MENU-DRIVEN MANUFACTURING
SYSTEM SIMULATOR

BY
IMED H. iAMOUSSI
Bachelor of Science in
Industrial Engineering
and Management
Oklahoma State University
Stillwater, Oklahoma

1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 1987

SIS
__:\;iB’T ~
cop. >

MENU-DRIVEN MANUFACTURING
SYSTEM SIMULATOR

Thesis Approved:

éf /474~m£

Thesis Adviser?d

(ul B &7
e Tyt
%gmm/ X L) ritban

Dean of the Graduate College

ii

1275667

PREFACE

A new software has been created in this project: a Menu-
Driven Manufacturing System Simulator (MDMSS). The software
is designed so that even if the user does not‘know much about
simulation, he(she) is still able to simulate systems. The
users are anticipated to be related to manufacturing as well
as the systems to be simulated. The software has been
tested. Some of the examples are included in this thesis.
This first version of MDMSS is found to satisfy all the
objectives of this project.

As I conclude this research work, I look back to the
past Jjust to see many great people and organizations without
whom I would have never been able to accomplish this
achievement. Therefore, I believe that the least I can do is
to give these people the credit they deserve.

I would like to express my sincere appreciation and
gratitude to the following people and organizations that made
this study possible with their support, influence, and
assistance:

- Dr. Joe H. Mize, my major adviser, for his intelligent

guidance, concern, and invaluable help.

- Dr. Carl B. Estes, and Dr. John W. Nazemetz for

accepting to be my committee members.

iii

The School Of Industrial Engineering and Management at
Oklahoma State University fbr the knowledge that
helped me carry out this research.

AT&T foundation for sponsoring the CIMS research
center at Oklahoma State University. Without this
massive research going on at this center, probably the
subject of my work would have been different.

Mr. Pablo Nuno, a PHD candidate, for his advice and
continuous encouragement.

Selma for a great Jjob in editing this work.

The Tunisian Government for sponsoring me financially
all along my Studies in the United States.

The Scientific Mission of Tunisia as well as the
Tunisian Embassy in Washington, DC. for their concern
and valuable services.

The Tau Beta Pi Association for including me in their
exciting experience.

The Alpha Pi Mu Association for inviting me and
acceptiﬁg me as one of their members.

The University Computer Center staff for their help in
solving some of the problems I faced when working on
this project.

All my friends here for sharing with me both the good
and bad times. Without the moral suppor: of some of
them, it would have been a lot harder to survive some
of the difficulties I faced throughout my studies.

A Great father, Hassouna, a Super mother, Naziha, for

iv

their unending support and belief in my capabilities.
~ A caring Abdelhamid, who had a lot of influence on me
since my childhood.
- My two brothers, Adnen and Aref, and my sister, Aida,
for their encouragements and services.
- Finally, my beloved Hajeur for her positive influence,
encouragement, and understanding.
Last but not least, I would like to dedicate my modest work
to the memory of all the loving persons I left home and-i

never had the chance to see again.

Chapter

I.

IT.

ITI.

IV.

VI.

VII.

TABLE OF CONTENTS

INTRODUCTION. . . . i e e e e

Manufacturing, Computers, and Simulation. ..
Problem Statement...........
Production Quantities....................
Job Shop Production...................
Batch Production......................

Mass Production................
Types of Plant Layout....................
Fixed-Position........
Process Layout.........
Product Flow Layvout...................
Production Operations....................
Processing Operations.................
Assembly Operations...................

OBJECTIVES. . .. e

Situations where the program could

be used..... e e e e
Situation 1.. e
Situation 2. e

LITERATURE REVIEW

LANGUAGE TO BE USED

MODEL DESCRIPTION.

System description.........
The Storage Area............ ...,
The Fabrication Area............. ... v...
The Assembly Area.......,

Input to the model............ e

Output from the model......................

Model assumptions and restrictions.........

MEASURES OF PERFORMANCE.........................

vi

[

T e
OO OQO LDV WWDOLIEN

[and
ot

Chapter

VIII.

IX.

X,

SOFTWARE DESCRIPTION.

How simulation works............
Program description.........
Program 1: the INPUT Program.............
Subroutine CLSC.......................
Subroutine SCREEN.....................
Subroutine INPDES.....................
Subroutine INFO.......................
Subroutine INPARE.....................
Subroutine ARRIVE.
Subroutine STATSA.
Subroutine INPDEP.....................
Subroutine STATSD.
Subroutine INPCEL.....................
Subroutine STATSC..........
Subroutine INPMAC.....................
Subroutine STATSM.
Comments Concerning the INPUT Program.
Program 2: the SIMULATION Program........
Subroutine INTLC................ e
Subroutine INPRED.....................
Subroutine EVENT.
Subroutine ARVL.
Subroutine PLACE.
Subroutine OTPUT......................

Function TIMZ2.........
NETWORK. o e,

THE SOFTWARE QUICK USER MANUAL..................

Log on to the System.......................
The INPUT Program...........uiu.oi. ..
The SIMULATION Program.....................
How to Read the Output Report..............
Statistics for Variables based on
observations.
Service Activity Statistics..............
How to Prepare for a simulation Session
Using the Software.........................

SCOPE OF THE MODEL

..............................

vii

Page

68
69

75
76

77
77

Chapter

XI. VALIDATION AND VERIFICATION.....................
Yerification of the Model..................

Validation of the Model...............

Steady State Analysis......................

XII. PROGRAM TESTING.......
Schriber Production Shop Example Visited..

XIII. RECOMMENDATIONS FOR FUTURE IMPLEMENTATIONS......
XIV. SUMMARY AND CONCLUSION............... ...
BIBLIOGRAPHY. . .

APPEND I CES. . .

APPENDIX

APPENDIX

A

APPENDIX B - Flowchart and Listing of Main......
C - Listing of Subroutine CLSC.........
D

APPENDIX - FLOWCHART AND LISTING OF

SUBROUTINE SCREEM..................

APPENDIX E - FLOWCHART AND LISTING OF
) SUBROUTINE INPDES..................

APPENDIX F - FLOWCHART. AND LISTING OF
SUBROUTINE INFO....................

APPENDIX G - FLOWCHART AND LISTING OF
SUBROUTINE INPARE..................

APPENDIX H - FLOWCHART AND LISTING OF
SUBROUTINE ARRIVE..................

APPENDIX - I - FLOWCHART AND LISTING OF
SUBROUTINE STATSA..................

APPENDIX J - FLOWCHART AND LISTING OF
SUBROUTINE INPDEP..................

APPENDIX K - FLOWCHART AND LISTING OF

Cviii

Chapter

APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDiX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

X

SUBROUTINE STATSD.

FLOWCHART AND LISTING
SUBROUTINE INPCEL..................

FLOWCHART AND LISTING
SUBROUTINE STATSC. ...t

FLOWCHART AND LISTING
SUBROUTINE INPMAC..................

FLOWCHART AND LISTING
SUBROUTINE STATSM..................

JCL OF THE INPUT PROGRAM...........

FLOWCHART AND LISTING OF MAIN
IN THE SIMULATION PROGRAM..........

FLOWCHART AND LISTING OF
SUBROUTINE INTLC...................

FLOWCHART AND LISTING
SUBROUTINE INPRED..................

FLOWCHART AND LISTING
SUBROUTINE EVENT...................

FLOWCHART AND LISTING
SUBROUTINE ARVL.o ..

FLOWCHART AND LISTING
SUBROUTINE PLACE.

FLOWCHART AND LISTING
SUBROUTINE OTPUT.

FLOWCHART AND LISTING
FUNCTION TIM1...............

FLOWCHART AND LISTING
FUNCTION TIMZ.............

- FIGURE AND LISTING OF

THE NETWORK

Tix

Chapter

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX

Al-
B1-
Cl-
D1-
El-
Fi-
Gl-
H1l-

I1-

J1l-

K1-

L1-

M1-

JCL FOR THE SIMULATION PROGRAM
EXAMPLE 1............... ...
TRACE 1...........
EXAMPLE 2...........
TRACE 2........
EXAMPLE 3............
TRACE 3........

SCHRIBER PRODUCTION SHOP

EXAMPLE.
SOLUTION OF PRITSKER.......

SIMULATION TO DETERMINE

ARRIVAL TIMES..............
ARRIVAL TIMES..............

RESULTS FROM IGPSSMP FOR

SCHRIBER EXAMPLE...........

..

Figure

10.
11.
12.
13.
14.
15.
18.
17.
18.
19.
20.

21.

LIST OF FIGURES

Overall Manufacturing Cycle.....................
Sequence Of Manufacturing Cycles................
A Manufacturing System............
Model Building Approach Analogy.................
Fixed Position Layout..........

Process Layout

..................................

Product Flow Layout

Present System

..................................

New System

Lctual Process

Proposed Process

................................

General Production Floor

........................

Storage Area and its Inputs and Outputs

Example of a Fabrication Area...................

Turning Department

..............................

A Possible Layo&t of an Assembly Area

Assembly Line and its Components

Levels of Activities

Levels of Simulation...........,

Overall Picture of MDMSS............
Overall Organization of the INPUT
Program

...

Page

11
12
13
18
19

20

23.
24.
25.
26.
27.
28.
29.
30.

31.

Page
Overall organization of the SIMULATION
Program. 61
CLIST Program........... .. i 69
Sereen 1. .. e 70
Form A. .. . 78
Form B. e 80
Route of Product 1...... 81
Route of Product 2........ 82
Form A of Example. i, 84
Form B for Product 1............ 85
Form B for Product 2......... 86
Output of the Sample Example..................... 87

xii

CHAPTER I
INTRODUCTION

For a long time, agriculture has been the dominant
activity of Mankind. It was sufficient to provide Man with
the most important need: Survival. As Man went to explore
the surroundings, the need to convert raw materiéls to
finished goods arose. Probably the first Man—- made products
were the weapons made out of stone to protect him from wild
animals. A new phenomenon was born then: Production.
Production is the process of transforming raw materials to
finished goods. To produce goods, a combination of manual
labor, special tools, and some kind of energy is essential.
Later on, through the centuries, Man needed more and more
goods, and the products made became more and more complex.
Consequently, production tools and processés had to evolve to
satisfy the market. Agriculture was losing its standing for
the benefit of manufacturing. Nowadays, devéloping
countries, as well as the developed ones, see manufacturing
as the predominant tool to assure a good standard of living.
Once, when life was in its primitive stages, agriculture was
sufficient to assure the survival of Man; nowadays, survival
of nations is contingent to its ability to prodﬁce goods.

This is the manufacturing Era.

Manufacturing started with Man using only his hands and
some basic tools to convert raw material. Step by step, the
manual skills of Man were used less and less, more tools and
new machines had to be introduced to help in the production
process. Competition between industries and also between
nations led manufacturing to its latest level: Automation.

Production of a certain item is a parameter of the
supply and demand. Figure 1 shows the overall manufacturing
cycle. This cycle includes a sequsnce of events that are
necessary to follow in order to permit goods to be available
to people. The main events are pictured in Figure 2. This
‘figure shows that the manufacturing system is a closed loop
process whose elements need to be controlled and engineered

first as identical units and then as a total system.
Manufacturing, Computers, and Simulation

With the fast evolution in manufacturing processes,
needs, and objectives, the integration of the discovery of
the century in today’s industrial environment emerged

smoothly and rapidly. The computer had to be exploited to

the maximum. It was found to be the savior of the modern
manufacturing. . In fact, it has been used in a variety of
tasks. From data storage to fully automated process monitor,

the computer showed an extraordinary flexibility in sclving
many engineering problems and concerns. Computer integrated
manufacturing systems (CIMS), although still conceptual, seem

to be the next stage in the manufacturing evolution.

e ochact

Froduct i on

Figwre 1. Overall Mamnafactbaring

Cwvole

Froduct

Demars

y

kN
e

Cormtrols

Froductd on

Freoductl on

Suppli

.

s

Figu

. o
ma

Sy

T Mart st ing

Cyvoles

I
kS

82

Ideally, once such a system has been designed, implemented,
and put to work, a distributed processing computer has to
control the different elements of the manufacturing cycle.
More important, the software in CIMS should be able to
simulate the actual manufacturing system when analysis or
decision making is needed.

Pritsker defined computer simulation as the process of
designing a mathematical-logical model of a real system and
experimenting with this model on a computer[31]. Another
definition of simulation by Mize and Cox (as referenced in
Turner, Mize, and Case[38]) states that, simulation is the
process of conducting experiments on a model of a system in
lieu of, either (1) direct experimentation with the system
itself or, (2) direct analytical solution of some problem
associated with the system. Both definitions agree that
simulation allows drawing conclusions about the system,
without building it, disturbing it, or destroying it. Thus,
a simulation model is very useful in both des}gn and
analysis.

Simulation models are built primarily as aids for
decision making. For this reason, measures of performance
are to be determined for the performance assessment.

A simulation of a manufacturing system, or even one part
of it, could be a very challenging and complex task. In
fact, the external factors that could influence such a
system, and consequently any contingent decision, are

enormous. What makes the simulation even harder 1s the fact

that some of these factors cannot be formulated as explicit
mathematical equations or variables mainly beéause these
factors might be uncertain and unpredicted. A fire, an
earthquake, and a strike are just a few examples. Figure 3
is an illustration of a manufacturing system and its standing
in the environment. Theoretically, such a system can never
be simulated exactly; for this reason any model describing
the system is just an approximation of the real system.

Model building iz both an art and a science. It is a
very critical step in the simulation process. Any mistake or
misinterpretation in designing the model could Jjeopardize the
total simulation. The model building approach could be
compared to a human eye that is abler to reproduce a scene,
but can never recognize and include all the details of the
scene (although most people think that they do !). Figure 4
shows the model building approach and the mentioned analogy
at the same time. The point is that simulation is Jjust
another tool that helps decision making, but is by no mean

exact.

Problem Statement

What makes a comprehensive simulation of manufacturing
systems almost impossible i1s the wide variety of such
systems. To prove this, Jjust consider the measures of
performance that could be used to evaluate an armament

industry compared to the ones for a food industry! More,

Mature
Dl sasters

= b

0o o At
(fires)

ool s

T

LOrgamization

L

B T ROMMENT

~n

Folitios

CoOmomy

e SLV S

LU o
Demands

Figure 3. &

Marnufacturin

ras -
g By

u

vetem

Eve (tool)
Fictwre {description)

-

System Mathematical Leogical Tools

Description
{model)

Figure 4. Model Building Approach Analogy

even simulating Jjust one module of a single manufacturing
system could be very challenging; still too many parameters
exist. In fact, trying to simulate the production module in
a manufacturing system, by itself, could cause many problems.
The cause is that production plants can vary according to (1)
the production quantities, (2) the type of plant layout, and
(3) the production operations. These three classifications

are described below:

A.1 Production Quantities

1.1 Job Shop Production

It is categorized by a low volume, flexible equipment,

and a high skill level among the workers.

1.2 Batch Production

L.ots are manufactured at predetermined interval time.

The equipment is for general purpose.

1.3 Mass Production

The same product is processed at high production rates,
the equipment is dedicated, and the skill of the worker is

low.

A.2 Types of Plant Layout

1.1 Fixed-Position

The process remains fixed for a certain period, and the

work stations are brought to it. Plane building is an

10

example. Figure 5 shows a fixed position layout.

1.2 Process Layout

The main feature of such a process is that the machines
are arranged according to their purpose. Figure 6

illustrates this process.

1.3 Product Flow Layout

It is categorized by production of either, one product,
or one class of products. The work stations are arranged to
satisfy the route the product needs to undertake. Figure 7

is an illustration of this process.

A.3 Production Operations

1.1 Proecessing Operations

It includes activities that change the state of a part.
No material or components are added during this

transformation (energy 1is needed, an example is forging).

1.2 Assembly Operations

Two or more components are added to make a finished
product.

Due to the increasing competition, ihdustries often face
the urge to change, modify, or even replace some of their
processes of productions. One of the manufacturing

engineering functions is process planning and evaluation.

Figuwre 5.

]

W b

Fived Fosition Lavout

station

11

Fimishirig

Die
Casting

Feod eving

Fairnting

Girinding

Shipping

Figure &.

Frocess Layout

Flaw

Material

Figure 7.

Froduct Flow Layout

Finished
Froducts

13

14

Process planning is directly related to the production floor
layout and functions. For planning, the engineer could use
the real system (the production floor) to implement and test
his design. This might be very costly; in fact, Jjust moving
one machine (a numerical control machine for example) could
cost thousands of dollars! This cannot be justified
economically especially when the outcome of the change is not
known. Also, such redesign could interfere with the natural
process of the system resulting in decreasing output, and
again loss of money. For these reasons, a general purpose
simulation model of the actual system could be the ideal tool
to the engineer in order to design, implement, or evaluate
new ideas. As it was mentioned before, such a simulation is
just a tool for educated approximations. Although it might
be the best tool available now, it still faces some
uncertainties that need to be taken into consideration before

the final decision is pronounced.

CHAPTER II
OBJECTIVES

Lately, manufacturing companies are facing a challenging
phenomenon: Competition. Competition is found at both the
national and international levels. Success of any company is
very dependent on its products’ quality, and its costs!
Engineers have to work harder and smarter to fulfill these
requirements. Faced with this burden, engineers turned to
computers to save time and money. Today’s computers with
their high processing speeds, low cost memory, had to be
exploited to the maximum in all areas where they are
applicable, especially in the decision making pfocess. As a
result, the éomputer deeply affected the engineers’ practice.
This new design tool (the comput?r) became a necessity in
some areas such as literature seérch, data manipulation,
mathematical operations, optimization, and simulation.

This project is an attempt to provide engineers with a
new tool that would help them in making decisions concerning
manufacturing floor controls. As a sequence, the project
consists of developing a simulation model that should be able
to fit different configurations on the shop floor. A
detailed explanation of the model will follow in other

chapters. To use this tool, the engineer needs to be

15

16

familiar only with the process to be simulated. The model is
designed so that only very basic computer skills are required
from the user; the operator does not need to know anything
about simulation modeling or simulation languages. As a
matter of fact, the user could be totally ignorant on how to
develop software and still should be able to use the model.

This program is not an iterative optimizer though.

After running the program, the operator obtains some
statistics that evaluate some predetermined measures of
performance. From here, it is the job of the engineer to
analyze the given data. This is done by organizing it (the
data) to information that could be used later in making the
final decision.

S0, the primary objective of this project is to develop
new software that endineers could use wheﬁ it comes to making
decisions concerning manufacturing production floor
implementations. To use this tool, no expertise in either
simulation or any other programming language is needed. The
model is used to predict a set of measures of performance.
The program has to accommodate future implementations as they
become needed. Also, the program is to be user friendly,
menu driven, and well documented internally and externally.
Finally, when designing this software, thoughts about the
potential use of this program in ¢ future computer integrated
manufacturing system (CIM5} had to be taken into
consideration.

To summarize, the main goal of this project is to create

17

a new, efficient, simulation tool that could help engineers,
especially manufacturing engineers, to obtain useful
predictions of performance for certain situations when
decisions have to be made. This has to be possible whether
or not the operator has any expertise about computer

programming.

Situations Where the Program

Could be Used

In order to define, or rather make the use of this
software easier, some anticipated situations where

the program could be used are discussed below:
A.1 Situation 1

Consider the shop floor showed in Figure 8,.also
suppose that the enginser wants to know if adding a new
machine is Jjustifiable or not (see Figure 9)" In this case,
a'simple simulation should provide the necessary parameters

for the decision.

A.2 Situation 2

Now consider the process shown in Figure 10. Initially,
only one product was made. The question is the possibility
of the integration of another product using the same machines
(see Figure 11). Once again, the program should be able to

help make such a decision.

e e -
Raw
Material

py

Figure 8.

............. o

Wor k

stations

[RTS—

Fresent System

~~~~~~ -3
Goods

18



y

1 ........ - T3P B :rx [ :! ..........................).
Feaw l Grorochs

Material

&

Mew machime

Figures %. MNew Svstem



— Freoduct L

- Workstation

R e

Figure 10. Actual

]

Frocess

................. -
Boods

20



------------ Froduoct 1

Froduct 2

Workstation

P

21



22

The previous situations are just examples, and they are,
by no means, the only applications of this model. A more
detailed discussion of the software and its applications will

follow in separate chapters.



CHAPTER III
LITERATURE REVIEW

Simulation is being used in diverse fields and different
applications. In fact, it has been used in military, medical
research, government projects, and biology, Jjust to name a
few areas. To'illuétrate the variety in simulation
applications, Jjust consider the two following examples: in
the first one, SLAM I]1 (a simulation language) was used to
obtain the values of six parameters that affect the state of
a lake. Continuous modeling was used to monitor these
variables asntime elapses. The second application is a
military one. It is a massive simulation of both the NATO
and Soviet sides in a conventional war in Europe. This
simulation required the development and use of a 40,000 lines
of SIMSCRIPT 11.5 program named TAC THUNDER. In both
applications, simulation was found to be the ultimate tool
and technique to help in the decision making process.

Surveys indicate that simulation and statistics are
widely used in various areas. Industry is one of the areas
where simulation became a necessity. In manufacturing, for
example, simulation is considered to be the most powerful
tool in dealing with the operations of flow lines, whether

they are automated or not.

23



24

Before computers reached their present state of
development, simulation models were limited to mostly
developing heuristic algorithms. The breakthrough in
computer technology lead to a new Era of simulation: the
Computer Simulation. The simulation software was found to be
fast, economically Jjustifiable, and able to accommodate most
problems.

The manufacturing areas that were considered in
simulation are different. The models developed differ in
goals. Some studies were concerned with flow lines [17],
{181, [28], [29]; others were developed to solve productivity
and production problems [12], [17]; some others were used in
sequencing and scheduling [1]. Few of the most recent
studies were a result of new concepts in manufacturing.
Simulation of flexible manufacturing systems is an
example [11]; the design of automated factories is another
one [35].

Probably one of the newest concepts in the manufacturing
area is CIMS: Computer Integrated Manufacturing Systems. To
put this concept to work, simulation had to be used
extensively. As its name states, CIMS integrates all
different parts of a manufacturing system. This integration
is not possible without the use of a massive computer. One
of the many modules that need to be included in CIMS is the
simulation model. Simulation is to be performed at different
levels. This Thesis project offers to implement a new

software. This software can be best described as a Menu-



25

Driven Manufacturing System Simulator. At a later stage this
simulator is hoped to be one part of the Simulation model in

a Computer Integrated Manufacturing System.



CHAPTER IV
METHODS OF ANALYSIS

As was mentioned in earlier chapters, the main objective
of this project is to provide engineers, more specifically
manufacturing engineers, a tool that they could rely upon
when it is time to make decisions about shop floor layout,
processes, or products routing. The model to be designed,
built, and documented has to be as comprehensive as possible.
A trade off emerges at this point: if a general purpose model
is to be implemented, many details have to be excluded from
it.

Also, in the previous sections of this report, it was
mentioned that the technique to be used in creating this
model is simulation. Two questions could be asked:

1- Why simulation?

2- Is there any other technique that could be

cdnsidered?

Answering the second question first, yes, other techniques
are available. In fact, since the 1960’s many analytical
methods were developed. But, Qith the evolution of the
manufacturing industry and its continuous complexity,
heuristic algorithms became harder to create, and developing

such models became very complex and even impossible in some

26



27

situations. Such difficulties obliged researchers to turn to
the computer just to discover that simulation is the ultimate
technique to use when one needs to experiment with real-life
shop control. Consequently, iterative simulation ended up to
be the most popular way to evaluate different processes when
decision making is on the line. :

The answer to the second question proposed earlier,
falls straight forward: simulation is to be used in this
proJject because it (simulation) is probably the most powerful
tool that is able to help in the ahalysis of a given
situation. A»second reason for using simulation in this
study, is to provide a tool that does not require the user to
have major expertise in building models. When the model is
designed properly, by Jjust answering a set of questions, the
user leads the program to picture and simulate a real life
situation. A third factor that favors simulation over the
other techniques is the flexibility of simulation in
ad justing from one situation to a similar one. .This
advantage rarely exists when‘using theoretical modeling. In
fact, for example, when a mathematical model is developed
it serves a very precise situation; a single change in the
input usually requires the total recreatiﬁn of the model.

On the other hand, when simulation is used and the model is
well designed, switching from one situation to another should
not cause any major problems; if the model was not designed
to adjust automatically, only minor changes in the code of.

the program should be sufficient to accommodate the new



28

situation.

The software to be created for this project should serve
different situations without requiring any changes in the
code. Of course, totally comprehensive software may never be
available. This study is Jjust another attempt to implement a
simulation program that is not comprehensive, but rather, a
general purpose model that could be used for different
situations in manufacturing processes decisions.

Assuming that using simulation was agreed to be a good
decision; one could ask why start from scratch and not take
one of the many existing software packages and Jjust modify
it? The answer to this question might not be convincing at
first, but when looked at closely should be satisfactory: if
the reader is familiar with programming in general, or
simulation in particular, he(she) should agree that é model
ig Jjudged to be good, only if it reflects the real world as
closely as possible. When one‘takes an already written
program and tries to modify it to accommodate new situations,
most of the time the results become somewhat misleading. The
reason for that could be explained rather easily: when a
program 1is ohanged extensively, its structure and logical
flow become very poor. Consequently, debugging the software
for verification is very difficult. For those reasons, in
this project, before the design of the model took place, the
general scope of the study had to be determined. Which means
that most of (if not all) the situations that the software

has to accommodate were anticipated. Then and only then, the



29

general purpose model was desighed.

Up to now, only good things were mentioned about
simulation. The simulation technique has also some
disadvantages. Although they are few, they could be
deterministic in not us;ng this powgrful tool. The cost of
the implementation of the simulation model is the first
disadvantage. In fact, for some situations, the model costs
a lot of money. Also, because of the nature of the results
given by simulation, validation and verification are vital.
This could be a big challenge, essentially when the model is
huge. Last but not least, simulations provide ﬁhe user with
only statistics. The obvious next step is to process the
given data into.relevant information that is easy to use when
the decision time comes. Manipulating such statistics could
require advanced expertise in this field.

To summarize, the urge to develop a general purpose
simulation model for manufacturing systems, and the need to
provide a tool that, almost, does not require any expertise

in programming inspired this study.



CHAPTER V
LANGUAGE TO BE USED

As of October 1886, the catalog of simulation software
shows fifty three different simulation languages or packages
that are available commerciaslly. Appendix A is a list of the
available software. The reason for the coexistence of all
these languages results from the widespread use of simulation
as both an analysis and a decision making tool. Some of
these languages are for general purpose simulations, others
are designed for very specific applications. Banks and
Carson [3] state that simulation languages are constructed
generally from three frameworks: process-interaction, event-
scheduling, and continuocus process.

The process-interaction perspective uses statements that
define the flow of the entities within or through a network.
In continuous simulation, some dependent variables in the
model change continuously over the simulated time. In the
event-scheduling framework, systems are modeled by defining
the events that are able to change the state of the system
and the logic associated with each kind of event.

Tc decide upon a particular simulation language to use
to model a situation, many factors have to be considered.

First, the selection of the programming language is a

30



31

function of whether or not it is well championed by the
designer. The capabilities of the language to fit the
situation to be modeled are also a determining factor. A
third factor concerns the measures of performance sought from
the simulation: a given language could be able to simulate a
situation, but unable to provide the operator with the needed
statistics necessary for the decision making or analysis
process. Last, some firms are sometimes concerned with the
availability of a language that could be used on a time
sharing network.

For this project, after a preliminary educated
elimination, four languages were found to be prospects to be
used. They are: SIMLIB, GPSS, SLAM II, and SIMNET.

SIMNET is a new language developed.by Dr. Hamdy A. Taha
which has not yet been commercialized. Due to the
possibility of the existence of some unsolved problems in the
software, and especially because this language does not
provide any form of interactive mode up to this date, this
software was excluded. |

GPSS (General Purpose Simulation System) is a process-
oriented simulation language for modeling discrete systems.
It was first developed in 1960. Because this language is
limited in computing power and lacks a capability for
floaeting point or real arithmetic, it was also excluded from
this study.

SIMLIB is a package formed by a set of FORTRAN

subroutines that files entities, processes the event



32

calendar, and calculates the time dependent statistics based
on observations. For the magnitude of this project, SIMLIB
seemed rather a low level simulation software compared to the
others.

SLAM (Simulation Language for Alternative Modeling) is a
FORTRAN based simulation language. It was first introduced
in 1979. SLAM II, the latest version of SLAM, allows the use
of the three different modeling viewpoints in Jjust one
integrated framework. In fact, process—-interaction, event-
scheduling, and continuocus modeling could be used separately
or in any combination which makes the language very powerful.
Also, the language allows the integration of independent
FORTRAN 77 subroutines to the model. This makes the
interactive option of the program possible and feasible.

Although the language to be used in a certain simulation
is Jjust a tool, the choice of the most appropriate one could
make a considerable difference in debugging, providing a
better, more efficient model, and producing more satisfactory
results. In this project, SLAM II was found to be the most

appropriate language. .



CHAPTER VI
MODEL DESCRIPTION
System Description

It was emphasized in the previous chapters that the
primarly purpose of this project is to create and implement a
tool that manufacturing engineers primarily, and other
engineers in general, could use to evaluate some given or
proposed manufacturing situations and processes. It is then
only logical to describe or rather define the system or
systems that could be subject to simulation using the
proposed model.

Manufacturing environments differ from one organization
to another and even from one application to another. For
this reason, to fit a general purpose, a simulation model
requires the study to originate from the most general
configuration available in a manufacturing situation.

In general, a manufacturing or production floor in the
manufacturing cycle is formed of the following components:

1- A storasge area.
2- A fabrication area.
3- An assembly area.
Figure 12.is an illustration of a general production

floor. The arrows show the traditional flow of materials and

33



LICATION

/.

el Led ‘ y Finshed
r Farts o Goods
Y

o7

ASBEMELY

34



35

products on the floor. In the following paragraphs a

separate discussion of each area is presented.

1- The storage area

Depending on the activities performed in the
organization, this area could be divided in to three
different but interrelated sections. In general, the
organization gets raw materials in order to transform them
into finished goods. Finished goods for an industry could be
considered as detailed parts in other industries; the
definition is relative to the mission and kind of
organization. Figure 13 shows the storage module in é

production floor.

2- The fabrication area

Both the complexity of this area and its floor space
vary with the organization. Where a fabrication area exists,
it is usually organized into departments. Cutting, milling,
heat treating, and drilling are just a few operations that
are usually performed in these departments. Figure 14 is an
example of a fabrication area. The arrows on this figure
illustrate different paths for different products. The
figure shows also an inspection station for all products that
are presumed to be finished. The inputs to the fabrication
area usually consist of some kind of raw material. At the
other end, either detailed parts or finished goods or both

are considered to be the output.



Detailed parts
from Finished goods

Faw

materials
to
fabrication

T3 a3 =z ®s3 k% ax Tz =% =c

fabrication +rom
\Fabrication

H Finished

: goods to

H customars
) - //Y

Figure 173.

,/%inighed goods
Detailed parts to assembly
to assembly

Storage Area and its Inputs and
Qutputs

36



TURMIMNG

. Cutting

- Shaping .

Forging . .

»Inspection

" -
u "
" n
“wowonow "

uuuuuuuu

Milling .

S

Raw Materials

Figure

14.

3]

(getailed Farts

Frample of a Fabrication Area

Finished
Goods

37



38

Looking closer at the fabrication area, more
specifically if one department is considered, one can see
that the department is in itself organized into cells which
are in sets of similar machines. Figure 15 illustrates an

example of one department in a fabrication area.

33— The assembly area

Assembly is usually the last operation performed on a
product. The assembly area differs from one organization to
another. Although, nowadays, automatic assembly is being
introduced more and more to the manufacturing process, manual
assembly is still very much in use. Figure 16 shows a
possible layout of an assembly area. In the same assembly
area, different products could be assembled at the same time.
This could be done by dedicating different and independent
assembly lines. A possible configuration of such lines is
illustrated in Figure 17.

Trying to simulate a complete manufacturing operation
could be very complex depending on the size of the
organization. This simulation might even be economically
infeasible in a very large operation, especially if detailed
information is required. For this reason, the model designed
in this project is to simulate the manufacturing environment
at different levels. Figure 18 shows how the simulation
could be performed at four different, but interrelated
levels. At the first level, simulation of flow of materials

and products between areas could be performed. Level two



L R I L I I O I I T I L T T O I I T

e ot b O 0 S S O S A o
PR e e +  Numerical +
™ lLathe ™ 4+ Control +
~ ~ +Ny Machine +
~ 1 -’ &

- n~ e e e e g b b e AN e o b e o

e M

RAYASTAEPRAVESVELVEL Tav i)

Pop e Py P P M e Ao A

~ L.‘ElthE‘ - 1« soree sugll ceese suvee cosne sosse semen saate seim semmt sosan et soins o samve soint fhos setas ssnse sraas sumee s
e Intermidiate -
~ 2 ~ -  Inspection -

e TR N e N N e e iy

L I R I R LR R R R R “ U % M 4 M B woE NN WD

From other departments
To other
departments

Figure 15. Turning Department



Figws 16. A Fossible Lavout of an Assembly Area



Ir

Frradess

Inspection

Sbatidon

arnd its Com

.

nerts

41




R R

i
ﬂC IVIELLES HelwWween f
NDr} \‘E»tn‘l".lcm‘r &

¥

Apctivities Between
Areas

LEVEL
1

Figure 18. Levels of Activities

42



43

focuses more on the smaller picture: the simulation takes
place now in one area and between its different departments.
If more details are needed, the simulation could be taken
further to a chosen department, in which flow of entities
between cells is simulated. In the lowest level, the model
gives the user the option to simulate the flow of products
between workstations or machine operations. This break down
of the simulation of the system into different levels does
not take any powers out of the model. In fact, to meet the
obJjectives étated in thisvproject, a simulation of the whole

operation is not mandatory. Figure 19 shows this breakdown.
Input to the Model

This model is designed so that manufacturing engineers
could use it to simulate a manufacturing environment.
Depending on the level used, the input to the model could
vary. Generally, three séts of inputs are required from the
operator. In the first set, the user describes the layout
and the configuratibn of the manufacturing environment. in
the second set, morevdetailed description of the flow of
materials and the route they take is fed to the model. Also,
all the time parameters, such as arrival rates and processing
times, are included. In the third and last set, selection of
some ueasures of performance takes place. A more detailed

explanation of these three sets of inputs will follow.



LEVEL 1

AREAS (Assembly- Storage— Fabrication)

LEVEL = @ CELLS

LEVEL 4 WORE:
STATIONS

Figure 19. Levels of Simulation

44



45
OQutput From the Model

The purpose of the model is to evaluate a given
situation. This evaluation is defined by some predetermined
measures of performances. So, in other words, the main
output from the simulation consists of the summary report
including the statistics associated with these measures. For
record keeping, an echo of the input of the user is also
provided. A detailed discussion of the measures of
performance chosen is presented in the next chapter. Because
of the different levels included in this model, the analysis
of the results provided from the simulation of one level
could lead to a decision on whether or not a simulation at a

lower level is needed.
Model Assumptions and Restrictions

In previous chapters, it has been mentioned that a
simulation model can never be exactly like the real world
situation: the model is Jjust an attempt to represent, if
possible, the situation or the configuration. Due to the
nature of this project, some assumptions and reétrictions had
to be taken br were imposed. In fact, as its name states,
the model is to be used for different situations. It should
aiso be mentioned at this stage, that some of the
restrictions were due to the limitations of the simulation
language used (SLAM II). Also, because of the size of the
project and the time constraint for submitting this study,

some features were excluded from this first version of the



46

model. These features, discussed in the Recommendation
Section, could be installed at a later date.

The model is desighed to accommodate a maximum of thirty
five facilities and a maximum mix of five different products.
It was felt that these numbers are big enough to demonstrate
the power and utility of the software. Expending these
numbers should not cause any problems; it is Jjust a matter of
expanding some arrays used in the programs.

A similar type of restriction concerns the number of
random probability distributions used in>the model. Four
were Jjudged to be the most used, they are: the constant
distribution, the exponential distribution, the uniform
distribution, and finally, the normal distribution. Once
again, adding new distributions should not cause any
problems.

The model is designed so that the product mix is fixed.
Before performing the simulation, the user should already
know the number of facilities, the number of products, and
the route each product takes through the system. If two
different products use the same machine, the first come first
served (FIFO) approaph is used. Later on, a module that
assigns priorities could be added to the model. After each
operation is performed, inspection takes place. The product
either passes inspection and is scheduled for the next event,
or is found to be defective . If defective, the product is
considered to be either scrap, or to be feworkable. In this

last case, it is assumed that the product is routed back to



47

the same machine it exited before inspection; at that time it
Jjoins the queue with no assigned priority. It is also
assumed that there is no travel time between facilities. In
addition, delays due to machine breakdowns or machine
maintenance are not included.

Other assumptions that had to be taken but should not
affect the outcome of the simulation are:

* Single arrival distribution.

¥ The calling source is infinite.

¥ No jockeying of entities.

* No reneging of entities.

X No balking of entities.

¥ No time is lost between the release of an entity
and the arrival of another.

Some other assumptions and restrictions were a
consequence of the limitations of the simulation language
(SLAM). In fact, before each facility, the queue has an
infinite capacity; SLAM requires that the maximum number of
entities in the queue has to be an integer and not a
variable. For this réason, in thig first version of the
model the user cannhot decide on this parameter. At a future
date, this restriction could be omitted. Last but not least,
once the user inputs all the data and the simulation has
already started, changes cannot be performed and feedback
cannot be provided until the simulation ends. The reason for
this is the fact that, up to the date this project is being

developed (March 1987), SLAM does not provide interactive



48

mode.

To summarize, the restrictions and assumptions that had
been made do not make the model unrealistic, and by nho means,
jeopardize the objectives sought from this project,
especially when one knows that most of the mentioned
restrictions and assumptions could be omitted in a later
version of this software (this does not include the
restriotioﬁs which are due to the limitation of the language
used: SLAM).

Finally, in the remaining chapters, the following terms
are to be used: areas, departments, cells, and workstations.
A definition of each term is shown below:

1- Areas: different areas of the layout (i.e.
production area, assembly area, etc).

2- Departments: different departments in the same
area (i.e. turning department, milling
department, etec).

3- Cells: group of service stations in one
department.

4—- Workstations: service stations.



CHAPTER VII
MEASURES OF PERFORMANCE

The purpose of running any simulation model is usually
the search for some statistics that would help in making
decisions or inferences about the system under study. Thése
statistics are considered to be the measures of performance
of the system. Depending on the nature of the system,
different measures of performance are chosen.

Because this project is concerned primarily with
manufacturing systems, most of the measures of performance
are time related. To study the system and its performance,
statistics had to be collected for both the facilities and
the entities. One of the advantages in using SLAM is that it
automatically updates such statistics.

" The first measure of performance to discuss ié the
service activity statistics. SLAM provides the following:
1- The service average utilization.
2~ The maximum idle time of the facility.
3— The current utilization of the facility when the
simulation ends.
4—- The number of entities serviced in the facility.
These statistics were found to be sufficient to analyze'the

facilities status.

49



50

The second type of statistics provided automatically by

the language concerns the file statistics. The queues before

the facilities fall in this category. SLAM provides the

following in its report:

The averade length of the queue.

The maximum length of the queue.

The length of the queue at the end of the
simulation.

The average waiting time of entities in the

queue.

The other kind of statistics concerns the entities

themselves.

Although these statistics are also collected by

SIL.AM, they are not provided unless requested by for using

specific nodes. For this study, the following statistics

were collected:

i-

The average time that all products spend in the
system.

The average time that each kind of product spends
in the system.

The average time between'bompletion of products.
The time spent in the system by a defective
product before it is scrapped.

The time between two scrapped products, both,
similar and different.

The number of products that were serviced during
the time of the simulation.

The number of products found to be defective and



51

had to be thrown out.
8- The minimum time a product had spent in the
system.
9- The maximum time a given product had spent in the
system.
All the previous statistics are collected both for all the
products, and for each kind of product separately.

Although other statistics could have been collected
using user code, it was found that the statistics provided by
the language were enough for the user to infer about the
performance of the system as a whole, and the performance of
each facility separately. ©Should this model be expanded,
other measures of performance could always be added. The use
and interpretation of each of these measures will be

discussed later through some examples.



CHAPTER VIII
SOFTWARE DESCRIPTION
How Simulation Works

From the standpoint of queuing theory, a waiting line
situation takes place when entities arrive to the system and
Jjoin the queue. The service facility thén choses the
entities from the waiting line for service, according to
predetermined rules and priorities. When service is
completed, the process of choosing a new entity to be
serviced is repeated. Thus, the principal factors in a
queuing simulation are the entities and the servers. In this
particular case, the system has a maximum of thirty five
service facilities and can accommodate a mix of up to five

different products at oné time.
Programs Description

At the early stages of the software design, the idea was
to have a single program, that is FORTRAN based, which
interfaces with the simulation language SLAM. Knowing that
one of the objectives of this project is to have an
interactive software that prompts the user for the primary
data needed for the simulation, the program had to have this

property. One problem arose then: SLAM was loaded on the IBM

52



53

main frame 3081; to use this language, simulation programs
had to be submitted as batch Jjobs. For this reason, it was
impossible to run interactive mode using Jjust one program.
To solve this problem, two and only two alternatives had to
be considered: sither have the user type all the needed
information as data statements, or have two different
programs. The first alternative was rejected because it
conflicts with one of the objectives of this project; to
exclude the user from having to change the code of the
software. Consequently, the second alternative had to be

hosen.

e

The software includes then two separate programs which
interface through a permanent file used as a storage of the
input data. The first program is the input program, the
second one is the actual simulation module. Figure 20 is the

overall picture of the software.

PROGRAM 1 : THE INPUT PROGRAM

This program includes a main program and thirteen
subroutines. The overall organization of this program is
shown in Figure 21. This program is menu driven. All the
subroutines operate separately. Data is passed back and
fourth through a common block (USER1). Throughout this
program, data is sfored in the already built file. Before
discussing each subprogram indevendently, it might be helpful
to go through the main variables used and their use:

1- LEVEL : level of the simulation. (See Figure 19.)



The INFUT The STMULATION

Fe g am

.
>

Storage
File

Y

Y

Figure 20. Oversll Picturs of IGP35MF



INPUT . . _. o
T :.Eﬁﬂ!ﬂl o

INPDES o

S 3

INFO o
2

1 3"' -4
v ' I ;

IINP:REJ [inepep] [TnPcEL] [INPMAC]

ARRTIVE

l STATS AI STATSD | STATSC l !

&

| b

f —>D

> >

STORAGE
FILE

STATSM D

X7

Figure 21. Overall Organization of

the INFUT Frogran

55



56

2- NPROD : number of products arriving to the systen.

3- MACH : nﬁmber of service facilities in the system.

4—- TIMED :_duration of the simulation.

5- NMACHK(5)

stores the number of facilities each

product needs to go through before it

leaves the system.

6~ ENTITY(5,35,2): the first argument marks the

7- PARA(5, 35, 3)

.8~ ARVAL(5, 3)

8- DEF(5,35,2)

product, the second marks the
gervice station, the third stores
respectively the type of the
processing function and the route
the product takes.
the first argument is the product,
the second is fhe facility, the
third represents respectively, the
type of processing function, the
first and second parameter of this

function.

the first parameter is for the
product, the second is respectively
for the type of arrival function and

its two parameters.

the first parameter is for the
product, the second is for the
facility, and the third is
respectively for the proportion of

products that passed inspection and



57

the proportion of products found to

be defective and cannot be reworked.
In the following sections, the different subprograms and
their use will be described. The main program constitutes
the driver of the program. Its listing (L.} and flowchart
(F.) are shown in Appendix B.‘ The subroufines will be

discussed in the order they are called in the program.
SUBROUTI SC : L. IN APPENDIX C
This subroutine clears the screen.

SUBROUTINE SCREEN : F. AND L. IN APPENDIX D

This subroutine is used only to provide the user

with information about the used program.

SUBROUTINE INPDES : F. AND L. IN APPENDIX E

In this subroutine, the user decides on both the level
and the duration of the simulation. Depending on this level,

the appropriate input subroutines are accessed.

SUBROUTINE INFO : F. AND L. IN APPENDIX F

The purpose of this subroutine is to collect general
information about the simulation to be performed. This

information is vital for record keeping.

SUBROUTINE INPARE : F. AND L. IN APPENDIX G

Through this subroutine, the operator enters all the



58

information when a simulation of areas (level one) 1is needed.
The user is prompted for:
1- The number of products to simulate.
2- The number of service facilities in the systemn.
3- The number of facilities used by each product.
4—- The route that each product takes through the
system before it exits.
5—- The processing function of each product for each
facility.
86— The parameters of the processing function of each
product for each facility.
7— The proportion that passes inspection of each
product for each facility.
8~ The proportion that is found to be defective and
judged to be scrap.
Throughout this subroutine, the information received from the

user is transferred to the storage file.
SUBROUTINE ARRIVE : F. AND L. IN APPENDIX H

This subprogram is also menu driven. It is used to
accumulate information about the products to be simulated.
This subroutine asks the user for:

1- The type of arrival rate function to the system
for each kind of products.
2— The parameters of these functions.

Also, this subroutine updates the storage file.



59

SUBROUTINE STATSA : F. AND L. IN APPENDIX I

This is where the user has the option to ask for
statistics to be collected on the measures of performance.
In this first version of MDMSS, the user can decide on three
measures of performance. This subroutine also accesses the

storage file.

SUBROUTINE INPDEP : F. AND L. IN APPENDIX J

This subroutine accommodates the second simulation
level: the department level. It operates exactly like

INPARE.
SUBROUTINE STATSD : F. AND L. IN APPENDIX K

This subroutine, Jjust like STATSA, gives the

option of deciding on some measures of performance.
SUBROUTINE INPCEL : F. AND L. IN APPENDIX L

It is for the input for simulation at the third

level: the cell level.
SUBROUTINE STATSC : F. AND L. IN APPENDIX M

This subroutine has the same role that STATSA

has.

UBROUTINE INPMAC : F. AND L. IN APPENDIX N

It is used to input information when the simulation is



80

performed at the fourth and last level: the machine level.

UBROUTINE STATSM : F. AND L. IN APPENDIX O

Updates the storage file with the measures of

performance nheeded at the machine simulation level.

COMMENTS CONCERNING THE INPUT PROGRAM

One can wonder why some of the input subroutines and
statistics subroutines were repeated although they are very
similar; the reason is simple: during the implementation of
the software it was anticipated that other studies and
projects might follow to update this software. Realizing how
important the étructure of a program is in easing future
updates, it was decided that separate subprograms need to be
written no matter how similar they are.

Also, it might be of use to future projects to explain
how this program runs on the IBM main frame 3081. Because
this system does not offer an automatic interactive mode,
extensive research had to be made to bypass this setback.
Finally, it was found that the only way to run interactive
programs is to build a personal library. A detailed
description and documentation of this procedure is shown in

Appendix P.

PROGRAM 2 : THE SIMULATION PROGRAM (See Figure 22)

The most challenging portion of this project was to

develop a simulation model that can fit many situations and



} SIMULATION

I Bt e ————
<> | Progeam . [ mazy ]

P

Y

STORAGE
FILE

>C> ISCHDL [

ENTER

Figure 22. Overall Organization of

the SIMULATION Frogram

61



62

systems (primarily in manufacturing) without accessing the
code to make changes (even if they were minor). After an
extensive study, it was found that to create such a model,
one needs to take advantage of both the flexibility and power
of the FORTRAN language and the capabilities of SLAM in
filing entities, collecting and updating statistics, and
processing the event calendar. Network Modeling With User-
Written Inserts seemed to be the appropriate choice.

The developed program ended up including a main program,
seven user-written subroutines, two user-written functions,
and one network. Information was passed from the different
subprograms through three common blocks: SCOM1, USER1, and
USERZ2. ©SCOMl1 is a common block set in the SLAM package,
USER1 is the same common block used in the first program, and
USER2 is a common block that transfers the following
variables after they were processed from the storage file:

1- DATE : stores the date the simulation was

performed.
2- PROJEC : has the simulation project number.
3- DEPART : is the department that required the
simulation.

4- NAME : is the name of the operator.

5—- REFE : is the reference of the simulation.
The model also used thirty five files which were dedicatéd to
the queues for the maximum number of facilities in a given
syétem. Last but not least, six attributes were found to be

enough to manipulate entities (products) flowing in and from



the system. These attributes are
1- ATRIB(1) : this attribute is to differentiate
between the entities (the kind of
product).

2- ATRIB(Z2) : it is the process time for a given
entity at a given machine.

3- ATRIB(3) : this attribute stores the address of
the next facility the entity needs to
visit.

4- ATRIB(4) : this attribute is set to (-1) when the
product is ready to exit the system.

5—~ ATRIB(5) : is the probability that this product
inspection.

6~ ATRIB(6) : is the probability that if this
product fails inspection it will be
scrapped.

The main program (F. and L. in appendix Q) sets the needed
parameters, such as the unit from where SLAM reads and the
unit to where SLAM writes, then it calls SLAM which initiates
the simulation. In the next paragraphs, the different
subprograms are discussed to show the role they play in this

general purpose simulation model.

SUBROUTINE INTLC : F. AND L. IN APPENDIX R

SLAM calls this subroutine as soon as it is executed.
This subroutine calls INPRED, which reads all the relevant

information from the storage file, and then schedules the



64

arrival of the first products.

SUBROUTINE INPRED : F. AND L. IN APPENDIX S

As was mentioned earlier, the role of this subroutine is

simply to read the information stored in the file.

SUBROUTINE EVENT : F. AND L. IN APPENDIX T

To perform the simulation, only two events were found to
be necessary. This subroutine branches to the appropriate
event whenever it is called. These two events are (1) the
scheduling of a new arrival or (2) placing the entity
(product) in the right portion of the network which, in the
real system, symbolizes putting the product before the

appropriate facility.

SUBROUTINE ARVL : F. AND L. IN APPENDIX U

In this subroutine, the kind of the next product to be
scheduled is determined, according to this specification, the
time of the next arrival is found and finally, the product

is inserted into the network.

SUBROUTINE PLACE : F. AND L. IN APPENDIX V

This subroutine is the driver of the simulation. In
.fact, first, it checks to see if the duration of the
simulation has been reached, and if the simulation continues,
the subroQtine checks the status of the entity just received.

This subprogram updates the number of facilities the entity



65

went through, then it compares this number to the number of
facilities initially scheduled for the entity. If it is
found that the entity has just left the last facility,
attribute four is set to (-1) and the entity is put back to
the network; otherwise, the attributes of the entity are
updated (new facility address in ATRIB(3), new process time
at that facility, and new defective proportions) and the

entity is sent back to the network.

SUBROUTINE OTPUT : F. AND L. IN APPENDIX W

This subroutine, called by SLAM automatically when the
simulation ends, gives an echo of the data used in the

rerformed simulation.

FUNCTION TIM1 : F. AND L. IN APPENDIX X

This function simply generates the processing time

for a certain product at a certain facility.

FUNCTION TIMZ : F. AND L. IN APPENDIX Y

Similar to TIM1, TIM2 generates the arrival rates

of the different products to the system.
NETWORK : FIGURE AND LISTING IN APPENDIX Z

The network is formed of three major parts. The first
is a decision making section, the second is a process
section, and the third 1is the statistic collection section.

When an entity gets to the network through the ENTER node, 1t



66

is sent back to the discrete portion of the program with an
event equal to two which means that the entity is going to
subroutine PLACE. After all attributes are updated in that
subroutine, the entity 1is sent back to the network. If it
was determined that the entity has just been processed by the
last service facility (ATRIB(4)=-1), the entity is
terminated; on the other hand, if the entity still needs to
be processed, using the third attribute (containing the
address of the next service facility) the entity takes the
appropriate branch and Jjoins the queue before that facility.
In the latter case, the entity either waits if the facility
is busy, or advances if it is idle. At each facility, after
the entity has been serviced, inspection takes place.
Depending on the data given by the operator, a proportion of
the entities passes inspection, those entities are sent back
to the‘discrete code to be processed; if the entity (product)
is found to be defective, it is either Jjudged to be
reworkable and sent back to the facility that it Jjust left,
or it is scrapped and terminated from the system. Before any
entity leaves the system, it goes through the appropriate

nodes so that statistics can be updated.

COMMENTS ABOUT THE PROGRAM

Without interfacing discrete event and network modeling,
writing this program would have been very hard, if not
impossible. Using network modeling alone would not have done

the job, and using Jjust discrete modeling event would have



- 87

been a lot harder to develop. Because the information needed
by the simulation was read from a file, the JCL used to run
the simulation was slightly different from the usual one.
Appendix Al shows that JCL. Finally, the procedure that
needs to be followed in runnhing the software is to be
discussed in the user manual which will follow in a later

chapter.



CHAPTER IX
THE SOFTWARE QUICK USER MANUAL
Log on to the System

As it was stated before, to perform a simulation using
the developed software requires running two separate
programs; the first one inputs the needed data for the
simulation, while the second program is actually the
simulator. In this chapter, each program is to be discussed
independently. But, before getting to the programs, it is.
necessary to describe the procedure of logging on to the
system. The system used is the Oklahoma 5tate University IBM
-+ 3081 main frame. First, the user needs to find a terminal
connected to the University Computer Center (UCC) network.
Then, the following steps are to be taken in this order:

1- Turn on the power through the power switch.

'2- Depending on the kind of terminal and location,
either Ctrl T or Alt T needs to be pressed at the
same time (most of the terminals work with
Ctrl T).

3— At this stage, the system should reply that the
terminal is connected to the UCC network. The user
is asked then to enter the system to work on: IBM

or VAX. The user needs to type IBM (in capital



69

letters).

4- One more time the system prompts the user to enter
a new piece of information: the application. The
user needs to type TSO.

5- The system then asks for the user number. For
this project the number is U11296A (valid only for
model development).

6— Then, the password needs to be entered (Available
on request).

If these steps are carried out successfully, the Qser should

be logged on with the screen showing the READY mode.
The Input Program

This progfam had to be loaded in a user library. The
reason for this is because it had to be interactive. To run
the program it was found to be mandatory to use a CLIST
program. The listing of this program is shown in Figure 23:

0O000010ALLOC F(FTO3F001) DS(FTO3F001.CNTL)
O000020CALL ’U11296A.LOAD.LIB(THESIS2)’
OO000030EXIT

Figure 23: CLIST Program.

The first statement in this short program assigns unit 3
to the already built file (FTO3FO001.CNTL). FTO3F001.CNTL was
created the first time the INPUT program was submitted. The
second statement of the CLIST program causes the INPUT

program to run. In fact, when that program was submitted the



70

system compiled it, linked it, and stored it in the user
already built library (LOAD.LIB). The argument THESIS2 is
the name of the compiled and linked version of the INPUT
program in LOAD.LIB. To run this program, the screen of the
terminal should show the READY mode. The user just needs to
type the following statement:
EXEC THESIS2

At this point it is assumed that the user has all the data
needed for the simulation: a detailed description of the
input data will follow shortly. The user should not worry
about making mistakes because the program is user friendly:
it always checks the validity of the user input before it
proceeds to the next question. Also, the program was written
so that the user does not have to worry about any formats in
typiné the data: all inputs are free format.

Executing THESISZ causes the INPUT program to run. The
first screen, shown below in Figure 24, gives general

information about the program.

VERSION 1.0

DEVELOPED BY
IMED JAMOUSSI

PLEASE REPORT ANY PROBLEMS TO

Dr. JOE H. MIZE

Figure 24: Screen 1



71

The user is then asked to enter some general information
about the simulation. These are:
1- The date : the first eight characters are valid
(i.e. 04-12-87 which is the 12 of April 1987).
2- The project number: it can not have more than 12
characters (i.e. SIMU1100).
3~ The department the simulation is done for: the
first twenty characters are meaningful (i.e.
PRODUCTION CONTROL).
4- The operator name: the first twenty characters are
recognized (i.e. JOE DOE).
5— The simulation reference: it has no more than five
characters (i.e. 00001).

Next, the menu shown below is provided.

1- AREA SIMULATION 2—- DEPARTMENT SIMULATION
3- CELL SIMULATION 4- MACHINE SIMULATION
The user has to enter one of four numbers (1-4). If he(she)

fails to do that, the menu appears one more time.

The duration of the simulation is the next input. This time
is a real number. The maximum is set to be 999999999.99

The unit of time is left up to the user, but consistency is
required.

Depending on the simulation level chosen, the program asks
the user for the parameters of the system ( properties of
both the entities going through the system and the service

facilities in it). A great similarity exists in the input of



72

the four simulation levels. For this reason, only one level

will be discussed (machine simulation, level 4).

Now the user is asked for:

i-

The number of products: a maximum of 5 different
products could be simulated at the same time. It
is expected that the user enters a number between
one and five inclusive. If he(she) fails to do so
the same question reappears.

The number of machines in the layout or the
system: 1 is a minimum, 35 is the maximum for each
product.

The number of operations needed before the product
leaves the system. The user can have as many as
he(she) wants, no restriction exists.

The user hag to chose then, according to the menu
shown below, the arrival probability distribution

for'each product.

1- CONSTANT 2- NORMAL
3- UNIFORM 4- EXPONENTIAL

If CONSTANT, the time constant is to be entered.
This number has to be greater than zero. If the
function is NORMAL, the mean and the standard
deviation are the next inputs. The mean has to be
greater than zero, the standard deviation greater
than or equal to zero. If the UNIFORM

distribution is the arrival function, the lower



73

and upper limits are the parameters asked for.

The lower limit has to be greater than or equal to
zero, the upper limit has to be greater than the
lower limit. In the last case, the EXPONENTIAL
distribution, the mean has to be greater than
ZEero.

Now, for each product the route needs to be
described to the program.

Next, the process probability distribution and
their parameters are needed for each product at
each workstation. The same distributions that
were used to determine the arrival rates are
included here.

The probability of a defective product is the next
property to input. For each product and at each
workstation, the user needs to enter the
probability that the product passes inspection and
the probability , if the product is defective, it
cannot be reworked. These two numbers have to be
between zero and one with their sum less than or
equal to one.

Last but not least, the user has the option to

chose extra statistics concerning some prechosen

measures of performance. For each question, if
the user wants to take the option, "1" needs to be
typed; any other number means the opposite. These

statistics concern:



74

- The inspection statistics.

- The times between completion of products.

- The interval statistics (time in system).
If this stage is reached, the system should be back to the
READY mode because the run of the INPUT program THESISZ has

Jjust been finished.
The Simulation Program

Compared to the INPUT program, the user does not have to
do very much to have the simulation performed (which is one
of the main objectives of this project). Assuming that the
user is still on the system and the ready mode is displayed
on the screen, to run the simulation the user needs to do the
following:

1- First, free the storage file updated by the INPUT

program. The user needs to type the following:
FREE FTO3F001.CNTL

2- Second, submit the Jjob by typing the statement

below:
SUBMIT THESIS1.DATA

The system should prompt back and ask for the job
character. Any alphanumeric single character
could be typed (i.e H ). At this stage the job
should be submitted and execution should have

begun. If the status of the Jjob needs to be



75

checked and the READY mode is still displayed, the
user needs to type IOF . Through IOF and assuming
the run was completed, the user can see the output
of the simulation after choosing the job needed
and typing 8 which will show the SLAM report on
the screen. The output could also be sent to the
local printer Jjust by releasing the Jjob, assuming
that the user is still in the IOF mode (i.e. 1 R ,
which asks the system to release job number one to

the local printer).
How to Read the Output Report

The SLAM output report has three parts: the SLAM echo
report, the user echo results, and the SLAM summary report.
The SLAM echo report is just a feedback that shows the
general options, the limits on the files, the file summary,
the random number stréams, the initialization options, and
the variables allocation. This first report should not
constitute any interest to the analyst. The second report
first gives some general information about the software and
then echoes the input of the user. Reading this feedback
should not cause any problems. It just provides the summary
of each product separately (the arrival distribution and
parameters, the route the product takes in the system, the
processing time at each facility, and the information related
to inspection).

The last and main report, the SLAM summary report,



76

provides the statistics for variables based on observations,

the file statistics, and the service activity statistics.
Statistics for Variables Based on Observations

This section of the output report gives the mean value
of the time that an entity spends in the system and its
standard deviation, both the maximum and minimum times that
entities spent in the system, and finally the number of
entities that reached that node. The nodes labels and their
use are disbussed below:

1- P? DEF TIME : collects statistics for defective
products without distinguishing the
different kinds.

2- P1 through P5 DEF TIME : same as before, except that
each kind has it own statistics.

3~ P1 through P5 BET DEF : collects statistics on the
time betweén two defective products.

4- T SYSTEM TIME : time spent in the system by entities
that passed inspection.

5- P1 through P5 SYSTEM TIME : time spent in the system

_ by each product.

8- P? BET COMP : time elapsed before two entities left
the system regardless of their kind.

7- P1 through P5 BET COMP : sawme as before but
statistics are collected for

gach product type separately.



77
File Statistics

This section displays statistics for each of up to
thirty five queues, depending upon the number of machines in
the system. The label corresponds to the facility, for
example Qll is the queus for machine 11. These statistics
give the average length of the queue and its standard
deviation, its maximum and current length through the
simulation, and finally the average waiting time in the

queue,
Service Activity Statistics

For each facility, all the statistics are provided.
They are the service capacity, the average utilization, the
current utilization when the simulation ended, the entity
served by the facility, and the maximum idle and busy times.

Using the statistics provided in this report will be
discussed later through some examples. It should be noted
though, that, depending on the system and the purpose of the

simulation, the importance of each kind of statistic varies.

How to Prepare for a Simulation Session

Using the Software

To help the user manage his(her) time better and ﬁo
avoid possible confusion when using this software it is
advised that he(she) complete Form A and Form B before even
logging on to the system. Form A, shown in Figure 25, is

designed to contain the general information needed for the



Froject Number

Dapar-tmant 3

User Name @

Simulation Reference:

Simulation Level [*

Duration of Simulation @

Mumber of Froducts to Simulate

Mumber of Machine in the Layout @ ’

Figure 25 Form &

|

78



79

simulation. Form B, shown in Figure 286, is used to keep
records of the products and their different properties. It
should be noted that for each kind of product a separate Form
(Form B) is needed.

To illustrate how to fill the forms already mentioned,
the following example is considered:
A simulation is to be performed on April 12, 1987. The
project number for this simulation is IHJ123. The department
that required this simulation is PRODUCTION. The name of the
person that was asked to conduct the simulation is Joe Doe.
The simulation reference is 1. The simulation is to be
performed at the workstation level: level 4. The time of the
simulation is 150 minutes. Two products are to be
considered. The route of these products are shown
respectively in Figure 27 and Figure 28. Five machines are
used. Four operations are used for product one and three for
product two. Product one arrives according to a constant
distribution every 14 minutes. Product two arrives according
to a constant distribution every 12 minutes. The processing
times for product one are according to a constant
distribution of 8 minutes in machine 1, a uniform
distribution with a lower limit of 3 minutes and an upper
limit of 10 minutes in machine 2, an exponential distribution
with a mean of 6.5 minutes in machine 3, and é normal
distribution with mean of 7 minutes and a standard deviation
of 3 in machine 4. Product two is processed according to a

constant distribution in all three machines. The constants



Mumb g

ArEd va

o

1

Typne
Farameter 1
Farameter 2

Operation

Mesded

u
"

u
H

(% peon, g0 o Jouo guan
For the

Froduct s

Froability Distribubtion

Fa

~

-ility

Frocess Frobability

Digtribution

Imspection %

T vpe

Farameter

Hood o s

oy
F

This

Figur

ik e

should be b

& Form &

5

Cwsen Jero

anrd

80



81

L§nmﬁﬁﬂﬁﬁlmﬁ?ﬁﬁﬂuﬁéﬁﬁmﬁﬁmﬂﬂéﬂ%ﬁﬁWﬁﬁmﬂﬁﬁm%wﬁﬂ"ﬁhﬁﬁﬁﬁﬁ?ﬁ%ﬂ"ﬂﬁﬁmﬁﬂﬁﬁﬂﬁ*ﬁmﬂ%ﬂﬁﬂﬂﬂEﬁﬂ!ﬁ!}‘ i uﬁﬁ"ﬁiﬁiﬁ
4 1 2 4 5 6 7 fﬂ4
11 f—af 12 [—»| 13 14 15 16 17 |
g

I i

21 22 23 24 25 26 27

.

,..fl

%1 32 33 34 35 36 37 ‘%

41 4z 4z 44 45 46 47 ,;J

|

51 52 53 54 55 =56 57 o

i E— — i n i
e

Figure 27.

Route of Froduct 1



82

Figure 28. Route of Froduct 2



83

are 8, 9, and 7 minutes respectively. It is assumed that all
the machines produce no defective products except machine
three of product one which has a probability of .9 good
products and a probability of .1 scrap, machine four of
product one which has a probability of .9 good products and a
probability of .01 scrap, and machine three of product two
which has a probability of .85 good products and a
probability of .11 scrap. Figures 29, 30 and 31 show the
forms filled for this example. Figure 32 on pages 87 to 92

show the output obtained from running the previous example.



Froject Number PIHPTL 213

3
—t
i
=

Dapartmernt & [FPIRIOIDIIH

Uner Name : JIOE DIOE

ot

Simalation Reterernce:

SQimulatiorn Level £

Duration of Simulation @ ITAS . Jioto

Mumber of Froducts to Simulate Lﬂ

Mumber of Machine in the Lavout

Figure 29, Form & of Example

84



F

RODUET

# 5 1

Fuamber

Tl

ival
Type
Farameter 1
Farameter 2

ot

of Operation

Mesded for

Frobability Distribution

v COMSTAMT

» 14

»

tihe

oo

85

Facility

Frocess Frobak
DRDistribution

ility

Inspecti

Tvpe

Faramet er

-y

Good

11

o

13

sy
il et

COMSTAMT

UKNTIFORM

EXFONENTIAL

NORMAL

3

-

L =
[o= ¥

i
d

1

kS

This nunber

Figure

b

should be

. Form B for

between

Laro

aricl

Froduct 1

Oryge.,



Mumber

Al oval

-
arr

Type
Far amet

Faramete

ot

&2

Operation Me

o]
-

el

Jeid

» CONSTAMT
CR

For

b

Frobability Distribution

Forochact

86

n
u t

)
=3

s

i

i lity

-
=

Frobab
Llution

1ity

Inspectio

nod

Type

Faramatar

Good

B s

B lar)

et

CONSTANT

COMETANT

COMSTENMT

g

¥ This

FiLkmb e

3. Foram

should be

betwaern

o

ferao and

Froduct &

Cires



MENU-DRIVEN MANUFACTURING SYSTEM
SIMULATOR

VERSION 1.0
RELEASED APRIL 1987

DEVELQOPED BY :
IMED JAMOUSSI

UNDER THE SUPERVISION OF -
DR. JOE H. MIZE
AT

OKLAHOMA STATE UNIVERSITY
DEPARTMENT OF INDUSTRIAL ENGINEERING

FOR MORE INFORMATION CALL (405)-624-6055

Figure 32. Output of the Sample
Example

87



GENERAL INFORMATION

SIMULATION REFERENCE
DEPARTMENT : PRODUCTION
OPERATOR NAME
LEVEL OF SIMULATION
DURATION OF SIMULATION
NUMBER OF FACILITIES

NUMBER OF PRODUCTS

Figure 32. {continued)

88



PRODUCT # 1

ARRIVAL DISTRIBUTION : CONSTANT
PARAMETER(S) : 14.0000 0.0000
GOES TO FACILITY 11. IN THE 1 PLACE
PROCESSING DISTRIBUTION : CONSTANT
PARAMETER(S) : 8.0000 0.0000
PERCENTAGE OF REWORK : 0.000

PERCENTAGE OF SCRAP : 0.000

GOES TO FACILITY 12. IN THE 2 PLACE
PROCESSING DISTRIBUTION : UNIFORM
PARAMETER(S) : 3.0000 10.0000
PERCENTAGE OF REWORK : 0.000

PERCENTAGE OF SCRAP : 0.000

GOES TO FACILITY 13. IN THE 3 PLACE
PROCESSING DISTRIBUTION : EXPONENTIAL
PARAMETER(S) : 6.5000 0.0000
PERCENTAGE OF REWORK : 0.000

PERCENTAGE OF SCRAP : 0.100

GOES TO FACILITY 23. IN THE 4 PLACE
PROCESSING DISTRIBUTION : NORMAL
PARAMETER(S) : 7 .0000 3.0000
PERCENTAGE OF REWORK : 0.090

PERCENTAGE OF SCRAP : 0.010

Figure 32. (continued)

89



PRODUCT # 2

ARRIVAL DISTRIBUTION : CONSTANT
PARAMETER(S) : 12.0000 0.0000
GOES TO FACILITY 11. IN THE 1 PLACE
PROCESSING DISTRIBUTION : CONSTANT
PARAMETER(S) : 8.0000 0.0000
PERCENTAGE OF REWORK : 0.000

PERCENTAGE OF SCRAP : 0.000

GOES TO FACILITY 22. IN THE 2 PLACE
PROCESSING DISTRIBUTION : CONSTANT
PARAMETER(S) : 8.0000 0.0000
PERCENTAGE OF REWORK : 0.040

PERCENTAGE OF SCRAP : 0.110

GOES TO FACILITY 23. IN THE 3 PLACE
PROCESSING DISTRIBUTION : CONSTANT
PARAMETER(S) : 7.0000 0.0000
PERCENTAGE OF REWORK : 0.000

PERCENTAGE OF SCRAP : 0.000

Figure 32. {continued)

90



P? DEF TIME

P1 DEF TIME

P1 BET DEF

P2 DEF TIME

P2 BET DEF

P3 DEF TIME

P3 BET DEF

P4 DEF TIME

P4 BET DEF

PS DEF TIME

PS BET DEF

T SYSTEM TIME

P1 SYSTEM TIME

P2 SYSTEM TIME

P3 SYSTEM TIME

P4 SYSTEM TIME

PS SYSTEM TIME

P? BET COMP

P1 BET COMP

P2 BET COMP

P3 BET COMP

P4 BET COMP

PS BET COMP

FILE ASSOC NODE

NUMBER LABEL/TYPE
1 Q11 QUEUE
2 Q12 QUEUE
3 Q13 QUEUE
4 Q14 QUEUE
5 Q15 QUEUE
6 Q16 QUEUE
7 Q17 QUEUE
8 Q21 QUEUE
k] 022 QUEUE
10 023 QUEUE
11 Q24 QUEUE
12 Q25 QUEUE

MEAN
VALUE

©.3800E+02

O.3800E+02

0.3731E+02
0.3733E+02
0.3729E+02

0.8000E+0O1
0. 1538E+02
0. 1600E+02

S

LAM II

SIMULATTON PROJECT IGPSSMP

DATE 4/12/1987

CURRENT TIME
STATISTICAL ARRAYS CLEARED AT TIME O.000CQOE+00

0.1502E+03

SUMMARY

REPORT

8Y IMED JAMOUSSI

RUN NUMBER

**STATISTICS FOR VARIABLES BASED ON OBSERVATION**

STANDARD
DEVIATION

0. 0000E+00

NO
NO

VALUES
VALUES

0.0000E+00

NO
NO
NO
NO
NO
NO
NO

VALUES
VALUES
VALUES
VALUES
VALUES
VALUES
VALUES

0.6470E+01
0.3421E+01
0.8600E+01

NO
NO
NO

VALUES
VALUES
VALUES

0.2101E+01
0.3035E+01
0.2687E+01

NO
NO
NO

VALUES
VALUES
VALUES

COEFF. OF
VARIATION

0.0000E+00
RECORDED
RECORDED
0.0C000E+00
RECORDED
RECORDED
RECORDED
RECORDED
RECORDED
RECORDED
RECORDED
0.1734E+00
0.9164E-01
0.2306E+00
RECORDED
RECORDED
RECORDED
0.2627E+00
0.1973E+00
0.1673E+00
RECORDED
RECORDED
RECORDED

**FILE STATISTICS*»

AVERAGE
LENGTH

Figure 32.

00000000000 ON

.2280

0000

STAND

DEVIATION

00000000000~

0.

0.
o
0.

0.
0.
0.

ARD MAXIMUM

3821
0000
0000
0000
Q000
0000
0000
0000
0813
3480
0000
0000

LENGTH

0O0+-+0000000OW

MINIMUM
VALUE

3IBOOE+02

- 3800E+02

2400E+02

.3237E+02

2400E+02

$733E+01
1273E+02
1337€+02

CURRENT
LENGTH

00000000000

(continued)

MAXIMUM
VALUE

0.3BOQE+02

0.3800E+02

0.4800E+02
0.4054E+02
0.4800E+02

0. 1294E+02
0.2057E+02
0. 1984E+02

AVERAGE
WAITING TIME

15.2183
.0000
.0000
0000
0000
0000
0000
0000
1111
3234
0000
0000

00-00000000

1 OF 1

NUMBER OF
OBSERVATIONS

1

~N0Ow

OounN

91



‘ze 2an3dtd

(penurquoco)

ACTIVITY
INDEX

CONONMBWN =

026
Q27
Q31
032
033
034
Qas
Q36
Q37
Q41
042
043
Qa4
Q45
Q46
Qa7
051
Q52
053
Q54
Q55
Q56
Q57

QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE
QUEUE

CALENDAR

START NODE OR
LABEL

ACTIVITY

FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY
FACILITY

11
12

0000

000000000000000000000000
Q
o

AO0000000000O0O000O00O00O0O0O000

**SERVICE ACTIVITY STATISTICS**

SERVER
CAPACITY

b b ok ek ok ok ok ok b b b ak b mh b bk b oeh mh b b b ok b b eb bk eb o ko

AVERAGE
UTILIZATION

0.9201
0.2738
0. 1248
0.0000
0.0000
0.0000
0.0000
0.0000
0.5393
0.7229
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

STANDARD
DEVIATION

0.2711
0.4459
0.3304
0.0000
0.0000
0.0000
0.0000
0.0000
0.4985
0.4476
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

' 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

MO000000000000000O000000

CURRENT
UTILIZATION

0000000000000 000000000Q00~0000D00 =~

+00000000000000000000000
[o]
Q
Q
o

AVERAGE
BLOCKAGE

Q0000000000000 0ONO00000000000000000

Q000
0000
0000
0000
0000
0000
0000
0000
Q000
0000
0000

-0000

0C00
0000
0000
0000

.0000
.0000
.0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

MAXIMUM IDLE
TIME/SERVERS

12.0000

28.0000

32.1993
150.2010
150.2010
150.2010
150.2010
150.2010

20.0000

29.0000
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010
150.2010

MAXIMUM BUSY
TIME/SERVERS

138.2010
8.8738
6.1216
0.0000
0.0000
0.0000
0.0000
0.0000

18.0000
55.3074
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
©0.0000
0.0000
0.0000

ENTITY
COUNT

-

-

000000000000 0000000000OOUBOOO0O0ONNN

A<



CHAPTER X
SCOPE OF THE MODEL

In the second chapter of this project dealing with the
objectives of the study, a few possible applications of the
model were discussed to give the feel of the need to use the
software. It was mentioned then that a more detailed
description of the applications will follow. This section is
Jjust an attempt to go through the most important situations
that could be studied through this software.

When implementing this study, the ability to simulate
different manufacturing environments was considered to be the
first and major goal. Simulation of a given manufacturing
system could be carried out at different levels and also at
different stages of the life of the system. MDMSS could be
of use to determine potential pfoblems in the existing
system, to evaluate alternatives for future implementations
of the system, or Jjust to try to search for ways to ensure
better use of the resources existing in the system.

In many manufacturing applications, sometimes, problems
are detected in production. . Although it is usually easy to
discover the existence of these problems, solving them is
more challenging: locating and identifying the problem is

vital to find a quick solution. In this case, MDMSS could be

93



94

recommended. In fact, it can, for examplq, trace back the
problem up to the workstation that is delaying Jjobs. Once
this is done, corrective action could be taken.

Scheduling is another application of MDMSS. With this
software, the manufacturing engineer could simulate the
routing of the products in a manufacturing environment.

After the simulation is performed, analysis of the measures
of performance, such as the status of the queues and the
utilization of the service activities, should give the
analyst a good idea on the validity 6f that routing. If the
results were found unsatisfactory, a different schedule is to
be developed (using the results from the previous simulation)
and fed to the software to enable it to perform another
simulation. This process could be repeated until the optimum
alternative is found.

The continuous change nowadays in the supply and demand,
as well as the increasing competition, force organizations to
make changes in their processes in order to guarantee théir
survival. Making changes is always difficult, especially
when these changes can slow down the existing input
throughput in the system. For this reason, simulation is
found to be probably the best tool to be used. MDMSS is a
candidate model to be considered. As an example, introducing
a new machine, a new product, or even a new line could be
vital to the organization. Instead of carrying out the idea
without being sure of the outcome (where huge amounts of

money could be on line), the modification could be done on



95

the computer first, then and only then, a decision is
recommended.

Even when a process is in control, MDMSS could be used
to see if the facilities are used in the best manner. This
might sound contradictory, but it can happen: having a stable
system might lead people to believe that they are uéing the
system in the best way. Like Imam Ghazali (a philosopher)
said once: doubt is a way to reach the truth; manufacturing
engineers should ask themselves if the system is uséd in the
most profitable way, and whether it could be improved.
Answering these questions is sometimes not easy; MDMSS could
simplify them.

To summarize, the developed software, although at its
early stage (version 1.0), could be used in many situations.
The purpose of this chapter was to familiarize the reader
with the idea behind the software, and how and where it could
be used. BSpecific situations were not discussed here because
it was thought that they might draw an imaginary limit to the
use of MDMSS. It is up to the engineer, more specifically to

his(her) creativity, to get the most out of this software.



CHAPTER XI
YALIDATION AND VERIFICATION

Simulation is the science and art of representing a
system with a model. In other words, a simulation model
could be considered as a laboratory version of a system.
Simulation models are used to understand or draw inferences
about a system or a situation. Because of the importance of
the inferences to the decision makers, the analyst needs to
have high confidence in the model built. For this reason, a
very critical (sometimes very challenging) step in the
" simulation is the evaluation of the model. This is done

through validation and verification.
Verification of the Model

Kelton and Law defined verification as follows: " It is
determining whether a simulation model performs as intended,
i.e. debugging the computer program. (23] The following five
techniques are generally used to debug the computer program:

1- Write and debug the program in modules.

2- Have other persons walk through the program to avoid

any mental rut.

3- Use a trace to follow the logic carried out by the

Program.

96



97

4- Use the model for simple situations where anticipated
results could be obtained which would be a basis to
compare the results provided by the simulation.

5- If possible display simulation in a graphic mode.

This procedure is to be carried out in the next chapter when

the model is going to be subject to verification and testing.

Validation of the Model

According to Kelton and Law, validation is determining
whether a sihulation model (as opposed to the computer
program) is as accurate representation of the real-world
system under study "[23]. Before going into the validation
approaches, it is only fair to note that a model is usually
validated relative to some decision making criteria. Naylor
and Finger developed an approach for validation([23]. This
approach lies on the following steps:

1- Develop a model with high validity. Comparing the
model to the system under study is the first step to
validation, it is done through conversation with
experts to understand the system to be validated,
observation of the system, and using intuition.

2—- Test the assumptions of the model empirically if
possible. An important factor in this step is
sensitivity analysis. This analysis determines the
level of detail at which a subsystem is to be

modeled.

3—- Verify how representative the simulation output data



98

is. Historical data is most commonly used.
Validation of this software can not be generalized. When
simulating a system, the analyst should make sure that
he(she) has an accurate, or at least a close representation

of the real-world system under study.
Steady State Analysis

When simulating a system, a steady state is said to be
reached when a "GOOD" estimate of the measures of performance
is found. Usually, these measures of performance are defined
as limits as the time of the simulation goes to infinity. In
practice, this can be very costly, depending on the
complexity of the situation. Consequently, a trade off is to
be considered between good results and high expenses. When
statistics are collected using simulation, the initial
conditions are usually a factor. The starting state could be
initialized in different ways, probably the most widely used
initial state is what is called the "empty and idle |
environment". Using this means initializing all service
facilities to be idle and starting the simulation with no
entities waiting in the system. Usually, steady state can be
reached using this condition. Contrary to what most people
think, steady state is not the lack of variability in the
statistic.: results obtained from the simulation,.but rather
the consistency in the variability, if such variability
should exist. Because of the nature of the initial

condition, one needs to be sure that the simulation, or more



99

precisely the simulation results, are independent from the
starting conditions. In other words, theoretically, a
Justified initial condition should not predetermine the
simulation outcome or even part of it.

To summarize, verification, validation, and steady state
are issues that are more and more being discussed and'
considered to be possible setbacks for the simulation tools.
In this project, verification of the model was performed (and
will be discussed in the next chapter), wvalidation though is
going to be contingent to the system to be modeled. Finally,
the steady state, also a parameter of the system, has to be

determined by the analyst.



CHAPTER XII
PROGRAM TESTING

Testing MDMSS, or any other software as a matter of
fact, is a challenging task. In fact, the different options
offered by the software need to be checked, and various
situations need to be anticipated.

To test MDMSS, it was decided that simple systems needed
to be used; this way the simulation performed could be
followed, and the validity of the software could be
determined. The first used example consisted of a simulation
of a single product that needs to be processed with two
machines. All the relative data and results to this example
are shown in Appendix Bl. To decide if the simulation was
performed the way 1t was supposed to be, a SLAM trace, shown
in Appendix Cl, was obtained. A detailed analysis of the
trace showed that events were occurring in the proper
sequence and that all the relationships in the model were
properly observed during the simulation execution. It was
therefore concluded that the software was working properly.
The next step consisted of comparing the results of the
simulation to the anticipated results. The arrival rate used
for the product was set to a constant of ten units, the

processing times at the first and second machines were also

100



101

constant, equal respectively to twelve and fourteen units.
One should anticipate that only five products could be
processed if the duration of the simulation Qas one hundred
units. That was exactly what was shown in the summary
report. Only the two machines specified showed any
utilization during the simulation. The same conclusion was
drawn about the gqueues. The summary report also showed no
defective parts in the system which agreed with the initial
specification of the user. Concisely, through this first
example, the software showed no sign of inconsistency or
problems.

With the already described data, a second simulation was
performed. This time the user specified that the statistics
for variables based on observations need not to be collected.
As Appendix D1 shows, the report clearly confirms that this
option works.

Example three was used to check if the inspection option
is available. One more time, a trace, shown in Appendix E1,
was asked for to check the logic of the simulation.

Following the trace as well as checking the results of the
summary report shown in Appendix Fl, made clear the validity
of the inspection option in MDMSS.

In the last three examples, the different capabilities
of the software were checked individually. It was
anticipated that, mixing all of them in one example, would
even convince the reader more about the validity, the

flexibility, and the power of this software. For this



102

reaéon, two products were simulated. The two products shared
one machine, different defective percentages were allocated
for different machines, and all statistics were required. To
solve this problem analytically would have required a lot of
time. A trace, shown in Appendix Gl, was the best way to
follow the simulation. After studying this trace and the
resuits shown in Appendix H1l, no doubts remained about the

validity of MDMSS.
Schriber Production Shop Example Visited

At this stage of the research, MDMSS has been tested
with only examples developed specifically for this purpose.
It was anticipated that the credibility of this software
would be a lot better if a model is tested with an example
already run using a different model. After going through the
literature, it was found that the most apprﬁpriate example is
a case study provided by Schriber{34]: Simulation of a
Production Shop. The same example was worked by Pritsker,
with a little modification. The statement of the problem is
shown in Appendix I1l, the solution of Pritsker is in Appendix
J1. It should be noted that a few changes had to be made so
that the example and the software were compatible. In fact,
the example states that the Jjobs arrive with an exponential
interarrival time with a mean of 9.6 minutes; then twenty-
four percent of the jobs in the stream are of Type 1, 44
prercent are of Type 2, and the rest are of Type 3. In

MDMSS the arrivals of Jjobs have to be independent; which



103

means that before using the model, an approximation of
these arrivals had to be made. Appendix K1 shows a simple
simulation used to determine these arrivals. As Appendix L1
shows, the new arrival times for the different jobs were
approximated to a constant distribution with Type 1 arriving
on the average every 34.71 minutes, Type 2 every 23.24
minutes, and Type 3 every 22.68 minutes. One might ask if
these are valid approximations? In this specific case the
answer 1s yes because the example is only used to verify the
validity of the software developed and the results are not to
be used for decision making. Appendix M1l shows the results
obtained from running MDMSS with the example of the
Production Bhop. Before any further analysis of these
results, one should realize that the approximation of the
arrivals of the jobs could play an important role in the
error that could be accumulated leading to differences
between these results and Pritsker results. In fact, in
comparing the two sets of reports, some obvious similarities
as wéll as some differences are apparent: the utilization of
the machines are considerably close, the same conclusion
holds with the number of jobs served during simulation, and
some of the times spent in the system. On the other hand,
some of the queue lengths are quite different. This
difference is due primarily to the difference in the
distribution of the arrivals of the jobs. Also it might be
of importance to note that statistics were collected

differently in this run and in Pritsker’s model which could



104

contribute to the differences in the results. To summarize,
the results obtained with the MDMSS model, while different
from those obtained by Pritsker’s model, were sufficiently
close that they added support to the validity of the
software.

Claiming that the software works is based on good
and valid tests; nevertheless, everything is possible and

bugs may exist.



CHAPTER XIII
RECOMMENDATIONS FOR FUTURE IMPLEMENTATIONS

Developing new software of the magnhitude of MDMSS
requires a lot of research, insight, and especially time. A
working core was the goal of this project. In fact, it was
clear from the start that a complete model can never be
achieved at this stage. The primary reason was related to
time constraint to submit this project. But, all along the
development of MDMSS, serious considerations were anticipated
to make any future work and implementation of the software
possible without any major changes; that is why the modél is
well documented both externally and internally. An easy
structure of the programs has also been followed so that
others interested in taking the software one step further do
not find major problems to interface their work.

In the first chapter, it was mentioned that MDMSS is a
software that, hopefully, is a candidéte to be part of a
bigger picture: one of the many models that form a very
powerful simulator. Although this simulator is not now
available, serious research is being done in the School of
Industrial Engineering and Management at Oklahoma State
University under the direction and supervision of Dr. Joe H.

Mize to put this concept to application. This research is

105



106

referred to as the computer integrated manufacturing system
(CIMS) which is thought to be the next breakthrough in the
sector of manufacturing. The order in which the
recommendations are to be discussed later does not imply any
priority form.

MDMSS does not give the user the chance to choose a seed
for generation of random numbers needed to obtain some
distributions. Although this may not appear to be a major
setback, it could be of great importance when multiple
" independent simulations are needed. As it is now, if the
program is run at any time, the program will select the seed.
It happens that for independent runs, if the seed chosen is
the same, the same exact results will be given.

When simulating a mix of products, it is assumed that
the mix is fixed; which means that MDMS35 has a static status
in this first version. Although, this is true in some
manufacturing environments, in others this restriction would
misrepresent the actual system. To solve this problem,

MDMSS should be able to simulate both types of systems. A
new module needs to be added. This module has to give the
user the opportunity to use either, a static or dynamic
simulation. The restriction of having the same product mix
throughout the simulation should disappear. This leads to
talk about the initial conditions of the simulation. The
software is designed such that the initial conditions are set
to "empty idle"” which means that when the simulation starts,

there are no entities waiting for service and all facilities



107

are idle. In most cases, this assumption is wvalid, but to
have a real general purpose simulation model, such a
limitation should not exist: the analyst should have the
flexibility to decide on the initial conditions.

Although the INPUT program is menu driven, user
friendly, self checking, and has free format input, it is
still missing an important feature: the ability to access the
storage file for a particular data item and change it. This
feature was not overlooked, rather, it was Jjudged not to be
of primary importance at this stage. Random access to the
file could be guaranteed either with the same INPUT program
or with a new program written to read the file and give the
user the chance to alter any value or values needed before
the simulation is performed one more time. This option could
be of great importance, especially if the amount of the data
is large.

Multiple simulations are usually required to find the
optimum solution to the problem. Iteration mode can be the
best way to run the simulation in this case. For different
runs, obviously, the data needs to be changed. These changes
could be at two different levels: the first and traditional
way to do it is simply through having the analyst input
different sets of data before the simulation is performed.
The second way is to develop an expert system module that,
using some predetermined rules, accesses the simulation
results and according to those results alters the data, or

part of it and submits the simulation one more time. This



108

procedure is repeated until good results are obtained. To
interface either procedure with MDMSS, a CLIST program would
need to be developed. This program has only commands that
can be processed from the operating system of the computer
used (it is not subject to FORTRAN or any other language).

Since the concept of expert systems and knowledge based
system has been mentioned, it seems appropriate to describe
how MDMSS could benefit from these concepts to be part of the
bigger simulator to be implemented in the CIMS project. Any
computer integrated manufacturing system has to have the main
property of interfacing its different modules so that when
one change is made, the entire system updates itself.
Knowledge and expert systems seem to be the logical connector
of the simulator: first a simulation is performed at one
module when an optimum solution is found in that module then
knowledge and expert systems should be able to update the
data respective to their own module and a simulation is
performed. Feedback to other modules is then passed through
these connectors (expert and knowledge systeﬁs). What might
be a challenging project is to try to anticipate and decide
on the expert and knowledge base systems that are to connect
MDMSS with the remaining CIMS simulator.

In this version of MDMSS, the queues in front of the
service activities are assigned to have an infinite capacity.
This assumption could be misleading in many instances. In
fact the bigger the quantity of work in process is, the more

the carrying costs are. The user should somehow have the



109

option to decide on the capacity of those queues. A module
could be added to MDMSS to allow this option. Through the
same model or subprogram, the user should be able to set some
rules that can perform logical decisions when a particular
queue reaches its maximum capacity. This decision could vary
from blocking the activity to making the next coming products
to take different routes.

In real life manufacturing systems, when a product is
serviced by a certain facility and before it reaches the next
one, some travel time is spent. Currently, this time is not
included in the model. The INPUT program should be modified
to include this. Another way to do the same thing is to
interface MDM35 with a travel time matrix which identifies
the facility the entity is leaving and the one it is going
to. The matrix determines then the travel time and feedé it
to the simulation model.

Assigning priorities is another area that is subject to
improvement. For simplification purposes, the first come
first served rule was used. This was Jjustifiable for two
reasons; the first one is the fact that this rule stands
sometimes even in the real systems, the.second is that
assumptions had to be made to develop the model. Now that
the core is working, adding a new option such as this is
encouraged.

Other options that should be added to the model for
greater flexibility are including random facility breakdowns,

rescheduling of rework to different machines or even areas,



110

and provide batch processing and assembly. All these options
were not overlooked. In fact, it was believed that it is
wiser to develop a basic model that works properly and then
enhance it later, rather than have a model that has many
options and can not even be verified because of its
complexity. Facilities breakdowns is a legitimate phenomenon
to be considered. The modeler should include both scheduled
and unscheduled maintenance and repair in the system. Now,
after inspection, the entity simulated takes one of the three
next events: either it passes inspection and is scheduled to
a new operation, or it is determined to be scrap and is
thrown out of the system, or finally it was found to be
defective and Jjudged to be reworkable. In this last case,
currently, the product is routed back to the machine it just
left which is a fair assumption but not the only possible
one. That is why, future versions of MDMSS should have the
user decide where the defects need to go. Last but not
least, assémbly and consequently_batch processing should be
developed. The current version of the software could be
easily changed to accommodate this option.

As was mentioned in the early chapters, simulation of a
system could be performed at different levels ( four of
them). Another improvement of the software is have the INPUT
program read data for all the levels together, then, an
expert system should be developed as the driver of the
simulation: the expert system submits the simulation at one

level and then according to the results obtained, the purpose



111

of the simulation, and some predetermined logic, the expert
system should chose the next level to be simulated if the
need to do so exists.

Finally, at a later stage when the model is found to be
as complete as it could be, it would be wise to transfer this
package to diskettes so that it could be used at the personal
computer level. One might argue that a project of this
magnitude would be hard to run on a personal computer, but
with the new technology these "little" computers are getting
more powerful as well as faster everyday. If ever this»is
done, the package can be interfaced with the graphic portion
of SLaM II: TESS.

The recommendations given in this section, although
numerous, should not be considered as weak points of the
existing version.: Just getting the software to the point it .
is now, was very challenging. The reason is that the concept
had to be created from zero, with no previous experiences or
examples as guidelines. The model had also to be designed in

a way that it can accommodate new implementation easily.



CHAPTER XIV
SUMMARY AND CONCLUSION

The objectives of this project were set in chapter II:
a Menu-Driven Manufacturing System Simulator had to be
developed. The tool created, MDMSS, satisfies all the
objectives stated then. Althaugh MDMSS, in this first
version, has limited options, it shows that a comprehensive
simulation model is feasible. The model designed and created
is a tool developed primarily for the use of the
manufacturing engineers. Using MDMSS could solve problems or
provide educated inferénces for decision makers. One of the
advantages of the software is its ability to represent a
system without building the actual system, disturbing the
system, or destroying it. All this can be done without
-writing any programs. Through running two programs the user
causes the software to first picture the system and then
perform the simulation. The Jjob of the engineer is simply to
analyze the data and make any recommendations to the
management or to his(her) supervisors.

It should be noted though, that the actual version of
the program does not offer great flexibility in modeling, but
this should not be considered as a weakness of the softwars.

In fact, in the process of designing and creating thié model,

112



113

it was anticipated that by the end of this project only‘a
core of the software is going to be available for use. This
goal was achieved, and MDMSS is ready to be used. Later on,
other projects are encouraged to complete what has been
started and achieved in this first version of this simulation

software: MDMSS.



BIBLIOGRAPHY

1- Arumugam, V. "Priority Seqencing in a Real World Job
Shop." Simulation, Vol. 45, No. 4 (October, 1985H),
pp. 179- 185.

2- Asfahl, C. R. Robots and Manufacturing Automation. New
York: John Wiley & Sons, 1985.

3- Banks, J. and J. S. Carson II. "Process-Interaction
Simulation Languages."” Simulation, Vol. 44,
No. 5 (May, 1985), pp. 225-234.

4- Barrett R. T. and S. Barman. "A SLAM II Simulation
Study of a Simplified Flow Shop." Simulation, Vol.
47, No. 5 (Nonember, 1988), pp. 181-188.

5—- Bedworth, D. D. and J. E. Bailey. Integrated Production
Control Systems. New York: John Wiley & Sons,
1982.

6- BenJjamin, S. B. and W. J. Fabrycky. Systems Engineering
and Analysis. New Jersey: Prentice-Hall, Inc.,
1981.

7- Bryan, O. F. and M. C. Natrella. "Testing Large-Scale
Simulations." Byte, Vol. 10 (October, 1985),
pp. 183-190.

8-~ Burch, J. G. Jr., F. R. Strater, and G. Grudnitski.
Information Systems: Theory and Practice.
New York: John Wiley & Sons, Inc., 1983.

9- Buzacott, J. A. "Modeling Manufacturing Systems."

Vol. 2, No. 1 (1985), pp. 25-32.

10- "Catalog of Simulation Software.” Simulation, Vol. 47,
No. 4 (October, 1988), pp. 152-1865.

11- Cheng, T. C. E. "Simulation of Flexible Manufacturing
Systems." Simulation, Vol. 45, No. 8 (December,
1985), pp. 299-302.

12- "Computer Techniques Isolate Production Snags."
Production, February, 1977.

114



13-

14-

15—~

16-

17-

18-

19-

20-

21-

22-

23-

24-

25-

115

Degarmo, P. E., J. T. Black, and R. A. Kohser.
Materials and Processes in Manufacturing. New
York: Macmillan Publishing Company, 1984.

Demmel, J. G. " CHAP-M: Computer Hierarchy and Analysis
Program for Manufacturing." (Unpub. M.S. Report,
Oklahoma State University, 1985.)

Groover, M. P., M. Weiss, R. N. Nagel, and N. G. Odrey.
Industrial Robotics: Technology, Programming, and
Applications. New York: McGraw-Hill Book Company,
19886.

Computer-Aided Manufacturing. New Jersey:
Prentice-Hall, Inc., 1980.

Groover, M. P. Automation, Production Syvstems, and

Hanifin, L. E. "Increased Transfer Line Productivity
Utilizing Systems Simulation.” (D. Engeneering
dissertation, University of Detroit, 1975.)

Hanifin, L. E., 8. G. Liberty, and K. Taraman.
"Improved Transfer Line Efficiency Utilizing
Systems Simulation." Technical Paper MR 75-169,
Society of Manufacturing Engineers, Deaborn,
Michigan, 1975.

Houston, T. R. "Why Models Go Wrong." Byte, Vol. 10
{October, 1985), pp. 151-164.

Hughes, C. H., C. P. Pfleeger, and L. L. Rose. Advanced
Programming Techniques: A Second Course in
Programming Using Fortran. New York: John Wiley &
Sons, 1978.

"Innovative Computer Software Simulates Process -
Productivity Improvement Saves Millions."
Simulation, Vol. 44, No. 5 (May, 1985), p. 258.

Krick, E. V. An Introduction to Engineering: Methods,
Concepts, and Issues. New York: John Wiley &
Sons, 1976.

Law, A. M., and W. D. Kelton. Simulation Modeling and
Analysis. New York: McGraw-Hill Book Company,
1982.

Luker, P. A, and J. Stephenson. "Fourth UKSC Conference
on Computer Simulation." Simulation, Vol. 44, No.2
(February, 1985), pp. 296-100.

Merchant, M. J. FORTRAN 77: Language and Style.
California: Wadsworth Publishing Company, 1981.




26—

27-

28-

29-

30-

31-

32-

33-

34-

35—

36-

37-

38—

39-

116

Mittra, S. 8. "Discrete System Simulation Concepts."”
Simulation, Vol. 43, No. 3 (September, 1984),
pp. 142-144.

Mize, J. H. Production System Simulator (PROSIM V): A

User’s Manual. New Jersey: Prentice-Hall, Inc.,

1971.
Phillips, D. T. and R. F. Slovick. " A GERTS III Q
Application to a Production Line." Proceedings,

1974 Spring Annual Conference of AIIE, May, 1974.

Phillips, D. T. and A. A. B. Pritsker. "GERT Network
Analysis of Complex Production Systems."”
International Journal of Production Research, Vol.
13, No. 3 (1975), pp. 223-237.

Pritsker, A. A. B. and C. D. Pegden. Introduction to
Simulation and SLAM. New York: John Wiley & Sons,
1979.

Pritsker, A. A. B. Introduction to Simulation and
SLAM II. New York: John Wiley & Sons, 1984.

Pritsker, A. A. B. Introduction to Simulation and
SLAM II. New York: John Wiley & Sons, 1988.

Schallert, W. F. and C. R. Clark. Programming in

FORTRAN. Massachusetts: Addison-Wesley Publishing
Company, 1979.

Schriber, T. J. Simulation Using GPSS. New York:
John Wiley & Sons, 13974,

"Software Package Previews Automated Factory Designs.”
Design News, Vol. 41 (June 3, 1985), p. 25.

Strenski, E. and M. Manfred. The research Paper
Workbook. New York: Longman, Inc., 1981.

Tom, A. A. "Simulation Nets, a Simulation Modeling and
Validation Tool." Simulation, Vol. 45, No. 2
(August, 1985), pp. 71-75.

"Turner, W. C., J. H. Mize, and K. E. Case. Introduction

to Industrial and Systems Engineering. New Jersey:
Prentice-Hall, Inc., 1978.

Vollmann, T. E., W. L. Berry, and D. C. Whybark.
Manufacturing Planning and Control Systems.
Illinois: Richard D. Irwin, Inc., 1984.




APPENDICES

117



118

APPENDIX A

SOFTWARE LIST



119
SOFTWARE LIST

The following list is of the simulation languages
comercialized as of October 1986 and their brief
descriptions. These languages are available for
minicomputers and mainframes([35]:

AC-2, SST, PLATO : Programs for the stepwise checkrating of
heat exchangers. Education.

ACSL : Models and analyzes continuous systens.

ADSIM : A continuous systems simulation language including
compiler, utilities, interactive environment and large
libraries.

ASPEN PLUS : Simulates chemical process flow-sheets for
proposed or operating plants.

AutoCode : Generates machine independent, real-time source
code from simulation block diagrams.

BATCHFRAC : Batch distillation simulation program that
solves unsteady state heat and material balance equations.
BEST-NETWORK : Network simulation tool for throughput and
connectivity analysis/design. No programming necessary.
BORIS : Building-blocks oriented interactive modeling and
simulation system.

BWR MODELS : Full scope BWR plant system dynamic models, all
written in FORTRAN 77, as is or custom fit to the need.
CAMP : It derives system differential equations from bond
graprhs, block diagrams and their combination and delivers
them to ACSL for continuous simulation.

DARE-INTERACTIVE : Interactive simulation of continuocus



120

systems with enhanced run-time experimentation facilities and
interactive color graprhics.

DESCTOP : Direct—-executing simulation, 120 state variables,
screen editor, about FORTRAN speed, Tektronix color, FFT.
DESIRE V¥V 3.2 : Direct-executing simulation, 40 state
variables, screen editor.

DSNP : A simulation language for analyzing thermal hydraulic
transients.

D85/2 : A transportable FORTRAN 77 code for the numerical
integration of systems of ordinary and partial differential
equations.

EASYS : A software package which simulates dynamic response
and: performs control system analysis.

ENPORT-6 : ©Simulation of nonlinear dynamic systems modeled
with bond graphs and block diagrams. |

ESL : An advanced CSSL which provides both translator and
interpreter execution.

GEMS-II : Network-based discrete-event simulation language.
Designed for manufacturing systems. |
GPSS : Company offers several subsets of GPSS for various
equipment and purposes.

GPSS/H : State-of-the-—art language based on GPSS. Features
high-speed execution and interactive debugging.

GRbl : A transportable FORTRAN 77 code for the numerical
integration of nonstiff/stiff ODEs and one-dimensional PDEs
on an adaptive grid.

HEXTRAN : An essential tool for engineers involved in heat



121

recovery and enerdy optimization for the chemical processing
industry.

HYSIM : A comprehensive and complete process flowsheet
simulator for gas processing or oil refining.

Inter-SIM : Discrete-event simulation package with animation

facilities.

ISIS 80 : A continuous system simulation program and
language.
JADE : Boftware development environment which supports the

development, prototyping and simulation of distributed

systems.
LA/ACTION : Advance decision support system.
MANIP : Interactive modeling and simulation system for

thermal engineers.

MAP/1 : A modeling and analysis program for batch
manufacturing.

MAST : Simulation language for the study of integrated
manufacturing.

MDOF : Missile system engagement simulation with multiple
degrees-of-freedom.

MIDGET : Program generator for special-purpose operating
systems (simulation language environment).

MIRANIM : Director-oriented and extensible three-dimensional
computer animation system. |

OPTIK : A suite of visual, interactive modeling decision-
support tools, including discrete-event simulation and data

base facilities.



122

PAWS : Simulation language for performance modeling of
computer, commuhicating, and manufacturing systens, and other
similar systems.

PIPEPHASE : ©Simulates the steady state flow of single and
multiphase fluids in pipelines and piping networks.

PROCESS : Performs rigorous mass and energy balances. Unit
operation modules are incorporated for simulation of process
units.

PRO-MATLAB : Performs matrix analysis, control design and
analysis, digital signal processing, systems identification,

and engineering graphics.

PROMISE : Modeling of communicating parallel processes.
SANDYS : For time simulation of dynamic systems.
SCoP : Interactive simulation system based on C language.

Menu driven; gdraphic output; includes numeric library and
optimizer.

SIGMUS @ Simulation software generator for multiprocessor
systems, based on their structure and their instruction set.
SIMAN : General-purpose simulation language with special
features for modeling manufacturing systems.

SIMULA : General-purpose programming language embodying the
concepts of object-oriented programming. SimuSolv
Simulates behaviour, optimizers performance and estimates
phenomenological parameters.

SLAM II : Comprehensive simulation language permitting
discrete event, continuous, and network modeling.

SYSMOD : A general-purpose discrete/combined/ continuous



123

simulation language.

SYSTEM BUILD : Graphical, block diagram tool for interactive
modeling and simulation of dynamic systems.

TC-PROLOG : PROLOG based combined discrete/continuous
simulation and poblem-solving system.

TESS : An integrated interactive simulation support system
with relational database management system and graphics
capabilities.

TPS : An interactive graphics veal-time acquisition,
processing analysis system.

Workstation : Software system for simulation of point-to-

point digital communications systems.

See Why : Animated system simulation model, showing movement
of entities through work/service stations, queues, etc.
Simfactory : It simplifies factory design and production
analysis. Simfactory simulates service activities, it
provides the user with reports and animated picture of the
facility (i.e. factory) at work.

Micro Saint : This is a new package that allows to build
simulation models by Jjust responding to interactive menus.
No computer programs have to be written.

PROSIM : This simulator is constructed such that it can
simulate a wide variety of production environments. It is
mainly used as a teaching aid.

Xcell : It is é Factory Modeling System. This software

package is used to evaluate the design of a factory. A model



124

is build and the measures of performance of the factory are
collected. Computer graphics are employed both in the
construction of the model and in the display of the results.
SIMSCRIPT : This is another simulation language. It has
been used for different kind of projects (i.e. govermental,

industrial), it showed good performance.



125

APPENDIX B

FLOWCHART AND LISTING OF MAIN IN INPUT



Start

A

Call SCREEN

Call

INDFES

126



127

AY 1983) VS FORTRAN DATE: MAR 08, {987 TIME: 14:56:46

ONS (EXECUTE): NODECK,NOLIST,OPT(O)

ECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED NOTEST NOT
NOSYM NORENT SDUMP AUTODBL (NONE) NOSXM IL

OPT(0O) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARLE
* * 1o 2. 3......... 4. . 5......... 6......... T.* . 8
C===============S==S======-S=S=S=-=S==-S=S=S=C-=STSZS=S=SSSSTSSSSSTS=IS=ZSSS=SS=S=S=T==3 00000090
Crrorr 00000100
C...... PROJECT : THESIS FOR MASTER OF SCIENCE DEGREE IN 00000110
C...... IN INDUSTRIAL ENGINEERING 00000120
C...... CANDIDATE : IMED JAMOUSSI 00000130
C...... ADVISOR : DR. JOE MIZE 00000140
C...... LANGUAGE : FORTRAN & SLAM 00000150
C...... SYSTEM : IEM MAIN FRAME 00000160
00000170
00000180
00000 190
C 20000200
C 00000210
C 00000220
C...... LEVEL : LEVEL OF SIMULATION (AREA,CELL...) . ..... C 00000230
C...... NPROD : NUMBER OF PRODUCTS IN THE SYSTEM ..., C 00000240
C...... MACH : NUMBER OF STATIONS ... C 00000250
C...... M(5) : ARRAY TO KEEP TRACK OF PRODUCTS/MACHINES  ...... C 00000260
C...... NMACHK(5) : MUMBER OF MACHINES NEEDED PER PRODUCT ...... C 00000270
C...... ENTITY(5,35,2) : 5 MACHINES, 35 STATIONS  ...... C 00000280
C...... ENTITY(K,KK,1): TYPE OF PROCESS FUNCTION ......C 00000230
C...... ENTITY(K,KK,2): FLAG TO KEEP TRACK OF THE ORDER  ...... C 00000300
C...... PARA(S5,35,3) : 5 MACHINES, 35 STATIONS.  ...... C 00000310
C...... PARA(K,KK,1): PARAMETER 1 OF PROCESSING FUNCTION  ...... C 00000320
C...... PARA(K ,KK,2): PARAMETER 2 OF PROCESSING FUNCTION  ...... C 00000330
C...... PARA(K,KK,3): FLAG FOR PROCESSING FUNCTION TYPE  ...... C 00000340
C...... ARVAL(5,3) : ARRIVAL RATES PER MACHINE . ..... C 00000350
C...... ARVAL(K,1) : TYPE OF FUNCTION ..., C 00000360
C...... ARVAL(K,2), ARVAL(K,3): FUNCTION PARAMETERS {1 AND 2...... C 00000370
Crrorr 11 C 00000380
C'k****t**t*********#i:*****W*******IV*'&:?* AR EE S EEEEE LS SRS EE RS ARSI N PC Oooooago
====z==z=zz==z===z==z=sz=-s====z===z===s====z==z===z===z====s=z===z==z=====z=z==z=====2=0 00000400
1:::::C 000C0410
MAIN PROGRAM : C 00000420
———————————— .......C 00000430
THIS PROGRAM [S TO READ DATA AND ... ... C 00000440
STORE IT IN A FILE C 00000450
i : t:::::C 00000460
===m==zz=z=zz===mzcszs==s=zsssssSessSss=sasSs==ss=sS=ss=zs===s====z===z==========C 00000470
CALL SCREEN 00000480
CALL INPDES 00000420
STOP 00000500
END 00000510
SOURCE STATEMENTS = 4, PROGRAM SIZE = 484 BYTES, PROGRAM NAME = MAIN PAGE :

NO DIAGNOSTICS GENERATED.

OF COMPILATION 1 ##+¢+%w



128

APPENDIX C

LISTING OF SUBROUTINE CLSC



129

MAY 1985) ) VS FORTRAN DATE: MAR 08, 1987 TIME: 14:56:48

'FECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED NOTEST N
NOSYM NORENT SDUMP AUTODBL (NONE) NOSXM IL
OPT(0O) LANGLVL(77) NOFIPS FLAG(T) NAME(MAIN ) LINECOUNT(60) CHAR

00010630
00010640
00010650
00010660
00010670
00010680
00010690
00010700
SUBROUTINE CLSC 000107 10

C . 00010720
C=====>> LOOP TO CLEAR SCREEN. 00010730
C . 00010740
DO 10 IJK=1,25 . 00010750
WRITE(6,5) 00010760

5 *FORMAT(’ *) 00010770
10  CONTINUE 00010780
RETURN 00010790

END 00010800

SOURCE STATEMENTS = 7, PROGRAM SIZE = 588 BYTES, 'PROGRAM NAME = CLSC PAGE :

NO DIAGNOSTICS GEMERATED.



130

APPENDIX D

FLOWCHART AND LISTING OF SUBROUTINE SCREEN



131

Start

Display general
Information

l

Return




132

ECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM  OBJECT FIXED NOTEST N
NOSYM NORENT SDUMP AUTODBL ( NONE ) NOSXM IL
OPT(0O) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHAR
L 2. . 3., 4. ... 5. - A 8
C====================================================================C 00010350
C:: t1::::C 00010360
00010370
00010380
00010390
00010400
00010410
SUBROUTINE SCREEN 00010420
CALL CLSC 00010430
WRITE(6, 10) 00010440
10 FORMAT(///.38X, 'MDMSS‘) 00010450
WRITE(6,20) 00010460
20 FORMAT (38X, ' --~-~- ) 00010470
WRITE(6,30) 00010480
30 FORMAT(///,37X,’VERSION 1.0’) 00010490
WRITE(6,40) 00010500
40 FORMAT(///,36X, 'DEVELOPED BY :’) 00010510
WRITE(6,50) - 00010520
50 FORMAT(/,35X, 'IMED JAMOUSSI’) 00010530
WRITE(6,60) 00010540
60  FORMAT(//,27X,’PLEASE REPORT PROBLEMS TO :’) 00010550
WRITE(6,70) 00010560
70 FORMAT(/,35X, ‘DR. JOE H. MIZE') 00010570
DO 100 LuJK=1, 1200000 00010580
DUM=DUM+1 00010581
100 CONTINUE 00010590
CALL CLSC 00010600
RETURN 00010610
END 00010620
SOURCE STATEMENTS = 22, PROGRAM SIZE = 948 BYTES, PROGRAM NAME = SCREEN PAGE:

NO DIAGNOSTICS GENERATED.



133

APPENDIX E

FLOWCHART AND LISTING OF SUBROUTINE INPDES



[y

Start

FRead
Level

LLevel
E.G.

r3

[

Call
INFARE

Call
INFDEF

Call
INFCEL

Call
IMFMAC

FReturn

134



135

'ECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED NOTEST NC
NOSYM NORENT SDUMP AUTGODBL (NONE) NOSXM IL

OPT(O) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHARL
* oLk 1......... 2. B 4.0 .. 5......... 6......... T.* ... 8
C==========z==cs=z=z===zz==zzscos===ssssssSsS=ssSSsSSsSssSssssssssssssasss=========C00000520
C:irzrr: C00000530
C...... SUBRQUTINE INPDES : ..., C00000540
C...... =memesmssmsseeo———e-e CO0000550
C...... THIS SUBROUTINE GIVES THE USER  ...... CO0000560
C...... * THE CHANCE TO DECIDE ON THE LEVEL OF OPERATIPON.  ...... CO0000570
[ ::::::CO0000580
C============c=zs===z=a=z==zsssss=s=s=s=s==s=ss=ss=====s======s=================C00000590
SUBROUTINE INPDES 00000600
C 000006 10
‘C=====>> INITIALIZATION OF VARIABLES. 00000620
c 00000630
COMMON/USER1/LEVEL ,NPROD,M(5) ,MACH,NMACHK(5) ,ENTITY(5,35,2), 00000640
$PARA(5,35,3),ARVAL(5,3),DEF(5,35,2),TIMED 00000650
DO 1 K=1,5 00000660
DO 1 KK=1,35 00000670
DO 1 KKK=1,3 00000680
1 PARA(K,KK,KKK)=0. 00000680
DO 2 K=1,5 00000700
NMACHK (K) =0 00000710
DO 2 KK=1,3 00000720
2 ARVAL(K,KK)=0. 00000730
DO 3 K=1,5 00000740
DO 3 KK=1,35 00000750
DO 3 KKK=1,2 00000760
3 ENTITY(K,KK,KKK)=0. 00000770
DO 4 K=1,5 00000780
DO 4 KK=1,35 00000790
DEF(K,KK,1)=1 00000800
4 DEF(K,KK,2)=0. 00000810
C=====>> INPUT FROM THE USER 00000820
C 00000830
CALL INFO 00000840
5 CALL CLsC 00000850
WRITE(6,10) 00000860
10 FORMAT(’ THIS PROGRAM IS USED TO INPUT DATA TO BE USED FOR’) 00000870
WRITE(6, t1) ’ 00000880
11 FORMAT(’ SIMULATION OF A MANUFACTURING SYSTEM.') 00000890
WRITE{6,12) 00000900
12 FORMAT(’ THE SIMULATION CAN BE PERFORMED AT FOUR DIFFERENT’) 00000910
WRITE(6, 13) 00000920
13 FORMAT(’ LEVELS. PLEASE REFER TO THE MENU BELOW AND SELECT.’) 00000830
-WRITE(S6, 14) . 00000940
14 FORMAT(//.24X,’ MENU ‘) 00000850
WRITE(6, 15) 00000960
15 FORMAT(24X,’ ===~ ") 00000970
WRITE(6, 16) 00000980
16 FORMAT(7X,’1- AREA SIMULATION’,6X,’2~- DEPARTMENT SIMULATION’) 00000990
WRITE(6,17) 00001000
17 FORMAT(7X, 3~ CELL SIMULATION’,6X,’4- MACHINE SIMULATION’,//) 00001010
READ(5, *,ERR=5) LEVEL 00001020
21 FORMAT(1X,11) 00001030



1AY 1985)

*----*-.-

40
50

60

SOURCE

NO DIAGNOSTICS GENERATED.

IF(LEVEL.LT.1.0R.LEVEL.GT.4) GO TO 5
WRITE(3,21) LEVEL )

WRITE(6,25)

FORMAT(’ ENTER THE DURATION OF THE SIMULATION ‘)
READ(5, *,ERR=24) TIMED

WRITE(3,27) TIMED

FORMAT(1X,F12.2)

>> DECISION

GO T0(30,40,50,60),LEVEL

CALL INPARE
CALL STATSA
RETURN

CALL INPDEP
CALL STATSD
RETURN

CALL INPCEL
CALL STATSC
RETURN

CALL INPMAC
CALL STATSM
RETURN

END

STATEMENTS

VS FORTRAN

59, PROGRAM SIZE 2668 BYTES, PROGRAM NAME

136

07:07:26 N

00001040
00001050
00001060
00001070
00001080
00001090
00001100
00001110
00001120
00001130
00001140
00001150
00001160
00001170
00001180
00001180
00001200
00001210
00001220
00001230
00001240
00001250
00001260
00001270

PAGE



137

APPENDIX F

FLOWCHART AND LISTING OF SUBROUTINE INFO



138

Start

Read
Gerneral
Information

Write
Information to
Storage File

A
Return




139

ICT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED NOTEST N
NOSYM NORENT SDUMP AUTODBL (NONE) NOSXM IL

OPT(O) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHAR

* * L 2., . ..., fc I 4......... S, ... 6......... T.%. . ... .. 8
Ce===s=s=s=z=ssScs=ssc=sSsSasSssSss=S=c-s==sSS==s=a=s=oszssSsssSss=s=ss=s=s=z===C 000098710
Ciirit: r1::::C 00009720
C...... SUBROUTINE INFO : 00009730
C......  ====———------—---- 00008740
C...... THIS SUBROUTINE IS USED TO INPUT 00008750
C...... SOME GENERAL INFORMATION. 000039760
00008770

00008780

SUBROUTINE INFO 00002790

Cc 00009800
C=====>> INITIALIZATION OF VARIABLES. ) 00009810
C 00009820
CHARACTER*8 DATE 00009830
CHARACTER PROJEC*12,DEPART*20,NAME*20,REFE*5 00008840
PROJEC=" ’ 00009850
DEPART=" ‘ : 00009860

NAME =’ ! 00008870
REFE="' ’ 00009880

CALL CLSC 00008830
WRITE(6, 10) 000083800

10 FORMAT(’ YOU ARE UP TO USE MDMSS. FIRST, PLEASE ANSWER THE') 00008910
WRITE(6,11) 00009820

11 FORMAT(’ FOLLGCWING QUESTIONS NEEDED FOR RECORD KEEPING PURPOSE’) 000089930
DO 13 LJP=1,900000 00008840

13 CONTINUE ’ 000093850
[ CALL CLSC 00008960
15 WRITE(6,20) ' 000093870
20 FORMAT(’ PLEASE ENTER THE DATE FOLOWING THE FORMAT : MO-DY-YR’) 00009380
READ(5,21) DATE 00009830

21 . FORMAT(A8) 00010000
CALL CLSC 00010010

30 WRITE(6,40) 00010020
40 FORMAT(’ PLEASE ENTER THE PROJECT NUMBER.MAXIMUM 12 CHARACTERS’) 00010030
READ(5,45) PROJEC - 00010040

45 FORMAT(A12) : 00010050
CALL CLSC 00010060

50 WRITE(6,60) 00010070
60 FORMAT(’ PLEASE ENTER THE DEPARTMENT THE SIMULATION IS DONE FOR’) 00010080
WRITE(6,61) 00010080

61 FORMAT(’ MAXIMUM OF 20 CHARACTERS.’) 00010100
READ(5,65) DEPART 00010110

65 FORMAT (A20) 00010120
CALL CLSC 00010130

70 WRITE(6,80) . 00010140
80 FORMAT(’ PLEASE ENTER THE OPERATOR NAME. MAXIMUM 20 CHARACTERS’) 00010150
READ(5,85) NAME 00010160

85 FORMAT(A20) 00010170
CALL CLSC 00010180

90 WRITE(6, 100) 00010190
100 FORMAT('’ PLEASE ENTER THE SIMULATION REFERENCE.(S CHARACTERS)’) 00010200
READ(5, 110) REFE 00010210

110 FORMAT(AS) 00010220



140

\Y 1985) VS FORTRAN DATE: APR 15, 1987 TIME: 07:07:27 N
L N I 2 3. 4..... ..., B 6. A 8
WRITE(3, 120) DATE 00010230

120 FORMAT(1X,A8) 00010240
WRITE(3,130) PROJEC 00010250

130 FORMAT(1X,A12) 00010260
WRITE(3, 140) DEPART 00010270

140 FORMAT(1X,A20) 00010280
WRITE(3, 150) NAME 00010290

150 FORMAT(1X,A20) 0001C300
WRITE(3, 160) REFE 00010310

160 FORMAT(1X,A5) 00010320
RETURN ' = 00010330

END 00010340
SOURCE STATEMENTS = 52, PROGRAM SIZE = 2112 BYTES, PROGRAM NAME = INFO PAGE

NO DIAGNOSTICS GENERATED.



141

APPENDIX G

FLOWCHART AND LISTING OF SUBROUTINE INPARE



Start

Read
Data About
Froduct

v

Call
ARRIVE

4

Read Data
for Each
Froduct

Write
Data to
Storage File

Retuwrn

142



143

ECT: NOLIST NOMAP NOXREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED NOTEST N
NOSYM NORENT SDUMP AUTODBL (NONE) NOSXM IL

OPT(0Q) LANGLVL(77) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60) CHAR

* LPUE P 2. < J v S Bt 6.t ToE. 8
C=s===s====s=s=-S=S= =S =SS S=SSS=SS=S=S=SCS=SSSSSSESSSSSSSSSSSISSSS==S2=TI==2====TS 00003730
Cr:rze: : ::C 00003740
C...... SUBROUTINE INPARE 00003750
Covvrr  mmmmmmmmmmmeeeeo 00003760
C...... THIS SUBROUTINE IS TO READ THE 00003770
C...... THE INPUT OF THE USER WHEN SIMULATION OF AREAS IS 00003780
C...... NEEDED. 00003780
Ciizzre : ::C 00003800
C=s=s=sSs=s=sS==s==c-==-=c-=Sc-=S=S=ssSS=-SssoSSSSSSSSSaMSSsSSSs=sss==Ss=sgessssmosmossS 00003810
SUBROUTINE INPARE 00003820

c 00003830
C=====>> INITIALIZATION OF VARIABLES 00003840
c 00003850
COMMON/USER1/LEVEL,NPROD,M(5) ,MACH,NMACHK(5) ,ENTITY(5,35,2), 00003860
$PARA(5,35,3),ARVAL(5,3),DEF(5,35,2), TIMED 00003870

C 00003880
C=====>> INPUTS STARTS 00003880
C 00003900
5 CALL CLsC 00003910
WRITE(6, 10) 00003920

10 FORMAT(’ YOU ARE AT THE AREA LEVEL SIMULATION (LEVEL 1)’) 00003930
WRITE(6,11) 00003940

11 FORMAT(//) 00003950
WRITE(6,30) - 00003960

30 FORMAT(‘ HOW MANY PRODUCTS YOU WANT TO SIMULATE (MAXIMUM 5) ?') 00003970
READ(5,*,ERR=5) NPROD 00003980
IF(NPROD.LT.1.0R.NPROD.GT.5) GO TO 5 00003990

35 WRITE(6,50) 00004000
50 FORMAT( HOW MANY AREAS IN THE LAYOUT (MAXIMUM 35) ?') 00004010
READ(5, *,ERR=35) MACH 00004020
IF(MACH.LT.0.0OR.MACH.GT.35) GO TO 35 00004030

DO SO K=1,NPROD 00004040

55 WRITE(6,70)K 00004050
70 FORMAT(’ HOW MANY AREAS ARE USED FOR PRODUCT ? ‘,I12) 00004060
READ(S5,*,ERR=55) NMACHK(K) 00004070

90 CONTINUE 00004080
WRITE(3,91) NPROD 00004090

91 FORMAT(1X,1I1) 00004100
WRITE(3,92) MACH 00004110

92 FORMAT(1X,12) 00004120
C 00004130
C=====>> FIND THE ARRIVAL RATES. 00004 140
c 00004 150
CALL ARRIVE 00004160

c 00004170
C=====>> MORE INFORMATION TO INPUT 00004180
C 00004190
CALL CLSC 00004200

DO 130 K=1,NPROD 00004210

DO 120 KK=1,NMACHK(K) : 00004220

CALL CLSC - 00004230

95 WRITE(6, 100)K,KK 00004240



144

AY 1885) VS FORTRAN DATE: APR 15, 1987 TIME: 07:07:26 NA!
L 2. . .. ... 4., ..., |- T 6......... T.* o .. 8
100 FORMAT(’ WHICH AREA DOES PRODUCT ’,I2,’ GO TO IN THE ’, 00004250
$ 12,/ PLACE’) 00004260
READ(S5, * ,ERR=95) RAK 00004270
IF(RAK.LT.11.0R.RAK.GT.17.AND.RAK.LT.21.0R.RAK.GT.27.AND.RAK.LT. 00004280
$31.0R.RAK.GT.37.AND.RAK.LT.41.0R.RAK.GT .47 .AND.RAK.LT.51.0R. 00004290
$RAK.GT.57) GO TO 95 00004300
ENTITY(K,KK,2)=RAK 00004310
120 CONTINUE 00004320
130 CONTINUE 00004330
(o} 00004340
C=====>> INPUTS OF THE PROCESSING TIMES. 00004350
(o} ) 00004360
DO 170 K=1,NPROD 00004370
DO 160 KK=1,NMACHK(K) 00004380
CALL CLSC 000043390
135 WRITE(6, 140)KK,K 00004400
140 FORMAT(’ WHAT IS THE PROCESSING TIME FOR AREA /, 00004410
$ I2,’ WITH PRODUCT ’,I12,/,’ ENTER THE TYPE OF THE’00004420
$ ,’ FUNCTION’,/,’ 1= CONSTANT, 2= NORMAL, 3= UNIFORM’00004430
$ .,/ 4=EXPONENTIAL’) 00004440
READ(5,*,ERR=135) FUN 00004450
IF(FUN.LT.1.0R.FUN.GT.4) GO TO 135 00004460
ENTITY(K,KK, 1)=FUN 00004470
160 CONTINUE 00004480
170 CONTINUE 000044390
(o} 00004500
C=====>> INPUTS OF THE PARAMETERS FOR THE RANDOM FUNCTIONS 00004510
(o} - 00004520
DO 320 K=1,NPROD 00004530
DO 310 KK=1,NMACHK(K) 00004540
CALL CLSC 00004550
KKK=ENTITY(K,KK, 1) 00004560
WRITE(6, 180)K,KK 00004570
180 FORMAT(’ FOR PRODUCT ’/,I2,’ AREA /,I12,7:7) 00004580
GO TO(190,220,250,280),KKK 00004590
C::::::CONSTANT 00004600
190 WRITE(6,200) 00004610
200 FORMAT(’ ENTER THE TIME CONSTANT’) 00004620
READ(5, *,ERR=190) CONS : 00004630
IF(CONS.LE.O) GO TO 190 : 00004640
PARA(K,KK, 1)=CONS 00004650
PARA(K,KK, 3)=KKK 00004660
GO TO 310 00004670
C::::::NORMAL ) . 00004680
220 WRITE(6,230) 000046390
230 ) FORMAT(’ ENTER THE MEAN, THE STANDARD DEVIATION’) 00004700
: READ(5, *,ERR=220) XMEA,STDE 00004710
IF(XMEA.LE.O)GO TO 220 00004720
IF(STDE.LT.0) GO TO 220 00004730
PARA(K,KK, 1)= XMEA 00004740
PARA(K,KK,2)= STDE 00004750
PARA(K,KK,3)= KKK 00004760
GO TO 310 : 00004770
C:::::: UNIFORM 00004780
250 ' WRITE(6,260) 00004790

260 FORMAT(’ ENTER THE LOWER AND UPPER LIMITS') 00004800



JAY 1985

*....*...

321
322
$

324
325
$

330
331
332

335
© 340

) Y

: EXPONENTIAL

CONTINUE
CONTINUE

>> INPUT THE
DO 328 K=1,NP
DO 327

FORMAT(’ FOR
,’ PERCENTAGE

S FORTRAN DATE: APR 15

READ(S, *,ERR=250) XLL,XUL
IF(XLL.LT.0) GO TO 250
IF(XUL.LE.O) GO TO 250
IF(XLL.GE.XUL) GO TO 250
PARA(K,KK, 1)=XLL
PARA(K,KK,2)=XUL
PARA(K,KK, 3)=KKK

GO TO 310

WRITE(6,290)

FORMAT(’ ENTER THE MEAN’)
READ(S, *,ERR=280) XMEA
IF(XMEA.LE.O)GO TO 280
PARA(K,KK, 1)=XMEA
PARA(K,KK, 3)=KKK

GO TO 310

INSPECTION PARAMETERS.

ROD
KK=1,NMACHK (K)
CALL CLSC

WRITE(6,322) K,KK

, 1987

PRODUCT ‘,I1,’ AREA ’,I2,’ ENTER THE’

THAT PASSES INSPECTION :’)
READ(6,*,ERR=321) DEF(K,KK, 1)

IF(DEF(K,KK,1).LT.0.0R.DEF(K,KK,1).GT.1) GO TO 321

FORMAT(’ FOR
, ' PERCENTAGE

WRITE(6,325)K,KK

PRODUCT ’,I1,’ AREA ’,I2,’ ENTER THE'’

OF SCRAP :’)
READ(6,*,ERR=324) DEF(K,KK,2)

IF(DEF(K,KK,2).LT.0.0R.DEF(K,KK,2).GT.1) GO TO 324

IF((DEF(K,KK,

1)+DEF(K,KK,2)).GT.1) GO TO 321

CONTINUE

CONTINUE

>> WRITE DATA

DO 350

TO FILE

K=1,NPROD

WRITE(3,345) NMACHK(K)

FORMAT(1X,12)
CONTINUE
DO 340

DO

K=1,NPROD

335 KK=1,NMACHK (K)

WRITE(3,330) ENTITY(K,KK,2),ENTITY(K,KK, 1)
FORMAT(1X,F3.0,2X,F2.0)
WRITE(3,331) PARA(K,KK,1),PARA(K,KK,2),PARA(K,KK,3)

FORMA
WRITE

T(1X,F10.4,1X,F10.4,1X,F2.0)
(3,332) DEF(K,KK, 1) ,DEF(K,KK,2)

FORMAT(1X,F6.4,1X,F6.4)
CONTINUE

CONTINUE<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>