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PREFACE 

'Ihe main objective of this study is to compare the computational 

perforinance of three quadratic programming algorithms. A quadratic 

programming problem is one in which the objective function to be 

minimized is quadratic and the constraint functions are linear. The 

three algorithms are Wolfe's reduced gradient method (implemented in 

the MINOS package), Lemke's complementary pivot method, and Fletcher's 

active set method. Fletcher's method was shown to be superior to the 

other two methods. In this paper, a random-problems generator is used. 

In addition, a translator program has been written which tranforms a 

given input data into MPS and SPECS files which are needed for the 

MINOS package. In a recent study, it was shown that Lemke's algorithm 

terminated with an infeasible solution in a convex quadratic program­

ming problem. 'Ibis claim was investigated to know the reason for such 

an abnormal behavior. 'Ibis investigation is a secondary objective of 

the study. 
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CHAPI'ER I 

INTRODUCTION 

A quadratic prograrrming problem (QPP) is a one in which the 

objective function to be minimized contains quadratic and linear terms 

and the constraints are linear. Perhaps the most general way to pose 

this problem is: 

minimize f (x) =(1/2)xT A x - bT x 
x 

subject to CT x > d 
u>x>l 

(1.a) 

(1.b) 
(1.c) 

Where x, b, u, and 1 are all n x 1, A is n x n, d is m-2n x 1, and CT 

is m-2n x n. Sometimes, how~ver, in this paper we will pose the 

problem in the following form: 

minimize 
x 

f (x) =(1/2)xT A x - bT x 

subject to cT x 2. d 
x2_0 

(2.a) 

(2.b) 

Going from form (1) to form (2) can be readily done; it is only a 

matter of convenience that form (2) is used, as will become obvious 

later. 

In this. study, we compare the computational performance of three 

well-known algorithms. Many comparisons were done earlier between 

different algorithms that solve the quadratic programming problem. 

1 
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Braitsch (20) ma.de a comparison between four different algorithms, 

namely, Dantzig's algorithm (33), Beale's algorithm (8), Wolfe's 

simplex method algorithm(116), and a modification of Wolfe's algorithm 

due to Braitsch. Moore and Whinston (70) compared between two cate­

gories of simplicial methods. The first category was based on the work 

·of Dantzig, Van de panne and Whinston (110). The second category con­

sisted of Wolfe's method. Van de panne and Whinston (111) compared 

Beale's and Dantzig's algorithms. Ravindran and Lee (87) compared 

Wolfe's method, Lemke's complementary pivot method ( 62), Zangwill' s 

convex simplex method (121), the quadratic differential algorithm of 

Wilde and Beightler (114), and SUMI' (37). The three algorithms that 

are compared here are chosen for different reasons. In the study done 

by Ravindran and Lee, it was shown that Lemke's method out-performed 

the other four algorithms in terms of number of iterations and execu­

tion time. In addition, Lemke's algorithm is designed specifically for 

quadratic prograrrming. Fletcher's algorithm(40) is an efficient one 

and, as pointed by Fletcher.(43), is preferable to other quadratic 

prograaming methods. The MINOS package is widely used and solves 

general nonlinear programning problems. However, Murtagh and Saunders 

(73) claim that MINOS should be competitive with other algorithms 

designed specifically for quadratic programming. 

The three algorithms, although popular and widely used, have never 

been compared before. This paper attempts to contribute to the area of 

computational experience in quadratic programning since re+atively 

little is known in this area compared to the theoretical activity. 

There is a secondary objective in this paper which is to investi­

gate a claim raised by Chiang(26) in which a case was given where 

Lemke's algorithm gave an infeasible solution. 



CHAPI'ER II 

BACKGROUND AND LITERATURE REVIEW 

Quadratic Programming Applications 

The quadratic prograrmrl.ng problem was studied a long time . ago 

since it represented the simplest case in going from the linear pro­

gramming field to the nonlinear programming field. The quadratic 

programming problem received a great deal of attention because of its 

wide field of applications. Quadratic programming models have been 

used in areas such as structural optimization (118, 58), industries 

(21, 69), weapon selection and target analysis in the military (21), 

governmental, agriculture, and economic planning (54, 64, 98, 96), 

capital budgeting ( 61), portfolio selection ( 66), optimal design and 

utilization of electrical and comnunication networks (35), transition 

probabilities (100), aircraft design (31), population control (76), and 

management and decisio? sciences ( 68) • Moreover, quadratic programming 

can be used to solve constrained regression problems (21), 0-1 integer 

programs (85), and two person nonzero sum games (65). As pointed out by 

Betts (14), some algorithms that are designed to optimize general 

nonlinear programming problem may pose a series of quadratic prograrrming 

problems to approximate tbe behavior of the actual ftmctions. In fact, 

the application of quadratic programming to approximate problems with 

nonlinear objective ftmctions and linear constraints could give 

3 
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satisfactory results. Using quadratic functions to approximate a 

nonlinear function, especially near the minimum point where the behavior 

of the two functions is similar, is a well-known technique in solving 

unconstrained optimization problems. It is important to point out that 

the recursive quadratic prograrrming methods are very promising 

approaches to solving the general nonlinear prograrrming problems. These 

techniques have been studied by many researchers including Wilson (115), 

Biggs (15, 16), Fletcher (41, 42), Han (52, 53), Tapia (99), Powell (78, 

79, 81, 82), Murray and Wright -fn), Schittkowski (93, 94), 

Bartholomew-Biggs (6), Tone (103), Fukushima (45), and Powell and Yuan 

(83). For a brief review of these methods, the interested reader is 

refered to Bartholomew-Biggs ( 5). The general scheme of these methods 

could be sunmarized as follows. Given an estimate of the solution, a 

search direction could be obtained by solving a quadratic programming 

subproblem which is an approximation to the original problem. A new 

estimate is then obtained by moving along. the calculated direction. 

The step-size of this movement is calculated by some technique. This 

process of moving from one estimate to another is repeated until the 

optimal point of the original problem is reached. In addition, 

optimization problems where quadratic terms appear in the constraints 

can be reformulated into a quadratic progranming problem as Townsley 

(104) and Chen (25) have shown. Many problems, such as transportation, 

can be optimized with rultiple objective prograrrming which can be 

formulated using quadratic progranming (68). 

We now give an example to show how to use quadratic progranming. 

Consider the problem of diminishing returns to scale, which is a well-
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known problem in economics. In this problem, the returns less the cost 

of production, which is an increasing function of quantity, is to be 

maximized. This problem can be posed as: 

Max. xT p - xT (c + i\..x) 

Subject to A x > b 

Here p denotes price, c + ,tx denotes the production cost to produce x 

units, and Ax ~b represents restrictions on resources. For example, 

suppose that a certain company produces item z and it sells it for 

$20.00. Suppose, also, that the company can not produce more than 200 

of this item and that producing the first z costs $1.00,_ and every 

additional z costs $.00025. This problem could be mathematically 

written as: 

Max. 20 Xz - (1 + .00025 Xz ) Xz Xz 
S. T. Xz < 200 

where Xz is the number of z items produced. 

Quadratic Programming as a Linear 

Progranming Extension 

Early treatment of quadratic prograrrming was based on linear 

programning techniques. Beale ( 7, 8, 9, 10) was the first to 

present an algorithm for solving quadratic prograrmrl.ng problems. His 

approach was an extension of linear programning. later, Wolfe (116) 

developed the simplex method for quadratic programning by solving the 

Kuhn-Tucker system as was suggested earlier by Barankin and Dorfman 

(4.) and by Markowitz (61). In fact, earlier than this date, Frank and 
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'wolfe (44) proposed an algorithm to solve the quadratic prograrmning 

problem using the Kuhn-Tucker system. In 1963, Dantzig (33) gave a 

variant of Wolfe's simplex algorithm. Van de panne (108) introduced, 

independently, the same algorithm, which he called the non-artificial 

simplex method. In the same year, Shetty (95) introduced his 

algorithm. A similar algorithm was given by Jagannathan (57). In 

1964, Van de panne and Whinston (112) introduced their version of the 

simplex method. In the same year, Candler and Townsley gave another 

algorithm (24 ) . The same authors (105) suggested a parametric linear 

prograrrming approach in 1972. The work of solving the quadratic pro­

grarrming problem by solving the Kuhn-Tucker system was later called the 

linear complementarity problem (LCP). Lemke (62,63) developed a comple­

mentary pivot algorithm for solving the linear complementarity problem. 

In 1967, Graves (51) suggested a method he called the principal 

pivoting simplex algorithm. Cottle and Dantzig (28, 29) gave the 

principal pivot method. Tucker (lffi) used a least-distance approach to 

solve the quadratic prograrrming problem. Eaves (36) extended Lemke's 

algorithm to calculate stationary points for general quadratic program­

ming problems. Todd (102) gave an algorithm for generalized complemen­

tary pivoting. Ahn (1) gave some iterative methods to solve the 

linear complementarity problem. Goncalves (48) and Land and Morton 

(60) developed two different versions of Beale's method. Rusin (91) 

gave his revised simplex method for quadratic prograrrming which reduces 

to the simplex method for linear prograrrming when the objective func­

tion is linear. Goncalves (47, 49 ) developed the primal-dual method 

for quadratic prograrmning. In 1980, Sacher ( 92 ) gave a decomposition 

algorithm which used Lemke's method. Another decomposition method was 



given by VJhinston (113). 

Other Approaches For Solving the 

Quadratic Progranming Problem 

7 

There are several approaches other than those mentioned in the 

previous section for solving the quadratic program:ning problem. A 

combinatorial approach has been used by Theil and Van de panne (101), 

Boot (17, 18), Parsons (77), and Van de panne (110). In this approach, 

the idea is to solve a sequence of equality constrained problems. A 

similar but more systematic approach is the active set method. Fletcher 

(40, 43) uses this approach and a good discussion is given there. In 

1960, Houthakker (S6) introduced his capacity method where a restricted 
. l\ 

problem is obtained by adding a constraint of the form L Xi ~ u and 
i=l 

then solved. u is then increased and the problem is solved again. A 

one-direction search technique was developed by Hildreth (SS) and D'Espo 

(32). In fact, all methods of feasible directions can be applied to 

solve the quadratic programming problem. A feasible directions 

algorithm is one which solves a nonlinear optimization problem by moving 

from one feasible point to another improved point along a certain direc• 

tion of search d. In fact, Beale's method is an implementation of a 

convex simplex method of Zangwill (121). It could be considered as an 

active set method, as Fletcher (43) has shown. Some deformation methods 

were also used by authors such as Zahl (119, 120) and Bove (19). The 

idea of this method is to continuously deform an augmented objective 

function that is obtained by distorting the feasible region in such a 

way that an arbitrary initial optimum is obtained which is a solution to 

this deformed problem, until the problem is finally changed to the 
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original one and a solution is obtained. Goldfarb (46) gave two methods 

which might be considered extensions of Newton's method for minimizing 

an unconstrained quadratic function. 

All the methods that are discussed so far, except Fletcher's and 

Beale's algorithms, solve the convex quadratic prograrrming problem, that 

is the case when the quadratic matrix is positive definite or positive 

semi-definite. When the quadratic matrix is indefinite, we have a 

general quadratic prograrrming problem. Cutting plane methods were used 

to solve this problem in which the problem is posed as a minimization of 

a linear function' subject to constraints in the form of a linear comple­

mentarity problem. Tui (107), Ritter (88, 89), Cottle and My lander 

(30), Burdet (22)~ Balas (2), and Balas and Burdet (3) used this 

approach. There are several other approaches; these include Coffman, 

Majthay, and Whinston (27), Cabot and Francis (23), Mueller (71), 

Mylander (75), Taha (97), Van de panne (109), Goncalves (SO), Keller 

(59), Zwart (122), Beneveniste (11, 12), Powell (80), and Betts (1.3, 

14). 



CHAPl'ER III 

MEIHODOLOGY AND DESCRIPTION OF 

1HE ALGORI'IBMS 

Fletcher's Active Set Method 

In this method, an equality problem (EP) is derived from the 

quadratic prograrrming problem by keeping a basis of active constraints 

which are treated as equalities and disregarding the other constraints 

temporarily. Initially, the set of active constraints is chosen to 

provide a unique minimum. To meet this requirement, it is sufficient 

that A is strictly positive definite. On the other hand, if A is 

indefinite then it is sufficient to choose any n independent con­

straints. We start minimizing the quadratic function over this active 

constraint surface. Two possibilities exist here. It may be that a 

constraint is encountered which prevents the minimum of the current 

basis being reached. In this case, this constraint is added to the 

basis and the minimization process is continued. The second probability 

is that a minimum to the current equality problem has been found. In 

this case, the corresponding Lagrange multipliers are calculated, and if 

they are all negative the solution is optimal. Otherwise, the con­

straint with maximum Lagrange multiplier is dropped from the basis and 

minimization· is continued with this new basis. The algorithm is now 

described with more details. 

Suppose we need to find the minimum point of solution for the 

9 



following problem: 

Minimize 
x 

S.T. 

(1/2) xT A x - bT x 

CT x. = d 

10 

(3.a) 

(3.b) 

where T superscript means transposition and C is a k x n matrix where 

k < n. 

'Ihe Lagrangian function L of this problem is: 

L(x, A ) = (1/2) xT A x - b T x +A 'l(c xT- d) (4) 

where A is the la.grange multipliers vector. 

Differentiating with respect to x and >.. , respectively, and setting the 

result to zero gives the conditions for a stationary point: 

aL 
Ax, - b +AT ,} ax = = 0 (5.a) 

ClL 
c1' x - d = 0 a A = (5.b) 

In matrix form: 

[~ :](:)-(:) (6) 

To find the solution for this linear equations system, the inverse of 

the coefficient matrix is obtained: 

the solution vector, (x, A), is: 

A-1c(CTA-1c)-l-(CTA-lC)-l .] 

-(CTA-lC)-1 

(7) 

x =(A-l - A-l C(CTA-1cf1 CTA-l) b + A-1C(CTA-1cf1d (8.a) 

A =(CTA-1cf1cTA-1b - (CTA-1c)-1d (8.b) 
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Substituting the gradient vector g = Ax - b in (8.b) and x = (CT)-1d in 

(8.a) gives: 

x = (x - (A-1- A-1C(CT A-1c)-lCTA-l)g 

x = -(CTA-1C)-l CTA-lg 

Where g = AX - b. 

(9.a) 

(9.b) 

In these equations, two operators keep appearing and they are of great 

importance in the algorithm. The first operator is: 

(10) 

O~is a k x n matrix and it becomes c-l when k is equal to n. 

The second operator is: 

(11) 

H is of rank n-k. If H is positive semi-definite, then a strict minimum 

point of the equality problem exists. It is to be noticed that C* and 

H always exist because they are just partitions of (5) and the inverseof 

(5) must exist if the solution to the equality problem is unique. 

To update these two operators, it takes only O(n2) computer 

operations, which makes the process of moving from one equality problem 

to another efficient. The recurrence relations for updating the 

operators are given below: 

(1) To add a constraint, compute 

(ct) (-ct c) C*k+l= 0 + 1 , v'I'/v'I'c. (12.a) 

Hk+l = Hk - vvT/v'fc (12.b) 

where c is the normal of the added constraint and v = H~. 



(2) To remove a constraint, compute 

( ~) = <1.\:+1 - cfu.-1 Af::*r:.*T/ c*T k* 

Hk = Hk+l+ c* c-!:T /c*T Ac* 

(13.a) 

(13.b) 

12 

where c*T is the K + 1th row of C*k+l , i.e. the row corresponding to 

the constraint to be removed •. 

However, because of the possibility of dividing by zero, these 

formulae cannot always be used safely. To avoid this problem, we need 

to come up with recurrence relations that perform the updating when one 

constraint is exchanged for another in Ck. 'Ihese relations are given 

below: 

ct 4--CR - (ct c - ek )wT/y - Ct Ac*u T/y 

Hk ~Hk + c*uT/y - HifwT/y 

where ekT is the vector (O, O, ••• ,0,1) in Ek, and 

and 

w = H~(c*T Ac*) + c*(c'JC*) 

u = c* (cTH~) - H~ (c'JC*) 

(14.a) 

(14.b) 

(15.a) 

(15.b) 

(15.c) 

It is possible here again that y is zero and a division failure 

could happen. Before discussing how to avoid such a problem, it is 

interesting to know that when k = n the exchange formulae reduce to: 

-1 -1 -1 *T T 
C* = C ~ C - (C c - en ) c /c c* (16) 

H = 0 

Whenever a constl:'aint is dropped, the new direction of search 
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becomes c*, where c* is the row of C* corresponding to the constraint 

being dropped, and the new minimum point along c* is at a distance 

1/c*TAck where -m is c*Tg. However, a constraint might prevent this 

minimum being reached. To see if this is the case, we need to find: 

1 = min (d· - er x)/cr c* • 1 1 1 
1 

(17) 

Where ci is the normal of the i th inactive constraint. Notice that 

c~ c* must be negative if every element in A./c*TA01;-is positive and less 
1 

than or equal to 1, in which case, no inactive constraint is to be 

added to the basis and the minimum point can be reached along c*. 

When the curvature along c* (that is c*TAc*) is negative, or 

positive but small, the exchange formulae do not work. To get more 

insight into this problem, consider Figure 1. 

4-----~----~ _, - -- ..,,..-i~...,_1 __ _,;l>--_~3 __ ....... , 
I 

Figure 1. <ll.a.nging the Basis of the Active Constraints. 
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In this figure, x is the current minimum point, c* is the current 

direction of search, and s1 is the current set of active constraints. 

Suppose that while searching along c*, a new constraint with normal c 

is met at point x1. It is important to recognize that x1 is the mini-

11Rllll point of an equality problem with S1_ basis, where S1_ is parallel 

to s1, and therefore, the operators for both bases are the same. The 

two bases are parallel in the sense that the constant term of the 

constraint of the normal c* has been changed. Another important point 

that needs to be pointed out is that x1 is also the minil1Rllll point of 

the equality problem of basis Sz provided that the new constraint is 
I I 

independent of s1• s2 is s1 plus the new constraint. Our concern, 

however, is to find the minimum of an equality problem of basis s3 

obtained by dropping the old constraint and adding the new constraint 

to basis s1 or, equivalently, by removing the constraint that was 
I 

obtained by changing the constant term of the old constraint from S 2 . 

To find this minimum, we proceed by adding the constraint corresponding 

to c to the current basis and then, in the next iteration, we assume 

that xl' which is the minimum point of equality problem of Sz basis, 

has been left by dropping the constraint corresponding to normal c* and 

re-enter the previous code so that the operators for S 3 are not calcu­

lated. The direction of search in s3 is: 

(18) 

and the curvature along this direction is: 

(19) 

After this description, the following conclusions can be derived. 
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If the new constraint is dependent or nearly dependent on the current 

basis, then the formulae for adding and dropping a constraint cannot 

be used; instead the exchange formulae must be used. If the constraint 

is dependent, then cTHc = 0 and using (19) y becomes (cTc*Y. which is 

strictly positive because cT c* is negative always. Using (19) again, 

it is clear that if y ~ O, then cTHc ~ 0 because (c1c*)2 is positive 

and c*TAc* is negative, and hence (13) can be used safely. If both, 

exchanging and adding, are safe then ly and cTHcvTg1 are calculated, 

where gl = Axl-b. If ,ly is smaller than cTHcvTg1, then the adding 

formulae are used; otherwise, the exchange formulae are used. The 

reader is referred to Fletcher's paper for more discussion. 

that: 

Lemke's Complementary Pivoting Method 

A linear complementary problem is to find two vectors w and z such 

w=Mz+q 

wTz = 0 

w ~ o, z ~ 0 

(20.a) 

(20.b) 

(20.c) 

'!he Kuhn-Tucker conditions of the quadratic prograrmrl.ng could be 

written as: 

Cx-y=d 

-Ax + OJ. + v = -b 

xt v = o, uty = 0 

x, y, u, VLO 

(21.a) 

(21.b) 

(21.c) 

(21.d) 

where u and v are the La.ngrangian multiplier vectors of the C~ > d and 
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x > 0 constraints, respectively. These conditions can be reduced to a 

complementary problem by letting 

w=(;) , M= ~ -g] (22) 

q=(=~) and z=(~) 

where q is L x 1 and M is L x L. 

Hence, Lemke's algorithm can be used to solve the quadratic 

prograrrmi.ng problem. Before describing the algorithm, some definitions 

are introduced. A solution (w, z) to (20) is called a complementary 

basic feasible solution if (w, z) is a basic feasible solution to 

(20.a) and (20.c) and if one variable of the pair ( w, z ) is basic for 

i = 1, ••• L. System (20) can be solved readily if q ~ 0 by letting 

w = q and z = 0 On the other hand, if q ~ 0 1 a new coltnnn 1 (i.e., a 

vector of ones) and an artificial variaple z0 are introduced into the 

system to get: 

w - Mz - 1z0 = q 

wT z = 0 

w> O, z > 0 

(23.a) 

(23.b) 

(23.c) 

Initially, the artificial variable z0 = max (-qi: 1 < i.< L), z = O, 

w--q + 1z0 constitutes the solution. Lemke's complementary pivoting 

algorithm tries to drive zo out of the basis through a sequence of 

pivots that satisfies (23). We now introduce another important 

definition. An almost-complementary basic feasible solution is a 

feasible solution (w, z, z0 ) to (23) that satisfies the following 

requirements. 
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(1) (w, z, z0 ) is a basic feasible solution to (23.a) and (23.c). 

(2) For some iE. (1, ... ,L ) both w and z are nonbasic. 

(3) z0 is basic. 

(4) For j = 1, ••• L and j ::f i, either wj or zj is basic. 

An adjacent almost complementary basic feasible solution (wd, Ad, 

z0 ) is introduced by allowing either wi or zi to enter the basis and 

driving a basic variable other than z0 , that is, either Zj or wj, from 

the basis. 'Iherefore, every almost complementary basic feasible 

solution can have a maxirrrum of two adjacent almost complementary basic 

feasible solutions. 

Lemke's algorithm moves among adjacent almost complementary basic 

feasible solutions until one of two things happen: 

(1) A complementary basic feasible solution is reached. 

(2) Stop with a ray termination because the feasible region is 

unbounded. 

A'summary of the algorithm can now be given: 

1) If q ~ O, a solution is readily available. 'Ihe solution is 

w = q and z = 0. Stop. 

2) If q < 0 form a tableau for system 4.a and 4.c. Let q. =min 
1 

(q. : 1 ,S_ j ,S_ L), and pivot at row i and column z0 • 
J 

In this tableau the 

basic variables z 0 and w j, where j = 1, ••• , L and j ::f i , are all non­

negative. Let Yi= Zj· 

3) Let ~ denote the column that has been just updated (i.e., 

column under Yi). If ui ~O, go to Step 7. 

4) Let q be the updated right-hand-side column. ·q has the values 

of the basic variables. Obtain the index r by the following ratio 
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test: 

__ q_r_ = mi~inrum ~ qj : uji > O } 
l Li· 1 < J < L u .. 
-.r; - - Jl. 

If the basic variable at row r is z0 , go to Step 6. 

5) Pivot at row r and the y i column so that Yi will enter the 

basis. The variable that has just left the basis is either w1 or z1 

where 1 ,,. i. If it is w1 then Yi~z1 , otherwise Yi~w1 • Go to 

Step 3. 

6) Pivot at row z0 and the yicolumn so that z0 will leave the 

basis, and a complementary solution is reached. Stop. 

7) In this case, a ray termination takes place, where 

R =[(w, z, z0 ) +au: 8 ~O )Jis found such that every point in Risa 

solution to the problem. Here (w, z, z0 ) is the current almost 

complementary basic feasible solution and u is a vector that has a 1 at 

the row corresponding to Yi' - ui at the rows of the current basis 

variables, and zero elsewhere. Stop. 

If there is no degeneracy involved in the problem, the algorithm 

is guaranteed to find a Kuhn-Tucker point in a finite number of steps 

if any one of the following conditions is true: 

1. A is positive semidefinite and b = O. 

2. A is positive definite. 

3. All diagonal elements of A are strictly positive and all 

others are nonnegative. 
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'!he MINOS Package 

'Ihe MINOS package solves a linearly constrained nonlinear program 

using Wolfe's reduced gradient method (117) in conjunction with 

Davidon's quasi-Newton algorithm (34). In this section, we give a 

summary of the procedure as described in Murtagh and Saunders (73). 

Initialization Step: 

(a) A feasible point x which satisfies [B S N]x = d and 1 { x { u 

is obtained. Here B, s, and N are the arrays corresponding to basic 

(xB), superbasic (xs) and nonbasic (XN) variables, respectively. 

(b) '!he corresponding (1/Z) x T Ax value and gradient vector 

g (x) = (g 8 gs g~ are calculated. 

(c) '!he nl.IIlber of superbasic variables, s, is obtained. Here 

0 ~s ~3n - m, and m ~3n. 

(d) calculate the LU factorization of the m - Zn x m - Zn basis 

matrix B. 

(e) calculate the RTR factorization of a quasi-Newton approxima­

tion to the s x s matrix ZT AZ, Z is a matrix that is orthogonal to the 

matrix of constraint normals, i.e. cTz = 0. 

(f) calculate the vector v such that BTv = g8• 

(g) calculate the reduced-gradient vector h, h = gs - sTv. 

Step 1. (Test for convergence.) 

If II hll > TOLRG go to step 3. 

(Where TOLRG is a small positive convergence tolerance.) 

Step Z. (Estimate Lagrange multipliers, add one superbasic.) 
T 

a. calculate.>.= &N - N v 

b. Select '>.q1 < - TOLDJ ( >.qz> TOLDJ), '!he largest 



elements of >. corresponding to variables at their 

lower (upper) bound. 

(TOLDJ is a small positive convergence tolerance.) 

If none, stop; an optimal point has been obtained. 

c. Choose q = q 1 or q = q 2 corresponding to 

I >. q I = max ( I >.<lf J , I >.q2 I) 
d. Add cq as a new colunn of S. 

e. Add >.q as a new element of h. 

f. Add a suitable new colunn to R. 

g. Increase s by 1. 

Step 3. (Compute the new direction of search p = ZPs·) 

a. Solve RTRPs = -h for Ps· 

b. Solve LU PB = -s Ps for PB· 
T 

c. Set p = [ PB Ps O] 

Step 4. (Find 1ma.x ) 

20 

a. Find 1 > 0 , the greatest value of 1 for which max -

x + lp is feasible. 

b. If 1max = O, go to Step 7. 

Step 5. (Do a line search.) 

a. Find 1, an approximation to l*, 

where f (x + l* p) = MIN f(x + 9p), 0 ~ 9 < 1inax 

Where f (x) is (1/2) xT Ax. 

b. Cll.ange x to x + lp and set f and g to their values 

at the new x. 

Step 6. (Compute the reduced gradient Ii, Ii= zTg.) 

a. Solve uT1Tv = ~ 

b. Compute the new reduced gradient li, 1i = gs - ~ v 

c. Modify R to reflect some variable-metric recursion 



on RTR, using 1, Ps' and the change in reduced 

gradient, h - h 
-

d. set h = h. 

e. If I <l~x' go to Step 1 (no new constraint was 

encountered.) 

Step 7. (Change the current basis if necessary; delete one 

superbasic.) 

a. If a basic variable hit its bound (G ~ p ~ m - 2n) 

(i) Interchange the pth and the qth columns of 

[B x~]T and [S x§JT 

Respectively, where q is chosen to keep B 

nonsingular. 

(ii) t-txiify L, U, R,and v to reflect this change 

in B. 

(iii) Compute the new reduced gradient h, 

T h = g5 - s v 

(iv) Go to c, 

b. Otherwise, a superbasic variable hits its bound 

(m - 2n < p ~ m - 2n + s). Define q = p - m + 2n. 

c. Make the qth variable in S nonbasic at the 

appropriate bound, thus: 

(i) Delete the qth columns of 

[S x~f and [R hTJ'f' 

(ii) Restore R to traingular form. 

d. Decrease s by 1 and go to Step 1. 

21 
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Random Quadratic Programming Problem Generator 

A computer program was written to generate quadratic programming 

problems randomly following the method of Rosen and Suzuki (90) which 

is also described by Ravindran and Lee (87). Some minor modifications, 

however, were made. For example, to ensure a positive definite matrix 

A, A was calculated by using A+-A TA. In this method, we solve ( 2) for 

b and d after generating C, A, x, u and v randomly. The description 

of the generator is as follows: 

Step 1. Randomly generate x ~ 0 and u ~ 0. 

Step 2. Randomly generate A and C with specified pet""'....entages 

of zero elements. 

Step 3. Compute b as follows: 

a. If X· = 0=> b. > c. u - Ax ]. ].- J 

b. If x. ~ o=> b. = c. u - Ax ]. ' ]. J 

Cj is the ith row of C and Ai is the ith row of 

A. 

Step 4. Compute di as follows: 

a. If u.= 0 => d = C~x 
l ]. 

b. If ui~ O => d = cix 
cI is the ith row of CT. 



CHAPfER IV 

RESULTS AND DISCUSSION 

General 

In this paper, Ravindran' s ( :86) computer program for Lemke's 

method, modified by Proll (84), is used. Fletcher's (38, 39) routine 

for his method is used in this paper. However, to invert a matrix, 

subroutine LINV2F from the IMSL library is used. In addition, to find 

the inner product of two vectors, subroutine INNERP, developed by the 

author, is used. The most recent version of MINOS ( 7 4) , implemented in 

1983, is used in this study. The modified Ravindran' s routine, 

Fletcher's program, a sample of the input for the MINOS package and a 

program to generate this sample automatically are given in Appendices 

A, B and C, respectively. All of the programs were run on the 3081 IBM 

mai~frame at Oklahoma State University using double precision computa­

tions. This study involves comparing the computational performances 

of the three methods for convex and general quadratic prograrmning 

cases. 

Test Problems Design 

The effect of different factors were studied in this study, these 

factors are the following: 

1) The nunber of active constraints at the optimal point. 

2) The nunber of constraints. 

23 
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3) The nunber of variables. 

4) The percentage of zero elements in the quadratic array A. 

The above mentioned factors are considered for the case of convex 

quadratic progranming only. In the case of an indefinite matrix A, the 

main purpose was to investigate the reliability of the three algor­

ithms, i.e. their abilities to solve a given problem correctly. 

Test Criteria 

Many test criteria could be used to evaluate the performance of 

any algorithm. In this study, the criteria used are: 

1) Robustness 

2) Number of iterations 

3) CPU time 

The first criterion is the most important one since a user wants 

to use an algorithm which will surely give the correct answers to the 

given degree of precision. In fact, it is generally accepted that the 

primary criterion in evaluating an algorithm is its reliability. 

The nunber of iterations is the second important criterion. 

However, sometimes this criterion might be misleading because one can 

reduce the number of iterations by different time-consuming ways such 

as special heuristic calculations. To avoid such unfair comparisons a 

third criterion should be employed, namely, the CPU time. It should be 

mentioned here that depending solely on the CPU time in measuring the 

performance of an algorithm might be misleading, also.· Considerations 

such as care in coding the algorithm could significantly affect the 

results. In addition, if the operating system is multiprogramned the 

CPU time becomes longer and less reliable. Consequently, the number of 
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iterations should be used together with the CPU time to get a better 

insight into the performances of the different algorithms. 

Results and Analysis 

In the first part of the study, we consider the convex quadratic 

programming problem. It should be mentioned here that convex quadratic 

programming problems have only one local minimum, which is therefore the 

global minirrun. For Ravindran' s routine and the MINOS package no 

special parameters are required to be input. For Fletcher's program, 

three different modes could be used. Mode 1 is used for any quadratic 

programming problem. Modes 2 and 3 can be used when A is strictly 

positive definite. In addition, if mode 3 is used then the user should 

provide a feasible point to the routine. In fact, there are two addi­

tional modes that can be used, namely modes 4 and S, and these are used 

for general parametric programming and right-hand side parametric pro­

gramming, respectively. 

Table I shows the effect of changing the number of active 

constraints at the optimal point on the number of iterations and the 

execution time. A total of 690 problems were tested, i.e. 10 problems 

for each case. The a\rerage number of iterations of these 10 runs 

(rounded to the nearest integer) and the average of the execution time 

are shown in Table I. In Fletcher's algorithm, an application of 

formulae (12), (13), or (16) is counted as 1, whereas application of 

(14) is counted as 2. In all of the tested cases, neither of the 

programs failed to reach the optimal solution. They all gave the 

"exact" answers. Table I shows clearly that for Lemke's algorithm the 

number of iterations increases as the number of active constraints 



TABLE I 

MEAN ITERATION COUNI' AND EXECITTION TIME FOR THE THREE ALGORI'IBMS 
FOR THE CONVEX PROGRAMMING CASE WITH NUMBER OF VARIABLES 

EQUAL TO NUMBER OF CONSTRAINTS AND DIFFERENT NUMBER 
OF ACTIVE CONSTRAINTS 

26 

No. of No. of No. of Fletcher Lemke MINOS 
Con- Active 

strain ts Variables Constraints Iter Time Iter Time Iter Time 

2 2 2 2 .08 5 .OS 5 .21 
4 4 2 ·4 .09 7 .06 10 .24 
4 4 4 4 .09 11 .06 4 .21 
8 8 2 6 .12 11 .66 24 .35 
8 8 4 6 .13 15 .1 23 .34 
8 8 6 7 .13 17 .11 15 .29 
8 8 8 8 .14 19 .11 11 .28 

10 10 1 3 .14 12 .12 30 .42 
10 10 2 4 .14 13 .12 28 .4 
10 10 3 7 .16 14 .13 28 .4 
10 10 4 8 .16 15 .13 26 .38 
10 10 5 8 .16 16 .14 25 .38 
10 10 6 8 .16 17 .15 22 .35 
10 10 8 9 .17 19 .15 21 .35 
10 10 10 10 .18 21 .15 14 .31 
15 15 1 7 .28 19 .25 56 .75 
15 15 2 8 .28 21 .25 55 .74 
15 15 5 15 .34 23 .28 46 .64 
15 15 8 15 .34 28 .30 40 .59 
15 15 10 12 .31 29 .32 40 .58 
15 15 12 14 ;,33 32 .34 " 36 .55 
15 15 15 15 .35 33 .34 23 .45 
20 20 2 21 .62 27 .49 77 1.37 
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increases. The same pattern is followed by Fletcher's algorithm except 

for two cases, namely, for the cases where the number of active 

constraints are 5 and 8 and the size of the problem is 15 x 15. A 

reverse pattern is obtained for the MINOS package. In all cases, the 

number of iterations for Fletcher's algorithm is less than that 

obtained by Lemke's algorithm which, in turn, is always less than that 

of the MINOS package. The execution time for the MINOS package is 

always bigger than that of the other two algoritl:uns. In fact, the 

number of iterations and the execution time are always worse than those 

of the other two algoritl:uns in all the test problems that were con­

ducted in this study as can be seen in the tables. 

The execution times for Fletcher and Lemke are very close. 

In approximately 90 percent of the test cases in Table I Lemke gave a 

better execution time than Fletcher. 

To see the effect of using mode 3 on the performance of Fletcher's 

algorithm part of the test problems of Table I were used. 'lhe results 

are given in Table II. 75 problems were tested, i.e. 5 problems for 

each case. The results show that when the number of active constraints 

is small, better number of iterations and execution time can be 

obtained than when mode 2 is used. 

The effect of the number of zero quadratic terms in the objective 

function is shown in Table III. In this table, as well as Tables IV and 

V, the number of the active constraints was set equal to 2. In Table 

III, a total of 150 problems were tested. Table III shows clearly that 

a significant decrease is obtained in the number of iterations and the 

execution time for Fletcher's algorithm. Lemke's algorithm and the 

MINOS pacakge are generally not affected. 



No. of 

Constraints 

2 

4 

4 

8 

8 

8 

8 

10 

10 

10 

10 

10 

10 

10 

10 

TABLE II 

MEAN ITERATION COUNT AND EXECUTION TIME FOR 
FLETCHER'S ALGORITHM WHEN USING MODE 3 

No. of No. of Iter 
Active 

Variables Constraints 

2 2 2 

4 2 6 

4 4 4 

8 2 3 

8 4 10 

8 6 10 

8 8 7 

10 1 1 

10 2 2 

10 3 4 

10 4 8 

10 5 8 

10 6 10 

10 8 10 

10 10 10 
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Time 

.08 

.09 

.09 

.12 

.14 

.14 

.13 

.12 

.13 

.13 

.15 

.15 

.15 

.16 

.17 



No. of 
C.On-

strain ts 

2 

4 

8 

8 

10 

10 

15 

15 

15 

20 

TABLE III 

ME'AN ITERATION CDUNT AND EXECUTION TIME FOR THE THREE 
ALGORITHMS FOR DIFFERENT PERCENTAGES OF ZERO 

ELEMENTS IN THE QUADRATIC MATRIX A 
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Percentage Fletcher Lemke MINOS 
No. of of Zero 
Vari- Elements 
ables in A Iter Time Iter Time Iter Time 

2 so 2 .08 s .06 3 .21 

4 so 2 .08 7 .06 9 .2S 

8 12.S 6 .13 14 .1 24 .36 

8 so 4 .13 11 .1 22 .3S 

10 32 4 .14 1S .13 30 .44 

10 so 4 .14 13 .13 30 .44 

15 22 7 .25 25 .29 48 .66 

15 30 5 .25 26 .29 S2 .74 

15 40 4 .25 19 .26 51 • 72 

20 so 4 .41 23 .46 71 1.16 



No. of 
Constraints 

6 

8 

10 

15 

20 

No. of 
Constraints 

4 

4 

4 

4 

4 

TABLE IV 

ME.AN ITERATION COUNT AND EXECITTION TIME FOR THE 
1HREE ALGORITHMS WITH n = 4 AND INCREASING 

NUMBER OF CONSTRAINTS 

30 

No. of Fletcher Lemke MINOS 
Variables Iter Time Iter Time Iter 

4 2 .09 9 .07 11 

4 4 .11 13 .08 19 

4 3 .12 13 .1 26 

4 4 .18 18 .16 36 

4 6 .27 25 .26 47 

TABLE V 

MEAN ITERATION COUNT AND EXECITTION TIME FOR THE 
1HREE ALGORITHMS WITH 4 CONSTRAINTS AND 

INCREASING NUMBER OF VARIABLES 

Time 

.26 

.31 

.35 

.48 

.68 

No. of Fletcher Lemke MINOS 
Variables Iter Time Iter Time Iter Time 

6 3 .09 7 .06 9 .24 

8 3 .09 7 .07 9 .24 

10 3 .1 9 .08 10 .26 

15 4 .11 9 .09 12 .28 

20 4 .11 9 .1 12 .29 
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In Table IV, the ef feet of increasing the m.mber of constraints is 

shown. A total of 75 problems were tested. As expected, the number of 

iterations and the execution time increase as the number of constraints 

increases. In all of the cases, the number of iterations for Fletcher 

is significantly less than that for Lemke and MINOS. 

The effect of increasing the number of variables is shown in Table 

V. Again 75 problems were tested. The table shows that the number of 

variables does not have a very significant effect on the results. 

Fletcher's algorithm is still superior to the other two algorithms in 

terms of the number of iterations. 

In part two of the study, the general quadratic prograrmning case 

was tested. The results are given in Table VI. A total of 54 cases 

were tested. Fletcher's algorithm and the MINOS package always gave 

the correct answers. Lemke's algorithm failed to arrive at an optimal 

point in 70 percent of the tested cases. This is not an abnormal 

behavior of the method because it is not guaranteed to give an optimal 

solution in the general quadratic prograrmning case. It is because ,of 

this reason that the claim raised by Chiang (26) is not true. In the 

problem he was trying to solve the matrix of quadratic terms was posi­

tive semi-definite and for such a case it is guaranteed to obtain a 

solution by Lemke's algorithm only if the linear terms in the objective 

function are all zeros. 



No. of 
Constraints 

2 

4 

8 

10 

15 

15 

TABLE VI 

MEAN ITERATION COUNT AND EXECITTION TIME 
FOR THE 'IHREE ALGORITHMS FOR GENERAL 

QUADRATIC PROGRAMMING CASE 

No. of Fletcher Lemke 
No. of Active 

Variables Constraints Iter Time Iter Time 

2 2 2 .08 4 .OS 

4 2 2 .08 * 

4 2 3 .1 J. ,. 

5 2 7 .12 15 .09 

6 2 12 .14 * 

10 5 12 .21 * 

*Indicates failure to arrive at a solution. 
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MINOS 

Iter Time 

2 .21 

4 .23 

5 .25 

6 .27 

7. .27 

16 .37 



CHAPl'ER v 

SUMMARY AND CONCLUSIONS 

'!he results given in Tables I through VI all indicate that 

Fletcher's algorithm is a very efficient algorithm to solve the 

quadratic programning problem. In the cases tested, Fletcher's 

algorithm never needed more than 2*n iterations to reach an optimal 

point. Although Lemke's algorithm gave slightly better execution time, 

one should not forget that this method has a drawback in that it 

enlarges the sizEi' of the problem since it tries to solve the Kuhn­

Tucker conditions. In addition, Lemke's method does not solve general 

quadratic progranming problems. In fact, it does not solve positive 

semi-definite problems. Hence, it should have troubles on ill-condi­

tioned positive definite (but almost semi-definite) problems. On the 

" other hand, Fletcher's algorithm requires a lower and an upper bound on 

each variable to be input. '!his can be a disadvantage, but if bounds 

are known then not much extra work is needed by Fletcher's algorithm 

while the other algorithm will need more iterations and execution time. 

Another advantage of Fletcher's algorithm is its flexibility, since 5 

modes are available for the user. Furthermore, mode 3 should be used 

whenever matrix A is known to be strictly positive definite and it is 

expected that few constraints are active at the optimal point, since few 

iterations will then be needed to arrive at the solution. Finally, it 

is to be mentioned here that the MINOS package is slower than the other 
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programs and does some times face problems when the problem is poorly 

scaled, as it did in 2 cases in part 2 of the study (i.e. in General 

Quadratic Programming Problems). 

Therefore, Fletcher's method is recommended as the best method, 

among the three methods tested in this thesis, for solving quadratic 

programming problems. 
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//Ul0832A JOB (10832,269-34-0589),'F. M. KHALILI' ,TIME=(,5), 
II CLASS=2,MSGLEVEL=(l,l),MSGCLASS=X,NOTIFY=* 
/*PASSWORD ? 
/*JOBPARM ROOM=F,FORMS=9031 
II EXEC FORTVCLG,IMSL=DP,REGION.G0=1500K 
//FORT.SYSIN DD * 
C**************************************************************C 
C* *C 
C* MODIFIED RAVINDRAN'S IMPLEMENTATION OF LEMKE'S ALGORITHM *C 
C* *C 
C**************************************************************C 
C* *C 
.C* MODIFIED BY : FOUAD M. KHALILI *C 
C* DATE : NOV. 20, 1987 *C 
C* *C 
C**************************************************************C 
C* 
C* 
C* 

IMPLICIT REAL*8(A-H,O-Z) 
PARAMETER(N=lOO} 
PARAMETE~(M=200) 

DIMENSION 
1 C(N),Q(N,N},A(N,N},RESl(N),RES2(N),ATRANS(N,N),BMAT(M,M), 
2 B(N),X(N),U(N},AM(M,M},QV(M),W(M),Z(M),AV(M),MBSIS(2*M) 

DIMENSION QI (15, 15} ,D(l5}, WK( 20), ZZ (15, 15) 
COMMON AM,AV,BMAT,W,Z,QV,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 
IN = 5 
IOUT = 6 
TYPE = 1.0DO 
SEED = 50.0DO 
NOFROW 15 
NOFCOL = 15 
NOACTV = 2 
NOZERO = 5 

C** GENERATE X AND U VECTORS 
DO 100 I = l,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
X(I) = RANDOM 

100 CONTINUE 
DO 110 I = l,NOFROW 

CALL GENRTE(SEED,RANDOM) 
U(I} =RANDOM 

ll 0 CONTINUE 
DO 120 I = l,NOFROW-NOACTV 

U(I) = 0. ODO 
120 CONTINUE 
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER} 

DO 200 I = l,NOFROW 
DO 200 J = l,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
A(I,J) RANDOM 

200 CONTINUE 
DO 1700 I l,NOFCOL 
DO 1700 J NOFCOL+l,NOFROW+NOFCOL 

AM(I,J) = -A(J-NOFCOL,I) 
1700 CONTINUE 

DO 1800 I NOFCOL+l,NOFROW+NOFCOL 
DO 1800 J = l,NOFCOL 
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AM(I,J) = A(I-NOFCOL,J) 
1800 CONTINUE . 
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER) 

DO 300 I = l,NOFCOL 
DO 300 J = l,NOFCOL 

IF (I.GT.J) GO TO 300 
CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
ATRANS(I,J) =RANDOM 

300 CONTINUE 
DO 1000 I = l,NOFCOL 
DO 1000 J = l,NOFCOL 

IF (I.LE.J) GO TO 1000 
ATRANS(I,J) = ATRANS(J,I) 

1000 CONTINUE 
C** TYPE = O.=> Q IS INDEFINITE 
C** TYPE = l.=> Q IS POSITIVE DEFINITE 

IF (TYPE.EQ.O.ODO) GO TO 10 
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N) 
DO 1200 I = l,NOFCOL 
DO 1200 J = l,NOFCOL 

IF (I.EQ.J)Q(I,J) = Q(I,J) + l.ODO 
1200 CONTINO 

GO TO 40 
10 DO 800 I = l,NOFCOL 

DO 800 J = l,NOFCOL 
Q(I,J) = ATRANS(I,J) 

800 CONTINUE 
40 DO 810 I = l,NOZERO 

DO 810 J = NOFCOL-NOZERO+l,NOFCOL 
Q ( I , J ) = 0 • ODO 

810 CONTINUE 
DO 860 I = NOFCOL-NOZERO+l,NOFCOL 
DO 860 J = l,NOZERO 

Q(I,J) O.ODO 
860 CONTINUE 

DO 1600 I = l,NOFCOL 
DO 1600 J = l,NOFCOL 

AM(I,J) = 2.0DO*Q(I,J) 
1600 CONTINUE 
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER) 

DO 700 I = l,NOFCOL 
DO 700 J = l,NOFROW 

ATRANS(I,J) = A(J,I) 
700 CONTINUE 

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l) 
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l) 
DO 400 I .= l,NOFCOL 

C(I) = RESl(I) - 2.0DO*RES2(I) 
4 0 0 CONTINUE 
C** COMPUTE VECTOR B ( ORD IN FLETCHER'S PAPER) 

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l) 
DO 900 I = l,NOFCOL 

IF (X(I).GT.0.0DO) GO TO 900 
CALL GENRTE(SEED,RANDOM) 
C(I) = C(I) +RANDOM 

900 CONTINUE 
DO 910 I = l,NOFROW 

IF (U(I).GT.O.ODO) GO TO 910 
CALL GENRTE(SEED,RANDOM) 
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B(I) = B(I) - RANDOM 
910 CONTINUE 

DO 1900 I = l,NOFCOL 
QV( I) = C( I) 

1900 CONTINUE 
DO 2000 I = NOFCOL+l,NOFROW+NOFCOL 

QV(I) = -B(I-NOFCOL) 
2000 CONTINUE 

C* 
C'.lr 

CALL LEMKES(NOFROW+NOFCOL) 
STOP 
END 

C**************************************************************C 
C* 
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND 
C* ARGUMENTS 
C* RLEFT THE FIRST MATRIX 
C* RIGHT : THE SECOND MATRIX 
C* LEFTR : ROW SIZE OF THE FIRST MATRIX 
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX 
C* IRIHTC: COLUMN SIZE OF THE SECOND MATRIX 
C* IDl ROW DIMENSION OF THE FIRST MATRIX 
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX 
C* ID3 ROW DIMENSION OF THE SECOND MATRIX 
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX 
C* RESULT: MULTIPLICATION RESULT 
C* INPUT 
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4 
C* OUTPUT 
C* RESULT 
C* 

*C 
RIGHT.*C 

*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 

C**************************************************************C 
Ctr 
C* 

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2, 
1 ID3, ID4) 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4) 
DO 100 I = l,LEFTR 
DO 100 J = l,IRIHTC 

RESULT(I,J) = O.ODO 
100 CONTINUE 

DO 200 I = l,LEFTR 
DO 300 J = l,IRIHTC 
DO 400 K = l,LEFTC 

RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J) 
400 CONTINUE 
300 CONTINUE 
200 CONTINUE 

C* 

RETURN 
END 

C* 
C************************.************************************C 
C* . *C 
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C 
C* ARGUMENTS *C 
C* SEED THE SEED FOR THE GENERATOR *C 
C* RANDOM THE GENERATED NUMBER *C 
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C* INPUT : 
C* SEED 
C* OUTPUT: 
C* SEED,RANDOM 
C* 

*C 
*C 
*C 
*C 
*C 

C*************************************************************C 
C* 
C* 

C* 
C* 

SUBROUTINE GENRTE(SEED,RANDOM) 
IMPLICIT REAL*8(A-H,O-Z) 
X = 3373.0DO 
Y = 6925.0DO 
WORD = 32768.0DO 
TMAX = 24.0DO 
ONE = 1. ODO 
SEED= DMOD((X*SEED + Y),WORD) 
RANDOM = INT(TMAX*(SEED/WORD) + ONE) 
RETURN 
END 

C* 
C***************************************************************C 
C* *C 
C* PROGRAM FOR SOLVING LINEAR AND QUADRATIC PROGRAMMING *C 
C* PROBLEMS IN THE FORM W=M*Z+Q, Q.Z=O, WAND Z NONNEGATIVE *C 
C* BY LEMKE'S ALGORITHM. *C 
C* *C 
C* THE SUBROUTINE CALLS SIX SUBROUTINES. THESE ARE : MATRX, *C 
C* INITL,NEWBS,SORT,PIVOT AND PRINT IN PROPER ORDER. *C 
C* INPUT : *C 
C* N : THE SIZE OF ARRAY AM *C 
C* *C 
C* DESCRIPTION OF PARAMETERS IN COMMON *C 
C* AM A TWO DIMENSIONAL ARRAY CONTAINING THE *C 
C* ELEMENTS OF MATRX M. *C 
C* Q A SINGLY SUBSCRIPTED ARRAY CONTAINING THE *C 
C* ELEMENTS OF VECTOR Q, *C 
C* Ll AN INTEGER VARIABLE INDICATING THE NUMBER OF *C 
C* ITERATIONS TAKEN FOR EACH PROBLEM. *C 
C* B A TWO DIMENSIONAL ARRAY CONTAINING THE *C 
C* ELEMENTS OF THE INVERSE OF THE CURRENT BASIS. *C 
C* W A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES *C 
C* OF W VARIABLES IN EACH SOLUTION. *C 
C* Z A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES *C 
C* OF Z VARIABLES IN EACH SOLUTION. *C 
C* NLl AN INTEGER VARIABLE TAKING VALUE 1 OR 2 DEPEND- *C 
C* ING ON WHETHER VARIABLE W OR Z LEAVES THE BASIS *C 
C* NEl SIMILAR TO NLl BUT INDICATES VARIABLE ENTERING *C 
C* NL2 AN INTEGER VARIABLE INDICATING WHAT COMPONENT *C 
C* OF W OR Z VARIABLE LEAVES THE BASIS. *C 
C* NE2 SIMILAR TO NL2 BUT INDICATES VARIABLE ENTERING *C 
C* A ~ SINGLY SUBSCRIPTED ARRAY CONTAINING THE *C 
C* ELEMENTS OF THE TRANSFORMED COLUMN THAT IS *C 
C* ENTERING THE BASIS. *C 
C* IR AN INTEGER VARIABLE DENOTING THE PIVOT ROW AT *C 
C* EACH ITERATION. ALSO USED TO INDICATE TERMINA- *C 
C* TION OF A PROBLEM BY GIVING IT A VALUE OF 1000. *C 
C* MBSIS A SINGLY SUBSCRIPTED ARRAY-INDICATOR FOR THE *C 
C* BASIC VARIABLES. TWO INDICATORS ARE USED FOR *C 

48 



C* 
C* 
C* 
C* 

EACH BASIC VARIABLE-ONE INDICATING WHETHER 
IT IS A W OR Z AND ANOTHER INDICATING WHAT 
COMPONENT OF W OR Z. 

*C 
*C 
*C 
*C 

C***************************************************************C 
C* 
C* 

c 

c 

c 

SUBROUTINE LEMKES(N) 
IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NL1,NL2,NE1,NE2,IR,MBSIS 
IOUT=6 
IN=5 

IP = 1 

C VARIABLE NO INDICATES THE CURRENT PROBLEM BEING SOLVED 
c 

NO=O 
1000 NO=NO+l 

IF(NO-IP)lOl0,1010,1070 
1010 WRITE(IOUT,1020)NO 
1020 FORMAT (lHl,lOX,llHPROBLEM NO.,I2) 

c 
C PROGRAM CALLING SEQUENCE 
c 

CALL MATRX (N.) 
c 
C PARAMETER N INDICATES THE PROBLEM SIZE 
c 

CALL INITL (N) 
c 
C SINCE FOR ANY PROBLEM TERMINATION CAN OCCUR IN INITIA, 
C NEWBAS OR SORT SUBROUTINE,THE VALUE OF IR IS MATCHED WITH 
C 1000 TO CHECK WHETHER TO CONTINUE OR GO TO NEXT PROBLEM. 
c 

c 

IF(IR~l000)1040,1000,1040 

1040 CALL NEWBS (N) 
IF(IR-1000)10.50,1000,1050 

1050 CALL SORT (N) 
IF(IR-1000)1060,1000,1060 

1060 CALL PIVOT (~) 

GO TO 1040 
1070 RETURN 

END 
SUBROUTINE MATRX (N) 

C PURPOSE - TO INITIALLIZE AND READ IN THE VARIOUS INPUT DATA 
c 

c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NL1,NL2,NE1,NE2,IR,MBSIS 

IOUT=6 
IN=5 
RZERO=O.ODO 
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RONE=l.ODO 
c 
C IN ITERATION l,BASIS INVERSE IS AN IDENTITY MATRIX. 
c 

c 

DO 2030 J=l,N 
DO 2020 I=l,N 

2020 B(J,I)=RZERO 
2030 B(J,J)=RONE 

RETURN 
END 
SUBROUTINE INITL (N) 

C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENTARY SOLUTION. 
C BY ADDING AN ARTIFICIAL VARIABLE ZO. 
c 

c 

c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 

IOUT=6 
RZERO=O.ODO 
TNONE=-1.0DO 

C SET ZO EQUAL TO THE MOST NEGATIVE Q(I) 
c 

c 

I=l 
J=2 

3000 IF(Q(I)-Q(J))3010,3010,3020 
3010 GO TO 3030 
3020 I=J 
3030 J=J+l 

IF(J-N)3000,3000,3040 

C UPDATE Q VECTOR 
c 

c 

3040 IR=I 
Tl=-Q(IR) 
IF(Tl)3120,3120,3050 

3050 DO 3060 I=l,N 
Q (I ) =Q (I ) +Tl 

3060 CONTINUE 
Q(IR)=Tl 

C UPDATE BASIS INVERSE AND INDICATOR. VECTOR 
C OF BASIC VARIABLES. 
c 

DO 3070 J=l,N 
B(J,IR)=TNONE 
W(J)=Q(J) 
Z(J)=RZERO 
MBSIS(J)=l 
L=N+J 
MBSIS(L)=J 

3070 CONTINUE 
I ZR = IR 

NLl=l 
L=N+IR 
NL2=IR 
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MBSIS(IR)=3 
MBSIS(L)=O 
W(IR)=RZERO 
ZO=Q(IR) 
Ll=l 

c 
C PRINT THE INITIAL ALMOST COMPLEMENTARY SOLUTION 
c 

c 

WRITE(IOUT,3080) 
3080 FORMAT (3(/),5X,29HINITIAL ALMOST COMPLEMENTARY , 

* 8HSOLUTION) 
DO 3100 I=l,N 

WRITE(IOUT,3090)!,W(I) 
3090 FORMAT (10X,2HW(,I4,2H)=,D20.7) 
3100 CONTINUE 

WRITE(IOUT,3110)ZO 
3110 FORMAT (10X,3HZO=,D20.7) 

RETURN 
3120 WRITE(IOUT,3130) 
3130 FORMAT (5X;36HPROBLEM HAS A TRIVIAL COMPLEMENTARY , 

* 23HSOLUTION WITH W=Q, Z=O.) 
IR=lOOO 
RETURN 
END 
SUBROUTINE NEWBS (N) 

C PURPOSE - TO FIND THE NEW BASIS COLUMN TO ENTER IN 
C TERMS OF THE CURRENT BASIS. 
c 

c 

c 

c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 

IOUT=6 
RZERO=O.ODO 

C IF NLl IS NEITHER 1 NOR 2 THEN THE VARIABLE ZO LEAVES THE 
C BASIS INDICATING TERMINATION WITH A COMPLEMENTARY SOLUTION 
c 

c 

IF(NLl-1)4000,4030,4000 
4000 IF(NLl-2)4010,4060,4010 
4010 WRITE(IOUT,4020) 
4020 FORMAT (5X,22HCOMPLEMENTARY SOLUTION) 

CALL PRINT ( N) 
IR=lOOQ 
RETURN 

4030 NE1=2 
NE2=NL2 

C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVERSE. 
c 

DO 4050 I=l,N 
Tl=RZERO 
DO 4040 J=l,N 

4040 Tl=Tl-B(I,J)*AM(J,NE2) 
A(I)=Tl 

4050 CONTINUE 
RETURN 
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4060 NEl=l 
NE2=NL2 
DO 4070 I=l,N 

A (I) =B (I , NE2) 
4070 CONTINUE 

RETURN 
END 
SUBROUTINE SORT (N) 

c 
C PURPOSE - TO FIND THE PIVOT ROW FOR NEXT ITERATION BY THE 
C USE OF (SIMPLEX-TYPE) MINIMUM RATIO RULE. 
c 

c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION AM{200,200),Q(200),B(200,200),A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 

AMAX= ABS(A(l)) 
DO 10 I = 2,N 

IF (AMAX.GE.ABS(A(I))) GO TO 10 
AMAX = ABS(A(I)) 

10 CONTINUE 
NB = 15 
TOL = AMAX*2.0DO**(-NB) 

C** IN ANY•ACTUAL IMPLEMENTATION NB SHOULD BE REPLACED BY B-11 
C** WHERE B IS THE NO. OF BITS IN THE FLOATING POINT MANTISSA 

IOUT=6 

c 

I=l 
5000 IF(A(I).GT.TOL) GO TO 5030 
5010 I=I+l 

IF(I-N)5020,5020,5130 
5020 GO TO 5000 
5030 Tl=Q(I)/A(I) 

IR=I 
5040 I=I+l 

IF(I-N)5050,5050,5090 
5050 IF(A(I).GT.TOL) GO TO 5070 
5060 GO TO 5040 
5070 T2=Q(I)/A(I) 

IF(T2-T1)5080,5040,5040 
5080 IR=! 

Tl=T2 
GO TO 5040 

5090 RETURN 
5130 IF (Q(IZR).GT.TOL) GO TO 5100 

WRITE(IOUT,5140) 
5140 FORMAT(5X,'COMPLEMENTARY SOLUTION') 

CALL PRINT(N) 
IR = 1000 
RETURN 

C FAILURE OF THE RATIO RULE INDICATES TERMINATION WITH 
C NO COMPLEMENTARY SOLUTION. 
c 

5100 WRITE(IOUT,5110) 
5110 FORMAT (5X,37HPROBLEM HAS NO COMPLEMENTARY SOLUTION) 

WRITE(IOUT,5120)Ll . 
5120 FORMAT (10X,13HITERATION N0.,!4) 

IR=lOOO 
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RETURN 
END 
SUBROUTINE PIVOT (N) 

c 
C PURPOSE - TO PERFORM THE PIVOT OPERATION BY UPDATING THE 
C INVERSE OF THE BASIS AND 0 VECTOR. 
c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION AM(200,200),Q(200),B(200,200),A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

c 
COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 

c 

6000 

6010 

DO 6000 I=l,N 
B(IR,I)=B(IR,I)/A(IR) 

Q(IR)=Q(IR)/A(IR) 
DO 6030 I=l,N 

IF(I-IR)6010,6030,6010 
Q(I)=Q(I)-Q(IR)*A(I) 
DO 6020 J=l,N 

6020 
6030 

c 

B(I,J)=B(I,J)-B(IR,J)*A(I) 
CONTINUE 

CONTINUE 

C UPDATE THE INDICATOR VECTOR OF BASIC VARIABLES 
c 

c 

NLl=MBSIS(IR) 
L=N+IR 
NL2=MBSIS(L) 
MBSIS(IR)=NEl 
MBSIS(L)=NE2 
Ll=Ll+l 
RETURN 
END 
SUBROUTINE PRINT (N) 

C PURPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY 
C PROBLEM AND THE ITERATION NUMBER. 
c 

c 

c 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION Af-1(200,200) ,Q(200) ,B(200,200) ,A(200) 
DIMENSION W(200),Z(200),MBSIS(400) 

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS 

IOUT=6 
RZERO=O.ODO 
WRITE(IOUT,7000)Ll 

7000 FORMAT (10X,13HITERATION N0.,14) 
I=N+l 
J=l 

7010 Kl=MBSIS(I) 
K2=MBSIS(J) 
IF{Q(J))7020,7030,7030 

7020 Q(J)=RZERO 
7030 IF(K2-1)7040,7060,7040 
7040 WRITE(IOUT,7050)Kl,Q(J) 
7050 FORMAT (10X,2HZ(,I4,2H)=,D20,7) 

GO TO 7080 
7060 WRITE(IOUT,7070)Kl,Q(J) 

53 



7070 FORMAT (10X,2HW(,I4,2H)=,D20.7) 
7080 I=I+l 

J=J+l 
IF(J-N)7010,7010,7090 

7090 RETURN 
END 

II 
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APPENDIX B 

FLETCHER'S ALGORITHM LISTING 
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//U10832A JOB (10832,269-34-0589), 'F. M. KHALILI' ,TIME=(l,O), 
II CLASS=2,MSGLEVEL=(l,1),MSGCLASS=X,NOTIFY=* 
/*PASSWORD ? 
/*JOBPARM ROOM=F,FORMS=9031 
//EXEC FORTVCLG,IMSL=DP,REGION.G0=5000K 
//FORT.SYSIN DD * 
C**************************************************************C 
C** THIS IS THE LISTING FOR FLETCHER'S ALGORITHM. **C 
C**************************************************************C 
C* *C 
C* MODIFIED BY : FOUAD M. KHALILI *C 
C* DATE : NOV. 20, 1987 *C 
C**************************************************************C 
C* 
C* 

PARAMETER(N=200) 
PARAMETER(M=700) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION 

1 C(N),Q(N,N),A(N,N),RESl(N),RES2lN),ATRANS(N,N), 
2 B(N),X(M),U(N),BDL(N),BDU(N),H(N,N) ,LT(N) 

IN = 5 
IOUT = 6 
TYPE = l.ODO 
MODE = 2 
IF (TYPE.EQ.O.ODO) MODE 1 
SEED = 78.0DO 
NOFROW 15 
NOFCOL = 10 
NOACTV = 2 
NO ZERO 0 

C** GENERATE X AND U VECTORS 
DO 100 I = l,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
X(I) =RANDOM 

100 CONTINUE 
DO 110 I,= l,NOFROW 

CALL GENRTE(SEED,RANDOM) 
U( I) = RANDOM 

llO CONTINUE 
DO 120 I = l,NOFROW-NOACTV 

U( I) = 0. ODO 
120 CONTINUE 
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER) 

DO 200 I = l,NOFROW 
DO 200 J = 1,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
A(I,J) =RANDOM 

200 CONTINUE 
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER) 

DO 300 I = l,NOFCOL 
DO 300 J = l,NOFCOL 

IF (I.GT.J) GO TO 300 
CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
ATRANS(I,J) =RANDOM 

300 CONTINUE 
DO 1000 I l,NOFCOL 
DO 1000 J = l,NOFCOL 

56 



IF (I.LE.J) GO TO 1000 
ATRANS(I,J) = ATRANS(J,I) 

1000 CONTINUE 
C** TYPE = 0.=> Q IS INDEFINITE 
C** TYPE = l.=> Q IS POSITIVE DEFINITE 

IF (TYPE.EQ.0.0DO) GO TO 10 

1200 

10 

BOO 
40 

BlO 

B60 

CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N) 
DO 1200 I = l,NOFCOL 
DO 1200 J = l,NOFCOL 

IF (I.EQ.J)Q(I,J) = Q(I,J) +I.ODO 
CONTINUE 
GO TO 40 
DO BOO I = l,NOFCOL 
DO BOO J = l,NOFCOL 

Q(I,J) = ATRANS(I,J) 
CONTINUE 
DO BlO I = l,NOZERO 
DO BIO J = NOFCOL-NOZERO+l,NOFCOL 

Q (I , J) = 0. ODO 
CONTINUE 
DO B60 I = NOFCOL-NOZERO+l,NOFCOL 
DO B60 J = l,NOZERO 

Q ( I , J ) = 0 • ODO 
CONTINUE 

C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER) 
DO 700 I = l,NOFCOL 

700 

400 

DO 700 J = l,NOFROW 
ATRANS(I,J) = A(J,I) 

CONTINUE 
CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l) 
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l) 
DO 400 I = l,NOFCOL 

C(I) = RESl(I) - 2.0DO*RES2(I) 
CONTINUE 

C** COMPUTE VECTOR B ( ORD IN FLETCHER'S PAPER) 
CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l) 
DO 900 I = l,NOFCOL 

900 

910 

1110 

1100 

IF (X(I).GT.0.0DO) GO TO 900 
CALL GENRTE(SEED,RANDOM) 
C(I) = C(I) + RANDOM 

CONTINUE 
DO 910 I = l,NOFROW 

IF (U(I).GT.O.ODO) GO TO 910 
CALL GENRTE(SEED,RANDOM) 
B(I) = B(I) - RANDOM 

CONTINUE 
DO 1110 I = l,M 

X(I) =I.ODO 
CONTINUE 
DO 1100 I 

BDU (I ) 
BDL(I) 

CONTINUE 
IH = N 
IC = N 
IA = N 
K = 0 
KE = 0 

l,N 
24.0DO 
O.ODO 

DO 140 I = l,NOFCOL 
C (I) = -C (I) 
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DO 140 J = l,NOFROW 
ATRANS(I,J) = A(J,I) 

140 CONTINUE 
DO 160 I = l,NOFCOL 
DO 160 J = l,NOFCOL 

Q(I,J) = 2.0DO*Q(I,J) 
160 CONTINUE 

!COUNT = 0 
CALL ACTIVE(NOFCOL,NOFROW+2*NOFCOL,Q,IA,C,ATRANS,IC,B,BDL,BDU, 

1 X,K,KE,H,IH,LT,MODE,ICOUNT) 
WRITE(IOUT,1400)ICOUNT . 

1400 FORMAT(2X,' NUMBER OF ITERATIONS FOR FLETCHER METHOD= ',I5) 
WRITE (!OUT, 222) 

222 FORMAT (lX,'THE SOLUTION VECTOR FOR THE PROBLEM IS : ') 
DO 1500 I = l,NOFCOL 
WRITE(IOUT,lll)I,X(I) 

111 FORMAT(2X,' X(',13,') = ',D20.7) 
1500 CONTINUE 

STOP 
END 

C* 
C* 
C**************************************************************C 
C* *C 
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT.*C 
C* ARGUMENTS *C 
C* RLEFT THE FIRST MATRIX *C 
C* RIGHT : THE SECOND MATRIX *C 
C* LEFTR : ROW SIZE OF THE FIRST MATRIX *C 
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX *C 
C* I RIHTC: COLUMN SIZE OF THE SECOND MATRIX *C 
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C 
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C 
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C 
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C 
C* RESULT: MULTIPLICATION RESULT *C 
C* INPUT : *C 
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4 *C 
C* OUTPUT *C 
C* RESULT *C 
C* *C 
C**************************************************************C 
C* 
C* 

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2, 
1 ID3 I ID4) 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4) 
DO 100 I = l,LEFTR 
DO 100 J = l,IRIHTC 

RESULT(I,J) = O.ODO 
100 CONTINUE 

DO 200 I = l,LEFTR 
DO 300 J = l,IRIHTC 
DO 400 K = l,LEFTC 

RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J) 
400 CONTINUE 
300 CONTINUE 
200 CONTINUE 

RETURN 
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END 
C* 
C* 
C*************************************************************C 
C* *C 
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C 
C* ARGUMENTS *C 
C* SEED THE SEED FOR THE GENERATOR *C 
C* RANDOM THE GENERATED NUMBER *C 
C* INPUT : *C 
C* SEED *C 
C* OUTPUT: *C 
C* SEED,RANDOM *C 
C* *C 
C*************************************************************C 
C* 
C* 

SUBROUTINE GENRTE(SEED,RANDOM) 
IMPLICIT REAL*8(A-H,O-Z) 
X = 3373.0DO 
Y = 6925.0DO 
WORD = 32768.0DO 
TMAX = 24.0DO 
ONE = I.ODO 
SEED= DMOD((X*SEED + Y),WORD) 
RANDOM= INT(TMAX*(S~ED/WORD) +ONE) 
RETURN 
END 

C***************************************************************C 
C* *C 
C* SUBROUTINE ACTIVE SOLVES THE GENERAL QUADRATIC PROGRAMMING *C 
C* PROBLEM USING FLETCHER'S ACTIVE SET METHOD. THE METHOD IS *C 
C* GIVEN BY R. FLETCHER ("A GENERAL QUADRATIC PROGRAMMING *C 
C* ALGORITHM", J. INST. MATH. APPLCS.,7,(1971),PP. 76-91.) *C 
C* PROGRAM SOURCE : UNITED KINGDOM ATOMIC ENERGY AUTHORITY, *C 
C* RESEARCH GROUP REPORT, AERE - R 6370, "A FORTRAN SUBROUTINE*C 
C* FOR GENERAL QUADRATIC PROGRAMMING",R. FLETCHER, (1970). *C 
C******************~********************************************C 

C* *C 
C* MODIFIED BY : FOUAD M. KHALILI · *C 
C* DATE : NOV. 20~1987. *C 
C* *C 
C***************************************************************C 
C* *C 
C* THE CALLING SEQUENCE FOR ACTIVE IS *C 
C* CALL ACTIVE(N,M,A,IA,B,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT,MODE, *C 
C* !COUNT) *C 
C* THE ARGUMENTS WILL BE DESCRIBED AS FOLLOWS : *C 
C* N THE NUMBER OF VARIABLES. *C 
C* M THE TOTAL NUMBER OF CONSTRAINTS, *C 
C* A THE COEFFICIENTS OF THE QUADRATIC TERMS IN THE *C 
C* QUADRATIC FUNCTION l/2*X(TRANS)*A*X - B(TRANS)*X *C 
C* A SHOULD BE A SYMMETRIC NXN MATRIX, NOTE ALSO THAT *C 
C* A FACTOR OF 1/2 OCCURS IN THE DEFINITION OF THE *C 
C* .FUNCTION. *C 
C* IA THE FIRST DIMENSION OF A IN THE DIMENSION STATEMENT *C 
C* WHICH ALLOCATES SPACE TO A. *C 
C* B THE COEFFICIENTS OF THE LINEAR TERMS IN THE QUAD- *C 
C* RATIC FUNCTION GIVEN ABOVE. B SHOULD HAVE N ELEMENTS*C 
C* C THE CONSTRAINTS MATRIX : EACH COLUMN OF C CONTAINS *C 

59 



C* 
C* 
C* IC 
C* 
C* D 
C* 
C* BDL 
C* 
C* BDU 
C* X 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* K 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* KE 
C* 
C* 
C* H 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* IH 
C* 
C* LT 
C* 
C* 
C* 
C* 
C* 

THE COEFFICIENTS OF CONSTRAINT C(TRANS)*X >= D • *C 
THERE ARE M-2N COLUMNS OF C, AND N ROWS. *C 
THE FIRST DIMENSION OF C IN THE DIMENSION STATEMENT *C 
WHICH ALLOCATES SPACE TO C. *C 
THE RIGHT-HAND SIDES OF THE CONSTRAINTS CORRESPOND- *C 
ING TO C, THERE ARE M-2N ELEMENTS IN D. *C 
LOWER BOUNDS ON THE VARIABLES. BDL HAS N ELEMENTS, *C 
THE ITH BEING THE BOUND ON THE ITH VARIABLE. *C 
UPPER BOUNDS ON THE VARIABLES, N ELEMENTS AGAIN. *C 
THE ESTIMATE OF THE SOLUTION VECTOR, AND WORKING *C 
SPACE. X(i), X(2), ... , X(N) CONTAINS THE VALUE OF *C 
VECTOR X WHICH MINIMIZES THE OBJECTIVE FUNCTION. *C 
THERE SHOULD BE AT LEAST 2N+M OR 7N ELEMENTS IN X, *C 
WHICH EVER IS GREATER, THE REMAINDER BEING USED FOR *C 
WORKING SPACE. ON ENTRY, WHEN MODE 1 OR 2 IS BEING *C 
USED, THEN X(l}, X(2}, ••• , X(N) MIGHT BE USED TO *C 
DETERMINE WHICH BOUNDS TO INCLUDE FOR THE FIRST *C 
TRIAL BASIS, AND SHOULD BE SET ACCORDINGLY. ON ENTRY*C 
WITH MODE 3, THE FIRST N ELEMENTS OF VECTOR X SHOULD*C 
BE SET TO A FEASIBLE POINT. NOTHING NEED TO BE SET *C 
ON ENTRY WITH MODES 4 AND 5. FINALLY, THE GRADIENT *C 
OF .,THE OBJECTIVE FUNCTION , A*X - B, WILL BE FOUND *C 
IN X(6N+l), X(N6+2), ••• , X(7N) ON EXIT. THIS CAN BE*C 
USED TO COMPUTE THE MINIMUM VALUE OF THE FUNCTION IF*C 
REQUIRED, .USING F(X) = l/2*X(TRANS)*(A*X - 2*B). *C 
THE NUMBER OF CONSTRAINTS IN THE BASIS. ON ENTRY IN *C 
MODES 1 AND 2, K SHOULD BE SET EQUAL TO THE NUMBER *C 
OF CONSTRAINTS (EQUALITIES AND OTHER INEQUALITIES *C 
OF TYPE C(TRANS)*X >= D} WHICH ARE TO APPEAR IN THE *C 
TRAIL VERTEX FOR SUBROUTINE VERTEX. WITH NO A-PRIORI*C 
KNOWLEDG~ SET K = KE. IF K IS SET NOT EQUAL TO ZERO,*C 
THEN LT MUST ALSO BE SET APPROPRIATELY. ON ENTRY IN *C 
MODE 3, K MUST BE SET EQUAL TO ZERO. ON ENTRY IN *C 
MODES 4 AND 5, K SHOULD CONTAIN THE NUMBER OF CONST-*C 
RAINTS TO APPEAR IN THE EP(EQUALITY PROBLEM); THIS *C 
WILL USUALLY BE THE VALUE WHICH WAS LEFT ON EXIT *C 
FROM PREVIOUS CALL OF ACTIVE. ON EXIT, K WILL ALWAYS*C 
CONTAIN THE NUMBER OF CONSTRAINTS IN THE FINAL *C 
BASIS • IF NO FEASIBLE POINT EXISTS, THEN K IS SET *C 
EQUAL TO ZERO AND A DIAGNOSTIC IS PRINTED. *C 
THE TOTAL NUMBER OF EQUALITY CONSTRAINTS IN THE *C 
PROBLEM. SET KE = 0 IF THERE ARE NONE. KE MUST BE *C 
LESS THAN OR EQUAL TO K. *C 
WORKING SPACE, H IS 2NX2N MATRIX. ON ENTRY, NOTHING *C 
NEED BE SET EXCEPT IN MODE 5, WHEN IT MUST CONTAIN *C 
THE CORRECT OPERATORS. THESE WILL USUALLY BE LEFT *C 
BY A PREVIOUS CALL TO ACTIVE AND SHOULD NOT BE *C 
CHANGED. ON EXIT, THE LEADING NXN PARTITION CONTAINS*C 
THE OPERATOR HAND PARTITION BELOW THIS ( ROWS N+l TO*C 
N+K} CON'I'?>.INS THE OPERATOR C*. THE LATTER OPERATOR *C 
CAN BE USED TO CALCULATE LAGRANGE MULTIPLIERS OF THE*C 
EP CORRESPONDING TO THE FINAL BASIS, IF REQUIRED. *C 
THE FIRST DIMENSION OF H IN THE DIMENSION STATEMENT *C 
WHICH ALLOCATES SPACE TO H. *C 
INTEGER WORKING SPACE. THE CONSTRAINTS ARE NUMBERED *C 
AS FOLLOWS. LOWER BOUNDS FROM 1 TO N, UPPER BOUNDS *C 
FROM N+l TO 2N, OTHERS FROM 2N+l TO M. ON EXIT, *C 
LT(l), LT(2}, ••• , LT(K} STORE THE INDEX NUMBERS OF *C 
THE ACTIVE CONSTRAINTS. ON ENTRY, LT(l), LT(2), •.• ,*C 
LT(KE} MUST ALWAYS CONTAIN THE INDEX NUMBERS OF THE *C 
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C* EQUALITY CONSTRAINTS. IN MODES 1 AND 2, LT(KE+l), *C 
C* LT(KE+2), .•. , LT(K) MUST ALSO CONTAIN THE INDEX *C 
C* NUMBERS OF ANY OTHER CONSTRAINTS TO APPEAR IN THE *C 
C* TRIAL VERTEX FOR SUBROUTINE VERTEX. IN MODES 4 AND *C 
C* 5, LT(KE+l), LT(KE+2), ... , LT(K) MUST CONTAIN THE *C 
C* INDEX NUMBERS OF CONSTRAINTS OTHER THAN EQUALITIES *C 
C* WHICH ARE TO APPEAR IN THE EP. HOWEVER, IN MODES 4 *C 
C* AND 5, LT WILL USUALLY HAVE BEEN SET FROM A PREVIOUS*C 
C* CALL OF ACTIVE AND SHOULD NOT BE CHANGED. LT MUST *C 
C* HAVE AT LEAST 2N+M ELEMENTS, THE REMAINDER BEING *C 
C* USED AS WORKING SPACE. *C 
C* MODE AN INTEGER BETWEEN 1 AND 5 INDICATING THE MODE OF *C 
C* USE OF THE SUBROUTINE. *C 
C* 1 FOR GENERAL QUADRATIC PROGRAMMING CASE. *C 
C* 2 FOR A STRICTLY CONVEX OBJECTIVE FUNCTION CASE. *C 
C* 3 SAME AS IN MODE 2 EXCEPT THAT A FEASIBLE POINT *C 
C* MUST BE PROVIDED BY THE USER SO THAT THERE IS NO*C 
C* NEED TO CALL SUBROUTINE VERTEX. *C 
C* 4 : FOR GENERAL PARAMETRIC PROGRAMMING. *C 
C* 5 : FOR RIGHT-HAND SIDE PARAMETRIC PROGRAMMING. *C 
C* ICOUNT:THE NUMBER .OF ITERATIONS THAT WAS REQUIRED TO FIND *C 
C* THE OPTIMAL POINT. *C 
C* *C 
C***************************************************************C 
C* *C 
C* SUBROUTINES CALLED BY SUBROUTINE ACTIVE ARE : *C 
C* VERTEX TO FIND A VERTEX POINT (SEE DESCRIPTION BELOW). *C 
C* INNERP : TO COMPUTE THE INNER PRODUCT OF TWO VECTORS. *C 
C* LINV2F : TO FIND THE INVERSE OF A MATRIX. THIS IS AN IMSL*C 
C* LIBRARY SUBROUTINE. *C 
C* *C 
C***************************************************************C 
C* 
C* 
C* 

SUBROUTINE ACTIVE(N,M,A,IA,B,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT,MOOE, 
1 !COUNT) 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION A( IA,*) ,B(*) ,C (IC,*) ,D( *), BDL( *), BDU(*) ,X( *), 

1 H(IH,*),LT(*),WKAREA(ll000),TEMP(200,200) 
LOGICAL RETEST,PASSIV,POSTIV 
RETEST = .FALSE. 
IOUT = 6 
IN = 5 
IX = 700 
IDGT = 5 
NN N + N 
N3 NN + N 
N4 NN + NN 
N5 N4 + N 
NG NS + N 
IF (MODE.GE.3) GO TO 99 

C** CALL FEASIBLE VERTEX ROUTINE 
8 CALL VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT) 

IF (K.EQ.O) RETURN 
IF (MODE.EQ.2.AND .. NOT.RETEST) GO TO 100 

C** INITIAL OPERATORS H=O AND CSTAR=C(-1) FROM VERTEX 
DO 60 I = l,N 
DO 60 J = l,N 

H(N+I,J) = H(I,J) 
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H (I , J) = 0. ODO 
60 CONTINUE 

GO TO 120 
99 DO 1 I=l,M 

LT(NN+I) = 1 
1 CONTINUE 

C** CONSTRAINTS INDEXED AS FOLLOWS 
C** EQUALITY -1 
C** ACTIVE 0 
C** INACTIVE 1 

IF (K.EQ.0) GO TO 100 
DO 2 I = 1,K 
J = 0 
IF (I.LE.KE) J = -1 

2 LT(NN+LT(I)) = J 
100 IF (MODE.EQ.5.AND .• NOT.RETEST) GO TO 109 
C** SET UP MATRIX AND RHS OF EQUATIONS GOVERNING EQUALITY PROBLEM 

DO 101 I = 1,N 
X(N+I) = B(I) 
DO 101 J = 1,N 

101 H(I ,J) = A(I ,J) 
IF((MODE.EQ.2.0R.MODE.EQ.3).AND .. NOT.RETEST) GO TO 200 
IF (K.EQ.0) GO TO 107 
DO 102 I = 1,K 

LI = LT(I) 
IF (LI.GT.NN) GO TO 105 
DO 103 J = l,N 

H(J,N+I) = O.ODO 
H(N+I,J) = O.ODO 

103 CONTINUE 
IF (LI.GT.N) GO TO 104 
H(N+I,LI) = 1.0DO 
H(LI,N+I) = 1.0DO 
X(NN+I) = BDL(LI) 
GO TO 108 

104 LI = LI - N 
H(N+I,LI) = -1.0DO 
H(LI,N+I) = -1.0DO 
X(NN+I) = -BDU(LI) 
GO TO 108 

105 LI = LI - NN 
DO 106 J = 1,N 

H(N+I,J) = C(J,LI) 
H(J,N+I) = C(J,LI) 

106 CONTINUE 
X(NN+I) = D(LI) 

108 DO 102 J = l,K 
H(N+I,N+J) = 0. 

102 CONTINUE 
107 NK = N + K 
C** INVERT MATRIX GIVING OPERATORS H AND CSTAR 
C** CALL INVERT(H,NK,IH) 

CALL LINV2F(H,NK,IH,TEMP,IDGT,WKAREA,IER) 
DO 5100 I 1,NK 
DO 5100 J 1,NK 

H(I,J) = TEMP(I,J) 
5100 CONTINUE 

GO TO 118 
C** SET UP RHS ONLY 
109 DO 113 I = 1,N 
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X(N+I) = B(I) 
113 CONTINUE 

DO 115 I = 1, K 
LI= LT(!) 
IF (LI.GT.NN) GO TO 117 
IF (LI.GT.N) GO TO 116 
X(NN+I) = BDL(LI) 
GO TO 115 

116 X(NN+I) = -BDU(LI-N) 
GO TO 115 

117 X(NN+I) = D(LI-NN) 
115 CONTINUE 
C** SOLVE FOR SOLUTION POINT X 

NK = N + K 
118 DO 119 I = l,N 

CALL INNERP(H,X,IH,IH,IX,l,X(I),NK,l,2,N+l,N+2,0,0,I,l) 
119 CONTINUE 
C** CHECK FEASIBILITY, IF NOT EXIT TO 8 

DO 110 I = l,M 
IF (LT(NN+I).LE.0) GO TO 110 
IF (I.GT.N) GO TO 111 
Z = X(I) - BDL(I) 
GO TO 114 

111 IF (I.GT.NN) GO TO 112 
Z = BDU(I-N) - X(I-N) 
GO TO 114 

112 J = I - NN 
CALL INNERP(C,X,IC,IC,IX,l,Z,N,1,2,1,2,0,0,J,l) 
Z = Z - D(J) 

114 IF (Z.LT.0.0DO) GO TO B 
110 CONTINUE 
120 CONTINUE 
C** CALCULATE GRADIENT G ANDLAGRANGE MULTIPLIERS -CSTAR.G, 
C** FIND LARGEST MULTIPLIER, EXIT IF NOT POSITIVE 

DO 121 I = l,N 
CALL INNERP(A,X,IA,IA,IX,l,X(N6+I),N,l,2,l,2,l,0,I,l) 
X(N6+I) = X(N6+I) - B(I) 

121 CONTINUE 
IF (K.EQ.O) RETURN 

123 Z = -l.OD75 
DO 122 I = l,K 

IF (LT(NN+LT(I)).EQ.-1) GO TO 122 
CALL INNERP(H,X,IH,IH,IX,l,ZZ,N,l,2,N6+1,N6+2,l,0,N+I,l) 
zz = -zz 
IF (ZZ.LE.Z) GO TO 122 
z = zz 
I I = I 

122 CONTINUE 
IF (Z.GT.O.ODO) GO TO 130 
IF (RETEST.OR.MODE.GE.4) GO TO 137 
RETEST = .TRUE. 
GO TO 100 

137 IF (Z.NE.O.ODO) RETURN 
WRITE(IOUT,1003) 

1003 FORMAT ('OSOLUTION MAY BE A DEGENERATE LOCAL MINIMUM') 
RETURN 

C** SET DIRECTION OF SEARCH AS CORRESPONDING ROW OF CSTAR 
130 DO 131 I = l,N 

X(NN+I) = H(N+II,I) 
131 CONTINUE 
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136 DO 132 I = l,N 
CALL INNERP(A,X,IA,IA,IX,l,X(N+I),N,l,2,NN+l,NN+2,l,0,I,l) 

132 CONTINUE 
CALL INNERP(X,X,IX,l,IX,l,CAC,N,NN+l,NN+2,N+l,N+2,0,0,l,l) 
IF (CAC.GT.O.ODO) GO TO 134 
POSTIV = .FALSE. 
Y = 1. ODO 
GO TO 135 

134 POSTIV = .TRUE. 
Y = Z/CAC 

135 DO 133 I =l,N 
X(N5+I) = X(NN+I)*Y 

133 CONTINUE 
PASSIV = .TRUE. 

139 ALPHA = l.OD75 
NK = N + K 

C** LINEAR SEARCH ALONG DIRECTION OF SEARCH,PASSIV INDICATES 
C** A CONSTRAINT HAS BEEN REMOVED TO GET SEARCH DIRECTION, 
C** POSTIV INDICATES POSITIVE CURVATURE ALONG DIRECTION 

DO 140 I = l ,M 
IF (LT(NN+I).LE.0) GO TO 140 
IF (I.GT.NJ GO TO 141 
IF (X(N5+I),GE.0.0DO)GO TO 140 
CC= (BDL(I) - X(I))/X(N5+I) 
GO TO 143 

141 IF (I.GT.NN) GO TO 142 
IF (X(N4+I).LE.O.ODO) GO TO 140 
CC= (BDU(I-N) - X(I-N))/X(N4+I) 
GO TO 143 

142 J = I - NN 
CALL INNERP(C,X,IC,IC,IX,l,ZZ,N,l,2,N5+1,N5+2,0,0,J,1) 
IF (ZZ.GE.O.ODO) GO TO 140 
CALL INNERP(C,X,IC,IC,IX,l,CC,N,1,2,1,2,0,0,J,l) 
CC = D(J) - CC 
CC = CC/ZZ 

143 IF (CC.GE.ALPHA) GO TO 140 
ALPHA .; CC 
!AL = I· 

140 CONTINUE 
IF (PASSIV) LT(NN+LT(II)) = 1 

C** IF MINIMUM FOUND, GO TO 170 
IF(POSTIV.AND.ALPHA.GE.l.ODO) GO TO 170 

C** CALCULATE H.C AND CSTAR.C 
DO 144 I = l,N 

X(I) = X(I) + ALPHA*X(N5+I) 
144 CONTINUE 

ALPHA = ALPHA*Y 
J = 1 
IF (K.EQ.N) J = N + 1 
IF (IAL.GT.N) GO TO 146 
DO 145 I = J,NK 

X(N3+I) ~ H(I,IAL) 
145 CONTINUE 

CHC = X(N3+IAL) 
GO TO 151 

146 IB = IAL - N 
IF (IB.GT.N) GO TO 148 
DO 147 I = J,NK 

X(N3+I) = -H(I,IB) 
14 7 CONTINUE 



CHC = -X(N3+IB) 
GO TO 151 

148 IB = IB - N 
D0149I=l,N 

X(N5+I) = C(I,IB) 
149 CONTINUE 

DO 150 I = J,NK 
CALL INNERP(H,X,IH,IH,IX,l,X(N3+I) ,N,l,2,N5+1,N5+2,l,0,I,l) 

150 CONTINUE 
IF(K.NE.N) 

1 CALL INNERP(X,X,IX,l,IX,l,CHC,N,N5+1,N5+2,N3+1,N3+2,0,0,l,l) 
151 LT(NN+IAL) = 0 

IF (K,EQ.N) GO TO 180 
IF (PASSIV) GO TO 160 

C** APPLY FORMULA FOR ADDING A CONSTRAINT 
156 IF (K.EQ.0) GO TO 157 

DO 152 I = l,K 
ALPHA= X(N4+I)/CHC 
NI = N + I 
DO 152 J = l,N 

H(NI,J) = H(NI,J) - ALPHA*X(N3+J~ 

152 CONTINUE 
157 K = K + 1 

LT(K) = !AL 
DO 158 J = l,N 

H(N+K,J) = X(N3+J)/CHC 
158 CONTINUE 

IF(K.LT.N) GO TO 154 
DO 153 I = l,N 
DO 153 J = l,N 

H(I ,J) = O.ODO 
153 CONTINUE 

GO TO 159 
154 DO 155 I = l,N 

ALPHA= X(N3+I)/CHC 
DO 155 J = l,I 
H(I,J) = H(I,J) - ALPHA*X(N3+J) 
H(J,I) = H(I,J) 

155 CONTINUE 
159 ICOUNT = !COUNT + 1 

IF(.NOT.PASSIV) GO TO 167 
C** REMOVAL OF A CONSTRAINT HAS BEEN DEFERRED, SET UP AS IF 
C** THE CONSTRAINT IS BEING REMOVED FROM AUGMENTED BASIS 

DO 164 I = l,N 
CALL INNERP(A,X,IA,IA,IX,l,X(N6+I),N,l,2,l,2,l,O,I,l) 
X(N6+I) = X(N6+I) - B(I) 
X(NN+I) = H(N+II,I) 

164 CONTINUE 
CALL INNERP(X,X,IX,l,IX,l,Z,N,N6+1,N6+2,NN+l,NN+2,0,0,l,l) 
z = -z 
IF (Z.EQ.0.0DO) GO TO 178 
GO TO 136 

160 CC= X(N4+II) 
Y = CHC*CAC + CC**2.0DO 
CALL INNERP(X,X,IX,l,IX,l,GHC,N,N6+1,N6+2,N3+1,N3+2,0,0,l,l) 
IF (ALPHA*Y.LT.CHC*(Z - ALPHA*CAC) + GHC*CC) GO TO 156 

C** APPLY FORMULA FOR EXCHANGING NEW CONSTRAINT 
C** WITH PASSIVE CONSTRAINT 

!COUNT !COUNT + 2 
DO 161 I = l,K 
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NI = N + I 
CALL INNERP(H,X,IH,IH,IX,l,X(N5+I) ,N,l,2,N+l,N+2,l,O,NI,l) 

161 CONTINUE 
DO 162 I = l,N 

X(N+I) = (CHC*X(NN+I) - CC*X(N3+I))/Y 
.X(N6+I) = (CAC*X(N3+I) + CC*X(NN+I))/Y 

162 CONTINUE 
DO 163 I = l,N 
DO 163 J = l,I 

H(I,J) = H(I,J) + X(N+I)*X(NN+J) - X(N6+I)*X(N3+J) 
H(J,I) = H(I,J) 

163 CONTINUE 
X(N4+II) = X(N4+II) - I.ODO 
DO 166 I = l,K 

NI = N + I 
DO 166 J = l,N 

H(NI,J) = H(NI,J) - X(N4+I)*X(N6+J) - X(N5+I)*X(N+J) 
166 CONTINUE 

LT(II) = !AL 
167 IF(K.EQ.N) GO TO 120 
C** CALCULATE G, NEW SEARCH DIRECTION IS -H.G 

DO 168 I = l,N 
CALL INNERP(A,X,IA,IA,IX,l,X(N+I) ,N,l,2,l,2,l,0,I,l) 
X(N+I) = X(N+I) - B(I) 

168 CONTINUE 
Z = O.ODO 
DO 169 I = l,N 

CALL INNERP(H,X,IH,IH,IX,l,X(N5+I) ,N,l,2,N+l,N+2,l,O,I,l) 
X(N5+I) = -X(N5+I) 
IF (X(N5+I).NE.O.ODO) Z = l.ODO 

169 CONTINUE 
PASSIV = .FALSE. 
IF (Z.EQ.0.0DO) GO TO 120 
POSTIV = .TRUE. 
GO TO 139 

170 DO 171 I = l,N 
X(I) = X(I) + X(N5+I) 

1 71 CONTINUE 
C** X IS NOW THE MINIMUM POINT IN THE BASIS 
C** UPDATE THE OPERATORS IF A CONSTRAINT HAD BEEN REMOVED 

IF (.NOT.PASSIV) GO TO 120 
ICOUNT = ICOUNT + 1 

178 DO 172 I = l,N 
ALPHA= X(NN+I)/CAC 
DO 172 J = l,I 
H(I,J) = H(I,J) + ALPHA*X(NN+J) 
H(J,I) = H(I,J) 

172 CONTINUE 
IF (K.GT.l) GO TO 177 
K = 0 
GO TO 120 

177 IF (II.EQ.K) GO TO 175 
DO 174 I = l,N 

174 H(N+II,I) = H(N+K,I) 
LT(II) = LT(K) 

175 K = K - 1 
DO 173 I = l,K 

NI = N + I 
CALL INNERP(H,X,IH,IH,IX,l,X(N3+I),N,l,2,N+l,N+2,l,O,NI,l) 

173 CONTINUE 
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DO 176 I =l,K 
ALPHA= X(N3+I)/CAC 
NI = N + I 
DO 176 J = l,N 

H(NI,J) = H(NI,J) - ALPHA•X(NN+J) 
176 CONTINUE 

GO TO 120 
180 Z = l.ODO/X(N4+II) 
C** APPLY SIMPLEX FORMULA TO EXCHANGE CONSTRAINTS 

!COUNT = ICOUNT + 1 
DO 181 I = l,N 

NI = N + I 
IF (I.NE.II) GO TO 182 
DO 183 J = l,N 

H(NI,J) = H(NI,J)*Z 
183 CONTINUE 

GO TO 181 
182 ZZ = Z*X(N4+I) 

DO 184 J = l,N 
H(NI,J) = H(NI,J) - ZZ*X(NN+J) 

184 CONTINUE 
181 CONTINUE 

LT(II) = IAL 
GO TO 120 

200 K = 0 
IF (KE.NE.OJ WRITE(IOUT,1002) 

1002 FORMAT('OKE MUST BE 0 IN MODES 2 AND 3') 
KE = 0 
DO 202 I = l,M 

LT(NN+I) = 1 
202 CONTINUE 
C** CALL INVERT(H,N,IH) 

CALL LINV2F(H,N,IH,TEMP,IDGT,WKAREA,IER) 
DO 5200 I - l,N 
DO 5200 J = l,N 

H(I,J) = TEMP(I,J) 
5200 CONTINUE 
C** START WITH EMPTY BASIS FROM FEASIBLE POINT 
C** SEARCH DIRECTION IS -A(-1).B . 

C* 
C* 

GO TO 167 
END 

C******************************************************************C 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 
C* 

*C 
SUBROUTINE INNERP : CALCULATE THE INNERPRODUCT OF TWO VECTORS *C 
IT MULTIPLIES THE TWO VECTORS THAT ARE EXTRACTED FROM ARRAYS *C 
E & F. THE ELEMENTS ARE AT LOCATIONS I+(II-l)*(J-I) AND THE *C 
ELEMENTS OF THE SECOND VECTOR ARE BEING STORED AT LOCATIONS *C 
K+(II-l)*(L-K), WHERE II = l,N. *C 
INPUT : *C 

E,F,IDIM1,IDIM2,IDIM3,IDIM4,N,I,J,K,L,Il,I2,Nl,N2 *C 
OUTPUT: 

SUM 
ARGUMENTS : 

E,F,I,J,K,L DEFINED ABOVE. 
IDIMl ROW DIMENSION OF THE FIRST ARRAY FROM WHICH THE *C 

FIRST VECTOR IS BEING EXTRACTED. *C 
IDIM2 COLUMN DIMENSION OF THE FIRST ARRAY. *C 
IDIM3 ROW,DIMENSION OF THE SECOND ARRAY FROM WHICH THE *C 

67 



C* SECOND VECTOR IS BEING EXTRACTED. *C 
C* IDIM4 COLUMN DIMENSION OF THE SECOND VECTOR. *C 
C* N NUMBER OF ELEMENTS TO BE MULTIPLIED. *C 
C* Il IF = 0 => EXTRACT ELEMENTS OF COLUMN Nl FROM E FOR *C 
C* THE FIRST VECTOR; ELSE IF = 1 => EXTRACT ELEMENTS *C 
C* OF ROW Nl. *C 
C* I2 IF = 0 => EXTRACT ELEMENTS OF COLUMN N2 FROM F FOR *C 
C* THE SECOND VECTOR; ELSE IF = 1 => EXTRACT ELEMENTS *C 
C* OF ROW N2. *C 
C* Nl, N2 DEFINED ABOVE *C 
C* SUM : THE PRODUCT OF MULTIPLICATION *C 
C* *C 
C* ****************************************************************C 
C* 
C* 

SUBROUTINE INNERP(E, F, I DI Ml, IDIM2, IDIM3, IDIM4, SUM, N, I ,J ,.K, L, 
1 Il,I2,Nl,N2) 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION E(IDIM1,IDIM2),F(IDIM3,IDIM4) 
SUM = O.ODO 
DO 10 I I = 1,N 
IF(Il.EQ.0) GO TO 100 
IF(I2.EQ.O) GO TO 200 
SUM= SUM+ E(Nl,I+(II-l)*(J-I))*F(N2,K+(II-l)*(L-K)) 
GO TO 10 

100 IF(I2.EQ.1) GO TO 300 
SUM= SUM+ E(I+(II-l)*(J-I),Nl)*F(K+(II-l)*(L-K),N2) 
GO TO 10 

200 SUM= SUM+ E(Nl,I+(II-l)*(J-I))*F(K+(II-l)*(L-K),N2) 
GO TO 10 

300 SUM= SUM+ E(I+(II-l)*(J-I),Nl)*F(N2,K+(II-l)*(L-K)) 
10 CONTINUE 

IF(DABS(SUM).LE.1.D-15) SUM= O.ODO 
RETURN 
END 

C***************************************************************C 
C* *C 
C* SUBROUTINE VERTEX FINDS A FEASIBLE VERTEX FOR A LINEARLY *C 
C* CONSTRAINED FEASIBLE SOLUTION SPACE. *C 
C* PROGRAM SOURCE : UNITED KINGDOM ATOMIC ENERGY AUTHORITY, *C 
C* RESEARCH GROUP REPORT, AERE - R 6354, "THE CALCULATION OF *C 
C* FEASIBLE POINTS FOR LINEARLY CONSTRAINED OPTIMIZATION *C 
C* PROBLEMS", R. FLETCHER, (1970). *C 
C***************************************************************C 
C* *C 
C* MODIFIED BY : FOUAD M. KHALILI *C 
C* DATE : NOV. 20,1987. *C 
C* *C 
C******~********************************************************C 
C* *C-
C* THE CALLING SEQUENCE FOR ACTIVE IS *C 
C* CALL VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT) *C 
C* THE ARGUMENTS WILL BE DESCRIBED AS FOLLOWS : *C 
C* N THE NUMBER OF VARIABLES. *C 
C* M THE TOTAL NUMBER OF CONSTRAINTS. *C 
C* C THE CONSTRAINTS MATRIX : EACH COLUMN OF C CONTAINS *C 
C* THE COEFFICIENTS OF CONSTRAINT C(TRANS)*X >= D . *C 
C* THERE ARE.M-2N COLUMNS OF C, AND N ROWS. *C 
C* IC THE FIRST DIMENSION OF C IN THE DIMENSION STATEMENT *C 
C* WHICH ALLOCATES SPACE TO C. *C 
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C* D THE RIGHT-HAND SIDES OF THE CONSTRAINTS CORRESPOND- *C 
C* ING TO C, THERE ARE M-2N ELEMENTS IN D. *C 
C* BDL LOWER BOUNDS ON THE VARIABLES. BDL HAS N ELEMENTS, *C 
C* THE ITH BEING THE BOUND ON THE ITH VARIABLE. *C 
C* BDU UPPER BOUNDS ON THE VARIABLES, N ELEMENTS.AGAIN. *C 
C* X POSITION OF THE VERTEX AND THE SPACE. ON EXIT, *C 
C* X(l), X(2), .•• , X(N) CONTAINS THE POSITION OF THE *C 
C* FEASIBLE VERTEX. THERE SHOULD BE 2N+M ELEMENTS IN *C 
C* X, THE REMAINING ELEMENTS N+M BEING USED AS WORKING*C 
C* SPACE. ON ENTRY, X(I) MIGHT BE USED TO DECIDE *C 
C* WHETHER TO INCLUDE AN UPPER BOUND OR A LOWER BOUND *C 
C* IN THE BASIS. THE CHOICE IS MADE BY INCLUDING THE *C 
C* BOUND WHICH IS NEAREST TO X(I), OR THE LOWER BOUND *C 
C* IN CASES OF EQUALITY. THE USER CAN THUS DETERMINE *C 
C* THE CHOICE BY SETTING X SUITABLY ON ENTRY. *C 
C* K THE TOTAL NUMBER OF DESIGNATED CONSTRAINTS TO APPEAR*C 
C* IN THE BASIS. SET K = 0 IF NONE. IF K <> 0 THEN LT *C 
C* MUST BE SET AS INDICATED. ON EXIT K = N MEANS THAT *C 
C* A FEASIBLE VERTEX HAS BEEN FOUND AND K = 0 MEANS *C 
C* THAT NO FEASIBLE POINT EXISTS. A DIAGNOSTIC IS *C 
C* PRINTED IN THE LATTER CASE. . *C 
C* KE THE TOTAL NUMBER OF EQUALITY CONSTRAINTS IN THE *C 
C* PROBLEM. SET KE = 0 IF THERE ARE NONE. KE MUST BE *C 
C* LESS THAN OR EQUAL TO K. *C 
C* H WORKING SPACE. H IS NXN+K MATRIX, WHERE K IS THE *C 
C* NUMBER OF INITIALLY DESIGNATED CONSTRAINTS. THE *C 
C* LEADING NXN PARTITION OF H STORES THE INVERSE MATRIX*C 
C* CORRESPONDIND TO THE NORMALS OF CONSTRAINTS IN THE *C 
C* BASIS. *C 
C* IH THE FIRST DIMENSION OF H IN THE DIMENSION STATEMENT *C 
C* WHICH ALLOCATES SPACE TO H. *C 
C* LT INTEGER WORKING SPACE. THE CONSTRAINTS ARE NUMBERED *C 
C* AS FOLLOWS. LOWER BOUNDS FROM 1 TO N, UPPE~ BOUNDS *C 
C* FROM N+l TO 2N, OTHERS FROM 2N+l TOM. LT(l), LT(2),*C 
C* ... , LT(N) STORE THE INDEX NUMBERS OF CONSTRAINTS *C 
C* IN THE BASIS. THE MATRIX OF NORMALS OF ACTIVE *C 
C* CONSTRAINTS C IS THUS THE COLUMNS OF (I , I , C) *C 
C* CORRESPONDING TO LT(l), LT(2), .•. , LT(N), (IN THAT *C 
C* ORDER) AND IS THEREFORE NOT STORED EXPLICITLY. *C 
C* H ABOVE IS C(-1) DEFINED IN THIS WAY. ON ENTRY, *C 
C* LT (1) , LT ( 2) , ••• , LT (KE) MUST CONTAIN THE INDEX *C 
C* NUMBERS QF EQUALITY CONSTRAINTS, AND LT(KE+l), *C 
C* LT(KE+2), ••• , LT(K) THE INDEX NUMBERS OF ANY *C 
C* REMAINING DESIGNATED INEQUALITY CONSTRAINTS. LT MUST*C 
C* HAVE AT LEAST 2N+M ELEMENTS, THE REMAINDER BEING *C 
C* USED AS WORKING SPACE. *C 
C* *C 
C***************************************************************C 
C* *C 
C* SUBROUTINES CALLED BY SUBROUTINE VERTEX ARE : *C 
C* INNERP : TO COMPUTE THE INNER PRODUCT OF TWO VECTORS. *C 
C* LINV2F : TO FIND. THE INVERSE OF A MATRIX. THIS IS AN IMSL*C 
C* LIBRARY SUBROUTINE. *C 
C* *C 
C***************************************************************C 
C* 
C* 
C* 

SUBROUTINE VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT) 
IMPLICIT REAL*S(A-H,O-Z) 
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DIMENSION C(IC,*),D(*),BDL(*),BDU(*),X(*),H(IH,*),LT(*), 
I TEMP(200,200),WKAREA(II000) 

IN = 5 
IOUT = 6 
IX = 700 
IDGT = 5 
NN = N + N 
N3 = NN + N 
DO I I = I,M 

I LT(NN+I) = I 
C** CONSTRAINTS INDEXED AS FOLLOWS : 
C** EQUALITY -I 
C** ACTIVE 0 
C** INACTIVE = I 
C** VIOLATED = 2 

IF (K.NE.O) GO TO IO 
C**NO DESIGNATED CONSTRAINTS, VERTEX CHOSEN FROM UPPER AND 
C** LOWER BOUNDS, INVERSE MATRIX TRIVIAL 

DO 4 I = I,N 
DO 5 J = I,N 

H(I ,J) = O.ODO 
5 CONTINUE 

IF (X(I)-BDL(I).GT.BDU(I)-X(I)) GO TO 6 
LT( I) = I 
H(I,I) =I.ODO 
GO TO 4 

6 LT(I) = N + I 
H(I ,I) = -I.ODO 

4 LT(NN+LT(I)) = 0 
K = N 
GO TO 40 

C** SET UP NORMALS V OF THE K DESIGNATED CONSTRAINTS IN BASIS 
IO DO II I = I,K 

J = 0 
IF (I.LE.KE) J -I 
LT(NN+LT(I)) J 
LI = LT( I) 
NI = N + I 
IF (LI.GT.NN) GO TO I4 
DO I2 J = I,N 

H(J,NI) = O.ODO 
I2 CONTINUE 

IF (LI.GT.N) GO TO I3 
H(LI,NI) =I.ODO 
GO TO 11 

I3 H(LI-N,NI) =-I.ODO 
GO TO 11 

I4 LI = LI - NN 
DO I5 J = I,N 

H(J,NI) = C(J,LI) 
I5 CONTINUE 
11 CONTINUE 

IF (K.NE.N) GO TO I9 
DO I6 J = I,N 

NJ = N + J 
DO I6 I = I ,N 

H (I , J) '= H (I , NJ) 
I6 CONTINUE 
C** CALL INVERT(H,N,IH) 

CALL LINV2F(H,N,IH,TEMP,IDGT,WKAREA,IER) 
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5300 

19 

DO 5300 I 
DO 5300 J 

H(I ,J) 
CONTINUE 
GO TO 40 
CONTINUE 

l,N 
l,N 
TEMP(I ,J) 

C** FORM M = (VTRANSPOSE.V)(-1) 
DO 20 I = 1,K 

20 

C** 

DO 20 J = 1,K 
CALL INNERP(H,H,IH,IH,IH,IH,H(I,J),N,1,2,1,2,0,0,N+I,N+J) 
H(J,I) = H(I,J) 

CONTINUE 
IF (K.EQ.1) H(l,1) = 1.0DO/H(l,1) 
IF (K.NE.l) CALL INVERT(H,K,IH) 
IF (K.NE.1) CALL LINV2F(H,K,IH,TEMP,IDGT,WKAREA,IER) 
DO 5400 I 1,K 
DO 5400 J = 1,K 

H(I,J) = TEMP(I,J) 
5400 CONTINUE 
C** CALCULATE GENERALIZED INVERSE OF V, VPLUS 

DO 21 I = 1,K 
M.VTRANSPOSE 

22 

21 

DO 22 J = 1,K 
X(N+J) = H(I ,J) 

CONTINUE 
DO 21 J = 1,N 

CALL INNERP(X,H,IX,1,IH,IH,H(I,J),K,N+l,N+2,N+l,N+2,0,l,1,J) 
CONTINUE 

C** SET UP DIAGONAL ELEMENTS OF THE PROJECTION MATRIX P = V.PLUS 
DO 23 I = 1,N 

23 

24 

CALL INNERP(H,H,IH,IH,IH,IH,X(N+I),K,l,2,N+l,N+2,0,l,I,I) 
CONTINUE 
DO 24 I = 1,N . 

LT(N+I) = 0 
CONTINUE 
KV = K 

C** ADD BOUND E(I) CORRESPONDING TO THE SMALLEST DIAG(P) 
29 Z = l.ODO 

25 

DO 25 I = 1,N 
IF (LT(N+I).EQ.l) GO TO 25 
IF (X(N+I).GE.Z) GO TO 25 
Z = X(N+I) 
II = I 

CONTINUE 
Y = l.ODO 
IF (X(II)-BDL(II).GT.BDU(II)-X(II)) Y = -1.0DO 

C** CALCULATE VECTORS VPLUS.E(I) AND U = E(I) - V.VPLUS.E(I) 
IF (Y.NE.1.0DO) GO TO 27 

26 

27 

28 
30 

1 

DO 26 I = 1,K 
X(NN+I) = H(I,II) 

CONTINUE 
GO TO 30 
DO 28 I = l,K 

X(NN+I) = -H(I,II) 
CONTINUE 
CONTINUE 
DO 31 I = 1,N 

IF(LT(N+I).EQ.l) GO TO 31 
CALL INNERP(H,X,IH,IH,IX,1,X(N3+I),KV,N+l,N+2,NN+l,NN+2,1,0,I, 
1) 
X(N3+I) = -X(N3+I) 
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31 CONTINUE 
DO 32 I = l,N 

H ( I , I I ) = 0 • ODO 
32 CONTINUE 

LT(N+II) = l 
Z = 1.0DO + X(N3+II)*Y 

C** UPDATE VPLUS AND DIAG(P) 
DO 33 I = l,N 

IF (LT(N+I).EQ.l) GO TO 33 
ALPHA= X(N3+I)/Z 
H(K+l,I) =ALPHA 
D0.34 J = l,K 

H(J,I) = H(J,I) - X(NN+J)*ALPHA 
34 CONTINUE 
33 CONTINUE 

DO 35 I = 1,N 
IF (LT(N+I).EQ.l) GO TO 35 
X(N+I) X(N+I) + X(N3+I)**20DO/Z 

35 CONTINUE 
K = K + l 
H(K,II).= Y 
IF(Y.NE.l.ODO) II = II + N 
LT(NN+II) = O.ODO 
LT(K) = II 
IF (K.NE.N) GO TO 29 

C** SET UP RHS OF CONSTRAINTS IN BAS!S 
40 DO 41 I = l,N 

LI = LT(I) 
IF (LI.GT.N) GO TO 42 
X{N+I) = BDL{LI) 
GO TO 41 

42 IF (LI.GT.NN) GO TO 43 
X(N+I) = -BDU(LI-N) 
GO TO 41 

43 X{N+I) = D(LI-NN) 
41 CONTINUE 
C** CALCULATE POSITION OF VERTEX 

DO 44 I = 1,N 
CALL INNERP{H,X,IH,IH,IX,l,X{I),N,l,2,N+l,N+2,0,0,I,l) 

44 CONTINUE 
C** CALCULATE THE CONSTRAINT RESIDUALS, THE NUMBER OF VIOLATED 
C** CONSTRAINTS, AND THE SUM OF THEIR NORMALS 
50 KV = 0 

DO 51 I = l,N 
X{N+I) = 0.-0DO 

51 CONTINUE 
DO 52 I = l,M 

IF (LT(NN+I).LE.0) GO TO 52 
IF (I.GT.N) GO TO 53 
Z = X(I) - BDL(I) 
GO TO 55 

53 IF (I.GT.NN) GO TO 54 
Z = BDU(I~N) - X(I-N) 
GO TO 55 

54 J = I - NN 
CALL INNERP(C,X,IC,IC,IX,l,Z,N,l,2,l,2,0,0,J,l) 
Z = Z - D{J) 

55 X{NN+I) = Z 
IF {Z.GE.0.000) GO TO 52 
KV = KV + l 
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LT(NN+I) = 2 
IF (I.GT.N) GO TO 56 
X(N+I) = X(N+I) +I.ODO 
GO TO 52 

56 IF (I.GT.NN) GO TO 57 
X(I) = X(I) - I.ODO 
GO TO 52 

57 DO 58 II = I,N 
58 X(N+II) = X(N+II) + C(II,J) 
52 CONTINUE 

IF (KV.NE.OJ GO TO 63 
RETURN 

C** POSSIBLE DIRECTIONS OF SEARCH OBTAINABLE BY REMOVING A 
C** CONSTRAINT ARE ROWS OF H, CALCULATE THE OPTIMUM DIRECTION 
63 Z = O.ODO 

DO 64 I = I,N 
IF (LT(NN+LT(I)).EQ.-I) GO TO 64 
CALL INNERP(H,X,IH,IH,IX,I,Y,N,I,2,N+I,N+2,I,0,I,I) 
IF (Y.LE.Z) GO TO 64 
z = y 
II = I 

64 CONTINUE 
IF (Z.GT.O.ODO) GO TO 70 
WRITE(IOUT,IOOO) 

IOOO FORMAT('ONO FEASIBLE POINT') 
K = 0 
RETURN 

C** SEARCH FOR THE NEAREST OF THE FURTHEST VIOLATED CONSTRAINT 
C** AND THE NEAREST NONVIOLATED NONBASIC CONSTRAINT 
70 ALPHA = I.OD75 

BETA = 0 .ODO 
DO 71 I = I ,N 

X(N+I) = H(II,I) 
7I CONTINUE 

DO 72 I = I ,M. 
IF (LT(NN+I).LE.O) GO TO 72 
IF (I.GT.NJ GO TO 73 
Z = -X(N+I) 
GO TO 75 

73 IF (I.GT.NN) GO TO 74 
Z = X(I) 
GO TO 75 

74 JJ = I - NN 
CALL INNERP(X,C,IX,I,IC,IC,Z,N,N+I,N+2,I,2,0,0,I,JJ) 
z = -z 

75 IF (LT(NN+I).EQ.2) GO TO 76 
IF (Z.LE.0.0DO) GO TO 72 
Z = X(NN+I)/Z 
IF (Z.GE.ALPHA) GO TO 72 
ALPHA = Z 
IAL = I 
GO TO 72 

76 LT(NN+I) =I 
IF (Z.GE.O.ODO) GO TO 72 
Z = X(NN+I)/Z 
IF (Z.LE.BETA) GO TO 72 
BETA = Z 
IB = I 

72 CONTINUE 
IF (ALPHA.GT.BETA) GO TO 80 
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IB = IAL 
BETA = ALPHA 

C** EXCHANGE WITH THE CONSTRAINT BEING REMOVED FROM THE BASIS, 
C** USING SIMPLEX FORMULA FOR NEW H 
80 LT(NN+LT(II)) = 1 

LT(NN+IB) = 0 
LT( I I) = IB 
IF (IB.GT.N) GO TO 82 
DO 81 I = l,N 

X(NN+I) = H(I,IB) 
81 CONTINUE 

GO TO 90 
82 IB = IB - N 

IF (IB,GT.N) GO TO 84 
DO 83 I = l,N 

X(NN+I) = -H(I,IB) 
83 CONTINUE 

GO TO 90 
84 IB = IB - N 

DO 85 I = l,N· 
X(N3+I) = C(I,IB) 

85 CONTINUE 
DO 86 I = l,N 

CALL INNERP(H,X,IH,IH,IX,l,X(NN+I),N,l,2,N3+1,N3+2,l,0,I,l) 
86 CONTINUE 
90 Z = l.ODOIX(NN+II) 

DO 91 I = l,N 
X(I) = X(I) + BETA*X(N+I) 
IF (I.NE.II) GO TO 92 
DO 93 J = l,N 

H(I,J) = H(I,J)*Z 
93 CONTINUE 

GO TO 91 
92 ZZ = Z*X(NN+I) 

DO 94 J = l,N 
H(I,J) = H(I,J) - ZZ*X(N+J) 

94 CONTINUE 
91 CONTINUE 

II 

GO TO 50 
END 
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APPENDIX C 

A SAMPLE OF THE INPUT FOR THE MINOS 

PACKAGE AND LISTING OF THE 

GENERATOR OF SUCH A SAMPLE 
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/IU10832A JOB (10832,269-34-0589),'F. M. KHALILI' ,TIME=(,5), 
II CLASS=2,MSGLEVEL=(l,l),MSGCLASS=X,NOTIFY=* 
/*PASSWORD ? 
/*JOBPARM ROOM=F,FORMS=9031 
/I EXEC FORTVCLG,REGION.GO=l500K 
/IFORT.SYSIN DD * 
C**********************************************************C 
C* *C 
C* THIS PROGRAM CREATS THE TWO FILES REQUIRED BY MINOS. *C 
C* THE TWO FILES ARE CALLED SPECS AND MPS. *C 
C* *C 
C**********************************************************C 
C* *C 
C* AUTHOR : FOUAD M. KHALILI *C 
C* DATE : NOV. 20,1987 *C 
C* *C 
C**********************************************************C 

PARAMETER(N=50) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION 

'l C(N),Q(N,N),A(N,N),RESl(N),RES2(N),ATRANS(N,N), 
2 B(N) ,X(N) ,U(N) 

OPEN(l2,STATUS='OLD' ,ACCESS='SEQUENTIAL') 
IN = 5 
!OUT 6 
TYPE = O.ODO 
SEED = 50.0DO 
NOFROW 4 
NOFCOL 4 
NOACTV = 2 
NOZERO = 0 

C** GENERATE X AND U VECTORS 
DO 100 I = l,NOFCOL 

CALL GENR~E(SEED,RANDOM) 
X(I) =RANDOM 

100 CONTINUE 
DO 110 I = l,NOFROW 

CALL GENRTE(SEED,RANDOM) 
U(I) =RANDOM 

110 CONTINUE 
DO 120 I = l ,.NOFROW-NOACTV 

U( I) = 0. ODO 
120 CONTINUE 
C** GENERATE MATRIX A (OR CTRANS lN FLETCHER'S PAPER) 

DO 200 I = l,NOFROW 
DO 200 J = l,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
A(I,J) =RANDOM 

200 CONTINUE 
C** GENERATE MATRIX Q (OR A IN .FLETCHER'S PAPER) 

DO 300 I = l,NOFCOL 
DO 300 J = l,NOFCOL 

IF (I.GT.J) GO TO 300 
CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
ATRANS(I,J) =RANDOM 

300 CONTINUE 
DO 1000 I = l,NOFCOL 
DO 1000 J = l,NOFCOL 
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IF (I.LE.J) GO TO 1000 
ATRANS(I,J) = ATRANS(J,I) 

1000 CONTINUE 
C** TYPE = 0.=> Q IS INDEFINITE 
C** TYPE = l.=> Q IS POSITIVE DEFINITE 

IF (TYPE.EQ.0.) GO TO 10 
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N) 
DO 1200 I = l,NOFCOL 
DO 1200 J = l,NOFCOL 

IF (I.EQ.J)Q(I,J) = Q(I,J) + 1.0DO 
1200 CONTINUE 

GO TO 40 
10 DO 800 I = l,NOFCOL 

DO 800 J = l,NOFCOL 
Q(I,J) = ATRANS(I,J) 

800 CONTINUE 
40 DO 810 I = l,NOZERO 

DO 810 J = NOFCOL-NOZERO+l,NOFCOL 
Q (I, J) = 0. ODO 

810 CONTINUE 
DO 860 I = NOFCOL-NOZERO+l,NOFCOL 
DO 860 J = l,NOZERO 

Q (I , J) = 0. ODO 
860 CONTINUE 
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER) 

DO 700 I = l,NOFCOL 
DO 700 J = l,NOFROW 

ATRANS(I,J) = A(J,I) 
700 CONTINUE 

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l) 
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l) 
DO 400 I = l,NOFCOL 

C(I) ~ RESl(I) - 2.0DO*RES2(I) 
400 CONTINUE 
C** COMPUTE VECTOR B ( ORD IN FLETCHER'S PAPER) 

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l) 
DO 900 I = l,NOFCOL 

IF (X(I).GT.0.0DO) GO TO 900 
CALL GENRTE(SEED,RANDOM) 
C(I) = C(I) +RANDOM 

900 CONTINUE 
DO 910 I = l,NOFROW 

IF (U(I).GT.0.0DO) GO TO 910 
CALL GENRTE(SEED,RANDOM) 
B(I) = B(I) - RANDOM 

910 CONTINUE 
DO 440 I = l,NOFCOL 
DO 440 J = l,NOFCOL 

Q(I,J) = 2.0DO*Q(I,J) 
440 CONTINUE 
C** FORM THE SPECS FILE 

IOUT = 12 
WRITE(IOUT,510) 

510 FORMAT(2X, 'BEGIN QP') 
WRITE(IOUT,520)NOFCOL 

520 FORMAT(5X, 'NONLINEAR VARIABLES' ,5X,I3) 
WRITE(IOUT,530)NOFCOL+l 

530 FORMAT(5X, 'SUPERBASICS LIMIT' ,7X,I3) 
WRITE(IOUT,540) 

540 FORMAT(5X,'SUMMARY FILE 9') 

77 



WRITE ( IOUT, 550) 
550 FORMAT(5X, 'SUMMARY FREQUENCY 1') 

II = 3*NOFROW + lO*NOFCOL 
WRITE(IOUT,560)II 

560 FORMAT(5X, 'ITERATIONS LIMIT' ,7X,I4) 
WRITE(IOUT,570) 

570 FORMAT(2X, 'END QP') 
C** FORM THE MPS FILE 

WRITE ( IOUT, 580) 
580 FORMAT('NAME QP') 

WRITE ( IOUT, 590) 
590 FORMAT('ROWS') 

DO 2100 I = 1,NOFROW 
IF(I.LE.9) GO TO 2200 
WRITE(IOUT,610)1 

610 FORMAT(lX, 'G' ,2X, 'ROW' ,I2) 
GO TO 2100 

2200 WRITE(IOUT,620)! 
620 FORMAT(lX, 'G' ,2X, 'ROW' ,Il) 
2100 CONTINUE 

WRITE ( IOUT, 630) 
630 FORMAT(lX, 'N C') 

WRITE(IOUT,640) 
640 FORMAT('COLUMNS') 

DO 2300 I = l,NOFCOL 
DO 2400 J = 1,NOFROW 
IF(I.LE.9) GO TO 2500 
IF(J.LE.9) GO TO 2600 
WRITE(IOUT,650)I,J,A(J,I) 

650 FORMAT(4X, 'X' ,I2, 7X, 'ROW' ,I2,5X,Dl2.6) 
GO TO 2400 

2600 WRITE(IOUT,660)!,J,A(J,I) 
660 FORMAT(4X, 'X' ,I2, 7X, 'ROW' ,Il,6X,Dl2.6) 

GO TO 2400 
2500 IF(J.LE.9) GO TO 2700 

WRITE(IOUT,670)I,J,A(J,I) 
670 FORMAT(4X, 'X' ,Il,8X, 'ROW' ,I2,5X,Dl2.6) 

GO TO 2400 
2700 WRITE(IOUT,680)!,J,A(J,I) 
680 FORMAT(4X, 'X' ,Il,8X, 'ROW' ,Il,6X,D12.6) 
2400 CONTINUE . 

IF(I.LE.9) GO TO 2800 
WRITE(IOUT,690)I,C(I) 

690 FORMAT(4X,'X~ ,I2,7X,'C' ,9X,Dl2.6) 
GO TO 2300 

2800 WRITE(IOUT, 710)!,C(I) 
710 FORMAT(4X, 'X' ,Il,8X, 'C' ,9X,D12.6) 
2300 CONTINUE 

WRITE (!OUT, 720) 
720 FORMAT('RHS') 

DO 2900 I = l,NOFROW 
IF(I.LE.9) GO TO 3000 
WRITE(IOUT,730)I,B(I) 

730 FORMAT(4X, 'B' ,9X, 'ROW' ,I2,5X,Dl2.6) 
GO TO 2900 

3000 WRITE(IOUT,740)!,B(I) 
740 FORMAT(4X, 'B' ,9X, 'ROW' ,Il,6X,D12.6) 
2900 CONTINUE 

WRITE(IOUT, 750) 
750 FORMAT('ENDATA') 
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C* 

CLOSE(l2) 
STOP 
END 

C* 
C**************************************************************C 
C* *C 
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT.*C 
C* ARGUMENTS *C 
C* RLEFT THE FIRST MATRIX *C 
C* RIGHT THE SECOND MATRIX *C 
C* LEFTR ROW SIZE OF THE FIRST MATRIX *C 
C* LE FTC COLUMN SIZE OF THE FIRST MATRIX *C 
C* I RI HTC: COLUMN SIZE OF THE SECOND MATRIX *C 
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C 
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C 
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C 
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C 
C* RESULT: MULTIPLICATION RESULT *C 
C* INPUT *C 
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,ID1,ID2,ID3,ID4 *C 
C* OUTPUT *C 
C* RESULT *C 
C* *C 
C**************************************************************C 
C* 
C* 

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2, 
1 ID3, ID4) 

IMPLICIT REAL*B(A-H,O-Z) 
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4) 
DO 100 I = l,LEFTR . 
DO 100 J = l,IRIHTC 

RESULT(I,J) = O.ODO 
100 CONTINUE 

DO 200 I = l,LEFTR 
DO 300 J = l,IRIHTC 
DO 400 K = l,LEFTC 
RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J) 

400 CONTINUE 
300 CONTINUE 
200 CONTINUE 

C* 

RETURN 
END 

C* 
C*************************************************************C 
C* *C 
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C 
C* ARGUMENTS *C 
C* SEED THE SEED FOR THE GENERATOR *C 
C* RANDOM THE GENERATED NUMBER *C 
C* INPUT : *C 
C* SEED *C 
C* OUTPUT: *C 
C* SEED,RANDOM *C 
C* *C 
C*************************************************************C 
C* 
C* 
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SUBROUTINE GENRTE(SEED,RANDOM) 
IMPLICIT REAL*8(A-H,O-Z) 
X = 3373.0DO 
Y = 6925.0DO 
WORD = 32768.0DO 
TMAX = 24.0DO 
ONE = 1. ODO 
SEED= DMOD((X*SEED + Y),WORD) 
RANDOM = INT(TMAX*(SEEDIWORD) + ONE) 
RETURN 
END 

llGO.FT12F001 DD DSN=Ul0832A.INP12.DATA,DISP=(OLD), 
II UNIT=STORAGE,SPACE=(TRK,(5,2)),DCB=(LRECL=BO, 
II BLKSIZE=7440,RECFM=FB) 
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C*********************************************************C 
C* *C 
C* THIS PROGRAM CALLS MINOS. IT PROVIDES THE MATRIX OF *C 
C* OF THE QUADRATIC TERMS. IT ALSO CALCULATES THE GRAD *C 
C* OF THE OBJECTIVE FUNCTION. *C 
C* *C 
C*********************************************************C 
C* *C 
C* AUTHOR : FOUAD M. KHALILI *C 
C* DATE : NOV. 20, 1987 *C 
C* *C 
C*********************************************************C 
C* 
C* 
C* 

C** 

IMPLICIT REAL*B(A-H,O-Z) 
DOUBLE PRECISION Z(lOOOO) 
DATA NWCORE/10000/ 
CALL MINOSl(Z,NWCORE) 
STOP 
END 

C** 
C***********************************************************C 
C* SUBROUTINE FUNOBJ : TO CALCULATE THE OBJECTIVE FUNCTION *C 
C* OF THE PROBLEM. 
C* ARGUMENTS : 
C* MODE,NPROB,NSTATE,Z ARE DEFINED BY MINOS 
C* N NUMBER OF NONLINEAR VARIABLES. 
C* X : THE NONLINEAR VARIABLES. 
C* G : THE GRADIENT VECTOR. 
·C* F : THE OBJECTIVE FUNCTION 
C* NWCORE : THE WORKING SPACE. 
C* INPUT : 
C* NWCORE 
C* OUTPUT 
C* G AND F 
C* 

*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 
*C 

C***********************************************************C 
C* 
C* 

C** 

SUBROUTINE FUNOBJ(MODE,N,X,F,G,NSTATE,NPROB,Z,NWCORE) 
IMPLICIT REAL*B(A-H,O-Z) 
DOUBLE PRECISION X(N),G(N),Z(NWCORE) 
COMMON /QPCOMM/ Q(l00,100) 

C** COMPUTATION OF 
C** 

F : 1/2 X'QX, G : QX 

IF (NSTATE.EQ.l) CALL SETQ(SO) 
F : O.ODO 
DO 200 I : l,N 

GRAD : O.ODO 
DO 100 J : l,N 

GRAD: GRAD+ Q(I,J)*X(J) 
100 CONTINUE 

F: F + X(i)*GRAD 
G(I) : GRAD 

200 CONTINUE 
C** 

F : O.SDO*F 
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ENTRY FUNCON 
ENTRY MATMOD 
RETURN 

C** END OF FUNOBJ FOR QP 
END 

C*****************************************************************C 
C* *C 
C* SUBROUTINE SETQ : FINDS Q, THE HESSIAN MATRIX. *C 
C* INPUT : *C 
C* ID : DIMENSION OF Q *C 
C* OUTPUT : *C 
C* MATRIX Q *C 
C* *C 
C*****************************************************************C 
C* 
C* 

SUBROUTINE SETQ(ID) 
IMPLICIT REAL*8(A-H,O-Z) 
COMMON /QPCOMM/ Q(l00,100) 

DIMENSION ·B(l00),C(l00),RES1(100),RES2(100), 
1 A(l00,100),ATRANS(l00,100),X(l00),U(l00) 

N = 100 
TYPE = O.ODO 
SEED = SO.ODO 
NOFROW 4 
NOFCOL = 4 
NOACTV = 2 
NOZERO = 0 

C** GENERATE X AND U VECTORS 
DO 100 I = l,NOFCOL 

CALL GENRTE(SEED,RANDOM) 
X(I) =RANDOM 

100 CONTINUE 
DO 110 I =.' l , NOFROW 

CALL GENRTE(SEED,RANDOM) 
U (I ) = RANDOM 

110 CONTINUE 
NOI = NOFROW-NOACTV 
IF(NOI.LT.l) GO TO 830 
DO 120 I = l,NOI 

U( I) = 0. ODO 
120 CONTINUE 
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER) 
830 DO 200 I = l,NOFROW 

DO 200 J = l,NOFCOL 
CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
A(I,J) =RANDOM 

200 CONTINUE 
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER) 

DO 300 I = l,NOFCOL 
DO 300 J = l,NOFCOL 
IF (I.GT.J) GO TO 300 

CALL GENRTE(SEED,RANDOM) 
IF (SEED.LT.16000.0DO) RANDOM -RANDOM 
ATRANS(I,J) =RANDOM . 

300 CONTINUE 
DO 1000 I = l,NOFCOL 
DO 1000 J = l,NOFCOL 

IF (I.LE.J) GO TO 1000 
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ATRANS(I,J) = ATRANS(J,I) 
1000 CONTINUE 
C** TYPE = O.=> Q IS INDEFINITE 
C** TYPE = l.=> Q IS POSITIVE DEFINITE 

IF (TYPE.EQ.O.ODO) GO TO 10 
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N) 
DO 1200 I = l,NOFCOL 
DO 1200 J = l,NOFCOL 

I F ( I • EQ • J ) Q ( I , J ) = Q ( I , J ) + 1. 0 
1200 CONTINUE 

GO T0-40 
10 DO 800 I = l,NOFCOL 

DO 800 J = l,NOFCOL 
Q(I,J) = ATRANS(I,J) 

800 CONTINUE 
40 IF(NOZERO.LT.l) GO TO 820 

NOPLUS = NOFCOL-NOZERO+l 
DO 810 I = NOPLUS,NOFCOL 
DO 810 J = l,NOZERO 

Q ( I , J) = 0 • ODO 
820 CONTINUE 

DO 860 I = l,NOZERO 
DO 860 J = NOPLUS,NOFCOL 

Q (I , J) = 0 • ODO 
860 CONTINUE 
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER) 
820 DO 700 I = l,NOFCOL 

DO 700 J = l,NOFROW 
700 ATRANS(I,J) = A(J,I) 

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l) 
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l) 
DO 400 I = l,NOFCOL 

C(I) = RESl(I) -' 2.0DO*RES2(I) 
400 CONTINUE 
C** COMPUTE VECTOR B ( ORD IN FLETCHER'S PAPER) 

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l) 
DO 900 I = l,NOFCOL 

IF (X(I).GT.O.ODO) GO TO 900 
CALL GENRTE(SEED,RANDOM) 
C(I) = C(I) +RANDOM 

900 CONTINUE 
DO 910 I = l,NOFROW 

IF (U(I).GT.0.0DO) GO TO 910 
CALL GENRTE(SEED,RANDOM) 
B(I) = B(I) - RANDOM 

910 CONTINUE 
DO 500 I ~ l,NOFCOL 
DO 500 J = l,NOFCOL 

Q(I,J) = 2*Q(I,J) 
500 CONTlNUE 

C* 

RETURN 
END 

C* 
C*************************************************************C 
C* *C 
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C 
C* ARGUMENTS *C 
C* SEED THE SEED FOR THE GENERATOR *C 
C* RANDOM THE GENERATED NUMBER *C 
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C* INPUT : 
C* SEED 
C* OUTPUT: 
C* SEED,RANDOM 
C* 

*C 
*C 
*C 
*C 
*C 

C*************************************************************C 
C* 
C* 

C* 

SUBROUTINE GENRTE(SEED,RANDOM) 
IMPLICIT REAL*B(A-H,O-Z) 
X = 3373.0DO 
Y = 6925.0DO 
WORD = 32768.0DO 
TMAX =24.0DO 
ONE = 1. ODO 
SEED= DMOD((X*SEED + Y),WORD) 
RANDOM = TMAX*(SEED/WORD) + ONE 
I = RANDOM 
RANDOM = I 
RETURN 
END 

C* 
C**************************************************************C 
C* *C 
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT. *C 
C* ARGUMENTS *C 
C* RLEFT THE FIRST MATRIX *C 
C* RIGHT : THE SECOND MATRIX *C 
C* LEFTR : ROW SIZE OF THE FIRST MATRIX *C 
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX *C 
C* IRIHTC: COLUMN SIZE OF THE SECOND MATRIX *C 
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C 
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C 
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C 
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C 
C* RESULT: MULTIPLICATION RESULT *C 
C* INPUT *C 
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4 *C 
C* OUTPUT *C 
C* RESULT *C 
C* *C 
C**************************************************************C 
C* 
C* 

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,ID1,ID2, 
1 ID3,ID4) 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION RLEFT(ID1,ID2) ,RIGHT(ID3,ID4),RESULT(ID1,ID4) 
DO 100 I = l,LEFTR 
DO 100 J = l,IRIHTC 

RESULT(I,J) = O.ODO 
100 CONTINUE 

DO 200 I = l,LEFTR 
DO 300 J = l,IRIHTC 
DO 400 K = l,LEFTC 
RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J) 

400 CONTINUE 
300 CONTINUE 
200 CONTINUE 
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RETURN 
END 
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C*********************************~******************************C 

C** THIS IS A SAMPLE OF THE TWO INPUT FILES SPECS AND MPS THAT **C 
C** ARE REQUIRED AS AN INPUT FOR MINOS. **C 
C****************************************************************C 

BEGIN QP 
NONLINEAR VARIABLES 
SUPERBASICS LIMIT 
SUMMARY FILE 
SUMMARY FREQUENCY 
ITERATIONS LIMIT 

END QP 
NAME 
ROWS 

G ROWl 
G ROW2 
G ROW3 
G ROW4 
N C 

COLUMNS 
Xl 
Xl 
Xl 
Xl 
Xl 
X2 
X2 
X2 
X2 
X2 
X3 
X3 
X3 
X3 
X3 
X4 
X4 
X4 
X4 
X4 

RHS 
B 
B 
B 
B 

ENDATA 

QP 

ROWl 
ROW2 
ROW3 
ROW4 
c 
ROWl 
ROW2 
ROW3 
ROW4 
c 
ROWl 
ROW2 
ROW3 
ROW4 
c 
ROWl 
ROW2 
ROW3 
ROW4 
c 

ROWl 
ROW2 
ROW3 
ROW4 

4 
5 
9 
1 

52 

0.160000D+02 
-.300000D+Ol 
-.200000D+Ol 
0.160000D+02 
-.3920000+03 
-.200000D+Ol 
-.SOOOOOD+Ol 
0.150000D+02 
0.130000D+02 
0.640000D+02 
0.180000D+02 
-.1200000+02 
0.140000D+02 
0.220000D+02 
0.284000D+03 
-.200000D+Ol 
-.600000D+Ol 
-.BOOOOOD+Ol 
-.900000D+Ol 
-.365000D+03 

0.341000D+03 
-.245000D+03 
0.170000D+03 
0. 4150000+03 
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