l which fully c6ntains the 

half-ellipsoid (0.5Ek). 

feasible, then stop. 

If the center of Ek+l is 

4. The procedure will eventually terminate since the volume 

of Ek will be contained in S as k goes to infinity; 

The center of Ek is contained in S. 

no solution. 

Otherwise there is 



Figure 2. 
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Figure 2 shows Khachiyan's ellipsoid algorithm which 

starts with an initial hypersphere and successive 

ellipsoids. 
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After the feasible solution (the center of Ek) is 

found, one should formulate a feasible-point problem where 

the feasible region is an arbitrary small volume containing 

the feasible solution. This causes the number of 

iterations to be very l~rge, thereby making this procedure 

much more expensive than the simplex method. 

The Karmarkar Algorithm 

Finally, in 1984, Narendra Karmarkar [8] introduced a 

new polynomial-time algorithm for complex LP problems 

whose method requires less time-complexity than that of 

Khachiyan's ellipsoid algorithm [9]. 

As a major advantage, Karmarkar's algorithm runs 

within a polynomial-time bound; whereas, the well-known 

simplex method requires exponential-time in the worst-case. 

Because of this polynomial-time bound, the benefit of 

Karmarkar's algorithm increases as the problem size grows 

Karmarkar claimed that his algorithm performs 50 to 100 

times faster than the simplex method on large-sized LP 

problems. 

Briefly, the Karmarkar algorithm works in the non­

negative poly-dimensional space ( e.g., the 1st quadrant 

in a 2-dimensicnal problem) to find a direction toward the 

This concept is in contrast to the simplex 



method which traversea the vertices of the polytope 

boundaries to find the optimal point: unlike the 

conventional simplex method, the Karmarkar algorithm 

attempts to find an objective-improving direction instead 

of moving from one vertex to another in order to find the 

optimal solution. Instead of enumerating extremely many 

vertices in the worst-case large scale LP problems in the 

simplex method, many computational iterations can be saved 

if Karmarkar's algorithm is used. 

6 

However some specialists earlier argued [10] [11] that 

Karmarkar used his experimental inputs only to favor his 

approach, a view that is not shared by everyone. The 

controversy regarding whether his algorithm is better than 

the well-known simplex method has abated as the Karmarkar 

algorithm has developed. 

Since Karmarkar's algorithm came into existence rather 

recently, some thought-provoking aspects of the concepts 

have been noticed, such as the somewhat unclear 

transformational process from the original LP problem to 

canonical form as well as the possibility for modification 

and improvement of the concept. Therefore, the main purpose 

of this thesis is to clarify Karmarkar's original idea, to 

design and to program a better modified algorithm, and to 

compare its performance with Karmarkar's original algorithm. 

In Chapter II, the main idea of Karmarkar's algorithm 

is reviewed because it is entirely different algorithm for 

linear programming and somewhat difficult to understand due 
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to several new concepts such as projective transformation, 

potential function, and sliding objective function. 

In Chapter III, the transformation process from general 

LP problems to Karmarkar's main algorithm is explained 

because he did not show exactly how to transform from the 

general LP problems to the canonical form from which his 

algorithm starts. For the next modification, a line search 

(the Fibonacci method is used) for the "potential function" 

is performed explicitly as Todd and Burrell [13~ suggested. 

Here, the searching bound is extended to the facet of the 

simplex rather than limiting the search to the inscribed 

sphere of the simplex to observe how beneficial this 

modification would be. 

Chapter IV contains the comparison between the original 

Karmarkar algorithm and the modified methods. Their 

performance on relatively small LP problems is compared. 

In the next chapter, duality is chosen as an extension 

of Karmarkar's algorithm because duality is deeply related 

with postoptimal analysis (infeasibility can be recovered by 

duality) and it has great economic significance. Here, Todd 

and Burrell's duality method [13] is examined. 

The final chapter contains a summary, conclusions, and 

suggestions for future work. 

Literature Review 

Since Dantzig [4] developed the well-known and popular 

simplex method, a number of researchers before Karmarkar [8] 
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have tried to design a polynomial-time algorithm for linear 

programming. One of these, Khachiyan [9], developed an 

ellipsoid algorithm which has polynomial-time convergence. 

Although his ellipsoid method was mathematically attractive, 

it was not practical because it cost much more than the 

simplex method to implement: the structure per each 

iteration is totally different from the simplex method, and 

unfortunately, the computation associated with each 

iteration is more costly than that of the simplex method. 

Also, the iteration count is usually very large. 

Since Karmarkar [8] published his new polynomial-time 

algorithm, some research regarding step size has been 

reported. Kalantari [7] reported that faster convergence 

is possible with a modified algorithm in which the step size 

a varies with an improved step at each iteration. Todd and 

Burrell [13] suggested a line search along the negative 

gradient of the potential function, instead of fixing a at 

every iteration. 

Vandervei, et al. [15] proposed a linear transformation 

of a feasible solution, which sets the transformed feasible 

solution to be uniformly rescaled. They also proved a 

convergence of this modified algorithm and provided a 

stopping rule. On the other hand, Cavalier and Soyster [2] 

considered the same modification and showed a better result 

with small size LP problems. Also they examined ill­

conditioned problems which caused some difficulties in 

calculating the inverse of the matrix BBT , where B is the 
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matrix of the con5traint5 in Karmarkar'5 canonical form. 

Cavalier and Schall [3], with the above modification, 

propo5ed yet another algorithm for maintaining fea5ibility, 

and made an efficient implementation with the row 

partitioning 5cheme. But no convergence criterion wa5 

provided and their method was re5tricted to inequality 

con5traint5. 

On the other hand, Gill et al. [5] pre5ented an 

application of a barrier tran5formation to a linear program 

and pointed out an equivalence between the barrier method 

and Karmarkar's algorithm with a 5Uitable choice of a 

barrier parameter. Also, they derived a formal equivalance 

between the projected Newton search direction and the 

direction of the projected gradient in Karmarkar's 

algorithm. 

Various research results have been reported with regard 

to the unknown optimal objective value, C* ( Min CTX.) 

Lustig [11] proposed the "cutting objective method" to 

update the value of the objective function at each iteration 

and gained a good result. Todd and Burrell [13] devised the 

duality algorithm by continually updating a lower bound 

z <= C* and had dual optimal solutions as a by-product. 

Also they proposed a method to transform the general LP 

problem into Karmarkar's canonical form in which their 

duality algorithm could be applied. While quoting from 

Tomlin [14], Hooker [6] not only suggested the conversion 

from a given arbitrary LP problem to Karmarkar's canonical 
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form but also gave a general survey of Karmarkar's main al­

gorithm with numerical examples. Meanwhile, Anstreicher [1] 

provided a totally different method for finding C* based on 

the geometric viewpoint, and established a convergence 

criterion. 



CHAPTER II 

REVIEW OF KARMARKAR'S MAIN ALGORITHM 

In this chapter, the Karmarkar algorithm is reviewed in 

order to provide a general understanding of the concept. 

Let us consider the linear programming problem 

Min CT X 

s.t. AX = b 

C,XERn 

A is an m x n matrix. 

This can be transformed into Karmarkar's canonical 

form of 

Min CTX' 

s.t. AX' = 0 

eT X' = 1 

C , X' E Rn+l 

A is an m x (n+l) matrix. 

eT = ( 1 , 1 , ... , 1 ) 

(1) 

( 2) 

This transformation will be shown further in the next 

chapter by using a projective transformation. 

Now, by taking a new transform T such that 

T ( X ' ) = D- 1 X ' I e T D- 1 X ' where D = x' 1 0 
x' 2 

0 x'n+l 

is a diagonal matrix with a feasible solution xo, where 

xo = ( xo l , ... , xO n + i ) , the tr an sf ormation T maps the 

11 



initial feasible point into the center of the simplex. 

Figure 3 of the next page shows the transformation on the 

surf ace of Q2 = { X E R3 

centering scheme. 

3 
Z xi = 1 } for this 

i=l 

Using the inverse mapping of T : T-1 (Y) = DY / eTDY, 

where Y = T(X' ), the above problem can be reorganized as 

Min CTDY / eTDY 

12 

s.t ADY I eTDY = 0 ( 3) 

eTDY / eTDY = 1 by substituting T-1 (Y) in 

(2) for X'. 

By maintaining eTY = 1, (3) can be rewritten as 

Min CTDY 

s.t. ADY = 0 ( 4 ) 

eTY = 1 

y >= 0 because of strict positivity of 

eTDY. 

But, optimizing CTDY is an approximation of 

CTDY I eTDY even if C affects only the numerator. Also it 

seems very hard to optimize with respect to a rational 

function CTDY / eTDY. 

To preserve the linearity of the objective function, 

Karmarkar introduced the " potential function " 

f Qn ---> R, f(X') = 
n+l 

j=l 
n+l 

ln ( CT X' I Xj ' ) . 

easy to show that f' (Y) = I ln ( CTDY I yj 
j=l 

Then it is 

n+l 
- 2: ln Xj ' , 

j=l 



z(0,0,1) 

x(l,0,0) 

z(0,0,1) 

y(0,1,0) 

Figure 3. Transformation via T, where 
a' = (1/3,1/3,1/3) 

13 
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where f' is the tran5formed potential function, where 

Y = T(X' ), and yj E Y . 

Clearly, f is the sum of ratios of linear functions 

which are transformed into another ratios of linear 

functions via T. Also it transforms the potential 

function into a new one. This is very important to show 

that f (X') is decreased by a constant d > 0 in each 

iteration of Karrnarkar's main algorithm. Formal 

d~scription is summarized as follows 

Theorem 1 : Let Y' be the point that minimizes CTDY over 

B(ao, r) n Q', where 0 < a < 1 , and B is a 

sphere centered at ao = (l/n+l, ... ' 1/n+l) 

with radius r ( r = 1 /~n(n+l) is the radius 

of the largest inscribed sphere of the 

Q' = { Y : ADY = 0 } n Qn.) Then 

either (i) CTDY' = 0 

or (ii) f' ( Y' ) < = f' ( ao ) - d . 

(proof) See Karmarkar's theorems. 

Main algorithm 

The procedure works with the system of (4). Any 

feasible point in (3) is mapped into the center of the 

simplex in (4), so that the direction of the negative 

projected gradient of CTD over the intersection of the 

polytope H = { Y : ADY = 0 } and the simplex 

n+l 
Qn = { Y yj = 1 } can be searched. 

J. -1 -. 



a=(l/3,1/6,1/2) b=(l/2,0,1/2) c=(0,1/2,1/2) 

a'=(l/3,1/3,1/3) b'=(3/5,0,2/5) c'=(0,3/4,1/4) 

Figure 4. Transformation from the Equation (2) to 
the Equation (4) via T 

15 



Figure 4 shows the intersection between H and Q2 , 

where H = { (x ,y ,z) x + y - 2z = 0 } and 

Q2 = { ( x ' y ' z ) x + y + z = 1 }. Here, 

D=diag(l/2,1/6,1/3) is assumed as the initial feasible 

solution. In Figure 4, the initial feasible point 

a=(l/2,1/6,1/3) is transfbrmed into the center of the 

simplex Q2 , and the boundary points b and c are 

transformed into b' and c', respectively ( b'= T(b) = 

D-lb/eTD-lb = (4/3,0,1)/(7/3) = (4/7,0,3/7) , and c' = 

T ( b ) = D- 1 c / e T D- 1 c = ( 0 , 4 , 1 ) / 5 = ( 0 , 4 / 5 , 1 / 5 ) . ) 

16 

Having done with this transformation, the following 

Rosen's "Gradient Projection" method [11] is used in order 

to find the projected gradient vector over the Q' = H n Qn. 

Figure 3. Rosen's Gradient Projection Method 
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Since the gradient Vf is followed uphill in Figure 5 

because V f cannot be followed without passing out of 

the solution space Vf should be projected onto the 

boundary, giving an uphill direction ( Mon the Figure 5.) 

When ai is the outward pointing normal to the 

constraint, then the magnitude of N = l'\/f :cos8 

= ai T 'V f I : ai : , and the normalized direction of N 

= ai I: ai : . And M can be calculated by using 'ijf and N. 

M = Vf - N 

ai ai T \J f 
= V'f -

: ai : : ai : 

= [ I - ai ( ai T ai ) - 1 ai T ] '\/ f ( 5 ) 

For multiple active constraints, if (5) is applied to 

the matrix B in which each column is the outward pointing 

normal of an active constraint, then ai can simply be 

replaced with B in the projection operator, giving 

(I - B(BTB)-lBT ), and the desired result can be obtained. 

Now, the above method can be summarized by the 

following algorithm ( It is assumed that the minimization 

problem is worked here ) : 

step 1 : Start with a feasible solution Xo', then Xo' goes 

the center of the simplex by T. 

step 2 Project CTD onto the affine null-space of the 

feasible region. 

: AD 
B = , ____ 1 

I I 

: e : where A is an m x (n+l) matrix, and 

D = diag(x1, ... ,xn+l) . 
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Then the projected gradient cp is 

Cp = [ I - BT ( BBT ) - 1 B JDC 

step 3 By taking a step of length ar from the center, 

the objective function can be improved (a E (0,1) 

is a fixed parameter.) 
Cp 

Y = (1/n+l, ... ,1/n+l) - ar 
: Cp: 

step 4 Obtain next X' by using inverse of T. 

X' = DY I eTDY 

step 5 If CTX' = 0 or CTX'/ crxo <= 2-L then stop 

m m n+l 
(L=[Z Z lnz 

j=l i=l 
( : aj i : +l) + Z lnz 

j=l 
(:bj :+1)+ln2 nm]+l 

is an input parameter defined in Khachiyan's 

ellipsoid algorithm, where aji E A, and bj E b.) 

Else go to step 2. 

An example problem which has Karmarkar's canonical form 

is 

Min x1 - x2 - 2xs 

S . t . Xl + X2 - 2 X3 = 0 

:Xl + X2 + X3 = 1 

Figure 6 shows the procedure of Karmarkar's main 

algorithm in the transformed space. The triangle is the 

simplex Q2, and the line segment (b'-a'-c') is the feasible 

polytope. In the first figure, the initial feasible 

solution xo = (1/3,1/3,1/3), -DC is the negative 

gradient of the transformed objective function, and y1 is 

the improved solution at the end of the first iteration. 



a'= {1/3,1/3,1/3) b'= {2/3,0,1/3) 
c'= (0,2/3,1/3) Y'= (.282,.384,.333) 

a'= (1/3,1/3,1/3) b'= (.941,.0,.059) 
c'= (.0,.519,.484) Y'= (.274,.366,.360) 

Figure 6. Illustrations of Three Variables 
Problem in the Transformed Space 
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Se~ond figure shows the tran~formed space after lO_th 

iteration. The feasible polytope has been distorted by T, 

and -DC is also reorganized. y10 is the improved solution 

at the end of the 10_th iteration. 

Figure 7 shows the sequence of Yi transformed back to 

the corresponding Xi values in the (normalized) original 

space. After 10_th iteration, the solutions are 

X = (0.032, 0.635, 0.333), and CTX = 0.063 . They are 

considerably close to the optimal solutions 

X* = (0.0, 0.667, 0.333) and CTX* = 0.0 . 

xO=(l/3,1/3,1/3) xl=(.282, .384, .333) 
xl0=(.032, .635, .333) 

Figure 5. Illustration of the Sequentially Improved 
Solutions X 

20 
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The optimal solution of the above algorithm is only for 

(2) not (1). Also it assumes that the starting feasible 

solution is known. 

Two Major Problems in Karmarkar's Algorithm 

Feasibility 

The initial feasible solution can be found if the size 

of the matrix A in (2) is small. But in large LP problems, 

the initial feasible point cannot be found easily. 

Therefore, the following two-phase problem can be used 

phase 1 : Min CTX 

s.t AX = b 

phase 2 Min µ 

s.t AX = b + µ(AXo - b) , where µ >= 0 

According to Khachiyan and Karmarkar, it is known 

that phase 1 has a feasible solution ifµ'( minµ) 

satisfies the condition µ' <= 2-L . 

First, by setting µ as xn+l the (n+l)th variable 

of X', phase 2 can be formulated as 

Min xn+l 
phase 2' 

s.t A'X' = b where A'=[ A - (AXo -b) J, 

and X' = ( X , xn + 1 ) . 

Here, X = Xo , xn+l ( =µ = 1 can be taken as a feasible 

solution in phase 2. By solving the system phase 2' with 

Karmarkar's algorithm until the conditionµ' <= 2-L is met, 

the initial feasible solution for phase 1 can be found. 
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Sliding Obiectiv~ Fun~tion 

In the main idea, it is assumed that the value of the 

objective function at the optimum was zero i.e. CTX* = 0. 

Here, Karmarkar's original algorithm is extended for the 

unknown optimal value of the objective function. The 

algorithm is summarized as follows : 

step 1. Start with 1 (-2L) and u (2L) as the lower and 

upper bound, respectively. 

step 2. Set tentative lower and upper bounds. 

l' = 1 + 1/3(u - 1) 

u' = u - 1/3 ( u - 1) 

c' = c - l'e 

step 3. Assume that l' is the minimum value of the 

objective function. And run the algorithm over c'. 

step 4. (a) If the value of the objective function is less 

than u', then set u = u', and determine new l', u', 

and c' as in step 2. 

(b) If a solution X with c'X < u has not been reached 

;;vi tl-1in n ( 1-: + ln ( n) ) steps, ther: 1 ~ ,/ c' , .3..n.d setJ 

1 = l', reset l', u', and c'. 

step 5. Continue optimizing over c'. 

In a total of O(nL) times, the optimal objective value 

is reduced from 2L to 2-L. Therefore, the complexity for 

this method is within a polynomial-time bound. 



CHAPTER III 

SOME MODIFICATIONS 

In this chapter, some practical modifications cf 

Karmarkar's main algorithm are considered. 

Practical Method for Transforming LP Problem 

into Karmarkar's Form 

The general LP problem is of the form : 

Min CT X C E Rn , X E Rn 

s. t aj X <= bj 

aj X >= bj , or ( 6 ) 

aj X = bj where aj E A , bj E b E RM 

and A is an M x n matrix. 

By adding (or subtracting) slack variables , 

aj X + S.j = bj and dj = 1 if aj X 
,. _ 

b.j ,_ 

aj X - Sj = bj and d; = -1 • .p 
aj X bj where 

" 
J. .l. ~· -

' 

Sj is a slack variable and dj is the coefficient of Sj 

By setting A' = [ A I'm J I'm = diag(dl, ... ,drn), 

X ' = ( X , S ) E Rn + m S = { Sj } E Rm , and 

C 'T = (Cl , , en , 0 , 0 , . . . , 0 ) E Rn + rn ( m < = M ) , ( 6 ) can 

be transformed into : 

Min C'TX' 
( 7 ) 

s.t. A'X' = b 

23 



Now, a projective transformation T such as 

Tx· : Rn + m - - - > Qn + m where 

n+m+l 
Qn + m = ( y E Rn + m + l Yk = 1 } 

k = 1 

has the following properties. 

1. = ( xO l ' ... ' xo n +m) is a feasible solution to 

the above (7) , Then 

1 x' l 
T:~ (x'1, ... ,x'n+m) = ------------------(---, 

n+m xo 1 

1 + :Z ( X' k /XO k ) 

k=l 

2. The inverse of T is 

1 

X 1 n+m 
,-----,1) 

xOn +m 

... , yn+rn+l = - - - - - ( xO 1 Yl 

yn + rn + 1 

... , x 0 n + m yn + m ) 

where Yi = (xi ' /xO i ) I ( 1 + 

n+m 
yn+m+l - 1 - yl; 

k=l 

Especially, Tx (xO) = (1/n+m+l , 

n+m 
Z xk'/xOk ), and 

k=l 

, 1/n+m+l) 

which maps the initial feasible point to the center of the 

simplex. 

By combining (7) and (8), (7) can be rewritten 

as 
n+m 

24 

Min Z Ci xO i Yi I yn + m + 1 ( 9) 

s.t. 

i=l 
n+m 

Z aj i xO i Yi I yn + m + l 
i=l 

n+m+l 
Z Yi = 1 

i=l 

= bj (10) 

( 11) 
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If Min CTX' - C* for some optimum value C* in (7), 

then, 

Min CTX' - C* = 0 

= = > Min ( CT X' C* ) = 0 

n+m 
==> Min ( Z Ci xO i Yi I yn + m + l - C* ) = 0 

i=l 

1 n+m 
--··, Min ------- Ci xO i yi - C* yn + rn + 1 - 0 

yn+m+l i=l 

n+m 
==> Min ( Z Ci xO i Yi - C*yn+m+l = 0 

i=l 
n+m+l 

---> Min Z Ci xoi Yi - 0 , where cn+m+l xOn+m+1 = -C* 
i=l 

By the same method, (11) is equivalent to 

n+m 

.: -1 
..L.- .l. 

n+m+l 

- bj ~?n + rn + 1 - 0 ~vhic~h implies 

2: ajiXoiyi = 0, where aj(n+m+l)xOn+m+l = -bj 

i=l 

By letting C"T = [ C'T : C* ] , 

DO = di a g ( xo l , xO n +m -1) , and A" = [ A' I "! • 1 
i (; j 

finally, the general LP problem (6) is transformed into 

the following Karmarkar's canonical form : 

Min C"TDOY 

s.t. A"DOY = 0 

n+m+l 
Z Yi = 1 

i = 1 

which is equivalent to (2) in Chapter II by setting 

c' = C"T DO and in r ,., \ 
\ "- ) . 
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Algol·i thrn 

step l Add slack variables if necessary in (6). 

step 2 Start with a feasible solution xo E Rn+m in 

(7). The starting feasible solution can be 

found by using phase II in two-phase problem. 

step 3 C'T = C"TDO 

A' = A"DO 

step 4 Let D = diag(y1, ... ,yn+m+l). 

Originally, set D = (1/n+m+l, ... ,1/n+m+l) as 

the center of the simplex Qn+m . 

step 5 Same as from step 2 to step 5 in Karmarkar's 

main algorithm. This time, A' is changed to A 

and C' to C. 

step 6 After exiting from step 5, calculate 

Yi xO i 
Xi = 

yn +m+ 1 

to find the optimal solution XE Rn in (6). 

Line Search for the Potential Function on 

the Tranformed Feasible Region 

In Karmarkar's main algorithm, a new improved point is 

found after moving along the negative gradient vector from 

the center of the simplex. 

Unfortunately, the best step size a in Karmarkar's 

main algorithm is not known. In his theorem, he showed that 

the potential function --
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n+l 
f (X) - 2 ln (C'TX'/xj) -- could be improved by a constant 

j=l 

6, where 6 =a - a2/2 - a2(n+1)/[ n( 1 a Jcn+l)/n ], and 

6 --> a - a2/2 - a2 /(1- a) as n --> ro (if a = .25 , then 

6 = 1/8 as Karmarkar suggested). 

But his theorem only shows that the potential 

function can be decreased at least by a constant. This 

decrease does not necessarily indicate that the maximum 

improvement. can be gained at each iteration if a is fixed. 

Instead of fixing a, the whole iteration count can be 

reduced if the best step size a can be found at each 

iteration. 

Therefore, as suggested by Todd and Burrell [13], a 

line search is performed for the potential function f' with 

a negative projected gradient on the transformed space by T. 

By Rosen's gradient projection method, a new gradient 

direction cp can be set as cp = [I - BT(BBT )-lB] ~f' (Y) 

for the potential function f' , where V f' is the gradient 

vector of f', and yo = ( 1/n+l , , 1/n+l ) is the 

center of the simplex Qn . 

The important fact is that along the line of the 

gradient vector cp from Y, f' has one stationary point, 

which is a minimizer. 

(lemma) Let g(d) = f' (Y + dcp ) 

n+l n+l 
= I ln CTD(Y + dcp)/(yi +dcp) - I ln Xi' 

i=l i=l 

wheredEHnQn, and D=diag(x1', ... ,xn+1'). 
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If Y and d are not proportional, then g(d) 

has at most one stationary point, which is a 

minimizer. 

The above lemma directly follows from Todd and 

Burrell's lemma in which they follow cp from a feasible 

point X' for the potential function f instead of f'. 

In the original Karmarkar algorithm, the maximum 

S$arching bound is the largest inscribed radius r of the 

feasible region. Here, instead, the maximum searching 

point is extended to the boundary of the region H n Qn 

i.e. the facet of the simplex Qn. And it is not difficult 

to find the intersection point where the facet and the 

gradient vector cp meet. 

For example, if the searching point follows the 

negative gradient from the center of the simplex, one Yi, 

which contains the largest positive element amax of cp, 

goes to zero first ( if more than one Yi have the same 

maximum positive element amax , then they go to zero 

together) for a positive constant t which satisfies 

t amax - 1/n+l = 0 

This means that the searching point is on the facet of the 

simplex when the above Yi is zero. 

Therefore, it is enough to solve the equation 

yo - t cp = Yf a c e t 

Yi o 
If t = 

amax 
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1 
= --------- then 

(n+l)arnax 

1 1 
Yi facet = ai 

n+1 (n+l)amax 

1 ai = ------ ( 1 ._ 
n+l amax 

Figure 8 shows the largest inscribed radius r, 

circumscribed radius R, and the negative gradient vector 

- cp = ( -1/3, 0, 1/3 ) which meets the facet of the 

simplex at the point Yfacet 0, 1/3, 2/3). The 

maximum searching bound from the center is yo - Rep which 

can have the step size a = R/r =Jn/n+l /)1/n(n+l) = n if 

the minimum value is attained on the vertex ( In Figure 8, 

the step size a= 1.16 . ) 

In performing a line search for the abo"ve extended 

bound, the Fibonacci algorithm is used -- which is 

originally used to find the minimum value of a single 

variable for a nonlinear function. Here, the Fibonacci 

algorithm is extended to the multi-variable function f by 

following the given negative gradient vector from the center 

to the facet of the simplex such that every variable changes 

proportionally along the search line. 

In this Fibonacci algorithm , the accuracy parameter 

is set to be 0.001 and the final value Y is chosen to be 

a strictly interior point of the simplex ; thereby Y is in 

the feasible region. 



Figure 8. The Extended Bound to the Facet 
of the Simplex 

30 
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On the other hand, Kalantari [8] has rather different 

views for the development of the step size without finding 

the minimum value of the potential function. Instead, he 

devised better reductions in the potential function with a 

suitable step size a, as it appears in the following 

descriptions. 

The relaxation of the original Karmarkar's form is 

Min CTX C E Rn+l, X E Rn+l 

s.t. AX = 0 A is an m x n+l matrix 
( 12) 

eTX = n+l 

Xi >= 0 

Then the potential function for (12) is 

n+l 
fr = n ln cTX/cTe + Z ln 1/xi 

i=l 

Kalantari [8] developed the step size a to be 

a* = n I [ (n-1) + n~ ] with fr < ln (~ +l/~) - 1/~ 

where ~ = cTe I R :cp: , and 1/n <= ~ <= 1 . Then, 

because of the monotonicity of a* in ~ 

1/2 < n I 2n-1 <= a* <= 1 

Now, the transformed problem by T is 

Min cTDX' 

s.t. ADX' = 0 

eTX' = n+l X' >= O 

In (13) , the step size ad = n I [ (n-1) + npd ], 

where ~d = CTDe I R:cp: 

Since (12) and (13) have the same optimal value 

( 13) 

( for the proof, see Kalantari's lemma), it is enough to 
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substitute ad for a at each iteration in Karmarkar's 

main algorithm. 

numerical example 

Let us consider the following standard LP problem 

Max Xl + X2 + X3 + X4 

s. ..... Xl + 2x2 '-'. - X3 + 3x4 <= 12 

Xl + 3x2 + X3 + 2x4 <= 8 

2x1 - 3x2 - X3 + 2x4 <= 7 

Xi >= 0 

Table I shows the different results of the above 

problem with a starting point xo = ( 1.5, 1, 1, 1 ). Of 

course, the maximization problem is changed into the 

minimization problem by changing CTX to -CTX, and 

transformed into Karmarkar's canonical form. 

First, a = 0.25 is fixed as Karmarkar suggested. The 

objective function CTX converges to zero very slowly. 

After 10 iterations, CTX has the value less than 1.0 E-2. 

Next, the line search method is tested with the same 

starting point. As the table shows, the objective function 

goes to zero dramatically faster than Karmarkar's. Only 

after iteration 3, the value of CTX is less than 1.0 E-2, 

and after 10 th iteration, it converges to zero within 

1.0 E-7. It is noticed that only one a has the value less 

than 1.0, which simply indicates that the potential function 

has the minimum value beyond the inscribed sphere for most 
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TABLE I 

THE COMPARISON WITH DIFFERENT STEP SIZES 

Karmarkar line search 

iter # objective a: objective a: 
value value 

1 .396664 .25 .105362 2.03 
2 .354513 .25 .033346 1. 02 
.3 .312053 .25 .008762 . . .... 

l. . l ,) 

4 .270596 .25 .002113 1.16 
5 .231554 0~ 

. .::. 0 .000531 1 • ') ..... l .... 

6 .196071 .25 .000139 1. 09 
7 .164762 0~ 

. .::.0 .000036 1. 09 
8 .137706 .25 .000010 1.10 
9 .114643 .25 .000002 1. 17 

10 .095155 .25 .0000003 1. 18 

Kalantari 

i+or '-"-- # objective a: 
value 

1 .309404 .784 
2 .183344 .823 
3 .094867 .846 
4 .046508 .851 
5 .022158 . 85.3 
6 .010436 .854 
7 .004891 .854 
8 .002287 .854 
Q .001068 .854 ._, 

10 .000499 .854 
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iterationss 

Final work is with Kalantari's a* with the same 

starting solution point. The result shows that his method 

works reasonably well compared with Karmarkar's, but still 

shows a slower progress of convergency than the one from 

the line search method. 

The one important and interesting fact is that the 

above problem shows different optimal solutions for each 

method ( here, "different" means not from the roundoff 

errors, but from the different searching directions.) 

TABLE II 

THE DIFFERENT OPTIMAL SOLUTION X* 

optimal x Karmarkar Modified Kalantari 
Line Search 

Xl 3.07037 3.74375 3.221551 

x:~ 0.00017 0.00000 0.000906 

X3 4.92812 4.25625 4.770294 

X4 0.00033 0.00000 0.001812 
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Table II shows the different optimal solutions X* for 

the above three methods. 

From Table I~, it is concluded that each method has 

different solutions respectively. This means that the 

above problem has infinite optimal solutions for X because 

the objective function meets not a vertex but a line or 

facet of the feasible region. 

Actually, if the well-known simplex method is used, 

the solution will be either (5,0,3,0) or (0,0,8,0), which 

means the objective function meets the hyperplane between 

(5,0,3,0) and (0,0,8,0). Also, it shows different optimal 

solutions if several different starting points are used. 

This aspect is a good contrast to the simplex methods. 

Some Methods for Calculating (BBT)-1 

Rank-One Modification 

During matrix calculations on each iteration, the 

matrix 

( BBT )-1 = ( AD2 AT )-1 

0 

0 

1/n+l 

must be updated in Karmarkar's algorithm. The matrix 

inversion requires on the order of O(n3) computation in 

(14) 

the iteration of both Karmarkar's main algorithm and the 

simplex method. But in the simplex method, only one column 

is changed from one iteration to the next -- only a rank-one 

update is needed. Therefore the order is reduced to 0(n2 ). 



36 

Only the diagonal matrix D in (14) changes from step to 

step. If only one element of D is changed , then the order 

of (AD2AT) is O(n2) like that of simplex method; whereas, 

changing all n diagonal elements of D requires O(n3 ). 

Therefore the following "rank-one" strategy is needed if 

some elements of D are to be changed. 

When the inverse matrix M-1 is already obtained, the 

following Sherman-Morrison formula ( or rank-one update ) is 

derived in order to change some elements in M of the form 

M + uvT for some vectors u and v. 

( M + uvT ) - 1 = ( 1 + M- 1 uvT ) - 1 M- 1 

- ( 1 - M- 1 uvT + M- 1 uvT M- 1 uvT )' M-1 . .. 
= M- 1 - M- 1 uM- 1 vT ( 1 - Jr + n2 - . ) 

( M- 1 u ) ( M- 1 vT ) 
= M-1 - --------------- (15) 

1 + 7t 

where 7t = uTM-lv . 

The whole procedure of (15) requires 3n2 computations 

because it is needed only to calculate M-lu, M-lvT, and Jr 

each requires order of 0(n2 ). 

If (15) is applied to the equation 

AD"2AT = (AD' AT) + (D"i i 2 - D'ii )ai ai T , where D' and D" 

differ only in the i_th entry, and ai is the i_th column of 

A, then the following equation which will be used in "rank-

one" algorithm is obtained. 

[AD' 2 AT + dai ai T ] - 1 

d [ (AD' 2 AT )- 1 ai ) ] [ (AD' 2 AT ) - 1 ai JT 
( 16) 

1 + dai (AD' 2 AT ) - 1 ai T 
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where d = D"ii2-D'ii2 

In performing rank-one update, the following two steps 

are needed instead of just setting Diik+l = xik+l at k+l th 

iteration. 

step 1. D' ( k + 1 ) = a< k) D' < k) , where 

a(k) = 1/n 2 JXJ(k+l)/xJ(k) 

This "appropriately" scales D'< k+l) 

step 2. for each i = 1, ,n 

D'ii<k+1) 
if [1/2,2] 

Di i ( k + 1 l 

set D' ii ( k+l) = Di i ( k+l) , and make rank-one 

update using the equation (16). 

Figure 9 shows the best direction d ( - \} f) , and the 

modified direction d' after "rank-one" operations. 

Karmarkar proved that the order of total number of 

updating operations N in m steps is O(m {n) , thereby 

reducing the order O(n3) to 0(n2. 5) for calculating BBT. 

Row Partition Scheme 

In Karmarkar's algorithm, the time required in 

performing an iteration is dominated by the calculation of 

the projective gradient vector cp = [ I - BT(BBT)-lB JDC . 

The bigger the program size grows, the more computational 

effort is required in calculating cp (in fact, the 

calculation time depends more on the number of constraints 

than the number of variables.) 

Therefore, the computation time can be reduced if some 



Figure 9. The Best Direction d and the Modified 
Direction d' After Rank-One 
Operations 

38 
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constraints are extracted at each iteration. To do this, 

Cavalier and Schall [5] proposed the ''row partitioning 

scheme." They divided the constraints into two sets such 

as S- = { i : Si k + 1 < Si k } and S+ = { i : Si k + 1 > = Si k}, 

where sik+l and sik are slack variables at the k+l_th and 

the k_th iteration, respectively. Then, the constraints for 

S- are getting more binding at the k+l_th iteration than 

those at the k_th iteration. Thus, only the constraints for 

s- are attempted at the k+l_th iteration instead of the 

whole set of constraints. This is the main idea of the row 

partitioning scheme. 

But, their method is restricted to the space in which 

a linearly transformed solution for Karmarkar's algorithm is 

uniformly rescaled; however, the convergence criterion has 

not been proved. Also, the whole constraint set has only 

the inequality form of AX <= b . Thus, the following 

modified algorithm can be easily applied to Karmarkar's 

original algorithm without any restrictions mentioned 

above. 

1. Let S be the set of the slack variables which are 

obtained from the transformation scheme described in 

Chapter III. 

2. Run the phase II with the modified line search algorithm. 

Then the initial feasible solution is obtained. 

3. Set S- = S . 

4. Run the phase I with S-

5 . Let s' = { i : Si < 0 } where i E s+ . 



6. If S' = ¢ then 

s+ = s+ - S' 

goto 7. 

C­' ~ = s- u ~· 0 , goto 4. 

7. Calculate S+ . If CX' < 1.0E-4 then stop, where X' is 

the variables in the canonical form. 

8. Calculate XO in the original (general) LP form. 

9. Let xo be the new starting feasible solution for the 

next iteration, and set S- = S - S+ 

10. Goto 4. 

In the above algorithm, since the dimension of X' in 
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Karmarkar's canonical form varies after each iteration, the 

old canonical form is no longer available in the next 

iteration. Therefore, the new solution X' E ~+m+l in the 

old canonical form is converted to X E Rn in the original 

LP problem. Now, a new feasible solution is updated at the 

beginning of every iteration to get a new canonical form. 



CHAPTER IV 

NUMERICAL RESULTS 

In this chapter, the computational results for 

Karmarkar's original algorithm and the modified method ( a 

line search for the potential function described in Chapter 

III ) are summarized. 

The program, which represents the Karmarkar algorithm 

and the modified version, is characterized as follows 

- The program is coded in Fortran 77 using the double 

precision option. 

- The main body consists of two parts. The first part is 

for solving the phase II problem to find the initial 

feasible solutions; and the second part is for solving the 

phase I problem to reach the optimal solution. 

- It is intended to solve the general LP problem. 

Therefore, the transformation scheme described in Chapter 

III ( a conversion from a general LP form into the 

Karmarkar's canonical form is used. 

- For practical purposes, µ = 1.0E-4 in the phase II and 

ex = l.OE-4 in the phase I are chosen for the stopping 

rules. 

- Arbitrary LP problems can be solved with no prior 

information about the optimal value of the objective 

41 
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function. 

- The maximum pivot strategy is used in getting the inverse 

matrix (BBT)-1 at each iteration. 

- The program has an option to follow the original Karmarkar 

algorithm or the modified algorithm. 

- In Karmarkar's original algorithm, the algorithm uses the 

step size a = 0.99 in the direction of the negative 

gradient. Therefore maximization problems should be changed 

to minimization problems by negating the objective function. 

All LP problems which were used as test problems are in 

the form (6) in Chapter III. Table III contains the details 

of the problems. 

TABLE III 

THE TEST LP PROBLEMS FOR KARMARKAR'S 
ALGORITHM 

problem rows columns slack total density 

datl 9 2 9 1 • ... 1 18.1 

dat2 6 10 6 16 27.1 

dat3 7 12 7 19 23.3 

dat4 27 32 19 51 7.4 

dat5 42 62 29 91 4.9 

dat6 36 33 36 69 5.3 

dat7 25 101 17 118 5.2 

datS 56 a~ 
v I 41 138 5.5 
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"Rows" means the number of general constraints, 

"columns" represents the number of variables before the 

transformation into Karmarkar's canonical form, and "total" 

is equal to "columns" plus "slack," where "slack" is the 

number of slack variables. Finally, "density" refers to the 

percentage of non-zero variables in the matrix A. 

Karmarkar's and the modified algorithm with the known 

optimal value C* are compared in Table IV. The number of 

iterations for the two phases is listed as phase II, 

phase I, and total iterations. Under each heading, the 

numbers on both sides of the same column indicate 

Karmarkar's and the modified algorithm respectively. Here 

"condition" means the condition number of the matrix BBT at 

the final iteration defined as :B: :B-:, where :B: is the 

matrix norm in Karmarkar's main algorithm. It is often 

observed that the number of iterations is excessive in ill­

conditioned problems; and "*" signifies that the optimal 

solutions cannot be reached within 60 iterations. 

Since the optimal value C* is generally unknown, the LP 

problems should be solved without the preinformation of C*. 

From the practical implementation viewpoint, the "cutting 

objective method" suggested by Lustig [10] is used instead 

of the "sliding objective method" which is primarily of 

theoretical interest. Table V shows the results where no 

knowledge of final optimal solutions is required. 

But one critical problem arises when the "modified line 

search" algorithm is applied to the "cutting objective 
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TABLE IV 

THE COMPARISON BETWEEN THE KARMAR.KAR ALGORITHM AND 
THE MODIFIED LINE SEARCH ALGORITHM 

WITH KNOWN C* 

problem phase II phase I total cond 
iter iter iter # 

datl 7 3 0 2 15 5 5.9E3 u 

dat2 1 1 5 3 6 4 3.5E3 

dat3 6 2 43 12 49 14 2.8E01 

dat4 12 4 39 10 51 14 1. 1E11 

dat5 10 3 ~L!. 0 4 10 64 13 2.8E7 

date 33 11 * * * * 5.4E21 

dat7 7 2 40 8 47 10 4.0E5 

dat8 25 4 * 20 * 24 7.5E22 
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TABLE V 

THE COMPARISON BETWEEN TEE KARMARKAR ALGORITHM AND 
THE MODIFIED LINE SEARCH ALGORITHM 

WITH UNKNOWN C* 

problem phase II phase I total .simplex 
iter iter iter 

datl 7 3 a 3 16 6 5 v 

dat2 1 1 6 3 7 4 8 

dat3 6 2 42 12 48 14 8 

dat4 12 4 32 9 44 13 6 

dat5 10 3 42 12 52 15 46 

dat6 33 11 * * * * 40 

dat7 7 2 34 8 41 10 24 

dat8 25 4 * 19 * 23 126 



method." After finding the initial feasible solution from 

phase II, the gradient vector of the "potential function" 
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f(xi) = (n+l) ( cixi/CDY - 1) at the i_th component should 

be calculated. But the value of CDY is zero under the 

"cutting objective method", and it is impossible to find the 

gradient vector. Therefore, the transformed objective 

function CDY/eDY is used instead of the "potential 

function." This substitution works well and is summarized 

in Table V. 

The iteration numbers of phase II in Table V are the 

same as those of Table IV because the aim of phase II is 

only to keep µ as small as possible. Also the number of 

iterations in phase I indicates that there are no major 

differences between the iterations in Table IV and Table V. 

In phase II, both algorithms have relatively quick 

convergence. This is in contrast to phase I where slower 

convergence is observed in ill-conditioned problems such as 

"dat6" and "dat8". 

Overall, the result shows that the "modified line 

search algorithm" has a much better convergence behavior 

than Karmarkar's original algorithm. Even in severely ill­

conditioned problems (except "dat6"), the modified version 

shows a promising result -- whereas Karmarkar's reveals a 

poor convergence behavior. 

Finally, the comparison between the "modified line 

search algorithm" and the "modified row partition method" 

is shown in Table VI. Although the "row partition method" 
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TABLE VI 

THE COMPARISON BETWEEN THE MODIFIED LINE SEARCH 
ALGORITHM AND THE MODIFIED ROW PARTITION 

METHOD WITH UNKNOWN C* 

line search row partition exact 

data loop optimal loop optimal solution 
solution solution 

datl 4 -14.2196 3 -14.2199 -14.22 

dat2 3 -0.9998 3 -1.0000 -1. 0 

dat3 12 0.00015 9 0.00000 0.0 

dat4 11 -464.7528 11 -464.7530 -464.7531 

dat5 14 -4317.996 13 -4317.997 -4318.0 

dat6 * ·.k * * 156296.59 

dat7 a -890.996 9 -890.999 -891.0 ..., 

dat8 19 242595.67 * * 242594.96 
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fails tc.:l converge to the Qptimal solution in "dat8", it is 

not because of the algorithm itself, but because of the 

highly ill-conditioned problem (Actually the optimal 

solution was not converged within CTX < 1.0E-4 in the 

"modified line search method": the lowest value of CTX was 

3.0E-4 at 20_th iteration. After that, the value of CTX 

diverges.) 

The number of iterations is almost same in both 

algorithms. The computation time in the "modified row 

partition method" must be faster than the computational time 

in the "modified line search algorithm" because some 

inactive constraints are not used at each iteration. Also, 

the optimal solution is found more accurately in the 

"modified row partition method." This may be regarded as 

another advantage of the row partition algorithm. 



CHAPTER V 

DUALITY AND ITS APPLICATION TO THE UNKNOWN 

OPTIMAL SOLUTION C* 

The dual linear programming problem is defined 

directly from the original (primal) linear programming 

problem because the dual variables are associated with the 

constraints of the primal LP problem. 

The original Karmarkar canonical form is 

Min C'TX' C' T E Rn +l X' E Rn +1 

s.t. A'X' = 0 A' is an m x n+l matrix (17) 

n+l 
:z Xi = 1 

i=l 

The dual problem for (17) is defined as 

Max z 

s.t. A'TW + e z <= C' (18) 

where WE Rm , z ER , e = (1,1, ... ,1) E Rn+l 

Since W is the set of unrestricted variables, 

Wi E W) = Wi ' - Wi " is set to be the difference between 

two non-negative variables Wi ' and Wi Also z should be 

changed to - z' to preserve the non-negativity of variables 

( z always has a non-positive value because the minimum 

4.9 
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optimal value of the primal objective function C'TX' is 0 . ) 

Therefore, (18) can be rewritten as 

Max z 

s.t. A'T(W' - W") - e z' <= C' 

W' = { Wi l 

W11 = { Wi II 

Wi ' >= 0 } E Rm 

Wi >= 0 } E Rm 

and 

, where (19) 

Now, (19) is the usual general LP problem (6) before 

transforming to Karmarkar's canonical form. But this method 

doubled the basic variables and added m slack variables from 

its dual form, thus, requiring much more computational 

effort. 

Here, Todd and Burrell's duality algorithm is 

introduced. Their method does not require the redundant 

variables, and can be worked easily with the unknown optimal 

value C'* of C'TX'. 

First, it is assumed that the optimal value of C'TX' 

is known i.e. C'* = 0. In Todd and Burrell's method, the 

sequential dual solutions are directly derived from (17) 

by just setting 

z = min { ( C' - A' T W ) j } , 

W = (A'D2A'T )-1A'D2C' 

j = 1,2, ... ,n 
(20) 

Todd and Burrell showed that the potential function 

could be decreased by a constant in each iteration in 

Karmarkar's main algorithm. And the above equations for z 

and W could be obtained as by-products in their proof. 



- l . :_; Xl - XZ + 5 . 7 5 ;{7 

Xl + X2 + 2 . 5 X3 - 4 ..... ...__ ... '7 
·-~ .£~,,,.; 

2.X.l + X2 +x4 - 7x7 
Xl + 2xs 3x1 

X2 + 2xs - 3x7 
Xl + XZ + X3 + X4 + XS + X6 + X7 

Then , the dual problem takes the following form 

'\"T1 + 2~l2 + Y3 .; ~ + z 
Yl + Y2 + Y4 + z .., ~ 

""'. ::iy1 + + z 
4y2 + z 

2y3 + z 
2)r4 + z 

-4. 5y1 - 7y2 -3y3 -3y4 + z 

The iterative solutions with a 

Table VII. 

TABLE VII 

THE ITERATIVE SOLUTIONS 
ALGORITHM 

iter ex 

1 .204867 
2 .169918 
3 .085566 
4 .028854 
5 .007977 
6 .002256 
7 .000636 
8 .000179 
9 .000050 

< = 
<= 
<= 
< --
~= 

< = 
' = 

- 99 -

- 1.5 
1 
0 
0 
0 
0 
5.75 

is shown in 

FOR THE DUALITY 

.., 
w 

-.886141 
-.412338 
-.173773 
-.079319 
-.064546 
-.015960 
-.004443 
-.001252 
-.000353 

51 

= 0 
= 0 
- 0 -
= 0 
= 1 
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After iteration 9, the optimal values of the primal 

and dual variables are 

X' = (.3999, .3199, .0000, .0000, .0400, .0800, .1600) 

y = (-.4999, -.5000, .0001, .0000) 

From the table, it is confirmed that both C'* of 

primal and z* of dual converge to the real optimal 

objective value 0. But this case is only for the known 

optimal value C'* . 

Now, the assumption that the optimal value C'* of 

the objective functon C'TX' is known -- is dropped. 

Karmarkar originally suggested the "sliding objective 

method" to solve the case of the unknown optimal value C'* 

and showed a polynomial-time convergence. But the "sliding 

objective method" is not very attractive, especially for an 

implementation on the computer. The initial lower (-2L) 

and upper (2L) bound for C'* in his method is too low 

and high, respectively; therefore, many iterations will be 

required to update the tentative lower bound to isolate C'*· 

Todd and Burrell' considered the equation 

n+l n+l 
C ' T X ' - C ' * = C ' T X ' - C ' * :2: Xi = z ( Ci - C' * ) Xi 

i=l i=l 

Since C'* is not known, they set the lower bound 

n+l 
z(k) < C'* , and updated C'TX' as Z ( Ci - Z ( k ) ) Xi at 

i=l 

the k_th iteration ( initially, z(O) could be found by 

solving the equations in (20). And z(O) is not too low as 

the initial lower bound -2L in the "sliding objective 
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method." ) 

Also, they set W(k) = (A'D2A'T )-1A'D2 (C' - e z(k)) , 

and z' = min { ( C' - A' T W ) j } for j = 1, 2, ... , m 

This updating method is plausible , since 

n+l 
Z (ci - z(k))xi converges to zero if z(k) converges to 

i=l 

real optimum C'* . 

There are two cases in determining W(k+l) and z(k+l). 

When z(k) >= z', the system for dual is not improved at the 

k_th iteration. Therefore, z(k+l) = z(k) is taken. Also, 

W(k+l) = W(k) -- since 

n+l n+l 
2: ( Ci - Z ( k ) ) Xi <= z ( Ci - z ' ) Xi - - and W ( k) has an 

i=l i=l 

improved solution. 

If z(k) < z' , then obviously an improved dual optimal 

value of z is obtained. In this case, z ( k+l) = 

n+l 

'? , • 

"' ' but, 

W(k+l) cannot be taken as W(k) because Z ( Ci - Z ' ) Xi i S 

i=l 

n+l 
a improved solution for C'TX' than Z (Ci - Z ( k) ) Xi . 

i=l 

Therefore, W(k) has not improved, and a new improved 

solution W(k+l) is obtained by solving the equation 

W ( k+ 1 ) = (A ' D2 A' T ) - 1 A' D2 ( C ' - e z ' ) . 

Todd and Burrell proved that the above algorithm should 

generate a sequential set of primal and dual solutions with 

both the primal objective function C'TX' and the dual 

objective function z, converging to the unknown optimum C'*· 



More iterations are taken as expected if the same 

problem with the unknown optimal objective value is run 

( actually, after 10 iterations both primal and dual 

objective value have been reduced with l.OE-3. But the 

system works very well and both objective values converge 

to C'* (=z*) as desired. 

After C'* is found, the canonical form of (17) should 

return to the general LP problem, thereby finding the 

original optimal solutions C* and X* in (6). Of course, 

Todd and Burrell described the algorithm which transforms 

the general LP problem to the canonical form. But their 

method depends on some upper bounds with the sum of input 

data. Also, their algorithm requires a redundant 

constraint, resulting in more computational effort. 
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Unfortunately, the modified algorithm, which is 

described in chapter III, cannot be applied to this duality 

algorithm because the C* in the general LP form must be 

known in advance. In finding C* in the general LP problem, 

another method -- which does not require the unnecessary 

calculations for the dual solutions -- comes from 

Lustig [10] (And this method is used in chapter IV.) First, 

he simply sets crxo as the optimal objective value C*, where 

xo is the initial feasible solution coming from phase II 

problem. In general, CTXk is assumed as the unknown C* at 

the k th iteration. After running Karmarkar's main 

algorithm with the updated CTXk as cn+l in the canonical 

form at the k+l th iteration, CTXk+l, which is closer to C*, 
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can be calculated. 

This method is easy to implement. Also, it has 

polynomial-time convergence if the initial feasible solution 

xo is near the optimal solution. It is not proved that the 

above method has polynomial-time convergence if the starting 

point is not close to the optimum (Lustig stated that it may 

be polynomial), but it works really well with some testing 

LP problems as already shown in chapter IV. 



CHAPTER VI 

SUMMARY, CONCLUSION, AND SUGGESTIONS FOR 

FUTURE WORK 

Summary and Conclusion 

In this study, Karmarkar's new polynomial-time 

algorithm is introduce~. His algorithm runs in polynomial-

time whereas the simplex method requires exponential-time 

for its iterative procedures on the worst-case problems. 

Karmarkar's main algorithm starts from the canonical 

form of 

Min ex 

s.t. AX = 0 

n+l 
~ Xi = 1 

i=l 

Although Todd and Burrell [13] devised an algorithm 

which transformed the general LP form into the above 

canonical form -- this method requires additional 

computational effort due to unnecessary constraints and 

variables. Since the exact transformation was not explained 

clearly in Karmarkar's original paper, a conversion method, 

which is based on Karmarkar's suggestion, is introduced in 

this thesis. This transformation algorithm is totally 
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different from Todd and Burrell's method [13], but clarifies 

Karmarkar's indirect suggestion for the above 

transformation. 

A line search, which extends the range of search to 

the facet of the simplex, has been tested as a modification 

of Karmarkar's main algorithm. The modified algorithm has 

been coded in Fortran 77 and tested for eight LP problems. 

The program accepts the general LP form and converts it 

into the Karmarkar's canonical form. An initial feasible 

solution is generated in phase II and used to get the 

optimal solution in phase I. The program can handle the 

unknown optimal value C* by using the "cutting objective 

method." 

The computational results show that the modified 

algorithms require fewer iterations and give faster 

convergence to the optimal solution than Karmarkar's 

original method. In degenerate problems such as "dat6", 

however, the inverse matrix of (BBT) is severely ill­

conditioned and the optimal solution cannot be found within 

low iteration counts. In this case, it is recommended to 

replace the maximum pivot strategy with other methods such 

as Cholesky factorization [5], QR factorization [13], or 

another least square method [10] for calculating (BBT )-1. 

Finally, Todd and Burrell's duality for Karmarkar's 

canonical form is discussed. Both theoretical and 

computational results show that the dual variables can be 

generated. It also shows that their method can be applied 
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to the case of unknown C*. 

Suggestions for Future Work 

Karrnarkar's new polynomial-time algorithm can be 

improved in many ways. The following suggested improvements 

for the Karrnarkar algorithm should be achieved in the near 

future. 

1. A good initial feasible solution for phase II in 

Karmarkar's main algorithm should be given for a fast 

convergence to the optimal solution. Until now, the 

starting point only depends on the phase II problem, and it 

is not known whether the starting feasible solution is a 

favorable one for the given system. If the initial point 

lies near the optimal solution, the optimum will be found 

with a few iterations and may not yield the large condition 

number for the highly ill-conditioned matrix (BBT). 

2. The best step size a is not known. Some recent 

research shows that the results depend upon the step size a. 

This implies that the step size of 0.25 in Karmarkar's 

original paper might be improved. Also, faster convergence 

occurs as the step size a increases to 1 for randomly 

chosen test programs. But the mathematical proof is not 

provided by anyone at the present time. 

3. The most critical weakness in Karmarkar's algorithm 

that it does not yield to postoptimal analysis. There 

should be more work in the area of postoptimal analysis. 

4. Although the dual variables can be generated with Todd 



and Burrell's duality algorithm, their method is only 

applied to the canonical form. In order to improve the 

duality theory, a direct relationship between primal and 

dual in the general LP form should be developed. 

5. To be widely applied, Karmarkar's algorithm should 

be modified to handle the degeneracy problems. Cholesky 

factorization, least squares method, and QR factorization 

have been tried to avoid the matrix (BBT ), being severely 

ill-conditioned. Applying the above methods is another 

area of further work. 

6. There may be possible extensions to integer 

programming, branch and bound problem, multi-objective 

functions, and even non-linear objective functions. 
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APPENDIX A 

THE PROGRAM LISTING OF KARMARKAR'S ALGORITHM 

AND THE MODIFIED ALGORITHM 
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C*********************************************************** 
c * 
C KARMARKAR'S ALGORITHM FOR LP PROBLEMS * 
c * 
C~********************************************************** 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

PURP(JSE 

THIS PROCEDURE FINDS THE OPTIMAL SOLUTIONS FOR LP 
PROBLEMS OF THE FORM : 

MIN C(l)X(l) + ... + C(N)X(N) 

SUBJECT TO . A(I,l)X(l) + ... + A(I,N)X(N)<=,=,>=B(I) 

I = 1, ... , M X(I) >= 0 

METHOD 

THIS PROGRAM IS BASED ON KARMARKl\.R'S MAIN 
ALGORITHM AND THE MODIFIED ALGORITHM FOR THE UNKNOWN 
OBJECTIVE VALUE C*. 

THE METHOD IS AN ITERATIVE TECHNIQUE WHICH 
CONSISTS OF TWO PHASES. IN THE FIRST PHASE, A POSITIVE 
INITIAL FEASIBLE SOLUTION WILL BE OBTAINED. 

THE GLOBAL OPTIMAL SOLUTION WILL BE FOUND IN THE 
NEXT PHASE. 

1. 

2. 

AFTER ENTERING THE VALUES OF C, A, AND B, THEN 
THE SLACK VARIABLES ARE GENERATED AUTOMATICALLY. 

THE PROBLEM IS CHANGED INTO KARMARKAR'S 
C CANONICAL FORM. 
c 
C 3. THE INITIAL FEASIBLE SOLUTION IS OBTAINED BY 
C SOLVING THE PHASE II PROBLEM. 
c 
C 3. WITH THE INTIAL FEASIBLE SOLUTION, THE OPTIMAL 
C SOLUTION IS SEARCHED IN EACH ITERATION WITH THE 
C PHASE I PROBLEM. 
c 
C 4. AFTER FINDING THE OPTIMAL SOLUTION IN 
C KARMARKAR'S CANONICAL FORM , THE ORIGINAL SOLUTION 
C FOR X IS FOUND. 
c 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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USAGE 

THE PROGRAM CONSISTS OF A MAIN PROGRAM AND TWO 
SUBROUTINES, KARMA..~ AND INVERSE. THE MAIN PROGRAM 
ESTABLISHES THE INTERACTIVE PART, THE GENERATED SLACK 
VARIABLES, AND THE CONVERSION TO THE PHASE II PROBLEM. 

SUBROUTINE KARMAR CONSISTS OF KARMARKAR'S MAIN 
ALGORITHM AND THE MODIFIED ALGORITHM. SUBROUTINE 
INVERSE rs USED TO FIND THE INVERSE OF A GIVEN MATRIX. 

THE MAXIMUM DIMENSION FOR A IS 200 BY 200. IF 
THE INPUT IS REQUIRED MORE THAN THIS MAXIMUM DIMENSION, 
THE DIMENSION STATEMENT IN THE MAIN PROGRAM SHOULD BE 
MODIFIED PROPERLY. 

INPUT DATA 

FIRST, THE VALUES OF THE NUMBER OF VARIABLES 
AND CONSTRAINTS ARE ENTERED. NEXT INPUT DATA CONSISTS 
OF C, OBJ_C, A, COND, AND B. EACH ROW HAS THE MAXIMUM 
10 ELEMENTS OF C AND A. AFTER ENTERING THE LAST INPUT 
OF C, THE INPUT FOR OBJ_C IS ENTERED. AFTER FINISHING 
ENTERING THE I_TH INPUT OF A, THE CONDITION FOR THE 
I_TH CONSTRAINT ('<=','>=',OR'==') IS ENTERED. AND 
THE INPUT FOR B(I) IS ENTERED. ALL INPUT DATA USE FREE 
FORMAT. 

TABLEAU 

N M 
C(l) 

A(l,1) 

ACM,1) 

OUTPUT 

C(2) . 
C(N) 

A(l,2) . 
A(l,N) 

A(M,2) . 
A(M,N) 

C(lO) 
OBJ_C 

. A(l,10) 
COND B(l) 

. A(M,10) 
COND B(M) 

THE INITIAL FEASIBLE SOLUTION IS PRINTED. THE 
IMPROVED SOLUTION PER EACH ITERATION IS SHOWN UNTIL 
FINDING THE OPTI11AL SOLUTION. THE FINAL OPTIMAL 
SOLUTION IS PRINTED WITH THE NUMBER OF ITERATIONS 
IN KARMARKAR'S CANONICAL FORM. FINALLY, THE OPTIMAL 
SOLUTION FOR THE ORIGINAL LP PROBLEM IS PRINTED BY 
CONVERTING FROM KARMARKAR'S CANONICAL FORM INTO THE 
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C GIVEN GENERAL LP PROBLEM. 
c 
c 
C DESCRIPTION OF MAJOR PAR.Al~ETERS 
c -------------------------------
c 
C N THE NUMBER OF VARIABLES X(I) 
C Nl THE NUMBER OF THE TOTAL VARIABLES ( BASIC + 
C SLACK ) 
C M THE NUMBER OF CONSTRAINTS 
C XXN THE REAL VALUE OF N1+1 
C R RADIUS OF THE LARGEST INSCRIBED 
C SPHERE OF THE SIMPLEX 
C ALPHA STEP SIZE 
C LINE BIT FOR THE ALGORITHM. IF LINE = 0 THEN 
C KARMARKAR'S ORIGINAL ALGORITHM WORKS, ELSE THE 
C MODIFIED ALGORITHM WORKS. 
C IFLAG BIT FOR PHASE I AND PHASE II PROBLEM. IF 
C IFLAG = 1, THEN SUBROUTINE KARMAR WORKS FOR 
C THE PHASE II, ELSE FOR THE PHASE I. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DESCRIPTION OF MAJOR VARIABLES 

STARTX(I) 
RES (I), RES1 (I) 
A(J,I) 
ORIGIN CI) 

CC(I) 
OBJ_C 
COND(I) 

NEWX(I) 
CCl(I) 
A1(J,I) 
B(J,I) 
BBCI, J) 

DCCI) 
CPl (I, ,J) 
CP(I, J) 
GRAD(I) 
y (I) 

THE INITIAL FEASIBLE SOLUTION 
RESOURCE VECTOR b 
INPUT MATRIX A 
THE SOLUTION OF THE ORIGINAL LP 
PROBLEM 
COST VECTOR C 
KNOWN OPTIMAL OBJECTIVE FUNCTION 
CONDITION FOR THE CONSTRAINTS 
'<=' , '>=' , OR '==' 
NEW IMPROVED SOLUTION PER ITERATION 
MULTIPLICATION OF CC(I) AND STARTX(I) 
MULTIPLICATION OF A(J,I) AND STARTX(I) 
MULTIPLICATION OF Al(J,I) AND NEWX(I) 
tvl.ti.TRIX OF (ADDA) IN KARMARKAR' S MAIN 
ALGORITHM 
MULTIPLICATION OF CCCI) AND NEWX(I) 
1"1ATRIX OF B(BB) 
MATRIX OF I -B(BB)B 
GRADIENT VECTOR OF [ I - B(BB)B JDC 
NEW IMPROVED POINT IN THE TRANSFORMED 
SPACE 

C********************************************************** 

double precision startx(200),res1(200),res(200), 
* a(200,200),origin(200),cc(200),obj_c 

character cond(200)*2 



print *, '==> Enter the number of variables and 
* constraints' 

read t:, n,m 
nl = n 

j=l 
print *, 'HIN : ' 

do while ( j .le. n ) 

end do 

i=l 

if ( j+9 .le. n ) then 
read*, ( cc(i), i=j,j+9 

else 
read *, 

end if 
j=j+lO 

cc(i), i=j,n),obj_c 

print *, 'SUBJECT TO : ' 
do while ( i .le. m ) 

k=l 
do while ( k .le. n ) 

if ( k+9 .le. n ) then 
read*, ( a(i,j), j=k,k+9 

else 
read *, a ( i, j) , j =k, n) , cond ( i) , res ( i) 

endif 
k=k+lO 

end do 
if ( cond ( i) . eq. '> =' ) then 

nl=nl+l 
a(i,nl)= -1. 

else if ( cond(i) .eq. '<=' ) then 
nl=nl+l 
a(i,nl) = 1. 

end if 
i=i+l 
if ( i .le. m ) then 

print* '==>Enter the next row.' 
end if 

end do 
print*, 'Want line search? ---(l(yes)/O(no))' 
read *, line 

nO=n 
n=nl 
do 20 i=l,n+l 

startx(i) = 1. 
20 continue 

startx(n+l) = 1. 
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r. <"" ,..,'i' _, ..•.••. .:Jl!. J. UP THE PHASE II PROBLEM. 

do 21 j=l,m 
res 1 ( j) = 0. 
do 22 i=l,n 

resl(j) = resl(j) + a(j,i) 
22 continue 

resl(j) = resl(j) 
resl(j) = resl(j) - res(j) 
a(j,n+l) = -resl(j) 

21 continue 

C ....... FIND THE INITIAL FEASIBLE SOLUTION 

call karmar(n+l,nO,m,a,startx,res,cc,O. ,l,line) 

C ....... FIND THE INITIAL OPTIMAL SOLUTION 

obj_c = 0. 
do 30 i=l,n 

obj_c=obj_c + cc(i)*startx(i) 
30 continue 

C ....... MAIN ALGORITHM 

call karmar(n,nl,m,a,startx,res,cc,obj_c,O,line) 

stop 

end 
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C********************************************************** 
c * 
c 

c 

THIS SUBROUTINE SOLVES KARivLA.RKAR' S MAIN 
i\LGtJRITHM. * 

* 
C~********************************************************* 

subroutine 
* karmar(n,nl,m,a,startx,res,cc,obj_c,iflag,line) 

double precision startx(200),res(200),cc(200),obj_c, 
* xxn,grad1,newx(200),bb(200,200),dc(200), 
* b(200,200),cp(200,200) 

double precision grad(200),y(200),alpha,r,edy, 
* origin(200) cc1(200),a1(200,200),a(200,200), 
* cp1(200,200) f,accu,fib(200),center(200), 
* bound(200),bl(200),all(200),w(200),f1,f2,v(200) 

double precision length(200),norm,norml,amax, 
* s(200,200),ss(200,200),sl 



x:~n = n + 1 .. 

gradl = xxn * ( xxn - 1. ) 
r = 1. I sqrt(gradl) 

C ....... TRANSFORMATION INTO KARMARKAR'S CANONICAL FORM 

do 100 i=l,n+l 
newx(i) = l./xxn 
ccl(i) = cc(i)*startx(i) 

100 continue 

ccl(n+l) = -obj_c 

do 200 i=l,m 
do 210 j=l,n 

al(i,j) = a(i,j)*startx(j) 
210 continue 

al(i,n+l) = -res(i) · 
200 continue 

C ....... INITIALIZATION OF BB 

do 250 i=l,m 
bb(i,m+l) = 0. 
bb(m+l,i) = 0. 

250 continue 

bb(m+l,m+l) = 1. I xxn 

C ....... SET UP THE MAXIMUM FIBONACCI NUMBER 

if ( line .eq. 1 ) then 
accu = .001 
fib(l) = 1.0 
fib(2) = 2.0 

jj = 3 
fibl = 0. 
do while (fibl .lt. l./accu) 

end do 

fib(jj) = fib(jj-1) + fib(jj-2) 
fibl = fib(jj) 
jj = jj+l 

jj = jj - 1 
kk = jj - 2 
ik = jj - 2 
jjj = jj 
end if 
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C ....... MAIN LOOP 

do 9000 loop=l,500 

C........ INITIALIZATION OF B(M+l) 

do 300 i=l,n+l 
b(m+l,i) = 1. 

300 continue 

C........ CALCULATION OF DC 

310 

320 

if ( iflag .eq. 0 ) then 
do 310 i=l,n+l 

else 

end if 

dc(i) = ccl(i)*newx(i) 
continue 

do 320 i=l,n+l 
de ( i) = 0. 

continue 
dc(n) = newx(n) 

C........ CALCULATION OF BB 

do 400 j=l,m 
do 410 i=l,n+l 

b(j,i) = al(j,i)*newx(i) 
410 continue 
400 continue 

do 500 j=l,m 
do 510 i=l,m 

bb(j,i) = 0. 
do 520 k=l,n+l 

if ( b ( j, k) . ne. 0. . and. b ( i, k) 
* .ne. 0.) then 

bb(j,i) = bb(j,i)+b(j,k)*b(i,k) 
endif 

520 continue 
510 continue 
500 continue 

C........ FIND CONDITION NUMBER 

bb(m+l,m+l) = xxn 
norm= 0. 
do 550 i=l,m+l 

do 560 j=l,m+l 
norm= norm+ bb(i,j)*bb(i,j) 

560 continue 
550 continu.-e 

norm = sqrt(norm) 
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C........ FIND INVERSE MATRIX OF BB BY CALLING INVERSE 

call inverse(bb,rn) 

C........ CALCULATION OF THE CONDITION NUMBER 

bb(m+l,rn+l) = 1./xxn 
norrnl = 0. 
do 570 i=l,rn+l 

do 580 j=l,m+l 
norml = norml + bb(i,j)*bb(i,j) 

580 continue 
570 continue 

norml = sqrt(norml) 
norm = norm * norml 

C........ CALCULATION OF PROJECTED GRADIENT 

do 600 j=l,n+l 
do 610 i=l,m+l 

cpl(j,i) = 0. 
do 620 k=l,m+l 

if ( b ( k, j) . ne. 0. ) then 
cpl(j,i) = cpl(j,i)+b(k,j)*bb(k,i) 

end if 
620 continue 
610 continue 
600 continue 

do 700 j=l,n+l 
do 710 i=l,n+l 

cp ( j, i) = 0. 
do 720 k=l,m+l 

if ( b ( k, i) . ne. 0. ) then 
cp(j,i) = cp(j,i)+cpl(j,k)*b(k,i) 

endif 
720 continue 
710 continue 
700 continue 

do 800 i=l,n+l 
do 810 j=l,n+l 

cp(i,j) = -cp(i,j) 
810 continue 
800 continue 

do 820 i=l, n+l 
cp(i,i) = cp(i,i) + 1. 

820 continue 

C........ CALCULATION OF GRADIENT VECTOR 
do 920 i=l,n+l 
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grad(i) = 0. 
do 930 j=l,n+l 

grad(i) = grad(i) + cp(i,j)*dc(j) 
930 continue 
920 continue 

C........ CALCULATION OF THE NORM OF GRADIENT VECTOR 

gradl = 0. 
do 1000 i=l,n+l 

gradl = gradl + grad(i)*grad(i) 
1000 continue 

gradl = sqrt(gradl) 

C........ CALCULATION OF Cp = Cp I :cp: 

do 1010 i=l,n+l 
grad(i) = grad(i) I gradl 

1010 continue 

C........ LINE SEARCH FOR THE POTENTIAL FUNCTION 

if ( line .eq. 1 ) then 

C........ SEARCH FOR THE LARGEST ELEMENT OF Cp 

gradl = grad(l) 
do 1020 i=l,n+l 

if (gradl .lt. grad(i)) then 
gradl = grad(i) 

end if 
1020 continue 

C. . . . . . . . MAXIMUM SEARCHING BOUNDS 

do 2100 i=l, n+l 
center(i) = 1./xxn 
bound(i) = (1.-grad(i)/gradl)/xxn 
length(i) = (bound(i) - center(i)) 

2100 continue 

C........ SEARCH FOR THE MINIMUM VALUE OF THE GIVEN 
C........ FUNCTION 

JJ = jjj 
kk = jjj - 2 
ik = jjj - 2 
do 2200 i=l,n+l 

bl(i) = length(i) 
all(i) = fib(ik) * blCi) I fib(jj) 
w(i) = center(i) + all(i) 
v(i) = bound(i) - all(i) 

2200 continue 
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call f(w,fl,dc,newx,n+l) 
call f(v,f2,dc,newx,n+l) 
ik = ik - 1 
jj = jj - 1 

do 2300 iter=2,kk+l 
if ( f2 .le. fl ) then 

do 2310 i=l,n+l 
center(i) = center(i) + all(i) 
bl(i) = bound(i) - center(i) 
w(i) = v(i) 
all(i) = fib(ik) * bl(i) I fib(jj) 
v(i) = bound(i) - all(i) 

2310 continue 

else 

call f(w,fl,dc,newx,n+l) 
call f(v,f2,dc,newx,n+l) 

do 2320 i=l,n+l 
bound(i) = bound(i) - all(i) 
bl(i) = bound(i) - center(i) 
v(i) = w(i) 
all(i) = fib(ik) * bl(i) I fib(jj) 
w(i) = center(i) + all(i) 

2320 continue 
call f(w,fl,dc,newx,n+l) 
call f(v,f2,dc,newx,n+l) 

end if 
ik = ik - 1 
jj = jj - 1 
if ( ik .lt. 1 ) then 

ik = 1 
end if 

2300 continue 

C........ THE FINAL MINIMUM VALUE OF THE GIVEN FUNCTION 

do 2400 i=l,n+l 
y(i) = w(i) 

2400 continue 

end if 

c ....... . END OF LINE SEARCH 

C........ CALCULATION OF THE IMPROVED POINT 

if ( line .eq. 0 ) then 
do 1100 i=l,n+l 

y(i) = 1/xxn - alpha * r * grad(i) 
1100 continue 

endif 
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C........ FIND THE NEW SOLUTION BY USING INVERSE 
C........ TRANSFORMATION 

edy = 0. 
do 1200 i=l,n+l 

edy = edy + newx(i) * y(i) 
1200 continue 

do 1300 i=l,n+l 
newx(i) = newx(i) * y(i) I edy 

1300 continue 

C........ CHECK STOPPING RULE 

if ( iflag .eq. 0 ) then 
ex = 0. 
do 1400 i=l,n+l 

ex = ex + ccl(i) * newx(i) 
origin(i) = startx(i) * newx(i)/newx(n+l) 

1400 continue 
print *, loop, ex, 'condition # = ',norm 

C........ FIND THE NEXT OPTIMAL OBJECTIVE VALUE IF C* IS 
C........ UNKNOWN 

C........ PHASE I PROBLEM 

1430 

1410 

* 

ccl(n+l) = 0. 
do 1430 i=l,n 

ccl(n+l)=ccl(n+l)-cc(i)*origin(i) 
continue 
print*, ' The value of CX = ',-ccl(n+l) 
write(3,1410) loop,cx,-ccl(n+l),norm 
format(' loop= ',i3,' ex= ',£13.6,' 

ex= ',fl3.5,' cond # = ',e20.10) 
write(3,1420) 
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1420 format(' ------------------------------------

* '-------------------------') 

C........ STOPPING RULE FOR THE PHASE I PROBLEM 

if (abs(cx) .lt. 1.0E-4) then 
write(3,1450) 

1450 format(//' ***** The optimal solution ***') 
obj_c = 0. 
do 1700 i=l,n 

obj_c=obj_c + cc(i)*origin(i) 
1700 continue 

write(3,1800) obj_c 
1800 format(//' The final optimum = ',fl3.6) 

do 1810 i=l,n 
origin(i) = startx(i) * newx(i)/newx(n+l) 
write(3,1820) i, origin(i) 



1820 
1810 

format(/' x(' ,i3,') = ',f15.5) 
continue 
goto 3000 

end if 
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e........ PHASE II PROBLEM 

else 
origin(n) = startx(n) * newx(n)/newx(n+l) 
if (origin(n) .lt. 1.0E-4) then 
goto 4000 

end if 
print*, ' loop= ',loop,origin(n), 'cond # = ',norm 
write(3,9001) loop,origin(n),norm 

9001 format(/' loop= ',i3,' origin= ',fl0.7, 
* cond # = ',e20.10) 

end if 

9000 continue 

C........ END THE MAIN LOOP ....... . 

C........ THE INITIAL FEASIBLE SOLUTION 

4000 print*· ' loop= ',loop,origin(n), 'cond # = ',norm 
write(3,9001) loop,origin(n),norm 
do 1500 i=l,n-1 

startx(i) = startx(i) * newx(i)/newx(n+l) 
feasi = feasi + cc(i)*startx(i) 

1500 continue 
print *, 'feasible value ex= ',feasi 
write(3,1550) feasi 

1550 format(/' Initial value of ex= ',f15.5) 
write(3,1750) 

1750 format(//) 

3000 return 

end 

C********************************************************** 
c * 
C SUBROUTINE INVERSE : * 
c 
c 
c 
c 

THIS SUBROUTINE CALCULATES THE INVERSE OF 
A GIVEN MATRIX. 

* 
* * * C********************************************************** 

subroutine inverse(bb,m) 

double precision bb(200,200),t,tt,pivot(200) 
integer ipvot(200),index(200,2) 



do 50 j=l,m 
ipvot(j) - 0 

50 continue 
do 55 i=l,m 

t = 0. 
do 56 j=l,m 

if ( ipvot(j) .ne. 1) then 
do 57 k=l,m 

if ( ipvot(k) .eq. 0 ) then 
if ( t .lt. abs(bb(j,k)) ) then 

irow = j 
icol = k 
t = abs(bb(j,k)) 

endif 
else if ( ipvot(k) .gt. 1 ) then 

print*, 'singular matrix' 
return 

end if 
57 continue 

end if 
56 continue 

ipvot(icol) = ipvot(icol) + 1 

if ( irow .ne. icol ) then 
do 60 1=1,m 

tt = bb(irow,l) 
bb(irow,l) = bb(icol,l) 
bb(icol,l) = tt 

60 continue 
end if 

index(i,1) = irow 
index(i,2) = icol 

if ( bb(icol,icol) .eq. 0.) then 
print*, 'singular matrix' 
return 

end if 

pivot(i) = 1. I bb(icol,icol) 
bb(icol,icol) = 1. 
do 65 1=1,m 

bb(icol,l) = bb(icol,l) * pivot(i) 
65 continue 

do 70 11=1,m 
if ( 11 .ne. icol ) then 

tt = bb(ll,icol) 
bb(ll,icol) = 0. 
do 75 l=l,m 

bb(ll,l) = bb(ll,l) - bb(icol,l)*tt 
75 ccn~inue 

end if 
70 continue 
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55 continue 

85 

do 80 l=m,1,-1 
if ( index ( l, 1 ) . ne. index ( l , 2) ) then 

jrow = index(l,l) 
jcol = index(l,2) 
do 85 k=l,m 

tt = bb(k,jrow) 
bb(k,jrow) = bb(k,jcol) 
bb(k,jcol) = tt 

continue 
end if 

80 continue 

return 

end 
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C********************************************************** 
c 

c 
c 

THIS SUBROUTINE IS TO CALCULATE THE 
MINIMUM OF THE TRANSFORMED OBJECTIVE FUNCTION 

* 
* 
* * C********************************************************** 

subroutine f(xx,ff ,dc,newx,nn) 

double precision xx(200),dc(200),newx(200),ff 

ff = 0. 

do 5000 i=l,nn 
ff = ff + dc(i)*xx(i) 

5000 continue 

return 

end 



APPENDIX B 

THE OUTPUTS FOR THE MODIFIED ALGORITHM 
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loop 

1 
2 
3 
4 

DAT 1 

Phase II 

loop )A cond # 
------------------------------------

1 
2 
3 

0.9931786 
0.0258428 
0.0000244 

3.1E06 
3.2E05 
l.5E04 

Initial Objective Value = -4.43341 

ex 

0.431350 
0.008450 
0.000358 
0.000015 

Phase I 

ex 

-14.03786 
-14.21196 
-14.21934 
-14.21965 

cond # 

7.0E02 
5.9E03 
5.9E03 
6.0E03 
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loop 

1 
2 
3 

DAT 2 

Phase II 

loop .)-' cond # 
---------------------------------------

1 
2 

0.0005740 
0.0000003 

5.7E03 
4.8E03 

Initial Objective Value = 1.00000 

ex 

0.140280 
0.033875 
0.000091 

Phase I 

ex 

-0.60111 
-0.99878 
-0.99984 

cond # 

4.4E03 
3.7E03 
3.5E03 
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DAT 3 

Phase II 

~~~:-----------~-----------~~=~-~--
1 
2 

0.0016027 
0.0000001 

1.1E05 
8.6E03 

The Initial Feasible Solution = 145646.27381 

Phase I 

-------------------------------------------------
loop ex ex cond # 
-------------------------------------------------

1 2009.378784 100814.02887 l.7E02 ., 1925.007202 49723.12023 1. OE02 ... 
3 1309.447998 9015.80799 6.lEOl 
4 234.125839 1588.45596 3.2E01 
5 46.895611 94.81730 2.8E01 
6 2.481863 15.74895 2.8E01 
7 0.425820 2.18240 2.8E01 
8 0.053919 0.46454 2.8E01 
9 0.012593 0.06331 2.8E01 

10 0.001685 0.00962 2.8E01 
11 0.000274 0.00088 2.8E01 
12 0.000022 0.00017 2.8E01 
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loop 

1 
') .... 
3 
4 
i:: 
~; 

6 
7 
8 
9 

10 
11 

DAT 4 

Ph.:i.se I I 

~~~~ ---- ----__ /!_ -----· ------===~ -~ -
1 
2 
3 
4 

0.9933052 
0.8461444 
0.0026256 
0.0000016 

5.9E06 
3.2E06 
3.1E06 
5.8E06 

Initial Objective Value = -64.53925 

Phase I 

ex ex ccnd ti: 

1.919885 -161.88980 1.3E04 
3.319170 -321.03095 1.5E04 
2.633654 -·125. 28271 4.1E04 
0.773621 -452.62355 4.6E05 
0.161926 -458.19565 1.1E07 
0.137451 -463.24368 9.8E07 
0.023161 -464.08761 2.6E08 
0.017945 -464.73441 1.1E09 
0.000339 -464.74657 4.2E13 
0.000124 -464. 7510 11 7.2E13 
0.000050 -464.75282 2.3E14 
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loop 

DAT 5 

Phase II 

~==~---------~-----------==~~-=-1 
2 

0.0110000 
0.0000069 

2.2E06 
2.5E06 

Initial Objective Value = -289.92699 

Phase I 

ex ex cond :It 
-------------------------------------------------

1 1.483638 -467.99658 7.8E03 
2 1.885336 -696.83533 7.6E03 
3 1.195118 -846.34235 9.4E03 
4 0.240044 -876.00422 l.9E04 
5 0.117917 -890.18021 3.0E04 
6 0.004640 -890.72835 2.7E04 
7 0.001868 -890.94376 2.7E04 
8 0.000399 -890.98866 2.9E04 
9 0.000073 -890.99664 3.3E04 
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loop 

DAT 7 

Phase II 

=~~~----------~------------=~~~-~-1 
2 
3 

0.8894799 
0.0037376 
0.0000023 

8.7E06 
l.2E07 
3.5E07 

Initial Objective Value= -983.67871 

Phase I 

ex ex cond # 
----------------------------------------------------

1 15.047611 -2515. 30.399 4.1E04 
2 6.524582 -3189.02191 4.3E04 
3 3.930912 -3608.10769 4.7E04 
4 3.265923 -3976.85917 5.4E04 
5 1.196356 -4116.28354 6.3E04 
6 0.978393 -4239.69436 4.9E04 
7 0.342909 -4284.22237 2.6E04 
8 0.148122 -4303.54889 2.3E04 
9 0.095927 -4315.97001 2.7E04 

10 0.009758 -4317.22490 2.9E04 
11 0.005256 -4317.89427 2.9E04 
12 0.000628 -4317.97359 2.9E04 
13 0.000152 -4317.99230 3.0E04 
14 0.000033 -4317.99641 3.0E04 
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loop 

DAT 8 

Phase II 

~~~~-----------..t:'------------=~~~-~-
1 
2 
3 
4 

0.9570915 
0.6648277 
0.0008999 
0.0000006 

3.7E08 
2.8E08 
5.8E08 
6.8E14 

Initial Objective Value = 558080.74102 

Phase I 

ex ex cond # 
---------------------------------------------------

1 1066.617920 412254.88963 2.7E19 
2 469.131012 348595.20346 2.8E19 
3 438.476196 289870.38084 2.8E19 
4 259.832062 255340.88190 3.4E19 
5 89.343163 243498.10460 4.5E19 
6 56.711308 236043.50115 5.7E19 
7 50.566032 229459.00759 7.1E19 
8 13.313293 227711.66164 l.OE20 
9 6.353201 226873.12672 1.3E20 

10 3.088514 226461.51388 1.6E20 
11 4.397704 225862.31110 2.0E20 
12 0.683417 225768.27016 3.2E20 
13 0.904609 225643.01792 3.3E20 
14 0.507882 225572.54604 4.8E20 
15 0.298861 225531.18967 6.3E20 
16 0.165659 225508.12011 l.1E21 
17 0.069543 225498.41380 1.6E21 
18 0.021103 225495.60711 3.5E21 
19 0.000568 225495.61190 8.3E21 
20 0.000298 225495.61426 8.3E21 
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