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PREFACE

A signal may be expressed as a |inear combination of
other functions, called the basis set. This is essentially
a model of the waveform or signal. infinitely many choices
are possible for the basis set, with the most common choice
being the set of trigonometric functions. This study in-
volves the use of Bessel functions of the first kind as the
basis set.

The originalvgoal of the research was to develop an
automatic speaker recognition scheme, based upon the Fourier
Bessel| series. But the difficulty of collecting a high qual-
ity data base and certain hardware deficiencies precluded
the completion of the original goal. Also, it was found that
the theoretical foundation for the use of the Fourier-Bessel
series for signal analysis was practically nonexistent. For
these reasons, the study was confined to general purpose
speech analysis and to investigation of the computational
algorithms required.

The author wishes to express his appreciation to his
major advisor, Dr. Rao Yar lagadda, for his guidance and his
willingness to consider nontraditional approaches to digital
signal processing prbblems. The freedom to explore new ideas
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CHAPTER |
INTRODUCT ION
Motivation

|t has long been known that arbitrary signals may be
expressed‘as | inear combinations of orthogonal functions.
For example, a very common technique.used in applied math-
ematics and electrical engineering is the expression of a
signal in terms of its Fourier series coefficients. Such
representations are very useful in the field of digital
speech signal analysis; for example, speech signals can be
compactly described by some subset of series coefficients
which are, in turn, used as the features in a pattern
classification scheme for speech or speaker recognition. The
most commonly used series representation in the field of
signal analysis is the Fourier series. But other series can
also represent signals, although these alternative series
are rarély as easy to derive or ihterpret as the Fourier
series.

"There has been relatively little prior research into
the use of alternative basis sets'for speechbsignal analy-
sis. This is because the Fourier series is a very useful and
convenient tool, for which thefe is a mathematically trac-

table basis set. Furthermore, the Fast Fourier Transform



algorithm (FFT) has provided impetus to the Fourier series
as one of the main implements of digital signal analysis.
Despite the usefulness of the Fourier series, it cannot be
shown thaf it is optimal as a means of pattern recognition,
nor is it always the most compact representation for speech
coding and transmission. Therefore, investigation of alter-
native basis sets can be justified in the search for better
basis sets for coding and classification.

In this particular study, the basis functions of in-
terest are the Bessel.functions of the first kind. This set
of functions was selected for several reasons. First, they
are the solutions of a family of differential equations with
time-varying coefficients, thus possibly making them a bet-
ter choice for the modeling of nonstationary speech signals.
Second, the Bessel functions are often used in hathematical
physics in situations where cylindrical boundary conditions
prevail, such as vibrating drumheads and circular wave-
guides. The vocal tract is often modeled as a concatenation
of cylindrical acoustic tubes, and thus has circular boun-
dary conditions. Third, there are fast computer algorithms
for the calculation of the Fourier-Bessel coefficients, mak-
ing computation with a general purpose computer feasible,
Finally, since there has been little prior investigation of
the Fourier-Bessel series in speech analysis there was some
value in the pure research itself. |

The end application of this investigation was origi-

nally intended to be the use of Fourier-Bessel expansions in



the automatic speaker recognition probliem. But during the
course of the research, it was found that the theoretical
basis for the application of Fourier-Bessel expansions did
not seem to be well known in the literature. Therefore, the
research involved theoretical and computational consider-
ations as well as applied speech analysis. The original ob-
jective of speaker recognition was largely supplanted by the
theoretical and computational investigations, due to diffi-
culties encountered in the collection of a high quality data

base for the speaker recognition probiem.
Overview

Chapter 11 of this report gives a review of generalized
basis sets and their use in speech signal analysis. The non-

traditional basis sets thus exposed include the exponential-

ly damped sinusoids and the Walsh functions. Applications
"include speech and speaker recognition as well as speech
coding or storage. Chapter |I! presents the properties of

Bessel functions which are useful for signal analysis, such
as the asymptotic approximation. Building upon the founda—'
tion laid in Chapter Ill, Chapter |V describes methods used
to obtain the Fourier-Bessel series coefficients, including
the use of the Fast Hartley Transform. Chapter |V also ih—
cludes a summary of the important properties of the Fourier
Bessel series. Chapter V gives an interpretation of the
Fourier-Besse! coefficients from a |inear modeling point of

view, as well as an approximate relationship between the



traditional frequency domain and the set of Fourier-Bessel
coefficients. Thus, Chapter V serves as a bridge from the
theoretical and computational details to the practical ap-
plications described in Chapter VI.

Chapter VI describes the application of the Fourier-
Bessel series expansion to actual speech signals. The very
practical problem of choosing the starting point of an
analysis frame is addressed. Two different pitch detection
methods are described, one based on the Fourier-Bessel co-
efficients themselves, and another based upon a nontradi-
tional cepstrum. This nontraditional cepstrum is actually
the Fourier-Bessel expansion of the log magnitude spectrum,
and appears to be useful for pattern classification and
coding. Finally, in Chapter VII, the conclusions reached in
th}s fesearch are summarized, and future areas of research
are indicated.

Two appendices are included in this thesis. Appendix A
includes the Fortran source code for the Fast Hartley
Transform which is used in the calculation of»the Fourier-
Bessel series. Appendix B shows a theoretically pleasing
relationship between the complex cepstrum and the Bessel
functions: |t is shown that representation of a sequence in
terms of its complex cepstrum is equivalent to representa-
tion of the same sequence as a convolution of Bessel func-

tions.



CHAPTER 1}
SERIES REPRESENTATIONS AND BASIS SETS
Introduction

The purpose of this Chapter is to review the properties
of series expansions in general. This material serves as
background for the later Chapters of this thesis, and is not
meant to be an exhaustive survey. Unfortunately, the very
important subject of fast algorithms can only be mentioned
briefly; In fact, entire books have been written on the sub-
ject (Ahmed and Rao, 1975>. This Chapter will deal! with some
of the aspects of series representations and basis sets
which are often overlooked or forgotten by signal processing
practitioners. For example, there seems to be a misconcep-
tion that orthogonality is a requirement for a basis set.
Applications of alternative basis sets to speech processing
have been relatively rare in the past; So a synopsis of some
of the applicable literature is provided by this Chapter. Of
particular interest is the motivation behind the use of non-
traditional basis sets for speech analysis. Due to the non-
stationarity of speech signals, it doeé not seem feasible to
derive an optimal transformatfon that is best for all speak—

ers and all phonemes.



Overview of Series Representations:

The Continuous-Time Case

The usual series representation can be considered as a
model of the waveform or signal which has the assumed form

of a summation of a set of |inearly independent functions:

fCt) = ZZ Cigi(t). 2.1
i

The set of functiohé {gi<t>3 is called the basis set. The
mode | parameters are the series coefficients, or Ci's. The
limits of the summation were |eft indeterminate, because
different |imits are appropriate for various basis sets. Of
course, any such data model could just be assumed, but an
important problem is that of completeness of the basis. It
must first be determined if a linear combination of the

assumed basis functions can indeed represent f(t).

Completeness of Basis Sets

Completeness of a basis set simply means that some 1|in-
ear combination of the basis functions can be found which
converges to the-desired f(td>. The class of functions which
can be representéd by a series may be |limited in some way.
For example, it may be desired to represent only bandlimited
functions. Another comﬁon restriction is that the data model!
of Equation (2.1) is valid only over a finite range of the
independent variable t. But given some suitably restricted
f(t>, and some set £gi(t)}. how can the completeness of

the basis set be determined?



Determination of completeness can sometimes be a very
difficult problem. But sometimes it is easy to verify that
a basis set is not complete. For example, suppose that
every element of the basis set is a bandlimited function.
Then it would not be possible to form a |inear combination
of the basis set which has any energy whatsoever in the band
above the highest frequency in the basis set. I|f modeling of
a signal with higher frequencies is the goal, then another
basis set must be chosen for the data model. But if only
suitably bandlimited functions are to be modeled, then the
basis set can actually be complete for all practical pur-
poses. By taking the Fourier transform (or perhaps the La-
place transform) of both sides of Equation (2.1), it can be
seen that the modeling of f(t) as a |inear combination of
the gi(t)’s is equivalent to modeling the transform of
fCt> as a linear combination of the transforms of the basis
functions. |f completeness of a basis is hard to prove or
disprove in one domain, then it may be possible to easily
prove or disprove the completeness hypothesis in the other
domain.

An example may be in order here. Suppose that the
function f(t) is to be represented on the interval (-a,a>
by a |inear combinatfon of cosine functions, specified as
g}<t) = cos(iufi. Suppose the function f(t)> is analytic in
the interval (-a,a), so that the Taylor series exists. But
notice that the Taylér series for the functions f(cosdint)}

only have even terms (this is essentially the "transform" of



the cosine functions to another representation)>. Then no

|l inear combination of cosine functions can possibly have any
odd terms in the resulting Taylor series. So if f(t) has odd
components as well as even components, the assumed cosine

series cannot possibly represent it on the interval (-a,ab.

Oorthogonality

Orthogonality of two functions can be defined in many
different ways, depending on the inner'product which is de-
fined. For continuous time functions (as opposed to sampled
data) it is common to use the inner product defined as

b
*
<gdt),hdti>» = Ig(t)h cthdt. 2.2

a
The interval [a,bl m&y be finite or infinite, depending on
the application. |f two functions g(t) and hd(t) are such
that

<gltd,hCtd>> = 0O (2.3
then the functions are said to be orthogonal. The definition
of orthogonality can be generalized to include the concept
of a weighting function. Let the inner product be defined as

b
x
<gdt),hctr)> = fg(t)h (tdHwltHdt (2.4

a

where w(t) is called a weighting function. This concept is
important because the Bessel functions are orthogonal with
respect to a weighting function, as will be explained in

Chapter I11l. Equation (2.3) is a special case of Equation



(2.4>, where the weighting function is unity.

Calculation of the Series Coefficients

Even when a basis set can be shown to be complete,
there remains the problem of calculation of the series coef-
ficients (the Ci's of Equation (2.1)). |f the basis set's
elements are orthogonal functions (with respect to some
weighting function), then the model parameters can be cal-
culated by the following procedure. First, assume a data
model of the form shown by (2.1). Then multiply both sides
of the equation by the weighting function and the complex
conjugate of an arbitrary member of basis set, gk(t):

‘w(t)g:(t)f(t) = w(t)g:(t) z C.g, Ct). (2.5)

i

Using the fact that the summation is takeh oyer the index i
rather than k, move both g:(t) and w(t> inside the summa-
tion:

w(t)g:(t)f(t) = ;Z w(t)Cig:(t)gi(t). 2.6

i

Now integrate both sides of Equation (2.6) over the interval
of orthogonality. Depending on the basis set of interest,
this interval may be infinite or finite., Therefore, the | im-

its of the integral are stated arbitrarily:

b b

x *
If(t)gk(t)w(t)dt = I :z(zigk(t>gi(t)W(t) dt. 2.7
a a i

Interchanging the order of integration and summation gives
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b b
Jf(t)g:(tDW(t)dt = ;Zci Jgt(t)gi<t)w<t>dt . 2.8
a i a

| ¥ the set of functions ign(t)} is orthogonal with respect
to the weighting function w(t) then the integral inside the
brackets vanishes when the subscript i (which varies over
the summation) is not equal to the subscript kK (which is ar-
bitrary but fixed). Thus, only one term of the series re-

mains. The lone term is shown in Equation (2.9):

b b

x *
jf(t)gk(t)w(t)dt = Ck j gk(t)gk(t)dt. (2.9
a a

Isolating the C, on one side of the equation vields the

K

closed-form formula for any arbitrary series coefficient:

b
x
f f(t)gk(t)w(t)dt

c, = =2 : i " (2.10)

K b
*
j gk(t)gk(t)w(t)dt

a
uUnfortunately, this formula is sometimes very difficult to
evaluate in closed form, except for a few special cases.

As a theoretical tool, Equation (2.10) has much merit. But
it cannot deal with the more practical case of sampled data.
For example, with sampled data the integrals can oﬁly be
approximated by finite summations. The sampled-data case
mﬁst bé treated separately, Hut bear in mind that it may be
just as well considered as numerical quadrature. A discus-

sion of the important sampled-data case will now follow.
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Overview of Series Representations:

The Sampled-Data Case

There are basically two possibilities for sampled data
sequences: (1) The sampled data consists of an infinite se-
quence of numbers; or (2> The sampled data consists of a
finite sequence, or vector, of numbers. The latter of these
possibilities is the most important in the practice of digi-
tal éignal processing. After all, it is not really possible
to sample data over an infinite time intervaln The. model of
the data is as a |inear combination of some vectors, as

shown:

K-1
= 2.
X jz yk Qk’ C 110
k=0

The yk’s are the model parameters which describe the vector
(or truncated seqgquence) X, and the set of vectors {gk} is
the assumed basis set for the data model. The number of vec-
tors to be summed is K, and they have been numbered arbi-
trarily from 0 to K-1. The dimension of x (the vector'’s
length) certainly does not have to be equal to K. One can
simply assume, for instance, that a vector of dimension 1000
can be modeled well enough for a given purpose with a |inear
combinétion of only 100 vectors in a basis set. In that
case, the original set of 1000 numbers has been described by
a set of 100 numbers: Some amount of data reduction or com-

pression has occured (but at a price: the original vector x

may not be uniquely recoverable from the model parameters).
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Completeness of Basis Vector Sets

A basis sef of vectors can be complete only if the set
has at least as many elements as the dimensionality of the
vectors, N, and at least N of the vectors in the basis set
are linearly independent. Testing for independence of a set
of vectors is uSually easier than testing the completeness
of a set of continuous—-time functions. Any good | inear al-
gebra text contains details of such tests, and they will not

be repeated here.

Oorthogonal ity of Basis Vectors and

Computation of Model Parameters

The orthogonality of basis vectors is not a requirement
for completeness. But orthogonality is a very useful compu-
tational convenience. Note that Equation (2.11) could also
have been written‘as a matrix equation:

X = AY. (2.12>
The columns of matrix A are the assumed basis set. |f the
columns of A are orthogonal to one another, then the model
parameters, y, are very easy to compute. First, premultiply
each side of (2.12) by the complex conjugate transpose of A,
yielding

A'x = A Ay. 2.13>
Since the columns of A are orthogonal the matrix A*A be-

comes diagonal, and hence trivially simple to invert. Now

premultiply each side of (2.13) by the inverse matrix
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(A*aA>"'. The result is
x -1 %
CA A A X =Y. ) (2.14>
Throughout this last discussion, it was assumed that the

number of model! parameters did not exceed the number of

data points in x. Then it can be shown that Equation (2.14)
vields the y which makes :5—Ax:2 minimum (Menke, 1984).
Thus, the property of orthogonality makes computation of the
series coefficients much easier: No explicit matrix inver-

sion needs to be performed.

Alternative Basis Expansions

in Speech Processing

Several alternative basis sets have been previously
used for speech processing, including wWalsh functions and
exponentially damped sinusoids. The purpose of this section
is to catalogue some of these applications and to try to
provide some insight into the reasons those alternatives

were used.

Exponentially Damped Sinusoids

The set of exponentially damped sinusoids has been used
several times in the past for the modeling of speech sig-
nals. Dolansky (1960) used this basis set for the contin-
uous time modeling of speech waveforms. His choice was based
on both heuristic and practical arguments. Fifst, he rea-
soned that speech waveforms often |00k something |ike damped

sinusoids when viewed on an oscilloscope. Second, the vacuum
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tube based hardware technology of the day lent itself to the
implementation of acfive filters with their pole locations
in the left half s plane. His implementation consisted of an
analog filter bank which was cleverly contrived so that the
basis functions were orthogonal.

Orthogonal ized damped sinusoids were also used by Man-
ley (1963) in an early digital signal processing attempt.
His goal was to build an analysis-synthesis system for the
speech waveforms. The expansion into the basis functions was
done by trapezoidal integration. Since this work was before
the appearance of the Fast Fourier Transform on the signal
processing scene, orthogonality of the basis set was almost
a requirement for efficient implementation. Manley reported
that the resynthesized speech was of fair quality when 16
fixed oscillation frequencies (16 pole pairs) were used.
Once again, the choice of the damped sinusoids as a basis
was primarily because of the supposed similarity between
speech waveforms and damped sinusoids.

Another anaiysis—synthesis scheme was devised by L.A.
O'Neill (1969). Once again, the main idea was to use a fil-
ter bank analysis-synthesis approach. His filters were based
on the damped sinusoids and were also orthogonalized. This
system was essentially a vocoder. O’'Neill reported high-
quality speech from the resynthesis scheme.

word recognition can also be achieved using basis sets
other than the traditional sine and cosine basis. An optimum

basis set was derived for use in short-time analysis of a
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small vocabulary (Clark, 1970>. By examining the power spec-
tra of the words he was concerned with, Clark found filter
pole frequencies that corresponded to the peaks of the spec-
tra. By expanding the speech waveform into the series, the
series coefficients could then be used as the features in a
pattern classification scheme. The motivation for the use of
an "optimal" basis set was compactness of representation: It
is usually desired to have a small set of numbers for a
pattern classifier’'s input.

Except for Clark's approach, the choice of the basis
sets‘was quite subjective. But at least these researchefs
made some attempt to justify their choice of basis, and did
not slavishly choose the traditional trigonometric basis
sets out of habit alone. Their motivations for the choice of
damped sinusoids were reflected in the choice of Bessel
functions fof speech analysis in this thesis: The Bessel

functions also resemble typical speech waveforms.

wWalsh Functions

The Walsh-~-Hadamard transform has been much more widely
used for image processing than for speech processing. But
some researchers have seen potential advantages in the use
of the walsh-Hadamard transform for speech applications
(Shum, Elliot, and Brown, 1973). The Walsh-Hadamard basis
set consists of rectangular waveforms, and therefore does
not resemble speech waveforms very much at all. But the'adf

vantage of this transform is the extreme simplicity of the
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fast transform algorithm, which uses ohly additions and sub-
tractions.

The wWalsh functions were used by Shum, Elliot, and
Brown in a speech coding and compression scheme. The general
plan was to transform a segment of speech, and then repre-
sent it with a few dominant coefficients in the transform
domain. Their segment size was only 64 samples, and they
reported fair-to-good resynthesis using only the four to
eight dominant coefficients.

The main reason that the Walsh-Hadamard expansion was
chosen was that a very fast, simple algorithm existed for
the transformation. There was no argument that the Walsh
functions were optimal for speech modeling. To some extent,
this reasoning was used for the selection of the Bessel
functions as a basis set fof the research reported in this

thesis.
Chapter Summary

‘The definition of a series expansion has been reviewed
as a preparation for the Fourier—BesseI series which will be
Qefined in Chapter IV. An infinitude of basis functions are
possiblie for the data model, but only a few have been used
in adtual speech processing due to practical difficulties
and the lack of fast transform algorithms (except for a few
special basis sets)>. Given-an arbitrary transform matrix,
no general method for derivation of a fast transform (which

performs the same operation as the desired matrix) appears
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to be known. Therefore, most practiéal researchers have been
.forced to Iimit their use of series expansions to those for
which fast transforms have been pubiished. In fact, the
existence of a Fast Hankel Transform algorithm was one of
the main factors that led to this research.

The most common basis set for speech analysis is, of
course, the traditional trigonometric basis set consisting
of sine and cosine functions. But some researchers have
found uses for nontraditional basis sets, and their efforts
inspire this work. Applications of the Bessel functions to
speech processing have come about only recehtly. A discus-
sion of these applications will be deferred to Chapter VI,
after the introduction to the Besse! functions and Fourier-

Bessel series given by Chapters |11l and IV, respectively.



CHAPTER 11|
PROPERTIES OF BESSEL FUNCTIONS
Introduction

when the series expansion of a waveform is the subject
of interest, it is always desirable to have a good knowledge
of the properties of the basis set. The properties of Bessel
functions are well known and a brief summary will be pre-
sented here. Further information can be found in the refer-
ences (Abramowitz and Stegun, 1965, Tolstov, 1962, or

watson, 1945).
Definition of Bessel Functions

The Bessel function of the first kind, Jg(t), can be

defined as a solution of the differential equation

=2
tzaqt—;‘+t-g—‘t4+<t2—p=)y=o. (3.1)

Note that the coefficients of the differential equation are
not constant: The Bessel functions are the solutions of a
family of time-varying differential equations. Therefore, as
a basis set, they 2re not shift-invariant. It was this fact
that originally led to the belief that the Bessel functions
may have been a better basis set, in some sense, for non-

stationary speech signals. Note also that there is a param-

18
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eter, p, in the differential equation. This parameter
defines the order of the Bessel function. In this investi-
gation, the focus was primarily upon the Bessel function of
zero order, Jo(x). This was done for the sake of simplicity
and to Iimit the scope of the research, and not because the
Bessel function of order zero is particularly better for
signal analysis.

Plots of Bessel functions of orders zero, one, two, and
three are shown in Figures 1-4. The Bessel functions have
waveforms reminiscent of voiced speech, resémbling the
impulse response of a second-order autoregressive model.

An alternative definition of Bessel functions is based

upon the generating function

%Ct - %) c K
e = ZZ dk(x) t (3.2
In this expression, X is a fixed parameter while the summa-
tion is taken over all integral ordered Bessel functions.
In other words, if the function on the left side of Equa-
tion (3.2)>is expanded into a Laurent series about the point
t=0, then the coefficients of the series are the Bessel
functions of order k and argument x. The generating function
definition is more useful than the differential equation
definition when deriving properties of_Bessel functions.

A relationship between the complex cepstrum and the
generating function definition of the Bessel functions has

been developed. This relationship is ancillary to the main
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subject of Fourier-Bessel series, and has been relegated to
Appendix B of this report. However, it is believed that this
relationship has not been previously published.

A family of functions‘known as modified Bessel func-
tions of the first kind, Ix(t), can be defined as the solu-

tions of the differential equation

=2
tz-g?‘z‘+t%5t¢—<t2—p2>y=o ¢3.3)>

or may be defined by the generating function

—)2<'(t + %) .
e = zg 'k(X) t . (3.45
K==~c0
Once again, the subscript indicates tﬁe order of the Bessel
function, which in turn is equal to the parameter p in the
differential eqgquation definition.

Bessel functions of fractional order may also be de-
fined, when the parameter p in Egquation (3.1 is not anm in-
teger. An interesting property of the Bessel functions of
half integral order is that they can always be expressed in

terms of elementary functions such as the trigonometric

functions and the square root (Tolstov, 1962). For example,

/_2_ : ]
d1/2(x) = o sin(x) and d_1/2(x) = "~ cos(x). (3.5

This makes the Bessef functions of half integer order es-

pecially easy to manipulate.
Formulae and Properties

Many properties of Bessel functions have been discov-



23

ered by mathematicians over the years, but only those which
pertain to the use of Bessel functions in signal analysis
are presented here. Thus, the summary is by no means ex-
haustive. Some of the more important and useful properties

are explained in the following paragraphs.

Polynomial Approximations

Polynomial approximations for the Bessel functions can
be used for the generation of the Bessel functions in a
digital computer. Tﬁese formulae are quite lengthy and will
not be repeated here, but the interested reader is referred
to Abramowitz and Stegun (1965). Generally, if only integer
ordered Bessel functions are required then the recursion
formulae shown below can be used to generate Bessel func-
tions of any integer order starting with Bessel functions

of orders zero and one only.

Recursion Formulae

The recursion formulae for Bessel functions are

Jopea(x) = 22 o) = Jpoa(x) (3.6)
and
paa(X) = :-f-g I o(X) + I poa(X). €3.7>

These formulae can be easily obtained by differentiation
(with respect to the variable t)'of the appropriate gener-
ating functions. In principle, they can be used to generate

Bessel functions of any order, but it has been noted that
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numerical instability occurs when |p} > |x{ (Olver and

Sookne, 1972).

Fourier Transforms of Bessel Functions

The Fourier transform of the Bessel function Jo(x) is

(Abramowitz and Stegun, p. 486)

-]

-j2nft 2 fw
dt = FE—cws "W (3.8

Jdo(%t)e

- 0

where

_ |1 for [|x]<.5
TOO- = [O otherwise.

Note that the Bessel function Jo(it) is strictly bandlfmited
and is real valued because Jo(x) is an even function. Figure
5 shows the Fourier tran;férm of Jo(2t). Note that the ener-
gy is concentrated neér f=2/2wn. This is not surprising in
view of the sinusoidal character of the Bessel function Jo

(see Figure 1).

Laplace Transform

The Laplace transform of Jo(4t) is given by

»
st 1

Ido(%t)e at = $§§=f=§§r (3.9

0
and the Laplace transform of the function tJdo(ht) is given

by

-]
st S

Itdo(%t)e dat = %Eﬁf;f=§§— (3.10>

0
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Formulae |ike Equation (3.9 and Equation (3.10> can be
used in conjunction with the recursion formula, Equation
(3.6), to obtain Laplace transforms of higher-ordered Bes-
sel| functions. The same technique can also be applied to

the Fourier transform.

Addition Formula

unfortunately, the addition formula for Bessel func-
tions is not as simple as the familiar trigonometric addi-
tion formulae. The formula for additive arguments is

-]

Jm(X+y) = Zz =k (XdJlyd. (3.112

K=-m

This formula is easily derived fromvthe generating function
definition. It is in the form of a discrete convolution. The
interesting point here is that Jol(n+1)T] cannot be written
as a finite |inear Combinatioﬁ of past samples of the se-
quence Jo(NT>. This means that there is no convenient

shifting theorem for use with the Bessel functions.

Asymptotic Approximation

The Bessel functions can be readily approximated with

a simple formula,

-2 X X
Jp (XD ~-\/ o COos(X >P 2 (3.12)

Equation (3.12) is called the asymptotic approximation for
the Bessel function of the first kind, of p-th order. This

formula is quite good when the argument X is such that
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3w o
4 2

n. (3.13>

An important special case is the asymptotic approximation to

the Bessel function of order zero:

~1/_2_ - 5. (3.14)>
Jo(x) = o COS (X 2’

This approximation is the key to the fast algorithm for
Fourier-Bessel expansion which will be discussed in a later
Chapter. Figures 6 and 7 compare Jo(x) to its asymptotic
approximation. Figure 8 shows the absolute error between the
Bessel function and its approximation. Note the rapidity
with which the error dies off. As a rule of thumb, the error
becomes small after the first zero-crossing of the Bessel
function, and becomes practically negligible after the sec-
ond zero créssing. The location of these zero crossings will

now be discussed.

Zeros of the Bessel Functions

The zero crossings of Jo(x) are denoted by 3w where the
subscript is the number of the zero crossing. For example,
the value of x where Jo(x) crosses the abscissa for the

first time is denoted by %4. These zero crossings are wel/l

approximated by

M B (M - ; du for Jol(x). (3.15)>

For the Bessel functions of positive integer order n, this

becomes:

A

u
~
3
1
1
[
E-

(3.16>
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The zeros of thé Bessel functions are needed in the Fourier-
Bessel expansion algorithm, and can be calculated in a com-
puter program which uses the approximation formulas given in
Abramowitz and Stegun (1965>. Table | compares the zeros of
Jo(x) computed by Equation (3.15) to the more exact values
found in a table of zeros. Note that the approximation is
actually quite good, improving markediy for higher ordered

zeros of Jo(X).

Orthogonality Properties

For the computation of a series expansion, the orthog-
onality properties of the basis set are always of interest.
]t seems to be a widely heid misconception that a basis set
has to be orthogonal if a series expansion is to exist. But
fhe truth of the matter is that a set of functions can be
complete on an interval, and yet need not be orthogonal. for
example, the set of functions {x°, x?', x=2, x3,...1 can be
used as the basis set in the interval 0<x<1, but the set is
not orthogonal. Orthogonality of the bas}s set is not a re-
gquirement, but is a very useful convenience.

Bessel functions are orthogonal, with respect to a
weighting function, over a finite interval. Let a and b be

zeros of Ja(x) and let the weighting function be t. Then

! [d.—'.(a>]2 ¢ a=b
ftdn(at)d_.-.(bt)dt = 2 - (3.1
(0} otherwise.

0

In this formula, Jh(a) denotes the first derivative of Jan(x?



TABLE |

COMPARISON OF TRUE ZEROS OF Jo TO
APPROXIMATE ZEROS.

Relative Error,

True m Approximate %m Percent
1 2.404826 2.356194 2.022228
2 5.520078 5.497787 0.403816
3 8.653728 8.639380 0.165802
4 11.7918563 11.78097 0.089572
5 14.93092 14.92257. 0.055941
6 18.07106 18.06416 0.038216
7 21.21164 21.20575 0.027749
8 24.35247 24.34734 0.021059
9 27.49348 27.48894 0.016525
10 30.63461 30.63053 0.013312
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evaluated at x=a. Fbr Jo(x), the first derivative is —-J.1(Xx).
The fact that the Bessel! functions are orthogonal with re-
spect to a weighting function other than unity is very
important when interpretation of the Fourier-Bessel coef-
ficients is to be considered.

Unfortunately, the sampled Bessel functions are not
truly orthogonal. For example, consider the Bessel function
of zero order, sampled at N evenly spaced points in the in-
terval 0<x<1. When a finite summation is performed over the
ihterQal a rather disappointing, albeit important, fact is

revealed:

N-1

[_D_ n_ B & P
vzg N Jpla N ddp(b N > = 0 for a # b. (3.18>
n=0 '

This shows that when one is dealing with sampled Bessel
functions, the mathematically elegant orthogonality proper-
ty shown by Equation (3.17) degenerates into an approxima-
tion. Much of the computational work to be presented in
Chapter IV is in terms of approximations, due in part to
Equation (3.18). Sampled Bessel functions are mathematically
difficult and certainly do not seem to be well known in the
|iterature. In fact, onily one published article was found
which attempted to deal with sampled Bessel functions from

a purely mathematical point of view (derri, 1978).

Approximation of Bessel Functions

with Smal! Arguments

The asymptotic approximation previously discussed is
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good only for large arguments. Other approximations exist
for the case where the argument is small (waldron, 1981).
Starting with the generating function definitions, it can be

shown that

Jo(X) = —é— [1+cos(x>+2005(—§—)+2005(~%—x)]. (3.19>

Figures 9-11 show the Bessel function, the approximation
given by Equation ¢(3.19>, and the absolute value of the er-
ror between the two. The error is very small until the argu-
ment, X, is greater than about six. At this point, however,
the asymptotic approximation could be used.

An alternative definition of Bessel functions is

w

1 f jlnw-xsinCw)]
e v
2w

Jr(x) dw. (3.200

-
For the special case of Jo(x),
k]
1 j -jXsinCw)
e

Jo(X) = T——

> dw. (3.212

-
when the wvariable of integration is changed, and the inte-
gral is simplified, then it can be easily shown that

1

Jo(Xx) = Jcos[xsin(uu)]du. (3.22>

o]
If this integral isbapproximated by trapezoidal rule numer-
jical integration then Equation (3.19) results. However, Wwal-

dron originally derived (3.19) in a very different manner.
By taking more intervals in the numerical integration, bet-

ter approximations to Jo(x) can be found.
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Chapter Summary

An overview of some of the properties of Bessel func-
tions has been given. Emphasis has been placed on those
properties that have been found to be useful in signal anal-
ysis, including the Fourier transform, Laplace transfqrm,
and the asymptotic approximation. The asymptotic approxima-
tion is a‘very important element in the computational meth-
ods to be presented by Chapter V. It is important to»bear
in mind that any equations yhich depend upon the orthogonal -
ity of uniformly sampled Bessel functions may be only
approximations. However, the worth of an engineering solu-
tion should not be measured by significant digits alone; The
particular application at hand may require only an approxi-
mate solution. Therefore approximate methods can bear much

fruit, especially if they are fast and efficient.



CHAPTER |V
FOURIER-BESSEL ANALYSIS
Introduction

Many books and articles have appeared in the mathemat-
ical literature during the last century which expound upon
the mathematical aspects of the Fourier-Bessel series (Wat-
son, 1945, and Tolstov, 1962). But very little publication
of results concerning the application of Fourier-Bessel se-
ries to signal analysis has occured. The purpose of this
chapter is to define the Fourier-Bessel series and show how
the coefficients of the series can be efficiently obtained

using a digital computef.
Definition of the ?ourier-Bessel Series

The Fourier-Bessel series is a mode! of a waveform or
signal wherein the signal is assumed to be a l|inear combi-

nation of Bessel functions of the first kind:

-]

FOx) = z Crm JpCAmX) . 4.1
m=1 '

The Cn's are the series coefficients, or model parameters.
The “m»'s are the zeros of the Bessel function. This model is

assumed to be valid only over a finite interval, from x=0 to

38
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x=1. This is not at all a restrictive requirement, because
any time interval can be scaled to be in this range by div-
iding the actual time by the length of the analysis frame,
T. Throughout this discussion, the variable x is considered

as a normalized time variable in the range 0<x<1.
Properties of the Fourier-Bessel Series

Convergence

The convergence of the Fourier-Bessel series is guéran—
teed if: (1) f(x) is a piecewise smooth continuous or dis-
continuous function on [O.1];rand (2) The Bessel function is
of order -(1/2) or greater. The Series converges to fdx)
wherever f(x) is continuous, and at points of discontinuity
it-converges to [f(x+)+f(x—)]/2 (Tolstov, 1962, p.221).
These conditions are certainly met by bandlimited signals,
such as typical speech signals, because bandl imited signals

are analytic (Papoulis, 1977).

Boundary Conditions

For the special case where the Bessel function is of
order zero, representative elements of the basis set are
shown in Figures 12 and 13. Note that all of the basis func-
tions cross through zero at x=1. Therefore, the series can
only converge to zero at x=1; This is true for all Fourier-
Bessel series of the form shown by Equation (4.1), not just
for those Based upon Jo(x)d. Althouéh convergence is certain,

the number of terms of the series that must be summed to
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Figure 12. Basis functions Jo(A4X), Jo(hax), and
’ Jo(AsX). All three functions cross
zero at x=1.
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Figure 13. Basis functions Jo(%20X) and Jo{(hiocoX?.

Note the very slow damping and sinu-
soidal character of the functions.
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arrive at a reasonable approximation to f(x) may be large if
the value of f(x) is very different from zero near xX=1.

At x=0, a different set of restrictions applies. For
Bessel functions of zero order, Jo(0)>=1 and the derivative
at x=0 is zero. Therefore, a linear combination of such
Bessel functions must have a zero derivative near x=0. If
the basis set is {dp(x"x)} where p is an integer greater
than zero, then every element of the basis set is zero at

x=0; therefore, the series converges to zero at x=0.

Exact Methods of Computing

the Series Coefficients

Note that if a is not equal to b in Equation (3.17),
and they are both zeros of the Bessel function, then the in-
tegral is identically zero. But if a equals b in (3.17) the
result is in geﬁeral nonzero. |f f(x) is assumed to be of
the form given in Equation (4.1) then substitution of the
assumed form gives:

1 1 ©
fxdn(xmx)f(x)dx = [xdn<kmx) zzckdn(%kx) ax

o o} ’ =1
@ 1
= zg Ck deh(%mx)dn(kkx) ax 4.2)>
k=1 0

2

1 '
”Crn > [J.—.(in-.) ]

Since the »n»n's are the zeros of the Bessel function, only

one term of the entire summation can be nonzero (recall the
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orthogonality formula, Equation (3.17)). Isolating the Cm
on one side of the equation yields the closed-form expres-

sion for the Fourier-Bessel series coefficients:

Cmn = 2 > XJmCOmX) FOXx)dX. (4.3)

[Jn(hm)]

Oty =

For the important special case where the basis set is
fJo(AmX)}, the first derivative of Jo(X) is -da(x>. Calcu-
jation of the series coefficients then amounts to calcula-
tion of

1

Cm = ————g———z fxdo(ﬁmx)f(x)dx. (4.4)

[JaChim)] 0

Unfortunately, the integral must be evaluated using sampled
data rather than a continuous f(x> in closed form, and the
integral must be performed many'times for the various values
of the index m. Even when f(x) is known in closed form
Equation (4.4) is usually very difficult to evaluate, except
for a few special cases. This makes obvious the need for a

fast algorithm which can quickly approximate Equation (4.4).

Approximate Methods for Calculating the

Fourier-Bessel Series Coefficients

Some very useful aligorithms have appeared which atllow
the fast computation of the Hankel transform integral,

@

FCw) = f rdoCwr)fdridr. (4.5)
0

There are four basic approaches for fast machine evaluation
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of Eguation (4.5). These four will now be described.

The Correlation Method

Siegman (1977) proposed a method based upon a change of
variables. After a change of variable in Equation (4.5), the
integral is cast in the form of a discrete correlation. De-
tails can also be found in Oppenheim, Frisk, and Martinez
(1980)>. Siegman’s method allows the use of the FFT, but has
a severe disadvantage for speech processing: The original
speech signal has to be sampled at exponentially spaced
points, and the resuilt it produces, F(w), is given at ex-
ponentially spaced points. Although such sampling is some-
times appropriate in optics or image processing, it is not

at all suitable for one-dimensional signal processing.

Tsang's Method

Tsang et al. (1974)> used a method of Hankel transfor-
mation based upon the FFT. First, the original function
fdr) is wiadowed with an exponentially tapered function.
Then it is Fourier transformed via the FFT to obtain a func-
tion called A(CXA). A previously computed and stored weight-
ing function (A, w) is multiplied by AC(X), and the result is
numerically integrated for many values of % to get the Han-
kel transform FCw). The disadvantage of this method is that
the function F(w) is found by repeated integrations: |If
each numerical integration is time-consuming in a computer,

then numerous integrations are dreadfully awkward for use in
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any sort of real-time application such as coding or recog-

nition.

The Projection-Silice Method

This method is based upon a theorem of two-dimensional
Fourier transforms which states that the one-dimensional
transform of the projection of a two-dimensional image
f(x,y) onto some |ine ¢(at a given angle) is equal to a
radial section, or slice, of the two-dimensional Fourier
transform of f(x,y) at the same angle (Mersereau and Oppen-
heim, 1974). The Hankel transform is related to the Fourier
transform of an image, if the image is radially symmetric
(Bracewell, 1965). Details are omitted here, but the most
important facet of this method is that either the original
data is sampled exponentially and the data is evenly spaced
in the transform domain or, by duality, the data can be
samptled uniformly and the result will be exponentially sam-
pled in the transform domain (Oppenheim, Frisk, and Mar-

tinez, 1978).

Candel's Method

The most useful approach has been found to be Candel’'s
algorithm for computation of the Fast Hankel Transform (Can-
del, 1981)>. The gist of Candel's method is that the Hankel
transform kernel (a Bessel function) may be replaced by its
asymptotic approximation. When such a substitution is made,

the computed result is only approximate; but the great ad-
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vantage is that the Hankel transform integrand is cast in
terms of an ordinary trigonometric function; Also, the data
is uniformly sampled in both domains. A Fast Fourier Trans-
form may be used to approximate the integral: The algorithm
becomes fast. With a fast algorithm available for the compu-
tation of the Fourier-Bessel series coefficients, and with
the data sampled uniformly, the Fourier-Bessel series can be
of practical use in one-dimensional signal analysis and
speech processing.

In the following sections, algorithms for the process
of Fourier—-Bessel expansion are given where the basis set is
assumed to be the set [Jo(’mX)}. Generalization to other
integral-ordered Bessel functions is fairly straightforward

and will not be given explicitly.

Implementation of the Approximate
Fourier-Bessel Expansion Using

the Fast Fourier Transform

The method described by Candel uses a technigue which
he called "Fourijer-selection summation"” to correct the es-
timates of the integrals which were computed by a Fast Four-
ier Transform, or FFT. The method requires two FFT's to be
performed on each frame of data: The first FFT is used to
estimate the Hankel transform of the data, and the second is
used to correct the estimate of the integral. Experiments
-have shown that a second transform need not actually be per-

formed because the errors are negligible for actual speech
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signals. Besides, an alternative method was found for the
correction of the small errors that do occur (mostly in the
first few coefficients, which correspond roughly to the low-
est frequencies in the speech signal). This error correction
method will be discussed later.

Reconsider Equation (4.4) with the asymptotic approx-
imation of Equatibn (3.14) substituted for the Bessel func-
tion. The expression thus obtained is

1

Crm = 2 5 f X F (XD nf.x COSC( AmX - ":')dx. 4.6
[JaChm) ]
This expression is still not in the desired form, because in

reality all that is available is sampled data and a finite
summation must be berformed. Suppose that rectangular-rule
numerical integration is performed, as illustrated in Figure
14. The total number of integration intervals is N, so .that

Total Length 1
A = = - .
X N N 4.7

Equation (4.6) becomes

Nz
Cm = 2 p z f<—>cos<7m— - f)?\nl 4.8)
[JaChem) 15V N Am

Substitution of the approximation of Equation (3.15) for the
zeros of the Bessel function yields, after some algebraic

calisthenics,

N-1
Cm = 272 ZZ Vﬁ'f(ﬁ>cos[nm" - 1+ l] 4.9

[01Chm>12Vare N1-5 = N N 4

This expression is, in turn, equivalent to
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Figure 14. Numerical integration. Rectangular
: rule used to approximate trans-
form integrals.
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: n _2mnw
jwcirg274 ]e 3 oN (4.10)

u

N-1
.5 n
Cm Km Re jz Dﬂ f(N>e ,
n=0 )
where the function Re(x) denotes the "real part of x" and

where the set of constants, Km, is defined by

Km = VE;Z 1.5 4.11)>
[Ja (Am) ] "hm N °

The expression in Equation (4.10) is in a form suitable for
summation using the Fast Fourier Transform. The algorithm
will now be summarized:

5 juC1+n/N>/4
e for

'STEP_1. Calculate the constants n’
n=20,1,2,...,N-1. Store in array A(n>, which should
be complex, dimensioned as AC0:2*N - 1).

STEP 2. Calculate constants Km for m=1,2,... and store in
array Bdm). See quation 4.11>.

STEP 3. Multipty sequence f(n/N) element-by-eltement with
array A(n) and place results in complex array C(n).
Zero-pad C(n) to total length 2N.

STEP 4. Perform an FFT of length 2N on array Cd(n>. Do not
divide by 2N.

STEP 5. Multiply real part of array C element-by-element
with the constants stored in array B to get the
approximate coefficients:

Cm ® Re(CC(M)>*B(mM> for m=1,2,...

Note that the preliminary Steps 1 and 2 need only to be

performed once; the constants are computed once and then

' saved.

Recall that the asymptotic approximation is fairly
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accurate only for the larger values of the argument of the
Bessel function. A mitigating factor is that the Bessel
function is actually multiplied by the weighting function x.
The approximations to the functions XJo(hnX) are compared
to the exact functions in Figures 15 through 18 for m=1,3,
5,and 50. The errors decrease in absolute value for larger
values of m. The error of the asymptotic approximation is
large near x=0 (refer again to Figure 8). But when multi-
plied by x, the error no longer becomes unbounded near x=0.
This factor tends to make the estimates of the integrals

more reasonable.

Implementation of the Approximate
Fourier-Bessel Expansion Using

the Fast Hartley Transform

One of the modifications made to the previously used
Candel algorithm was the introduction of the Hartley Trans-
form. This transform was originally described by R.V. Hart-
ley (1942), and has recently been revived in discrete form
by Bracewel |l (1983). The Candel algorithm uses a Fast Four-
ier Transform. But it was discovered that the Fast Hartley
Transform can be used for the task of Fourier-Bessel expan-
sion because it is a real-valued transform with a built-in
phase shift in its kernel which exactly matches the phase
of the asymptotic approximation used in Candel's algorithm,

which is equal to w/4.
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The Hartley Transform is defined as

o0

XCf) = I x(t) cas(2wft) dt 4.12)

- @
and its inverse is given by

0

x(t) = J X(f) cas(2wft) df (4.13>

-
where
cas(x) = cos(x) + sin(xd. v 4.14)
Note the symmetrical nature of the forward and reverse
transforms.
The Discrete Hartley Transform (DHT)> can be defined by

N-1
2.%
XC(k) = ZE xan) cas(—ﬁ—.nk) (4.15)

n=0

and its inverse is then

N-1
1 2% ’
x(n) = —ﬁ_ jg XKD cas(—ﬁ— nk. (4.16>
k=0

The Fast Hartley Transform used in this research is a var-
iant of the one given by Bracewell (1984). The Fast Hartley
Transform was modified by making it an in-place algorithm.
The Fast Hartley Transform has been found to be a very use-
ful and powerful tool, so Fortran source code for this fast
transform has been included in AppendiXx A.

The kernel of the DHT can be rewritten using simple

trigonometric identities as

casc—%z'— k) = 2 cos(—=2" nk - ——y. 4.17>

N 4
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Comparison of Equation (4.17) with Equation (4.8) shows
that the summation in (4.8) can be performed using a DHT.

The summation can be restated as

N-1
) n 1
Cem = 2 5 z (-—3——) 5 f(%) cas(dm ——) —— (4.18)
[JaChmd 1500m 0
or
N-1
Cm ® Ken n'5f(—£——) casl(m-.25)w z ] (4.19)
n=0
where
Ky = 2 ) (4.20)

[d1(xn)]2ﬁw%m N1°5

The algorithm is now summarized:
STEP 1. Compute the Km and store them in an array Km). This

step is preliminary and needs to be performed once.

N

N ) by n'5 for n=0,1,...,

STEP 2. Multiply the sequence f¢(
N-1 and store the results in real array A(n).

STEP 3. Zero-pad array A(n) to a total length of BN. Array A
should be real, dimensioned as A(O:8*N-1).

STEP 4. Perform a Fast Hartley Transform of length 8N on
array ACn). (See Appendix A for details.)

STEP 6. For m=1,2,... let the Fourier-Bessel coefficients be
approximated by Cm = Knh*¥A(4m-1).

This Fast Hartley Transform method Qées more memory
than the Fast Foufier Transform based method. An alternative

method based on the Fast Hartley Transform will now be pre-

sented which uses less memory than the FFT-based method, and
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which runs faster than the DHT-based method just presented.

Consider the trigonometric identity

T _ "My cas(ME*Mc0s¢ ™Dy 4+ casT ¥y ginc XDy 4.21>

cas=g 4N N an N aN

Then the summation in (4.20) can be split into two separate

sSuUms

N-1

Con & Kem | zg “ScoscMy ¢, PQLLLALEY

m = Km l n cos anN N cas N
n=0
N-1

n sun(——)f(N) cas(- m;h> } (4.22)

n=0

Each of the sums can be computed simultaneously using a DHT
of length 2N. This makes use of the Discrete Hartley Trans-

form identity

N-1 N-1
-2 2%
;Ex(n)caSC—ﬁ—kn) = Zix[(N—n)mod(N)]cas(TTkn). 4.23)>
n=0 n=0
The algorithm is summarized:
STEP 1. Compute the constants Km for m=1,2,... Save them in

an array K(m>. (See Eguation (4.20).)
STEP 2. Dimension REAL array ACO:2%N-1).
STEP 3. For n=0 to N-1 DO:
A(Nn) <—— SQRT(NI*XCOS(PI/4 * n/NX*xf(n).
STEP 4. For n=1 to N-1 DO:
AC2XN = n) <«— SQRT(N)>XSINCPI 74 * Nn/NX>*f(n).
STEP 5. Let A(N)> = 0.
STEP 6. Perform the Fast Hartley Transform of length 2N,

operating on array A. (See Appendix A for details.)
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STEP 7. For m=1,2,... the Fourier-Bessel coefficients are

Cm & Km * A(m).

This version avoids complex arithmetic, thus saving memory.

Matrix-Vector |Interpretation of the

Fourier-Bessel Expansion

An alternative method is based on the fact that the
estimation of the Hankel transform (by a Fast Hartley Trans-
form or a Fast Fourier Transform)> as well as the desired
true transform can each be represented by a matrix-vector
multiplication. For example,

c = Bx | (4.24)
where B is the desired transformation matrix, X is the data
vector of sampled speech, and ¢ is the vector of Fourier-
Bessel coefficients. The approximation is expressed as

c = Mx (4.25)
where M is the |inear transformation performed by one of the
algorithms in the two prevfous sections. The rows of these
transformation matrices contain numbers which, when plotted,
look like Figures 15-18.

The difference of the desired transform matrix, B, and
the approximation matrix, M, is another matrix, E, with the
computationally important feature that most of its elements
are very nearly equal to zero; i.e., the matrix is sparse if
all of its relatively small elements are set equal to zero.

E =B -M ) (4.26)

Typically, relatively few of the matrix E’'s elements have an
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error greater than one percent of the.largest element in ab-
solute value on that row, and the others are set equal to
zero. After all of the very small elements are set equal to
zero, the resulting sparse error matrix is very easy to mul-
tiply by the input vector of speech samples to get a correc-
tion vector. The correction vector is simply added to the
vector of approximate Fourier-Bessel coefficients to result
in a better estimate of the true coefficient set. This meth-
od was found to be computationally efficient (the sparseness
vOf the’cor?ection matrix is the key)> and conceptually far
simpler than Candel’'s Fourier selection-summation. In ma-
trix notation, this becomes:
c = Mx + EXx. ‘ : 4.27>

In practice, it was found that the corrections need on-
ly to be performed on the first few Fourier-Bessel coeffi-
cients, because the errors are greatest there. The actual
error correction procedure consists of multiplying the data
vector x with the first few rows of the E matrix and then
adding the result to the vector obtained from the fast al-

gorithm.

Resynthesis of a waveform From Its

Fourier-Bessel Series

There are two basic methods of resynthesis: (1) exact
resynthesis, involving direct summation of the series; and
(2> fast approximate resynthesis, using Fast Fourier Trans-

forms or Fast Hartley Transforms.



60

The direct summation method is best performed as a
matrix-vector multiplication. The columns of the matrix con-
sist of the sampled Besse!l functions, and the vector is the
set of coefficients. This algorithm is good for the testing
of fast transformation algorithms, but is too slow for real-
time applications. This method is represented by Equation
(4,.28):

M
fdinT) = Ez Cm Jo(hnmnT) (4.28)>

m=1
Where M is the number of terms in the series, or the number
of columns in the matrix.
The fast algorithm is based upon the same asymptotic
approximation as before (Egquations (3.12) or (3.14>)>. The

summation is then

M
FOx) = z Comn [—2—— COS( AmX - —— . (4.29)
" W Amx a
m=1

Manipulating the sum into a form suitable for the FFT, the

result is

. B n : ¥m
_r LA — » =
Fony = 2N Re[e"( g I z Lm I _! (4.30)

ne A
m= 1

Using the Fast Hartley Transform, the result is simi-

larly derived and will not be repeated here.
Data Windows

In traditional Fourier analysis, the use of the data

windows such as Hamming, Kaiser, etc., is justified by the
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argument that multiplication in the time domain is equiva-
lent to the operation of convolution in the frequency do-
main. The spectral representations of signals thus obtained
"Jook" smoother when plotted, and the results are, in gen-
eral, more useful.

But there is a problem when the subject of considera-
tion is alternative basis sets (such as Bessel functions):
The convolution theorem no longer holds, so the typical ar-
guments for using tapered windows cannot be used. There is
little theoretical justification for using one window or an-
other when Fourier-Bessel expansion is to be performed. This
is a subject that is remarkably absent from the l|iterature,
and which could possibly be the subject of fruitful investi-
gation. Further insight into the traditional sinusoidal
basis sets and their usage could be a useful by-product of
such research. |

If the original data vector was windowed with, say, a
Hamming window, then the Fourier-Bessel series accurately
represented the windowed data. The Bessel functions are
close relatives of the familiar trigonometric functions; so
the results of windowing have been found to be similar.

In practice, it was found that data windows which
forced the sequence to obey the boundary conditions set
forth in this Chapter tend to give good, reliable results.
For the basis set {Jo(%mXx)1, gobd windows were the Hamming
lag window (Figure 19> and the tapered cosine window (Figure

20>. For Bessel functions which are zero at both endpoints
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of the interval (such as J,.(x)), a window which tapers to
zero at both ends should be used.

ldeally, if thevwaveform being expanded is one of the
members of the basis set then one and only one of the co-
efficients of the expansion should be unity, and ali the
others should be zero. As an example, the function Jo(isoX)
was expanded into a Fourier-Bessel series. The results ob-
tained when using rectangular, traditional Hamming, and
Hamming lag windows are shown in Figure 21. Note that the
rectangular window gave the representation which was truest
to the actual data: a single coefficient of unity strength
at m=50. The other windows caused l|leakage into the adjacent
coefficients.

Now as another example, let the waveform be equal to
Jol (Aso+2s542%X/21 in the interval [(0,11. This time,‘the "fre-
quency" falls halfway between bins 50 and 51. The results
for the rectangular, Hamming, and Hamming lag windows are
shown in Figure 22. The Hamming lag window seemed to produce
the better result here.

It should be noted that the very definition and inter-
pretation of l|leakage is firmly rooted in the theory of spec-
tral estimation. However, the definition ofvléakage is open

to argument when alternative basis sets are being used.
Alternative Series Expansions

Several possibilities are suggested by the previous

‘discussions. One is that if an asymptotic approximation
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exists for the kernel of a transform, then an approximate
method of computing that transform may be derived. This
concept is quite general, and could be applied to many other
types of series expansions besides the Bessel functions.
Another possibility is the representation of waveforms
as linear combinations of functions which are similar to the

Bessel functions. For example, the waveform could be written

as a linear combination of sinc(.) functions
[+ e ]
FOX) = z Cem SinC(mx) = z Cry —21DEMW 59y
mwx
m=1 m=1

in the interval [0,1). The boundary condjtions would be the
same as those for the basis set [Jo(nX)1}.

From a table of integrals, it can be found that

O for m=0 or n=0
sin(mux)sin(nex) dx = O for m#n (4.32>
172 for m=n

ey

0
Multiplying the Equation (4.31) on both sides by 2w#xsin(nwx)
and integrating from O to 1 yields the coefficients of the
sinc(,) series:

1
Cm = 2mm I X fF(x) sin(mwx) dx, m=1,2,.... (4.33>
(0]

This integral can be written in discrete approximation form
as

N-1
. _2nm n . mwn
Cm = NZ nf( N dsin( N bl (4.34)>
. n=0

in the same manner as the rectangular integration in Equa-
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tion (4.8). The summation could be performed by taking the
imaginary part of the result of an FFT.

Another convenient expansion is

fOx

L]

o0
EE Cm d1/2(%mx>
m=1

-]
2 .
ZEC” S sinimrx) 4.35)
m=1

which is valid in the interval [0,1]1. The integral expres-

sion for the coefficients is

5 .5

Cm = w(2m)° X fix) sin(mwx) dx (4.36)>

O ey

and may be suitablyuapproximated by the same methods as be-

fore, using an FFT.
Chapter Summary

In conclusion, taking the viewpoint of rectangular-rule
approximate integration and possibly using approximations to
the transform kernels can Iead to fast approximate algo-
rithms for many kinds of series expansions. These approxima-
tions may be good enough for practical purposes in many
cases. The general technique is to pose the desired integral
as a summation whose kernel involves a function (such as
sine and cosine) for which a fast algorithm is commonly
known. This is a very practical technique, but seems tobbe

little known because interest in alternative basis sets, in
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general, is |imited.

Three different methods for deriving the Fourier-Bessel
series coefficients have been shown in this chapter. But a
fast algorithm is of little value unless the results can be
" interpreted and used. Thus, Chapter V will attempt to inter-
pret the transform results in terms of the traditional fre-

guency domain, and will give a linear filtering explanation

of the data obtained.



CHAPTER V

INTERPRETING THE RESULTS OF

THE TRANSFORMAT ION
Introduction

The set of Fourier-Bessel coefficients must be given
some theoretical or physical interpretation if at all pos-
sible. The result of a transformation is just a set of num-
bers unless logical or mathematical significance can be
found for them. The purpose of this Chapter is to present
some background that will enable a more intuitive insight

into the result of the Fourier—-Bessel transform.
FIR Filter Bank Approach

One of the reasons that the Bessel functions were cho-
sen as the object of this investigation was that they are
the solutions of a set of time-varying differential equa-
tions. At first thought, it might appear that the transfor-
mation results in a time-varying filter operation on the
input data. But the actual way in which the transform is
used is as a fixed FIR filter bank which acts on the input
data vector (usually a windowed segment of speech).

As previously mentioned, such a |inear transformation

of the data can be represented as a matrix-vector multipli-
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cation. Thus, each row of the transform matrix is an FIR
filter. The rows do not change, but are fixed: the trans-
formation is not time-varying. The frequency response of the

FIR filter bank will now be discussed.
Frequency Response of the Filter Bank

The calculation of the fregquency response of each row
of the transform matrix turned out to be a very difficult
problem indeed, for the following reasons. First, there is
no convenient form of an addition theorem for Bessel func-
tions. That is, there is no expression which formulates
Jol(N+1DT1 in ferms of a finite number of past samples of
the function JolnNnT], where T represents a fixed time incre-
ment.

Second, the usual analysis of Fourijer-Bessel series
uses an integral expression for each coefficient:

1

2
Cm = > J X fOX) JolihmX) dX. (5.1

[JaChmd 1%

But in a computer, only sampled signals and sampled Bessel
functions can be processed. Hence, the integral can only be
approximated. In fact, the fast algorithm for the approxi-
mation of the series coefficients does not represent aﬁ
exact pseudoinverse of the Bessel functiqn matrix, J, which
will be defined later in ﬁhis chapter.

vVery little of the literature surveyed dealt with the
case of sampled Bessel functions. Jerri (1978) defined a

Discrete Hankel Transform, but he was not able to derive
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an exact transformation: He used discrete approximations.
J.P. Clero (1979) proposed a discrete Bessel transform
matrix. Neither derrf nor Clero could find mathematical
proofs concerning the orthogonality of sampled Bessel
functions on a finite interval.

Third, even if the fast-algorithm approximation to
(5.1) is considered to be close enough (which it should be
for many practical purposes) then there remains the problem
of calculating

1

| Cw,m) = 2 > J'xe“’chxmommx)dx (5.2)
[JaCamd 1% o

for various values of w, so that the frequency response can
be determined. The function w(x) is a windowing function.
Most of the mathematical articles surveyed containing refer-
ences to integrals with Bessel functions in their integrands
dealt only with the case of integration from zero to infin-
ity, rather than with the case of finite |imits.

For these reasons, the search for the closed form
formu[a for the freduency-responsebwas (at least temporar-
ily> abandoned. Instead, the integral in Equation 5.2 was
estihated by numerical integration. The magnitude response
of |I(w,m) was plotted for m=50 with w(x>)=1 (rectangular win-
dow). Figure 23 shows the resultant response. The large side
lobes are due to the use of the rectangular window. For the
same value of m{ Figure 24 shows the effect of using a Ham-

ming window in (5.2). Note that the sidelobes are reduced,
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das expected since the Bessel functions are really quite sim-
ilar to the trigonometric functions. Another window function
consisting of half of a traditional Hamming window was tried
(Figure 19). The magni tude response of the integral trans-
formation when this window is used is shown by Figure 25.
This type of window is frequently used in the field of time
series analysis for processing of autocorrelation functions.
This window will be discussed again in a later section of

this report.

Correspondence to Traditional

Frequency Domain

A correspondence can be derived between the coefficient
numbers in the Fourier-Bessel transform domain and frequency
in the traditional sine-cosine expansion. The coffespondence
between coefficient number and traditional frequency is only
approximate because each Bessel function in the series rep-
resents a whole band of frequencies, not just a single fre-
guency. But there is a distinct concentration of energy in
the frequency domain, as shown in Figures 23-25. Figures 15-
18 show the sinusoidal nature of the FIR fifter's impulse
response, so it is really no surprise that the response of
each row of the filter bank is a narrow band of frequencies.

The asymptotic approximation in Equation (3.14) is
stated in terms of the normalized time, x. Making the sub-
stitution t/T for x, and substituting the expression (3.15)

for %, the approximation to XJo(i\mX) becomes
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.5

- 1 2t (m-.25>w _ _x
XJo(AmXx) = —r [ (M= .285°T ] cos[—————?——— t 2 ]. (5.3

The major portion of the energy is centered at

- (m-.25)w rad (5.4)
T secC
where T is the length of the analeis frame, in seconds. |If

there are N sample points per analysis frame, and the sam-
pling rate is fS samples per second, then the felationship
pbetween coefficient number and frequency is

m - .25
f = 5N fs Hz. . (5.5)

But there is a problem here: Suppose that the signal
being analyzed is a sinusoid, but with a phase which makes
it as orthogonal as possible to the filter's impulse re-
sponse. Then the Fourier-Bessel coefficient whose approxi-
mate frequency falls nearest to the signal's true frequency
may show very little response. Instead, neighboring coeffi-
cients will show a greater response. This is one of the
reasons that the Fourier-Bessel series is hard to deal with:
The results one obtains depend heavily upon where the analy-
sis frame starts. The transformation is shift-variant in

this sense.
Linear Modeling Interpretation

A useful viewpoint of alternative basis sets is the
| inear modeling interpretation (Menke, 1984). The assumed
mode! of a waveform is as a linear combination of basis vec-

tors, and the full power of matrix algebra can be brought to
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bear on the problem.
Let J be a matrix whose columns are sampled Bessel

functions. The general element of this matrix is given by
Jrm = d°<c\m—&—>, 0<n<N=-1, 1<m<M (5.6

where m is‘the column number and n is the row number. %mu

represents the m-th zero of the Bessel function used, and N
is the number of rows in the matrix. The rows are numbered
from O to N-1. The data model! is as a linear combination of

the columns of this matrix:

- . 0 - . 0 ..
X(O) T \JQ(')M‘T) do(}\z N )
1 A
xXC1) = Ca Jo( % N b) + Ca Jo( Az )
N-1 N-1
(N- N q— (@GN
h)( N 1)- -\Jo( 1 N )- .do 2 N )-
- 0
do(Nw—ﬁ—)“
Jo (% —l—)
4 . . . +Cm |"™MN (5.7
N-1
Ldo(fo N ).
or, in matrix notation,
x = Jc. : (5.8)

Note that J need not be a square matrix.

The process of oﬁtaining the model parameters,the C»'s,
is equivalent to finding the best L2 fit to the data given
the aforementioned data model. |If J is a square matrix, then
the model! parameters may be found Cin principle) by inver-
sion of the J matrix, followed by multiplication of the data

vector x by the inverse matrix, d-1. I1f J has more rows than
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columns, then the best L= fit can be found by calculating
the pseudoinverse of J, and then multiplying the data vector
by this matrix:

<aTu>"1uT5 = c. (5.9)

In practice, this process can be well approximated by the
fast algorithm discussed in the previous sections.

when viewed as a multiplication of the data vector by
the pseudoinverse matrix of J, the process of finding the
Cm’s can be seen to be equivalent to a filter bank consist-
ing of FIR filters: Each row of the pseudoinverse is then
the impulse response of an FIR filter. The rows of the
pseudoinverse are not orthogonal, because Bessel functions
are not a truly orthogonal basis set.

‘lf the pseudoinverse matrix is post-muttiplied by its
own transpose then the result is

(JTJ)—1JT[(de)-1dT]T = T T, (5.10)

Since JTJ is symmetric, its inverse is also symmetric.
Therefore,

tcgTury T - ot~ (5.11>

The matrix JTJ is not diagonal, because the columns of J
are not orthogonal. The inverse of a non-diagonal matrix is

Td5—1 is not dia-

also nondiagonal, if it exists..Ergo; «J
gonal, and diagonality of this matrix would have been a nec-
essary condition for the orthogonality of the rows of the
pseudoinverse, T T

A consequence of this is that correlation of the re-



80

sulting model parameters is to be expected even when the co-
variance matrix of the input data vectors is a diagonal
matrix. Consider the case where the input data is a rectang-
gular-windowed segment of sampled data from a white noise
process with unity variance. Then the covariance matrix is
the identity matrix. |f a matrix transformation A is applied
to each outcome vector x, ¢ = AxX, then the covariance matrix
of the resultant vector ¢ is

C = AC AT = AIAT = AAT. (6.11)
cc XX .

substitution of the pseudoinverse of J into the place of A
in Equation (5.11) yields

Cec = [(JTJ>_1JT][<JTJJ"1JTJT - o (5.12)

The matrix (JTJ) is not diagonal. Therefore, its inverse is
not diagonal; The model parameters in the vector c are
correlated even when the input is a white noise seguence.
The conclusion here is that correlation of the transform do-
main coefficients is to be exhected even when the input
sequence is white, provided that the basis set is not ortho-

gonal .

Relationship to the Discrete

Fourier Transform

The relationship between the Fourier-Bessel coeffic-
ients and the Discrete Fourier Transform (DFT) coefficients
is actually gquite simple to derive. It is well known that

the DFT can be written as a matrix-vector multiplication



81

(Hershey and Yarlagadda, 1986):

ADFT X =Y - (5.13)
where x is the data vector, or sampled signal, and y is the
vector of DFT coefficients. The matrix ADFT consists of com-

plex elements of the form

-j nk

] = e (5.14)

[ADFT Kn

where the rows are numbered as k=0,1,...,N-1 and the columns

are numbered as n=0,1,...,N-1. Note that the matrix —l—-A

VN DFT

is symmetric and also unitary.
Now let a |inear mode! be assumed for the sampled data:
Je = X. (5.15)

“This is the same model as was presented by Equation (5.7).
Premultiply both sides of Equation (5.15) by ADFT to get:

A.__Jc = A

DFT DFTﬁ =y = DFT coefficients. (5.16)

The columns of matrix ADFTJ are the.DFT’s of the basis vec-
tors of the assumed data model. Therefore, if the DFT’'s of
basis vectors are known then these vectors can be summed
with weights equal to the model coefficients to get the DFT
of the original data vector, x. Unfortunately, the DFT's of

the model matrix's columns are difficult, or impossible, to

express in a closed form (no proof has vet been found).
Chapter Summary

A linear filtering approach to interpretation of the
Fourier-Bessel coefficients has been presented. The process

of discrete Fourier-Bessel transformation can be modeled as
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a filter bank consisting of FIR filters. Some of the diffi-
cult problems associated with discrete Fourier-Bessel anal-
ysis are: (1) Choice of windows, with the Hamming lag window
seeming to be good; (2) Lack of an analytic expression for
the frequency response of each row of the FIR filter model;
and ¢(3) lack of orthogonality of the basis set, making the
Fourier-Bessel coefficients statistically correlated even
when the input signal is uncorrelated.

The difficulty of Fourier-Bessel interpretation makes
the chore of analyzing real speech signals even more prob-
lematic. For example, the point at which an analysis frame
starts affects the coefficients obtained. This, and other,
effects will be discussed in the context of real speech sig-

nal analysis in Chapter VI.



CHAPTER VI

APPLICATION OF FOURIER-BESSEL

SERIES TO SPEECH ANALYSIS

Introduction and Survey

of Applications

Classical Applications

The traditionaliuses of Fourier—-Bessel series are re-
lated to problems in mathematical physics where circular
symmetry and boundary conditions prevail. Examples are vi-
brating drum heads, circular waveguides, and heat conduction
in cylindrical rods (Condon and Odishaw, 1967>. |t should
also be noted that acoustic tube models of the vocal tract
are cylindrical. But the literature search revealed few pub-
| ished reports of the use of Fourié}—Besse| expansions for

signal analysis or classification purposes.

Analysis-Synthesis of Speech

Fourier-Bessel series have recently been used as the
basis for analysis-synthesis of speech (Chen, Gopalan, and
Mitra, 1985) and a Fourier-Bessel vocoder has been built
(Chang and Chen, 1986). The basic scheme used was to expand

each frame of speech into a Fourier-Bessel series based upon
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the Bessel function J,(x>. Only dominant coefficients were
retained, and the speech was resynthesized from these. Chen
reported that good quality speech can be obtained using only
one half to one third of the available coefficients. Under-
standable speech could be obtained with one tenth of the
coefficients. Chen typically used 150 coefficients in the
expansion because he could find 150 zeros of J, (x> in a ta-
ble. But it was shown in Chapter |1l of this thesis that the
higher—-ordered zeros of Jn(x) can be well approximated by
Equation ¢3.16), so there is really no need to limit the
mode| order to 150 or fewer.

The criterion Chen used for selection of the coeffi-
cients to be retained was that the several absolutely larg-
est numbers in the set were kept. But note from Figure 13
that the higher %mn becomes, the less energy is in Jo{(imX).
Therefore, it }s proposed that the criterion for coeffi-
cient selection should not be a flat threshold, but rather
a threshold function that allows the several coefficients

which contribute the most energy to the signal to be kept.

Feline Cortical Potentials

P.L} Nunez published an article which described the
use of the Fourier-Bessel series coefficients for charac-
terization of the cortical evoked potential of cats due to
an olfactory stimulus (1973>. The rationale behind Nunez’
choice of the Bessel functions as a basis set was that they

"look like" the waveforms he was trying to represent. Mean-
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ingful waveform representation and daté compression were his
goals. He conjectured that since basis functions which are
the solutions of ordinary differential equations were not
really suitable to describe the waveforms, then a better
choice of basis could be a set of functions which are the
wavelike solutions of some sort of partial differential
equations. But he did not attempt to theoreticaily justify
this proposition. In fact, nis experimental results did not
conclusively support the claim that the Bessel functions
were fundamentally better than the traditional trigonometric
functions as a basis set for the representaton of signals.
But there were some promising indications that the Bessel
functions could be a better basis set when an approximation
to the waveform was to be formed by only a few terms of a
series.

This is an important distinction: a basis set for a
series representation can be?judged either by its ability to
(1) accurately converge to the waveform when, in the imit,
many terms of the series are included, or (2> represent the
waveform, wel!l enough for a given purpose, with a only few
térms'of the seriés included in the sum. In this latter case
convergence of the series is not really a requirement, for
all that is desired is a description of some properties of
the waveform, not an~extreme|y accurate reproduction of the
waveform. The mathematica! l|iterature seems to be preoccu-
pied with gquestions of convergence and accurate representa-

tion, whereas a (possibly imperfeét) description of a signal
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‘'using only a few parameters could be more desirable for pat-

tern recognition or coding purposes.

Characteristics of Fourier-Bessel
Coefficients for Typical

Speech Signals

The first of several versions of the Fourier-Bessel
analysis program used the method which was described by
Equation (4.19>. Note that the subsequent algorithm is quite
inefficient: Only one out of every four frequency bins was
used, so the transform had to be very long (of length 8N).
The program had analysis frames which were overlapped and
Hamming windowed, but which were not in any way synchronized
to the speech signal's own pitch period: the frames were
"free running". Sbme of the observations of the results are
reported in the following paragraphs.

when plotted, the Fourier-Bessel coefficients tend to
alternate in sign. Refer to Figure 26. Note that each large
positive coefficient is usually followed or preceded by a
large negative coefficient, and vice-versa. This is the most
obvious characteristic of the coefficients, and is true for
poth voiced and unvoiced speech for all speakers.

The coefficients on either side of a givén coefficient
show a great deal of correlation with that qoefficient. This
is true especially for voiced speech. The amount of correla-
tion is less for coefficients which are not near neighbors.

Recalling Equation (5.12)>, this is hardly surprising since



nAr-o<

WINDOWED SPEECH SEGMENT
S.G0 T -
2.50 -

04 DOOE+00

-2.50 <

-5.00 - t f
1.00 64.8 123. 19Z2. 256.
SAMPLE NUMEER (€00¢/ZEC)
FR COEFFICIENTS

7.40
4.48 4o o] ............... ............... ............... ..............
1,56 44" ,l ............ ............... \ ..............

.ul T TVS1 IV P DT ST S T 1 3‘1. Lt :

fT- 1u T [ LU A A L '!"i ls 1 .
-1.364 - vl‘~ ............ ............... ..............
—4.28. .............. ............... ............... ............... ..............
-7.20 T - r .

0. Si. io2. 154. 205. 256é.

COEFFICIENT NUMBER

Figure 26. Windowed speech and Fourier-Bessel co-
efficient, Speaker 1, Trial 1. Pho-
neme: "a" as in "cats". Hamming
window used.

87



88

some correlation of coefficients is expected.

In Figure 27, the same speech segment was again ana-
lyzed, but with a rectangular data window. Note the large
alternating coefficients. This effect is very much like that
which appears when dealing with the Discrete Fourier Trans-—
form. This is not surprising, since the rows of the filter
pank are very nearly sinusoidal. A tapered window such as
the Hamming window is definitely recommended.

The Bessel functions are shift-variant. Since the ana-
lysis frames were free-running, their startfng points in a
pitch period were random variables. Thus, the Fourier-Bessel
representation varied quite a bit from frame to frame, even
in the same phoneme. Figure 28 shows that the shift-variant
property of the Bessel functions affects the coefficients
obtained in neighboring analysis frames. The starting point
of the 256-sample analysis frame in Figure 28 was only half
a pitch period after the starting point of the analysis
frame of Figure 26. Note that the general location of the
large coefficients is still the same, but the exact coef-
ficient numbers of the largest coefficients changed. Thus,
the raw Fourier-Bessel coefficients are in need of further
processing if reliable information is to be extracted from
them.

The shift-variant effect just noted was partially reme-
died by synchronizing the beginning of each analysis frame
with the same point in each pitch period. This resulted in

more consistent Fourier-Bessel coefficients from frame to
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Fourier-Bessel coefficients. Speaker
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"cats". Hamming window used. Time
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frame within the same phoneme. Figure 29 shows the windowed
speech segment and FB coefficients obtained when the begin-
ning of the analysis frame was exactly one pitch period
after that in Figure 26. Note that the Fourier-Bessel coef-
ficients in Figures 26 and 29 are more consistent with each
other than those shown in Figure 28.

Two other analysis frames, each with a different voiced
phoneme, are shown in Figures 30 and 31. The general loca-
tion of the largest coefficients changes from phoneme to
phoneme. Since there is a correspondence between coefficient
number and frequency, it is seen that these regions are the
formants of the speech spectrum.

Comparison of the Fourier-Bessel coefficient set for
the same phoneme ("a" as in "cats")> is made in Figures 26
and 32-35. Figure 32 shows the result for a second trial of
the same word for speaker number 1. Comparison to Figures
33 and 34 for speaker number 2 does not reveal any immedi -
ately 6bvious features which could be used to differentiate
between speakers. Figure 35 shows the same phoneme for
speaker four, a male speaker (speakers 1 and 2 were female).
The major difference is that the spacing between the large
coefficients is less for the lower-pitched male speaker thén
for the female speakers.

The Fourier-Bessel coefficients have l|less regularity
and more high-frequency energy for unvoiced speech than for
voiced speech. Figure 36 shows the result of expanding an

"h" sound into a Fourier-Bessel series. Once again, this re-
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sult is hardly surprising, in view of the fact that the pro-
cess of Fourier-Bessel expansion is equivalent to a bank of
FIR digital filters, each of which has a narrow frequency

response.

Extraction of Pitch Information From

the Fourier-Bessel Coefficients

It was noticed during many trials Qf Fourier-Bessel
expansion that there was some regularity to the occurrance
of large peaks: The spacing of the largest peaks seemed to
correspond to the pitch frequency. The pitch information
for voiced speech is fairly easily extracted from the co-
efficients if a simple algorithm is performed:

STEP 1. Perform Fourier-Bessel expansion of a windowed seg-
ment of speech.

STEP 2. Perform a three-point maximum-filter operation on
the <coefficient set. This is similar to a median
filter, except that the maximum absolute value of
every three samples is used as the output.

STEP 3. Perform a three-point median filter operation on the
result of Step 2.

STEP 4. Measure the average distance between peaks of the
resulting waveform. The pitch frequency is then
well approximated by |

. am - .25
foiten ® — v — s €6.1>

where am is the average number of samples between
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peaks.

The result of performing this process on the set of
coefficients from Figure 26 is shown in Figure 37.>This is
essentially the same as measuring pitch from the fine struc-
ture of the magnitude spectrum.

Formants can be distinguished in the Fourier-Bessel
coefficients, but there does not seem to be any great advan-
tage in using Fourier-Bessel coefficients instead of Fourier
coefficients for determination of formant frequendies and
relative energies. It was found that the formant frequencies
could be distinguished, but none too clearly, from the raw
Fourier-Bessel coefficient set. When the simple nonlinear
filter mentioned in the previous pitch detection scheme was
applied to the coefficients, the formants were easier to
discern.

Figure 38 shows the result of applying the maximum-me-
dian filter to the coefficient set shown in Figure 36. Note
that the peaks are irregular as compared to the case of

voiced speech.

Refinement of Fourier-Bessel Coeffi-

cients and Feature Extraction

All of the same information is contained in the Four-
ier-Bessel representation as in the common Foufier repre-
sentation of the signal. However, the information is in a
different form. It should be noted that most automatic

speaker recognition schemes use as a feature set the magni-
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tude spectrum of the speaker, either in direct or indirect
form. In the following discussions, it should be borne in
mind that the main purpose was to try to find a feature set

which was suitable for pattern recognition.

Fourier-Bessel Expansion of

Autocorreltation Functions

In the previous portion of this Chapter, it was found
that Fourier-Bessel expansion of windowed speech segments
did not always result in a reliable and easily reproduced
set of coefficients. Depending on the point where the anal-
ysis window started, a different set of coefficients result-
ed. Therefore, there seemed to be two options: (1) Make the
analysis windows pitch-synchronous, or (2) perform Fourier-
Bessel expansion of some function of the data which is
robust in the face of different analysis—-frame starting
points. The latter method was chosen; Autocorrelation func-
tions can be easily expanded into Fourier-Bessel series.

An example of this techniqde is shown in Figure 39. In
this example, a Hamming window was used. The result of using
the Hamming tag window is shown in Figure 40. The transfor-
mation of the autocorrelation rather than the original time
domain waveform not only provides a means of normalizing the
beginning of the analysis frame, but also provides a conven-
ient opportunity to normalize the magnitudes by dividing by
the signal's variance,

In all cases note how few coefficients are really re-
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quired for representation of the windowed autocorrelation.
Definite differences between speakers are also noticable.
The distance between positive peaks can be directly related
to the pitch, by the same method as was explained in the
previous section. Also, the distance between adjacent posi-
tive and negative peak coefficients is a possible feature
for pattern recognition.

But there is still the problem of extraction of a suit-
ably compact feature set. From the methods already presented
here, only the pitch can be extracted. The set of Fourier-
Bessel coefficients obtained by transformation of the auto-
correlation is too large a set to be used in a typical
pattern classifier. Therefore, a different description of
the magnitude spectrum was needed. Such a description, a

form of generalized cepstrum, will now be discussed.

Fourier-Bessel Expansion of

the Magnitude Spectrum

Suppose that tﬁe log magnitude spectrum is obtained by
windoWing, transforming, and then taking the logarithm by
traditional methods. The magnitude spectrum is a wavefdrm
which can be expressed as a |inear combination of Bessel
functions on the interval (O,fS/Z). Note that such a repre-
sentation is homomorphic with repect to convolution, and
thus could be considered as a sort of generalized cepstrum.

For example, consider two signals x(n> and yd(n). I f

x(n) and y<(n) are convolved, then their log magnitude spec-
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tra add. Let X(w) and Y(w) represent the log magnitude
spectra of x(n) and y(n). |f X(w) and Y(w) are each modeled

as series with some basis set gi(x),

XCw) = z C,g Cw , Y(w) = z B,g,(w, (6.2>
i i

then the log magnitude spectrum of x(n>*y(n) can be written
as the sum of the series for X(w) and YCw:

XCw) + Y(w) = zz (Ci + Bi)gi(W)' (6.3

i

In Equations (6.2 and ¢6.3)>, the limits.of the summation
were left indeterminate, because different |imits would be
appropriate for various choices of the basis set gi(x).
Equation (6.3) states that a series representation of the
log magnitude spectrum is a homomorphic system for convolu-
tion. The basis set could be any of a wide variety of func-
tions, inciuding orthogonal polynomials; Bessel functions,
walsh functions, or the traditional trigonoﬁetric series. |t
is shown in AppendiXx B that the trigonometric series repre-
sentation of the log spectrum is equivalent to the cepstrum.
But there is no reason why alternative basis sets should not
be used for homomorphic system characterization, deconvolu-
tion, or filtering.

Now consider an example. Figure 41 shows a windowed
speech segment which will be analyzed. It is the same as the
segment used in Figure 26. An FFT was used to estimate the
power spectrum. The log power spectrum is shown in Figure

42. A tapered cosine window was applied to the magnitude
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spectrum, and the result is shown in Figure 43. Also, a
constant was added to the log power spectrum so that the
poundary condition for the Fourier-Bessel series can be met
at the right end of the interval. The log power spectrum was
then expanded as a series of Bessel functions. The first 100
coefficients of the expansion are shown in Figure 44.

As with the traditional cepstrum, the "low-time" part
of the cepstrum represents the gross shape of the magnitude
spectrum, while the pitch period is clearly shown as a very
large coefficient. The interpretation of the horizontal axis
in Figure 44 as "time" is a subject‘open for discussion.

The degree to which a |imited number of these coeffi-
cients can represent the magnitude spectrum is illustrated
in Figures 45-50. The general shape of the spectrum can be
represented by the first nine to twelve coefficients.

The pitch estimate is formed as follows. First, it
should be recalled that the approximate frequency associated
with the m-th Fourier-Bessel coefficient is

m - .25 cycles
2 analysis frame

-+
]

(6.4

when the pitch frequency is fp, and the analysis frame goes
from =0 to f=fs/2, then there should be fS/(2fp) cycles of
the fine structure of the spectrum in the analysis interval.
Then, setting these two results equal to each other vyields
an expression that can be soived for fp in terms of m (the
coefficient number) and fs (the sampling rate:

m - .25 - fs
2 T2 0F :
o}

6.5
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Solving the equation for fp gives

f
fp ‘x—_n'_I——_SZE— . (6.6

If m is the coefficient number of the largest Fourier-Bes-
sel coefficient, then Equation (6.6) yields the pitch estif
mate. Additional work is required to test this method when
the speech data is noisy.

Another speech example is shown in Figures 51-54.
Again..note the prominence of the coefficient corresponding
fo the pitch period.

The most common method of deconvolution or filtering
with a homomorphic system consists of gating, or windowing,
the cepstrum coefficients. Then the signal is reconstructed
from the modified cepstrum. But when the traditional cep-
strum is used, deconVolution by this method can oniy be
effectfve if the cepstra of the two signals to be separated
do not overlap in the quefrency domain (Tribolet, 1979).

Now suppose that a cleverly chosen basis set and its
companion series expansion are applied to the log magnitude
speqtrum of the orfginal signal. |If the basis set is chosen
properiy, then the quefrency domain coefficients may be sep-
aréted so that they do not significantly overlap. (The que-
frency domain can be generally defined as the domain that is
the result of a transform of the log power spectrum.) Then
gating or windowing can be used to eliminate the undesired

signal, and the deconvolved signal can be reproduced.
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WINDOWED SPEECH ZEGMENT
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Figure 51. Windowed speech segment, "a" as in
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1, Trial 2.
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Feature Sets for Pattern Recognition

In theory, any of the Fourier-Bessel expansions pre-
sented in this report could be used to generate feature vec-
tors. But the practical problems with large feature sets
preclude the use of the raw Fourier-Bessel coefficients of
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