
A COMPARISON OF THE COMPUTATIONAL

PERFORMANCE OF THREE QUADRATIC

PROGRAMMING ALGORITHMS

By

FOUAD MUSTAPHA KHALILI
u~

Bachelor of Science
. in Civil Engineering

Oklahoma State University
Stillwater, Oklahoma

1982

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1984

Sul:xnitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
December, 1987

. i.\'_ .. ·'

Tks1s
14~1

¥-4 Sc.
l.o~, ~

A COMPARISON OF 'IHE m1PUTATIONAL

PERFORMANCE OF 'IHREE QUADRATIC

PROGRAMMING ALGORIIBMS

Thesis Approved:

1290979

PREFACE

'Ihe main objective of this study is to compare the computational

perforinance of three quadratic programming algorithms. A quadratic

programming problem is one in which the objective function to be

minimized is quadratic and the constraint functions are linear. The

three algorithms are Wolfe's reduced gradient method (implemented in

the MINOS package), Lemke's complementary pivot method, and Fletcher's

active set method. Fletcher's method was shown to be superior to the

other two methods. In this paper, a random-problems generator is used.

In addition, a translator program has been written which tranforms a

given input data into MPS and SPECS files which are needed for the

MINOS package. In a recent study, it was shown that Lemke's algorithm

terminated with an infeasible solution in a convex quadratic program

ming problem. 'Ibis claim was investigated to know the reason for such

an abnormal behavior. 'Ibis investigation is a secondary objective of

the study.

I would like to express my gratitude to my major advisor Dr. John

P. Chandler for his motivation, guidance, and insightful suggestions.

I would like also to extend my thanks to the other two members of the

coomittee, Dr. George E. Hedrick and Dr. K. M. George for their help

and assistance.

My parents deserve my deepest gratitude for their love, patience,

guidance, and all the values they taught me. Finally, I thank God who

is the real source of guidance and help.

iii

TABLE OF CONTENTS

Chapter

I. INIRODUcrtON. • ;.
Objective.
Scope ••• .

II. BACKGROUND AND LTI'ERATURE REVIThf. •

Quadratic Prograrrming Applications • • • • • • •
Quadratic Program:ning'as a Linear Prograrrming

Extension. • • • • • • • • • • • • • •
Other Approaches • • • • • • • • • • • •

III. MEIHODOLOGY AND DESCRIPTION OF 'IHE ALGORI'lliMS

Page

1

1
1

3

3

5
7

9

Fletcher's Active Set Algorithm. • • • • • • • • • • • 9
Lemke's Complementary Pivoting Algorithm • • • • • 15
The MINOS Package • • • • • • • • • • • • • • 19
Ra.r)dom Quadratic Problem Generator • • • • • 22

IV. RESULTS AND DISCUSSIONS •

General. • • • • • • •
Test Problems Design •
Test Criteria. • • • •
Results and Analysis •

V. SUMMARY AND CONCLUSIONS •

SELECTED REFERENCES.

APPENDIXE'S • • • • •

APPENDIX A - LISTING OF RAVINDRAN'S IMPLEMENTATION OF

23

23
23
24
25

33

35

44

LEMKE'S ALGORI'IHM. • • • • • • • • • • • • 44

APPENDIX B - FLETCHER'S ALGORI'IHM LISTING • • • • • • 55

APPENDIX C - A SAMPIB OF 'IHE INPUT FOR 'IHE MINOS PACKAGE
AND LISTING OF 'IHE GENERATOR OF SUCH A SAMPLE. • 7 5

APPENDIX D - ADDITIONAL REFERENCES ON 'IHE QUADRATIC
PROGRAMMING PROBLEM. • • • • • • • • • • • • • • 8 7

iv

LIST OF TABLES

Table Page

I. Mean Iteration Count and Execution Time for the 'Ihree
Algorithms for the Convex Programming Case with
Nllllber of Variables Equal to Number of Constraints
and a Different Nllllber of Active Constraints. • • • 26

II. Mean Iteration Count and Execution Time for Fletcher's
Algorithm When Using Mode 3 • • • • • • • • • • • • • 28

III. Mean Iteration Count and Execution Time for the 'Ihree
Algorithms for Different Percentages of Zero Elements
in the Quadratic Matrix A • • • • • • • • • • • • • • • • 29

I

IV. Mean Iteration Count and Execution Time for the 'Ihree
Algorithms With n = 4 and Increasing Nllllber of
Cons train ts . 30

V. Mean Iteration Count and Execution Time for the Three
Algorithms with 4 Constraints and Increasing Nllllber
of Variables. • . . . • • • • . • • 30

VI. Mean Iteration Count and Execution Ti.me for the Three
Algorithms for General Quadratic Programming Case • 32

v

LIST OF FIGURES

Figure

1. Changing of the Ba.sis of the Active Constraints.

vi

Page

13

CHAPI'ER I

INTRODUCTION

A quadratic prograrrming problem (QPP) is a one in which the

objective function to be minimized contains quadratic and linear terms

and the constraints are linear. Perhaps the most general way to pose

this problem is:

minimize f (x) =(1/2)xT A x - bT x
x

subject to CT x > d
u>x>l

(1.a)

(1.b)
(1.c)

Where x, b, u, and 1 are all n x 1, A is n x n, d is m-2n x 1, and CT

is m-2n x n. Sometimes, how~ver, in this paper we will pose the

problem in the following form:

minimize
x

f (x) =(1/2)xT A x - bT x

subject to cT x 2. d
x2_0

(2.a)

(2.b)

Going from form (1) to form (2) can be readily done; it is only a

matter of convenience that form (2) is used, as will become obvious

later.

In this. study, we compare the computational performance of three

well-known algorithms. Many comparisons were done earlier between

different algorithms that solve the quadratic programming problem.

1

2

Braitsch (20) ma.de a comparison between four different algorithms,

namely, Dantzig's algorithm (33), Beale's algorithm (8), Wolfe's

simplex method algorithm(116), and a modification of Wolfe's algorithm

due to Braitsch. Moore and Whinston (70) compared between two cate

gories of simplicial methods. The first category was based on the work

·of Dantzig, Van de panne and Whinston (110). The second category con

sisted of Wolfe's method. Van de panne and Whinston (111) compared

Beale's and Dantzig's algorithms. Ravindran and Lee (87) compared

Wolfe's method, Lemke's complementary pivot method (62), Zangwill' s

convex simplex method (121), the quadratic differential algorithm of

Wilde and Beightler (114), and SUMI' (37). The three algorithms that

are compared here are chosen for different reasons. In the study done

by Ravindran and Lee, it was shown that Lemke's method out-performed

the other four algorithms in terms of number of iterations and execu

tion time. In addition, Lemke's algorithm is designed specifically for

quadratic prograrrming. Fletcher's algorithm(40) is an efficient one

and, as pointed by Fletcher.(43), is preferable to other quadratic

prograaming methods. The MINOS package is widely used and solves

general nonlinear programning problems. However, Murtagh and Saunders

(73) claim that MINOS should be competitive with other algorithms

designed specifically for quadratic programming.

The three algorithms, although popular and widely used, have never

been compared before. This paper attempts to contribute to the area of

computational experience in quadratic programning since re+atively

little is known in this area compared to the theoretical activity.

There is a secondary objective in this paper which is to investi

gate a claim raised by Chiang(26) in which a case was given where

Lemke's algorithm gave an infeasible solution.

CHAPI'ER II

BACKGROUND AND LITERATURE REVIEW

Quadratic Programming Applications

The quadratic prograrmrl.ng problem was studied a long time . ago

since it represented the simplest case in going from the linear pro

gramming field to the nonlinear programming field. The quadratic

programming problem received a great deal of attention because of its

wide field of applications. Quadratic programming models have been

used in areas such as structural optimization (118, 58), industries

(21, 69), weapon selection and target analysis in the military (21),

governmental, agriculture, and economic planning (54, 64, 98, 96),

capital budgeting (61), portfolio selection (66), optimal design and

utilization of electrical and comnunication networks (35), transition

probabilities (100), aircraft design (31), population control (76), and

management and decisio? sciences (68) • Moreover, quadratic programming

can be used to solve constrained regression problems (21), 0-1 integer

programs (85), and two person nonzero sum games (65). As pointed out by

Betts (14), some algorithms that are designed to optimize general

nonlinear programming problem may pose a series of quadratic prograrrming

problems to approximate tbe behavior of the actual ftmctions. In fact,

the application of quadratic programming to approximate problems with

nonlinear objective ftmctions and linear constraints could give

3

4

satisfactory results. Using quadratic functions to approximate a

nonlinear function, especially near the minimum point where the behavior

of the two functions is similar, is a well-known technique in solving

unconstrained optimization problems. It is important to point out that

the recursive quadratic prograrrming methods are very promising

approaches to solving the general nonlinear prograrrming problems. These

techniques have been studied by many researchers including Wilson (115),

Biggs (15, 16), Fletcher (41, 42), Han (52, 53), Tapia (99), Powell (78,

79, 81, 82), Murray and Wright -fn), Schittkowski (93, 94),

Bartholomew-Biggs (6), Tone (103), Fukushima (45), and Powell and Yuan

(83). For a brief review of these methods, the interested reader is

refered to Bartholomew-Biggs (5). The general scheme of these methods

could be sunmarized as follows. Given an estimate of the solution, a

search direction could be obtained by solving a quadratic programming

subproblem which is an approximation to the original problem. A new

estimate is then obtained by moving along. the calculated direction.

The step-size of this movement is calculated by some technique. This

process of moving from one estimate to another is repeated until the

optimal point of the original problem is reached. In addition,

optimization problems where quadratic terms appear in the constraints

can be reformulated into a quadratic progranming problem as Townsley

(104) and Chen (25) have shown. Many problems, such as transportation,

can be optimized with rultiple objective prograrrming which can be

formulated using quadratic progranming (68).

We now give an example to show how to use quadratic progranming.

Consider the problem of diminishing returns to scale, which is a well-

5

known problem in economics. In this problem, the returns less the cost

of production, which is an increasing function of quantity, is to be

maximized. This problem can be posed as:

Max. xT p - xT (c + i\..x)

Subject to A x > b

Here p denotes price, c + ,tx denotes the production cost to produce x

units, and Ax ~b represents restrictions on resources. For example,

suppose that a certain company produces item z and it sells it for

$20.00. Suppose, also, that the company can not produce more than 200

of this item and that producing the first z costs $1.00,_ and every

additional z costs $.00025. This problem could be mathematically

written as:

Max. 20 Xz - (1 + .00025 Xz) Xz Xz
S. T. Xz < 200

where Xz is the number of z items produced.

Quadratic Programming as a Linear

Progranming Extension

Early treatment of quadratic prograrrming was based on linear

programning techniques. Beale (7, 8, 9, 10) was the first to

present an algorithm for solving quadratic prograrmrl.ng problems. His

approach was an extension of linear programning. later, Wolfe (116)

developed the simplex method for quadratic programning by solving the

Kuhn-Tucker system as was suggested earlier by Barankin and Dorfman

(4.) and by Markowitz (61). In fact, earlier than this date, Frank and

6

'wolfe (44) proposed an algorithm to solve the quadratic prograrmning

problem using the Kuhn-Tucker system. In 1963, Dantzig (33) gave a

variant of Wolfe's simplex algorithm. Van de panne (108) introduced,

independently, the same algorithm, which he called the non-artificial

simplex method. In the same year, Shetty (95) introduced his

algorithm. A similar algorithm was given by Jagannathan (57). In

1964, Van de panne and Whinston (112) introduced their version of the

simplex method. In the same year, Candler and Townsley gave another

algorithm (24) . The same authors (105) suggested a parametric linear

prograrrming approach in 1972. The work of solving the quadratic pro

grarrming problem by solving the Kuhn-Tucker system was later called the

linear complementarity problem (LCP). Lemke (62,63) developed a comple

mentary pivot algorithm for solving the linear complementarity problem.

In 1967, Graves (51) suggested a method he called the principal

pivoting simplex algorithm. Cottle and Dantzig (28, 29) gave the

principal pivot method. Tucker (lffi) used a least-distance approach to

solve the quadratic prograrrming problem. Eaves (36) extended Lemke's

algorithm to calculate stationary points for general quadratic program

ming problems. Todd (102) gave an algorithm for generalized complemen

tary pivoting. Ahn (1) gave some iterative methods to solve the

linear complementarity problem. Goncalves (48) and Land and Morton

(60) developed two different versions of Beale's method. Rusin (91)

gave his revised simplex method for quadratic prograrrming which reduces

to the simplex method for linear prograrrming when the objective func

tion is linear. Goncalves (47, 49) developed the primal-dual method

for quadratic prograrmning. In 1980, Sacher (92) gave a decomposition

algorithm which used Lemke's method. Another decomposition method was

given by VJhinston (113).

Other Approaches For Solving the

Quadratic Progranming Problem

7

There are several approaches other than those mentioned in the

previous section for solving the quadratic program:ning problem. A

combinatorial approach has been used by Theil and Van de panne (101),

Boot (17, 18), Parsons (77), and Van de panne (110). In this approach,

the idea is to solve a sequence of equality constrained problems. A

similar but more systematic approach is the active set method. Fletcher

(40, 43) uses this approach and a good discussion is given there. In

1960, Houthakker (S6) introduced his capacity method where a restricted
. l\

problem is obtained by adding a constraint of the form L Xi ~ u and
i=l

then solved. u is then increased and the problem is solved again. A

one-direction search technique was developed by Hildreth (SS) and D'Espo

(32). In fact, all methods of feasible directions can be applied to

solve the quadratic programming problem. A feasible directions

algorithm is one which solves a nonlinear optimization problem by moving

from one feasible point to another improved point along a certain direc•

tion of search d. In fact, Beale's method is an implementation of a

convex simplex method of Zangwill (121). It could be considered as an

active set method, as Fletcher (43) has shown. Some deformation methods

were also used by authors such as Zahl (119, 120) and Bove (19). The

idea of this method is to continuously deform an augmented objective

function that is obtained by distorting the feasible region in such a

way that an arbitrary initial optimum is obtained which is a solution to

this deformed problem, until the problem is finally changed to the

8

original one and a solution is obtained. Goldfarb (46) gave two methods

which might be considered extensions of Newton's method for minimizing

an unconstrained quadratic function.

All the methods that are discussed so far, except Fletcher's and

Beale's algorithms, solve the convex quadratic prograrrming problem, that

is the case when the quadratic matrix is positive definite or positive

semi-definite. When the quadratic matrix is indefinite, we have a

general quadratic prograrrming problem. Cutting plane methods were used

to solve this problem in which the problem is posed as a minimization of

a linear function' subject to constraints in the form of a linear comple

mentarity problem. Tui (107), Ritter (88, 89), Cottle and My lander

(30), Burdet (22)~ Balas (2), and Balas and Burdet (3) used this

approach. There are several other approaches; these include Coffman,

Majthay, and Whinston (27), Cabot and Francis (23), Mueller (71),

Mylander (75), Taha (97), Van de panne (109), Goncalves (SO), Keller

(59), Zwart (122), Beneveniste (11, 12), Powell (80), and Betts (1.3,

14).

CHAPl'ER III

MEIHODOLOGY AND DESCRIPTION OF

1HE ALGORI'IBMS

Fletcher's Active Set Method

In this method, an equality problem (EP) is derived from the

quadratic prograrrming problem by keeping a basis of active constraints

which are treated as equalities and disregarding the other constraints

temporarily. Initially, the set of active constraints is chosen to

provide a unique minimum. To meet this requirement, it is sufficient

that A is strictly positive definite. On the other hand, if A is

indefinite then it is sufficient to choose any n independent con

straints. We start minimizing the quadratic function over this active

constraint surface. Two possibilities exist here. It may be that a

constraint is encountered which prevents the minimum of the current

basis being reached. In this case, this constraint is added to the

basis and the minimization process is continued. The second probability

is that a minimum to the current equality problem has been found. In

this case, the corresponding Lagrange multipliers are calculated, and if

they are all negative the solution is optimal. Otherwise, the con

straint with maximum Lagrange multiplier is dropped from the basis and

minimization· is continued with this new basis. The algorithm is now

described with more details.

Suppose we need to find the minimum point of solution for the

9

following problem:

Minimize
x

S.T.

(1/2) xT A x - bT x

CT x. = d

10

(3.a)

(3.b)

where T superscript means transposition and C is a k x n matrix where

k < n.

'Ihe Lagrangian function L of this problem is:

L(x, A) = (1/2) xT A x - b T x +A 'l(c xT- d) (4)

where A is the la.grange multipliers vector.

Differentiating with respect to x and >.. , respectively, and setting the

result to zero gives the conditions for a stationary point:

aL
Ax, - b +AT ,} ax = = 0 (5.a)

ClL
c1' x - d = 0 a A = (5.b)

In matrix form:

[~ :](:)-(:) (6)

To find the solution for this linear equations system, the inverse of

the coefficient matrix is obtained:

the solution vector, (x, A), is:

A-1c(CTA-1c)-l-(CTA-lC)-l .]

-(CTA-lC)-1

(7)

x =(A-l - A-l C(CTA-1cf1 CTA-l) b + A-1C(CTA-1cf1d (8.a)

A =(CTA-1cf1cTA-1b - (CTA-1c)-1d (8.b)

11

Substituting the gradient vector g = Ax - b in (8.b) and x = (CT)-1d in

(8.a) gives:

x = (x - (A-1- A-1C(CT A-1c)-lCTA-l)g

x = -(CTA-1C)-l CTA-lg

Where g = AX - b.

(9.a)

(9.b)

In these equations, two operators keep appearing and they are of great

importance in the algorithm. The first operator is:

(10)

O~is a k x n matrix and it becomes c-l when k is equal to n.

The second operator is:

(11)

H is of rank n-k. If H is positive semi-definite, then a strict minimum

point of the equality problem exists. It is to be noticed that C* and

H always exist because they are just partitions of (5) and the inverseof

(5) must exist if the solution to the equality problem is unique.

To update these two operators, it takes only O(n2) computer

operations, which makes the process of moving from one equality problem

to another efficient. The recurrence relations for updating the

operators are given below:

(1) To add a constraint, compute

(ct) (-ct c) C*k+l= 0 + 1 , v'I'/v'I'c. (12.a)

Hk+l = Hk - vvT/v'fc (12.b)

where c is the normal of the added constraint and v = H~.

(2) To remove a constraint, compute

(~) = <1.\:+1 - cfu.-1 Af::*r:.*T/ c*T k*

Hk = Hk+l+ c* c-!:T /c*T Ac*

(13.a)

(13.b)

12

where c*T is the K + 1th row of C*k+l , i.e. the row corresponding to

the constraint to be removed •.

However, because of the possibility of dividing by zero, these

formulae cannot always be used safely. To avoid this problem, we need

to come up with recurrence relations that perform the updating when one

constraint is exchanged for another in Ck. 'Ihese relations are given

below:

ct 4--CR - (ct c - ek)wT/y - Ct Ac*u T/y

Hk ~Hk + c*uT/y - HifwT/y

where ekT is the vector (O, O, ••• ,0,1) in Ek, and

and

w = H~(c*T Ac*) + c*(c'JC*)

u = c* (cTH~) - H~ (c'JC*)

(14.a)

(14.b)

(15.a)

(15.b)

(15.c)

It is possible here again that y is zero and a division failure

could happen. Before discussing how to avoid such a problem, it is

interesting to know that when k = n the exchange formulae reduce to:

-1 -1 -1 *T T
C* = C ~ C - (C c - en) c /c c* (16)

H = 0

Whenever a constl:'aint is dropped, the new direction of search

13

becomes c*, where c* is the row of C* corresponding to the constraint

being dropped, and the new minimum point along c* is at a distance

1/c*TAck where -m is c*Tg. However, a constraint might prevent this

minimum being reached. To see if this is the case, we need to find:

1 = min (d· - er x)/cr c* • 1 1 1
1

(17)

Where ci is the normal of the i th inactive constraint. Notice that

c~ c* must be negative if every element in A./c*TA01;-is positive and less
1

than or equal to 1, in which case, no inactive constraint is to be

added to the basis and the minimum point can be reached along c*.

When the curvature along c* (that is c*TAc*) is negative, or

positive but small, the exchange formulae do not work. To get more

insight into this problem, consider Figure 1.

4-----~----~ _, - -- ..,,..-i~...,_1 __ _,;l>--_~3 __ ,
I

Figure 1. <ll.a.nging the Basis of the Active Constraints.

14

In this figure, x is the current minimum point, c* is the current

direction of search, and s1 is the current set of active constraints.

Suppose that while searching along c*, a new constraint with normal c

is met at point x1. It is important to recognize that x1 is the mini-

11Rllll point of an equality problem with S1_ basis, where S1_ is parallel

to s1, and therefore, the operators for both bases are the same. The

two bases are parallel in the sense that the constant term of the

constraint of the normal c* has been changed. Another important point

that needs to be pointed out is that x1 is also the minil1Rllll point of

the equality problem of basis Sz provided that the new constraint is
I I

independent of s1• s2 is s1 plus the new constraint. Our concern,

however, is to find the minimum of an equality problem of basis s3

obtained by dropping the old constraint and adding the new constraint

to basis s1 or, equivalently, by removing the constraint that was
I

obtained by changing the constant term of the old constraint from S 2 .

To find this minimum, we proceed by adding the constraint corresponding

to c to the current basis and then, in the next iteration, we assume

that xl' which is the minimum point of equality problem of Sz basis,

has been left by dropping the constraint corresponding to normal c* and

re-enter the previous code so that the operators for S 3 are not calcu

lated. The direction of search in s3 is:

(18)

and the curvature along this direction is:

(19)

After this description, the following conclusions can be derived.

15

If the new constraint is dependent or nearly dependent on the current

basis, then the formulae for adding and dropping a constraint cannot

be used; instead the exchange formulae must be used. If the constraint

is dependent, then cTHc = 0 and using (19) y becomes (cTc*Y. which is

strictly positive because cT c* is negative always. Using (19) again,

it is clear that if y ~ O, then cTHc ~ 0 because (c1c*)2 is positive

and c*TAc* is negative, and hence (13) can be used safely. If both,

exchanging and adding, are safe then ly and cTHcvTg1 are calculated,

where gl = Axl-b. If ,ly is smaller than cTHcvTg1, then the adding

formulae are used; otherwise, the exchange formulae are used. The

reader is referred to Fletcher's paper for more discussion.

that:

Lemke's Complementary Pivoting Method

A linear complementary problem is to find two vectors w and z such

w=Mz+q

wTz = 0

w ~ o, z ~ 0

(20.a)

(20.b)

(20.c)

'!he Kuhn-Tucker conditions of the quadratic prograrmrl.ng could be

written as:

Cx-y=d

-Ax + OJ. + v = -b

xt v = o, uty = 0

x, y, u, VLO

(21.a)

(21.b)

(21.c)

(21.d)

where u and v are the La.ngrangian multiplier vectors of the C~ > d and

16

x > 0 constraints, respectively. These conditions can be reduced to a

complementary problem by letting

w=(;) , M= ~ -g] (22)

q=(=~) and z=(~)

where q is L x 1 and M is L x L.

Hence, Lemke's algorithm can be used to solve the quadratic

prograrrmi.ng problem. Before describing the algorithm, some definitions

are introduced. A solution (w, z) to (20) is called a complementary

basic feasible solution if (w, z) is a basic feasible solution to

(20.a) and (20.c) and if one variable of the pair (w, z) is basic for

i = 1, ••• L. System (20) can be solved readily if q ~ 0 by letting

w = q and z = 0 On the other hand, if q ~ 0 1 a new coltnnn 1 (i.e., a

vector of ones) and an artificial variaple z0 are introduced into the

system to get:

w - Mz - 1z0 = q

wT z = 0

w> O, z > 0

(23.a)

(23.b)

(23.c)

Initially, the artificial variable z0 = max (-qi: 1 < i.< L), z = O,

w--q + 1z0 constitutes the solution. Lemke's complementary pivoting

algorithm tries to drive zo out of the basis through a sequence of

pivots that satisfies (23). We now introduce another important

definition. An almost-complementary basic feasible solution is a

feasible solution (w, z, z0) to (23) that satisfies the following

requirements.

17

(1) (w, z, z0) is a basic feasible solution to (23.a) and (23.c).

(2) For some iE. (1, ... ,L) both w and z are nonbasic.

(3) z0 is basic.

(4) For j = 1, ••• L and j ::f i, either wj or zj is basic.

An adjacent almost complementary basic feasible solution (wd, Ad,

z0) is introduced by allowing either wi or zi to enter the basis and

driving a basic variable other than z0 , that is, either Zj or wj, from

the basis. 'Iherefore, every almost complementary basic feasible

solution can have a maxirrrum of two adjacent almost complementary basic

feasible solutions.

Lemke's algorithm moves among adjacent almost complementary basic

feasible solutions until one of two things happen:

(1) A complementary basic feasible solution is reached.

(2) Stop with a ray termination because the feasible region is

unbounded.

A'summary of the algorithm can now be given:

1) If q ~ O, a solution is readily available. 'Ihe solution is

w = q and z = 0. Stop.

2) If q < 0 form a tableau for system 4.a and 4.c. Let q. =min
1

(q. : 1 ,S_ j ,S_ L), and pivot at row i and column z0 •
J

In this tableau the

basic variables z 0 and w j, where j = 1, ••• , L and j ::f i , are all non

negative. Let Yi= Zj·

3) Let ~ denote the column that has been just updated (i.e.,

column under Yi). If ui ~O, go to Step 7.

4) Let q be the updated right-hand-side column. ·q has the values

of the basic variables. Obtain the index r by the following ratio

18

test:

__ q_r_ = mi~inrum ~ qj : uji > O }
l Li· 1 < J < L u ..
-.r; - - Jl.

If the basic variable at row r is z0 , go to Step 6.

5) Pivot at row r and the y i column so that Yi will enter the

basis. The variable that has just left the basis is either w1 or z1

where 1 ,,. i. If it is w1 then Yi~z1 , otherwise Yi~w1 • Go to

Step 3.

6) Pivot at row z0 and the yicolumn so that z0 will leave the

basis, and a complementary solution is reached. Stop.

7) In this case, a ray termination takes place, where

R =[(w, z, z0) +au: 8 ~O)Jis found such that every point in Risa

solution to the problem. Here (w, z, z0) is the current almost

complementary basic feasible solution and u is a vector that has a 1 at

the row corresponding to Yi' - ui at the rows of the current basis

variables, and zero elsewhere. Stop.

If there is no degeneracy involved in the problem, the algorithm

is guaranteed to find a Kuhn-Tucker point in a finite number of steps

if any one of the following conditions is true:

1. A is positive semidefinite and b = O.

2. A is positive definite.

3. All diagonal elements of A are strictly positive and all

others are nonnegative.

19

'!he MINOS Package

'Ihe MINOS package solves a linearly constrained nonlinear program

using Wolfe's reduced gradient method (117) in conjunction with

Davidon's quasi-Newton algorithm (34). In this section, we give a

summary of the procedure as described in Murtagh and Saunders (73).

Initialization Step:

(a) A feasible point x which satisfies [B S N]x = d and 1 { x { u

is obtained. Here B, s, and N are the arrays corresponding to basic

(xB), superbasic (xs) and nonbasic (XN) variables, respectively.

(b) '!he corresponding (1/Z) x T Ax value and gradient vector

g (x) = (g 8 gs g~ are calculated.

(c) '!he nl.IIlber of superbasic variables, s, is obtained. Here

0 ~s ~3n - m, and m ~3n.

(d) calculate the LU factorization of the m - Zn x m - Zn basis

matrix B.

(e) calculate the RTR factorization of a quasi-Newton approxima

tion to the s x s matrix ZT AZ, Z is a matrix that is orthogonal to the

matrix of constraint normals, i.e. cTz = 0.

(f) calculate the vector v such that BTv = g8•

(g) calculate the reduced-gradient vector h, h = gs - sTv.

Step 1. (Test for convergence.)

If II hll > TOLRG go to step 3.

(Where TOLRG is a small positive convergence tolerance.)

Step Z. (Estimate Lagrange multipliers, add one superbasic.)
T

a. calculate.>.= &N - N v

b. Select '>.q1 < - TOLDJ (>.qz> TOLDJ), '!he largest

elements of >. corresponding to variables at their

lower (upper) bound.

(TOLDJ is a small positive convergence tolerance.)

If none, stop; an optimal point has been obtained.

c. Choose q = q 1 or q = q 2 corresponding to

I >. q I = max (I >.<lf J , I >.q2 I)
d. Add cq as a new colunn of S.

e. Add >.q as a new element of h.

f. Add a suitable new colunn to R.

g. Increase s by 1.

Step 3. (Compute the new direction of search p = ZPs·)

a. Solve RTRPs = -h for Ps·

b. Solve LU PB = -s Ps for PB·
T

c. Set p = [PB Ps O]

Step 4. (Find 1ma.x)

20

a. Find 1 > 0 , the greatest value of 1 for which max -

x + lp is feasible.

b. If 1max = O, go to Step 7.

Step 5. (Do a line search.)

a. Find 1, an approximation to l*,

where f (x + l* p) = MIN f(x + 9p), 0 ~ 9 < 1inax

Where f (x) is (1/2) xT Ax.

b. Cll.ange x to x + lp and set f and g to their values

at the new x.

Step 6. (Compute the reduced gradient Ii, Ii= zTg.)

a. Solve uT1Tv = ~

b. Compute the new reduced gradient li, 1i = gs - ~ v

c. Modify R to reflect some variable-metric recursion

on RTR, using 1, Ps' and the change in reduced

gradient, h - h
-

d. set h = h.

e. If I <l~x' go to Step 1 (no new constraint was

encountered.)

Step 7. (Change the current basis if necessary; delete one

superbasic.)

a. If a basic variable hit its bound (G ~ p ~ m - 2n)

(i) Interchange the pth and the qth columns of

[B x~]T and [S x§JT

Respectively, where q is chosen to keep B

nonsingular.

(ii) t-txiify L, U, R,and v to reflect this change

in B.

(iii) Compute the new reduced gradient h,

T h = g5 - s v

(iv) Go to c,

b. Otherwise, a superbasic variable hits its bound

(m - 2n < p ~ m - 2n + s). Define q = p - m + 2n.

c. Make the qth variable in S nonbasic at the

appropriate bound, thus:

(i) Delete the qth columns of

[S x~f and [R hTJ'f'

(ii) Restore R to traingular form.

d. Decrease s by 1 and go to Step 1.

21

22

Random Quadratic Programming Problem Generator

A computer program was written to generate quadratic programming

problems randomly following the method of Rosen and Suzuki (90) which

is also described by Ravindran and Lee (87). Some minor modifications,

however, were made. For example, to ensure a positive definite matrix

A, A was calculated by using A+-A TA. In this method, we solve (2) for

b and d after generating C, A, x, u and v randomly. The description

of the generator is as follows:

Step 1. Randomly generate x ~ 0 and u ~ 0.

Step 2. Randomly generate A and C with specified pet""'....entages

of zero elements.

Step 3. Compute b as follows:

a. If X· = 0=> b. > c. u - Ax].].- J

b. If x. ~ o=> b. = c. u - Ax]. ']. J

Cj is the ith row of C and Ai is the ith row of

A.

Step 4. Compute di as follows:

a. If u.= 0 => d = C~x
l].

b. If ui~ O => d = cix
cI is the ith row of CT.

CHAPfER IV

RESULTS AND DISCUSSION

General

In this paper, Ravindran' s (:86) computer program for Lemke's

method, modified by Proll (84), is used. Fletcher's (38, 39) routine

for his method is used in this paper. However, to invert a matrix,

subroutine LINV2F from the IMSL library is used. In addition, to find

the inner product of two vectors, subroutine INNERP, developed by the

author, is used. The most recent version of MINOS (7 4) , implemented in

1983, is used in this study. The modified Ravindran' s routine,

Fletcher's program, a sample of the input for the MINOS package and a

program to generate this sample automatically are given in Appendices

A, B and C, respectively. All of the programs were run on the 3081 IBM

mai~frame at Oklahoma State University using double precision computa

tions. This study involves comparing the computational performances

of the three methods for convex and general quadratic prograrmning

cases.

Test Problems Design

The effect of different factors were studied in this study, these

factors are the following:

1) The nunber of active constraints at the optimal point.

2) The nunber of constraints.

23

24

3) The nunber of variables.

4) The percentage of zero elements in the quadratic array A.

The above mentioned factors are considered for the case of convex

quadratic progranming only. In the case of an indefinite matrix A, the

main purpose was to investigate the reliability of the three algor

ithms, i.e. their abilities to solve a given problem correctly.

Test Criteria

Many test criteria could be used to evaluate the performance of

any algorithm. In this study, the criteria used are:

1) Robustness

2) Number of iterations

3) CPU time

The first criterion is the most important one since a user wants

to use an algorithm which will surely give the correct answers to the

given degree of precision. In fact, it is generally accepted that the

primary criterion in evaluating an algorithm is its reliability.

The nunber of iterations is the second important criterion.

However, sometimes this criterion might be misleading because one can

reduce the number of iterations by different time-consuming ways such

as special heuristic calculations. To avoid such unfair comparisons a

third criterion should be employed, namely, the CPU time. It should be

mentioned here that depending solely on the CPU time in measuring the

performance of an algorithm might be misleading, also.· Considerations

such as care in coding the algorithm could significantly affect the

results. In addition, if the operating system is multiprogramned the

CPU time becomes longer and less reliable. Consequently, the number of

25

iterations should be used together with the CPU time to get a better

insight into the performances of the different algorithms.

Results and Analysis

In the first part of the study, we consider the convex quadratic

programming problem. It should be mentioned here that convex quadratic

programming problems have only one local minimum, which is therefore the

global minirrun. For Ravindran' s routine and the MINOS package no

special parameters are required to be input. For Fletcher's program,

three different modes could be used. Mode 1 is used for any quadratic

programming problem. Modes 2 and 3 can be used when A is strictly

positive definite. In addition, if mode 3 is used then the user should

provide a feasible point to the routine. In fact, there are two addi

tional modes that can be used, namely modes 4 and S, and these are used

for general parametric programming and right-hand side parametric pro

gramming, respectively.

Table I shows the effect of changing the number of active

constraints at the optimal point on the number of iterations and the

execution time. A total of 690 problems were tested, i.e. 10 problems

for each case. The a\rerage number of iterations of these 10 runs

(rounded to the nearest integer) and the average of the execution time

are shown in Table I. In Fletcher's algorithm, an application of

formulae (12), (13), or (16) is counted as 1, whereas application of

(14) is counted as 2. In all of the tested cases, neither of the

programs failed to reach the optimal solution. They all gave the

"exact" answers. Table I shows clearly that for Lemke's algorithm the

number of iterations increases as the number of active constraints

TABLE I

MEAN ITERATION COUNI' AND EXECITTION TIME FOR THE THREE ALGORI'IBMS
FOR THE CONVEX PROGRAMMING CASE WITH NUMBER OF VARIABLES

EQUAL TO NUMBER OF CONSTRAINTS AND DIFFERENT NUMBER
OF ACTIVE CONSTRAINTS

26

No. of No. of No. of Fletcher Lemke MINOS
Con- Active

strain ts Variables Constraints Iter Time Iter Time Iter Time

2 2 2 2 .08 5 .OS 5 .21
4 4 2 ·4 .09 7 .06 10 .24
4 4 4 4 .09 11 .06 4 .21
8 8 2 6 .12 11 .66 24 .35
8 8 4 6 .13 15 .1 23 .34
8 8 6 7 .13 17 .11 15 .29
8 8 8 8 .14 19 .11 11 .28

10 10 1 3 .14 12 .12 30 .42
10 10 2 4 .14 13 .12 28 .4
10 10 3 7 .16 14 .13 28 .4
10 10 4 8 .16 15 .13 26 .38
10 10 5 8 .16 16 .14 25 .38
10 10 6 8 .16 17 .15 22 .35
10 10 8 9 .17 19 .15 21 .35
10 10 10 10 .18 21 .15 14 .31
15 15 1 7 .28 19 .25 56 .75
15 15 2 8 .28 21 .25 55 .74
15 15 5 15 .34 23 .28 46 .64
15 15 8 15 .34 28 .30 40 .59
15 15 10 12 .31 29 .32 40 .58
15 15 12 14 ;,33 32 .34 " 36 .55
15 15 15 15 .35 33 .34 23 .45
20 20 2 21 .62 27 .49 77 1.37

27

increases. The same pattern is followed by Fletcher's algorithm except

for two cases, namely, for the cases where the number of active

constraints are 5 and 8 and the size of the problem is 15 x 15. A

reverse pattern is obtained for the MINOS package. In all cases, the

number of iterations for Fletcher's algorithm is less than that

obtained by Lemke's algorithm which, in turn, is always less than that

of the MINOS package. The execution time for the MINOS package is

always bigger than that of the other two algoritl:uns. In fact, the

number of iterations and the execution time are always worse than those

of the other two algoritl:uns in all the test problems that were con

ducted in this study as can be seen in the tables.

The execution times for Fletcher and Lemke are very close.

In approximately 90 percent of the test cases in Table I Lemke gave a

better execution time than Fletcher.

To see the effect of using mode 3 on the performance of Fletcher's

algorithm part of the test problems of Table I were used. 'lhe results

are given in Table II. 75 problems were tested, i.e. 5 problems for

each case. The results show that when the number of active constraints

is small, better number of iterations and execution time can be

obtained than when mode 2 is used.

The effect of the number of zero quadratic terms in the objective

function is shown in Table III. In this table, as well as Tables IV and

V, the number of the active constraints was set equal to 2. In Table

III, a total of 150 problems were tested. Table III shows clearly that

a significant decrease is obtained in the number of iterations and the

execution time for Fletcher's algorithm. Lemke's algorithm and the

MINOS pacakge are generally not affected.

No. of

Constraints

2

4

4

8

8

8

8

10

10

10

10

10

10

10

10

TABLE II

MEAN ITERATION COUNT AND EXECUTION TIME FOR
FLETCHER'S ALGORITHM WHEN USING MODE 3

No. of No. of Iter
Active

Variables Constraints

2 2 2

4 2 6

4 4 4

8 2 3

8 4 10

8 6 10

8 8 7

10 1 1

10 2 2

10 3 4

10 4 8

10 5 8

10 6 10

10 8 10

10 10 10

28

Time

.08

.09

.09

.12

.14

.14

.13

.12

.13

.13

.15

.15

.15

.16

.17

No. of
C.On-

strain ts

2

4

8

8

10

10

15

15

15

20

TABLE III

ME'AN ITERATION CDUNT AND EXECUTION TIME FOR THE THREE
ALGORITHMS FOR DIFFERENT PERCENTAGES OF ZERO

ELEMENTS IN THE QUADRATIC MATRIX A

29

Percentage Fletcher Lemke MINOS
No. of of Zero
Vari- Elements
ables in A Iter Time Iter Time Iter Time

2 so 2 .08 s .06 3 .21

4 so 2 .08 7 .06 9 .2S

8 12.S 6 .13 14 .1 24 .36

8 so 4 .13 11 .1 22 .3S

10 32 4 .14 1S .13 30 .44

10 so 4 .14 13 .13 30 .44

15 22 7 .25 25 .29 48 .66

15 30 5 .25 26 .29 S2 .74

15 40 4 .25 19 .26 51 • 72

20 so 4 .41 23 .46 71 1.16

No. of
Constraints

6

8

10

15

20

No. of
Constraints

4

4

4

4

4

TABLE IV

ME.AN ITERATION COUNT AND EXECITTION TIME FOR THE
1HREE ALGORITHMS WITH n = 4 AND INCREASING

NUMBER OF CONSTRAINTS

30

No. of Fletcher Lemke MINOS
Variables Iter Time Iter Time Iter

4 2 .09 9 .07 11

4 4 .11 13 .08 19

4 3 .12 13 .1 26

4 4 .18 18 .16 36

4 6 .27 25 .26 47

TABLE V

MEAN ITERATION COUNT AND EXECITTION TIME FOR THE
1HREE ALGORITHMS WITH 4 CONSTRAINTS AND

INCREASING NUMBER OF VARIABLES

Time

.26

.31

.35

.48

.68

No. of Fletcher Lemke MINOS
Variables Iter Time Iter Time Iter Time

6 3 .09 7 .06 9 .24

8 3 .09 7 .07 9 .24

10 3 .1 9 .08 10 .26

15 4 .11 9 .09 12 .28

20 4 .11 9 .1 12 .29

31

In Table IV, the ef feet of increasing the m.mber of constraints is

shown. A total of 75 problems were tested. As expected, the number of

iterations and the execution time increase as the number of constraints

increases. In all of the cases, the number of iterations for Fletcher

is significantly less than that for Lemke and MINOS.

The effect of increasing the number of variables is shown in Table

V. Again 75 problems were tested. The table shows that the number of

variables does not have a very significant effect on the results.

Fletcher's algorithm is still superior to the other two algorithms in

terms of the number of iterations.

In part two of the study, the general quadratic prograrmning case

was tested. The results are given in Table VI. A total of 54 cases

were tested. Fletcher's algorithm and the MINOS package always gave

the correct answers. Lemke's algorithm failed to arrive at an optimal

point in 70 percent of the tested cases. This is not an abnormal

behavior of the method because it is not guaranteed to give an optimal

solution in the general quadratic prograrmning case. It is because ,of

this reason that the claim raised by Chiang (26) is not true. In the

problem he was trying to solve the matrix of quadratic terms was posi

tive semi-definite and for such a case it is guaranteed to obtain a

solution by Lemke's algorithm only if the linear terms in the objective

function are all zeros.

No. of
Constraints

2

4

8

10

15

15

TABLE VI

MEAN ITERATION COUNT AND EXECITTION TIME
FOR THE 'IHREE ALGORITHMS FOR GENERAL

QUADRATIC PROGRAMMING CASE

No. of Fletcher Lemke
No. of Active

Variables Constraints Iter Time Iter Time

2 2 2 .08 4 .OS

4 2 2 .08 *

4 2 3 .1 J. ,.

5 2 7 .12 15 .09

6 2 12 .14 *

10 5 12 .21 *

*Indicates failure to arrive at a solution.

32

MINOS

Iter Time

2 .21

4 .23

5 .25

6 .27

7. .27

16 .37

CHAPl'ER v

SUMMARY AND CONCLUSIONS

'!he results given in Tables I through VI all indicate that

Fletcher's algorithm is a very efficient algorithm to solve the

quadratic programning problem. In the cases tested, Fletcher's

algorithm never needed more than 2*n iterations to reach an optimal

point. Although Lemke's algorithm gave slightly better execution time,

one should not forget that this method has a drawback in that it

enlarges the sizEi' of the problem since it tries to solve the Kuhn

Tucker conditions. In addition, Lemke's method does not solve general

quadratic progranming problems. In fact, it does not solve positive

semi-definite problems. Hence, it should have troubles on ill-condi

tioned positive definite (but almost semi-definite) problems. On the

" other hand, Fletcher's algorithm requires a lower and an upper bound on

each variable to be input. '!his can be a disadvantage, but if bounds

are known then not much extra work is needed by Fletcher's algorithm

while the other algorithm will need more iterations and execution time.

Another advantage of Fletcher's algorithm is its flexibility, since 5

modes are available for the user. Furthermore, mode 3 should be used

whenever matrix A is known to be strictly positive definite and it is

expected that few constraints are active at the optimal point, since few

iterations will then be needed to arrive at the solution. Finally, it

is to be mentioned here that the MINOS package is slower than the other

33

34

programs and does some times face problems when the problem is poorly

scaled, as it did in 2 cases in part 2 of the study (i.e. in General

Quadratic Programming Problems).

Therefore, Fletcher's method is recommended as the best method,

among the three methods tested in this thesis, for solving quadratic

programming problems.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

SELECTED REFERENCES

Ahn, B. H. "Iterative methods for linear complementarity
problems with upper bounds on primary variables,'' Math.
Prag., 26, (1983), pp. 295-315.

Balas, E. ''Nonconvex quadratic programming via generalized
polars," Ma.nag •. Sci. Researc;h Re19rt No. 278(R),
G.S.I.A., Carnegie-Mellon Univ., 1 73.

Balas, E. and C. A. Burdet. ''Maximizing a convex quadratic
function subject to linear constraints," Ma.nag. Sci.
Res. Report No. 299, G.S.I.A., Carnegie-Mellon Univer
sity, Sept. 1972-July 1973.

Barankin, E., and R. Dorfman. "On quadratic programming,"
University of California publications and statistics, 2,
(1958), pp. 285-318.

Bartholomew-Biggs, M. C. ''Recursive quadratic prograrmning
methods for nonlinear constraints~" In Nonlinear
Optimization, M. J. D. Powell (EdJ, 1981, Academic
Press, N.Y., 1982, pp. 213-221.

Bartholanew-Biggs, M. C. "A recursive quadratic programming
algorithm based on the augmented lagrangian function,"
Technical report No. 139, Nunerical Optimization Centre,
'Ihe Hatfield Polytechnic, 1983.

Beale, E. M. L. "On minimizing a convex function subject to
linear inequalities," Journal of the Royal Statistical
Society (B), 17, (1955), pp. 1~-IS4.

Beale, E. M. L. "On quadratic programming," ~4;jfll Research
Logistics Quarterly, 6, (1959), pp. 227- •''.

Beale, E. M. L. ''Note on a comparison of two methods of quad
ratic programning," Operations Research 14, (1966),
pp. 442-443.

Beale, E. M. L. "Nunerical 'methods," In Nonlinear Pro-
gramning, Abadie (Ed), Wiley, N. Y. 1967. --

Benveniste, R. "A quadratic programming algorithms using conju
gate serch directions," Math. Prag. 16(1979), pp. 63-80.

35

12. Benveniste, R. "Quadratic prograrrming using conjugate search
directions," Ph.D. Thesis, University of London (1979).

13. Betts, J. T. "Algorithm 559, The stationary point of a quad
ratic function subject to linear constraints," ACM Trans
actions on Mathematical Software 6(3), 1980, pp.~1-397.

36

14. Betts, J. T. "A compact Algorithm for computing the stationary
point of a quadratic formula subject to linear constraints,"
ACM Transactions on Mathematical Software 6(3), 1980,
pp. 391-397. -

15. Biggs, M. C. "Constrained minimization using recursive equality
quadratic prograrmrl.ng," In Numerical Methods for Nonlinear
~timization, F.A. Lootsrna. (Ed), Academic Press (London),

72.

16. Biggs, M. C. "Constrained minimization using recursive quad
ratic r.rogranming: some alternative subproblem fornrula
tions, ' In Towards Global Optimization, L.C.W. Dixon
and G. P. Szego (F.cis), North-Holtarid Publishing Co.
(Amsterdam) 1975.

17. Boot, J. C. G. "Notes on quadratic prograrrming: the Kuhn-Tucker
and 'lheil-Van de panne conditions, de~eneracy and equality
constraints," Ma.nagement Science, 8, (1961), pp. 85-98.

18. Boot, J. C. G. Quadratic Programming Algorithms, Anomalies
~lications. North-Holland Publishing Company, Amesterdam,

4.

19. Bove, B. E. '"lhe one-stage deformation method: an algorithm
for quadratic prograrrming," Econometrica, 38, (1970),
pp. 225-230.

20. Braitsch, R. J. Jr. "A colilpllter comparison of four quadratic
prograrrming algorithms," Management Science 11, (1972),
pp. 632-643.

21. Bracken, J. and A. P. McCormick. Selected Applications of
Nonlinear Prograrmrl.ng, Wiley, New York, 1968.

22. Burdet, C. A. "General quadratic programming," Management
Science Res. RT.rt No. 272, G.S.I.A., Carnegie-Mellon
Univ., Nov. 197 •

23. Cabot, A. V. and R. L. Francis. "Solving certain nonconvex
minimization problems by ranking extreme points," Oper
ations Research, 18, (1970), pp. 82-86.

24. Candler, W. and R. J. Townsley. '"lhe maximization of a quad
ratic function of variables subject to linear inequalities,"
Management Science 10 (3), (1964), pp. 515-523.

2S.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3S.

36.

Chen, J. "Feed formulations with a :probabilistic constraint,"
Amer. ~ Agric. F.con. SS, (1973), pp. 17S-184.

37

Chiang, S.A. "Separable Programming Analysis of Spatial Compet
itive Mark.et Models." M.S. Thesis, Department of Computer
Science, Oklahoma. State University, 1986.

Coffman, J., A. Majthay, and A. ~inston. ''Local optimization
for nonconvex quadratic prograrmrl.ng," unpublished paper.

Cottle, R. W. "'lhe principal pivoting method of quadratic prog
ranming," In Ma.thematics of the Decision Sciences (part
1), Dantzig and Veinott (Eds)-;--F'rovidence, R. I., American
Ma.th. Soc., 1968.

Cottle, R. W. and G. B. Dantzi*. "Complementary pivot theory of
mathematical programming, Linear Algebra and Applications,
1 (1968), pp. 103-12S.

Cottle, R. W., and W. C. Mylander. ''Ritter's cutting plane
method for nonconvex quadratic prograrmning~" In Integer and
Nonlinear progranming, Abadie (Ed), Amesterdam, North
Holland publ. company. , 1970.

OJtler, L. and D. S. Pass. "A computer program for quadratic
mathematical models to be used for aircraft, design and
other applications involving linear constraints," Report
~repared for U.S.A.F. Project Rand, Rand Corp., Project
o. R-516-PR, 1971. --

D'Espo, D. "A convex prograrmning :procedure," Naval Research
Logistics Quarterly, 6, (19S9), pp. 33-42.

Dantzig, G. B. Linear Programming and Extensions. Princeton
University Press, Princeton, N.J. 1963.

Davidon, W. C. ''Variable me,t.ric method for minimization,"
AEC Research Developnent Report ANL-S990 (19S9).

Dennis, J. B. Mathematical Programming and Electrical Networks,
Wiley, N.Y. 1959. -

Eaves, B. C. '"Ihe linear complementarity problem," Management
Science, 17, (1971), pp. 612-634.

37. - Fiacco, A. V. and G. P. McCormick. "'lhe sequential unconstrained
minimization technique for nonlinear programming," Ma.nage
ment Science. 10(2), (1964), pp. 360-366.

38. Fletcher, R. "A Fortran Subroutine for quadratic progranming,"
UKAEA Research Group Report, AERE R6370, 1970.

39. Fletcher, R. "The calculation of feasible points for linearly
constrained optimization problems," UKAEA Research Group
Report, AERE R6354, 1970.

40. Fletcher, R. "A general quadratic prograrrming algorithm,"~
Inst. Maths Applies, 7, (1971), pp. 76-91.

38

41. Fletcher, R. "An exact penalty function for nonlinear program
ming with inequalities," Math. Prog. 5, (1972), pp. 129-150.

42. Fletcher, R. "An ideal penalty function for constrained
optimization," In Nonlinear Prograrrming, 0. L.
Mangasarian, R. R. Meyer, and S. M. Robinson (F.ds), Academic
Press (New York), 1975.

43. Fletcher, R. Practical Methods of Optimization, John Wiley
and Sons, New York, 1981. -

44. Frank, M. and P. Wolfe. "An algorithm for quadratic prograrrming,"
Naval Research Logistics Quarterly 3, (1956), pp. 95-110.

45. Fukushima, M. "A successive quadratic r.rograrrmin algorithm with
global and superlinear properties,' Math. Prog., 35,
(1986), pp. 253-264.

46. Goldfarb, D. "Extensions of Newton's method and simplex methods
for solving quadratic programs," In Conference on Numerical
Methods for Nonlinear Optimization, F. A. Lootsma (Ed),
University of Dundee, Academic Press, N. Y., 1971.

47. Goncalves, A. S. "A primal-dual method for quadratic program
ming," Revis ta da Fae. , Ciencias Univ. Coimbra, vo 1. 4 7.

48. Goncalves, A. S. "A version of Beale's method avoiding the free
variables," Proc. of the ACM National Conference, Chicago,
1971, pp. 433-441.

49. Goncalves, A. S. "A primal-dual method for quadratic program
ming with bounded variables," In Numerical Methods for
Nonlinear Optimization, Lootsrna (Ed), N.Y. Academic Press,
1972.

50. Goncalves, A. S. "A nonconvex quadratic prograrrmin algorithm,"
In Mathematical Pro~rammin~ in Tha)ry and Practice,
Goncalves (Ed), Dor rechtHollan , Reidel Publishing Co. ,
1973.

51. Graves, R. L. "A principal pivoting simplex algorithm for
linear and quadratic programming," Operations Research,
15, (1967), pp. 482-494.

52. Han, S. P. "Superlinearly convergent variable metric algorithms
for general nonlinear prograrrming problems," Math. Prog.,
11, (1976), pp. 263-282.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

39

Han, S. P. 'iA globally convergent method for nonlinear program
ming," J. of Optimization Theory and Appls. 22, (1977),
pp. 29T-3UrJ.

Hazell, P. B. R. "A linear alternative to quadratic and semi
variance program:ning for farm planning under uncertainty,"
Amer. ~Agricultural Economics 53, (1971), pp. 53-62.

Hildreth, C. "A quadratic programming procedure," Naval Res.
Logistics Quarterly 4, (1957), pp. 79-85.

Houthakkerli H •. S. ''The capacity method of quadratic program
ming, ' Econometrica 28, (1960), pp. 62-87.

Jagannathan, R. "A simplex-type algorithm for linear and quad
ratic programning--a parametric procedure," Econometrica,
34, (1966), pp. 460-471.

Kaneko, T. "On some recent engineering applications of comple
mentarity problems," Math. Prog., Study 17, (1982), pp.
111-125.

Keller, E. L. '"Ihe general quadratic optimization problem,"
Math. Prog., 5, (1973), pp. 311-337.

Land, A. H. and G. Morton. i'An inverse-basis method for Beale's
quadratic programming algorithm," Management Science 19,
(1973), pp. 510-516.

Laughunn, D. J. "Quadratic binary r.rogramning with application
to capital budgeting problems,' Operations Res., 18, (3),
(1970), pp. 454-461.

Lemke, C. E. "Bi-matrix equilibriun P<?ints and mathematical
programming," Math. Science, 11, (1965), pp. 681-689.

Lemke, C. E. "On complementary pivot theory," In Mathematics
of Decision Sciences, G. B. Dantzig and A. F. Veinott
\FdS) ' 1968 •

Louwes, S. L., J.C. A. Boot, and S. Wage, "A quadratic prog
ranming approach to the problem of optimal use of milk in
Netherlands," ~Farm Econ., 45, (1963), pp. 309-317.

Mangasarian, 0. L., and H. Stone. ''Two person non-zero sun games
and quadratic prograrrming," ~ Math. Anal. Appl. , 9, (1964),
pp. 348-355.

Markowitz, H. ''Portfolio selection," J. Finance, 7, (1952),
pp. 77-91. -

Markowitz, H. '"Ihe optimization of quadratic fornrulas subject
to linear constraints," Naval Res. Logistics Quarterly
3, (1956), pp. 111-133.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

BL

M:.Garl, B. A., H. Moskowitz and H. Furtan. "Quadratic program
ming applications," OMEGA, 5, (1977), pp. 43-55.

Mc.Millan, C. Mathematical Progranming, Wiley, New York, 2nd.
Fd., 1975.

Moore, J. and A. Whinston. ''Experimental methods on quadratic
progranming," 'Management Science, 13, (1966), pp. 58-76.

40

Mueller, R. K. "A method for solving the indefinite quadratic
progranming problem," Manag. Sci., 16, (1970), pp. 333-339.

Murray, W. , and M. H. Wright. ''Projected lagrangian methods
based on the trajectories of penalty and barrier functions,"
Report SOL 78-23, Department of Operations Research, Stan
ford University, 1978.

Murtagh, B. A., and M. A. Saunders. ''Large-scale linearly con
strained optimization," Math. Prog., 14, (1978), pp. 41-72.

Murtagh, B., and M. Saunders. Modular In-Core Nonlinear
Optimization S~stem (MINOS), User's Manual, Stanford
University, 19 3.

Mylander, W. C. "Finite algorithms for solving quasi-convex
quadratic problem8," Operations Research, 20, (1972),
pp. 167-173.

Nakamura, M. "Some progranming problems in population projec
tions," Operations Res. 21, (5), (1973), pp. 1048-1062.

Parsons, T. D. "A combinatorial approach to convex quadratic
progranming," Ph.D. Dissertation, Princeton University,
Dept. of Math., 1966.

Powell, M. J. D. "A fast algorithm for nonlinearly constrained
optimization calculations," In Numerical Analysis
G. A. Watson (Fd), Dundee 1977, Lecture notes in Mathe
matics 630, Springer-Verlag (Berlin), 1978.

Powell, M. J. D. "'Ih.e convergence of variable metric methods for
nonlinear constrained optimization calculations," In
Nonlinear Proaranming 3 ~ o. L. Mangasarian, R. R. Meyer,
and S. M. Robinson (FdsJ, Academic Press (New York), 1978.

Powell, M. J. D. "An up,per triangular matrix method for quad
ratic progranming,' Presented at the symposium: Nonlinear
Progranming 4, Madison, Wisconsin, July 1980.

PoWell, M. J. D. ''Variable metric methods for constrained
optimization," In Mathematical Progranming, The State of
Art, A. Bachem, M. GrotsChel, and B. Korte (EQS) , -
Springer-Verlag (Berlin), 1983.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

41

Powell, M. J. D. '"Ihe performance of two subroutines for con
strained optimization on some difficult test problems," In
Numerical Optimization, P. T. Boggs, R. H. Boyd, and
R. B. Schnabel (Eds), 1984, (SIAM), Philadelphia, 1985.

Powell, M. J. D., and Y. Yuan. "A recursive quadratic program
ming algorithm that uses differentiable exact penalty
functions," Math. Prog., 35, (1986), pp. 265-278.

Proll, L. A. ''Remark on algorithm 431," Corrmmications of the
A01, 17 (10), (1974), pp. 590. - --

Raghavachari, M. "On connections between zero-one integer
prograrrming and concave programming under linear con
straints," Operations Res., 17, (4), (1969), pp. 680-
684.

Ravindran, A. "Algorithm 431, a computer routine for quadratic
and linear programming problems," Coommications of the
A01, 15 (9), (1972), pp. 818-820. ---

Ravindran, A., and H. K. Lee. "Computer experiments on
quadratic prograrmrl.ng algorithms," Eur°r-i] Journal of
Operational Research, 8, (1981), pp. 16 - 4. -

Ritter, K. "Stationary points of a quadratic maximum problems,"
Zeitschrift fur Wahrscheinlichk.eitstheorie und verwandte
Gebiete, 4, ~65), pp. 149-158.

Ritter, K. "A method for solving maximum p,roblems with a non
concave quadratic objective function, ' Zeitschritt fur
Wahrscheinlichk.eitstheorie und verwandte Gebiete, 4-, -
(1966), pp. 340-351. --

Rosen, J. B. and S. Suzuki. "Construction of nonlinear pro
grarrming test problems," Conm.mications of thhe ACM,
8 (2), (1965), pp. 113. - ----

Rusin, M. H. "A revised simplex method for quadratic program
ming," SIAM Journal of Appl. Math, 20, (1971), pp. 143-160.

Sacher, R. S. "A decomposition algorithm for quadratic program
ming," Math. Prog. 18, (1980), pp. 16-30.

Schittkowski, K. "'Ihe nonlinear prograrrming method of Wilson,
Han, and Powell with an augmented lagrangian tYp,E! line
search function, part I: convergence analysis, ' Numerische
Mathematik 38, (1981), pp. 83-114.

Schittkowski, K. "On the convergence of a sequential quadratic
progranming method with an augmented lagrangian line search
function," Mathema.tische Omationsfors2¥6:8 und Statistik,
Ser. Optimization, 14, (19 3 , pp. 197-21 •

42

95. Shetty, C. M. "A simplified procedure for quadratic programming,"
Operations Research, 11, (1963), pp. 248-260.

96. Stoecker, A. L. "A quadratic programming model of United States
agriculture in 1980: theory and application," Ph.D. Thesis,
Iowa State University.

97. Taha, H. A. "Concave minimization over a convex polyhedron,"
Naval Research Logistics Quarterly, 20, (1973), pp. 533-548.

98. Takayama, T. "An application of spatial and t:mr.oral price
equilibrium model to world energy modeling, ' Regional
Science Assoc. Papers, 41, (1979), pp. 43-58.

99. Tapia, R. A. "Diagonalized multiplier methods and quasinewtion
methods for constrained optimization," J. Optim. Theory and
Appls., 22, (1977), pp. 135-194. - --

100. Theil, H. and G. Ray. "A quadratic programni.ng approach to the
estimation of transition probabilities," Management Science,
12, (1966), pp. 714-722.

101. Theil, H. and C. Van de panne. "Quadratic prograrrnning as an
extension of conventional quadratic maximization," Manage
ment Science, 7, (1), (1960), pp. 1-20.

102. Todd, M. J. "A generalized complementary pivoting algorithm,"
Math. Prog. 6, (1974), pp. 243-263.

103. Tone, K. "Revisions of constraint approximations in the success
ive quadratic prograrrnning methods for nonlinear progranming
problems," Math. Prog., 26, (1983), pp. 144-152.

104. Townsley, R. "Derivation of optimal livestock rations using
quadratic progranming," :L_ Agric. Econ. , 19, (1968),
pp. 347-354.

105. Townsley, R. J. and W. Candler. "Quadratic as parametric linear
progranming," Naval Res. Log. Quarterly, 19, (1), (1972),
pp. 183-189.

106. Tucker, A. W. "A least-distance approach to quadratic program
ming," In Math of Decision Sciences, G. B. Dantzig and
A. F. Veinottl"llis) , 1968.

107. Tui, H. "Concave programming under linear constraints/' Soviet
Mathematics, 1965, pp. 1437-1440.

108. Van de panne, C. "A non-artificial s~lex method for quadratic
pr<;>granming," Report 22 of the Int 1 Center for Management
Science, 1962.

. 109. Van de panne, C. "A parametric method for general quadratic
prograrmrl.ng," Discussion papers, Series No. 28, The Univ.
of Calgary, Department of Economics, Nov-:-T97!.

43

110. Van de panne, C. Methods for Linear and Quadratic Prograrmning,
North Holland Publishing Company, Amesterdarn, 1974.

111. Van de panne, C., and A. Whinston. "A compari:son of two methods
for quadratic prograrmrl.ng," Operations Research 14 (1966),
pp. 422-441.

112. Van de panne, C., and A. Whinston. "The simplex and dual method
for quadratic prograrmrl.ng," Qperations Resear-..11 ~rterly
15, (1964), pp. 355-388. .

113. Whinston, A. "A decomposition algorithm for quadratic program
ming," Cowles Foundation Duscussion, paper No. 172.

114. Wilde, D. J. and C. S. Beightler. Foundation of Optimization,
Prentice-Hall, Englewood Cliffs, N.J., 1967.

115. Wilson, R. B. "A simplical algorithm for concave prograrmning,"
Ph.D. dissertation, Graduate School of Business Administra
tion, Harvard University, Boston 1963.

116. Wolfe, P. ''The simplex method for quadratic progranming," Econo
metrica, 27, (1959), pp. 382-398.

117. Wolfe, P. ''Methods of nonlinear programning," In Recent Advances
in Mathematical Prograrmrl.ng, R. L. Graves and P. Wolfe
"{FrlS) ; 1963.

118. Wood, M. J. ''The February 1975 state of Build," Ministry of
Works and Developnent Report (February 1975), Wellington,
NeWZ'ealand.

119. Zahl, S. "A deformation method for quadratic programning," J.
of the Royal Statistical Society, Series B, 26, (1964),-pp.
141-=Ib"O.

120. Zahl, S. "SuPp,lement to a deformation method for quadratic pro
gramning, ' Journal of the Royal Statistical Society, Series
B, 27, (1965), pp. I6'6::-rb8. .

121. Zangwill, W. I. ''The convex simplex method," Management Science,
14, (3), (1967), pp. 221-238. .

122. Zwart, P. B. "Global maximization of a convex function with
linear inequality constraints," Qperations Research, 22,
(1974), pp. 602-609.

APPENDIX A

LISTING OF RAVINDRAN'SIMPLEMENTATION

OF LEMKE Is M.GORI'IHM

44

//Ul0832A JOB (10832,269-34-0589),'F. M. KHALILI' ,TIME=(,5),
II CLASS=2,MSGLEVEL=(l,l),MSGCLASS=X,NOTIFY=*
/*PASSWORD ?
/*JOBPARM ROOM=F,FORMS=9031
II EXEC FORTVCLG,IMSL=DP,REGION.G0=1500K
//FORT.SYSIN DD *
C**C
C* *C
C* MODIFIED RAVINDRAN'S IMPLEMENTATION OF LEMKE'S ALGORITHM *C
C* *C
C**C
C* *C
.C* MODIFIED BY : FOUAD M. KHALILI *C
C* DATE : NOV. 20, 1987 *C
C* *C
C**C
C*
C*
C*

IMPLICIT REAL*8(A-H,O-Z)
PARAMETER(N=lOO}
PARAMETE~(M=200)

DIMENSION
1 C(N),Q(N,N},A(N,N},RESl(N),RES2(N),ATRANS(N,N),BMAT(M,M),
2 B(N),X(N),U(N},AM(M,M},QV(M),W(M),Z(M),AV(M),MBSIS(2*M)

DIMENSION QI (15, 15} ,D(l5}, WK(20), ZZ (15, 15)
COMMON AM,AV,BMAT,W,Z,QV,Ll,NLl,NL2,NEl,NE2,IR,MBSIS
IN = 5
IOUT = 6
TYPE = 1.0DO
SEED = 50.0DO
NOFROW 15
NOFCOL = 15
NOACTV = 2
NOZERO = 5

C** GENERATE X AND U VECTORS
DO 100 I = l,NOFCOL

CALL GENRTE(SEED,RANDOM)
X(I) = RANDOM

100 CONTINUE
DO 110 I = l,NOFROW

CALL GENRTE(SEED,RANDOM)
U(I} =RANDOM

ll 0 CONTINUE
DO 120 I = l,NOFROW-NOACTV

U(I) = 0. ODO
120 CONTINUE
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER}

DO 200 I = l,NOFROW
DO 200 J = l,NOFCOL

CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
A(I,J) RANDOM

200 CONTINUE
DO 1700 I l,NOFCOL
DO 1700 J NOFCOL+l,NOFROW+NOFCOL

AM(I,J) = -A(J-NOFCOL,I)
1700 CONTINUE

DO 1800 I NOFCOL+l,NOFROW+NOFCOL
DO 1800 J = l,NOFCOL

45

AM(I,J) = A(I-NOFCOL,J)
1800 CONTINUE .
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER)

DO 300 I = l,NOFCOL
DO 300 J = l,NOFCOL

IF (I.GT.J) GO TO 300
CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
ATRANS(I,J) =RANDOM

300 CONTINUE
DO 1000 I = l,NOFCOL
DO 1000 J = l,NOFCOL

IF (I.LE.J) GO TO 1000
ATRANS(I,J) = ATRANS(J,I)

1000 CONTINUE
C** TYPE = O.=> Q IS INDEFINITE
C** TYPE = l.=> Q IS POSITIVE DEFINITE

IF (TYPE.EQ.O.ODO) GO TO 10
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N)
DO 1200 I = l,NOFCOL
DO 1200 J = l,NOFCOL

IF (I.EQ.J)Q(I,J) = Q(I,J) + l.ODO
1200 CONTINO

GO TO 40
10 DO 800 I = l,NOFCOL

DO 800 J = l,NOFCOL
Q(I,J) = ATRANS(I,J)

800 CONTINUE
40 DO 810 I = l,NOZERO

DO 810 J = NOFCOL-NOZERO+l,NOFCOL
Q (I , J) = 0 • ODO

810 CONTINUE
DO 860 I = NOFCOL-NOZERO+l,NOFCOL
DO 860 J = l,NOZERO

Q(I,J) O.ODO
860 CONTINUE

DO 1600 I = l,NOFCOL
DO 1600 J = l,NOFCOL

AM(I,J) = 2.0DO*Q(I,J)
1600 CONTINUE
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER)

DO 700 I = l,NOFCOL
DO 700 J = l,NOFROW

ATRANS(I,J) = A(J,I)
700 CONTINUE

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l)
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l)
DO 400 I .= l,NOFCOL

C(I) = RESl(I) - 2.0DO*RES2(I)
4 0 0 CONTINUE
C** COMPUTE VECTOR B (ORD IN FLETCHER'S PAPER)

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l)
DO 900 I = l,NOFCOL

IF (X(I).GT.0.0DO) GO TO 900
CALL GENRTE(SEED,RANDOM)
C(I) = C(I) +RANDOM

900 CONTINUE
DO 910 I = l,NOFROW

IF (U(I).GT.O.ODO) GO TO 910
CALL GENRTE(SEED,RANDOM)

46

B(I) = B(I) - RANDOM
910 CONTINUE

DO 1900 I = l,NOFCOL
QV(I) = C(I)

1900 CONTINUE
DO 2000 I = NOFCOL+l,NOFROW+NOFCOL

QV(I) = -B(I-NOFCOL)
2000 CONTINUE

C*
C'.lr

CALL LEMKES(NOFROW+NOFCOL)
STOP
END

C**C
C*
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND
C* ARGUMENTS
C* RLEFT THE FIRST MATRIX
C* RIGHT : THE SECOND MATRIX
C* LEFTR : ROW SIZE OF THE FIRST MATRIX
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX
C* IRIHTC: COLUMN SIZE OF THE SECOND MATRIX
C* IDl ROW DIMENSION OF THE FIRST MATRIX
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX
C* ID3 ROW DIMENSION OF THE SECOND MATRIX
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX
C* RESULT: MULTIPLICATION RESULT
C* INPUT
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4
C* OUTPUT
C* RESULT
C*

*C
RIGHT.*C

*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C

C**C
Ctr
C*

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2,
1 ID3, ID4)

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4)
DO 100 I = l,LEFTR
DO 100 J = l,IRIHTC

RESULT(I,J) = O.ODO
100 CONTINUE

DO 200 I = l,LEFTR
DO 300 J = l,IRIHTC
DO 400 K = l,LEFTC

RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J)
400 CONTINUE
300 CONTINUE
200 CONTINUE

C*

RETURN
END

C*
C************************.************************************C
C* . *C
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C
C* ARGUMENTS *C
C* SEED THE SEED FOR THE GENERATOR *C
C* RANDOM THE GENERATED NUMBER *C

47

C* INPUT :
C* SEED
C* OUTPUT:
C* SEED,RANDOM
C*

*C
*C
*C
*C
*C

C***C
C*
C*

C*
C*

SUBROUTINE GENRTE(SEED,RANDOM)
IMPLICIT REAL*8(A-H,O-Z)
X = 3373.0DO
Y = 6925.0DO
WORD = 32768.0DO
TMAX = 24.0DO
ONE = 1. ODO
SEED= DMOD((X*SEED + Y),WORD)
RANDOM = INT(TMAX*(SEED/WORD) + ONE)
RETURN
END

C*
C***C
C* *C
C* PROGRAM FOR SOLVING LINEAR AND QUADRATIC PROGRAMMING *C
C* PROBLEMS IN THE FORM W=M*Z+Q, Q.Z=O, WAND Z NONNEGATIVE *C
C* BY LEMKE'S ALGORITHM. *C
C* *C
C* THE SUBROUTINE CALLS SIX SUBROUTINES. THESE ARE : MATRX, *C
C* INITL,NEWBS,SORT,PIVOT AND PRINT IN PROPER ORDER. *C
C* INPUT : *C
C* N : THE SIZE OF ARRAY AM *C
C* *C
C* DESCRIPTION OF PARAMETERS IN COMMON *C
C* AM A TWO DIMENSIONAL ARRAY CONTAINING THE *C
C* ELEMENTS OF MATRX M. *C
C* Q A SINGLY SUBSCRIPTED ARRAY CONTAINING THE *C
C* ELEMENTS OF VECTOR Q, *C
C* Ll AN INTEGER VARIABLE INDICATING THE NUMBER OF *C
C* ITERATIONS TAKEN FOR EACH PROBLEM. *C
C* B A TWO DIMENSIONAL ARRAY CONTAINING THE *C
C* ELEMENTS OF THE INVERSE OF THE CURRENT BASIS. *C
C* W A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES *C
C* OF W VARIABLES IN EACH SOLUTION. *C
C* Z A SINGLY SUBSCRIPTED ARRAY CONTAINING THE VALUES *C
C* OF Z VARIABLES IN EACH SOLUTION. *C
C* NLl AN INTEGER VARIABLE TAKING VALUE 1 OR 2 DEPEND- *C
C* ING ON WHETHER VARIABLE W OR Z LEAVES THE BASIS *C
C* NEl SIMILAR TO NLl BUT INDICATES VARIABLE ENTERING *C
C* NL2 AN INTEGER VARIABLE INDICATING WHAT COMPONENT *C
C* OF W OR Z VARIABLE LEAVES THE BASIS. *C
C* NE2 SIMILAR TO NL2 BUT INDICATES VARIABLE ENTERING *C
C* A ~ SINGLY SUBSCRIPTED ARRAY CONTAINING THE *C
C* ELEMENTS OF THE TRANSFORMED COLUMN THAT IS *C
C* ENTERING THE BASIS. *C
C* IR AN INTEGER VARIABLE DENOTING THE PIVOT ROW AT *C
C* EACH ITERATION. ALSO USED TO INDICATE TERMINA- *C
C* TION OF A PROBLEM BY GIVING IT A VALUE OF 1000. *C
C* MBSIS A SINGLY SUBSCRIPTED ARRAY-INDICATOR FOR THE *C
C* BASIC VARIABLES. TWO INDICATORS ARE USED FOR *C

48

C*
C*
C*
C*

EACH BASIC VARIABLE-ONE INDICATING WHETHER
IT IS A W OR Z AND ANOTHER INDICATING WHAT
COMPONENT OF W OR Z.

*C
*C
*C
*C

C***C
C*
C*

c

c

c

SUBROUTINE LEMKES(N)
IMPLICIT REAL*B(A-H,O-Z)
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NL1,NL2,NE1,NE2,IR,MBSIS
IOUT=6
IN=5

IP = 1

C VARIABLE NO INDICATES THE CURRENT PROBLEM BEING SOLVED
c

NO=O
1000 NO=NO+l

IF(NO-IP)lOl0,1010,1070
1010 WRITE(IOUT,1020)NO
1020 FORMAT (lHl,lOX,llHPROBLEM NO.,I2)

c
C PROGRAM CALLING SEQUENCE
c

CALL MATRX (N.)
c
C PARAMETER N INDICATES THE PROBLEM SIZE
c

CALL INITL (N)
c
C SINCE FOR ANY PROBLEM TERMINATION CAN OCCUR IN INITIA,
C NEWBAS OR SORT SUBROUTINE,THE VALUE OF IR IS MATCHED WITH
C 1000 TO CHECK WHETHER TO CONTINUE OR GO TO NEXT PROBLEM.
c

c

IF(IR~l000)1040,1000,1040

1040 CALL NEWBS (N)
IF(IR-1000)10.50,1000,1050

1050 CALL SORT (N)
IF(IR-1000)1060,1000,1060

1060 CALL PIVOT (~)

GO TO 1040
1070 RETURN

END
SUBROUTINE MATRX (N)

C PURPOSE - TO INITIALLIZE AND READ IN THE VARIOUS INPUT DATA
c

c

c

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NL1,NL2,NE1,NE2,IR,MBSIS

IOUT=6
IN=5
RZERO=O.ODO

49

RONE=l.ODO
c
C IN ITERATION l,BASIS INVERSE IS AN IDENTITY MATRIX.
c

c

DO 2030 J=l,N
DO 2020 I=l,N

2020 B(J,I)=RZERO
2030 B(J,J)=RONE

RETURN
END
SUBROUTINE INITL (N)

C PURPOSE TO FIND THE INITIAL ALMOST COMPLEMENTARY SOLUTION.
C BY ADDING AN ARTIFICIAL VARIABLE ZO.
c

c

c

c

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS

IOUT=6
RZERO=O.ODO
TNONE=-1.0DO

C SET ZO EQUAL TO THE MOST NEGATIVE Q(I)
c

c

I=l
J=2

3000 IF(Q(I)-Q(J))3010,3010,3020
3010 GO TO 3030
3020 I=J
3030 J=J+l

IF(J-N)3000,3000,3040

C UPDATE Q VECTOR
c

c

3040 IR=I
Tl=-Q(IR)
IF(Tl)3120,3120,3050

3050 DO 3060 I=l,N
Q (I) =Q (I) +Tl

3060 CONTINUE
Q(IR)=Tl

C UPDATE BASIS INVERSE AND INDICATOR. VECTOR
C OF BASIC VARIABLES.
c

DO 3070 J=l,N
B(J,IR)=TNONE
W(J)=Q(J)
Z(J)=RZERO
MBSIS(J)=l
L=N+J
MBSIS(L)=J

3070 CONTINUE
I ZR = IR

NLl=l
L=N+IR
NL2=IR

50

MBSIS(IR)=3
MBSIS(L)=O
W(IR)=RZERO
ZO=Q(IR)
Ll=l

c
C PRINT THE INITIAL ALMOST COMPLEMENTARY SOLUTION
c

c

WRITE(IOUT,3080)
3080 FORMAT (3(/),5X,29HINITIAL ALMOST COMPLEMENTARY ,

* 8HSOLUTION)
DO 3100 I=l,N

WRITE(IOUT,3090)!,W(I)
3090 FORMAT (10X,2HW(,I4,2H)=,D20.7)
3100 CONTINUE

WRITE(IOUT,3110)ZO
3110 FORMAT (10X,3HZO=,D20.7)

RETURN
3120 WRITE(IOUT,3130)
3130 FORMAT (5X;36HPROBLEM HAS A TRIVIAL COMPLEMENTARY ,

* 23HSOLUTION WITH W=Q, Z=O.)
IR=lOOO
RETURN
END
SUBROUTINE NEWBS (N)

C PURPOSE - TO FIND THE NEW BASIS COLUMN TO ENTER IN
C TERMS OF THE CURRENT BASIS.
c

c

c

c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(200,200),Q(200),B(200,200) ,A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS

IOUT=6
RZERO=O.ODO

C IF NLl IS NEITHER 1 NOR 2 THEN THE VARIABLE ZO LEAVES THE
C BASIS INDICATING TERMINATION WITH A COMPLEMENTARY SOLUTION
c

c

IF(NLl-1)4000,4030,4000
4000 IF(NLl-2)4010,4060,4010
4010 WRITE(IOUT,4020)
4020 FORMAT (5X,22HCOMPLEMENTARY SOLUTION)

CALL PRINT (N)
IR=lOOQ
RETURN

4030 NE1=2
NE2=NL2

C UPDATE NEW BASIC COLUMN BY MULTIPLYING BY BASIS INVERSE.
c

DO 4050 I=l,N
Tl=RZERO
DO 4040 J=l,N

4040 Tl=Tl-B(I,J)*AM(J,NE2)
A(I)=Tl

4050 CONTINUE
RETURN

51

4060 NEl=l
NE2=NL2
DO 4070 I=l,N

A (I) =B (I , NE2)
4070 CONTINUE

RETURN
END
SUBROUTINE SORT (N)

c
C PURPOSE - TO FIND THE PIVOT ROW FOR NEXT ITERATION BY THE
C USE OF (SIMPLEX-TYPE) MINIMUM RATIO RULE.
c

c

c

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION AM{200,200),Q(200),B(200,200),A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS

AMAX= ABS(A(l))
DO 10 I = 2,N

IF (AMAX.GE.ABS(A(I))) GO TO 10
AMAX = ABS(A(I))

10 CONTINUE
NB = 15
TOL = AMAX*2.0DO**(-NB)

C** IN ANY•ACTUAL IMPLEMENTATION NB SHOULD BE REPLACED BY B-11
C** WHERE B IS THE NO. OF BITS IN THE FLOATING POINT MANTISSA

IOUT=6

c

I=l
5000 IF(A(I).GT.TOL) GO TO 5030
5010 I=I+l

IF(I-N)5020,5020,5130
5020 GO TO 5000
5030 Tl=Q(I)/A(I)

IR=I
5040 I=I+l

IF(I-N)5050,5050,5090
5050 IF(A(I).GT.TOL) GO TO 5070
5060 GO TO 5040
5070 T2=Q(I)/A(I)

IF(T2-T1)5080,5040,5040
5080 IR=!

Tl=T2
GO TO 5040

5090 RETURN
5130 IF (Q(IZR).GT.TOL) GO TO 5100

WRITE(IOUT,5140)
5140 FORMAT(5X,'COMPLEMENTARY SOLUTION')

CALL PRINT(N)
IR = 1000
RETURN

C FAILURE OF THE RATIO RULE INDICATES TERMINATION WITH
C NO COMPLEMENTARY SOLUTION.
c

5100 WRITE(IOUT,5110)
5110 FORMAT (5X,37HPROBLEM HAS NO COMPLEMENTARY SOLUTION)

WRITE(IOUT,5120)Ll .
5120 FORMAT (10X,13HITERATION N0.,!4)

IR=lOOO

52

RETURN
END
SUBROUTINE PIVOT (N)

c
C PURPOSE - TO PERFORM THE PIVOT OPERATION BY UPDATING THE
C INVERSE OF THE BASIS AND 0 VECTOR.
c

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION AM(200,200),Q(200),B(200,200),A(200)
DIMENSION W(200),Z(200),MBSIS(400)

c
COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS

c

6000

6010

DO 6000 I=l,N
B(IR,I)=B(IR,I)/A(IR)

Q(IR)=Q(IR)/A(IR)
DO 6030 I=l,N

IF(I-IR)6010,6030,6010
Q(I)=Q(I)-Q(IR)*A(I)
DO 6020 J=l,N

6020
6030

c

B(I,J)=B(I,J)-B(IR,J)*A(I)
CONTINUE

CONTINUE

C UPDATE THE INDICATOR VECTOR OF BASIC VARIABLES
c

c

NLl=MBSIS(IR)
L=N+IR
NL2=MBSIS(L)
MBSIS(IR)=NEl
MBSIS(L)=NE2
Ll=Ll+l
RETURN
END
SUBROUTINE PRINT (N)

C PURPOSE - TO PRINT THE CURRENT SOLUTION TO COMPLEMENTARY
C PROBLEM AND THE ITERATION NUMBER.
c

c

c

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION Af-1(200,200) ,Q(200) ,B(200,200) ,A(200)
DIMENSION W(200),Z(200),MBSIS(400)

COMMON AM,A,B,W,Z,Q,Ll,NLl,NL2,NEl,NE2,IR,MBSIS

IOUT=6
RZERO=O.ODO
WRITE(IOUT,7000)Ll

7000 FORMAT (10X,13HITERATION N0.,14)
I=N+l
J=l

7010 Kl=MBSIS(I)
K2=MBSIS(J)
IF{Q(J))7020,7030,7030

7020 Q(J)=RZERO
7030 IF(K2-1)7040,7060,7040
7040 WRITE(IOUT,7050)Kl,Q(J)
7050 FORMAT (10X,2HZ(,I4,2H)=,D20,7)

GO TO 7080
7060 WRITE(IOUT,7070)Kl,Q(J)

53

7070 FORMAT (10X,2HW(,I4,2H)=,D20.7)
7080 I=I+l

J=J+l
IF(J-N)7010,7010,7090

7090 RETURN
END

II

54

APPENDIX B

FLETCHER'S ALGORITHM LISTING

55

//U10832A JOB (10832,269-34-0589), 'F. M. KHALILI' ,TIME=(l,O),
II CLASS=2,MSGLEVEL=(l,1),MSGCLASS=X,NOTIFY=*
/*PASSWORD ?
/*JOBPARM ROOM=F,FORMS=9031
//EXEC FORTVCLG,IMSL=DP,REGION.G0=5000K
//FORT.SYSIN DD *
C**C
C** THIS IS THE LISTING FOR FLETCHER'S ALGORITHM. **C
C**C
C* *C
C* MODIFIED BY : FOUAD M. KHALILI *C
C* DATE : NOV. 20, 1987 *C
C**C
C*
C*

PARAMETER(N=200)
PARAMETER(M=700)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION

1 C(N),Q(N,N),A(N,N),RESl(N),RES2lN),ATRANS(N,N),
2 B(N),X(M),U(N),BDL(N),BDU(N),H(N,N) ,LT(N)

IN = 5
IOUT = 6
TYPE = l.ODO
MODE = 2
IF (TYPE.EQ.O.ODO) MODE 1
SEED = 78.0DO
NOFROW 15
NOFCOL = 10
NOACTV = 2
NO ZERO 0

C** GENERATE X AND U VECTORS
DO 100 I = l,NOFCOL

CALL GENRTE(SEED,RANDOM)
X(I) =RANDOM

100 CONTINUE
DO 110 I,= l,NOFROW

CALL GENRTE(SEED,RANDOM)
U(I) = RANDOM

llO CONTINUE
DO 120 I = l,NOFROW-NOACTV

U(I) = 0. ODO
120 CONTINUE
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER)

DO 200 I = l,NOFROW
DO 200 J = 1,NOFCOL

CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
A(I,J) =RANDOM

200 CONTINUE
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER)

DO 300 I = l,NOFCOL
DO 300 J = l,NOFCOL

IF (I.GT.J) GO TO 300
CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
ATRANS(I,J) =RANDOM

300 CONTINUE
DO 1000 I l,NOFCOL
DO 1000 J = l,NOFCOL

56

IF (I.LE.J) GO TO 1000
ATRANS(I,J) = ATRANS(J,I)

1000 CONTINUE
C** TYPE = 0.=> Q IS INDEFINITE
C** TYPE = l.=> Q IS POSITIVE DEFINITE

IF (TYPE.EQ.0.0DO) GO TO 10

1200

10

BOO
40

BlO

B60

CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N)
DO 1200 I = l,NOFCOL
DO 1200 J = l,NOFCOL

IF (I.EQ.J)Q(I,J) = Q(I,J) +I.ODO
CONTINUE
GO TO 40
DO BOO I = l,NOFCOL
DO BOO J = l,NOFCOL

Q(I,J) = ATRANS(I,J)
CONTINUE
DO BlO I = l,NOZERO
DO BIO J = NOFCOL-NOZERO+l,NOFCOL

Q (I , J) = 0. ODO
CONTINUE
DO B60 I = NOFCOL-NOZERO+l,NOFCOL
DO B60 J = l,NOZERO

Q (I , J) = 0 • ODO
CONTINUE

C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER)
DO 700 I = l,NOFCOL

700

400

DO 700 J = l,NOFROW
ATRANS(I,J) = A(J,I)

CONTINUE
CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l)
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l)
DO 400 I = l,NOFCOL

C(I) = RESl(I) - 2.0DO*RES2(I)
CONTINUE

C** COMPUTE VECTOR B (ORD IN FLETCHER'S PAPER)
CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l)
DO 900 I = l,NOFCOL

900

910

1110

1100

IF (X(I).GT.0.0DO) GO TO 900
CALL GENRTE(SEED,RANDOM)
C(I) = C(I) + RANDOM

CONTINUE
DO 910 I = l,NOFROW

IF (U(I).GT.O.ODO) GO TO 910
CALL GENRTE(SEED,RANDOM)
B(I) = B(I) - RANDOM

CONTINUE
DO 1110 I = l,M

X(I) =I.ODO
CONTINUE
DO 1100 I

BDU (I)
BDL(I)

CONTINUE
IH = N
IC = N
IA = N
K = 0
KE = 0

l,N
24.0DO
O.ODO

DO 140 I = l,NOFCOL
C (I) = -C (I)

57

DO 140 J = l,NOFROW
ATRANS(I,J) = A(J,I)

140 CONTINUE
DO 160 I = l,NOFCOL
DO 160 J = l,NOFCOL

Q(I,J) = 2.0DO*Q(I,J)
160 CONTINUE

!COUNT = 0
CALL ACTIVE(NOFCOL,NOFROW+2*NOFCOL,Q,IA,C,ATRANS,IC,B,BDL,BDU,

1 X,K,KE,H,IH,LT,MODE,ICOUNT)
WRITE(IOUT,1400)ICOUNT .

1400 FORMAT(2X,' NUMBER OF ITERATIONS FOR FLETCHER METHOD= ',I5)
WRITE (!OUT, 222)

222 FORMAT (lX,'THE SOLUTION VECTOR FOR THE PROBLEM IS : ')
DO 1500 I = l,NOFCOL
WRITE(IOUT,lll)I,X(I)

111 FORMAT(2X,' X(',13,') = ',D20.7)
1500 CONTINUE

STOP
END

C*
C*
C**C
C* *C
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT.*C
C* ARGUMENTS *C
C* RLEFT THE FIRST MATRIX *C
C* RIGHT : THE SECOND MATRIX *C
C* LEFTR : ROW SIZE OF THE FIRST MATRIX *C
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX *C
C* I RIHTC: COLUMN SIZE OF THE SECOND MATRIX *C
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C
C* RESULT: MULTIPLICATION RESULT *C
C* INPUT : *C
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4 *C
C* OUTPUT *C
C* RESULT *C
C* *C
C**C
C*
C*

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2,
1 ID3 I ID4)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4)
DO 100 I = l,LEFTR
DO 100 J = l,IRIHTC

RESULT(I,J) = O.ODO
100 CONTINUE

DO 200 I = l,LEFTR
DO 300 J = l,IRIHTC
DO 400 K = l,LEFTC

RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J)
400 CONTINUE
300 CONTINUE
200 CONTINUE

RETURN

58

END
C*
C*
C***C
C* *C
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C
C* ARGUMENTS *C
C* SEED THE SEED FOR THE GENERATOR *C
C* RANDOM THE GENERATED NUMBER *C
C* INPUT : *C
C* SEED *C
C* OUTPUT: *C
C* SEED,RANDOM *C
C* *C
C***C
C*
C*

SUBROUTINE GENRTE(SEED,RANDOM)
IMPLICIT REAL*8(A-H,O-Z)
X = 3373.0DO
Y = 6925.0DO
WORD = 32768.0DO
TMAX = 24.0DO
ONE = I.ODO
SEED= DMOD((X*SEED + Y),WORD)
RANDOM= INT(TMAX*(S~ED/WORD) +ONE)
RETURN
END

C***C
C* *C
C* SUBROUTINE ACTIVE SOLVES THE GENERAL QUADRATIC PROGRAMMING *C
C* PROBLEM USING FLETCHER'S ACTIVE SET METHOD. THE METHOD IS *C
C* GIVEN BY R. FLETCHER ("A GENERAL QUADRATIC PROGRAMMING *C
C* ALGORITHM", J. INST. MATH. APPLCS.,7,(1971),PP. 76-91.) *C
C* PROGRAM SOURCE : UNITED KINGDOM ATOMIC ENERGY AUTHORITY, *C
C* RESEARCH GROUP REPORT, AERE - R 6370, "A FORTRAN SUBROUTINE*C
C* FOR GENERAL QUADRATIC PROGRAMMING",R. FLETCHER, (1970). *C
C******************~**C

C* *C
C* MODIFIED BY : FOUAD M. KHALILI · *C
C* DATE : NOV. 20~1987. *C
C* *C
C***C
C* *C
C* THE CALLING SEQUENCE FOR ACTIVE IS *C
C* CALL ACTIVE(N,M,A,IA,B,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT,MODE, *C
C* !COUNT) *C
C* THE ARGUMENTS WILL BE DESCRIBED AS FOLLOWS : *C
C* N THE NUMBER OF VARIABLES. *C
C* M THE TOTAL NUMBER OF CONSTRAINTS, *C
C* A THE COEFFICIENTS OF THE QUADRATIC TERMS IN THE *C
C* QUADRATIC FUNCTION l/2*X(TRANS)*A*X - B(TRANS)*X *C
C* A SHOULD BE A SYMMETRIC NXN MATRIX, NOTE ALSO THAT *C
C* A FACTOR OF 1/2 OCCURS IN THE DEFINITION OF THE *C
C* .FUNCTION. *C
C* IA THE FIRST DIMENSION OF A IN THE DIMENSION STATEMENT *C
C* WHICH ALLOCATES SPACE TO A. *C
C* B THE COEFFICIENTS OF THE LINEAR TERMS IN THE QUAD- *C
C* RATIC FUNCTION GIVEN ABOVE. B SHOULD HAVE N ELEMENTS*C
C* C THE CONSTRAINTS MATRIX : EACH COLUMN OF C CONTAINS *C

59

C*
C*
C* IC
C*
C* D
C*
C* BDL
C*
C* BDU
C* X
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C* K
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C* KE
C*
C*
C* H
C*
C*
C*
C*
C*
C*
C*
C*
C* IH
C*
C* LT
C*
C*
C*
C*
C*

THE COEFFICIENTS OF CONSTRAINT C(TRANS)*X >= D • *C
THERE ARE M-2N COLUMNS OF C, AND N ROWS. *C
THE FIRST DIMENSION OF C IN THE DIMENSION STATEMENT *C
WHICH ALLOCATES SPACE TO C. *C
THE RIGHT-HAND SIDES OF THE CONSTRAINTS CORRESPOND- *C
ING TO C, THERE ARE M-2N ELEMENTS IN D. *C
LOWER BOUNDS ON THE VARIABLES. BDL HAS N ELEMENTS, *C
THE ITH BEING THE BOUND ON THE ITH VARIABLE. *C
UPPER BOUNDS ON THE VARIABLES, N ELEMENTS AGAIN. *C
THE ESTIMATE OF THE SOLUTION VECTOR, AND WORKING *C
SPACE. X(i), X(2), ... , X(N) CONTAINS THE VALUE OF *C
VECTOR X WHICH MINIMIZES THE OBJECTIVE FUNCTION. *C
THERE SHOULD BE AT LEAST 2N+M OR 7N ELEMENTS IN X, *C
WHICH EVER IS GREATER, THE REMAINDER BEING USED FOR *C
WORKING SPACE. ON ENTRY, WHEN MODE 1 OR 2 IS BEING *C
USED, THEN X(l}, X(2}, ••• , X(N) MIGHT BE USED TO *C
DETERMINE WHICH BOUNDS TO INCLUDE FOR THE FIRST *C
TRIAL BASIS, AND SHOULD BE SET ACCORDINGLY. ON ENTRY*C
WITH MODE 3, THE FIRST N ELEMENTS OF VECTOR X SHOULD*C
BE SET TO A FEASIBLE POINT. NOTHING NEED TO BE SET *C
ON ENTRY WITH MODES 4 AND 5. FINALLY, THE GRADIENT *C
OF .,THE OBJECTIVE FUNCTION , A*X - B, WILL BE FOUND *C
IN X(6N+l), X(N6+2), ••• , X(7N) ON EXIT. THIS CAN BE*C
USED TO COMPUTE THE MINIMUM VALUE OF THE FUNCTION IF*C
REQUIRED, .USING F(X) = l/2*X(TRANS)*(A*X - 2*B). *C
THE NUMBER OF CONSTRAINTS IN THE BASIS. ON ENTRY IN *C
MODES 1 AND 2, K SHOULD BE SET EQUAL TO THE NUMBER *C
OF CONSTRAINTS (EQUALITIES AND OTHER INEQUALITIES *C
OF TYPE C(TRANS)*X >= D} WHICH ARE TO APPEAR IN THE *C
TRAIL VERTEX FOR SUBROUTINE VERTEX. WITH NO A-PRIORI*C
KNOWLEDG~ SET K = KE. IF K IS SET NOT EQUAL TO ZERO,*C
THEN LT MUST ALSO BE SET APPROPRIATELY. ON ENTRY IN *C
MODE 3, K MUST BE SET EQUAL TO ZERO. ON ENTRY IN *C
MODES 4 AND 5, K SHOULD CONTAIN THE NUMBER OF CONST-*C
RAINTS TO APPEAR IN THE EP(EQUALITY PROBLEM); THIS *C
WILL USUALLY BE THE VALUE WHICH WAS LEFT ON EXIT *C
FROM PREVIOUS CALL OF ACTIVE. ON EXIT, K WILL ALWAYS*C
CONTAIN THE NUMBER OF CONSTRAINTS IN THE FINAL *C
BASIS • IF NO FEASIBLE POINT EXISTS, THEN K IS SET *C
EQUAL TO ZERO AND A DIAGNOSTIC IS PRINTED. *C
THE TOTAL NUMBER OF EQUALITY CONSTRAINTS IN THE *C
PROBLEM. SET KE = 0 IF THERE ARE NONE. KE MUST BE *C
LESS THAN OR EQUAL TO K. *C
WORKING SPACE, H IS 2NX2N MATRIX. ON ENTRY, NOTHING *C
NEED BE SET EXCEPT IN MODE 5, WHEN IT MUST CONTAIN *C
THE CORRECT OPERATORS. THESE WILL USUALLY BE LEFT *C
BY A PREVIOUS CALL TO ACTIVE AND SHOULD NOT BE *C
CHANGED. ON EXIT, THE LEADING NXN PARTITION CONTAINS*C
THE OPERATOR HAND PARTITION BELOW THIS (ROWS N+l TO*C
N+K} CON'I'?>.INS THE OPERATOR C*. THE LATTER OPERATOR *C
CAN BE USED TO CALCULATE LAGRANGE MULTIPLIERS OF THE*C
EP CORRESPONDING TO THE FINAL BASIS, IF REQUIRED. *C
THE FIRST DIMENSION OF H IN THE DIMENSION STATEMENT *C
WHICH ALLOCATES SPACE TO H. *C
INTEGER WORKING SPACE. THE CONSTRAINTS ARE NUMBERED *C
AS FOLLOWS. LOWER BOUNDS FROM 1 TO N, UPPER BOUNDS *C
FROM N+l TO 2N, OTHERS FROM 2N+l TO M. ON EXIT, *C
LT(l), LT(2}, ••• , LT(K} STORE THE INDEX NUMBERS OF *C
THE ACTIVE CONSTRAINTS. ON ENTRY, LT(l), LT(2), •.• ,*C
LT(KE} MUST ALWAYS CONTAIN THE INDEX NUMBERS OF THE *C

60

C* EQUALITY CONSTRAINTS. IN MODES 1 AND 2, LT(KE+l), *C
C* LT(KE+2), .•. , LT(K) MUST ALSO CONTAIN THE INDEX *C
C* NUMBERS OF ANY OTHER CONSTRAINTS TO APPEAR IN THE *C
C* TRIAL VERTEX FOR SUBROUTINE VERTEX. IN MODES 4 AND *C
C* 5, LT(KE+l), LT(KE+2), ... , LT(K) MUST CONTAIN THE *C
C* INDEX NUMBERS OF CONSTRAINTS OTHER THAN EQUALITIES *C
C* WHICH ARE TO APPEAR IN THE EP. HOWEVER, IN MODES 4 *C
C* AND 5, LT WILL USUALLY HAVE BEEN SET FROM A PREVIOUS*C
C* CALL OF ACTIVE AND SHOULD NOT BE CHANGED. LT MUST *C
C* HAVE AT LEAST 2N+M ELEMENTS, THE REMAINDER BEING *C
C* USED AS WORKING SPACE. *C
C* MODE AN INTEGER BETWEEN 1 AND 5 INDICATING THE MODE OF *C
C* USE OF THE SUBROUTINE. *C
C* 1 FOR GENERAL QUADRATIC PROGRAMMING CASE. *C
C* 2 FOR A STRICTLY CONVEX OBJECTIVE FUNCTION CASE. *C
C* 3 SAME AS IN MODE 2 EXCEPT THAT A FEASIBLE POINT *C
C* MUST BE PROVIDED BY THE USER SO THAT THERE IS NO*C
C* NEED TO CALL SUBROUTINE VERTEX. *C
C* 4 : FOR GENERAL PARAMETRIC PROGRAMMING. *C
C* 5 : FOR RIGHT-HAND SIDE PARAMETRIC PROGRAMMING. *C
C* ICOUNT:THE NUMBER .OF ITERATIONS THAT WAS REQUIRED TO FIND *C
C* THE OPTIMAL POINT. *C
C* *C
C***C
C* *C
C* SUBROUTINES CALLED BY SUBROUTINE ACTIVE ARE : *C
C* VERTEX TO FIND A VERTEX POINT (SEE DESCRIPTION BELOW). *C
C* INNERP : TO COMPUTE THE INNER PRODUCT OF TWO VECTORS. *C
C* LINV2F : TO FIND THE INVERSE OF A MATRIX. THIS IS AN IMSL*C
C* LIBRARY SUBROUTINE. *C
C* *C
C***C
C*
C*
C*

SUBROUTINE ACTIVE(N,M,A,IA,B,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT,MOOE,
1 !COUNT)

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION A(IA,*) ,B(*) ,C (IC,*) ,D(*), BDL(*), BDU(*) ,X(*),

1 H(IH,*),LT(*),WKAREA(ll000),TEMP(200,200)
LOGICAL RETEST,PASSIV,POSTIV
RETEST = .FALSE.
IOUT = 6
IN = 5
IX = 700
IDGT = 5
NN N + N
N3 NN + N
N4 NN + NN
N5 N4 + N
NG NS + N
IF (MODE.GE.3) GO TO 99

C** CALL FEASIBLE VERTEX ROUTINE
8 CALL VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT)

IF (K.EQ.O) RETURN
IF (MODE.EQ.2.AND .. NOT.RETEST) GO TO 100

C** INITIAL OPERATORS H=O AND CSTAR=C(-1) FROM VERTEX
DO 60 I = l,N
DO 60 J = l,N

H(N+I,J) = H(I,J)

61

H (I , J) = 0. ODO
60 CONTINUE

GO TO 120
99 DO 1 I=l,M

LT(NN+I) = 1
1 CONTINUE

C** CONSTRAINTS INDEXED AS FOLLOWS
C** EQUALITY -1
C** ACTIVE 0
C** INACTIVE 1

IF (K.EQ.0) GO TO 100
DO 2 I = 1,K
J = 0
IF (I.LE.KE) J = -1

2 LT(NN+LT(I)) = J
100 IF (MODE.EQ.5.AND .• NOT.RETEST) GO TO 109
C** SET UP MATRIX AND RHS OF EQUATIONS GOVERNING EQUALITY PROBLEM

DO 101 I = 1,N
X(N+I) = B(I)
DO 101 J = 1,N

101 H(I ,J) = A(I ,J)
IF((MODE.EQ.2.0R.MODE.EQ.3).AND .. NOT.RETEST) GO TO 200
IF (K.EQ.0) GO TO 107
DO 102 I = 1,K

LI = LT(I)
IF (LI.GT.NN) GO TO 105
DO 103 J = l,N

H(J,N+I) = O.ODO
H(N+I,J) = O.ODO

103 CONTINUE
IF (LI.GT.N) GO TO 104
H(N+I,LI) = 1.0DO
H(LI,N+I) = 1.0DO
X(NN+I) = BDL(LI)
GO TO 108

104 LI = LI - N
H(N+I,LI) = -1.0DO
H(LI,N+I) = -1.0DO
X(NN+I) = -BDU(LI)
GO TO 108

105 LI = LI - NN
DO 106 J = 1,N

H(N+I,J) = C(J,LI)
H(J,N+I) = C(J,LI)

106 CONTINUE
X(NN+I) = D(LI)

108 DO 102 J = l,K
H(N+I,N+J) = 0.

102 CONTINUE
107 NK = N + K
C** INVERT MATRIX GIVING OPERATORS H AND CSTAR
C** CALL INVERT(H,NK,IH)

CALL LINV2F(H,NK,IH,TEMP,IDGT,WKAREA,IER)
DO 5100 I 1,NK
DO 5100 J 1,NK

H(I,J) = TEMP(I,J)
5100 CONTINUE

GO TO 118
C** SET UP RHS ONLY
109 DO 113 I = 1,N

62

X(N+I) = B(I)
113 CONTINUE

DO 115 I = 1, K
LI= LT(!)
IF (LI.GT.NN) GO TO 117
IF (LI.GT.N) GO TO 116
X(NN+I) = BDL(LI)
GO TO 115

116 X(NN+I) = -BDU(LI-N)
GO TO 115

117 X(NN+I) = D(LI-NN)
115 CONTINUE
C** SOLVE FOR SOLUTION POINT X

NK = N + K
118 DO 119 I = l,N

CALL INNERP(H,X,IH,IH,IX,l,X(I),NK,l,2,N+l,N+2,0,0,I,l)
119 CONTINUE
C** CHECK FEASIBILITY, IF NOT EXIT TO 8

DO 110 I = l,M
IF (LT(NN+I).LE.0) GO TO 110
IF (I.GT.N) GO TO 111
Z = X(I) - BDL(I)
GO TO 114

111 IF (I.GT.NN) GO TO 112
Z = BDU(I-N) - X(I-N)
GO TO 114

112 J = I - NN
CALL INNERP(C,X,IC,IC,IX,l,Z,N,1,2,1,2,0,0,J,l)
Z = Z - D(J)

114 IF (Z.LT.0.0DO) GO TO B
110 CONTINUE
120 CONTINUE
C** CALCULATE GRADIENT G ANDLAGRANGE MULTIPLIERS -CSTAR.G,
C** FIND LARGEST MULTIPLIER, EXIT IF NOT POSITIVE

DO 121 I = l,N
CALL INNERP(A,X,IA,IA,IX,l,X(N6+I),N,l,2,l,2,l,0,I,l)
X(N6+I) = X(N6+I) - B(I)

121 CONTINUE
IF (K.EQ.O) RETURN

123 Z = -l.OD75
DO 122 I = l,K

IF (LT(NN+LT(I)).EQ.-1) GO TO 122
CALL INNERP(H,X,IH,IH,IX,l,ZZ,N,l,2,N6+1,N6+2,l,0,N+I,l)
zz = -zz
IF (ZZ.LE.Z) GO TO 122
z = zz
I I = I

122 CONTINUE
IF (Z.GT.O.ODO) GO TO 130
IF (RETEST.OR.MODE.GE.4) GO TO 137
RETEST = .TRUE.
GO TO 100

137 IF (Z.NE.O.ODO) RETURN
WRITE(IOUT,1003)

1003 FORMAT ('OSOLUTION MAY BE A DEGENERATE LOCAL MINIMUM')
RETURN

C** SET DIRECTION OF SEARCH AS CORRESPONDING ROW OF CSTAR
130 DO 131 I = l,N

X(NN+I) = H(N+II,I)
131 CONTINUE

63

136 DO 132 I = l,N
CALL INNERP(A,X,IA,IA,IX,l,X(N+I),N,l,2,NN+l,NN+2,l,0,I,l)

132 CONTINUE
CALL INNERP(X,X,IX,l,IX,l,CAC,N,NN+l,NN+2,N+l,N+2,0,0,l,l)
IF (CAC.GT.O.ODO) GO TO 134
POSTIV = .FALSE.
Y = 1. ODO
GO TO 135

134 POSTIV = .TRUE.
Y = Z/CAC

135 DO 133 I =l,N
X(N5+I) = X(NN+I)*Y

133 CONTINUE
PASSIV = .TRUE.

139 ALPHA = l.OD75
NK = N + K

C** LINEAR SEARCH ALONG DIRECTION OF SEARCH,PASSIV INDICATES
C** A CONSTRAINT HAS BEEN REMOVED TO GET SEARCH DIRECTION,
C** POSTIV INDICATES POSITIVE CURVATURE ALONG DIRECTION

DO 140 I = l ,M
IF (LT(NN+I).LE.0) GO TO 140
IF (I.GT.NJ GO TO 141
IF (X(N5+I),GE.0.0DO)GO TO 140
CC= (BDL(I) - X(I))/X(N5+I)
GO TO 143

141 IF (I.GT.NN) GO TO 142
IF (X(N4+I).LE.O.ODO) GO TO 140
CC= (BDU(I-N) - X(I-N))/X(N4+I)
GO TO 143

142 J = I - NN
CALL INNERP(C,X,IC,IC,IX,l,ZZ,N,l,2,N5+1,N5+2,0,0,J,1)
IF (ZZ.GE.O.ODO) GO TO 140
CALL INNERP(C,X,IC,IC,IX,l,CC,N,1,2,1,2,0,0,J,l)
CC = D(J) - CC
CC = CC/ZZ

143 IF (CC.GE.ALPHA) GO TO 140
ALPHA .; CC
!AL = I·

140 CONTINUE
IF (PASSIV) LT(NN+LT(II)) = 1

C** IF MINIMUM FOUND, GO TO 170
IF(POSTIV.AND.ALPHA.GE.l.ODO) GO TO 170

C** CALCULATE H.C AND CSTAR.C
DO 144 I = l,N

X(I) = X(I) + ALPHA*X(N5+I)
144 CONTINUE

ALPHA = ALPHA*Y
J = 1
IF (K.EQ.N) J = N + 1
IF (IAL.GT.N) GO TO 146
DO 145 I = J,NK

X(N3+I) ~ H(I,IAL)
145 CONTINUE

CHC = X(N3+IAL)
GO TO 151

146 IB = IAL - N
IF (IB.GT.N) GO TO 148
DO 147 I = J,NK

X(N3+I) = -H(I,IB)
14 7 CONTINUE

CHC = -X(N3+IB)
GO TO 151

148 IB = IB - N
D0149I=l,N

X(N5+I) = C(I,IB)
149 CONTINUE

DO 150 I = J,NK
CALL INNERP(H,X,IH,IH,IX,l,X(N3+I) ,N,l,2,N5+1,N5+2,l,0,I,l)

150 CONTINUE
IF(K.NE.N)

1 CALL INNERP(X,X,IX,l,IX,l,CHC,N,N5+1,N5+2,N3+1,N3+2,0,0,l,l)
151 LT(NN+IAL) = 0

IF (K,EQ.N) GO TO 180
IF (PASSIV) GO TO 160

C** APPLY FORMULA FOR ADDING A CONSTRAINT
156 IF (K.EQ.0) GO TO 157

DO 152 I = l,K
ALPHA= X(N4+I)/CHC
NI = N + I
DO 152 J = l,N

H(NI,J) = H(NI,J) - ALPHA*X(N3+J~

152 CONTINUE
157 K = K + 1

LT(K) = !AL
DO 158 J = l,N

H(N+K,J) = X(N3+J)/CHC
158 CONTINUE

IF(K.LT.N) GO TO 154
DO 153 I = l,N
DO 153 J = l,N

H(I ,J) = O.ODO
153 CONTINUE

GO TO 159
154 DO 155 I = l,N

ALPHA= X(N3+I)/CHC
DO 155 J = l,I
H(I,J) = H(I,J) - ALPHA*X(N3+J)
H(J,I) = H(I,J)

155 CONTINUE
159 ICOUNT = !COUNT + 1

IF(.NOT.PASSIV) GO TO 167
C** REMOVAL OF A CONSTRAINT HAS BEEN DEFERRED, SET UP AS IF
C** THE CONSTRAINT IS BEING REMOVED FROM AUGMENTED BASIS

DO 164 I = l,N
CALL INNERP(A,X,IA,IA,IX,l,X(N6+I),N,l,2,l,2,l,O,I,l)
X(N6+I) = X(N6+I) - B(I)
X(NN+I) = H(N+II,I)

164 CONTINUE
CALL INNERP(X,X,IX,l,IX,l,Z,N,N6+1,N6+2,NN+l,NN+2,0,0,l,l)
z = -z
IF (Z.EQ.0.0DO) GO TO 178
GO TO 136

160 CC= X(N4+II)
Y = CHC*CAC + CC**2.0DO
CALL INNERP(X,X,IX,l,IX,l,GHC,N,N6+1,N6+2,N3+1,N3+2,0,0,l,l)
IF (ALPHA*Y.LT.CHC*(Z - ALPHA*CAC) + GHC*CC) GO TO 156

C** APPLY FORMULA FOR EXCHANGING NEW CONSTRAINT
C** WITH PASSIVE CONSTRAINT

!COUNT !COUNT + 2
DO 161 I = l,K

65

NI = N + I
CALL INNERP(H,X,IH,IH,IX,l,X(N5+I) ,N,l,2,N+l,N+2,l,O,NI,l)

161 CONTINUE
DO 162 I = l,N

X(N+I) = (CHC*X(NN+I) - CC*X(N3+I))/Y
.X(N6+I) = (CAC*X(N3+I) + CC*X(NN+I))/Y

162 CONTINUE
DO 163 I = l,N
DO 163 J = l,I

H(I,J) = H(I,J) + X(N+I)*X(NN+J) - X(N6+I)*X(N3+J)
H(J,I) = H(I,J)

163 CONTINUE
X(N4+II) = X(N4+II) - I.ODO
DO 166 I = l,K

NI = N + I
DO 166 J = l,N

H(NI,J) = H(NI,J) - X(N4+I)*X(N6+J) - X(N5+I)*X(N+J)
166 CONTINUE

LT(II) = !AL
167 IF(K.EQ.N) GO TO 120
C** CALCULATE G, NEW SEARCH DIRECTION IS -H.G

DO 168 I = l,N
CALL INNERP(A,X,IA,IA,IX,l,X(N+I) ,N,l,2,l,2,l,0,I,l)
X(N+I) = X(N+I) - B(I)

168 CONTINUE
Z = O.ODO
DO 169 I = l,N

CALL INNERP(H,X,IH,IH,IX,l,X(N5+I) ,N,l,2,N+l,N+2,l,O,I,l)
X(N5+I) = -X(N5+I)
IF (X(N5+I).NE.O.ODO) Z = l.ODO

169 CONTINUE
PASSIV = .FALSE.
IF (Z.EQ.0.0DO) GO TO 120
POSTIV = .TRUE.
GO TO 139

170 DO 171 I = l,N
X(I) = X(I) + X(N5+I)

1 71 CONTINUE
C** X IS NOW THE MINIMUM POINT IN THE BASIS
C** UPDATE THE OPERATORS IF A CONSTRAINT HAD BEEN REMOVED

IF (.NOT.PASSIV) GO TO 120
ICOUNT = ICOUNT + 1

178 DO 172 I = l,N
ALPHA= X(NN+I)/CAC
DO 172 J = l,I
H(I,J) = H(I,J) + ALPHA*X(NN+J)
H(J,I) = H(I,J)

172 CONTINUE
IF (K.GT.l) GO TO 177
K = 0
GO TO 120

177 IF (II.EQ.K) GO TO 175
DO 174 I = l,N

174 H(N+II,I) = H(N+K,I)
LT(II) = LT(K)

175 K = K - 1
DO 173 I = l,K

NI = N + I
CALL INNERP(H,X,IH,IH,IX,l,X(N3+I),N,l,2,N+l,N+2,l,O,NI,l)

173 CONTINUE

66

DO 176 I =l,K
ALPHA= X(N3+I)/CAC
NI = N + I
DO 176 J = l,N

H(NI,J) = H(NI,J) - ALPHA•X(NN+J)
176 CONTINUE

GO TO 120
180 Z = l.ODO/X(N4+II)
C** APPLY SIMPLEX FORMULA TO EXCHANGE CONSTRAINTS

!COUNT = ICOUNT + 1
DO 181 I = l,N

NI = N + I
IF (I.NE.II) GO TO 182
DO 183 J = l,N

H(NI,J) = H(NI,J)*Z
183 CONTINUE

GO TO 181
182 ZZ = Z*X(N4+I)

DO 184 J = l,N
H(NI,J) = H(NI,J) - ZZ*X(NN+J)

184 CONTINUE
181 CONTINUE

LT(II) = IAL
GO TO 120

200 K = 0
IF (KE.NE.OJ WRITE(IOUT,1002)

1002 FORMAT('OKE MUST BE 0 IN MODES 2 AND 3')
KE = 0
DO 202 I = l,M

LT(NN+I) = 1
202 CONTINUE
C** CALL INVERT(H,N,IH)

CALL LINV2F(H,N,IH,TEMP,IDGT,WKAREA,IER)
DO 5200 I - l,N
DO 5200 J = l,N

H(I,J) = TEMP(I,J)
5200 CONTINUE
C** START WITH EMPTY BASIS FROM FEASIBLE POINT
C** SEARCH DIRECTION IS -A(-1).B .

C*
C*

GO TO 167
END

C**C
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*
C*

*C
SUBROUTINE INNERP : CALCULATE THE INNERPRODUCT OF TWO VECTORS *C
IT MULTIPLIES THE TWO VECTORS THAT ARE EXTRACTED FROM ARRAYS *C
E & F. THE ELEMENTS ARE AT LOCATIONS I+(II-l)*(J-I) AND THE *C
ELEMENTS OF THE SECOND VECTOR ARE BEING STORED AT LOCATIONS *C
K+(II-l)*(L-K), WHERE II = l,N. *C
INPUT : *C

E,F,IDIM1,IDIM2,IDIM3,IDIM4,N,I,J,K,L,Il,I2,Nl,N2 *C
OUTPUT:

SUM
ARGUMENTS :

E,F,I,J,K,L DEFINED ABOVE.
IDIMl ROW DIMENSION OF THE FIRST ARRAY FROM WHICH THE *C

FIRST VECTOR IS BEING EXTRACTED. *C
IDIM2 COLUMN DIMENSION OF THE FIRST ARRAY. *C
IDIM3 ROW,DIMENSION OF THE SECOND ARRAY FROM WHICH THE *C

67

C* SECOND VECTOR IS BEING EXTRACTED. *C
C* IDIM4 COLUMN DIMENSION OF THE SECOND VECTOR. *C
C* N NUMBER OF ELEMENTS TO BE MULTIPLIED. *C
C* Il IF = 0 => EXTRACT ELEMENTS OF COLUMN Nl FROM E FOR *C
C* THE FIRST VECTOR; ELSE IF = 1 => EXTRACT ELEMENTS *C
C* OF ROW Nl. *C
C* I2 IF = 0 => EXTRACT ELEMENTS OF COLUMN N2 FROM F FOR *C
C* THE SECOND VECTOR; ELSE IF = 1 => EXTRACT ELEMENTS *C
C* OF ROW N2. *C
C* Nl, N2 DEFINED ABOVE *C
C* SUM : THE PRODUCT OF MULTIPLICATION *C
C* *C
C* **C
C*
C*

SUBROUTINE INNERP(E, F, I DI Ml, IDIM2, IDIM3, IDIM4, SUM, N, I ,J ,.K, L,
1 Il,I2,Nl,N2)

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION E(IDIM1,IDIM2),F(IDIM3,IDIM4)
SUM = O.ODO
DO 10 I I = 1,N
IF(Il.EQ.0) GO TO 100
IF(I2.EQ.O) GO TO 200
SUM= SUM+ E(Nl,I+(II-l)*(J-I))*F(N2,K+(II-l)*(L-K))
GO TO 10

100 IF(I2.EQ.1) GO TO 300
SUM= SUM+ E(I+(II-l)*(J-I),Nl)*F(K+(II-l)*(L-K),N2)
GO TO 10

200 SUM= SUM+ E(Nl,I+(II-l)*(J-I))*F(K+(II-l)*(L-K),N2)
GO TO 10

300 SUM= SUM+ E(I+(II-l)*(J-I),Nl)*F(N2,K+(II-l)*(L-K))
10 CONTINUE

IF(DABS(SUM).LE.1.D-15) SUM= O.ODO
RETURN
END

C***C
C* *C
C* SUBROUTINE VERTEX FINDS A FEASIBLE VERTEX FOR A LINEARLY *C
C* CONSTRAINED FEASIBLE SOLUTION SPACE. *C
C* PROGRAM SOURCE : UNITED KINGDOM ATOMIC ENERGY AUTHORITY, *C
C* RESEARCH GROUP REPORT, AERE - R 6354, "THE CALCULATION OF *C
C* FEASIBLE POINTS FOR LINEARLY CONSTRAINED OPTIMIZATION *C
C* PROBLEMS", R. FLETCHER, (1970). *C
C***C
C* *C
C* MODIFIED BY : FOUAD M. KHALILI *C
C* DATE : NOV. 20,1987. *C
C* *C
C******~**C
C* *C-
C* THE CALLING SEQUENCE FOR ACTIVE IS *C
C* CALL VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT) *C
C* THE ARGUMENTS WILL BE DESCRIBED AS FOLLOWS : *C
C* N THE NUMBER OF VARIABLES. *C
C* M THE TOTAL NUMBER OF CONSTRAINTS. *C
C* C THE CONSTRAINTS MATRIX : EACH COLUMN OF C CONTAINS *C
C* THE COEFFICIENTS OF CONSTRAINT C(TRANS)*X >= D . *C
C* THERE ARE.M-2N COLUMNS OF C, AND N ROWS. *C
C* IC THE FIRST DIMENSION OF C IN THE DIMENSION STATEMENT *C
C* WHICH ALLOCATES SPACE TO C. *C

68

C* D THE RIGHT-HAND SIDES OF THE CONSTRAINTS CORRESPOND- *C
C* ING TO C, THERE ARE M-2N ELEMENTS IN D. *C
C* BDL LOWER BOUNDS ON THE VARIABLES. BDL HAS N ELEMENTS, *C
C* THE ITH BEING THE BOUND ON THE ITH VARIABLE. *C
C* BDU UPPER BOUNDS ON THE VARIABLES, N ELEMENTS.AGAIN. *C
C* X POSITION OF THE VERTEX AND THE SPACE. ON EXIT, *C
C* X(l), X(2), .•• , X(N) CONTAINS THE POSITION OF THE *C
C* FEASIBLE VERTEX. THERE SHOULD BE 2N+M ELEMENTS IN *C
C* X, THE REMAINING ELEMENTS N+M BEING USED AS WORKING*C
C* SPACE. ON ENTRY, X(I) MIGHT BE USED TO DECIDE *C
C* WHETHER TO INCLUDE AN UPPER BOUND OR A LOWER BOUND *C
C* IN THE BASIS. THE CHOICE IS MADE BY INCLUDING THE *C
C* BOUND WHICH IS NEAREST TO X(I), OR THE LOWER BOUND *C
C* IN CASES OF EQUALITY. THE USER CAN THUS DETERMINE *C
C* THE CHOICE BY SETTING X SUITABLY ON ENTRY. *C
C* K THE TOTAL NUMBER OF DESIGNATED CONSTRAINTS TO APPEAR*C
C* IN THE BASIS. SET K = 0 IF NONE. IF K <> 0 THEN LT *C
C* MUST BE SET AS INDICATED. ON EXIT K = N MEANS THAT *C
C* A FEASIBLE VERTEX HAS BEEN FOUND AND K = 0 MEANS *C
C* THAT NO FEASIBLE POINT EXISTS. A DIAGNOSTIC IS *C
C* PRINTED IN THE LATTER CASE. . *C
C* KE THE TOTAL NUMBER OF EQUALITY CONSTRAINTS IN THE *C
C* PROBLEM. SET KE = 0 IF THERE ARE NONE. KE MUST BE *C
C* LESS THAN OR EQUAL TO K. *C
C* H WORKING SPACE. H IS NXN+K MATRIX, WHERE K IS THE *C
C* NUMBER OF INITIALLY DESIGNATED CONSTRAINTS. THE *C
C* LEADING NXN PARTITION OF H STORES THE INVERSE MATRIX*C
C* CORRESPONDIND TO THE NORMALS OF CONSTRAINTS IN THE *C
C* BASIS. *C
C* IH THE FIRST DIMENSION OF H IN THE DIMENSION STATEMENT *C
C* WHICH ALLOCATES SPACE TO H. *C
C* LT INTEGER WORKING SPACE. THE CONSTRAINTS ARE NUMBERED *C
C* AS FOLLOWS. LOWER BOUNDS FROM 1 TO N, UPPE~ BOUNDS *C
C* FROM N+l TO 2N, OTHERS FROM 2N+l TOM. LT(l), LT(2),*C
C* ... , LT(N) STORE THE INDEX NUMBERS OF CONSTRAINTS *C
C* IN THE BASIS. THE MATRIX OF NORMALS OF ACTIVE *C
C* CONSTRAINTS C IS THUS THE COLUMNS OF (I , I , C) *C
C* CORRESPONDING TO LT(l), LT(2), .•. , LT(N), (IN THAT *C
C* ORDER) AND IS THEREFORE NOT STORED EXPLICITLY. *C
C* H ABOVE IS C(-1) DEFINED IN THIS WAY. ON ENTRY, *C
C* LT (1) , LT (2) , ••• , LT (KE) MUST CONTAIN THE INDEX *C
C* NUMBERS QF EQUALITY CONSTRAINTS, AND LT(KE+l), *C
C* LT(KE+2), ••• , LT(K) THE INDEX NUMBERS OF ANY *C
C* REMAINING DESIGNATED INEQUALITY CONSTRAINTS. LT MUST*C
C* HAVE AT LEAST 2N+M ELEMENTS, THE REMAINDER BEING *C
C* USED AS WORKING SPACE. *C
C* *C
C***C
C* *C
C* SUBROUTINES CALLED BY SUBROUTINE VERTEX ARE : *C
C* INNERP : TO COMPUTE THE INNER PRODUCT OF TWO VECTORS. *C
C* LINV2F : TO FIND. THE INVERSE OF A MATRIX. THIS IS AN IMSL*C
C* LIBRARY SUBROUTINE. *C
C* *C
C***C
C*
C*
C*

SUBROUTINE VERTEX(N,M,C,IC,D,BDL,BDU,X,K,KE,H,IH,LT)
IMPLICIT REAL*S(A-H,O-Z)

69

DIMENSION C(IC,*),D(*),BDL(*),BDU(*),X(*),H(IH,*),LT(*),
I TEMP(200,200),WKAREA(II000)

IN = 5
IOUT = 6
IX = 700
IDGT = 5
NN = N + N
N3 = NN + N
DO I I = I,M

I LT(NN+I) = I
C** CONSTRAINTS INDEXED AS FOLLOWS :
C** EQUALITY -I
C** ACTIVE 0
C** INACTIVE = I
C** VIOLATED = 2

IF (K.NE.O) GO TO IO
C**NO DESIGNATED CONSTRAINTS, VERTEX CHOSEN FROM UPPER AND
C** LOWER BOUNDS, INVERSE MATRIX TRIVIAL

DO 4 I = I,N
DO 5 J = I,N

H(I ,J) = O.ODO
5 CONTINUE

IF (X(I)-BDL(I).GT.BDU(I)-X(I)) GO TO 6
LT(I) = I
H(I,I) =I.ODO
GO TO 4

6 LT(I) = N + I
H(I ,I) = -I.ODO

4 LT(NN+LT(I)) = 0
K = N
GO TO 40

C** SET UP NORMALS V OF THE K DESIGNATED CONSTRAINTS IN BASIS
IO DO II I = I,K

J = 0
IF (I.LE.KE) J -I
LT(NN+LT(I)) J
LI = LT(I)
NI = N + I
IF (LI.GT.NN) GO TO I4
DO I2 J = I,N

H(J,NI) = O.ODO
I2 CONTINUE

IF (LI.GT.N) GO TO I3
H(LI,NI) =I.ODO
GO TO 11

I3 H(LI-N,NI) =-I.ODO
GO TO 11

I4 LI = LI - NN
DO I5 J = I,N

H(J,NI) = C(J,LI)
I5 CONTINUE
11 CONTINUE

IF (K.NE.N) GO TO I9
DO I6 J = I,N

NJ = N + J
DO I6 I = I ,N

H (I , J) '= H (I , NJ)
I6 CONTINUE
C** CALL INVERT(H,N,IH)

CALL LINV2F(H,N,IH,TEMP,IDGT,WKAREA,IER)

70

5300

19

DO 5300 I
DO 5300 J

H(I ,J)
CONTINUE
GO TO 40
CONTINUE

l,N
l,N
TEMP(I ,J)

C** FORM M = (VTRANSPOSE.V)(-1)
DO 20 I = 1,K

20

C**

DO 20 J = 1,K
CALL INNERP(H,H,IH,IH,IH,IH,H(I,J),N,1,2,1,2,0,0,N+I,N+J)
H(J,I) = H(I,J)

CONTINUE
IF (K.EQ.1) H(l,1) = 1.0DO/H(l,1)
IF (K.NE.l) CALL INVERT(H,K,IH)
IF (K.NE.1) CALL LINV2F(H,K,IH,TEMP,IDGT,WKAREA,IER)
DO 5400 I 1,K
DO 5400 J = 1,K

H(I,J) = TEMP(I,J)
5400 CONTINUE
C** CALCULATE GENERALIZED INVERSE OF V, VPLUS

DO 21 I = 1,K
M.VTRANSPOSE

22

21

DO 22 J = 1,K
X(N+J) = H(I ,J)

CONTINUE
DO 21 J = 1,N

CALL INNERP(X,H,IX,1,IH,IH,H(I,J),K,N+l,N+2,N+l,N+2,0,l,1,J)
CONTINUE

C** SET UP DIAGONAL ELEMENTS OF THE PROJECTION MATRIX P = V.PLUS
DO 23 I = 1,N

23

24

CALL INNERP(H,H,IH,IH,IH,IH,X(N+I),K,l,2,N+l,N+2,0,l,I,I)
CONTINUE
DO 24 I = 1,N .

LT(N+I) = 0
CONTINUE
KV = K

C** ADD BOUND E(I) CORRESPONDING TO THE SMALLEST DIAG(P)
29 Z = l.ODO

25

DO 25 I = 1,N
IF (LT(N+I).EQ.l) GO TO 25
IF (X(N+I).GE.Z) GO TO 25
Z = X(N+I)
II = I

CONTINUE
Y = l.ODO
IF (X(II)-BDL(II).GT.BDU(II)-X(II)) Y = -1.0DO

C** CALCULATE VECTORS VPLUS.E(I) AND U = E(I) - V.VPLUS.E(I)
IF (Y.NE.1.0DO) GO TO 27

26

27

28
30

1

DO 26 I = 1,K
X(NN+I) = H(I,II)

CONTINUE
GO TO 30
DO 28 I = l,K

X(NN+I) = -H(I,II)
CONTINUE
CONTINUE
DO 31 I = 1,N

IF(LT(N+I).EQ.l) GO TO 31
CALL INNERP(H,X,IH,IH,IX,1,X(N3+I),KV,N+l,N+2,NN+l,NN+2,1,0,I,
1)
X(N3+I) = -X(N3+I)

71

31 CONTINUE
DO 32 I = l,N

H (I , I I) = 0 • ODO
32 CONTINUE

LT(N+II) = l
Z = 1.0DO + X(N3+II)*Y

C** UPDATE VPLUS AND DIAG(P)
DO 33 I = l,N

IF (LT(N+I).EQ.l) GO TO 33
ALPHA= X(N3+I)/Z
H(K+l,I) =ALPHA
D0.34 J = l,K

H(J,I) = H(J,I) - X(NN+J)*ALPHA
34 CONTINUE
33 CONTINUE

DO 35 I = 1,N
IF (LT(N+I).EQ.l) GO TO 35
X(N+I) X(N+I) + X(N3+I)**20DO/Z

35 CONTINUE
K = K + l
H(K,II).= Y
IF(Y.NE.l.ODO) II = II + N
LT(NN+II) = O.ODO
LT(K) = II
IF (K.NE.N) GO TO 29

C** SET UP RHS OF CONSTRAINTS IN BAS!S
40 DO 41 I = l,N

LI = LT(I)
IF (LI.GT.N) GO TO 42
X{N+I) = BDL{LI)
GO TO 41

42 IF (LI.GT.NN) GO TO 43
X(N+I) = -BDU(LI-N)
GO TO 41

43 X{N+I) = D(LI-NN)
41 CONTINUE
C** CALCULATE POSITION OF VERTEX

DO 44 I = 1,N
CALL INNERP{H,X,IH,IH,IX,l,X{I),N,l,2,N+l,N+2,0,0,I,l)

44 CONTINUE
C** CALCULATE THE CONSTRAINT RESIDUALS, THE NUMBER OF VIOLATED
C** CONSTRAINTS, AND THE SUM OF THEIR NORMALS
50 KV = 0

DO 51 I = l,N
X{N+I) = 0.-0DO

51 CONTINUE
DO 52 I = l,M

IF (LT(NN+I).LE.0) GO TO 52
IF (I.GT.N) GO TO 53
Z = X(I) - BDL(I)
GO TO 55

53 IF (I.GT.NN) GO TO 54
Z = BDU(I~N) - X(I-N)
GO TO 55

54 J = I - NN
CALL INNERP(C,X,IC,IC,IX,l,Z,N,l,2,l,2,0,0,J,l)
Z = Z - D{J)

55 X{NN+I) = Z
IF {Z.GE.0.000) GO TO 52
KV = KV + l

72

LT(NN+I) = 2
IF (I.GT.N) GO TO 56
X(N+I) = X(N+I) +I.ODO
GO TO 52

56 IF (I.GT.NN) GO TO 57
X(I) = X(I) - I.ODO
GO TO 52

57 DO 58 II = I,N
58 X(N+II) = X(N+II) + C(II,J)
52 CONTINUE

IF (KV.NE.OJ GO TO 63
RETURN

C** POSSIBLE DIRECTIONS OF SEARCH OBTAINABLE BY REMOVING A
C** CONSTRAINT ARE ROWS OF H, CALCULATE THE OPTIMUM DIRECTION
63 Z = O.ODO

DO 64 I = I,N
IF (LT(NN+LT(I)).EQ.-I) GO TO 64
CALL INNERP(H,X,IH,IH,IX,I,Y,N,I,2,N+I,N+2,I,0,I,I)
IF (Y.LE.Z) GO TO 64
z = y
II = I

64 CONTINUE
IF (Z.GT.O.ODO) GO TO 70
WRITE(IOUT,IOOO)

IOOO FORMAT('ONO FEASIBLE POINT')
K = 0
RETURN

C** SEARCH FOR THE NEAREST OF THE FURTHEST VIOLATED CONSTRAINT
C** AND THE NEAREST NONVIOLATED NONBASIC CONSTRAINT
70 ALPHA = I.OD75

BETA = 0 .ODO
DO 71 I = I ,N

X(N+I) = H(II,I)
7I CONTINUE

DO 72 I = I ,M.
IF (LT(NN+I).LE.O) GO TO 72
IF (I.GT.NJ GO TO 73
Z = -X(N+I)
GO TO 75

73 IF (I.GT.NN) GO TO 74
Z = X(I)
GO TO 75

74 JJ = I - NN
CALL INNERP(X,C,IX,I,IC,IC,Z,N,N+I,N+2,I,2,0,0,I,JJ)
z = -z

75 IF (LT(NN+I).EQ.2) GO TO 76
IF (Z.LE.0.0DO) GO TO 72
Z = X(NN+I)/Z
IF (Z.GE.ALPHA) GO TO 72
ALPHA = Z
IAL = I
GO TO 72

76 LT(NN+I) =I
IF (Z.GE.O.ODO) GO TO 72
Z = X(NN+I)/Z
IF (Z.LE.BETA) GO TO 72
BETA = Z
IB = I

72 CONTINUE
IF (ALPHA.GT.BETA) GO TO 80

73

IB = IAL
BETA = ALPHA

C** EXCHANGE WITH THE CONSTRAINT BEING REMOVED FROM THE BASIS,
C** USING SIMPLEX FORMULA FOR NEW H
80 LT(NN+LT(II)) = 1

LT(NN+IB) = 0
LT(I I) = IB
IF (IB.GT.N) GO TO 82
DO 81 I = l,N

X(NN+I) = H(I,IB)
81 CONTINUE

GO TO 90
82 IB = IB - N

IF (IB,GT.N) GO TO 84
DO 83 I = l,N

X(NN+I) = -H(I,IB)
83 CONTINUE

GO TO 90
84 IB = IB - N

DO 85 I = l,N·
X(N3+I) = C(I,IB)

85 CONTINUE
DO 86 I = l,N

CALL INNERP(H,X,IH,IH,IX,l,X(NN+I),N,l,2,N3+1,N3+2,l,0,I,l)
86 CONTINUE
90 Z = l.ODOIX(NN+II)

DO 91 I = l,N
X(I) = X(I) + BETA*X(N+I)
IF (I.NE.II) GO TO 92
DO 93 J = l,N

H(I,J) = H(I,J)*Z
93 CONTINUE

GO TO 91
92 ZZ = Z*X(NN+I)

DO 94 J = l,N
H(I,J) = H(I,J) - ZZ*X(N+J)

94 CONTINUE
91 CONTINUE

II

GO TO 50
END

74

APPENDIX C

A SAMPLE OF THE INPUT FOR THE MINOS

PACKAGE AND LISTING OF THE

GENERATOR OF SUCH A SAMPLE

75

/IU10832A JOB (10832,269-34-0589),'F. M. KHALILI' ,TIME=(,5),
II CLASS=2,MSGLEVEL=(l,l),MSGCLASS=X,NOTIFY=*
/*PASSWORD ?
/*JOBPARM ROOM=F,FORMS=9031
/I EXEC FORTVCLG,REGION.GO=l500K
/IFORT.SYSIN DD *
C**C
C* *C
C* THIS PROGRAM CREATS THE TWO FILES REQUIRED BY MINOS. *C
C* THE TWO FILES ARE CALLED SPECS AND MPS. *C
C* *C
C**C
C* *C
C* AUTHOR : FOUAD M. KHALILI *C
C* DATE : NOV. 20,1987 *C
C* *C
C**C

PARAMETER(N=50)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION

'l C(N),Q(N,N),A(N,N),RESl(N),RES2(N),ATRANS(N,N),
2 B(N) ,X(N) ,U(N)

OPEN(l2,STATUS='OLD' ,ACCESS='SEQUENTIAL')
IN = 5
!OUT 6
TYPE = O.ODO
SEED = 50.0DO
NOFROW 4
NOFCOL 4
NOACTV = 2
NOZERO = 0

C** GENERATE X AND U VECTORS
DO 100 I = l,NOFCOL

CALL GENR~E(SEED,RANDOM)
X(I) =RANDOM

100 CONTINUE
DO 110 I = l,NOFROW

CALL GENRTE(SEED,RANDOM)
U(I) =RANDOM

110 CONTINUE
DO 120 I = l ,.NOFROW-NOACTV

U(I) = 0. ODO
120 CONTINUE
C** GENERATE MATRIX A (OR CTRANS lN FLETCHER'S PAPER)

DO 200 I = l,NOFROW
DO 200 J = l,NOFCOL

CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
A(I,J) =RANDOM

200 CONTINUE
C** GENERATE MATRIX Q (OR A IN .FLETCHER'S PAPER)

DO 300 I = l,NOFCOL
DO 300 J = l,NOFCOL

IF (I.GT.J) GO TO 300
CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
ATRANS(I,J) =RANDOM

300 CONTINUE
DO 1000 I = l,NOFCOL
DO 1000 J = l,NOFCOL

76

IF (I.LE.J) GO TO 1000
ATRANS(I,J) = ATRANS(J,I)

1000 CONTINUE
C** TYPE = 0.=> Q IS INDEFINITE
C** TYPE = l.=> Q IS POSITIVE DEFINITE

IF (TYPE.EQ.0.) GO TO 10
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N)
DO 1200 I = l,NOFCOL
DO 1200 J = l,NOFCOL

IF (I.EQ.J)Q(I,J) = Q(I,J) + 1.0DO
1200 CONTINUE

GO TO 40
10 DO 800 I = l,NOFCOL

DO 800 J = l,NOFCOL
Q(I,J) = ATRANS(I,J)

800 CONTINUE
40 DO 810 I = l,NOZERO

DO 810 J = NOFCOL-NOZERO+l,NOFCOL
Q (I, J) = 0. ODO

810 CONTINUE
DO 860 I = NOFCOL-NOZERO+l,NOFCOL
DO 860 J = l,NOZERO

Q (I , J) = 0. ODO
860 CONTINUE
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER)

DO 700 I = l,NOFCOL
DO 700 J = l,NOFROW

ATRANS(I,J) = A(J,I)
700 CONTINUE

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l)
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l)
DO 400 I = l,NOFCOL

C(I) ~ RESl(I) - 2.0DO*RES2(I)
400 CONTINUE
C** COMPUTE VECTOR B (ORD IN FLETCHER'S PAPER)

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l)
DO 900 I = l,NOFCOL

IF (X(I).GT.0.0DO) GO TO 900
CALL GENRTE(SEED,RANDOM)
C(I) = C(I) +RANDOM

900 CONTINUE
DO 910 I = l,NOFROW

IF (U(I).GT.0.0DO) GO TO 910
CALL GENRTE(SEED,RANDOM)
B(I) = B(I) - RANDOM

910 CONTINUE
DO 440 I = l,NOFCOL
DO 440 J = l,NOFCOL

Q(I,J) = 2.0DO*Q(I,J)
440 CONTINUE
C** FORM THE SPECS FILE

IOUT = 12
WRITE(IOUT,510)

510 FORMAT(2X, 'BEGIN QP')
WRITE(IOUT,520)NOFCOL

520 FORMAT(5X, 'NONLINEAR VARIABLES' ,5X,I3)
WRITE(IOUT,530)NOFCOL+l

530 FORMAT(5X, 'SUPERBASICS LIMIT' ,7X,I3)
WRITE(IOUT,540)

540 FORMAT(5X,'SUMMARY FILE 9')

77

WRITE (IOUT, 550)
550 FORMAT(5X, 'SUMMARY FREQUENCY 1')

II = 3*NOFROW + lO*NOFCOL
WRITE(IOUT,560)II

560 FORMAT(5X, 'ITERATIONS LIMIT' ,7X,I4)
WRITE(IOUT,570)

570 FORMAT(2X, 'END QP')
C** FORM THE MPS FILE

WRITE (IOUT, 580)
580 FORMAT('NAME QP')

WRITE (IOUT, 590)
590 FORMAT('ROWS')

DO 2100 I = 1,NOFROW
IF(I.LE.9) GO TO 2200
WRITE(IOUT,610)1

610 FORMAT(lX, 'G' ,2X, 'ROW' ,I2)
GO TO 2100

2200 WRITE(IOUT,620)!
620 FORMAT(lX, 'G' ,2X, 'ROW' ,Il)
2100 CONTINUE

WRITE (IOUT, 630)
630 FORMAT(lX, 'N C')

WRITE(IOUT,640)
640 FORMAT('COLUMNS')

DO 2300 I = l,NOFCOL
DO 2400 J = 1,NOFROW
IF(I.LE.9) GO TO 2500
IF(J.LE.9) GO TO 2600
WRITE(IOUT,650)I,J,A(J,I)

650 FORMAT(4X, 'X' ,I2, 7X, 'ROW' ,I2,5X,Dl2.6)
GO TO 2400

2600 WRITE(IOUT,660)!,J,A(J,I)
660 FORMAT(4X, 'X' ,I2, 7X, 'ROW' ,Il,6X,Dl2.6)

GO TO 2400
2500 IF(J.LE.9) GO TO 2700

WRITE(IOUT,670)I,J,A(J,I)
670 FORMAT(4X, 'X' ,Il,8X, 'ROW' ,I2,5X,Dl2.6)

GO TO 2400
2700 WRITE(IOUT,680)!,J,A(J,I)
680 FORMAT(4X, 'X' ,Il,8X, 'ROW' ,Il,6X,D12.6)
2400 CONTINUE .

IF(I.LE.9) GO TO 2800
WRITE(IOUT,690)I,C(I)

690 FORMAT(4X,'X~ ,I2,7X,'C' ,9X,Dl2.6)
GO TO 2300

2800 WRITE(IOUT, 710)!,C(I)
710 FORMAT(4X, 'X' ,Il,8X, 'C' ,9X,D12.6)
2300 CONTINUE

WRITE (!OUT, 720)
720 FORMAT('RHS')

DO 2900 I = l,NOFROW
IF(I.LE.9) GO TO 3000
WRITE(IOUT,730)I,B(I)

730 FORMAT(4X, 'B' ,9X, 'ROW' ,I2,5X,Dl2.6)
GO TO 2900

3000 WRITE(IOUT,740)!,B(I)
740 FORMAT(4X, 'B' ,9X, 'ROW' ,Il,6X,D12.6)
2900 CONTINUE

WRITE(IOUT, 750)
750 FORMAT('ENDATA')

78

C*

CLOSE(l2)
STOP
END

C*
C**C
C* *C
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT.*C
C* ARGUMENTS *C
C* RLEFT THE FIRST MATRIX *C
C* RIGHT THE SECOND MATRIX *C
C* LEFTR ROW SIZE OF THE FIRST MATRIX *C
C* LE FTC COLUMN SIZE OF THE FIRST MATRIX *C
C* I RI HTC: COLUMN SIZE OF THE SECOND MATRIX *C
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C
C* RESULT: MULTIPLICATION RESULT *C
C* INPUT *C
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,ID1,ID2,ID3,ID4 *C
C* OUTPUT *C
C* RESULT *C
C* *C
C**C
C*
C*

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,IDl,ID2,
1 ID3, ID4)

IMPLICIT REAL*B(A-H,O-Z)
DIMENSION RLEFT(ID1,ID2),RIGHT(ID3,ID4),RESULT(ID1,ID4)
DO 100 I = l,LEFTR .
DO 100 J = l,IRIHTC

RESULT(I,J) = O.ODO
100 CONTINUE

DO 200 I = l,LEFTR
DO 300 J = l,IRIHTC
DO 400 K = l,LEFTC
RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J)

400 CONTINUE
300 CONTINUE
200 CONTINUE

C*

RETURN
END

C*
C***C
C* *C
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C
C* ARGUMENTS *C
C* SEED THE SEED FOR THE GENERATOR *C
C* RANDOM THE GENERATED NUMBER *C
C* INPUT : *C
C* SEED *C
C* OUTPUT: *C
C* SEED,RANDOM *C
C* *C
C***C
C*
C*

79

SUBROUTINE GENRTE(SEED,RANDOM)
IMPLICIT REAL*8(A-H,O-Z)
X = 3373.0DO
Y = 6925.0DO
WORD = 32768.0DO
TMAX = 24.0DO
ONE = 1. ODO
SEED= DMOD((X*SEED + Y),WORD)
RANDOM = INT(TMAX*(SEEDIWORD) + ONE)
RETURN
END

llGO.FT12F001 DD DSN=Ul0832A.INP12.DATA,DISP=(OLD),
II UNIT=STORAGE,SPACE=(TRK,(5,2)),DCB=(LRECL=BO,
II BLKSIZE=7440,RECFM=FB)

80

C***C
C* *C
C* THIS PROGRAM CALLS MINOS. IT PROVIDES THE MATRIX OF *C
C* OF THE QUADRATIC TERMS. IT ALSO CALCULATES THE GRAD *C
C* OF THE OBJECTIVE FUNCTION. *C
C* *C
C***C
C* *C
C* AUTHOR : FOUAD M. KHALILI *C
C* DATE : NOV. 20, 1987 *C
C* *C
C***C
C*
C*
C*

C**

IMPLICIT REAL*B(A-H,O-Z)
DOUBLE PRECISION Z(lOOOO)
DATA NWCORE/10000/
CALL MINOSl(Z,NWCORE)
STOP
END

C**
C***C
C* SUBROUTINE FUNOBJ : TO CALCULATE THE OBJECTIVE FUNCTION *C
C* OF THE PROBLEM.
C* ARGUMENTS :
C* MODE,NPROB,NSTATE,Z ARE DEFINED BY MINOS
C* N NUMBER OF NONLINEAR VARIABLES.
C* X : THE NONLINEAR VARIABLES.
C* G : THE GRADIENT VECTOR.
·C* F : THE OBJECTIVE FUNCTION
C* NWCORE : THE WORKING SPACE.
C* INPUT :
C* NWCORE
C* OUTPUT
C* G AND F
C*

*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C
*C

C***C
C*
C*

C**

SUBROUTINE FUNOBJ(MODE,N,X,F,G,NSTATE,NPROB,Z,NWCORE)
IMPLICIT REAL*B(A-H,O-Z)
DOUBLE PRECISION X(N),G(N),Z(NWCORE)
COMMON /QPCOMM/ Q(l00,100)

C** COMPUTATION OF
C**

F : 1/2 X'QX, G : QX

IF (NSTATE.EQ.l) CALL SETQ(SO)
F : O.ODO
DO 200 I : l,N

GRAD : O.ODO
DO 100 J : l,N

GRAD: GRAD+ Q(I,J)*X(J)
100 CONTINUE

F: F + X(i)*GRAD
G(I) : GRAD

200 CONTINUE
C**

F : O.SDO*F

81

ENTRY FUNCON
ENTRY MATMOD
RETURN

C** END OF FUNOBJ FOR QP
END

C***C
C* *C
C* SUBROUTINE SETQ : FINDS Q, THE HESSIAN MATRIX. *C
C* INPUT : *C
C* ID : DIMENSION OF Q *C
C* OUTPUT : *C
C* MATRIX Q *C
C* *C
C***C
C*
C*

SUBROUTINE SETQ(ID)
IMPLICIT REAL*8(A-H,O-Z)
COMMON /QPCOMM/ Q(l00,100)

DIMENSION ·B(l00),C(l00),RES1(100),RES2(100),
1 A(l00,100),ATRANS(l00,100),X(l00),U(l00)

N = 100
TYPE = O.ODO
SEED = SO.ODO
NOFROW 4
NOFCOL = 4
NOACTV = 2
NOZERO = 0

C** GENERATE X AND U VECTORS
DO 100 I = l,NOFCOL

CALL GENRTE(SEED,RANDOM)
X(I) =RANDOM

100 CONTINUE
DO 110 I =.' l , NOFROW

CALL GENRTE(SEED,RANDOM)
U (I) = RANDOM

110 CONTINUE
NOI = NOFROW-NOACTV
IF(NOI.LT.l) GO TO 830
DO 120 I = l,NOI

U(I) = 0. ODO
120 CONTINUE
C** GENERATE MATRIX A (OR CTRANS IN FLETCHER'S PAPER)
830 DO 200 I = l,NOFROW

DO 200 J = l,NOFCOL
CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
A(I,J) =RANDOM

200 CONTINUE
C** GENERATE MATRIX Q (OR A IN FLETCHER'S PAPER)

DO 300 I = l,NOFCOL
DO 300 J = l,NOFCOL
IF (I.GT.J) GO TO 300

CALL GENRTE(SEED,RANDOM)
IF (SEED.LT.16000.0DO) RANDOM -RANDOM
ATRANS(I,J) =RANDOM .

300 CONTINUE
DO 1000 I = l,NOFCOL
DO 1000 J = l,NOFCOL

IF (I.LE.J) GO TO 1000

82

ATRANS(I,J) = ATRANS(J,I)
1000 CONTINUE
C** TYPE = O.=> Q IS INDEFINITE
C** TYPE = l.=> Q IS POSITIVE DEFINITE

IF (TYPE.EQ.O.ODO) GO TO 10
CALL MULT(ATRANS,ATRANS,NOFCOL,NOFCOL,NOFCOL,Q,N,N,N,N)
DO 1200 I = l,NOFCOL
DO 1200 J = l,NOFCOL

I F (I • EQ • J) Q (I , J) = Q (I , J) + 1. 0
1200 CONTINUE

GO T0-40
10 DO 800 I = l,NOFCOL

DO 800 J = l,NOFCOL
Q(I,J) = ATRANS(I,J)

800 CONTINUE
40 IF(NOZERO.LT.l) GO TO 820

NOPLUS = NOFCOL-NOZERO+l
DO 810 I = NOPLUS,NOFCOL
DO 810 J = l,NOZERO

Q (I , J) = 0 • ODO
820 CONTINUE

DO 860 I = l,NOZERO
DO 860 J = NOPLUS,NOFCOL

Q (I , J) = 0 • ODO
860 CONTINUE
C** COMPUTE VECTOR C (ORB IN FLETCHER'S PAPER)
820 DO 700 I = l,NOFCOL

DO 700 J = l,NOFROW
700 ATRANS(I,J) = A(J,I)

CALL MULT(ATRANS,U,NOFCOL,NOFROW,l,RESl,N,N,N,l)
CALL MULT(Q,X,NOFCOL,NOFCOL,l,RES2,N,N,N,l)
DO 400 I = l,NOFCOL

C(I) = RESl(I) -' 2.0DO*RES2(I)
400 CONTINUE
C** COMPUTE VECTOR B (ORD IN FLETCHER'S PAPER)

CALL MULT(A,X,NOFROW,NOFCOL,l,B,N,N,N,l)
DO 900 I = l,NOFCOL

IF (X(I).GT.O.ODO) GO TO 900
CALL GENRTE(SEED,RANDOM)
C(I) = C(I) +RANDOM

900 CONTINUE
DO 910 I = l,NOFROW

IF (U(I).GT.0.0DO) GO TO 910
CALL GENRTE(SEED,RANDOM)
B(I) = B(I) - RANDOM

910 CONTINUE
DO 500 I ~ l,NOFCOL
DO 500 J = l,NOFCOL

Q(I,J) = 2*Q(I,J)
500 CONTlNUE

C*

RETURN
END

C*
C***C
C* *C
C* SUBROUTINE GENRTE : GENERATES A REAL NUMBER RANDOMLY *C
C* ARGUMENTS *C
C* SEED THE SEED FOR THE GENERATOR *C
C* RANDOM THE GENERATED NUMBER *C

83

C* INPUT :
C* SEED
C* OUTPUT:
C* SEED,RANDOM
C*

*C
*C
*C
*C
*C

C***C
C*
C*

C*

SUBROUTINE GENRTE(SEED,RANDOM)
IMPLICIT REAL*B(A-H,O-Z)
X = 3373.0DO
Y = 6925.0DO
WORD = 32768.0DO
TMAX =24.0DO
ONE = 1. ODO
SEED= DMOD((X*SEED + Y),WORD)
RANDOM = TMAX*(SEED/WORD) + ONE
I = RANDOM
RANDOM = I
RETURN
END

C*
C**C
C* *C
C* SUBROUTINE MULT : MULTIPLIES TWO MATRICES RLEFT AND RIGHT. *C
C* ARGUMENTS *C
C* RLEFT THE FIRST MATRIX *C
C* RIGHT : THE SECOND MATRIX *C
C* LEFTR : ROW SIZE OF THE FIRST MATRIX *C
C* LEFTC : COLUMN SIZE OF THE FIRST MATRIX *C
C* IRIHTC: COLUMN SIZE OF THE SECOND MATRIX *C
C* IDl ROW DIMENSION OF THE FIRST MATRIX *C
C* ID2 COLUMN DIMENSION OF THE FIRST MATRIX *C
C* ID3 ROW DIMENSION OF THE SECOND MATRIX *C
C* ID4 COLUMN DIMENSION OF THE SECOND MATRIX *C
C* RESULT: MULTIPLICATION RESULT *C
C* INPUT *C
C* RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,IDl,ID2,ID3,ID4 *C
C* OUTPUT *C
C* RESULT *C
C* *C
C**C
C*
C*

SUBROUTINE MULT(RLEFT,RIGHT,LEFTR,LEFTC,IRIHTC,RESULT,ID1,ID2,
1 ID3,ID4)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION RLEFT(ID1,ID2) ,RIGHT(ID3,ID4),RESULT(ID1,ID4)
DO 100 I = l,LEFTR
DO 100 J = l,IRIHTC

RESULT(I,J) = O.ODO
100 CONTINUE

DO 200 I = l,LEFTR
DO 300 J = l,IRIHTC
DO 400 K = l,LEFTC
RESULT(I,J) = RESULT(I,J) + RLEFT(I,K)*RIGHT(K,J)

400 CONTINUE
300 CONTINUE
200 CONTINUE

84

RETURN
END

85

C*********************************~******************************C

C** THIS IS A SAMPLE OF THE TWO INPUT FILES SPECS AND MPS THAT **C
C** ARE REQUIRED AS AN INPUT FOR MINOS. **C
C**C

BEGIN QP
NONLINEAR VARIABLES
SUPERBASICS LIMIT
SUMMARY FILE
SUMMARY FREQUENCY
ITERATIONS LIMIT

END QP
NAME
ROWS

G ROWl
G ROW2
G ROW3
G ROW4
N C

COLUMNS
Xl
Xl
Xl
Xl
Xl
X2
X2
X2
X2
X2
X3
X3
X3
X3
X3
X4
X4
X4
X4
X4

RHS
B
B
B
B

ENDATA

QP

ROWl
ROW2
ROW3
ROW4
c
ROWl
ROW2
ROW3
ROW4
c
ROWl
ROW2
ROW3
ROW4
c
ROWl
ROW2
ROW3
ROW4
c

ROWl
ROW2
ROW3
ROW4

4
5
9
1

52

0.160000D+02
-.300000D+Ol
-.200000D+Ol
0.160000D+02
-.3920000+03
-.200000D+Ol
-.SOOOOOD+Ol
0.150000D+02
0.130000D+02
0.640000D+02
0.180000D+02
-.1200000+02
0.140000D+02
0.220000D+02
0.284000D+03
-.200000D+Ol
-.600000D+Ol
-.BOOOOOD+Ol
-.900000D+Ol
-.365000D+03

0.341000D+03
-.245000D+03
0.170000D+03
0. 4150000+03

86

APPENDIX D

ADDITIONAL REFERENCES ON 'IlIE

QUADRATIC PROGRAMMING PROBLEM

87

SELECTED REFERENCES

1. Abadie, J. and J. G. Carpentier. "Generalization of the Wolfe
Reduced-gradient method to the case of nonlinear con
straints," In Optimization, R. Fletcher (Ed), Academic
Press, London, pp. 37-49, 1969.

2. Aubin, J. P. Explicit Methods of Optimization. Bordas Dunod
Gauthier-Villars, 1984.

3. Bazaraa, M.S. and Shetty, C. M. Non-linear Programming Theory
and Algorithms. John Wiley and Sons, N.Y., 1979.

4. Benveniste, R. "Evaluating computational efficiency: A stoch
astic approach," Math. Prog~ 21, (1981), pp. 152-171.

5. Benveniste,,R. "One war. to solve the p~rametric quadratic pro
gramm.ng problem, Math. Prog., 21,(1981), pp. 224-228.

6. Best, M. J. "Equivalence of some quadratic programming algor
ithms," Math. Prog., 30, (1984), pp. 711-87.

7. Best, M. J. and R. J. Caron. "A method to increase the computa
tional efficiency of certain quadratic programming algor
ithms," Math. Prog., 25, (1983), pp. 354-358.

8. Best, M. J. and K. Ritter. "An effective algorithm for quad
ratic minimization problems," MRC Technical Summary Report,
#1691, University of Wisconsin, 1976.

9. Biggs, M. C. "On the convergence of some constrained minimiza
tion algorithms based on recursive quadratic programming,"
.l.!. Inst. Math Appl., 21, (1978), pp. 67-82.

10. Bergthaler, C. ''Minimum risk problems and quadratic program
ming," Discussion paper No. 7115, Louvain, Center for
Operations Research and Econometrics, June 1971.

11. Boot, J. C. G. "On Sensitivity analysis in convex quadratic pro
gramming problems, 11 Operations Research, (1%3), r:p. 771-786.

12. Bunday, B. D. Basic optimization methods, E. Arnold, 1984.

13. Chandrasekaran, R. and A. Tamir. "Optimization problems with
algebraic solutions: quadratic fractional programs and
ratio games," Math. Prog., 30, (1984), pp. 326-339.

88

14. Chang, Y. Y. and R. W. Cottle. "Least index resolution of
degeneracy in quadratic programming," Math. Prog., 18,
(1980), pp. 127-137.

15. Conn, A. R. and J. W. Sinclair. "Quadratic prograrrming via a
non-differentiable penalty function," Department of Combin
ations and timization Research, University of Waterloo,
Rep. Corr 75-15 1975 •

16.

17.

18.

.19.

Cottle, R. W. "Symnetric dual quadratic programs," Quarterly of
Applied Mathematics, 21, (1963), pp. 237-243.

Cottle, R. W., and G. B. Dantziz. "Complementary pivot theory,"
In Mathematics of the Decision Sciences (part 1),
Dantziz and Veinott"{"Eds), Providence, R. I., American
Math. Soc., 1968.

Cottle, R. W. and A. Djang. "Algorithmic equivalence in quad-
ratic programming I:A least-distance programming program,"
Report No. 76-26, Dept. of Operations Research, Stanford,
University, Oct. 1976. (or Journal of Opt. Theory and
Applications, 28, (1979), pp. 275-301.)

Cottle, R. W. and J. S. Pang. "On the convergence of a block
successive overrelaxation method for a class of linear
complementarity problems," Math. Prog., Study 17, (1982),
pp. 126-138.

20. Daniel, J. W. "Stability of the Sol'n of Definite Quadratic
Programs," Math.· Prog. ,5, (1973), pp. 41-53.

21. Dantzig, G. B. and R. W. Cottle. "Positive (semi) definite
programming," In Nonlinear Prograriming;Abadie (Ed), Amest
erdam, North-Holland Publishing Company, 1967, pp. 57-73.

22. Demokan, N. and A. H. Land. "A paramatric quadratic program to
solve a class of bicriteria decision problems," ~Appl.
Res. Soc., 32, (1981), pp. 477-488.

23. Dennis, J. B. "A dual problem for a class of quadratic pro
grams," MIT Research Note, No. 1, Nov. 1957.

24. Djang, A. "Algorithmic Equivalence in quadratic programming,"
Ph.D. 'Ihesis, Stanford University, California, 1980.

25. Dorn, W. S. "Duality in quadratic programming," Quarterly of
Applied Math. 18, (2) (1960), pp. 155-162.

26. Dorn, W. S. "Self-dual quadratic programs," Journal of SIAM,
9, (1961)' pp. 51-54. - --

27. Eaves, B. C. "On quadratic programming," Management Science,
17,(1971), pp. 698-711. . .·

89

28. Eaves , B. C. and R. M. Freund. "Optimal scaling of balls and
polyhedra," Math. Prog., 23, (1983), pp. 138-147.

29. Evans, D. A. "A simple worked example of the maximum of a
quadratic funtion subject to linear inequalities, Tech
nical Discussion Paper, No. 1, Department of Farm Manage
ment and Agriculture Economics, Massey University College,
New Zealand, 1963.

30. Evtushenko, Y. G. Numerical Optimization Techniques. Springer
Verlag, N.Y., 1985.

31. Fletcher, R. and M. P. Jackson. ''Minimization of a quadratic
function of many variables subject only to upper and lower
bounds," :I!.. Inst. Math. Applic., 14,(1974), pp. 159-174.

32. Garcia-Palomares, U. M. and A. Restuccia. "A global quadratic
algorithm for solving a system of mixed equalities and
inequalities," Math. Prog., 21, (1981), pp. 290-300.

90

33. Gill, P. E. and W. Murray. ''Numerically stable methods for
quadratic programning," Math. Prog., 14, (1978), pp. 349-372.

34. Gill, P. E., W. Murray and M. H. Wright. Practical Optimization.
Academic Press, London, 1981. ·

35. Golub, G. H. and M. A. Saunders. ''Linear least squares and
quadratic progranming," In Integer and Nonlinear Program
~~: Abadie (Ed), AmesterdarD., Northliolland Publishing Co.,

36. Han, S. P. and O. L. Mangasarian. "A dual differentiable exact
penalty function " Math. Prog., 25, (1983), pp. 293-306.

37. Hua, L. ·Optimization. Wiley, 1985.

38. Jefferson, T. R. and C. H. Scott. "Quadratic geometric program
ming with application to machining economics," Math. Prog.,
31,(1985), pp. 137-152.

39. Jeter, M. W. Mathematical Prograrrnning. Dekker, 1986.

40. Kuester, J. L. and J. H. Mize. Optimization Techniques with
FORTRAN. McGraw-Hill, New York, 1973. --

41. Kuhn, H. W. and A. W. Tucker. ''Nonlinear programning,'' In Second
Berkely Symposium on Mathematical Statistics and Proba
bility, J. Neyman {Ed), University of Calif. Press, 1951.

42. Land, A. H. and S. Powell. Fortran Codes for Mathematical
Progranming. John Wiley and Son, New York, 1973.

43. Lazimy, R. ''Mixed-integer quadradric programning," 22, (1982),
pp. 332-349.

44. l.azimy, R. "Improved algorithm for mixed-integer quadradic
programs and a computational study," Math. Prog., 32,
(198S), pp. 100-113.

4S. Lemke, C. E. "A method of solution for quadratic programming,"
Management Science, 8, (1962), pp. 442-4S3.

46. Lemke, C. E. and J. T. Howson. "Equilibrium points of bi-matrix
games," l.!_ Soc. Indust. Appl. Math., 12, (1964) ,pp.413-423.

47. Lenard, M. L. and M. Minkoff. "Randomly generated test problems
for positive definite quadratic programming," AQ1 Trans
actions on Mathematical Software, 10 (1), (1984), pp.
86-96. -

48. Lotstedt, P. "Time-dependent contact problems in rigid body
mechanics," Math. Prag., Study 17 (1982), pp. 103-110.

49. Majthay, A. "Optimality conditions for quadratic programming,"
Math. Prog., 1, (1971), pp. 3S9-36S.

SO. Mangasarian, 0. L. "Normal solutions of linear programs," Math.
Prog., Study 22, (1984), pp. 206-216.

Sl. Mangasarian, 0. L. ''Locally unique solutions of quadratic
programs, linear and nonlinear complementarity problems,"
Math. Prag., 19, (1980), pp. 200-212.

52. Mangasarian, 0. L. "Sparsity-preserving SOR algorithms for
separable quadratic and linear prograrrming," Computer and
~Res., 11, (1984), pp. lOS-112.

91

S3. Murray, w,. "An algorithm for finding a local minimum of an
indefinite quadratic program," NPL NAC Report, No. 1,(1971).

S4.

SS.

S6.

S7.

58.

S9.

Murray, W. and M. H. Wright. "Computation of the search direc·
tion in constrained optimization algorithms," Math. Prog.,
Study 16, (1982), pp. 62-83.

Pang, Jong-shi. "An equivalence between two al~orithrns for
quadratic programming," Math. Prog., 20, (1981), pp. 152-16S.

Pierre, Donald. Optimization Theory and Applications. Vieweg
and Sohn, Germany, 1984.

Powell, M. J. D. "On the ~uadratic prograrrming algorithm of
Goldfarb and Idnani,' Math. Prog., Study 2S, (1985),
pp. 4S-61.

Shapley, L. "A note on the Lemke-Howson algorithm," Math. Prog.,
Study 1, (1974), pp. 175-189.

Shoup, T. E. Optimization Methods. Prentice Hall, 1987.

60. Sung, Y. Y. and J. B. Rosen. "Global minimum test problem con
struction," Math. Prag., 24, (1982), pp. 353-355.

61. Tomlin, J. A. ''Robust implementation of Lemke's method for the
linear complentarity problem," Report SOL 76-24, Dept. of
Operations Research, Stanford Univ., 1976.

62. Valiaho, H. "A unified approach to one-parametric general quad
ratic prograrrming," Math. Prag., 33, (1985), pp. 318-338.

92

63. Van de panne, C. ''Local optima of quadratic prograrrnning problems
by means of the simplex method for quadratic programming,"
Discussion paper No. 7335, Heverlee (Belgium), Center for
Operations Research and Econometrics.

64. Van de panne, C., and A. Whinston. "A parametric simplical form
ulation of Houthakker's capacity method," Econometrica, 33,
(1965), pp. 354-380.

65. Van de panne, C., and A. Whinston. "Simplicial methods for
quadratic prograrrming," Naval Research Logistics Quarterly,
11, (1964), pp. 273-302.

66. Van de panne, C., and A. Whinston. "The syrrmetric formulation of
the simplex method for quadratic prograrnrning," Econometrica,
37 (3), (1969), pp. 507-527.

67. Von hohenbalken, B. "A finite algorithm to maximize certain
pseudo-concave functions on polytopes," Math. Prag., 9,
~1975), pp. 189-206.

68. Von hohenbalken, B. "Simplical decomposition in nonlinear pro
grarnrning algorithms," Math. Prag., 13, (1977), pp. 49-68.

69. Werner, J. Optimization Theory with Applications. Vieweg and
Sohn, Germany, 1984.

70. Whinston, A. "The bounded variable problem--an application of
the dual method for quadratic progranmin," Naval Res. Log-
istics Quarterly, 12, (1965), pp. 173-180. --

71. Wismer, D. A. and R. Chattergy. Introduction to Nonlinear Opti
mization, A Problem Solving ApproaCh. EISevier North
Holland, Inc., N. Y., 1979.

72.

73.

2.angwill, W: I. Nonlinear Pro§rarrnning: ~ Unified ~2roach.
Prentice-Hall, N.J., 196 .

Zwart, P. B. "Nonlinear programming: Counterexample to two
global optimization algorithms," Operations Research, 2,
(1973), pp. 1260-1266.

VITA

Fouad Mustapha Khalili

Candidate for the Degree of

Master of Science

Thesis: A COMPARISON OF 'IHE COMPUTATIONAL PERFORMANCE OF THREE
QUADRATIC PROGRAMMING ALGORITHMS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Sidon, Lebanon, May S, 1960, the son of
Mustapha Hasan Khalili and M. A. Bakri.

Education: Received Bachelor of Science Degree in Civil Engineer
ing from Oklahoma State University in May, 1982; Received
Master of Science Degree in Structural Engineering from
Oklahoma State University in May, 1984; Completed require
ments for the Master of Science Degree at Oklahoma State
University in December, 1987.

Professional Experience: Programmer, Department of Agriculture
Engineering, Oklahoma State University, January, 1986 to
November, 1986. Grader, Oklahoma State University, August,
1987 to present. Member of Golden Key National Honor Society.

