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PREFACE 

Inverse kinematics of kinematically redundant robots 

has become an area of active research in the past few years. 

A redundant robot is theoretically capable of avoiding all 

degenerate configurations. This study discusses design 

considerations of the redundant manipulator and presents a 

technique to perform the inverse kinematics without 

degeneracies within the manipulator's workspace. At the 

eat-1 y stages of this study I thought that I had ".so 1 ved the 

problem". Now I realize that we, as researchers in 

robotics, have only begun. Each new solution inspires new 

applications which then inspires a greater number of 

unanswered questions. 

I wish to express my thanks to the people who helped me 

during this study. First, Dr. A. H. Soni who has been an 

inexhaustible source of new ideas and who has helped•me to 

mature professionally in the past few years. Second, Dr. G. 

Naganathan who has given me a great deal of technical 

assistance and has served as a constant source of 

inspiration. Third, Bin Fang who did some of the 

preliminary work for this study. Also, Palaniswamy 

Sathyadev who has given me a great deal of assistance in 

understanding some of the mathematical theory used in this 

study. 
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NOMENCLATURE 

A matrix 

A+ pseudo-inverse of A 

a direction cosine of Z-axis 

a link length 

b vector 

c. 
1 

cosine 

cosine 

.c vector 

d incremental move in cartesian coordinates 

d link offset 

d vector 

g .,,..ector 

H least squares function 

VH gradient of H 

h vector 

I identity matrix 

3 Jacobian matrix 

j one column of Jacobian matrix 

n direction cosine of X-axis 

o direction cosine of Y-axis 

p position of the end of the last link 

T transformation matrix 

X 



X local coordinate system 

X vector 

link twist angle 

real constant 

e joint variable 

/le-1 maximum one sided excursion for ei 

median value for ei 

' de incremental move in joint coordinates 

* complex conjugate transpose 

xi 



CHAPTER I 

INTRODUCTION 

Inverse Kinematics 

This thesis deals with the inverse kinematics of robots 

and how the inverse kinematics affects their design. 

Inverse kinematics is the solving for the value of each of 

the joints of a robot to obtain a desired position and/or 

orientation of the last link of the robot. Currently robots 

usually contain a number of joints equal to the number of 

desired components of motion of the end-effector. For 

example, if the only concern is to position the end-effector 

in space and the end-effectors orientation in space is of no 

concern, the robot would need three components of motion. 

Hence, the robot would need a minimum of three joints. The 

inverse kinematic problem for this three degree of freedom 

robot would be to solve for the value of ea~h joint so that 

the end-effector would be at a desired location in space. 

Inconsistent Robots 

Inconsistent robots are ones in which the number of 

joints that the robot contains is less than the desired 

components of motion. Since in general inconsistent robots 

will not be able to be reach a desired position they will 
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not be considered further in this thesis. 

Unique Robots 

A unique robot is one in which the number of joints 

that the robot contains equals the number of desired 

2 

components of motion. Therefore, there are at most a finite 

number of solutions to the inverse kinematics for a unique 

robot. 

One popular method of performing inverse kinematics of 

a unique robot is the Jacobian method [lJ. The Jacobian 

matrix relates incremental joint motions to incremental 

motions in a more convenient coordinate system, usually 

Cartesian. Once the Jacobian is determined it is inverted 

and premultiplied by the desired incremental move to obtain 

a vector containing the incremental joint motions. A 

problem with the Jacobian method is that of singularities. 

If the Jacobian becomes singular then the inverse of the 

Jacobian does not exist and the robot becomes 

uncontrollable. 

Another method is to invert and premultiply successive 

transformation matrices to obtain a closed form solution 

[2,3]. A closed form solution would allow for the joint 

values to be solved directly instead of in terms of several 

incremental moves. The closed form solution will also have 

a problem with singularities since it will require division 

by trigonometric functions of joint variables; hence, a 

division by zero could result. Another problem with the 
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closed form solution is that the path of the end-effector is 

not defined. A path may be defined by breaking the path 

into several incremental moves; however, using several 

increments would negate any computational advantage the 

closed form solution has over the Jacobian method. 

Redundant Robots 

Mathematical singularities or robot degeneracies has 

become an active area of research in the past few years. 

Paul extensively studied the cause and effects of 

degeneracies of a robot's orientation structure [4]. If a 

robot reaches a degenerate position large joint velocities 

will occur resulting in unreliable solutions. Most of the 

recent work attempts to solve the problem of degeneracies by 

adding extra joints to the robot. A robot with more joints 

than desired components of motion is referred to as a 

redundant robot. A redundant robot has at least one infinity 

of solutions for the inverse kinematics. 

Hopefully, a redundant robot would have no 

degeneracies, or at least avoid any degenerate position by 

picking the proper solution to the inverse kinematics from 

the infinity available. However, it is difficult to select 

one solution from the infinity available. 

One method of inverse kinematics for redundant robots 

is to divide the Jacobian matrix into.several submatrices 

[5]. Since the Jacobian matrix for a redundant robot is 

rectangular, representing a consistent set of simultaneous 
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equations, the Jacobian matrix could be divided into several 

square submatrices. Each submatrix could be evaluated and 

the best suited submatrix would be used to perform the 

inverse kinematics, thereby never allowing a singular 

solution. However, evaluating all the possible submatrices 

prior to solving the inverse kinematics for each incremental 

move will add a great deal of additional computation. 

Another method is to add additional constraining 

equations to the Jacobian [6]. By adding constraining 

equations the Jacobian can be made square; therefore, 

allowing inversion by traditional means. This method will 

result in a unique solution to the inverse kinematics; 

however, it does not guarantee a non-singular inversion of 

the Jacobian. 

Optimization of performance criterion has shown 

promising results [7,8,9]. Optimization techniques can be 

used to optimize any performance criterion such as path 

length or robot dynamics. Additionally, they are not 

restricted to piece wise linerization of the nonlinear 

inverse kinematics problem. However, the excessively large 

number of computations required for an optimization problem 

along with the inherent stability problem of nonlinear 

iterative techniques makes optimization methods impractical 

for on-line inverse kinematics. 

The pseudoinverse method has the best potential to 

perform inverse kinematics quickly and near optimally since 

the solution of the pseudoinverse yields the entire solution 
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space of the inverse kinematics with respect to an arbitrary 

vector. The mathematical properties of the pseudoinverse 

have been· studied in great detail and are well understood 

[10,11,12]. The pseudoinverse method has been used, in the 

laboratory, to perform the inverse kinematics for a six 

jointed robot executing a task requiring only three 

components of motion [13]. In addition, the properties of 

the pseudoinverse when applied to a robot have been studied 

extensively [14]. 

Problem Statement 

The goal of this study is develop a robot configuration 

and method of inverse kinematics that will not allow the 

existence of mathematical singularities or geometrical 

degenerate configurations to degrade the performance of a 

robot. First a method of inverse kinematics must be 

selected, then a way to identify types of degeneracies and 

how degeneracies effect the method used to perform inverse 

kinematics. Finally, it will have to be proven that a 

proposed robot will either avoid or not be affected by 

degeneracies within its workspace. 



CHAPTER II 

INVERSE KINEMATICS 

When selecting a method of inverse kinematics many 

factors must be considered. The method must be fast to 

allow on-line programming of the robot. The method must 

never allow a mathematical singularity to degrade the 

performance of the robot. Lastly, the method must give 

dynamically acceptable solutions. Since the pseudoinverse 

method seems best suited to obtain the above mentioned 

criterion, the pseudoinverse method will be the method used 

in this study. 

Jacobian 

To use the pseudoinverse method the path of the 

end-effector must be broken up into incremental moves. The 

Jacobian matrix relates incremental joint motions of a 

manipulator to incremental motions in a more convenient 

coordinate system. 

The Jacobian consists of the partial derivatives of 

each local coordinate system with respect to the joint 

variable. Mathematically the Jacobian may be written-

6 



where i = 1 to the number of degrees of freedom 

j = 1 to the number of joint variables 

::r = The Jacobian matrix 

X. = 
1 

The i th local coordinate system 

e. = the j th joint variable 
J 

Paul demonstrates a method to construct a Jacobian 

matrix for any manipulator consisting of revolute joints by 

using transformation matrices [1]. A transformation matrix 

Ti for a prizmatic or revolute joint my be written -

where 

Cos ei 
Sin e i 

0 
0 

Sin €). 
1 Sin 

Cos ei Sin 

-Sin ei Cos 01i 
Cos ei Cos 01i 

Sin 01i 
0 

Q(i ai Cos €). 
1 

Q(i a· 1 Sin ei 
Cos ()(· 

1 d· 1 
0 1 

e. 
1 

= the i th joint angle 

di = the i th 1 ink offset 

ai = the i th link length 

0(. = the i th link twist angle 
1 

7 

The Ti matrix relates the positions and directions of link i 

to link i-1 as shown in figure 1. 

In general the transformation matrix may be written -

Px 
Py 
Pz 

1 



z n-1 

f 
I 

Figure 1. Link Parameters 

z 
n 

d 
n 

_L 

8 
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where n = the direction cosines of the i th X axis 

coordinate system with respect to the 

j th coordinate system 

0 = the direction cosines of the i th y axis 

coordinate system with respect to the 

j th coordinate system 

a = the direction cosines of the i th 7 
'- axis 

coordinate system with respect to the 

j th coordinate system 

p = the position of the end of the i th link 

with respect to the j th coordinate 

system 

Once a transformation matrix has been formed one column 

of the Jacobian may be computed, the i th column of the 

Jacobian matrix for a link with a revolute joint moving in 

XYZ space can be computed from the jTi transformation matrix 

as follows.-

-nxPy + nyp x 
-o xPy + OyP X 

ji = -axPy + ayp x 
nz 
oz 
az 

After determining all i columns of the Jacobian matrix 

the differential change in position and orientation as a 

function of differential rotations of the revolute joints 

may be written as -
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= .J 

= an incremental move in the X direction 

in the j th coordinate system 

jd = an incremental ~ove in the Y direction y 

in the j th coordinate system 

jd = z an incremental move in the z direction 

in the j th coordinate system 

.io = an incremental rotation about the 
X 

X axis in the j th coordinate 

system 

j8 = an incremental rotation about the y 

y axis in the j th coordinate 

system 

58~ = an i ncremen,tal rotation about the 
"-

z axis in the j th coordinate 

system 

J = the Jacobian matrix 

de. = an incremental rotation of the i th 
l 

revolute joint 

or in matrix notation as-

d = J de 

Now the incremental joint motions for an incremental 

change in position and orientation may be obtained by 

inverting the Jacobian and premultipling the above equation 



by the inverse of the Jacobian. Resulting in 

de = 3- 1 d 

Pseudo inverse 

The above method of inverse kinematics using the 

1 1 

inverse of the Jacobian works well if the Jacobian is a well 

behaved and square. In general the inverse of the Jacobian 

may be found by determining the adjoint of the Jacobian, 

then dividing the adjoint by the determinant of the 

Jacobian. 

1 
-1 

3 = Adj 3 
det 131 

However, using the adjoint divided by the determinant 

to calculate the inverse of the Jacobian has two major 

drawbacks. One, if the determinant of the Jacobian becomes 

zero (degenerates> the solution for the joint velocities 

will become unreliable. Two, the components of motion of the 

end-effector must equal the number of independent joints so 

that a square Jacobian is obtained. The ideal solution 

would be to find a method to invert any matrix whether 

degenerate or rectangular. 

Such an inversion technique does exist, called the 

Moore-Penrose pseudoinverse [11,12,13,14]. The 

pseudoinverse must have certain properties. These 

properties are -
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+ 
AA A = A 

A+AA + A+ = 

( AA+>* = AA+ 

<A+ A>* = A+ A 

where A = any matrix 

A+ = the pse~doinverse of A 

* indicates the complex conjugate transpose 

We would also expect that if A has m rows and n columns the 

+ pseudoinverse A would have n rows and m columns. 

When using the pseudoinverse to perform inverse 

kinematics of a kinematicaly redundant manipulator the 

Jacobian will have more columns than rows; hence, a set of 

consistent equations. The entire solution space for a 

consistent set of linear equations 

g =A X 

may be written [10,11,12] 

x = A+ g + f. I - A+ A> h 

where I = the identity matrix 

h = any vector 

Rao and Mitra go on to prove that the use of the 

non-homogenous part of the solution space for a consistent 

set of linear equations will always yield the minimum norm 

solution [11]. Or -

+ 
II A g· II ~ II + + 

A g + (I -A A> h I I 
The minimum norm solution can be of great value in the 

inverse kinematics of kinematically redundant manipulators 
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since the inverse Jacobian relation 

Will yield the minimum norm of the joint velocities for a 

given incremental move d. 

Avoiding Joint Limits 

If one is willing to sacrifice the minimum norm 

solution for joint velocities, the arbitrary vector h may 

be used in the pseudoinverse solution. One possible 

application is avoiding joint limitations in the case of 

non-ideal revolute joints. If h is picked correctly the 

solution of the consistent set of linear equations for joint 

velocities can cause the joints to tend toward the median of 

their travel in a least-squares norm fashion [13,14]. The 

solution for joint velocities would then be 

where a = a real constant 

for i = 1 to number of joints 

eci = median value for joint i 

~e. = the maximum one sided excursion for 
1 

joint i 

Although the use of the gradient vector to cause the 

joint travels to tend toward the median of their travel is 

sub-optimal it does lead to a easily applicable solution to 

deal with the limitations of non-ideal revolute joints. 
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Pseudoinverse Computation 

There a several methods available to compute a 

pseudo inverse. One method is to take advantage of the 

complex conjugate transpose properties of the pseudoinverse 

[ 14J. where -

+ -1 
A = A*( AA*> 

for the underdetermined case and -

for the overdetermined case 

However, in the undetermined case of a redundant manipulator 

problems do occur near degeneracies due to the ill-

conditioned state of the Jacobian resulting in large joint 

velocities [14J. 

Boullion and Odell present an efficient recursive 

method [12J. Their method requires one recursion for each 

column of the original matrix and does not have any problem 

inverting ill-conditioned matrices because a division by 

zero is never allowed. 

Let ak denote the k th column of a matrix A. Let Ak be 

the first k columns of the matrix A. To begin let 

if ak equals the zero vector, otherwise let -

+ T -1 T 
A1 = (a1 a1> a1 

then for k = 2 to the number of columns in A compute 

if ck is not equal to the zero vector 



if ck is equal to the zero vector 

T -1 T + 
= < 1 + d k d k ) d k Ak -1 

then 

A + 
k -

15 

The above method to determine the pseudoinverse is easy 

to follow and to translate into computer code. 



CHAPTER III 

PREVENTING DEGENERACIES 

Types of Degeneracies 

There are two types of degeneracies, mathematical and 

geometric. Mathematical degeneracies occur when the 

equations governing the inverse kinematics do not define one 

or more variables. Geometric degeneracies occur when a 

manipulator is not physically capable of performing a 

desired move. Both mathematical and geometric degeneracies 

may be observed in the Jacobian matrix. 

Mathematical 

Mathematical degeneracies occur when one or more column 

vectors of the Jacobian are zero. When a column vector 

becomes zero it means that the coefficient fo~ a particular 

joint variable is zero in all of the equations relating 

incremental joint motions to incremental moves of the end of 

the last link. Since all of coefficients are zero, any 

incremental change in that joint variable would satisfy the 

equations of motion, resulting in an infinity of solutions. 

If the inversion of the Jacobian matrix is performed by 

calculating the adjoint then dividing the adjoint by the 

determinant of the Jacobian, problems will occur near and at 

16 
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a degeneracy. As the manipulator approaches a degeneracy 

the determinant will begin to vanish resulting in large 

coefficients in the inverse Jacobian matrix; hence, causing 

unreliable results near a degeneracy and no solution at a 

degeneracy. 

However, if the pseudoinverse method is used to 

determine the inverse of the Jacobian the problem of erratic 

joint velocities does not occur. As stated earlier the 

pseudoinverse will always return the minimum norm solution 

to a set of linear equations. In the case of a mathematical 

degeneracy since any incremental move for the affected joint 

variable will be valid, the minimum solution would be zero. 

Therefore, mathematical degeneracies do not pose a 

problem when solving for the inverse kinematics of a 

manipulator as long as the pseudoinverse technique is used 

to find the inverse of the Jacobian. 

Geometrical 

Geometrical degeneracies appear in the Jacobian as a 

row of zeros. A row of zeros means that all of the 

coefficients in an equation relating incremental joint 

motions to incremental moves of the last link are zero. 

Hence, no matter what values are given to the incremental 

joint motions the manipulator will not be able the perform 

the desired move. 

There is no inversion technique that will allow the 

manipulator to move through a geometric degeneracies because 
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this type of degeneracy is a property of the geometry of the 

manipulator. Therefore, care must be taken when designing a 

manipulator to insure it has no geometric degeneracies or an 

least only a few discrete degeneracies that can easily be 

avoided. 

Degeneracies of Position Structures 

In this section several different types of position 

structures will be presented. Since mathematical 

degeneracies are of no concern, the position structures will 

be analyzed for geometric degeneracies only. 

3-R Position Structure 

A popular 3-R position structure is shown in figure 2. 

The position structure allows the end of the last link to be 

position anywhere in space that is within its reach but 

allows no control over orientation of the last link. This 

position structure has been studied extensively for its 

workspace characteristics Cl5J and slight variations are 

currently used in many commercially available robots. The 

kinematic parameters for this position structure are shown 

in table I. 

Using the method to derive the Jacobian described in 

chapter II the Jacobian can be shown to be -

[ 

[ 
0 
0 

] 

] 
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Figure 2. 3-R Position Structure 
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TABLE I 

Kinematic Parameters for 3-R Position Structure 

origin a ()( d e 

1 0 90° 0 variable 

2 a2 0 0 variable 

3 a3 0 0 variable 
--------------------------------------
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By observing row one of the Jacobian if 63 equals 0° or 

180° a geometric degeneracy occurs. However, 63 equal to 0° 

corresponds to the outer edge of the workspace where a 

degeneracy would be expected regardless of the geometry of 

the manipulator. Also, e3 equal to 180° creates a 

degeneracy, this corresponds to the inner edge of the 

workspace and a degeneracy would be expected there also. 

Row two can never degenerate as long as link three has 

a length not equal to zero. 

Row three will degenerate when -a 3c23 equals a 2c2 • The 

above relation will hold true when the end of the third link 

is on line with the z 1 axis. When this alignment occurs the 

end of the third link is not able to move in the z4 

direction regardless of the incremental joint rotations. 

Note that a mathematical degeneracy occurs at the same 

time as the row three geometrical degeneracy. The column 

one mathematical degeneracy is of no consequence if the 

pseudo-inverse technique is used to invert the Jacobian. 

The end of the third link would be able to move in the x3 

and Y3 directions but would be prevented from moving in the 

z3 direction due to the geometrical degeneracy. 

4-R Posi t!on Structure 

A proposed 4-R position structure is shown in figure 3. 

Like the 3-R position structure the 4-R position structure 

may position the end of the last link anywhere within its 

reach but has no control of the orientation of the last 
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Figure 3. 4-R Position Structure 
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link. The kinematic parameters for the proposed 4-R 

position structure are shown in table II. 

Note the an additional transformation used between the 

second and third joint. This additional transformation is 

not needed to mathematically describe the position of the 

end of the last link, but is needed to describe the position 

of joint 3 which is needed to accurately animate the 

proposed 4-R position structure. Therefore, the additional 

transformation is included here for the sake of 

completeness. 

Using the procedure in chapter II to derive the Jacobian 

matrix and the data in table II the Jacobian matrix can be 

shown to be. 

where 

AA 
BB 
cc 

AA = -<d 3+a 2 >c 2s 3c 4 

BB = a 4 <c 2c 3s 4 -s 2c 4 > +<d 3+a 2 >c 2c 3 

[ 0 ] 
[ 0 ] 
[-a4J 

CC = at./ s 2c 3c 4 -c 2c 4 -c 2s 4 >s 3c 4 -< d 3+a 2 > c 2s3c 4 

By observing the Jacobian it is apparent that if the 

length of the fourth link is nonzero, row three may never 

become degenerate. 

Looking at row two if e 4 becomes ±90° at the same time 

e 3 becomes 0 or 180° row two will degenerate. However, e 4 

of ±90° corresponds to the outer and inner edge of the 

workspace where a geometrical degeneracy is expected. 

The problem occurs in row one of the Jacobian. Besides 
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TABLE II 

Kinematic Parameters for 4-R Position Structure 

origin type a ()( d e 

1 joint 0 90° 0 variable 

2 joint a2 0 0 variable 

t trans 0 90° 0 90° 

3 joint 0 90° d3 variable 

4 joint a4 90° 0 variable 
------------------------------------------------
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the edge of the workspace degeneracy, if e3 becomes ±90° at 

the same time e2 becomes ±90° row one degenerates meaning 

the end of the last link cannot move in the x5 direction 

(see figure 4>. The row one degeneracy in general does 

not occur at the edge of the workspace; therefore, may cause 

a problem in the inverse kinematics of the 4-R position 

structure. 

However, if e 3 is not allowed to become ±90° a row one 

degeneracy would only occur at the edge of the workspace. 

e3 may be kept away from the ±90° positions by using the 

entire solution for a consistent set of linear equations. 

d9 = J + d + f'l < J + J' - I >VH < e > 

The least-squares function would be 

making the gradient vector -

0 
0 

VH = ( 263) / (~93) 2} 
0 

Figure 5 shows the motion of the joints of the 4-R 

position structure performing an incremental move with the 

gain constant (l equal to zero. Notice e3 moves away from 

its center position of zero degrees. 

Figure 6 shows the motion of the joint variables 

performing the same incremental move as in figure 5 except 

for figure 6 (l is set to 0.05. Notice now e3 moves toward 

its center position; hence, the non-edge of workspace 

degeneracies can be avoided. 



Figure 4. 4-R Position Structure at 

Geometrical Degeneracy 
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5-R Position Structure <type 1> 

Figure 7 shows a proposed 5-R position structure. This 

position structure is similar to the 4-R position structure 

studied by Laughlin [16] shown in figure 8. Laughlin proved 

that the position structure shown in figure 8 would have 

excellent workspace characteristics with non-ideal joints. 

However, from the analysis of the 3-R position structure it 

is obvious that a geometric shoulder degeneracy would occur 

with the Laughlin position structure. Hence, the addition 

of a joint placed axially between the second and third joint 

of the Laughlin position structure may eliminate the 

shoulder degeneracy. 

Table III shows the kinematic parameters for the 5-R 

position structure. Note additional transformations are not 

included to reduce computation. 

Using the data in table III the Jacobian is -

where 

AA 
88 
cc 

AA 

88 

cc 

DD 

EE 

FF 

DD 
EE 
FF 

= 

= 

= 

= 

= 

= 

[ 0 ] 
[ 0 J 

[ -a:sC45-a4C4J 

is irrelevant to 

is irrelevant to 

discussion 

discussion 

[ OJ 

[a5J 
[ OJ 

a5< C2C 45+S2C3S 45> +a4 < c2c4 +S2c3s4> 

-a4 ( C3S5> +d3< c3c45> 

is irrelevant to discussion 

~ ( 53 545) +a4 < s3s4 > +d3 (53) 

+d3< S2C3> 

By observing row 1 of the Jacobian e5 must equal 0 or 
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Figure 8. Laughlin Position Structure 



TABLE III 

Kinematic Parameter for 5-R Position Structure 
<type 1) 

origin a ex d e 

1 0 90° 0 variable 

2 0 90° 0 variable 

3 0 90° d3 variable 

4 a4 0 0 variable 

5 a5 0 0 variable 
--------------------------------------
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180° at the same time either e3 or e4 equals ±90° for raw 1 

to have the possibility to equal the zero vector. However, 

with the coordinate systems chosen if 9 5 equals 0 or 180° at 

the same time 94 equals ±90° the end of the last link is at 

the boundary of the workspace where a degeneracy is 

expected. This leaves the possibility of 93 equal to ±90°. 

However, if 93 is treated in the same way as the in the 

proposed 4-R position structure a row 1 degeneracy will not 

occur within the position structures workspace. 

Since the raw 2, column 5 entry of the Jacobian is a 

constant, a raw 2 degeneracy will nat occur as long as link 

5 is of non-zero length. 

Row 3 of the Jacobian requires close observation. The 

row 3, column 3 entry will equal zero when the end of the 

last link aligns with the z3 axis. The raw 3, column 2 

entry will equal zero when 9 3 equals 0 or 180° or when the 

end of the last link touches a plane defined by a normal to 

the z3 axis passing through the origin of the second 

coordinate system. Realistically, due to finite link 

dimensions, the end of the last link will never reach the 

two positions stated above simultaneously; however, it is 

very possible that 93 may equal 0 when the end of the last 

link aligns with the z3 axis since 93 will tend toward 0 

due to the gradient used to keep row 1 from degenerating. 

Observing the row 3, column 1 entry and remembering 

that 9 3 will tend toward O, and the end of the last link 

will not align with the z3 axis at the same time it touches 
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a plane normal to z3 passing through the origin of the 

second coordinate system there will be an infinity of row 3 

degeneracies. This infinity will occur when the z1 , z3 and 

end of the last link are all colinear, see figure 9. 

The row 3 degeneracy may be avoided by using the 

gradient vector to keep e2 between 0 and 180°; however, part 

of the workspace will be sacrificed. 

5-~ Position Structure <type 2> 

Figure 10 shows a different configuration for a 5-R 

position structure. The second 5-R position structure has a 

joint placed axially between the third and fifth joint 

instead of between the second and fourth joint as in the 

type 1 5-R position structure. The kinematic parameters for 

the type 2 5-R position structure are shown in table IV. 

e4 

Using the data in table IV the Jacobian is -

where 

Row 

or 65 

AA 
BB 
cc 

AA 

BB 

cc 

DD 

EE 

DD 
EE 
FF 

= is 

= is 
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= ~ <C2C3Cs -s2s3c5 

= d4C4~ +a2 < s3c4 c5 
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discussion 

discussion 

+S23C4S5 > +d4 523c4 

-c35s) 

discussion 

FF = a5S455 +d4Slt +a253S4 

1 will degenerate when 63 becomes ±90° and 

become ±90°. However, if 6 3 and 6 5 become 

+a2C2C4 

either 

±90° the 



Figure 9. 5-R Position Structure (type 1) 
at Geometrical Degeneracy 
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TABLE IV 

Kinematic Parameters for 5-R Position Str.ucture 
<type 2> 

origin a ()( d e 

1 0 90° 0 variable 

2 a2 0 0 variable 

3 0 90° 0 variable 

4 0 90° d4 variable 

5 as 0 0 variable 
--------------------------------------
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position structure is at the edge of its workspace where a 

degeneracy is expected. Therefore, if the gradient vector 

is used to keep e4 toward the middle of its range a row 1 

degeneracy will not occur within the position structures 

workspace. 

Since the row 2, column 5 entry is a constant a row 2 

degeneracy will not occur as long as link 5 is of non-zero 

length. 

For a row 3 degeneracy to occur e 2 , e 3 and e5 must 

become ±90° at the same time e, becomes 0 or 180°. 
y 

Hence, a 

row 3 degeneracy will occur when all three links become 

co-axial. If all three links become coaxial the position 

structure is at the end of its workspace where a degeneracy 

is expected. The degeneracies within the workspace require 

two or more links to occupy the same space which will not 

occur for two reasons. First, it is physically impossible 

for two links to occupy the same space. Second, joints 2, 3 

and 5 need not have entire mobility to have excellent 

workspace characteristics [16]. 

Therefore, it may be more prudent to use the type 2 5-R 

position structure than the type 1 because the type 2 will 

have a finite number of geometric degeneracies that are 

easily avoidable without sacrificing workspace. 

Orientational Degeneracies 

In the previous section several proposed position 

structures were analyzed for geometric degeneracies. In 
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this section 3-R orientation structures will be added to 

each of the position structures and the entire manipulators 

will be analyzed for orientational geometric degeneracies. 

Since the orientation structure will not add to the 

workspace, if a manipulator can be shown to have no 

orientational geometric degeneracies it can be deduced that 

the manipulator has no unavoidable geometric degeneracies. 

Figure 11 shows the four different types of 3-R 

orientation structures that allow full dexterity [15J. 

Since each joint in these orientation structures is 

positioned at a 90° alpha angle from each other they are 

kinematically similar. Therefore, if the first joint in the 

orientation structure is position at a 90° alpha angle with 

respect to the last joint of the position structure it will 

be sufficient to study one orientation structure with each 

position structure. 

6-R Manipulator 

Figure 12 shows a 6-R manipulator consisting of the 3-R 

po~ition structure studied above and a 3-R orientation 

structure. The kinematic parameters for the 6-R manipulator 

are shown in table V. 

To study orientational degeneracies the Jacobian will 

be derived to relate incremental joint motions to 

incremental rotations of the end of the last link as shown 

in chapter II. Using the kinematic parameters in table V 

the orientational Jacobian for the 6-R manipulator is -
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Figure 11. 3-R Orientation Structures 
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Figure 12. 6-R Manipulator 
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TABLE V 

Kinematic Parameters for 6-R Manipulator 

--------------------------------------
origin a ()( d e 
--------------------------------------

1 0 90° 0 variable 

2 a':J 
'-

0 0 variable 

3 a3 90° 0 variable 

4 0 90° 0 variable 

5 0 90° 0 variable 

6 0 0 0 variable 



where AA = 

88 = 

cc = 

S2[C3< C4C5C6+8486> +838~6] 
+C2[83( c4c~6+8486> -C3S5C6J 

S2[C3< -C4C586+84C6> -538586] 
+C2[S3< -c4c5s6 +S4c6> +C3S5S6J 

S2[C3C4S5-83C6J +C 2[ s 3c 4s 5+c 3c 6 J 

[56] [0] 
[C 6 J [OJ 
[ OJ [1] 
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Observing row 1 if e 4 , e5 and e 6 become 0 or 180° and 

the same time the sine of e 2 plus e 3 becomes zero a row 1 

geometrical degeneracy will result. 

In row 2 if e 4 and e 5 become 0 or 180°, and e6 is ±90° 

at the same time the sine of e2 plus e 3 becomes zero a row 

2 geometrical degeneracy will result. 

Row 3 will never degenerate due to the constant at 

column 6. 

From rows 1 and 2 it is obvious that the 6-R 

manipulator has an infinity of orientationally degenerate 

configurations making it very difficult to guarantee a 

non-degenerate solution for the inverse kinematics. 

7-R Manipulator 

Figure 13 shows a 7-R manipulator that is capable of 

positioning and orienting the last link of the manipulator 

anywhere in its workspace. The 7-R manipulator consists of 

the ~-R position structure studied in the previous section 

and a 3-R orientation structure. As demonstrated in the 

previous section the position structure contains a finite 
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number of geometric degeneracies that may be avoided using 

the entire solution to the consistent set of linear equation 

for inverse kinematics. Therefore, if the proposed 7-R 

manipulator contains no geometric orientational degeneracies 

the 7-R manipulator will have no unavoidable degeneracies 

because it has already been demonstrated that the geometric 

degeneracies associated with the positioning can easily be 

avoided. 

Table VI contains the link parameters for the 7-R 

manipulator. Note this time additional transformations to 

describe the position of all the joints are not included 

since the derivation of the Jacobian will become 1ess 

tractable. 

Using the method described in Chapter 2 to derive the 

orientational Jacobian the Jacobian can be shown to be -

AA 
88 
r:c 

DD 
EE 
FF 

0 
0 
1 

where AA = s 2cc 3cc 4 < c 5c 6c 7+s 5s 7 >+S,+s 6c 7 J +S 3 C5 5c 6c 7-c55 7 J} 
-C2C54( C5C6C7+5557>-C456C7} 

88 = 5 2cc 3 cc 4 <-c 5c 6c 7+5 55 7 >+5 45 65 7 J -5 3 C5 5C65 7+c 5c 7 J} 
+C2{54 ( -CsC6C7+55C7> +Clt5657} 

CC = s 2 cc 3 <c 4c 5s 6-s 4c 6 >+S 3s 55 6 } -c 3 c5 4C55 6+C 4C6 } 

DD = 5 3 cc 4 < CsC 6C7+5 55 7 >+5 4s 6c 7 J -C 3 C5 5C6c 7-c5s 7 J 

EE = 5 3 cc 4 < -cse 6s 7+5 45 7 > -5 45 6S 7 J +C 3 c5 5c 6s 7+C 5C7 J 

FF = 5 3 <c 4c 5s 6-s 4c 6 > -c 3s 55 6 
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TABLE VI 

Kinematic Parameters for 7-R Manipulator 

--------------------------------------
origin a ex d e 
--------------------------------------

1 0 90° 0 variable 

2 0 90° 0 variable 

3 0 90° d3 variable 

4 0 90° 0 variable 

5 0 90° ds variable 

6 0 90° 0 variable 

7 0 0 0 variable 
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Observing row 1 of the Jacobian, 92 through 97 must all 

equal 0 or 180° for row 1 to geometrically degenerate •. But, 

if ·9~ is equal to 0 or 180° the manipulator is at the outer 

or inner edge of the workspace where a degeneracy of the 

position structure is expected. 

Observing row 2 of the Jacobian, 9 2 through 9 6 must all 

equal 0 or 180° and 97 must equdl ±90° for row 2 to 

geometrically degenerate. Here again, e~ must equal 0 or 

180° where the position struct~re is at the outer or inner 

edge of its workspace and a degeneracy of the position 

structure is expected. 

Row 3 of· the Jacobian of the Jacobian will never 

degenerate because of the constant in column 7. 

Therefore, the 7-R manipulator will geometrically 

degenerate at the edge of its workspace and at a finite 

number of joint values within its workspace. The 

degeneracies at the edge of the workspace are to be expected 

and cannot be eliminated because a manipulator with finite 

link lengths will always have a finite reach. The geometric 

degeneracies that lie within the workspace of the 

manipulator occur at a finite number of joint values and can 

be easily avoided using the entire solution of the 

consistent set of linear equations as demonstrated above. 

8-R Manipulator 

Figure 14 shows the 5-R position structure type 1 with 

a 3-R orientation structure. Figure 15 shows the 5-R 
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position structure type 2 with a 3-R orientation structure. 

The orientational Jacobian will not be derived here since a 

logical argtJment will be sufficient to prove the 

orientational non-degeneracy of the proposed 8-R 

manipulators. 

It was proved above that the 7-R manipulator was in 

danger of an orientational degeneracy only when all the 

links aligned in a specific fashion. However, it was also 

noted that when the alignment occurred the manipulator had 

reached the edge of the workspace where a degeneracy is 

expected. 

Now since the 8-R manipulators are constructed by 

adding a joint to the 7-R manipulator no new orientational 

degeneracies can occur. Therefore, the 8-R manipulator is 

in danger of an orientational degeneracy only when all the 

links align in a specific fashion. As stated in the 

sections on the 5-R position structures the alignment of all 

the links cannot and need not occur anywhere but at the edge 

of the workspace where a degeneracy is to be expected. 

Hence, the 8-R manipulators will have no orientational 

degeneracies within their workspace. 



CHAPTER IV 

WORKSPACE PERFORMANCE 

In this chapter the 6-R, 7-R and 8-R manipulators will 

be analyzed far their performance in a workspace 

environment. By analyzing each manipulator in its working 

environment it can be determined under which circumstances a 

particular manipulator should be used. In general the 

simplest acceptable solution would be the preferred 

solution; therefore, there must exist a practical reason why 

a 7-R manipulator is preferred aver a 6-R manipulator if a 

7-R manipulator is to be used. Likewise, there must exist a 

practical reason why an 8-R manipulator is preferred over a 

7-R manipulator if an 8-R manipulator is to be used. 

Workspace Simulation 

The most simple and inexpensive way to evaluate the 

workspace performance of a manipulator is a computer 

simulation. By animating a manipulator as it performs a 

variety of tasks the user can get valuable qualitative 

information on a manipulators performance near and at 

degenerate configurations. 

For this study a computer package was written that 

performs the inverse kinematics and graphical animation far 
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any N-R manipulator. First the user creates a data base 

containing the geometry of the manipulator. Then the 

manipulator can be sent through a series of straight line 

moves. The user can evaluate the performance of the 

manipulator by watching the graphical animation and by 

noting the norm of the joint motions which is calculated at 

the end of each move. Since the program numerically derives 

and inverts the Jacobian matrix a variety of manipulators 

can be quickly tested by merely revising the data base. 

6-R Manipulator vs 7-R Manipulator 

In this section the 6-R manipulator is compared to the 

7-R manipulator in a workspace environment. Figures 16 and 

17 show the 6-R and 7-R manipulators respectively. Note the 

two cartesian reference frames depicted, the large axes 

depict the global reference frame which remains stationary. 

The small axes, attached to the end of the last link is the 

tool reference frame which moves with the end of the last 

link. The computer package will allow straight line motion 

with respect to either the global or tool reference frames. 

Figures 18 and 19 show a trace animation of the 6-R and 

7-R manipulators executing a move in the tool Z direction 

only, while not allowing a reorientation of the reference 

frame attached to the end of the last link. 

Figures 20 and 21 show a trace animation of the h-R and 

7-R manipulators executing a move in the global Z direction 

along the zl axis. Note from chapter III that when the end 
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Figure 16. Computer Simulation of 6-R Manipulator 

Figure 17. Computer Simulation of 7-R Manipulator 



Figure 18. Trace Animation of 6-R Manipulator moving 
in Tool Z Direction 

Figure 19. Trace Animation of 7-R Manipulator moving 
in Tool z Direction 
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Figure 20. Trace Animation of 6-R Manipulator moving 
along z1 Axis 

Figure 21. Trace Animation of 7-R Manipulator moving 
along z1 Axis 
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of the last link aligns with the z1 axis both the 6-R and 

7-R manipulators are mathematically degenerate; however, 

since the inversion of the Jacobian matrix is done using the 

pseudo-inverse method the performance of the manipulators is 

not degraded. 

Figures 22 and 23 show a trace animation of the 6-R and 

7-R manipulators attempting to execute a straight line 

motion in the global Z and Y direction simultaneously with 

the end of the last link located initially along the z1 

axis. Note the 6-R manipulator is not able to execute a 

move in the Y direction when the end of the last link is 

located along the zl axis do to the geometric degeneracy 

described in chapter III. The 7-R manipulator has no 

problem executing the desired move. 

Figures 24 and 25 show a trace animation of the 6-R and 

7-R manipulators attempting a reorientation of the end of 

the last link. The 6-R manipulator is not able to reorient 

the end of the last link in the depicted configuration 

because it is in a geometrically degenerate configuration. 

The 7-R manipulator is able to reorient the end of the last 

link since it has no orientational geometric degeneracies. 

From the above analysis it can be concluded that there 

are two situations where a 7-R manipulator would be desired 

over a 6-R manipulator. The first situation, if the 

manipulator is required to reach the space along the z 1 axis 

where the 6-R manipulator is geometrically degenerate and 

may not be able to execute a desired move. The second 



Figure 22. Trace Animation of 6-R Manipulator Attempting 
a Global ZY Move 

Figure 23. Trace Animation of 7-R Manipulator Making 
a Global zy Move 
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Figure 24. Trace Animation of 6-R Manipulator Attempting 
to Re-orient the End of the Last Link 
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Figure 25. Trace Animation of 7-R Manipulator Re-orienting 
the End of the Last Link 



situation, if the 6-R manipulator needs to obtain an 

orientational geometric degenerate configuration. The 

second situation, although not as apparent as the first 

situation, may not be a problem since the 6-R manipulator 

can reach any given position and orientation within its 

workspace by at least two configurations. However, each 
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move the 6-R manipulator makes needs to be checked in 

advance to insure it does not pass through the orientational 

geometric degenerate configuration. 

7-R Manipulator vs 8-R Manipulator 

In this section the 7-R and 8-R manipulators will be 

compared in a workspace environment to see what advantage 

the 8-R manipulator has over the 7-R manipulator. Fiqures 

26 and 27 show the 7-R and 8-R manipulators respectively. 

Figures 28 and 29 show the 7-R and 8-R manipulators moving 

in a straight line motion in the global Z and Y directions 

simultaneously with the end of the last link located 

initially above the zl axis. Notice neither manipulator has 

trouble executing the desired move. 

Figures 30 and 31 show a trace animation of the 7-R and 

8-R manipulators executing a large straight line move in the 

global Z direction with the end of the last link located 

along the zl axis. Observing figure 30 closely, notice the 

7-R manipulator is approaching a configuration that would 

require two links to occupy the same space, while in figure 

31 the links of the 8-R manipulator are in no danger of 



60 

Figure 26. Computer Animation of 7-R Manipulator 

Figure 27. Computer Animation of 8-R Manipulator 



Figure 28. Trace Animation of 7-R Manipulator Making 
a Global ZY Move 

Figure 29. Trace Animation of 8-R Manipulator Making 
a Global ZY Move 

61 



Figure 30. Trace Animation of 7-R Manipulator Making 
Large Move in Global Z Direction 

Figure 31. Trace Animation of 8-R Manipulator Making 
Large Move in Global Z Direction 
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requiring two link to occupy the same space. Realistically, 

a manipulator would have joint travel limit switches to 

preven~ two links from trying to occupy the same space thus, 

avoiding any damage to the manipulator. The resulting 

non-ideal joints would cause the 7-R manipulator to have a 

smaller workspace. 

Therefore, from the above analysis the 8-R manipulator 

may be preferred over the 7-R manipulator if the 

manipulators have non-ideal joints. Non-ideal joints in the 

7-R manipulator will cause a significant reduction in the 

workspace while non-ideal joints in the 8-R manipulator wi11 

not affect its workspace [16]. 



CHAPTER V 

SUMMARY 

Preventing degeneracies from degrading the performance 

of manipulators has become an area of active research in the 

past few years. All previous work requires the use of 

kinematically redundant manipulators and appropriate 

mathematical theory to prevent degeneracies within the 

workspace from degrading the performance of a manipulator. 

Using the pseudoinverse method for inverse kinematics 

has two major limitations. First, the solution of the 

pseudo-inverse does not yield an optimum solution unless the 

optimum is considered to be the minimum norm of the joint 

velocities. However, the pseudoinverse does give a 

non-iterative solution; hence, is better suited for on line 

programming. Second, the solution to the inverse kinematics 

using the pseudoinverse method requires a piecewise 

solution. But, if a continuous path solution is desired 

even a closed form solution will require the path to be 

defined in a piecewise fashion. 

Past research has attempted to avoid all degenerate 

configurations regardless of the physical significance of 

the type of degeneracy. In this study a distinction between 

purely mathematical and geometrical degeneracies was 
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presented. Mathematical degeneracies, represented by a zero 

column vector in the Jacobian matrix, will not degrade the 

performance of the manipulator if an appropriate inversion 

method is used. Geometrical degeneracies, represented by a 

zero row vector in the Jacobian matrix, must be eliminated 

by proper design or avoided using the entire soltltion to the 

set of consistent linear equations defining the solution 

space for the inverse kinematics. 

In addition, 6-R and proposed 7-R and 8-R manipulators 

were investigated for geometric degeneracies. The 6-R 

manipulator contained several infinities of geometric 

degeneracies, some of which could not be avoided. The 7-R 

manipulator contained a finite number of geometric 

degeneracies that could be avoided by using the entire 

solution to the consistent set of linear equations defining 

the inverse kinematics. The 8-R manipulator contained an 

infinity of degenerate configurations that could also be 

avoided using the entire solution of the inverse kinematics. 

An algorithm was developed and computer program 

written to perform the inverse kinematics and animate any 

N-R manipulator. The computer program was then used to 

study the 6-R, 7-R and 8-R manipulators performance to 

determine each manipulators best suited application. A 6-R 

manipulator is sufficient if the space along the z1 axis 

need not be accessed and if each move the the manipulator 

makes can be studied prior to execution. The 7-R 

manipulator has no unavoidable degenerate configurations 
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within its workspace; therefore, moves need not be studied 

before hand; however, the 7-R manipulator will have void 

areas in its workspace if non-ideal joint constraints are 

imposed. The 8-R manipulator has no unavoidable degenerate 

configurations within its workspace and non-ideal joint 

constraints will not necessarily cause void areas in its 

workspace. 

Although this study solves many of the problems 

concerning manipulator degeneracies and inverse kinematics 

of redundant manipulators there still remains a great deal 

of potential research. In the near term, the theory 

presented in this study can be extended to include prismatic 

joints. Also, the use of the entire solution space to the 

inverse kinematics for a redundant manipulator could be 

further investigated to include things such as near optimal 

solutions or obstacle avoidance. 

In the long term, the computational speed of the 

general inverse kinematic algorithm could be improved 

through the use of parallel processing. Improved 

computational speed wot1ld allow the development of a 

standardized controller and programming language for a wide 

range of manipulators. 

A very interesting study would be to extend the 

algorithm to inverse kinematics of a damaged manipulator in 

an inaccessible environment. If a manipulator is working in 

an inaccessible environment, such as a radioactive area, and 

incurred damage it would be desirable for the manip11lator to 



67 

continue operation, if possible, without human intervention. 

For the damaged manipulator to function it would need the 

ability to determine the extent of its damage, modify the 

inverse kinematic and control algorithms, and have the 

ability to determine if the desired task can still be 

executed properly. 
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APPENDIX A 

NUMERIC EXAMPLE OF PSEUDOINVERSE 

Given the matrix A 

A= 

Find the pseudo inverse A+ 
chapter II. 

k = 1 

-1 
1 

A+ = !1 1 01 1 1 
0 

+ 
Al = 1 <112> (1/2} < o > I 

k = 2 

0 

1 
1 
0 

0 
1 
1 

using 

!1 1 

1 
0 
1 

the 

01 

1 
1 
1 

method 

d2 = 1 < 1/2> (1/2) < o > I 1 = 1(1/2}1 
1 

1 (-1/2) 

1 1(1/2)1 = 1/2) 
0 1 ) 

-1 

sho~·Jn in 

b2 = 1(-1/2) (1/2) (1)1 
(-1/2} 

1/2) 
1 } 

1(-1/2} (1/2} (1)1 

1 ( 2> (1) (-1) 

3 (-1} (1) ( 2) 
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k = 3 

d3 = 1(1/3}1 
(1/3) 

I < 2/3) 
c::3 = I (-2/3) 

( 2/3) 

b3 = 1{1/2) (-1/2) (1/2}1 

1 ( 1 } ( 1 ) ( -1> 
A+ 

3 = ( -1 ) ( 1 ) 1 ) 
2 ( 1 ) ( -1) ( 1> 

k = 4 

(1/2) 
d4 = ( 1/2) 

( 1/2) 

0 

c::4 = 0 
0 

b4 = j1 + <dT><d >1-1 4 4 <dTHA+> 4 3 

b4 = I < 1/7 > (1/7) < 1/7 > 1 
I 

1 ( 3) ( 3) (-4) 
A+ 

4 = (-4) ( 3) 4> 
7 ( 3) (-4) 3} 

( 1 ) ( 1> 1 ) 



APPENDIX B 

LISTING OF MOVEJTS MODULE 

I* subprogram movejts calculates the 
I* incremental move for each joint of 
I* a general robot consisting of 
I* revolute joints only 
I* 
I* the function call is: 
I* movejts<a,al,d,theta,jtlim,dx,alpha 
I* ,coor,num,jts,free,typ,dth) 
I* where: 

a 
al 
d 
theta 
j t 1 im 

dx 

is array consisting of the linklenghts 
twist angles 
link offsets 
joint angles 

is array consisting of the maximum one *I 
sided excursion for each joint in radians *I 

if there is no limit the entry *I 
should be zero *I 

is array[7J consisting of the desired *I 
incremental move, location *I 

1 X d i r ec t i on *I 
2 y 

3 z 
4 rotation 
5 
6 

about X 
y 

z 

axis 

*I 
*I 
*I 
*I 
*I 

note: if not all components of motion are used *I 

alpha 
co or 

num 

jts 
free 

null entries should NOT be used in dx *I 
is real and is the gain constant 
int array and is the corrdinate 
system for the move 

0 - not applicable 
1 - tool coordinates 
2 - global 

coor[lJ - position 
coor[2J - orientation 

int, it is the total number of 
transformations 
int, is the total number of joints 
char array, contains 'y' or 'n' and 
corresponds to the degrees of freedoms 
for the robot ie. 
if free[lJ = 'y' then the robot can 
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typ 

dth 

move in the X direction 
- char array, contains 'j' or 't' 

to tell is the corresponding 
transformation with a,al,d,theta is a 
joint variable or a coordinate 
transformation 

- is array containing the resulting 
incremental joint moves in radians 

note: during compilation this ~odule requires 
linking to the math library and to modules 
ginv and jacob 

note: far a robot with more than 9 joints the 
defined variable size must be increased in 
all modules 

#include <math.h> 
#include <stdio.h> 
#define size 10 

tool_pas(dx,tr_dx,free) 
I* routine to transform dx into tool coordinates *I 

I* for position structure *I 
float dx(J,tr dxEJ; 
char free[J; 
( 

} 

int j,ct = 1; 
for(j = 1; j <= 3; ++j) 

{ 

) 

if(free(jJ == 'y') 
( 

} 

tr dx[ctJ = dx[ctJ; 
++ct; 

tool orient(dx,tr dx,free> 
I* routine to transform dx into tool coordinates *I 
I* for orientation structure 

float dx[J,tr dx[J; 
char free[ J; 
{ 

} 

int j,ct = 4; 
for(j = 1; j <= 3; ++j) 

( 

if(free[jJ == 'n'} 
--ct; 

} 

far(j = ct; 
tr_dx[jJ 

j <= <ct+3>; ++j) 
= dx[jJ; 

*I 
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global_pos(dx,tr_dx,t) 
f* routine to transform dx into global coordinates •I 
f* for posit ion structure */ 

float dx[J,tr_dx[J,t[J[5J; 
{ 

} 

int j,k; 
for(j = 1; j <= 3; ++j) 

{ 

tr_dx[j] = 0.0; 
for<k = 1; k <= 3; ++k) 

tr_dx[j] = tEkJ[j]*dx[kJ + tr_dxCjJ; 
} 

global_orient<dx,tr_dx,t,free) 
f* routine to transform dx into global coordinates *f 
f* for position structure *f 

float dx[J,tr_dx[J,t(J[5J; 
char free[ J; 
{ 

} 

int j,k,ct,init,pos = 4; 
for(j = 1; j <= 3; ++j) 

{ 

} 

if (free [ j J == 'n' > 
--pos; 

init = pos; 
for(j = 1; j <= 3; ++j) 

{ 

} 

ct = init; 
tr_dx[posJ = 0.0; 
for<k = 1; k <= 3; ++k} 

{ 

tr_dx[posJ = t(kJ[j]*dx[ctJ + tr_dx[posJ; 
++ct; 

} 

++pos; 

non_homo_solution(jinv,dx,dth,dof,jts} 
f* procedure to calcualte the non-homogenous *f 
f* solution for the joint rates •I 

float jinv[J[sizeJ,dx[J,dth[J; 
int dof,jts; 

{ 

int k,l; 
float carry; 

for <k = 1; k <= jts; ++k) 
c 

dthCkJ = 0.0; 
for (l = 1; 1 <= dof; ++1) 

dth[kJ = jinv[kJ(lJ*dx[l] + dth[kJ; 
) 
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} 

jinvXj(solution,jinv,j,dof,jts) 
I* procedure to multiply jinv times j *I 

float solution[J[sizeJ,jinv[J(sizeJ,j(J[sizeJ; 
int dof,jts; 

{ 

} 

int k,l,m; 
for (k = 1; k <= jts; ++k) 

{ 

} 

for <1 = 1; 1 <= jts; ++1) 
{ 

} 

solution[kJ[lJ = 0.0; 
for <m = 1; m <= dof; ++m) 

solution[kJ[lJ = jinv[kJ[m]*j[mJ[lJ 
+ solution[kJ[lJ; 

subtracti<mat,jts> 
I* procedure to perform mat=mat-I *I 

float mat[J[sizeJ; 
int jts; 

{ 

} 

int k; 
for (k = 1; k <= jts; ++k) 

mat[kJ[kJ = mat[kJ[kJ - l .0; 

getH<H,th,thlim,jts) 
I* procedure to create H matrix *I 

float HCJ,th(J,thlim[J; 
int jts; 

{ 

} 

int k; 
for (k = 1; k <= jts; ++k) 

{ 
HCkJ = 0.0; 
if thlim(kJ > 0.0 ) 

H[kJ = 2*th(kJ/(thlim(kJ*thlim[kJ>; 
} 

multcol(mat,sol,h,jts> 
I* procedure to multiply sol = mat*h *I 
I* where sol => #jts by 1 *I 
I* mat => #jts by #jts *I 
I* h => #jts by 1 *I 

float mat(J[sizeJ,sol[J,h[J; 
int jts; 

{ 
int k,I; 
for <k = 1; k <= jts; ++k) 
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{ 

sol[kJ = 0.0; 
for <1 = 1; 1 <= jts; ++1) 

sol[kJ = mat[kJ[l]*h[lJ + sol[kJ; 
} 

} 

mult<mat,a,jts) 
I* procedure to multiply a column matrix by a real number *I 
float mat[J,a; 
int jts; 

{ 

} 

int k; 
for <k = 1; k <= jts; ++k> 

mat[kJ = a*mat[kJ; 

homo_solution(j,jinv,sol,th,thlim,alpha,dof,jts) 
I* procedure to determine the matrix for the homogenous *I 
I* solution part *I 
float j[J[sizeJ,jinv[J[sizeJ,sol[J,th[J,thlim[J,alpha; 
int dof,jts; 

{ 

} 

float temp[sizeJ[sizeJ,H[sizeJ; 
jinvXj(temp,jinv,j,dof,jts); 
subtracti<temp,jts>; 
getH<H,th,thlim,jts>; 
multcol<temp,sol,H,jts>; 
mult<sol,alpha,jts>; 

jointratesCj,jinv,dx,dth,th,thlim,alpha,dof,jts) 
I* procedure to determine joint rates from jacobian, *I 
f* inverse jacobian, and desired incremental motion *f 
I* *I 
I* equation : dtheta = jinv*dx + alpha*Cjinv*j - I>*H *I 

float j[J[sizeJ,jinv[J[sizeJ,dx[J,dth[J,th[J,thlimCJ,alpha; 
int dof,jts; 

{ 

} 

int k; 
float tempvectCsizeJ; 
non_homo_solution(jinv,dx,dth,dof,jts); 
homo_solution(j,jinv,tempvect,th,thlim,alpha,dof,jts); 
for (k = 1; k <= jts; ++k) 

dth[kJ = dth[kJ + tempvect(kJ; 

prtjacobCj,dof,jts> 
I* routine to print jacobian matrix *I 

float j[J[sizeJ; 
int dof,jts; 
{ 

int k,l; 
FILE *data,*fopenC>; 



} 

data= fopen("j","a"); 
for(k = 1; k <= dof; ++k) 

{ 

for(l = 1; l <= jts; ++l) 
fprintf<data," Y. .3e",j[kJElJ); 

fprintf<data,"\n"); 
} 

fprintf(data,"\n">; 
fclose<data>; 

movejts<a,al,d,theta,thlim,dx,alpha,coor,num 
,jts,free,typ,dth) 

I* main function *I 
float a[J,al(J,d[J,thlim[J,theta[J,dx[J,alpha,dth[J; 
int 
char 

{ 

coor[J,num,jts; 
freeCJ,typEJ; 

float j[sizeJ[sizeJ,jinvEsizeJ[sizeJ,tE5JE5J; 
float tr_dxC7J; 
int dof,l,k; 

I* 
I* determine degrees of freedom *I 

dof = o; 
for(l = 1; l <= 6; ++1) 

{ 

} 

if(free(lJ == 'y') 
++dof; 

I* find jacobian and inverse *I 
jacobian(j,t,a,al,d,theta,free,typ,num,jts>; 
ginverse(j,jinv,dof,jts>; 

I* *I 
I* find and convert move to proper coordinates *I 

if(coor(1J == 1> 
tool_pos(dx,tr_dx,free>; 

if(coor(1J == 2> 
global_pos(dx,tr_dx,t>; 

if(coor[2J == 1) 
tool_orient<dx,tr_dx,free); 

if(coor[2J == 2) 
global_orient<dx,tr_dx,t,free); 

I* *I 
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I* move joint *I 
jointrates(j,jinv,tr_dx,dth,theta,thlim,alpha,dof,jts); 

} 



l* 

APPENDIX C 

LISTING OF GINV MODULE 

This funtion will take the 
generalized inverse of a matrix *I 
specifically the Moore-Penrose ~I 

pseudo inverse *I 
The required function call is : *I 

ginverse(mat,matinv,rows,cols) *I 
where - *I 

mat - is the matrix to be inverted *I 
matinv - is the inverse of mat *I 
rows - is the number of rows in mat *I 
cols - is the number of columns in mat *I 

note: the size of mat may not exceed *I 
10 X 10 without changing the *I 
declaration of size *I 

note: during operation the program must *I 
check for values of zero. tolerence *I 
defines zero. If the martix you are *I 
inverting has very large or small *I 
entries tolerence may need to be *I 

I* 
#define 

adjusted. *I 
size 10 

#define tolerence 0.01 

ainit<mat,matinv,m) 
I* procedure to obtain the initial inverse *I 

int m; 
float mat[J(sizeJ,matinv[J(sizeJ; 

{ 

float test,dum; 
i nt J, 
test = 0.0; 

for ( j = 1; j <= m; ++ j) 

test = abs<mat[j][1J> + test; 
if <test <= tolerence> 

{ 

} 

for < j = 1; j <= m; ++ j) 
matinv[l][j] = 0.0; 

if (test > tolerence) 
{ 

dum = 0.0; 
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} 

} 

for (j = 1; j <= m; ++j) 
dum= mat[jJ[lJ*mat[jJ[lJ+dum; 

dum= l.Oidum; 
for (j = 1; j <= m; ++.j) 

matinv[lJ[jJ = dum*mat[jJ[lJ; 

getak<mat,ak,m,k} 
I* procedure to get the ak vector *I 

float mat[J[sizeJ,ak[J; 
int m,k; 

{ 

} 

i nt j; 
for (j = 1; j <= m; ++j) 

ak[jJ = mat[jJ[kJ; 

getdk<matinv,ak,dk,k,m} 
I* procedure to calculate the dk vector *I 

float matinv[J(sizeJ,ak[J,dk[J; 
int k,m; 

{ 

} 

int j,l,q; 
j = k - 1; 
for <1 = 1; 1 <= j; ++1> 

{ 

dk[l] = 0.0; 
for <q = 1; q <= m; ++q) 

dk[lJ = matinv[lJ[q]*ak[qJ + dk[lJ; 
} 

getck(mat,ak,ck,dk,k,m) 
I* procedure to calculate ck vector *I 

float mat[J[sizeJ,ak[J,ck[J,dk[J; 
int k,m; 

{ 

} 

int j,l; 
for ( j = 1; j <= m; ++ j) 

( 

ck[jJ = 0.0; 
for <1 = 1; 1 <= <k-1>; ++1) 

ck[jJ = mat[jJ[l]*dk[lJ + ck[jJ; 
} 

for < j = 1 ; j <= m; ++ j) 
ck[jJ = ak[jJ - ck[jJ; 

getbk<matinv,bk,ck,dk,k,m) 
I* procedure to calculate the bk vector *I 

float matinv[J[sizeJ,bk[J,ck(J,dk[J; 
int k,m; 

( 
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} 

int j,l; 
float dum; 

dum = 0.0; 
fol- ( j = 1 ; j <= m; ++ j ) 

dum = ck[j]*ck[j] + dum; 
I* if ck is NOT zero vector *I 

if <dum > tolerence) 
( 

} 

dum= 1.01dum; 
for ( j = 1 ; j <= m; ++ j) 

bk[jJ = ck[j]*dum; 

I* if ck IS zero vector *I 
if (dum <= tolerence> 

{ 

} 

dum = 0.0; 
for (j = 1; j <= (k-1>; ++j) 

dum= dk[j]*dk[j] +dum; 
dum= 1.01(1.0+dum>; 
for ( j = 1 ; j <= m; ++ j) 

{ 

bk[j] = 0.0; 
for ( l = 1 ; l < = ( k -·1 ) ; + + l > 

bk[jJ = dk[l]*matinv[lJ[jJ + bk[jJ; 
} 

for (j = 1; j <= m; ++j) 
bk[jJ = bk[jJ *dum; 

assembleinv<matinv,bk,dk,k,m> 
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I* procedure to assemble the generalized inverse matrix *I 
float matinv[J[sizeJ,bk[J,dk[J; 
int k,m; 

{ 

} 

int j,l; 
float temp[sizeJ(sizeJ; 

for (j c 1; j <= <k-1>; ++j) 
{ 

} 

for ( l = 1 ; l < = m; ++ 1 ) 
temp[jJ[lJ = matinv[jJ[lJ 

for ( j = 1 ; j <= m; ++ j) 

temp[k][jJ = bk[jJ; 
for (j = 1; j <= k; ++j} 

{ 

} 

for ( l = 1; l <= m; ++l) 
matinv[jJ[lJ = temp[jJ[lJ; 

ginverse<mat,matinv,rows,cols> 
I* procedure to take the generalized inverse 
I* the original matrix having # rows and 

mat is 
# cols 



float mat(J[sizeJ,matinv(J[sizeJ; 
int rows,cols; 

{ 

} 

float ak(sizeJ,bk[sizeJ,ck[sizeJ,dk[sizeJ; 
int k,l; 

ainit<mat,matinv,rows>; 
for (k = 2; k <= cols; ++k) 

{ 

} 

getak<mat,ak,rows,k>; 
getdk<matinv,ak,dk,k,rows>; 
getck(mat,ak,ck,dk,k,rows>; 
getbk<matinv,bk,ck,dk,k,rows); 
assembleinv<matinv,bk,dk,k,rows>; 
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APPENDIX D 

LISTING OF JACOB MODULE 

I* this module derives the jacobian 
I* matrix for a general n-R robot 
I* the function call is -
I* jacobian(j,t,a,al,d,th,free,typ,num,jts) 
I* where: 
I* j 
I* t 
I* 

Jacobian matrix 
the transformation matrix for 
the robot 

I* free char array for the types 
I* of degrees of freedom to 
I* be derived for the 
I* jacobian. <yin) 
I* [1] - move X direction 
I* t2J - Y 
I* [3] - Z 

a 

al 

d 

th 

typ 

num 

[4] - rotate about X axis 
[5] - y 
[6] - z 

float array containing link 
lengths 
float array containing joint 
alpha angles 
float array containing link 
offsets 
float array containing joint 
angles 
char array defining a data set 
a,al,d and th as either -

j - joint variable 
t - transformation 

int, the number of j and t 
data sets 

I* jts int, number of joints *I 
I* note: maximum number of joint variables *I 
I* is defined by size in the following *I 
I* #define statement *I 

#include <math.h> 
#include <stdio.h> 
#define size 10 

init_trans(t) 
I* routine to make initial transformation matrix *I 

83 



I* ie. identity matrix 
float t[J(5J; 
c 

} 

int j,k; 
for(j = 1; j <= 4; ++j) 

{ 

} 

for<k = 1; k <= 4; ++k) 
t[jJ[kJ = 0.0; 

for(j = 1; j <= 4; ++j) 
tEjHjJ = 1.0; 

mu l t i ( t , t 1 , t 2 ) 
I* routine to multiply transformation matricies *I 
I* T = Tl * T2 *I 

float t[J[5J,t1[J[5J,t2[][5J; 
{ 

} 

int j,k,l; 
for(j = 1; j <= 4; ++j) 

{ 

} 

for<k = 1; k <= 4; ++k) 
{ 

tCjJCkJ = o.o; 
for<l = 1; 1 <= 4; ++1) 

t[j][k] = t1[j][l]*t2[1J[k] +t[jJ[kJ; 
} 

swap(t1,t2) 
I* routine to put transformation matrix T2 into *I 
I* transformation matrix Tl *I 

float tl[J[5J,t2[J[5J; 
{ 

int j,k; 

} 

for(j = 1; j <= 4; ++j) 
{ 

} 

for<k = 1; k <= 4; ++k) 
t1(jJ[k] = t2[jJ[kJ; 

make_trans(t,a,al,d,th> 
I* routine to make a transformation matrix *I 

float t(J[5J,a,al,d,th; 
{ 

t[l][l] = cos(th); 
t[2)[1] = sin ( th) ; 
t(3J[l] = 0.0; 
t[4][1] = 0.0; 

t[1][2J = -sin(th)*cos(al>; 
t[2J[2] = cos<th)*cos<al>; 
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t[3][2] = sin(al>; 
t[4][2] = o.o; 

t[1][3] = sin<th>*sin<al>; 
t[2J[3] = -cos<th>*sin(al>; 
t[3][3] = cos<al>; 
t[4][3] = 0.0; 

t[1][4] = a*COS ( th); 
t[2][£j] = a*sin<th>; 
t[3][4] = d; 
t[4][4] = 1 . 0; 

) 

make_col(j,t,free,col) 
I* routine to make a column for the jacobian *I 

float j[J[sizeJ,t(J[5J; 
int 
char 
( 

col; 
free[J; 

int k,row,column; 
row= 1; 
for(k = 1; k <= 3; ++k) 

( 

if(free[kJ == 'y'} 
( 
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j[rowJ[colJ = -t[1J(k]*t[2J[4J + t[2J[kJ*t(1J[4J; 
row= row+ 1; 

) 

) 

} 

for(k = 4; k <= 6; ++k) 
( 

} 

if(free(kJ == 'y') 
( 

} 

column = k ..., 3; 
j[rowJ[colJ = t(3J[columnJ; 
row= row+ 1; 

prtmat(t) 
float t[J[5J; 
{ 

int j,k; 
FILE *data,*fopen<>; 
data= fopen<"tran","a">; 
fprintf(data,"\n">; 
for ( j = 1 ; j <= 4; ++ j) 

( 

} 

for<k = 1; k <= 4; ++k) 
fprintf(data," % e",t[jJ[kJ>; 

fprintf<data,"\n">; 



} 

jacobianCj,t,a,al,d,th,free,typ,num,jts> 
float j[J[sizeJ,a[J,al[J,d[J,th[J,t[J[5J; 
int 
char 
{ 

num,jts; 
free[J,typ[J; 

} 

float temp[5J[5J,link[5J(5J; 
int k,l; 

1 = jts; 
init_trans<templ; 
for(k = num; k >= 1; --k} 

{ 

} 

make_trans<link,a[kJ,al[kJ,d[kJ,th[kJl; 
multi<t,link,temp>; 
if(typ[k] == 'j'} 

{ 

make_col(j,t,free,l>; 
--1; 

} 

swap(temp,t>; 
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