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PREFACE 

A signal may be expressed as a I inear combination of 

other functions, cal led the basis set. This is essentially 

a model of the ~aveform or signal. Infinitely many choices 

are possible for the basis set, ~ith the most common choice 

being the set of trigonometric functions. This study in­

volves the use of Bessel functions of the first ~ind as the 

basis set. 

The original goal of the research ~as to develop an 

automatic speaker recognition scheme, based upon the Fourier 

Bessel series. But the difficulty of collecting a high qual­

ity data base and certain hard~are deficiencies precluded 

the completion of the original goal. Also, it ~as found that 

the theoretical foundation for the use of the Fourier-Bessel 

series for signal analysis ~as practically nonexistent. For 

these reasons, the study ~as confined to general purpose 

speech analysis and to investigation of the computational 

algorithms required. 

The author ~ishes to express his appreciation to his 

major advisor, Dr. Rao Varlagadda, for his guidance and his 

~iII ingness to consider nontraditional approaches to digital 

signal processing problems. The freedom to explore ne~ ideas 

is of the utmost importance, and the research environment 

provided by Dr. Varlagadda and the rest of the Electrical 
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Engineering faculty provided such freedom. 

Special thanks are given to my wife, Janice Hami I ton, 

and to my son, Kevin, for their forgiveness of my long hours 

of work and their faithful support. 
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CHAPTER I 

INTRODUCTION 

Motivation 

It has long been known that arbitrary signals may be 

expressed as I inear combinations of orthogonal functions. 

For example, a very common technique used in applied math­

ematics and electrical engineering is the expression of a 

signal in terms of its Fourier series coefficients. Such 

representations are very useful in the field of digital 

speech signal analysis; for example, speech signals can be 

compactly described by some subset of series coefficients 

which are, in turn, used as the features in a pattern 

classification scheme for speech or speaker recognition. The 

most commonly used series representation in the field of 

signal analysis is the Fourier series. But other series can 

also represent signals, although these alternative series 

are rarely as easy to derive or interpret as the Fourier 

series. 

There has been relatively I ittle prior researcM into 

the use of alternative basis sets for speech signal analy­

sis. This is because the Fourier series is a very useful and 

convenient tool, for which there is a mathematically trac­

table basis set. Furthermore, the Fast Fourier Transform 



algorithm <FFT) has provided impetus to the Fourier series 

as one of the main implements of digital signal analysis. 

Despite the usefulness of the Fourier series, it cannot be 

shown that it is optimal as a means of pattern recognition, 

nor is it always the most compact representation for speech 

coding and transmission. Therefore, investigation of alter­

native basis sets can be justified in the search for better 

basis sets for coding and classification. 

2 

In this particular study, the basis functions of in­

terest are the Bessel functions of the first kind. This set 

of functions was selected for several reasons. First, they 

are the solutions of a family of differential equations with 

time-varying coefficients, thus possibly making them a bet­

ter choice for the modeling of nonstationary speech signals. 

Second, the Bessel functions are often used in mathematical 

physics in situations where cylindrical boundary conditions 

prevai 1, such as vibrating drumheads and circular wave­

guides. The vocal tract is often modeled as a concatenation 

of cylindrical acoustic tubes, and thus has circular boun­

dary conditions. Third, there are fast computer algorithms 

for the calculation of the Fourier-Bessel coefficients, mak­

ing computation with a general purpose computer feasible. 

Finally, since there has been 1 ittle prior investigation of 

the Fourier-Bessel series in speech analysis th~re was some 

value in the pure research itself. 

The end application of this investigation was origi.­

nal ly intended to be the use of Fourier-Bessel expansions in 
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the automatic speaker recognition problem. But during the 

course of the research, it was found that the theoretical 

basis for the application of Fourier-Bessel expansions did 

not seem to be wei I known in the I iterature. Therefore, the 

research involved theoretical and computational consider­

ations as wei I as applied speech analysis. The original ob­

jective of speaker recognition was largely supplanted by the 

theoretical and computational investigations, due to diffi­

culties encountered in the collection of a high quality data 

base for the speaker recognition probfem. 

Overview 

Chapter I I of this report gives a review of generalized 

basis sets and their use in speech signal analysis. The non­

traditional basis sets thus exposed include the exponential-

ly damped sinusoids and the Walsh functions. Applications 

include speech and speaker recognition as wei I as speech 

coding or storage. Chapter I I I presents the properties of 

Bessel functions which are useful for signal analysis, such 

as the asymptotic approximation. Bui !ding upon the founda­

tion laid in Chapter I I I, Chapter IV describes methods used 

to obtain the Fourier-Bessel series coefficients, including 

the use of the Fast Hartley Transform. Chapter IV also in­

cludes a summary of the important properties of the Fourier 

Bessel series. Chapter V gives an interpretation of the 

Fourier-Bessel coefficients from a I inear modeling point of 

view, as wei I as an approximate relationship between the 



traditional frequency domain and the set of Fourier-Bessel 

coefficients. Thus, Chapter V serves as a bridge from the 

theoretical and computational detai Is to the practical ap­

p I i cations described in Chapter VI. 

Chapter VI describes the application of the Fourier­

Bessel series expansion to actual speech signals. The very 

practical problem of choosing the starting point of an 

analysis frame is addressed. Two different pitch detection 

methods are described, one based on the Fourier-Bessel co­

efficients themselves, and another based upon a nontradi­

tional cepstrum. This nontraditional cepstrum is actually 

the Fourier-Bessel expansion of the log magnitude spectrum, 

and appears to be useful for pattern classification and 

coding. F ina I I y, in Chapter VI I , the cone I us ions reached in 

this research are summarized, and future areas of research 

are indicated. 

Two appendices are included in this thesis. Appendix A 

includes the Fortran source code for the Fast Hartley 

Transform which is used in the calculation of the Fourier­

Be~sel series. Appendix B shows a theoretically pleasing 

relationship between the complex cepstrum and the Bessel 

functions: It is shown that representation of a sequence in 

terms of its complex cepstrum is equivalent to representa­

tion of the same sequence as a convolution of Bessel func­

tions. 

4 



CHAPTER I I 

SERIES REPRESENTATIONS AND BASIS SETS 

Introduction 

The purpose of this Chapter is to review the properties 

of series expansions in general. This material serves as 

background for the later Chapters of this thesis, and is not 

meant to be an exhaustive survey. Unfortunately, the very 

important subject of fast algorithms can only be mentioned 

briefly; In fact, entire books have been written on the sub­

ject <Ahmed and Rao, 1975). This Chapter wi I I deal with some 

of the aspects of series representations and basis sets 

which are often overlooked or forgotten by signal processing 

practitioners. For example, there seems to be a misconcep­

tion that orthogonality is a requirement for a basis set. 

Applications of alternative basis sets to speech processing 

have been relatively rare in the past; So a synopsis of some 

of the applicable 1 iterature is provided by this Chapter. Of 

particular interest is the motivation behind the use of non­

traditional basis sets for speech analysis. Due to the non­

stationarity of speech signals, it does not seem feasible to 

derive an optimal transformation that is best for alI speak­

ers and al 1 phonemes. 

5 



6 

overview of Series Representations: 

The Continuous-Time Case 

The usual series representation can be considered as a 

model of the waveform or signal which has the assumed form 

of a summation of a set of I inearly independent functions: 

f(t) = C.g.<t). ( 2. 1) 
I I 

The set of functions £g.<t)J is called the basis set. The 
I 

model parameters are the series coefficients, or C.'s. The 
I 

1 imits of the summation were left indeterminate, because 

different 1 imits are appropriate for various basis sets. Of 

course, any such data model could just be assumed, but an 

important problem is that of completeness of the basis. It 

must first be determined if a I inear combination of the 

assumed basis functions can indeed represent f(t). 

Completeness of Basis Sets 

Completeness of a basis set simply means that some 1 in-

ear combination of the basis functions can be found which 

converges to the desired f<t). The class of functions which 

can be represented by a series may be I imited in some way. 

For examp I e, it may be desired to represent on I y band 1 imi ted 

functions. Another common restriction is that the data model 

of Equation <2.1) is valid only over a finite range of the 

independent variable t. But given some suitably restricted 

f<t), and some set (g.<t)l, how can the completeness of 
I 

the basis set be determined? 
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Determination of completeness can sometimes be a very 

difficult problem. But sometimes it is easy to verify that 

a basis set is not complete. For example, suppose that 

every element of the basis set is a bandl imited function. 

Then it would not be possible to form a I inear combination 

of the basis set which has any energy whatsoever in the band 

above the highest frequency in the basis set. If mode I i ng of 

a signal with higher frequencies is the goal, then another 

basis set must be chosen for the data model. But if only 

suitably bandl imited functions are to be modeled, then the 

basis set can actually be complete for al 1 practical pur-

poses. By taking the Fourier transform <or perhaps the La-

place transform) of both sides of Equation <2.1), it can be 

seen that the modeling of f(t) as a I inear combination of 

the g. Ct)'s is equivalent to modeling the transform of 
I 

f(t) as a 1 inear combination of the transforms of the basis 

functions. If completeness of a basis is hard to prove or 

disprove in one domain, then it may be possible to easily 

prove or disprove the completeness hypothesis in the other 

domain. 

An example may be in order here. Suppose that the 

function f(t) is to be represented on the interval c-a,a) 

by a 1 inear combination of cosine functions, specified as 

g"Ct) = cosCiwt). Suppose the function f(t) is analytic in 
I 

the interval <-a,a), so that the Taylor series exists. But 

notice that the Taylor series for the functions fcos<iwt)J 

only have even terms <this is essentially the "transform" of 
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the cosine functions to another representation). Then no 

1 inear combination of cosine functions can possibly have any 

odd terms in the resulting Taylor series. So if f(t) has odd 

components as wei 1 as even components, the assumed cosine 

series cannot possibly represent it on the interval <-a,a). 

Orthogona I i ty 

Orthogonality of two functions can be defined in many 

different ways, depending on the inner product which is de-

fined. For continuous time functions <as opposed to sampled 

data) it is common to use the inner product defined as 

<g(t),h(t)> ( 2 . 2 ) 

The interval [a,bl may be finite or infinite, depending on 

the application. If two functions g<t) and h(t) are such 

that 

<g(t),h(t)> = 0 (2.3) 

then the functions are said to be orthogonal. The definition 

of orthogonality can be generalized to include the concept 

of a weighting function. Let the inner product be defined as 

b 

<g(t),h(t)> = Jg(t)h*(t)W(t)dt 

a 

<2.4) 

where w<t) is cal led a weighting function. This concept is 

important because the Bessel functions are orthogonal with 

respect to a weighting function, as wi 11 be explained in 

Chapter Ill. Equation <2.3) is a special case of Equation 
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<2~4), where the weighting function is unity. 

Calculation of the Series Coefficients 

Even when a basis set can be shown to be complete, 

there remains the problem of calculation of the series coef-

ficients <the C.'s of Equation <2.1)). If the basis set's 
I 

elements are orthogonal functions <with respect to some 

weighting function), then the model parameters can be cal-

culated by the following procedure. First, assume a data 

model of the form shown by <2.1). Then multiply both sides 

of the equation by the weighting function and the complex 

conjugate of an arbitrary member of basis set, gk(t): 

(2.5) 

Using the fact that the summation is taken over the index 

* rather than k, move both gkCt) and w<t) inside the summa-

tion: 

* W(t)C .gk(t)g. (t). 
I I 

<2.6) 

Now integrate both sides of Equation <2.6) over the interval 

of orthogonality. Depending on the basis set of interest, 

this interval may be infinite or finite. Therefore, the I im-

its of the integral are stated arbitrarily: 

b 

Jf<t)g:Ct)W(t)dt 

a 

b 

=I [~c 1 g:<t>g 1 <t>w<t>]ot. (2.7) 

Interchanging the order of integration and summation gives 
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b 

Jf(t)g:(t)W(t)dt = 

a 

(2.8) 

If the set of functions £gn<t)l is orthogonal with respect 

to the weighting function w<t) then the integral inside the 

brackets vanishes when the subscript i <which varies over 

the summation) is not equal to the subscript k <which is ar-

bitrary but fixed). Thus, only one term of the series re-

mains. The lone term is shown in Equation <2.9): 

b b 

( 2 . 9 ) 

a a 

Isolating the Ck on one side of the equation yields the 

closed-form formula for any arbitrary series coefficient: 

b 

I f(t)g:(t)W(t)dt 

a 
b 

I gk<t)g:<t)w(t)dt 

a 

(2.10) 

Unfortunately, this formula is sometimes very difficult to 

evaluate in closed form, except for a few special cases. 

As a theoretical tool, Equation <2.10) has much merit. But 

it cannot deal with the more practical case of sampled data. 

For example, with sampled data the integrals can only be 

approximated by finite summations. The sampled-data case 

must be treated separately, but bear in mind that it may be 

just as wei I considered as numerical quadrature. A discus-

sian of the important sampled-data case wi I I now follow. 
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Overview of Series Representations: 

The Sampled-Data Case 

There are basically two possibi I ities for sampled data 

sequences: (1) The sampled data consists of an infinite se-

quence of numbers; or (2) The sampled data consists of a 

finite sequence, or vector, of numbers. The latter of these 

possibi I ities is the most important in the practice of digi-

tal signal processing. After all, it is not really possible 

to sample data over an infinite time interval. The model of 

the data is as a 1 inear combination of some vectors, as 

shown: 

K-1 

~ = 2 yk .s.k. 
k=O 

<2.11) 

The yk 's are the model parameters which describe the vector 

< o r t run cat e d sequence ) ~, and t he set of v e c to r s f .s.k l i s 

the assumed basis set for the data model. The number of vee-

tors to be summed is K, and they have been numbered arbi-

trari ly from 0 ~o K-1. The dimension of ~<the vector's 

length) certainly does not have to be equal to K. One can 

simply assume, for instance, that a vector of dimension 1000 

can be modeled wei I enough for a given purpose with a I inear 

comb i nat i on of on I y 1 0 0 v e c to r s i n a bas i s set . I n that 

case, the original set of 1000 numbers has been described by 

a set of 100 numbers: Some amount of data reduction or com-

pression has occured <but at a price: the original vector ~ 

may not be uniquely recoverable from the model parameters). 
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Completeness of Basis Vector Sets 

A basis set of vectors can be complete only if the set 

has at least as many elements as the dimensionality of the 

vectors, N, and at least N of the vectors in the basis set 

are 1 inearly independent. Testing for independence of a set 

of vectors is usually easier than testing the completeness 

of a set of continuous-time functions. Any good I inear al-

gebra text contains detai Is of such tests, and they wi I I not 

be repeated here. 

Orthogonality of Basis Vectors and 

Computation of Model Parameters 

The orthogonality of basis vectors is not a requirement 

for completeness. But orthogonality is a very useful compu-

tational convenience. Note that Equation <2.11) could also 

have been written as a matrix equation: 

1S. = Ay_. < 2 • 1 2 ) 

The co I umns of matrix A are the assumed basis set. If the 

columns of A are orthogonal to one another, then the model 

parameters, y_, are very easy to compute. First, premultiply 

each side of <2.12) by the complex conjugate transpose of A, 

yielding 

* * A 1S. = A Ay_. <2.13) 

* Since the columns of A are orthogonal the matrix A A be-

comes diagonal, and hence trivially simple to invert. Now 

premultiply each side of <2.13) by the inverse matrix 
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* -1 * <A A) A ~ = y. <2.14) 

Throughout this last discussion, it was assumed that the 

number of model parameters did not exceed the number of 

data points in~· Then it can be shown that Equation <2.14) 

yields they which makes :~-Ay: 2 minimum <Menke, 1984). 

Thus, the property of orthogonality makes computation of the 

series coefficients much easier: No explicit matrix inver-

sion needs to be performed. 

Alternative Basis Expansions 

in Speech Processing 

Several alternative basis sets have been previously 

used for speech processing, including Walsh functions and 

exponentially damped sinusoids. The purpose of this section 

is to catalogue some of these applications and to try to 

provide some insight into the reasons those alternatives 

were used. 

Exponentially Damped Sinusoids 

The set of exponentially damped sinusoids has been used 

several times in the past for the modeling of speech sig-

nals. Dolansky <1960) used this basis set for the contin-

uous time modeling of speech waveforms. His choice was based 

on both heuristic and practical arguments. First, he rea-

soned that speech waveforms often look something I ike damped 

sinusoids when viewed on an osci I loscope. Second, the vacuum 
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tube based hardware technology of the day lent itself to the 

implementation of active filters with their pole locations 

in the left half s plane. His implementation consisted of an 

analog fi Iter bank which was cleverly contrived so that the 

basis functions were orthogonal. 

Orthogonal ized damped sinusoids were also used by Man­

ley <1963) in an early digital signal processing attempt. 

His goal was to build an analysis-synthesis system for the 

speech waveforms. The expansion into the basis functions was 

done by trapezoidal integration. Since this.work was before 

the appearance of the Fast Fourier Transform on the signal 

processing scene, orthogonality of the basis set was almost 

a requirement for efficient implementation. Manley reported 

that the resynthesized speech was of fair quality when 16 

fixed osci 1 lation. frequencies <16 pole pairs) were used. 

Once again, the choice of the damped sinusoids as a basis 

was primarily because of the supposed similarity between 

speech waveforms and damped sinusoids. 

Another analysis-synthesis scheme was devised by L.A. 

O'Nei 1 I <1969). Once again, the main idea was to use a fi I­

ter bank analysis-synthesis approach. His filters were based 

on the damped sinusoids and were also orthogonal ized. This 

system was essentially a vocoder. O'Nei I I reported high­

quality speech from the resynthesis scheme. 

Word recognition can also be achieved using basis sets 

other than the traditional sine and cosine basis. An optimum 

basis set was derived for use in short-time analysis of a 
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smal 1 vocabulary <Clark, 1970). By examining the power spec­

tra of the words he was concerned with, Clark found fi Iter 

pole frequencies that corresponded to the. peaks of the spec­

tra. By expanding the speech waveform into the series, the 

series coefficients could then be used as the features in a 

pattern classification scheme. The motivation for the use of 

an "optima 1" basis set was compactness of representation: It 

is usually desired to have a smal I set of numbers for a 

pattern classifier's input. 

Except for Clark's approach, the choice of the basis 

sets was quite subjective. But at least these researchers 

made some attempt to justify their choice of basis, and did 

not slavishly choose the traditional trigonometric basis 

sets out of habit alone. Their motivations for the choice of 

damped sinusoids were reflected in the choice of Bessel 

functions for speech analysis in this thesis: The Bessel 

functions also resemble typical speech waveforms. 

Walsh Functions 

The Walsh-Hadamard transform has been much more widely 

used for image processing than for speech processing. But 

some researchers have seen potential advantages in the use 

of the Walsh-Hadamard transform for speech applications 

<Shum, ElI iot, and Brown, 1973). The Walsh-Hadamard basis 

set consists of rectangular waveforms, and therefore does 

not resemble speech waveforms very much at alI. But the ad­

vantage of this transform is the extreme simplicity of the 
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fast transform algorithm, which uses only additions and sub­

tractions. 

The Walsh functions were used by Shum, ElI iot, and 

Brown in a speech coding and compression scheme. The general 

plan was to transform a segment of speech, and then repre­

sent it with a few dominant coefficients in the transform 

domain. Their segment size was only 64 samples, and they 

reported fair-to-good resynthesis using only the four to 

eight dominant coefficients. 

The main reason that the Walsh-Hadamard expansion was 

chosen was that a very fast, simple algorithm existed for 

the transformation. There was no argument that the Walsh 

functions were optimal for speech modeling. To some extent, 

this reasoning was used for the selection of the Bessel 

functions as a basis set for the research reported in this 

thesis. 

Chapter Summary 

The definition of a series expansion has been reviewed 

as a preparation for the Fourier-Bessel series which wi I I be 

defined in Chapter IV. An infinitude of basis functions are 

possible for the data model, but only a few have been used 

in actual speech processing due to practical difficulties 

and the lack of fast transform algorithms <except for a few 

special basis sets). Given an arbitrary transform matrix, 

no general method for derivation of a fast transform <which 

performs the same operation as the desired matrix) appears 
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to be known. Therefore, most practical researchers have been 

forced to 1 imit their use of series expansions to those for 

which fast transforms have been published. In fact, the 

existence of a Fast Hankel Transform algorithm was one of 

the main factors that led to this research. 

The most common basis set for speech analysis is, of 

course, the traditional trigonometric basis set consisting 

of sine and cosine functions. But some researchers have 

found uses for nontraditional basis sets, and their efforts 

inspire this work. Applications of the Bessel functions to 

speech processing have come about only recently. A discus­

sion of these applications wi I I be deferred to Chapter VI, 

after the introduction to the Bessel functions and Fourier­

Bessel series given by Chapters I I I and IV, respectively. 



CHAPTER I I I 

PROPERTIES OF BESSEL FUNCTIONS 

Introduction 

When the series expansion of a waveform is the subject 

of interest, it is always desirable to have a good knowledge 

of the properties of the basis set. The properties of Bessel 

functions are wei I known and a brief summary wi I I be pre-

sented here. Further information can be found in the refer-

ences <Abramowitz and Stegun, 1965, To lstov, 1962, or 

Watson, 1945). 

Definition of Bessel Functions 

The Bessel function of the first kind, Jp(t), can be 

defined as a solution of the differential equation 

~ gy_ ~ t2 dt2 + t dt + <t- - p2)y = 0. ( 3. 1) 

Note that the coefficients of the differential equation are 

not constant: The Bessel functions are the solutions of a 

family of time-varying differential equations. Therefore, as 

a basis set, they 0re not shift-invariant. It was this fact 

that originally led to the belief that the Bessel functions 

may have been a better basis set, in some sense, for non-

stationary speech signals. Note also that there is a param-

18 
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eter, p, in the differential equation. This parameter 

defines the order of the Besse I function. 1 n this invest i-

gat ion, the focus was primarily upon the Bessel function of 

zero order, Jo<x). This was done for the sake of simplicity 

and to 1 imit the scope of the research, and not because the 

Bessel function of order zero is particularly better for 

signal analysis. 

Plots of Bessel functions of orders zero, one, two, and 

three are shown in Figures 1-4. The Bessel functions have 

waveforms reminiscent of voiced speech; resembling the 

impulse response of a second-order autoregressive model. 

An alternative definition of Bessel functions is based 

upon the generating function 

e 
1i(t 
2 

.1) 
t 

00 

= 
k=-oo 

(3.2) 

In this expression, x is a fixed parameter while the summa-

tion is taken over all integral ordered Bessel functions. 

In other words, if the function on the left side of Equa-

tion <3.2) is expanded into a Laurent series about the point 

t=O, then the coefficients of the series are the Bessel 

functions of order k and argument x. The generating function 

definition is more useful than the differential equation 

definition when deriving properties of Bessel functions. 

A relationship between the complex cepstrum and the 

generating function definition of the Bessel functions has 

been developed. This relationship is ancillary to the main 
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subject of Fourier-Bessel series, and has been relegated to 

Appendix B of this report. However, it is believed that this 

relationship has not been previously pub! ished. 

A family of functions khown as modified Bessel func-

tions of the first kind, lp(t), can be defined as the solu-

tions of the differential equation 

or may be defined by the generating function 

e 
~( t 
2 

+ .1.) 
t 

00 

= 

k=-oo 

(3.3) 

<3.4) 

Once again, the subscript indicates the order of the Bessel 

function, which in turn is equal to the parameter p in the 

differential equation definition. 

Bessel functions of fractional order may also be de-

fined, when the parameter p in Equation <3.1) is not an in-

teger. An interesting property of the Bessel functions of 

half integral order is that they can always be expressed in 

terms of elementary functions such as the trigonometric 

functions and the square root <Tolstov, 1962). For example, 

J 112 <x) =~ Sin(X) and J_ 112 <x) =~ COS(X). <3.5) 

This makes the Bessel functions of half integer order es-

pecial ly easy to manipulate. 

Formulae and Properties 

Many properties of Bessel functions.have been discov-



23 

ered by mathematicians over the years, but only those which 

pertain to the use of Bessel functions in signal analysis 

are presented here. Thus, the summary is by no means ex-

haustive. Some of the more important and useful properties 

are explained in the fol lbwing paragraphs. 

Polynomial Approximations 

Polynomial approximations for the Bessel functions can 

be used for the generation of the Bessel functions in a 

digital computer. These formulae are quite lengthy and wi I I 

not be repeated here, but the interested reader is referred 

to Abramowitz and Stegun < 1965). Genera I I y, if on I y integer 

ordered Bessel functions are required then the recursion 

formulae shown below can be used to generate Bessel func-

tions of any integer order starting with Bessel functions 

of orders zero and one only. 

Recursion Formulae 

The recursion formulae for Bessel functions are 

<3.6) 

and 

<3.7) 

These formulae can be easily obtained by differentiation 

<with respect to the variable t) of the appropriate gener-

ating functions. In principle, they can be used to generate 

Bessel functions of any order, but it has been noted that 
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numerical instabi I ity occurs Ylhen IPI > lxl <Olver and 

Sookne, 1972). 

Fourier Transforms of Bessel Functions 

The Fourier transform of the 

<AbramoYiitz and Stegun, p. 486) 

Ylhere 

00 

J J o < H) e- j 2 wf t d t -v '}..2 

-co 

JT(x) = [1 for lxJ<.5 
0 otherYitse. 

Bessel 

2 
- ( 2 wf ) 2 

function Jo(X) is 

JT( .f.!!) 
'}.. 

(3.8) 

Note that the Bessel function JoO.t) is strictly bandl imited 

and is real valued because Jo(X) is an even function. Figure 

5 shoYis the Fourier transform of Jo<'>.t). Note that the ener-

gy is concentrated near f='>./2w. This is not surprising in 

vieYI of the sinusoidal character of the Bessel function Jo 

<see Figure 1). 

Laplace Transform 

The Laplace transform of Jo<"At) is given by 

JJo<H)e-stdt = 

0 

(3.9) 

and the Laplace transform of the function tJo<'>.t) is given 

by 

JtJo< H)e-stdt = 

0 

s 
(3. 10) 
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Formulae 1 ike Equation <3.9) and Equation <3.10) can be 

used in conjunction with the recursion formula, Equation 

<3.6), to obtain Laplace transforms of higher-ordered Bes-

sel functions. The same technique can also be applied to 

the Fourier transform. 

Addition Formula 

Unfortunately, the addition formula for Bessel func-

tions is not as simple as the fami I iar trigonometric addi-

tion formulae. The formula· for additive arguments is 

JM(X+y) = 2 JM-k(X)Jk(y). 

k=-oo 

(3.11) 

This formula is easily derived from the gener~ting function 

definition. It is in the form of a discrete convolution. The 

interesting point here is that Jo[<n+1)TJ cannot be written 

as a finite I inear combination of past samples of these-

quence Jo<nT). This means that there is no convenient 

shifting theorem for use with the Bessel functions. 

Asymptotic Approximation 

The Bessel functions can be readily approximated with 

a simple formula, 

" " cos< X - 2P - '4) . (3. 12) 

Equation <3.12) is called the asymptotic approximation for 

the Bessel function of the first kind, of p-th order. This 

formula is quite good when the argument x is such that 
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~ _w_ 
x ~ 4 + 2 n. (3. 13) 

An important special case is the asymptotic approximation to 

the Bessel function of order zero: 

w 
COS (X - 4). (3. 14) 

This approximation is the key to the fast algorithm for 

Fourier-Bessel expansion which wi I I be discussed in a later 

Chapter. Figures 6 and 7 compare Jo(X) to its asymptotic 

approximation. Figure 8 shows the absolute error between the 

Bessel function and its approximation. Note the rapidity 

with which the error dies off. As a rule of thumb, the error 

becomes smal I after the first zero-crossing of the Bessel 

function, and becomes practically negligible after the sec-

ond zero crossing. The location of these zero crossings wi I 1 

now be discussed. 

Zeros of the Bessel Functions 

The zero crossings of Jo<x> are denoted by \~where the 

subscript is the number of the zero crossing. For example, 

the value of x where Jo<x) crosses the abscissa for the 

first time is denoted by ~1. These zero crossings are wet 

approximated by 

1 <m- - 4-)w for Jo(X). 

For the Bessel functions of positive integer order n, 

becomes: 

-:;:: <m - _1_ 
4 

n 
-2-) "· 

(3. 15) 

this 

(3. 16) 
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The zeros of the Bessel functions are needed in the Fourier-

Bessel expansion algorithm, and can be calculated in a com-

puter program which uses the approximation formulas given in 

Abramowitz and Stegun <1965). Table I compares the zeros of 

J 0 (x) computed by Equation <3.15) to the more exact values 

found in a table of zeros. Note that the approximation is 

actually quite good, improving markedly for higher ordered 

zeros of Jo<x). 

Orthogonality Properties 

For the computation of a series expansion, the orthog-

onal ity properties of the basis set are always of interest. 

It seems to be a widely held misconception that a basis set 

has to be orthogonal if a series expansion is to exist. But 

~he truth of the matter is that a set of functions can be 

complete on an interval, and yet need not be orthogonal. For 

example, the set of functions fx 0 , x 1 , x2, x3, ... 1 can be 

used as the basis set in the interval O~x~1. but the set is 

not orthogonal. Orthogonality of the basis set is not a re-

quirement, but is a very useful convenience. 

Bessel functions are orthogonal, with respect to a 

weighting function, over a finite interval. Let a and b be 

zeros of Jn<X) and let the weighting function be t. Then 

JtJn<at)Jn<bt)dt = 
0 

[J~(a)l2 
2 if a=b 

o otherwise. 
(3.17) 

In this formula, J~<a) denotes the first derivative of Jn<x) 



m 

2 

3 

4 

5 

6 

7 

8 

9 

10 

TABLE 

COMPARISON OF TRUE ZEROS OF Jo TO 
APPROXIMATE ZEROS. 

Relative Error, 
True ~ Approximate ~ Percent 

2.404826 2.356194 2.022228 

5.520078 5.497787 0.403816 

8.653728 8.639380 0. 165802 

11.79153 11.78097 0.089572 

14.93092 14.92257 0.055941 

18.07106 18.06416 0.038216 

21.21164 21.20575 0.027749 

24.35247 24.34734 0.021059 

27.49348 27.48894 0.016525 

30.63461 30.63053 0.013312 
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evaluated at x=a. For J 0 Cx), the first derivative is -J1Cxl. 

The fact that the Bessel functions are orthogonal with re-

spect to a weighting function other than unity is very 

important when interpretation of the Fourier-Bessel coef-

ficients is to be considered. 

Unfortunately, the sampled Bessel functions are not 

truly orthogonal. For example, consider the Bessel function 

of zero order, sampled at N evenly spaced points in the in-

terval O~x<1. When a finite summation is performed over the 

interval a rather disappointing, albeit important, fact is 

revealed: 

N-1 

2..J ~ J"'<a~)J~"CbT) ~ 0 for a ~ b. (3.18) 

n=O 

This shows that when one is dealing with sampled Bessel 

functions, the mathematically elegant orthogonality proper-

ty shown by Equation <3.17) degenerates into an approxima-

tion. Much of the computational work to be presented in 

Chapter IV is in terms of approximations, due in part to 

Equation <3. 18). Sampled Bessel functions are mathematically 

difficult and certainly do not seem to be wei I known in the 

1 iterature. In fact, only one published article was found 

which attempted to deal with sampled Bessel functions from 

a purely mathematical point of view <Jerri, 1978). 

Approximation of Bessel Functions 

with Smal I Arguments 

The asymptotic approximation previously discussed is 
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good only for large arguments. Other approximations exist 

for the case where the argument is sma I I <Wa I dron, 1981). 

Starting with the generating function definitions, it can be 

shown that 

Jo(X) 
__ 1_ X 3 
- 6 [1+cos<x)+2cosc-2-)+2cos<-2-x)J. (3.19) 

Figures 9-11 show the Bessel function, the approximation 

given by Equation <3.19), and the absolute value of the er-

ror between the two. The error is very smal I unti I the argu-

ment, x, is greater than about six. At this point, however, 

the asymptotic approximation could be used. 

An alternative definition of Bessel functions is 

ft 

_1_ I j[nw-xsin<w)]d 
J ..,< x) = 2 w e · w. (3.20) 

-II' 

For the special case of Jo(X), 

ft 

_1_ I -jxsin(w)d 
Jo(X) = 2 w e w. (3.21) 

-· 
When the variable of integration is changed, and the inte-

gra I is simp I if i ed, then it can be eas i I y shown that 

1 

Jo(X) Jcosrxsin<wu)Jdu. <3.22) 

0 

If this integral is approximated by trapezoidal rule numer-

ical integration then Equation <3.19) results. However, Wal-

d r on or i g i n a I I y de r i v e d < 3 . 1 9 ) i n a v e r y d i f f e r en t rna nne r . 

By taking more i nterva Is in the numer i ca I integration, bet-

ter approximations to Jo(X) can be found. 
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Chapter Surrmary 

An overvie~ of some of the properties of Bessel func­

tions has been given. Emphasis has been placed on those 

properties that have been found to be useful in signal anal­

ysis, including the Fourier transform, Laplace transform, 

and the asymptotic approximation. The asymptotic approxima­

tion is a very important element in the computational meth­

ods to be presented by Chapter IV. It is important to bear 

in mind that any equations ~hich depend upon the orthogonal­

ity of uniformly sampled Bessel functions may be only 

approximations. Ho~ever, the ~orth of an engineering solu­

tion should not be measured by significant digits alone; The 

particular application at hand may require only an approxi­

mate solution. Therefore approximate methods can bear much 

fruit, especially if they are fast and efficient. 



CHAPTER IV 

FOURIER-BESSEL ANALYSIS 

Introduction 

Many books and articles have appeared in the mathemat-

ical I iterature during the last century which expound upon 

the mathematical aspects of the Fourier-Bessel series <Wat-

son, 1945, and Tolstov, 1962). But very little publication 

of results concerning the application of Fourier-Bessel se-

ries to signal analysis has occured. The purpose of this 

chapter is to define the Fourier-Bessel series and show how 

the coefficients of the series can be efficiently obtained 

using a digital computer. 

Definition of the Fourier-Bessel Series 

The Fourier-Bessel series is a model of a waveform or 

signal wherein the signal is assumed to be a 

nation of Bessel functions of the first kind: 

f(X) = 2 Crn J.,.(').,...,X). 

m=1 

inear combi-

( 4. 1) 

The Cm's are the series coefficients, or model parameters. 

The '11m'S are the zeros of the Bessel function. This model is 

assumed to be valid only over a finite interval, from x=O to 
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x=1. This is not at alI a restrictive requirement, because 

any time interval can be scaled to be in this range by div-

iding the actual time by the length of the analysis frame, 

T. Throughout this discussion, the variable x is considered 

as a normalized time variable in the range O~x~1. 

Properties of the Fourier-Bessel Series 

Convergence 

The convergence of the Fourier-Bessel series is guaran-

teed if: <1) f<x) is a piecewise smooth continuous or dis-

continuous function on [0,1J; and (2) The Bessel function is 

of order -<1/2) or greater. The series converges to f<x) 

wherever f(X) is continuous, and at points of discontinuity 

+ -it converges to [f<x )+f<x )J/2 <Tolstov, 1962, p.221). 

These conditions are certainly met by bandl imited signals, 

such as typical speech signals, because bandl imited signals 

are analytic <Papoul is, 1977). 

Boundary Conditions 

For the special case where the Bessel function is of 

order zero, representative elements of the basis set are 

shown in Figures 12 and 13. Note that alI of the basis func-

tions cross through zero at x=1. Therefore, the series can 

only converge to zero at x=1. This is true for all Fourier-

Bessel series of the form shown by Equation <4. 1), not just 

for those based upon Jo(X). Although convergence is certain, 

the number of terms of the series that must be summed to 
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arrive at a reasonable approximation to f<x> may be large if 

the value of fCx) is very different from zero near x=1. 

At x=O, a different set of restrictions applies. For 

Bessel functions of zero order, Jo<0)=1 and the derivative 

at x=O is zero. Therefore, a I inear combination of such 

Bessel functions must have a zero derivative near x=O. If 

the basis set is (J C\mx)J where p is an integer greater 
p 

than zero, then every element of the basis set is zero at 

x=O; therefore, the series converges to zero at x=O. 

Exact Methods of Computing 

the Series Coefficients 

Note that if a is not equal to b in Equation <3.17), 

and they are both zeros of the Bessel function, then the in-

tegral is identically zero. But if a equals bin <3.17) the 

result is in general nonzero. If f(X) is assumed to be of 

the form given in Equation <4.1) then substitution of the 

assumed form gives: 

1 00 

JxJ,.,( ~rnX) f (X)dX 

0 

= JxJ,.,(\mX) r 2 C ... J,.,( ~ .... x)] 

0 . ~= 1 

00 

= 2 c ... JxJ,.,<\mx)J,.,<}. ... x) dx 

k= 1 0 

_1_ [ = Crn 2 

dX 

(4.2) 

Since the ~rn's are the zeros of the Bessel function, only 

one term of the entire summation can be nonzero <recal I the 
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orthogonality formula, Equation <3.17)). Isolating the C'" 

on one side of the equation yields the closed-form expres-

sion for the Fourier-Bessel series coefficients: 

Crn = (4.3) 

For the important special case where the basis set is 

r J o < ~ x ) 1 , the f i r s t de r i vat i v e of Jo < x ) i s - J 1 < x ) . C a I c u-

lation of the series coefficients then amounts to calcula-

tion of 

Crn = (4.4) 

Unfortunately, the integral must be evaluated using sampled 

data rather than a continuous f<x) in closed form, and the 

integral must be performed many times for the various values 

of the index m. Even when f(X) is known in closed form 

Equation <4.4) is usually very difficult to evaluate, except 

for a few special cases. This makes obvious the need for a 

fast algorithm which can quickly approximate Equation <4.4J. 

Approximate Methods for Calculating the 

Fourier-Bessel Series Coefficients 

Some very useful algorithms have appeared which allow 

the fast computation of the Hankel tran~form integral, 

F < w) = J r J o < wr ) f < r ) d r . 

0 

<4.5) 

There are four basic approaches for fast machine evaluation 
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of Equation <4.5). These four wi I I now be described. 

The Correlation Method 

Siegman <1977) proposed a method based upon a change of 

variables. After a change of variable in Equation <4.5), the 

integra 1 is cast in the form of a discrete cor reI at ion. De­

tai Is can also be found in Oppenheim, Frisk, and Martinez 

<1980). Siegman's method allows the use of the FFT, but has 

a severe disadvantage for speech processing: The original 

speech signa I has to be samp I ed at exponent i a I I y spaced 

points, and the result it produces, F(w), is given at ex­

ponentially spaced points. Although such sampling is some­

times appropriate in optics or image processing, it is not 

at alI suitable for one-dimensional signal processing. 

Tsang's Method 

Tsang et al. <1974) used a method of Hankel transfer-

mation based upon the FFT. First, the original function 

f<r) is windowed with an exponentially tapered function. 

Then it is Fourier transformed via the FFT to obtain a func­

tion cal led AC~). A previously computed and stored weight­

ing function IC?..,w) is multiplied by AC~). and the result is 

numerically integrated for many values of ~to get the Han­

kel transform FCw). The disadvantage of this method is that 

the function FCw) is found by repeated integrations: If 

each numerical integration is time-consuming in a computer, 

then numerous integrations are dreadfully awkward for use in 



any sort of real-time application such as coding or recog­

nition. 

The Projection-51 ice Method 
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This method is based upon a theorem of two-dimensional 

Fourier transforms which states that the one-dimensional 

transform of the projection of a two-dimensional image 

f<x,y) onto some I ine <at a given angle) is equal to a 

radial section, or slice, of the two-dimensional Fourier 

transform of f<x,y) at the same angle <Mersereau and Oppen­

heim, 1974). The Hankel transform is related to the Fourier 

transform of an image, if the image is radially symmetric 

<Bracewell, 1965). Detai Is are omitted here, but the most 

important facet of this method is that either the original 

data is sampled exponentially and the data is evenly spaced 

in the transform domain or, by duality, the data can be 

sampled uniformly and the result wi I I be exponentially sam­

pled in the transform domain <Oppenheim, Frisk, and Mar­

tinez, 1978). 

Cande 1 's Method 

The most useful approach has been found to be Candel 's 

algorithm for computation of the Fast Hankel Transform <Can­

de I , 1 9 8 n . The g i s t of Can de I ' s met hod i s t h a t t he Hank e I 

transform kernel <a Bessel function) may be replaced by its 

asymptotic approximation. When such a substitution is made, 

the computed result is only approximate; but the great ad-
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vantage is that the Hankel transform integrand is cast in 

terms of an ordinary trigonometric function. Also, the data 

is uniformly sampled in both domains. A Fast Fourier Trans­

form may be used to approximate the integral: The algorithm 

becomes fast. With a fast algorithm available for the compu­

tation of the Fourier-Bessel series coefficients, and with 

the data sampled uniformly, the Fourier-Bessel series can be 

of practical use in one-dimensional signal analysis and 

speech processing. 

In the following sections, algorithms for the process 

of Fourier-Bessel expansion are given where the basis set is 

assumed to be the set £Jo<'>-rnx)l. Generalization to other 

integral-ordered Bessel functions is fairly straightforward 

and wi 11 not be given explicitly. 

Implementation of the Approximate 

Fourier-Bessel Expansion Using 

the Fast Fourier Transform 

The method described by Candel uses a technique which 

he called "Fourier-selection summation" to correct the es­

timates of the integrals which were computed by a Fast Four­

ier Transform, or FFT. The method requires two FFT's to be 

performed on each frame of data: The first FFT is used to 

estimate the Hankel transform of the data, and the second is 

used to correct the estimate of the integral. Experiments 

have shown that a second transform need not actually be per­

formed because the errors are negligible for actual speech 
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signals. Besides, an alternative method was found for the 

correction of the smal 1 errors that do occur <mostly in the 

first few coefficients, which correspond roughly to the low-

est frequencies in the speech signal). This error correction 

method wi I I be discussed later. 

Reconsider Equation <4.4) with the asymptotic approx-

imation of Equation <3.14) substituted for the Bessel func-

tion. The expression thus obtained is 

<4.6) 

This expression is sti I I not in the desired form, because in 

rea I i t y a I I that i s a v a i I a b I e i s s amp I e d data and a f i n i t e 

summation must be performed. Suppose that rectangular-rule 

numerical integration is performed, as illustrated in Figure 

14. The total number of integration intervals is N, so .that 

AX = 
Total Length 

N 

Equation <4.6) becomes 

N-1 

= 

[ J 1 ( ~ ...... ) ] 2-.;;:;:: 2~ 
n=O 

N 

n n 
f<N)cos<~N 

11' 1 -)-
4 N 

(4.7) 

(4.8) 

Substitution of the approximation 6f Equation <3.15) for the 

zeros of the Bessel function yields, after some algebraic 

calisthenics, 

N-1 

c ..... 
2 -{2 2 -Vn n [nmw n 

~] ~ f <N>cos -N- < 1 +r? (4.9) 
£J1<~)1 2-../w~ N1.5 

n=O 

This expression is, in turn, equivalent to 
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~(x) 

Jf<x)dx 
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• • • 

N-1 

::: 2 f ( Xn) ~X = 

n=O 
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""'f(~)-1-
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n=O 

Figure 14. Numer i ca I integration. Rectangu 1 ar 
rule used to approximate trans­
form integrals. 
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[n.5 f(~leJ•<1+~l/4] .-]2;~·1 
J 

(4. 10) 

where the function Re<x> denotes the "real part of x" and 

where the set of constants, Krn, is defined by 

-12 2 (4.11) 

The expression in Equation <4.10) is in a form suitable for 

summation using the Fast Fourier Transform. The algorithm 

wi I I now be summarized: 

STEP 1. Calculate the constants n· 5 ejw< 1+n/N)/ 4 for 

n = 0,1,2, ... ,N-1. Store in array A<n), which should 

be complex, dimensioned as A<0:2*N- 1). 

STEP 2. Calculate constants Krn for m=1,2, ... and store in 

array B<m>. See Equation <4.11). 

STEP 3. Multiply sequence f<n/N) element-by-element with 

array A(n) and place results in complex array CCn). 

Zero-pad C<n> to total length 2N. 

STEP 4. Perform an FFT of length 2N on array C<n). Do not 

divide by 2N. 

STEP 5. Multiply real part of array C element-by-element 

with the constants stored in array B to get the 

approximate coefficients: 

Crn = Re<C<m>>*B<m> for m=1,2, •.. 

Note that the preliminary Steps 1 and 2 need only to·be 

performed once; the constants are computed once and then 

saved. 

Recal 1 that the asymptotic approximation is fairly 
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accurate only for the larger values of the argument of the 

Bessel function. A mitigating factor is that the Bessel 

function is actually multiplied by the weighting function x. 

The approximations to the functions xJo<\mx) are compared 

to the exact functions in Figures 15 through 18 for m=1,3, 

5,and 50. The errors decrease in absolute value for larger 

values of m. The error of the asymptotic approximation is 

large near x=O <refer again to Figure 8). But when multi-

pi ied by x, the error no longer becomes unbounded near x=O. 

This factor tends to make the estimates of the integrals 

more reasonable. 

Implementation of the Approximate 

Fourier-Bessel Expansion Using 

the Fast Hartley Transform 

One of the modifications made to the previously used 

Candel algorithm was the introduction of the Hartley Trans­

form. This transform was originally described by R.V. Hart­

ley <1942), and has recently been revived in discrete form 

by Bracewel I <1983). The Candel algorithm uses a Fast Four­

ier Transform. But it was discovered that the Fast Hartley 

Transform can be used for the task of Fourier-Bessel expan-

sion because it is a real-valued transform with a bui It-in 

phase shift in its kernel which exactly matches the phase 

of the asymptotic approximation used in Candel 's algorithm, 

which is equal to w/4. 
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The Hartley Transform is defined as 

QO 

X< f) = J X(t) cas<2wft) dt <4.12) 

-a! 

and its inverse is given by 

QO 

x<t) = r 
J 

X( f) cas<2wft) df <4.13) 

-QO 

where 

CaS(X) = COS(X) + sin(X). (4.14) 

Note the symmetrical nature of the forward and reverse 

transforms. 

The Discrete Hartley Transform <DHT) can be defined by 

N-1 

X< k) = (4.15) 

n=O 

and its inverse is then 

N-1 

x< n) = 
N 

2ft 
X<k) cas<--N- nk). (4. 16) 

k=O 

The Fast Hartley Transform used in this research is a var-

iant of the one given by Bracewel <1984). The Fast Hartley 

Transform was modified by making it an in-place algorithm. 

The Fast Hartley Transform has been found to be a very use-

ful and powerful tool, so Fortran source code for this fast 

transform has been included in Appendix A. 

The kernel of the DHT can be rewritten using simple 

trigonometric identities as 

2w 
cas<--N- nk) = 

2w w 
2 cos<--N- nk - - 4--). (4. 17) 
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Comparison of Equation <4.17) with Equation <4.8) shows 

that the summation in <4.8) can be performed using a DHT. 

The summation can be restated as 

N-1 

N 
<4. 18) 

or 

where 

N-1 

Crn ~ K.;., 2 n" 5 fCT) casC<m-.25)w ~ l 

n=O 

K..;.. = 
2 

<4. 19) 

<4.20) 

The algorithm is now summarized: 

STEP 1. Compute the K..;.. and store them in an array K<m). This 

step is preliminary and needs to be performed once. 

STEP 2. Multiply the sequence f< ~) by n· 5 for n=O, 1 , ... , 

N-1 and store the results in real array A<n). 

STEP 3. Zero-pad array ACn) to a total length of 8N. Array A 

should be real, dimensioned as A<0:8*N-1). 

STEP 4. Perform a Fast Hartley Transform of length 8N on 

array A<n). <See Appendix A for detai Is.) 

STEP 5. For m=1,2, ... let the Fourier-Bessel coefficients be 

approx.imated by Crn ~ K.;...*A<4m~1). 

This Fa&t Hartley Transform method uses more memory 

than the Fast Fourier Transform based method. An alternative 

method based on the Fast Hartley Transform wi I I now be pre-

sented which uses less memory than the FFT-based method, and 
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which runs faster than the DHT-based method just presented. 

Consider the trigonometric identity 

mwn wn mwn wn -mwn . wn 
cas<~- 4 N) = cas(~)cos< 4 N) + cas<--N--)sJn< 4 N). (4.21) 

Then the summation in <4.20) can be split into two separate 

sums: 

N-1 
r 

2n 
. 5 nw n mwn 

Crn :::: Krn l COS(4N)f(N) cas<-N-) 

n=O 

N-1 2: .5 . nw n cas<- IJl!.!:!) ] + n sJn(-)f(-) 
4N N N 

n=O 

(4.22) 

Each of the sums can be computed simultaneously using a DHT 

of length 2N. This makes use of the Discrete Hartley Trans-

form identity 

N-1 

2 x<n)cas<-~wkn) 
n=O 

N-1 

2 X[ <N-n)rnodCN) leas< 2Nwkn). 

n=O 

The algorithm is summarized: 

(4.23) 

STEP 1. Compute the constants Krn for m=1,2, ... Save them in 

an array K<m). <See Equation <4.20).) 

STEP 2. Dimension REAL array AC0:2~N-1). 

STEP 3. For n=O to N-1 DO: 

A<n) +-- SQRT<n)~COS<PI/4 ~ n/N)~fCn). 

STEP 4. For n=1 to N-1 DO: 

A C 2 ~ N - n) +-- SQRT C n) * S I N < P I 1 4 * n IN) * f < n) . 

STEP 5. Let A(N) = 0. 

STEP 6. Perform the Fast Hartley Transform of length 2N, 

operating on array A. <See Appendix A for detai Is.) 



STEP 7. For m=1,2, ... the Fourier-Bessel coefficients are 

C.., ~ K.., * A(m). 
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This version avoids complex arithmetic, thus saving memory. 

Matrix-Vector Interpretation of the 

Fourier-Bessel Expansion 

An alternative method is based on the fact that the 

estimation of the Hankel transform <by a Fast Hartley Trans­

form or a Fast Fourier Transform) as we I I as the desired 

true transform can each be represented by a matrix-vector 

multiplication. For example, 

~ = B~ (4.24) 

where B is the desired transformation matrix, ~ is the data 

vector of sampled speech, and~ is the vector of Fourier­

Bessel coefficients. The approximation is expressed as 

~ ~ M~ <4.25) 

where M is the I inear transformation performed by one of the 

algorithms in the two previous sections. The rows of these 

transformation matrices contain numbers which, when plotted, 

look I ike Figures 15-18. 

The difference of the desired transform matrix, B, and 

the approximation matrix, M, is another matrix, E, with the 

computationally important feature that most of its elements 

are very nearly equal to zero; i.e., the matrix is sparse if 

al 1 of its relatively smal I elements are set equal to zero. 

E = B - M (4.26) 

Typically, relatively few of the matrix E's elements have an 
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error greater than one percent of the largest element in ab­

solute value on that row, and the others are set equal to 

zero. After al 1 of the very smal I elements are set equal to 

zero, the resulting sparse error matrix is very easy to mul­

tiply by the input vector of speech samples to get a correc­

tion vector. The correction vector is simply added to the 

vector of approximate Fourier-Bessel coefficients to result 

in a better estimate of the true coefficient set. This meth­

od was found to be computationally efficient <the sparseness 

of the. correction matrix is the key) and conceptually far 

simpler than Candel 's Fourier selection-summation. In ma­

trix notation, this becomes: 

£ = M~ + E~. (4.27) 

In practice, it was found that the corrections need on­

ly to be performed on the first few Fourier-Bessel coeffi­

cients, because the errors are greatest there. The actual 

error correction procedure consists of multiplying the data 

vector~ with the first few rows of the E matrix and then 

adding the result to the vector obtained from the fast al­

gorithm. 

Resynthesis of a Waveform From Its 

Fourier-Bessel Series 

There are two basic methods of resynthesis: (1) exact 

resynthesis, involving direct summation of the series; and 

<2) fast approximate resynthesis, using Fast Fourier Trans­

forms or Fast Hartley Transforms. 
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The direct summation method is best performed as a 

matrix-vector multiplication. The columns of the matrix con-

sist of the sampled Bessel functions, and the vector is the 

set of coefficients. This algorithm is good for the testing 

of fast transformation algorithms, but is too slow for real-

time applications. This method is represented by Equation 

<4.28): 

M 

f<nT) = .2: C.., Jo<"-..,nT) 

m=1 

(4.28) 

where M is the number of terms in the series, or the number 

of columns in the matrix. 

The fast algorithm is based upon the same asymptotic 

approximation as before <Equations <3.12) or <3.14)). The 

summation is then 

M 

f (X) ~ 

m=1 

I 2 C..,, 1---=-­
V ",.,..,x 

1Y 
cos ( ,.,..,x - -4-) . (4.29) 

Manipulating the sum into a form suitable for the FFT, the 

resu It is 

M 

~-{1!F Re[ej<+)< 1+T) .2: _fm_ . < wnm) , 
f<n) ,.,.., e-J -N- J. (4.30) 

m=1 

Using the Fast Hartley Transform, the result is simi-

larly derived and wi I I not be repeated here. 

Data Windows 

In traditional Fourier analysis, the use of the data 

windows such as Hamming, Kaiser, etc., is justified by the 
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argument that multiplication in the time domain is equiva­

lent to the operation of convolution in the frequency do­

main. The spectral representations of signals thus obtained 

"1 ook" smoother when p 1 otted, and the resu Its are, in gen­

eral, more useful. 

But there is a problem when the subject of considera­

tion is alternative basis sets <such as Bessel functions): 

The convolution theorem no longer holds, so the typical ar­

guments for using tapered windows cannot be used. There is 

I ittle theoretical justification for using one window or an­

other when Fourier-Bessel expansion is to be performed. This 

is a subject that is remarkably absent from the I iterature, 

and which could possibly be the subject of fruitful investi­

gation. Further insight into the traditional sinusoidal 

basis sets and their usage could be a useful by-product of 

such research. 

If the original data vector was windowed with, say, a 

Hamming window, then the Fourier-Bessel series accurately 

represented the windowed data. The Bessel functions are 

close relatives of the fami I iar trigonometric functions; so 

the results of windowing have been found to be similar. 

1 n practice, it was found that data windows which 

forced the sequence to obey the boundary conditions set 

forth in this Chapter tend to give good, rei iable results. 

For the basis set fJo<~x)l, good windows were the Hamming 

lag window <Figure 19) and the tapered cosine window <Figure 

20). For Bessel functions which are zero at both endpoints 
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of the interval <such as J,<x)), a window which tapers to 

zero at both ends should be used. 
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1 dea 1 1 y, if the waveform being expanded is one of the 

members of the basis set then one and only one of the co­

efficients of the expansion should be unity, and alI the 

others should be zero. As an example, the function Jo<\eoX) 

was expanded into a Fourier-Bessel series. The results ob­

tained when using rectangular, traditional Hamming, and 

Hamming lag windows are shown in Figure 21. Note that the 

rectangular window gave the representation which was truest 

to the actual data: a single coefficient of unity strength 

at m=50. The other windows caused leakage into the adjacent 

coefficients. 

Now as another examp I e, I et the waveform be equa I to 

Jo£(\50 +\e,)x/21 in the interval [0,11. This time, the "fre­

quency" fa I Is ha I fway between bins 50 and 51. The resu Its 

for the rectangular, Hamming, and Hamming lag windows are 

shown in Figure 22. The Hamming lag window seemed to produce 

the better result here. 

It should be noted that the very definition and inter­

pretation of leakage is firmly rooted in the theory of spec­

tral estimation. However, the definition of leakage is open 

to argument when alternative basis sets are being used. 

Alternative Series Expansions 

Several possibi I ities are suggested by the previous 

discussions. One is that if an asymptotic approximation 
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exists for the kernel of a transform, then an approximate 

method of computing that transform may be derived. This 

concept is quite general, and could be applied to many other 

types of series expansions besides the Bessel functions. 

Another possibi I ity is the representation of waveforms 

as I inear combinations of functions which are similar to the 

Bessel functions. For example, the waveform could be written 

as a I inear combination of sine<.) functions 

00 

f < x) = 2: Crn s i nc < mx) 

m=1 

00 

2 Crn 

m=1 

s i n<mwx) 
mwx (4.31) 

in the i nterva I £ o, 1). The boundary conditions wou 1 d be the 

same as those for the basis set fJo<~rnX)J. 

F rom a t a b I e o f i n t e g r a I s , i t can be f o u n d t h a t 

1 

r S i n ( m WX) S i n ( n A' X) d X = 
,J 
0 

t
o for m=O or 
o for m;tn 
1/2 for m=n 

n=O 
(4.32) 

Multiplying the. Equation <4.31) on both sides by 2wxsin<nwx) 

and integrating from 0 to 1 yields the coefficients of the 

sine<.) series: 

Crn = 211TT1 J x f < x) sin <m wx) dx, m= 1 , 2, .... 

0 

(4.33) 

This integral can be written in discrete approximation form 

as 

211TT1 
N2 

N-1 

n=O 

n mwn 
nf<--N-)sin< N ) (4.34) 

in the same manner as the rectangular integration in Equa-



tion <4.8). The summation could be performed by taking the 

imaginary part of the result of an FFT. 

Another convenient expansion is 

f(X) = 2 Crn J 112 <">-rnX) 

m=1 
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= ""' Crn - j_--=-2 -L l w<mwx) sin <m wx) (4.35) 

m=1 

which is valid in the interval [0,11. The integral expres-

sion for the coefficients is 

. 5 r . 5 Crn = w<2m) J x f(X) sin<mwx) dx (4.36) 

0 

and may be suitably ~pproximated by the same methods as be-

fore, using an FFT. 

Chapter Summary 

In conclusion, taking the viewpoint of rectangular-rule 

approximate integration and possibly using approximations to 

the transform kernels can lead to fast approximate algo-

rithms for many kinds of series expansions. These approxima-

tions may be good enough for practical purposes in many 

cases. The general technique is to pose the desired integral 

as a summation whose kernel involves a function <such as 

sine and cosine) for which a fast algorithm is commonly 

known. This is a very practical technique, but seems to be 

little known because interest in alternative basis sets, in 
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general, is I imited. 

Three different methods for deriving the Fourier-Bessel 

series coefficients have been shown in this chapter. But a 

fast algorithm is of I ittle value unless the results can be 

interpreted and used. Thus, Chapter V wi I I attempt to inter­

pret the transform results in terms of the traditional fre­

quency domain, and wi I I give a I inear filtering explanation 

of the data obtained. 



CHAPTER V 

INTERPRETING THE RESULTS OF 

THE TRANSFORMATION 

Introduction 

The set of Fourier-Bessel coefficients must be given 

some theoretical or physical interpretation if at alI pos­

sible. The result of a transformation is just a set of num­

bers unless logical or mathematical significance can be 

found for them. The purpose of this Chapter is to present 

some background that wi I I enable a more intuitive insight 

into the result of the Fourier-Bessel transform. 

FIR Fi Iter Bank Approach 

One of the reasons that the Bessel functions were cho­

sen as the object of this investigation was that they are 

the solutions of a set of time-varying differential equa­

tions. At first thought, it might appear that the transfor­

mation results in a time-varying fi Iter operation on the 

input data. But the actual way in which the transform is 

used is as a fixed FIR fi Iter bank which acts on the input 

data vector <usually a windowed segment of speech). 

As previously mentioned, such a I inear transformation 

of the data can be represented as a matrix-vector multipl i-

70 
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cation. Thus, each row of the transform matrix is an FIR 

fi Iter. The rows do not change, but are fixed: the trans-

formation is not time-varying. The frequency response of the 

FIR fi Iter bank wi I I now be discussed. 

Frequency Response of the Fi Iter Bank 

The calculation of the frequency response of each row 

of the transform matrix turned out to be a very difficult 

problem indeed, for the following reasons. First, there is 

no convenient form of an addition theorem for Bessel func-

tions. That is, there is no expression which formulates 

Jo[<n+nTJ in terms of a finite number of past samples of 

the function Jo[nTl, where T represents a fixed time incre-

ment. 

Second, the usual analysis of Fourier-Bessel series 

uses an integral expression for each coefficient: 

Crn = 
2 J X f(X) Jo<~rnX) dx. 

0 -

( 5. 1) 

But in a computer, only sampled signals and sampled Bessel 

functions can be processed. Hence, the integral can only be 

approximated. In fact, the fast a Igor i thm for the approx i-

mation of the series coefficients does not represent an 

exact pseudoinverse of the Bessel function matrix, J, which 

wi 11 be defined later in this chapter. 

Very 1 itt I e of the I i terature surveyed dea It with the 

case of sampled Bessel functions. Jerri <1978) defined a 

Discrete Hankel Transform, but he was not able to derive 
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an exact transformation: He used discrete approximations. 

J.P. Clero <1979) proposed a discrete Bessel transform 

matrix. Neither Jerri nor Clero could find mathematical 

proofs concerning the orthogonality of sampled Bessel 

functions on a finite interval. 

Third, even if the fast-algorithm approximation to 

<5.1) is ~onsidered to be close enough <which it should be 

for many practical purposes) then there remains the problem 

of calculating 

l(w,m) = 2 J xejwxw(x)JoC~X)dX 
0 

(5.2) 

for various values of w, so that the frequency response can 

be determined. The function w<x) is a windowing function. 

Most of the mathematical articles surveyed containing refer-

ences to integrals with Bessel functions in their integrands 

dealt only with the case of integration from zero to infin-

ity, rather than with the case of finite limits. 

For these reasons, the search for the closed form 

formula for the frequency response was <at least temporar-

i 1 y) abandoned. Instead, the integra I in Equation 5. 2 was 

estimated by numer i ca I integration. The magnitude response 

of l(w,m) was plotted for m=50 with w<x)=1 <rectangular win-

dow). Figure 23 shows the resultant response. The large side 

lobes are due to the use of the rectangular window. For the 

same value of m, Figure 24 shows the effect of using a Ham-

ming window in <5.2). Note that the sidelobes are reduced, 
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Figure 23. Magnitude response of FIR f i Iter bank, 
rectangular window. Row 50 out of 256. 
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Figure 24. Magnitude response of FIR f i Iter. bank, 
traditional Hanming window. Row 50 
out of 256. 
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as expected since the Bessel functions are really quite sim­

ilar to the trigonometric functions. Another window function 

consisting of half of a traditional Hamming window was tried 

<Figure 19). The magnitude response of the integral trans­

formation when this window is used is shown by Figure 25. 

This type of window is frequently used in the field of time 

series analysis for processing of autocorrelation functions. 

This window wi I I be discussed again in a later section of 

this report. 

Correspondence to Traditional 

Frequency Domain 

A correspondence can be derived between the coefficient 

numbers in the Fourier-Bessel transform domain and frequency 

in the traditional sine-cosine expansion. The correspondence 

between coefficient number and traditional frequency is only 

approximate because each Bessel function in the series rep­

resents a whole band of frequencies, not just a single fre­

quency. But there is a distinct concentration of energy in 

the frequency domain, as shown in Figures 23-25. Figures 15-

18 show the sinusoidal nature of the FIR fi Iter's impulse 

response, so it is rea I I y ·no surprise that the response of 

each row of the fi Iter bank is a narrow band of frequencies. 

The asymptotic approximation in Equation <3.14) is 

stated in terms of the normalized time, x. Making the sub­

stitution t/T for x, and substituting the expression <3.15) 

for \...,, the approximation to xJo < ·>.,..,x) becomes 
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Figure 25. Magnitude response of F 1 R f i 1 ter bank. 

Hamming lag window. Row 50 out of 256. 
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-l 2 t ] · 5 [ < m- . 2 5 ) w t 
<m-.25)T cos T - +]· (5.3) 

The major portion of the energy is centered at 

<m-.25)w 
T 

rad 
sec 

(5.4) 

where T is the I ength of the ana I ys is frame, in seconds. If 

there are N sample points per analysis frame, and the sam-

piing rate is f 5 samples per second, then the relationship 

between coefficient number and frequency is 

f ::: 
m - .25 

2N 
Hz. (5.5) 

But there is a problem here: Suppose that the signal 

being analyzed is a sinusoid, but with a phase which makes 

it as orthogonal as possible to the fi Iter's impulse re-

sponse. Then the Fourier-Bessel coefficient whose. approxi-

mate frequency fa I Is nearest to the signa I 's true frequency 

may show very I ittle response. Instead, neighboring coeffi-

cients wi 1 I show a greater response. This is one of the 

reasons that the Fourier-Bessel series is hard to deal with: 

The results one obtains depend heavily upon where the analy-

sis frame starts. The transformation is shift-variant in 

this sense. 

Linear Modeling Interpretation 

A useful viewpoint of alternative basis sets is the 

I inear modeling interpretation <Menke, 19B4). The assumed 

model of a waveform is as a I inear combination of basis vee-

tors, and the ful I power of matrix algebra can be brought to 
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bear on the problem. 

Let J be a matrix ~hose columns are sampled Bessel 

functions. The general element of this matrix is given by 

(5.6) 

~herem is the column number and n is the ro~ number. ~ 

represents the m-th zero of the Bessel function used, and N 

is the number of ro~s in the matrix. The ro~s are numbered 

f rom 0 to N- 1 . The d a t a mode I i s as a I i n e a r comb i n a t i on o f 

the columns of this matrix: 

X ( N-1) 

+ . 

or , i n mat r i x not at i on , 

0 
Jo< ~1-N-) 

1 
Jo< ~1-N-) 

N-1 
Jo< 'A1-N-) 

+ c2 

0 
Jo<~N) 

Jo( ~'M+) 

Jo( ~N-1) . N 

Note that J need not be a square matrix. 

0 
fJo< "A:z-N-) l 
Jo< \:z+) 

(5.7) 

( 5. 8) 

The process of obtaining the model parameters,the Cm's, 

is equivalent to finding the best L:z fit to the data given 

the aforementioned data model. If J is a square matrix, then 

the model parameters may be found <in principle) by inver-

sion of the J matrix, fol lo~ed by multiplication of the data 

-1 
vector~ by the inverse matrix, J . If J has more ro~s than 
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columns, then the best l2 fit can be found by calculating 

the pseudoinverse of J, and then multiplying the data vector 

by this matrix: 

= .£. (5.9) 

In practice, this process can be wei I approximated by the 

fast algorithm discussed in the previous sections. 

When viewed as a multiplication of the data vector by 

the pseudoinverse matrix of J, the process of finding the 

c~·s can be seen to be equivalent to a fi Iter bank consist­

ing of FIR filters: Each row of the pseudoinverse is then 

the impulse response of an FIR fi Iter. The rows of the 

pseudoinverse are not orthogonal, because Bessel functions 

are not a truly orthogonal basis set. 

If the pseudoinverse matrix is post-multiplied by its 

own transpose then the result is 

(JT J)-1 JT [ (JT J)-1 JT 1T = [ <JT J)-1 1T. 

S i n c e J T J i s s ymme t r i c , i t s i n v e r s e i s a I so s ymme t r i c . 

Therefore, 

[(JTJ)-1]T = <JTJ)-1. 

<5.10) 

(5.11) 

The matrix JTJ is not diagonal, because the columns of J 

are not orthogonal. The inverse of a non-diagonal matrix is 

also nondiagonal, if it exists. Ergo, <JTJ)- 1 is not dia­

gonal, and diagonal ity of this matrix would have been a nec­

essary condition for the orthogonality of the rows of the 

pseudoinverse, <JTJ)- 1JT. 

A consequence of this is that correlation of the re-
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suiting model parameters is to be expected even when the co-

variance matrfx of the input data vectors is a diagonal 

matrix. Consider the case where the input data is a rectang-

gular-windowed segment of sampled data from a white noise 

process with unity variance. Then the covariance matrix is 

the identity matrix .. If a matrix transformation A is applied 

to each outcome vector~. ~=A~. then the covariance matrix 

of the resultant vector ~ is 

(5.11) 

Substitution of the pseudoinverse of J into the place of A 

in Equation <5.11) yields 

C = (CJTJ)-1JTl[CJTJ)-1JTlT = CJTJ)-1. (5. 12) 
cc 

The matrix CJTJ) is not diagonal. Therefore, its inverse is 

not diagonal: The model parameters in the vector ~are 

correlated even when the input is a white noise sequence. 

The conclusion here is that correlation of the transform do-

main coefficients is to be expected even when the input 

sequence is white, provided that the basis set is not ortho-

gona I . 

Relationship to the Discrete 

Fourier Transform 

The relationship between the Fourier-Bessel coeffic-

ients and the Discrete Fourier Transform <OFT) coefficients 

is actually quite simple to derive. It is wei 1 known that 

the OFT can be written as a matrix-vector multiplication 
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<Hershey and Yarlagadda, 1986): 

(5.13) 

where li is the data vector, or sampled signal, andy is the 

vector of OFT coefficients. The matrix AOFT consists of com-

plex elements of the form 

-j 

= e 

2'11' 
N 

nk 
(5. 14) 

where the rows are numbered as k=0,1, ... ,N-1 and the columns 

t t . 1 A 
are numbered as n=0,1, ... ,N-1. Note tha the ma rtx~ OFT 

is symmetric and also unitary. 

Now let a 1 inear model be assumed for the sampled data: 

J£. = .2i. ( 5 . 1 5 ) 

This is the same model as was presented by Equation <5.7). 

Premultiply both sides of Equation <5.15) by AOFT to get: 

AOFTJ£. = AOFT.2i = Y =OFT coefficients. <5. 16) 

The columns of matrix AOFTJ are the OFT's of the basis vee-

tors of the assumed data model. Therefore, if the OFT's of 

basis vectors are known then these vectors can be summed 

with weights equal to the model coefficients to get the OFT 

of the original data vector, li· Unfortunately, the OFT's of 

the model matrix's columns are difficult, or impossible, to 

express in a closed form <no proof has yet been found). 

Chapter Summary 

A I i near f i Iter i ng approach to interpretation of the 

Fourier-Bessel coefficients has been presented. The process 

of discrete Fourier-Bessel transformation can be modeled as 
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a fi Iter bank consisting of FIR filters. Some of the diffi­

cult problems associated with discrete Fourier-Bessel anal­

ysis are: (1) Choice of windows, with the Hamming lag window 

seeming to be good; <2) Lack of an analytic expression for 

the frequency response of each row of the FIR fi Iter model; 

and <3) lack of orthogonality of the basis set, making the 

Fourier-Bessel coefficients statistically correlated even 

when the input signal is uncorrelated. 

The difficulty of Fourier-Bessel interpretation makes 

the chore of analyzing real speech signals even more prob­

lematic. For example, the point at which an analysis frame 

starts affects the coefficients obtained. This, and other, 

effects wi I I be discussed in the context of real speech sig­

nal analysis in Chapter VI. 



CHAPTER VI 

APPLICATION OF FOURIER-BESSEL 

SERIES TO SPEECH ANALYSIS 

Introduction and Survey 

of App I i cations 

Classical Applications 

The traditional uses of Fourier-Bessel series are re­

lated to problems in mathematical physics where circular 

symmetry and boundary conditions prevai I. Examples are vi­

brating drum heads, circular waveguides, and heat conduction 

in cylindrical rods <Condon and Odishaw, 1967). It should 

also be noted that acoustic tube models of the vocal tract 

are cylindrical. But the 1 iterature search revealed few pub-

1 ished reports of the use of Fourie~-Bessel expansions for 

signal analysis or classification purposes. 

Analysis-Synthesis of Speech 

Fourier-Bessel series have recently been used as the 

basis for analysis-synthesis of speech <Chen, Gopalan, and 

Mitra, 1985) and a Fourier-Bessel vocoder has been bui It 

<Chang and Chen, 1986). The basic scheme used was to expand 

each frame of speech into a Fourier-Bessel series based upon 

83 
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the Bessel function J1<x). Only dominant coefficients were 

retained, and the speech was resynthesized from these. Chen 

reported that good quality speech can be obtained using only 

one half to one third of the avai !able coefficients. Under­

standable speech could be obtained with one tenth of the 

coefficients. Chen typically used 150 coefficients in the 

expansion because he could find 150 zeros of J1<x) in a ta­

ble. But it was shown in Chapter I I I of this thesis that the 

higher-ordered zeros of Jn<x) can be wei 1 approximated by 

Equation <3.16), so there is really no need to limit the 

model order to 150 or fewer. 

The criterion Chen used for selection of the coeffi­

cients to be retained was that the several absolutely larg­

est numbers in the set were kept. But note from Figure 13 

that the higher \m becomes, the less energy is in Jo<\mx). 

Therefore, it is proposed that the criterion for coeffi­

cient selection should not be a flat threshold, but rather 

a threshold function that allows the several coefficients 

which contribute the most energy to the signal to be Kept. 

Feline Cortical Potentials 

P.L. Nunez pub! ished an article which described the 

use of the Fourier-Bessel series coefficients for charac­

terization of the cortical evoKed potential of cats due to 

an olfactory stimulus <1973). The rationale behind Nunez' 

choice of the Bessel functions as a basis set was that they 

"looK 1 ike" the waveforms he was trying to represent. Mean-
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ingful waveform representation and data compression were his 

goals. He conjectured that since basis functions which are 

the solutions of ordinary differential equations were not 

really suitable to describe the waveforms, then a better 

choice of basis could be a set of functions which are the 

wave·l ike solutions of some sort of partial differential 

equations. But he did not attempt to theoretically justify 

this proposition. In fact, his experimental results did not 

conclusively support the claim that the Bessel functions 

were fundamentally better than the traditional trigonometric 

functions as a basis set for the representaton of signals. 

But there were some promising indications that the Bessel 

functions could be a better basis set when an approximation 

to the waveform was to be formed by only a few terms of a 

series. 

This is an important distinction: a basis set for a 

series representation can be judged either by its abi 1 ity to 

(1) accurately converge to the waveform when, in the 1 imit, 

many terms of the series are included, or (2) represent the 

waveform, wei I enough for a given purpose, with a only few 

t~rms of the series included in the sum. In this latter case 

convergence of the series is not really a requirement, for 

alI that is desired is a description of some properties of 

t~e waveform, not an extremely accurate reproduction of the 

waveform. The mathematical I iterature seems to be preoccu­

pied with questions of convergence and accurate representa­

tion, whereas a <possibly imperfect) description of a signal 
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using only a few parameters could be more desirable for pat­

tern recognition or coding purposes. 

Characteristics of Fourier-Bessel 

Coefficients for Typical 

Speech Signals 

The first of several versions of the Fourier-Bessel 

analysis program used the method which was described by 

Equation <4.19). Note that the subsequent algorithm is quite 

inefficient: Only one out of every four frequency bins was 

used, so the transform had to be very long <of length SN). 

The program had analysis frames which were overlapped and 

Hamming windowed, but which were not in any way synchronized 

to the speech signal's own pitch period: the frames were 

"free running". Some of the observations of the results are 

reported in the following paragraphs. 

When plotted, the Fourier-Bessel coefficients tend to 

alternate in sign. Refer to Figure 26. Note that each large 

positive coefficient is usually followed or preceded by a 

large negative coefficient, and vice-versa. This is the most 

obvious characteristic of the coefficients, and is true for 

both voiced and unvoiced speech for alI speakers. 

The coefficients on either side of a given coefficient 

show a great deal of correlation with that coefficient. This 

is true especially for voiced speech. The amount of correla­

tion is less for coefficients which are not near neighbors. 

Recalling Equation <5.12), this is hardly surprising since 
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window used. 
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some correlation of coefficients is expected. 

In Figure 27, the same speech segment was again ana­

lyzed, but with a rectangular data window. Note the large 

alternating coefficients. This effect is very much I ike that 

which appears when dealing with the Discrete Fourier Trans­

form. This is not surprising, since the rows of the fi Iter 

bank are very nearly sinusoidal. A tapered window such as 

the Hamming window is definitely recommended. 

The Bessel functions are shift-variant. Since the ana­

lysis frames were free-running, their starting points in a 

pitch period were random variables. Thus, the Fourier-Bessel 

representation varied quite a bit from frame to frame, even 

in the same phoneme. Figure 28 shows that the shift-variant 

property of the Bessel functions affects the coefficients 

obtained in neighboring analysis frames. The starting point 

of the 256-sample analysis frame in Figure 28 was only half 

a pitch period after the starting point of the analysis 

frame of Figure 26. Note that the general location of the 

large coefficients is sti I I the same, but the exact coef­

ficient numbers of the largest coefficients changed. Thus, 

the raw Fourier-Bessel coefficients are in need of further 

processing if rei iable information is to be extracted from 

them. 

The shift-variant effect just noted was partially reme­

died by synchronizing the beginning of each analysis frame 

with the same point in each pitch period. This resulted in 

more consistent Fourier-Bessel coefficients from frame to 
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frame within the same phoneme. Figure 29 shows the windowed 

speech segment and FB coefficients obtained when the begin­

ning of the analysis frame was exactly one pitch period 

after that in Figure 26. Note that the Fourier-Bessel coef­

ficients in Figures 26 and 29 are more consistent with each 

other than those shown in Figure 28. 

Two other analysis frames, each with a different voiced 

phoneme, are shown in Figures 30 and 31. The genera I I oca­

tion of the largest coefficients changes from phoneme to 

phoneme. Since there is a correspondence between coefficient 

number and frequency, it is seen that these regions are the 

formants of the speech spectrum. 

Comparison of the Fourier-Bessel coefficient set for 

the same phoneme <"a" as in "cats") is made in Figures 26 

and 32-35. Figure 32 shows the result for a second trial of 

the same word for speaker number 1. Comparison to Figures 

33 and 34 for speaker number 2 does not reveal any immedi­

ately obvious features which could be used to differentiate 

between speakers. Figure 35 shows the same phoneme for 

speaker four, a male speaker <speakers 1 and 2 were female). 

The major difference is that the spacing between the large 

coefficients is less for the lower-pitched male speaker than 

for the female speakers. 

The Fourier-Bessel coefficients have less regularity 

and more high-frequency energy for unvoiced speech than for 

voiced speech. Figure 36 shows the result of expanding an 

"h" sound into a Fourier-Bessel series. Once again, this re-
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Figure 33. Speech segment,"a" as in "cats", with 
Fourier-Bessel coefficients. Speaker 
2, Trial 1. Hamming window used. 
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Figure 34. Speech segment,"a" as in "cats", with 
Fourier-Bessel coefficients. Speaker 
2, Trial 2. Hamming window used. 
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Figure 35. Speech segment,"a" as in "cats", 'With 
Fourier-Bessel coefficients. Speaker 
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Figure 36. Unvoiced speech segment, with Fourier­
Besse I . coefficients. Phoneme: II h II 
fricative. Speaker 4. Note lack of 
regularity of coefficients. 
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suit is hardly surprising, in view of the fact that the pro-

cess of Fourier-Bessel expansion is equivalent to a bank of 

FIR digital filters, each of which has a narrow frequency 

response. 

Extraction of Pitch Information From 

the Fourier-Bessel Coefficients 

It was noticed during many trials of Fourier-Bessel 

expansion that there was some regularity to the occurrance 

of large peaks: The spacing of the largest peaks seemed to 

correspond to the pitch frequency. The pitch information 

for voiced speech is fairly easily extracted from the co-

efficients if a simple algorithm is performed: 

STEP 1. Perform Fourier-Bessel expansion of a windowed seg-

ment of speech. 

STEP 2. Perform a three-point maximum-fi Iter operation on 

the coefficient set. This is simi tar to a median 

fi Iter, except that the maximum absolute value of 

every three samples is used as the output. 

STEP 3. Perform a three-point median fi Iter operation on the 

result of Step 2. 

STEP 4. Measure the average distance between peaks of the 

resulting waveform. The pitch frequency is then 

wet I approximated by 

~ - .25 
2N 

(6.1) 

where ~ is the average number of samples between 
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peaks. 

The result of performing this process on the set of 

coefficients from Figure 26 is shown in Figure 37. This is 

essentially the same as measuring pitch from the fine struc­

ture of the magnitude spectrum. 

Formants can be distingui~hed in the Fourier-Bessel 

coefficients, but there does not seem to be any great advan­

tage in using Fourier-Bessel coefficients instead of Fourier 

coefficients for determination of formant frequencies and 

relative energies. It was found that the formant frequencies 

could be distinguished, but none too clearly, from the raw 

Fourier-Bessel coefficient set. When the simple nonlinear 

filter mentioned in the previous pitch detection scheme was 

applied to the coefficients, the formants were easier to 

discern. 

Figure 38 shows the result of applying the maximum-me­

dian fi Iter to the coefficient set shown in Figure 36.'Note 

that the peaks are irregular as compared to the case of 

voiced speech. 

Refinement of Fourier-Bessel Coeffi­

cients and Feature Extraction 

AI I of the same information is contained in the Four­

ier-Bessel representation as in the common Fourier repre­

sentation of the signal. However, the information is in a 

different form. It should be noted that most automatic 

speaker recognition schemes use as a feature set the magni-
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Figure 37. Result of maximum-median filtering op­
eration on the Fourier-Bessel coef­
ficients of Figure 26. Voiced speech. 
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Figure 38. Result of maximum-median filtering op­
eration on the Fourier-Bessel coef­
ficients of Figure 36. Unvoiced 
speech. 
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tude spectrum of the speaker, either in direct or indirect 

form. In the following discussions, it should be borne in 

mind that the main purpose was to try to find a feature set 

which was suitable for pattern recognition. 

Fourier-Bessel Expansion of 

Autocorrelation Functions 

In the previous portion of this Chapter, it was found 

that Fourier-Bessel expansion of windowed speech segments 

did not always result in a rei iable and easily reproduced 

set of coefficients. Depending on the point where the anal-

ysis window started, a different set of coefficients result-

ed. Therefore, there seemed to be two options: <1) Make the 

analysis windows pitch-synchronous, or (2) perform Fourier-

Bessel expansion of some function of the data which is 

robust in the face of different analysis-frame starting 

points. The latter method was chosen; Autocorrelation func-

tions can be easily expanded into Fourier-Bessel series. 

-

An example of this technique is shown in Figure 39. In 

this example, a Hamming window was used. The result of using 

the Hamming lag window is shown in Figure 40. The transfer-

mation of the autocorrelation rather than the original time 

domain waveform not only provides a means of normalizing the 

beginning of the analysis frame, but also provides a conven-

ient opportunity to normalize the magnitudes by dividing by 

the signal's variance. 

In alI cases note how few coefficients are really re-
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Figure 39. Windowed autocorrelation, with Fourier­
Bessel coefficients. Same speech seg­
ment as in Figure 26. Hamming window. 

256~~ 

105 



~INDOHED AUTOCORRELATION 

51-0 153. 
LAG (80•~0/SEC) 

FB COEFF OF AUTOCDRR 

2.37~------~~--------~----------------
--~--------. 

. . 
1.69 •••••••••••••• ·:· ••••••••••••• ··:· ••••••• 0 •••••• ·:· •••••••••••••• ·:· •••••••••••••• 0 

. . 

. . 
1. 00 ............... ~ ............... r ............... : ............... ~ ............... , 

. . . . . . . . . 

0.31 ... ·.: ... , ...... ~ ·,i ............. ! ............... ~ ............... t .............. . 

''1i '"lj : 'jl • : . 

-0.37 . . . . . . . . . . . . . . t . . . . . . . . . . . . . . . ~- . . . . . . . . . . . . . . . ~- . . . . . . . . . . . . . . . ~- . . . . . . . . . . . . . . ., 

• • • I 
. . I 
. : I 

. . 1 

-1.06+.-------L-T---------~--------~---------~--
--------~ 

o. 51. 102. 154. 205. 

COEFFICIENT NUf·1BER 

figure 40. Windowed autocorrelation, with fourier­
Bessel coefficients. Same speech seg­
ment as in figure 26. Hamming lag 
window was used. 
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quired for representation of the windowed autocorrelation. 

Definite differences between speakers are also noticable. 

The distance between positive peaks can be directly related 

to the pitch, by the same method as was explained in the 

previous section. Also, the distance between adjacent posi­

tive and negative peak coefficients is a possible feature 

for pattern recognition. 

But there is sti I I the problem of extraction of a suit­

ably compact feature set. From the methods already presented 

here, only the pitch can be extracted. The set of Fourier­

Bessel coefficients obtained by transformation of the auto­

correlation is too large a set to be used in a typical 

pattern classifier. Therefore, a different description of 

the magnitude spectrum was needed. Such a description, a 

form of generalized cepstrum, wi I I now be discussed. 

Fourier-Bessel Expansion of 

the Magnitude Spectrum 

Suppose that the log magnitude spectrum is obtained by 

windowing, transforming, and then taking the logarithm by 

traditional methods. The magnitude spectrum is a waveform 

which can be expressed as a I inear combination of Bessel 

functions on the interval CO,fs/2). Note that such a repre­

sentation is homomorphic with repect to convolution, and 

thus could be considered as a sort of generalized cepstrum. 

For example, consider two signals xCn) and yCn). If 

xCn) and y<n) are convolved, then their log magnitude spec-
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tra add. Let X<w) and Y(w) represent the Jog magnitude 

spectra of x<n) and y<n). If X<w) and Y(w) are each modeled 

as series with some basis set g.(X), 
I 

X(w) = C .g. ( w) 
I I 

, Y ( w) = Big i ( w), (6.2) 

then the Jog magnitude spectrum of x<n)*y<n) can be written 

as the sum of the series for X(w) and Y(w): 

X< w) + Y ( w) = 2 ( C . + B . ) g . ( w) • 
I I I 

(6.3) 

In Equations <6.2) and <6.3), the I imits.of the summation 

were left indeterminate, because different I imits would be 

appropriate for various choices of the basis set g. <x). 
I 

Equation <6.3) states that a series representation of the 

Jog magnitude spectrum is a homomorphic system for convolu-

tion. The basis set could be ~ny of a wide variety of func-

tions, including orthogonal polynomials, Bessel functions, 

Walsh functions, or the traditional trigonometric series. It 

is shown in Appendi~ B that the trigonometric series repre-

sentation of the log spectrum is equivalent to the cepstrum. 

But there is no reason why alternative basis sets should not 

be used for homomorphic system characterization, deconvolu-

tion, or filtering. 

Now consider an example. Figure 41 shows a windowed 

speech segment which wi I I be analyzed. It is the same as the 

segment used in Figure 26. An FFT was used to estimate the 

power spectrum. The Jog power spectrum is shown in Figure 

42. A tapered cosine window was applied to the magnitude 
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Figure 42. Log magnitude spectrum of speech seg­
ment from Figure 41. 
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spectrum, and the result is shown in Figure 43. Also, a 

constant was added to the log power spectrum so that the 

boundary condition for the Fourier-Bessel series can be met 

at the right end of the interval. The log power spectrum was 

then expanded as a series of Bessel functions. The first 100 

coefficients of the expansion are shown in Figure 44. 

As with the traditional cepstrum, the "low-time" part 

of the cepstrum represents the gross shape of the magnitude 

spectrum, while the pitch period is clearly shown as a very 

large coefficient. The interpretation of the horizontal axis 

in Figure 44 as "time'' is a subject open for discussion. 

The degree to which a I imited number of these coeffi-

cients can represent the magnitude spectrum is i I lustrated 

in Figures 45-50. The general shape of the spectrum can be 

represented by the first nine to twelve coefficients. 

The pitch estimate is formed as follows. First, it 

should be recalled that the approximate frequency associated 

with the m-th Fourier-Bessel coefficient is 

f ~ 
m - .25 

2 
cycles (6.4) 

analysis frame 

When the pitch frequency is fp, and the analysis frame goes 

from f=O to f=f 812, then there should be f 81<2fp) cycles of 

the fine structure of the spectrum in the analysis interval. 

Then, setting these two results equal to each other yields 

an expression that can be solved for f in terms of m <the 
p 

coefficient number) and f 8 <the sampling rate): 

m - .25 
2 2 f 

(6.5) 

p 
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Figure 43. Windowed and normalized power spectrum 
from Figure 42. Tapered cosine win­
dow of Figure 20 used. Note that the 
log power has been forced to equal 
zero at f=4000 Hz. 
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Figure 44. Fourier-Bessel expansion of the log po~­
er spectrum of Figure 43. Coefficient 
number 3? can be used for pitch esti­
mation. 
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the approximation. 
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Figure 49. Comparison of actual magnitude spec­
trum to approximation formed by 30 
coefficients. Dashed 1 ine: actual 
spectrum. Solid I ine: Approximation. 
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40 COEFFICIETiTS 
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Figure 50. Comparison of actual magnitude spec­
trum to approximation formed by 40 
coefficients. Dashed 1 ine: actual 
spectrum. Solid I ine: Approximation. 
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Solving the equation for f gives 
p 

120 

f 
p m - .25 

(6.6) 

If m is the coefficient number of the largest Fourier-Bes-

sel coefficient, then Equation <6.6) yields the pitch esti-

mate. Additional work is required to test this method when 

the speech data is noisy. 

Another speech example is shown in Figures 51-54. 

Again, note the prominence of the coefficient corresponding 

to the pitch period. 

The most common method of deconvolution or filtering 

with a homomorphic system consists of gating, or windowing, 

the cepstrum coefficients. Then the signal is reconstructed 

from the modified cepstrum. But when the traditional cep-

strum is used, deconvolution by this method can only be 

effective if the cepstra of the two signals to be separated 

do not overlap in the quefrency domain <Tribolet, 1979). 

Now suppose that a cleverly chosen basis set and its 

companion series expansion are appl led to the log magnitude 

spectrum of the original signal. If the basis set is chosen 

properly, then the quefrency domain coefficients may be sep-

atated so that they do not significantly overlap. <The que-

frency domain can be generally defined as the domain that is 

the result of a transform of the log power spectrum.) Then 

gating or windowing can be used to eliminate the undesired 

signal, and the deconvolved signal can be reproduced. 



WINDOWED SPEECH SEGMENT 
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Figure 51. Windowed speech segment, "a" as in 
"cats". Harrrning windowed. Speaker 
1 , Tria I 2. 
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Figure 52. Fourier-Bessel cepstrum of speech 
segment of Figure 51. Large co­

efficient at m=35 corresponds 
to pitch. 
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Figure 53. Approximation to power spectrum of the 
speech segment of Figure 51 using 
nine coefficients. Dashed ine: 
Actual spectrum. Solid I ine: Approx­
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Figure 54. Approximation to power spectrum of the 
speech segment of Figure 51 using 
12 coefficients. Dashed I ine: 
Actual spectrum. Solid I ine: Approx­
imation. 
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Feature Sets for Pattern Recognition 

In theory, any of the Fourier-Bessel expansions pre­

sented in this report could be used to generate feature vec­

tors. But the practical problems with large feature sets 

preclude the use of the raw Fourier-Bessel coefficients of 

windowed speech segments. The problems are: (1) dimensional­

ity of the feature space; (2) efficient extraction of the 

features; and (3) reproducibi I ity and robustness of the 

features. 

The problem of efficient calculation of the Fourier­

Bessel series coefficients has been practically alleviated 

by use of the fast transforms of Chapter IV. The problem of 

reproducibi I ity of the features can be mitigated by expand­

ing the autocorrelation or the magnitude spectrum, because 

each of these waveforms has a naturally defined starting 

point. But the problem of dimensionality of the feature 

space is reasonably solved only by the Fourier-Bessel expan­

sion of the log magnitude spectrum. 

After much experimentation with various aspects of the 

Fourier-Bessel expansion, it appears that about the best 

feature set would consist of the pitch plus the first few 

Bessel cepstrum coefficients. Unfortunately, comprehensive 

testing of this proposed feature set was precluded by the 

lack of a high quality database for the speaker recognition 

problem. Such a data base should consist of several differ-

ent sentences uttered by at least 20 speakers, with at least 
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25 trials of each. Also, the data mus~ be collected on dif­

ferent days and under good recording conditions. Obviously, 

the collection of such a data base can be a formidable task. 

The results are expected to be much the same as with 

other cepstrum-based methods. Enough information is avai 1-

able in the I iterature to make comparisions possible with 

other feature sets. 

Chapter Summary 

Some of the practical aspects of Fourier-Bessel anal­

ysis have been presented. One of the chief difficulties is 

that the starting point of the analysis frame affects the 

coefficients obtained. Since there is no shifting theorem 

for the Bessel function basis set, this makes subsequent 

analysis of the coefficients very difficult. One solution 

to this problem is to transform some waveform which has a 

wei 1-defined, natural starting point such as the autocor­

relation or the magnitude spectrum. 

Expression of the log magnitude spectrum as a I inear 

combination of some basis functions amounts to a generalized 

cepstrum. Almost any convenient basis could be used for this 

purpose, and it is traditional to use the trigonometric ba­

sis sets for this purpose. It has been proposed that the use 

of these alternative expansions can enable the use of homo­

morphic filtering or deconvolution even when the traditional 

cepstrum coefficients overlap in the quefrency domain. 



CHAPTER VI I 

CONCLUSION 

The original purpose of this investigation was to find 

an alternative method of automatic speaker recognition. At 

first, it was thought that the Bessel functions would be a 

good basis set for speech signal modeling because: (1) The 

Bessel functions are the solutions to a class of differen­

tial equations with time-varying coefficients; <2) The Bes­

sel functions resemble voiced speech waveforms. Other poten­

tial advantages included the existence of a fast transform 

algorithm for the Hankel transform integral, and also the 

fact that the result was real-valued rather than complex. 

It has been shown that the result of a Fourier-Bessel 

transformation of a speech waveform is a rather complicated 

set of numbers, which are hard to interpret. This is because 

there is a lack of theoretical knowledge concerning sampled 

Bessel functions and the fact that alternative transform 

domains are usually unfami I iar to digital signal processing 

practitioners. It was found that the set of numbers produced 

by Fourier-Bessel expansion of a segment of speech was too 

large and variable to be used in a pattern classification 

scheme. It was also found that there is an approximate cor­

respondence between the concept of traditional frequency 

127 



128 

and the Fourier-Bessel coefficient numbers. Also, a method 

of pitch computation was devised. 

The fast transformation for the Hankel transform inte­

gral was stream! ined for use with the Fourier-Bessel expan­

sion. It was found that the Fast Hartley Transform was very 

useful and efficient for this purpose. The Fast Hartley· 

Transform shows much promise as a general-purpose signal 

processing tool. The errors involved in the approximate com­

putation of the Fourier-Bessel expansion were smal I enough 

to ignore in most cases. This ~I lowed further stream! ining 

of the fast transformation algorithm by the elimination of 

the computationally costly "Fourier selection summation" 

method used by Candel <1981). Also, this reinforces the idea 

that an engineering solution does not have to be precise to 

a great many decimal places to be a useful tool. 

One of the reasons that the Fourier-Bessel series was 

selected as a topic of research was that a fast algorithm, 

Candel 's method, had previously been devised. This points 

to a very real problem of digital signal processing. The 

general transformation is equivalent to a matrix-vector mul­

tiplication. But given an arbitrary transform matrix, can 

a fast transform algorithm be derived which performs the 

same I inear transformation as the desired matrix transfor­

mation? Up to the present time, most fast transformation 

algorithms have depended upon a simple, redundant structure 

of the transform matrix to allow a fast transformation to be 

derived. A general method of deriving fast transformation 



algorithms equivalent <or approximately equivalent) to a 

given 1 inear transformation would be very useful indeed. 
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This thesis also explored an alternative cepstrum, con­

sisting of the Fourier-Bessel expansion of the log power 

spectrum of a segment of speech. This representation was 

found to be compact enough for possible application to pat­

tern recognition. But more important I y, it points out that 

many alternative cepstra are possible, each corresponding to 

a different series expansion of the log power spectrum of a 

signal. Using such alternatives, homomorphic filtering may 

be applied to some classes of problems for which it has not 

been previously considered. 

An area of future research using the Fourier-Bessel se­

ries is the estimation of pitch in the presence of noise. 

The generalized cepstrum method of pitch estimation could be 

a p p I i e d to t h i s p rob I em . I t i s a I so p o s s i b I e t h a t other 

transforms, such as the Walsh-Hadamard transform, could op­

erate on the log magnitude spectrum to get other more easily 

computed pitch estimation schemes. 

The area of speaker authentication could sti 11 be pro­

fitably explored. Sui lding on the results presented in this 

thesis, the Fourier-Bessel representation of the autocor­

relation could be further processed to extract features for 

pattern recognition. For example, pitch and formant infor­

mation can be obtained. The "Bessel cepstrum" described in 

Chapter VI could also be used as a description of the magni­

tude spectrum. 
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Another area for future work is speech coding with the 

Fourier-Bessel series. It may be possible to use the Bessel 

cepstrum coefficients for speech coding. For example, the 

first few coefficients may be used to describe the magnitude 

spectrum's general shape, and the largest coefficients can 

be used for pitch detection. Once again, a carefully chosen 

basis set for the alternative cepstrum could yield a fair­

ly compact and cheaply computed description of the log power 

spectrum. 
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APPENDIX A 

FAST HARTLEY TRANSFORM ALGORITHM 

Introduction 

Bracewel I <1984) introduced a BASIC language version of 

the Fast Hartley Transform. It was not an in-place algorithm 

so it required a lot of memory. Some improvements were made 

in the fast transform, so that memory was saved and the 

lookup table for sines and cosines which Bracewel I provided 

was eliminated. To avoid the <time consuming> sine and co-

sine evaluations, recursive calculation was instal led. But 

due to numer i ca I i nstab i I i ty, some users may wish to dis-

able this feature. 

The Program 

SUBROUTINE FHT<F,N,FWD) 
C---------FAST IN-PLACE HARTLEY TRANSFORM 
C---------ROBERT HAMILTON 
C APRIL 6, 1986 
C This algorithm is an improvement of the previous 
C one given by Bracewel I. This subroutine requires 
C no workspace or extra arrays internally. Also, 
C the sine/cosine lookup-table has been eliminated 
C and recursive computation of the trig functions 
C has been instal led. 

C INPUTS: 
c <1) F = REAL array ; put the input data here 
C <2) N = INTEGER; length of the transform; should be 
C a power of 2. 
C (3) FWD = INTEGER, which tel Is the FHT subprogram 
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c 
c 
c 

whether to divide the result by N. If FWD=1, 
the division wi II be performed; otherwise, it 
wi I I not be performed. 

C OUTPUTS: 
C (1) F = array of output values. 
C Arguments N and FWD are not affected by the sub-
c routine. 

INTEGER FWD,N 
REAL F<O:N-1) 
INTEGER P,N2,N4,SO,S2,S4,D,E,Q 

DATA Pl/3.14159265/ 

IF< N. LT. 2) STOP 'N. LT. 2 in FHT ...•• ' 

IF<N.NE.LASTN)THEN 
P=1 
1=2 

5 IF<N.EQ. I) GO TO 10 
1=1*2 
P=P+1 

! find P, where 2**P = N 
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IF< I .GT.N) STOP 'N not a power of 2 in FHT cal I.' 
GO TO 5 

10 CONTINUE 
N2=N/2 
N4=N/4 
W=2.*PI/FLOAT<N) 

END IF 

C------PERMUTE, PLACE IN BIT-REVERSED ORDER 

J=-1 
1=-1 

1100 1=1+1 
E=N E=2**P 

1110 E=E/2 
J=J-E 
IF(J.GE.-1)G0 TO 1110 
J=J-i-2*E 
IF( I .LE.J)GO TO 1100 
TEMP=F< I +1) 
F<I+1)=F<J+1) 
F<J+1)=TEMP 
IF< I .LT.<N-3))G0 TO 1100 

C-----ENDPERMUTE 

DO I=O,N-2,2 
TEMP=F <I) 
F < I ) =TEMP+F < I+ 1 ) 
F< 1+1)=TEMP-F< 1+1) 

ENDDO 



IF<P.EQ.1>GO TO 500 

1=0 
J=2 
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DONE 

130 TEMP=F<I) 

1697 
1698 
1699 
C1700 
C1701 

f(I)=TEMP+F(J) 
F<J>=TEMP-f(J) 
1=1+1 
J=J+1 
TEMP=F< I) 
F<I>=TEMP+f(J) 
F<J>=TEMP-F<J) 
1=1+3 
J=J+3 
IF< I . NE. N) GO TO 130 

IF<P.EQ.2) GO TO 500 DONE 

80=N4 
84=4 

Now s t a r t the ma i n i t e rat i on .. 
Uses decimation-in-time. 

DO L=2,P-1 
82=82*2 
80=80/2 
TEMP=W*FLOAT<80) 
CX=C08<TEMP> 
8X=81N<TEMP) 
DO Q=O,N-1,82 

I =Q 
D=l+84 
TEMP=F <I) 
F< I)=TEMP+f(D) 
F<D>=TEMP-F<D> 
K=D-1 
8NX=O. 
CNX=1. 
DO J=80,N4,80 

1=1+1 
D=l+84 
E=K+84 
TEMP=CNX*CX-8NX*8X 
8NX=8NX*CX+CNX*8X 
CNX=TEMP 
CNX=C08<FLOAT(J)*'W) 
8NX=81N<FLOAT(J)*'W) 
TEMP=F<D)*CNX+F<E>*8NX 
Z=F<D>*8NX-F<E>*CNX 
F<D>=F(I)-TEMP 
F<E>=F<K>-Z 
TEMP=F< I )+TEMP 
F<K>=F<K)+Z 
F< !)=TEMP 
K=K-1 

recursive computation of 
sines and cosines. For 
slightly better numerical 

accuracy, comment out 
I i nes 1697, 1698, 1699 
and use I ines 1700 and 
1701 . 



ENDDO ! Close loop J 
E=K+S4 

ENDDO Close loop Q 
S4=S2 

ENDDO Close loop L 

500 IFCFWD.EQ.1)THEN ! Divide by N 
TEMP=1./FLOATCN) 
DO I=O,N-1 

FCI)=FCI)*TEMP 
ENDDO 

ENDIF 
LASTN=N 
RETURN 
END 
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APPENDIX B 

RELATIONSHIP OF BESSEL FUNCTIONS 

TO THE COMPLEX CEPSTRUM 

Introductory Remarks 

During the course of researching the properties of the 

Fourier-Bessel series, an interesting interpretation of the 

complex cepstrum in terms of the Bessel functions was dis-

covered. This relationship is not believed to have been 

previously published in the electrical engineering or mathe-

matical I iterature, although it is actually quite simple to 

derive. 

Before commencing the main discussion, the definition 

of the cepstrum wi I I be reviewed. Briefly, the cepstrum of 

a sequence is defined as the inverse Z transform of the com-

p 1 ex natura I I ogar i thm of the sequence's ordinary Z trans-

form. Figure 55 i I lustrates the definition of the cepstrum 

with a block diagram. 

Time Quefrency 
Doma·n Doma·n I I 

A A 

x<n) X<z) X<z) 
z-1[.1 

x<n) 
z [ . ] log[.J 

Input output 
Sequence Cepstrum 

Figure 55. 11 lustration of the complex cepstrum. 

139 
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The process of recovering a sequence from its cepstrum is 

illustrated by Figure 56. 

..... X<z) X<z) x<n) x<n) 
z-1 £. l z [ . ] exp [ . l 

Input Output 
Cepstrum Sequence 

Figure 56. 11 lustration of recovery of a sequence from its 
cepstrum sequence. 

The outstanding feature of the cepstral representation 

is that convolution in the time domain is equivalent to ad-

dition in the cepstral domain. Therefore deconvolution or 

filtering can, in.principle, be performed in the cepstral 

domain by simply adding the cepstra of the sequences to be 

convolved. It is not the purpose of this section to give an 

exhaustive tabulation of alI of the properties of the cep-

strum. The interested reader is referred to the excel lent 

book by Tribolet <1979), or for speech applications see 

Rabiner and Schafer <1978). 

Relationship of Bessel Functions 

to the Complex Cepstrum 

It wi I I now be shown that the representation of a se-

quence by its complex cepstrum is equivalent to representing 
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the sequence's log magnitude spectrum with a cosine series 

and the sequence's phase with a sine series. Furthermore, it 

wi 11 be shown that representation of a signal by its cep-

strum is equivalent to representing the signal as a convolu-

tion of Bessel function sequences. Rather than state these 

properties as theorems at this point, they wi I I be delayed 

unti 1 special notation has been introduced. The key formula 

that relates a sequence x<n> to its cepstrum x<n> is shown 

in Equation <B.17>. Equations <B.24> and <B.25> relate the 

cosine series for the log magnitude spectrum, and the sine 

series for the phase spectrum, to the time domain sequence 

x<n>. The derivation of these formulae wi I I now be given. 

The generating function of the Bessel 

has been stated as 

a <t ___ 1_) 
2 t e = 

n=-~ 

functions, J <a>, 
n 

< B • 1 ) 

Substituting 1/z for the dummy variable t, an expression for 

the z transform of the sequence of Bessel functions results: 

a 

Z£J <a>l = e 2 
n 

(--1- - Z) 
z <B.2) 

Note that the argument of the Bessel functions, a, is now 

considered to be a constant parameter while the order of the 

Bessel function is varied over the entire range of integers. 

The properties of this sequence are interesting. For 

example, the sequence may be generated using the recursion 

formula 
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J 1<a) = 
n+ 

2n 
a 

J <a) - J 1 <a). (8.3) 
n n-

If J 0 <a) and J 1 <a) are known, then Jn<a) can, in principle, 

be calculated using <8.3). This formula is I inear, but it 

does not have constant coefficients. The formula exhibits a 

numer i ca 1 i nstab i I i ty when In I exceeds I a I . For this reason, 

it is sometimes recommended to use a backwards recursion 

formula to calculate the sequence <Olver and Sookne, 1972). 

An easy, but sti I I very effective, way to approximate the 

sequence is to simply use the recursion formula with the 

initial conditions, Jo<a) and J1<a), given above and then 

truncate the sequence when lnl>lal. The elements of these-

quence become very small indeed after that point and can be 

safely ignored. 

The Fourier transform of the sequence can be obtained 

from the Z transform of the sequence by substitution of 

exp<jw) for z in Equation <8.2), yielding 

- j a sin< w) 
e = 

-jnw J <a)e . 
n 

(8.4) 

n=-m 

Note that the Fourier transform has a flat magnitude res-

ponse and has a phase response which is sinusoidal in shape 

with a variation that is governed by the parameter a. 

Now suppose that the original sequence of Bessel func-

tions has k zeros inserted between each element: 

£ ••• ,O,J_ 1 <a),O, •.. ,o,J 0 <a),O, ... ,O,J 1 <a),O, ... l 
I I I (8.5) 
k zeros 
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The notation for such a sequence shal I be [Jk<a>l where the 
n 

superscript denotes the number of zeros inserted between 

each sample of the Bessel function sequence, the subscript 

is the order of the Bessel function, and a is the argument 

of the Bessel function, considered as a constant parameter. 

The z transform of this sequence is derived simply from the 

z transform of the original sequence by replacing z with 

k+1 z in <B.2>. The resulting Fourier transform is 

-ja sin£<k+1>wl 
e = -j[k+1lwn 

e . <B.6) 

n=-co 

Note that the phase response is no longer periodic with per-

iod 2w, but now has period <2w)/(k+1). The shape of the 

phase response curve is sti I I sinusoidal. 

A similar situation exists for the case of the Bessel 

functions of the second kind, 

for this set of functions is 

a < t + _1_) 
2 t 

e = 
n=-(11) 

I <a>. The generating function 
n 

<B.7) 

Again substituting 1/z for t <where the parameter a is held 

constant>, the Z transform of the sequence of functions is 

obtained: 

a < z + _1_) 
2 z e 

co 

n=-co 

-n 
I <a>z . 
n 

<B.8) 

Letting z = exp<jw), the Fourier transform of the sequence 

is 



F ( w) 
a cos ( w) 

= e 

n=-m 

I <a) 
n 
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- j wn e . <B.9) 

Note that this Fourier transform has zero phase and has a 

magnitude response which is periodic with period 2w. The 

natura I I oga r i thm of the magnitude response is 

In IF< w) I = a cos< w) • <B.10) 

If k zeros are inserted in between each of the samples of 

the sequence of Bessel functions of the second kind then by 

an argument similar to the one used for the derivation of 

<B.6) the Fourier transform of the sequence becomes 

Cll 

e a cos [ ( k + 1) w] = 

n=-m 

I <a) 
n 

-j(k+nwn 
e . <B.11) 

Consider the inverse system for homomorphic deconvol-

ution shown in Figure 56. If the sequence x<n) in the que-

frency domain <the domain in which x<n) exists) is equal to 

x<n) = £ ••• ,o~o.a/2,0, ... ,o, •.. ,O,a/2,0, ... 1 <B.12) 

then X<z) = a 
2 

I I 

I 
<2k+1) zeros centered around n=O 

k+1 k+1 .... 
<z + 1/z ) so that X<z) = exp£X(z)J. 

Finally, when the inverse Z transform of exp£X<z)J is com-

puted as in Figure 56, the sequence of Bessel functions of 

the second kind is obtained <with k zeros inserted between 

samples): 

... ,o, 1 1 <a) ,o, ... l. <B.13) 

Now consider the case where x<n) is an odd function of n in 
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the quefrency domain: 

~<nl = r ••• o,o,-a/2,0, ... ,0, ... ,O,a/2,0,0 ... 1. <B.14) 

I I I 

C2k+1) zeros centered around n=O 

Going through the inverse homomorphic system again, a se-

quence of Bessel functions of the first kind is obtained 

<with k zeros inserted between samples): 

x < n) = [ J~ <a) 1 = [ ... , 0, J _ 1 <a) , 0, ... , 0, J d a) , 0, ... 

<B.15) 

.... . 
Now suppose that some cepstrum, x<nl, has been given. 

Then the cepstrum can be decomposed into the sum of even and 

odd parts 

x<n) = X <n) + X Cn) 
even odd <B.16) 

where~ <nl is an even function ~oddCn) is an odd func-even 

t ion of n. Each of these, in turn, can be decomposed into a 

sum of elementary cepstra as in Equations <B.12) and <B.14). 

A sum of cepstra represents convolution in the time domain. 

Therefore, the time domain sequence x<nl can be represented 

as a convolution of sequences of Bessel functions, where 

the order of each Bessel function is considered as a time 

variable and the argument of each Bessel function sequence 

is calculated from the cepstral coefficients: 

ClD 

X(n) = eX(O)&(n) * ~ 
k=O 

k=O 

Jn(X(k+1)-X(-k-1)) [ k ,.... "' ] 

<B. 17) 
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The large asterisk is defined as the notation for the con-

volution of many sequences, in analogy with capital sigma 

for a summation or capital pi for a product. Equation <8.17) 

establishes a direct I ink between time and quefrency. 

Another interpretation of the cepstrum is as a paramet-

ric representation of the magnitude and phase spectra of a 

time-domain sequence. Consider the log-magnitude spectrum of 

a real sequence, x<n>: 

I n I X ( w) I = I n 

n=-CIO 

x<n> - jwn e <8.18) 

For simplicity, suppose that the sequence has zero phase so 

that it is completely described by <8.18). Suppose that the 

magnitude of the Fourier transform is nonzero in the inter-

val -w<w<w. Then the log magnitude exists, and is a perio-

die function of the variable w with a period of 2w. Also, 

the log magnitude is an even function. The log magnitude can 

therefore be expressed as a cosine series. The constant term 

wi I I be ignored here, for it merely represents the contribu-

tion of a flat spectrum, which could be caused by a large 

sample at n=O in the time domain. The cosine series is 

In I X< w) I = 

n=1 

a cos<nw) 
n -w < w ~ w (8.19) 

where the coefficients of the series are related to the cep-

strum by 

a 
n 

x<n) + x<-n). (8.20) 

The coefficients of the Fourier cosine series are directly 
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related to the representation of the signal as a convolution 

of Bessel function sequences, 

~ 

x<n) = ~ [l~<ak+ 1 )] 
k=O 

<B.21) 

where the a.'s are the coefficients of the cosine series in 
I 

Equation <B.19). 

Now suppose that the signal has a flat magnitude spec-

trum. The phase spectrum can be treated in a similar manner. 

Let the phase spectrum be expressed as a sine series: 

arg<X<w)) = 

n=1 

b sin(nw). 
n 

<B.22) 

Note that this is not always possible for any arbitrary se-

quence x<n). However, if the phase cannot be expressed as a 

Fourier sine series, then the signal can be negated <phase 

shifted by 180 degrees) so that the phase is an odd function 

of w with a period of 2w. A signal with a flat magnitude 

spectrum, but with a phase which is expressible as a Fourier 

sine series can then be written as the convolution of Bessel 

function sequences of the first kind: 

x<n) = ~ [J~<-bk+ 1 )] <B.23) 

k=O 

where the b.'s are the coefficients of the series <B.22). 
I 

Summarizing these results, let ~(W) be the phase spec-

trum of x<n), and let lnjX<w)l be the magnitude spectrum. 

Suppose that these functions are expressible as series: 



and 

CiHX(w)) = 

n=1 

n=1 

a cos<nw) 
n 

b sin<nw). 
n 
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<B.24) 

Then x<n) can be written as an· infinite convolution of Bes-

sel function sequences, with the arguments of the Bessel 

functions expressed in terms of the cosine and sine series 

coefficients: 

co 

x<n) = ea0 &<n) * * [l~<ak+ 1 )] 
k=O 

* * [J~(-bk+1']· 
k=O 

Experimental Verification 

<B.25) 

As an experimental verification of some of these for-

mulae, a sequence was synthesized by the direct convolution 

of Bessel function sequences. The log magnitude of these-

quence was chosen as sketched in Figure 57. The phase was 

set to zero, so that the corresponding time domain sequence 

should be an even function. Expanding the magnitude spectrum 

into a cosine series, the coefficients are as shown in Equa-

tion <B.26): 

In IF ( w) I = ao + 

n=1 

a cos< wn) 
n 

(B.26) 
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-'l'r ~ o.l 

Figure 57. Magnitude spectrum of test sequence. 
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and a = 
n 

A 
wn sin<w0 n> for n=1,2,_ .... The 

value of w0 was arbitrarily chosen as 0.1. The time domain 

sequence was synthesized by a direct convolution of Bessel 

function sequences, as shown in Equation <B.21). Of course, 

only a finite number of such functions can actually be con-

volved. Figures 58-63 show the effect of including more se-

quences in the convolution. The function converged to x<n> 

slowly, for this is a sort of "worst case" for a Fourier 

series: There are step discontinuities at w=-0.1 and w=0.1, 

so that there are many significant coefficients in <B.26). 

On the practical side, it should be noted that the sequences 

were actually truncated when lnl>lal to avoid numerical in-

stab i I i ty. 

Surrrnary 

An unusual relationship between the complex cepstrum of 

a sequence and the Bessel functions has been presented. The 

cepstrum representation is equivalent to the representation 

of a log power spectrum by a cosine series with the phase 

spectrum represented as a sine series. Unfortunately, this 

simple explanation of the cepstrum is usually obnubi lated 

..... - 1 when the cepstrum is defined as x<n> = z fln[Zfx<n>JlJ. As 

of this writing it is not believed that the representation 

as a convolution of Bessel function sequences is very prac-

tical if used directly as a synthesis method. But as a tool 

for theoretical work or derivat1ons it may be useful. 
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Figure 58. Resynthesized sequence, ten convolu­
tions. 
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20 COfiVCLUT I CNS 
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-o.27 0 • • • 
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-1.33+---------~----------~----------~--------~----------~ o. 205. 409. 614. 819. 1023. 

Figure 59. Resynthesized sequence, 20 convolu­
tions. 
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-1.36+---------~----------~----------~--------~----------~ o. 20:5. 409. 614. 818. 

Figure 60. Resynthesized sequence, 50 convolu­
tions. 
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-1.37+---------~----------~----------~--------~----------~ o. 205. 409. 614. 818. 

Figure 61. Resynthesized sequence, 1 oo convo 1 u­
tions. 
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200 CCNVDLUT IONS 
1.38.---------------------------,---------------------------~ 

0.83 0 • 0 •• 
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• ........ 0 ••••••••••••••••••••••• 0 ••••••• . . . . . . 
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-1.38+---------~----------~----------~--------~----------~ 
o. 205. 409. 614. 818. 1023. 

Figure 62. Resynthesized sequence, 200 convolu­
tions. 
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1000 CONVOLUTIONS 
1.38~------------------------~--------------------------, 

0 • 83 ............... ~ ............... ·: ................ ~ ............... ~ ............... . 
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-1.38+---------~----------,-----------~--------~----------~ 
o. 205. 409. 614. 818. 1023. 

Figure 63. Resynthesized sequence, 1000 convolu­
tions. The result is a sine(.) func­
tion, with an added impulse at the 
origin <n=512) as there should be. 
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