MAGNETIC RESONANCE STUDY OF RADIATIONINDUCED LITHIUM ATOMS IN CRYSTALLINE SiO_{2}

By
MARK SHANNON GULLEY
n
Bachelor of Arts
Hendrix College
Conway, Arkansas
1985

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University in partial fulfillment of the requirements for
the Degree of MASTER OF SCIENCE December, 1987

Thesis 1987
6973 m
cop.

MAGNETIC RESONANCE STUDY OF RADIATIONINDUCED LITHIUM ATOMS IN CRYSTALLINE SiO_{2}

Thesis Approved:

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge my advisor, Dr. L. E. Halliburton, for his kind guidance and patience throughout this project. I would also like to thank Dr. J. J. Martin and Dr. S. W. S. McKeever for serving on my thesis committee. Their support was greatly appreciated.

I would also like to thank Dr. C. Y. Chen for his guidance and advice, Mr. C. A. Hunt for his patience with me in the Crystal Growth Lab, and Dr. Rezza Hantezadeh, Mr. Michael Scripsick, and Mr. George Gangwere for their helpful conversations pertaining to this study. I also wish to express my gratitude to Dr. Paul Westhaus for his encouragement throughout my graduate career.

I wish to especially acknowledge Dr. M. G. Jani, with whom I worked closely on this project. His patience and concern with teaching me how to be a good research scientist are greatly appreciated.

Most importantly, I wish to thank my family for their love, support, and encouragement throughout my education.

Lastly, I would like to acknowledge the Physics Department of Oklahoma State University and the U. S. Air Force for their financial support on this project.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Previous Studies. 6
Present Study. 9
II. EXPERIMENTAL APPARATUS AND PROCEDURE 10
Sample Preparation and Defect Production. 10
ESR Spectrometer. 11
Procedure. 13
Computer Equipment 13
III. THEORETICAL ANALYSIS 14
IV. EXPERIMENTAL RESULTS AND ANALYSIS 21
V. DISCUSSION 32
A SELECTED BIBLIOGRAPHY 34
APPENDIX A. 35
APPENDIX B 44

LIST OF TABLES

Table Page
I. Lower Half of the Spin Hamiltonian Matrix...... 20
II. Spin Hamiltonian Final Parameters 31

LIST OF FIGURES

Figure Page

1. Schematic Diagram of Alpha-Quartz 3
2. Three Types of Aluminum-Related Defects 5
3. The $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ Center. 8
4. Block Diagram of ESR Spectrometer 12
5. ESR Spectrum of the $\left[\mathrm{AlO}_{4}\right]^{\circ}$ center and the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ Center Lines 22
6. Enlargement of $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ Center Line Spectrum.................................. 23
7. ESR Spectrum of High and Low Field Regions ofthe $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ Center.................................... 258. Angular Dependence Study of Linesin High and Low Field Regions...................... 26
8. Energy Level Diagram of $S=1 / 2, I_{1}=3 / 2$, and $I_{2}=1 / 2$ System. 28

CHAPTER I

INTRODUCTION

Quartz is one of the many crystals found in nature that exhibit the phenomenon known as piezoelectricity. In a piezoelectric material, electrical polarization is produced by mechanical stress. This is also a reversible process, wherein an applied electric field will produce a strain. A large number of piezoelectric materials have been characterized over the last half-century, but as of yet only a few are widely used as precision frequency control devices. Alpha-quartz is used for precision bulk piezoelectric resonators and surface-acoustic-wave (SAW) devices [1].

Alpha-quartz, a specific crystalline form of silica $\left(\mathrm{SiO}_{2}\right)$, is the only variant of SiO_{2} having application in frequency control. Alpha-quartz is also known as low quartz; this refers to the fact that it exists at temperatures less than $573^{\circ} \mathrm{C}$. Alpha-quartz has a trigonal crystal symmetry and belongs to point group 32. Both right- and left-handed alpha-quartz exist, corresponding to space groups $\mathrm{P}_{2} 21$ and $\mathrm{P}_{1} 21$, respectively. The general alphaquartz structure consists of SiO_{4} tetrahedra that share each of their corners with another tetrahedron [2]. Alpha-
quartz has an axis of threefold symmetry, which is commonly called the c axis or optic axis. Also, three equivalent twofold axes lie 120 degrees apart in a plane perpendicular to the optic axis. This is the natural coordinate system of alpha-quartz. A Cartesian coordinate system is also chosen for quartz such that the Z and X axes are parallel to the optic axis and one of the twofold axes, respectively. The y axis is then chosen to form a right-handed coordinate system [l]. Figure 1 is a diagram of the crystal structure of alpha-quartz.

Quartz is found in nature as large crystals. Arkansas and Brazil are two areas well-known for having abundant quartz crystals. However, quartz has also been grown commercially since World War II. The quartz used in this study is synthetic quartz. The process used for growing quartz is called hydrothermal growth. The lower zone of an autoclave contains natural quartz fragments at high temperature to be used as a nutrient and the upper zone of the autoclave contains seed plates at a slightly lower temperature. Either a sodium hydroxide or a sodium carbonate solution is used to dissolve the nutrient and transport material up to the upper zone. Temperatures are about $350^{\circ} \mathrm{C}$, the autoclave pressure is roughly $1 \times 10^{8} \mathrm{~Pa}$, and growing periods range from one to over three months [2].

There are a variety of impurities in quartz, but the two that are important in this study are the substitutional aluminum and the interstitial lithium. An aluminum 3+ ion

$$
\begin{array}{r}
=\text { OXYGEN } \\
=\text { SILICON }
\end{array}
$$

Figure 1. Schematic Diagram of Alpha-Quartz
can easily substitute for a silicon $4+$ ion. Since the aluminum has one less positive charge than the silicon, it requires some type of charge compensator. Four of the aluminum charge compensators known to exist in quartz are H^{+}, Li^{+}, and Na^{+}ions at interstitial sites and holes trapped at oxygen ions. Typically, one of these charge compensators is located next to each substitutional aluminum ion, thus giving rise to $\left[\mathrm{AlO}_{4} / \mathrm{H}^{+}\right]^{\circ},\left[\mathrm{AlO}_{4} / \mathrm{Li}^{+}\right]^{\circ},\left[\mathrm{AlO}_{4} / \mathrm{Na}{ }^{+}{ }^{\circ}\right.$, or $\left[\mathrm{AlO}_{4}\right]^{\circ}$ centers. Here I am using the notation proposed by Weil [3]. A schematic representation of these defect centers is shown in figure 2.

These defect centers have been observed by a variety of experimental techniques. In the case of the $\left[\mathrm{AlO}_{4} / \mathrm{H}^{+}\right]^{\circ}$ center, which consists of an interstitial proton bound to an oxygen ion to form an OH^{-}molecule, stretching vibrations of the OH^{-}molecule cause infrared absorptions at wavenumbers 3367 and $3306 \mathrm{~cm}^{-1}$.

An $\left[\mathrm{AlO}_{4} / \mathrm{Li}^{+}\right]^{\circ}$ or an $\left[\mathrm{AlO}_{4} / \mathrm{Na}^{+}\right]^{\circ}$ center consists of an aluminum ion with an adjacent interstitial lithium or sodium ion in the optic axis channel. This type of defect can give rise to one or more characteristic acoustic loss peaks because of the stress-induced motion of the lithium or sodium ion from one equilibrium position to another about the aluminum ion. King [4] and Fraser [5] have related an acoustic loss peak at 50 K to the $\left[\mathrm{AlO}_{4} / \mathrm{Na}^{+}\right]^{\circ}$ center. Stevels and Volger [6] and Nowick et al. [7] have described the dielectric loss of this defect center. The $\left[\mathrm{AlO}_{4} / \mathrm{Li}^{+}\right]^{\circ}$ center

Figure 2. Three Types of Aluminum-Related Defects
does not seem to have dielectric and acoustic loss peaks. Toulouse et al. [8] suggested that these peaks are not observed because the lithium ion resides on the twofold symmetry axis of the AlO_{4} tetrahedron to which it is bound.

A hole trapped in a non-bonding p orbital of an oxygen ion located adjacent to the aluminum forms the $\left[\mathrm{AlO}_{4}\right]^{0}$ center. This center is easily detected by electron spin resonance because the oxygen has an unpaired electron. In this study, the $\left[\mathrm{AlO}_{4}\right]^{0}$ center was used to align the magnetic field along the crystal's c axis [2].

There have been a number of previous studies leading up to the present investigation. The following paragraphs outline the most significant papers that relate to the present study.

Previous studies

Initial Observations

The $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ center was observed and studied by Jani et al. [9] using electron spin resonance. This center was produced by an initial irradiation at a temperature between 150 K and 300 K which released the lithium ion from its associated Al^{3+} ion and then a second irradiation at 77 K to trap an electron at the new location of the lithium ion (which is by a silicon ion). The g values for the defect were electronlike and there was a weak hyperfine splitting
due to a single ${ }^{7}$ Li nucleus and a strong hyperfine splitting due to a single ${ }^{29}$ Si nucleus. These results prompted them to suggest that the defect was an electron stabilized by an interstitial lithium ion with the unpaired spin density localized primarily on one of the adjacent four-coordinated silicon ions. These investigators conducted an angular dependence study of the central four-line spectrum and determined the parameters for the g tensor and for the A tensor corresponding to the lithium hyperfine interaction. Figure 3 shows a schematic diagram of this defect center.

Correlation of ESR and TL

A study of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center was performed by Halperin et al. [10] in which the results from thermoluminescence and electron spin resonance experiments were compared. A large thermoluminescence peak near 190 K was observed to be formed by the same double-irradiation procedure that was necessary to produce the ESR signal attributed to the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. They concluded that the peak at 190 K was caused by electrons being released by the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center and recombining with holes at unidentified defects.

Theoretical Model

A theoretical investigation of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ center previously reported by Jani et al. [9] was conducted by Wilson et al. [ll]. A 19-atom cluster was used in a quantum chemistry calculation designed to model the center. slater-

Figure 3. The $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\mathrm{O}}$ Center
type orbitals and a three-Gaussian basis set (STO-3G) were used to determine the equilibrium positions of the lithium, silicon, and oxygen atoms. Then, a STO-6G basis set was used to determine the charge and spin densities. The results indicated that the spin density of the unpaired electron was concentrated on the silicon atom, whereas the charge density was concentrated on the lithium atom.

Observation of a Na Version

A thermoluminescence peak at 202 K was observed by Halperin and Katz [12] in quartz that had been electrodiffused with sodium. This peak was observed after the same double-irradiation procedure used to produced the $190-\mathrm{K}$ thermoluminescence peak in lithium-rich quartz. They suggested that this peak was related to the $\left[\mathrm{SiO}_{4} / \mathrm{Na}\right]^{\circ}$ center in analogy to the relation between the 190 K peak and the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. Further study of the $\left[\mathrm{SiO}_{4} / \mathrm{Na}\right]^{\circ}$ center with ESR is needed to verify this result.

Present Study

In this study, we have continued the electron spin resonance study of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. Angular measurements were made of the ${ }^{29}$ Si hyperfine interaction.

EXPERIMENTAL APPARATUS AND PROCEDURE

Sample Preparation and Defect Production

The synthetic quartz crystals used in this study were obtained from ThermoDynamics, Shawnee Mission, KS. For the ESR studies, the samples were cut to dimensions of $8 \mathrm{~mm} x$ $2.5 \mathrm{~mm} \times 3 \mathrm{~mm}$ in the X, Y, and Z directions, respectively, by using a diamond saw in the Crystal Growth Laboratory at Oklahoma State University. All samples were taken from the x-growth region of the stone. This region was identified by irradiating a slice of the bar from which the samples were to be cut and then examining the visible coloration.

Samples were irradiated with $1.5-\mathrm{MeV}$ electrons at a current of 2 microamperes from a Van de Graaff electron accelerator. The irradiation procedure consisted of two irradiations: one at 200 K and the other at 77 K . The sample was placed in a styrofoam cup which was then filled with frozen carbon dioxide (dry ice) and irradiated for 5 minutes. The dry ice was then quickly replaced with liquid nitrogen and another 5-minute irradiation was performed. The rapid change from dry ice to liquid nitrogen is neces-
sary in order to keep the sample from warming up and allowing the lithium ions to diffuse to more stable trapping sites. For all irradiations, the sample was placed approximately 50 cm from the aluminum exit window of the accelerator tube.

ESR Spectrometer

All electron spin resonance measurements were made on an IBM Instruments (Bruker) ER200D X-band homodyne spectrometer with the sample at liquid nitrogen temperature. The magnet of this spectrometer is water-cooled and capable of producing magnetic fields of over 10,000 gauss. On a platform above the magnet is a Bruker ERO44 MRDH microwave bridge, from which a waveguide leads down between the magnet pole pieces. Attached to the waveguide is a TE 102 rectangular microwave cavity, which is the cavity used for all the measurements made in this study. The TE 102 is a commercial cavity equipped with Helmholtz coils for $100-\mathrm{kHz}$ modulation. Also part of the ER200D system are the magnet power supply, the cooling water circulation unit, and the main console, which contains a timebase unit, a signal channel, magnetic field controller, and a chart recorder. A block diagram of the ESR spectrometer is shown in figure 4.

For final measurements, magnetic fields were measured with a Varian E-500 Gaussmeter. The gaussmeter consisted of a marginal oscillator and a proton probe. The probe was

Figure 4. Block Diagram of ESR Spectrometer
attached rigidly between the faces of the magnet. Measurements of the main line of a standard $\mathrm{MgO}: \mathrm{Cr}^{3+}$ sample were made at the various angles used in the angular dependence study to correct the measured field values since the probe was not located at the same spot as the sample. The known g-value for $\mathrm{MgO}: \mathrm{Cr}^{3+}$ is 1.9799. To measure the microwave frequency, a Hewlett Packard 5340A frequency counter was connected directly to the microwave bridge.

Procedure

After irradiation, the sample was placed in a finger Dewar filled with liquid nitrogen. The Dewar was placed in the cavity and the aluminum-hole center was found. The aluminum-hole center was used to align the c axis of the sample parallel to the magnetic field. The ${ }^{29}$ Si hyperfine spectrum was then found and recorded on chart paper. The magnet was then rotated to a new angle to take another spectrum. In order to cover a full 70° of rotation, the coaxial cables attached to the cavity were unhooked and re-attached to the cavity by means of single wires so that the cables would hang down and out of the way of the rotating magnet.

Computer Equipment

The computer used to analyze data was a Hewlett Packard 9000 (Series 300) programmed in compiled BASIC 4.0.

THEORETICAL ANALYSIS

We assume that the system under study can be described by the following spin Hamiltonian:
$H=\beta \vec{H} \cdot \stackrel{H}{g} \cdot \vec{S}+\vec{I}_{1} \cdot \stackrel{H}{A} \cdot \vec{S}+\vec{I}_{2} \cdot \stackrel{H}{A} \cdot \vec{S}-\left(g_{N} \beta_{N}\right)_{1} \vec{H} \cdot \vec{I}_{1}-\left(g_{N} \beta_{N}\right)_{2} \vec{H} \cdot \vec{I}_{2}$
This is a general spin Hamiltonian for a system with one electron of spin S and two nuclei of spins I_{1} and I_{2}. For the system in this study, $S=1 / 2, I_{1}=3 / 2$, and $I_{2}=1 / 2$. The first term in the Hamiltonian represents the electron Zeeman interaction, the second and third terms represent the nuclear hyperfine interactions, and the last two terms represent the nuclear zeeman interactions.

The following coordinate systems are used to convert the spin Hamiltonian into a form suitable for numerical analysis by a computer program.
x, y, z : Coordinate system of the magnetic field (chosen so that H is parallel to the z axis.)
$\mathrm{x}_{\mathrm{C}}, \mathrm{y}_{\mathrm{C}}, \mathrm{z}_{\mathrm{C}}$: Crystal coordinate system
x_{g}, y_{g}, z_{g} : Principal axes of the g tensor
x_{1}, y_{1}, z_{1} : Principal axes of the ${ }^{7}$ Li hyperfine tensor, A_{1} x_{2}, y_{2}, z_{2} : Principal axes of the ${ }^{29}$ Si hyperfine tensor, A_{2}

The spin Hamiltonian can now be rewritten in terms of the different coordinate systems.

$$
\begin{aligned}
H= & B\left(S_{x g} g_{x g} H_{x g}+S_{y g} g_{y g} H_{y g}+S_{z g} g_{z g} H_{z g}\right) \\
& +I_{x 1} A_{x 1} S_{x 1}+I_{y 1} A_{y 1} S_{y 1}+I_{z 1} A_{z 1} S_{z 1} \\
& +I_{x 2} A_{x 2} S_{x 2}+I_{y 2} A_{y 2} S_{y 2}+I_{z 2} A_{z 2} S_{z 2} \\
& -\left(g_{N} \beta_{N}\right)_{1} H I_{z 1}-\left(g_{N} \beta_{N}\right)_{2} H_{z 2}
\end{aligned}
$$

We now wish to transform the coordinate systems into the magnetic field coordinate system by using rotation matrices [TG], [TH], and [TB], such that

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{g} \\
y_{g} \\
z_{g}
\end{array}\right]=[T G]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=[T H]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=[T B]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{aligned}
$$

We can now write the spin Hamiltonian in terms of the magnetic field coordinate system only:

$$
\begin{aligned}
\mathcal{H}= & \text { WlS } S_{x}+W 2 S_{y}+W 4 I_{l x} S_{x}+W 5 I_{l x} S_{y}+W 3 S_{z} \\
& +W 6 I_{l x} S_{z}+W 5 I_{l y} S_{x}+W 7 I_{l y} S_{y}+W 8 I_{l y} S_{z} \\
& +W 6 I_{1 z} S_{x}+W 8 I_{1 z} S_{y}+W 9 I_{1 z} S_{z}+W 10 I_{2 x} S_{x} \\
& +W 11 I_{2 x} S_{y}+W 12 I_{2 x} S_{z}+W 11 I_{2 y} S_{x}+W 13 I_{2 y S_{y}} \\
& +W 14 I_{2 y} S_{z}+W 12 I_{2 y} S_{z}+W 14 I_{2 y} S_{z}+W 15 I_{2 z} S_{z} \\
& -\left(g_{N} \beta_{N}\right)_{1} H I_{l z}-\left(g_{N} \beta_{N}\right)_{2} H I_{2 z}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{W} 1=\beta \mathrm{H}\left(\mathrm{~g}_{\mathrm{x}} \mathrm{TG}(1,1) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{Y}} \mathrm{TG}(2,1) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{z}} \mathrm{TG}(3,1) \mathrm{TG}(3,3)\right) \\
& \mathrm{W} 2=\beta \mathrm{H}\left(\mathrm{~g}_{\mathrm{x}} \mathrm{TG}(1,2) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{Y}} \mathrm{TG}(2,2) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{z}} \mathrm{TG}(3,2) \mathrm{TG}(3,3)\right) \\
& \mathrm{W} 3=\beta \mathrm{H}\left(\mathrm{~g}_{\mathrm{x}} \mathrm{TG}(1,3) \mathrm{TG}(1,3)+\mathrm{g}_{\mathrm{y}} \mathrm{TG}(2,3) \mathrm{TG}(2,3)+\mathrm{g}_{\mathrm{z}} \mathrm{TG}(3,3) \mathrm{TG}(3,3)\right) \\
& \mathrm{W} 4=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,1) \mathrm{TH}(1,1)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,1) \mathrm{TH}(2,1)+\mathrm{A}_{1 z} \mathrm{TH}(3,1) \mathrm{TH}(3,1) \\
& \mathrm{W} 5=\mathrm{A}_{1 \mathrm{x}} \mathrm{TH}(1,1) \mathrm{TH}(1,1)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,1) \mathrm{TH}(2,2)+\mathrm{A}_{1 z} \mathrm{TH}(3,1) \mathrm{TH}(3,2) \\
& \mathrm{W} 6=\mathrm{A}_{1 x} \mathrm{TH}(1,1) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,1) \mathrm{TH}(2,3)+\mathrm{A}_{1} z^{\mathrm{TH}}(3,1) \mathrm{TH}(3,3) \\
& \mathrm{W} 7=\mathrm{A}_{1 x} \mathrm{TH}(1,2) \mathrm{TH}(1,2)+\mathrm{A}_{1} \mathrm{y}^{\mathrm{TH}}(2,2) \mathrm{TH}(2,2)+\mathrm{A}_{1 z} \mathrm{TH}(3,2) \mathrm{TH}(3,2) \\
& \mathrm{W} 8=\mathrm{A}_{1 x^{2}} \mathrm{TH}(1,2) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,2) \mathrm{TH}(2,3)+\mathrm{A}_{1 \mathrm{z}} \mathrm{TH}(3,2) \mathrm{TH}(3,3) \\
& \mathrm{W} 9=\mathrm{A}_{1 x} \mathrm{TH}(1,3) \mathrm{TH}(1,3)+\mathrm{A}_{1 \mathrm{y}} \mathrm{TH}(2,3) \mathrm{TH}(2,3)+\mathrm{A}_{1 \mathrm{z}} \mathrm{TH}(3,3) \mathrm{TH}(3,3) \\
& \mathrm{W} 10=\mathrm{A}_{2 \mathrm{x}} \mathrm{~TB}(1,1) \mathrm{TB}(1,1)+\mathrm{A}_{2 \mathrm{y}} \mathrm{~TB}(2,1) \mathrm{TB}(2,1)+\mathrm{A}_{2 \mathrm{z}} \mathrm{~TB}(3,1) \mathrm{TB}(3,1) \\
& \mathrm{Wll}=\mathrm{A}_{2 \mathrm{x}^{\mathrm{TB}}(1,1) \mathrm{TB}(1,2)+\mathrm{A}_{2} \mathrm{Y}} \mathrm{~TB}(2,1) \mathrm{TB}(2,3)+\mathrm{A}_{2} \mathrm{zB}(3,1) \mathrm{TB}(3,2) \\
& \mathrm{W} 12=\mathrm{A}_{2 \mathrm{x}} \mathrm{~TB}(1,1) \mathrm{TB}(1,3)+\mathrm{A}_{2 \mathrm{y}} \mathrm{~TB}(2,1) \mathrm{TB}(2,3)+\mathrm{A}_{2} \mathrm{zB}(3,1) \mathrm{TB}(3,3) \\
& \mathrm{W} 13=\mathrm{A}_{2 \mathrm{x}} \mathrm{~TB}(1,2) \mathrm{TB}(1,2)+\mathrm{A}_{2} \mathrm{Y} \mathrm{~TB}(2,2) \mathrm{TB}(2,2)+\mathrm{A}_{2} \mathrm{zB}(3,2) \mathrm{TB}(3,2) \\
& \mathrm{W} 14=\mathrm{A}_{2 \mathrm{x}} \mathrm{~TB}(1,2) \mathrm{TB}(1,3)+\mathrm{A}_{2} \mathrm{y}^{\mathrm{TB}}(2,2) \mathrm{TB}(2,3)+\mathrm{A}_{2} \mathrm{z}^{\mathrm{TB}}(3,2) \mathrm{TB}(3,3) \\
& \mathrm{W} 15=\mathrm{A}_{2 \mathrm{x}} \mathrm{~TB}(1,3) \mathrm{TB}(1,3)+\mathrm{A}_{2 \mathrm{y}} \mathrm{~TB}(2,3) \mathrm{TB}(2,3)+\mathrm{A}_{2 \mathrm{z}} \mathrm{~TB}(3,3) \mathrm{TB}(3,3)
\end{aligned}
$$

We may now rewrite the Hamiltonian in terms of raising and lowering operators

$$
\begin{array}{ll}
S_{+}=S_{x}+i S_{y^{\prime}} & S_{-}=S_{x}-i S_{y} \\
I_{+}=I_{x}+i I_{y^{\prime}} & I_{-}=I_{x}-i I_{y}
\end{array}
$$

The resulting Hamiltonian is

$$
\begin{aligned}
H= & \mathrm{W} 3 \mathrm{~S}_{z}+W 9 I_{1 z} S_{z}+W 15 I_{2 z} S_{z}-\left(g_{N} \beta_{N}\right)_{1} H I_{l z} \\
& -\left(g_{N} \beta_{N}\right)_{2} \mathrm{HI}_{2 z}+Q 1{ }^{*} S_{+}+Q 1 S_{-}+Q 2{ }^{*} I_{1+} S_{+} \\
& +Q 3 I_{1+} S_{-}+Q 3 I_{1-} S_{+}+Q 4{ }^{*} I_{1+} S_{z}+Q 4 I_{1-} S_{z} \\
& +Q 4{ }^{*} I_{1 z} S_{+}+Q 4 I_{1 z} S_{-}+Q 5{ }^{*} I_{2+} S_{+}+Q 6 I_{2+} S_{-} \\
& +Q 6 I_{2-} S_{+}+Q 5 I_{2-} S_{-}+Q 7^{*} I_{2+} S_{z}+Q 7 I_{2-} S_{z} \\
& +Q 7 I_{2 z} S_{+}+Q 7 I_{2 z} S_{-}
\end{aligned}
$$

where

$$
\begin{aligned}
& Q 1=(W 1+i W 2) / 2 \\
& Q 2=(W 4-W 7) / 4+i * W 5 / 2 \\
& Q 3=(W 4+W 7) / 4 \\
& Q 4=(W 6+i W 8) / 2 \\
& Q 5=(W 10-W 13) / 4+i * W l l / 2 \\
& Q 6=(W 10+W 13) / 4 \\
& Q 7=(W 12+i W 14) / 2
\end{aligned}
$$

The lithium nucleus has $I_{1}=3 / 2$ and the silicon nucleus has $I_{2}=1 / 2$. Therefore, the basis set that we choose will be $\mid M=1 / 2, m_{1}=3 / 2, m_{2}=1 / 2>$: This basis set consists of sixteen eigenvectors, which means the Hamiltonian can be written in a 16×16 matrix form. The lower half of the spin Hamiltonian matrix is shown in Table I. The nonzero elements of the lower half of the matrix are:

$$
\begin{aligned}
& A(1,1)=W 3 / 2+3 * W 9 / 4+W 15 / 4-3 *\left(g_{N} \beta_{N}\right)_{1} H / 2-\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(2,1)=Q 7 / 2 \\
& A(3,1)=\sqrt{3} * Q 4 / 2 \\
& A(9,1)=Q 1+3 * Q 4 / 2+Q 7 / 2 \\
& A(10,1)=Q 5 \\
& A(11,1)=\sqrt{3} * Q 2 \\
& A(2,2)=W 3 / 2+3 * W 9 / 4-W 15 / 4-3 *\left(g_{N} \beta_{N}\right)_{1} H / 2+\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(4,2)=\sqrt{3} * Q 4 / 2 \\
& A(9,2)=Q 6 \\
& A(10,2)=Q 1-Q 7 / 2+3 * Q 4 / 2 \\
& A(12,2)=\sqrt{3} * Q 2 \\
& A(3,3)=W 3 / 2+W 9 / 4+W 15 / 4-\left(g_{N} \beta_{N}\right)_{1} H / 2-\left(g_{N} \beta_{N}\right)_{2} H / 2
\end{aligned}
$$

$$
\begin{aligned}
& A(4,3)=Q 7 / 2 \\
& A(5,3)=Q 4 \\
& A(9,3)=\sqrt{3} * Q 3 \\
& A(11,3)=Q 1+Q 4 / 2+Q 7 / 2 \\
& A(12,3)=Q 5 \\
& A(13,3)=2 * Q 2 \\
& A(4,4)=W 3 / 2+W 9 / 4-W 15 / 4-\left(g_{N} \beta_{N}\right)_{1} H / 2+\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(6,4)=Q 4 \\
& A(10,4)=\sqrt{3} * Q 3 \\
& A(11,4)=Q 6 \\
& A(12,4)=Q 1+Q 4 / 2-Q 7 / 2 \\
& A(14,4)=2 * Q 2 \\
& A(5,5)=W 3 / 2-W 9 / 4+W 15 / 4+\left(g_{N} \beta_{N}\right)_{1} H / 2-\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(6,5)=Q 7 / 2 \\
& A(7,5)=\sqrt{3} * Q 4 / 2 \\
& A(11,5)=2 * Q 3 \\
& A(13,5)=Q 1-Q 4 / 2+Q 7 / 2 \\
& A(14,5)=Q 5 \\
& A(15,5)=\sqrt{3} * Q 2 \\
& A(6,6)=W 3 / 2-W 9 / 4-W 15 / 4+\left(g_{N} \beta_{N}\right)_{1} H / 2+\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(8,6)=\sqrt{3} * Q 4 / 2 \\
& A(12,6)=2 * Q 3 \\
& A(13,6)=Q 6 \\
& A(14,6)=Q 1-Q 4 / 2-Q 7 / 2 \\
& A(16,6)=\sqrt{3} * Q 2 \\
& A(7,7)=W 3 / 2-3 * W 9 / 4+W 15 / 4+3 *\left(g_{N} \beta_{N}\right)_{1} H / 2-\left(g_{N} \beta_{N}\right)_{2} H / 2 \\
& A(2 \\
& A
\end{aligned}
$$

$$
\begin{aligned}
& A(13,7)=\sqrt{3} * Q 3 \\
& A(15,7)=Q 1-3 * Q 4 / 2+Q 7 / 2 \\
& A(16,7)=Q 5 \\
& \mathrm{~A}(8,8)=\mathrm{W} 3 / 2-3 * \mathrm{~W} 9 / 4-\mathrm{Wl} 5 / 4+3 *\left(g_{N} \beta_{N}\right)_{1} \mathrm{H} / 2+\left(g_{N} \beta_{N}\right)_{2} \mathrm{H} / 2 \\
& A(14,8)=\sqrt{3} * Q 3 \\
& A(15,8)=Q 6 \\
& A(16,8)=Q 1-3 * Q 4 / 2-Q 7 / 2 \\
& \mathrm{~A}(9,9)=-\mathrm{W} 3 / 2-3 * \mathrm{~W} 9 / 4-\mathrm{W} 15 / 4-3 *\left(g_{N} \beta_{N}\right)_{1} \mathrm{H} / 2-\left(g_{N} \beta_{N}\right)_{2} \mathrm{H} / 2 \\
& A(10,9)=-Q 7 / 2 \\
& A(11,9)=\sqrt{3} * Q 4 / 2 \\
& \begin{aligned}
A(10,10)= & -W 3 / 2-3 * W 9 / 4+\mathrm{W} 15 / 4-3 *\left(g_{N} \beta_{N}\right)_{1} \mathrm{H} / 2 \\
& +\left(g_{N} \beta_{N}\right)_{2} \mathrm{H} / 2
\end{aligned} \\
& A(12,10)=-\sqrt{3} * Q 4 / 2 \\
& \mathrm{~A}(11,11)=-\mathrm{W} 3 / 2-\mathrm{W} 9 / 4-\mathrm{Wl5} / 4-\left(g_{N}{ }_{\mathrm{N}}\right)_{1} \mathrm{H} / 2-\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{2} \mathrm{H} / 2 \\
& \mathrm{~A}(12,11)=-Q 7 / 2 \\
& A(13,11)=-Q 4 \\
& \mathrm{~A}(12,12)=-\mathrm{W} 3 / 2-\mathrm{W} 9 / 4+\mathrm{W} 15 / 4-\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{1} \mathrm{H} / 2+\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{2} \mathrm{H} / 2 \\
& A(14,12)=-Q 4 \\
& A(13,13)=-W 3 / 2+\mathrm{W} 9 / 4-\mathrm{W} 15 / 4+\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{1} \mathrm{H} / 2-\left(g_{N} \beta_{\mathrm{N}}\right)_{2} \mathrm{H} / 2 \\
& \text { Al4, 13) }=-Q 7 / 2 \\
& A(15,13)=\sqrt{3} * Q 4 / 2 \\
& \begin{aligned}
\mathrm{A}(14,14)= & -\mathrm{W} 3 / 2+3 * \mathrm{~W} 9 / 4-\mathrm{W} 15 / 4+3 *\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{1} \mathrm{H} / 2 \\
& -\left(g_{\mathrm{N}} \beta_{\mathrm{N}}\right)_{2} \mathrm{H} / 2
\end{aligned} \\
& A(16,14)=-\sqrt{3} * 24 / 2 \\
& \mathrm{~A}(15,15)=-\mathrm{W} 3 / 2+3 * \mathrm{~W} 9 / 4-\mathrm{W} 15 / 4+3 *\left(\mathrm{~g}_{\mathrm{N}}{ }^{\beta_{\mathrm{N}}}\right)_{\mathrm{I}} \mathrm{H} / 2 \\
& \text { - }\left(g_{N} \beta_{N}\right)_{2}{ }^{H / 2} \\
& \text { Al6,15) }=-Q 7 / 2 \\
& \begin{aligned}
A(16,16)= & -W 3 / 2+3 * W 9 / 4+\mathrm{W} 15 / 4+3 *\left(g_{N} \beta_{N}\right)_{1} H / 2 \\
& +\left(g_{N} \beta_{N}\right)_{2} \mathrm{H} / 2
\end{aligned}
\end{aligned}
$$

TABLE I

LOWER HALF OF THE SPIN HAMILTONIAN MATRIX


```
| 0.c.0) A(1.1)
|a.c.b) A(2.1) A(2.2)
|0.A.a) A(3.1) 0 A(3.3)
|0.0.0) O A(4.2) A(4.3) A(4.4)
|A.b.a\rangle 0 0 A(s.3) 0 A(s.s)
|e.b.b\rangle 0 0 U A(c.4; A(0.j) A(b.0)
|.|.a\rangle 0 0 U | A(l.>) u A(l.l)
|0.|.b\rangle 0 0 0 0 0 0 0 A(t.0) A(0.7) A(t.0)
|b.c.a) A(9.1) A(9.2) A(9.3) O O O O O O O O O (9.9)
|b.c.b) A(10.1) A(10.2) 0 A(10.4) 0 0 0, 0
```



```
|b.a,b\rangle O A(12.2) A(12.3) A(12.4) 0 A(12.6) 0
```



```
|b,b,b\rangle 0 0 0 0 A(14,4) A(14,5) A(14,0) 0 A(14.8) 0
```


${ }^{\text {a }}$ Notation is $a=1 / 2, b=-1 / 2, c=3 / 2$, and $d=-3 / 2$.

EXPERIMENTAL RESULTS AND ANALYSIS

When the synthetic quartz ESR sample was irradiated at 200 K and then irradiated again at 77 K , the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ center was created. Figure 5 shows the ESR spectrum of the aluminum-hole center and the central portion of the [$\left.\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center after irradiation. The magnetic field was parallel to the crystal's c-axis and the measurement temperature was 77 K . The aluminum-hole center provided the easiest way to assure that the c-axis of the sample was aligned with the magnetic field. The spectrometer's lock-in amplifier was then set "out of phase" to better observe the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\mathrm{O}}$ center spectrum. This is required beause of the long spin-lattice relaxation time associated with this defect. The $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center ESR spectrum contains four equally intense lines that were 0.9 gauss apart. An enlarged view of this spectrum is shown in figure 6. The angular dependence of this spectrum has been reported by Jani et al. [9]. In addition to the g and A tensor parameters, these investigators used the electron-nuclear double resonance technique to prove ${ }^{7} \mathrm{Li}$ was the responsible nucleus for the hyperfine interaction.

Figure 5. ESR Spectrum of the $\left[\mathrm{AlO}_{4}\right]^{\circ}$ Center and the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ Center Lines

Figure 6. Enlargement of $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ Center Line

In addition to the lithium hyperfine spectrum, there are eight lines arising from a ${ }^{29}$ Si hyperfine interaction. Four of these lines are about 216 gauss below the lithium hyperfine spectrum and the other four are about 190 gauss above the lithium hyperfine spectrum. A c-axis spectrum of these high field lines and the low field lines is shown in figure 7.

An angular dependence study of these high and low field lines was carried out at 77 K . The magnetic field was rotated in the plane perpendicular to the X -axis (or twofold axis) and spectra were taken at 10 degree intervals, with the exception of two 15 degree intevals on the negative angle side. The data was taken for angles up to 70 degrees on either side of the zero angle (corresponding to the caxis). We were not able to rotate the magnet to greater angles wthout the faces of the magnet striking the cavity. The results of the angular dependence study are presented in figure 8. The angular dependence of both high and low fields is shown.

Usually, rotation of the magnetic field in this plane will cause each line in the spectrum to split into three lines. This is because of the symmetry of the quartz lattice. In the case of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center, however, the lines only split into two components when the magnetic field was rotated in the plane perpendicular to the X -axis. One component is roughly twice as large as the other, indicating that the large one is doubly degenerate. This degeneracy

Figure 8. Angular Dependence Study of Lines in High and Low Field Regions
means that the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center is symmetrical about one of the twofold axes of the crystal, which, in turn, means that the lithium ion lies on the axis passing through the adjacent silicon ions.

To assure that our convention for positive and negative angles was correct, the E_{1} ' center was produced (in accordance with Jani et al. [13]) in the same sample and the ESR spectra were taken at plus and minus 30 degrees to see if the negative and positive angles for the E_{1} ' center agreed with our negative and positive angles we had assumed when the crystal was in the same orientation. A notch was made on the top of the sample to assure that it was placed in the Dewar in the same orientation each time.

The matrix elements from the theoretical analysis were placed into two computer programs to analyze the experimental data. The first program, a listing of which is given in Appendix A, is a line-position program. Given a specific set of spin Hamiltonian parameters and a given microwave frequency, this program calculates the values of the magnetic fields at which the ESR lines will appear. For each angle, there will be eight possible energy transitions according to the selection rules $\Delta M= \pm 1, \Delta m_{1}=0$, and $\Delta m_{2}=0$. These transitions are listed below in terms of the energy eigenvalues $D(I)$. Figure 9 shows the energy levels and the possible transitions.

Figure 9. Energy Level Diagram of $S=1 / 2, I_{1}=3 / 2$,
and $I_{2}=1 / 2$ System
$h V_{1}=D(13)-D(1)$
$h V_{2}=D(14)-D(2)$
$\mathrm{h})_{3}=\mathrm{D}(15)-\mathrm{D}(3)$
$h)_{4}=D(16)-D(4)$
$h V_{5}=D(9)-D(5)$
$h)_{6}=D(10)-D(6)$
$h V_{7}=D(11)-D(7)$
$h V_{8}=D(12)-D(8)$
To actually determine a specific line position, the field value was systematically varied and the microwave frequency recalculated at each step until the difference between the calculated and experimental microwave frequency had become less than a specified value. When this condition was met, the last value of the field was taken as the calculated magnetic field.

The second program (listed in Appendix B), which is a matrix fitting program, calculates what the final set of parameters for the g and A tensors should be using the measured line positions and corresponding microwave frequencies for each of the angles investigated. Each line is given an I and K value, corresponding to which of the eight transitions it represents and to which of the three magnetically inequivalent orientations it represents, respectively. Each of the 306 data points inputed to the program then consists of the magnetic field strength, the microwave frequency, and an I and K value. The set of parameters in the fitting program are systematically varied until a good agreement
between the calculated and the experimental values of the magnetic field positions is obtained. The microwave frequency for each magnetic field value is calculated and then compared to the experimental value of the microwave frequency for that field value. The quantity S UM is calculated by

$$
\operatorname{SUM}=\sum_{i=1}^{30 G}\left[\nu_{i}^{e \times p}-\nu_{i}^{c a l}\right]^{2}
$$

One of the parameters is then increased by a specified amount and a new set of microwave frequencies and a new SUM are then calculated. If the new SUM is smaller than the old SUM, then this process is continued; if not, then the parameter is decreased and the two sums compared. This procedure is repeated for all the spin Hamiltonian parameters. When the program finds a set of parameters for which any change in any parameter fails to lower the value of SUM, the iteration process is complete and the final set of parameters are reported. The set of final parameters is given in table II. This final set of parameters obtained from the fitting program is the set of parameters then used in the line position program to obtain the calculated magnetic field values plotted in figure 8.

TABLE II

SPIN HAMILTONIAN FINAL PARAMETERS

	Principal Values (MHz)	Principal Directions ${ }^{a}$
$\mathrm{~g}_{\mathrm{x}}$	2.0007	$\left(85^{\circ}, 0^{\circ}\right)$
g_{y}	2.0017	$\left(65^{\circ}, 90^{\circ}\right)$
g_{z}	1.9990	$\left(25^{\circ}, 265^{\circ}\right)$
$\mathrm{A}_{1 \mathrm{x}}$	2.49	$\left(0^{\circ}, 270^{\circ}\right)$
$\mathrm{A}_{1 \mathrm{y}}$	2.75	$\left(90^{\circ}, 90^{\circ}\right)$
$\mathrm{A}_{1 \mathrm{z}}$	4.11	$\left(90^{\circ}, 0^{\circ}\right)$
$\mathrm{A}_{2 \mathrm{x}}$	-1135	$\left(0^{\circ}, 270^{\circ}\right)$
$\mathrm{A}_{2 \mathrm{y}}$	-1130	$\left(90^{\circ}, 90^{\circ}\right)$
$\mathrm{A}_{2 \mathrm{z}}$	-1250	$\left(90^{\circ}, 0^{\circ}\right)$

${ }^{\text {a }}$ In accordance with Jani et al. [9].

DISCUSSION

In this study, I have continued an ongoing analysis of the electronic structure of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. Specifically, I have conducted an angular dependence study of the ESR spectrum associated with the strong silicon hyperfine interaction. Taking this data and using it in a computer program, I have calculated the principal values and the principal-axis directions of the ${ }^{29}$ Si A tensor. The "best" values for these parameters were reported in the previous chapter. A physical interpretation of these spin-Hamiltonian parameters reveals that the ${ }^{29}$ Si hyperfine interaction has its principal direction exactly along the crystal's twofold axis and thus verified the high-symmetry on-axis location of the lithium atom in this defect.

Further studies of this particular point defect in quartz should consist of an ENDOR investigation to obtain the data necessary for calculations of the nuclear electric quadrupole interaction of the lithium nucleus in the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{0}$ center.

Another possible avenue of study would consist of an ESR study of the $\left[\mathrm{SiO}_{4} / \mathrm{Na}\right]^{\circ}$ center, which appears to be
similar in nature to the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. A preliminary investigation of a sodium-electrodiffused sample showed that the ESR spectrum at 77 K was not well defined. This suggests the possibility that the defect has a high-frequency reorientation between equivalent sites similar to the behavior of the $\left[\mathrm{AlO}_{4} / \mathrm{Na}\right]^{0}$ center in acoustic loss experiments. Therefore, ESR data would have to be taken at liquid-helium temperatures. This ESR data, once found, could then be correlated to the thermoluminescence study performed by Halperin and Katz [12] in the same way that Halperin, Jani, and Halliburton [10] compared the TSL and ESR data of the $\left[\mathrm{SiO}_{4} / \mathrm{Li}\right]^{\circ}$ center. Such an investigation may help determine more exactly how these two defect centers are related.

A SELECTED BIBLIOGRAPHY

1. Halliburton, L. E., J. J. Martin, and D. R. Koehler, in Precision Frequency Control, (Academic Press, New York, 1985), Vol. 1, Chapter 1.
2. Halliburton, L. E., Cryst. Latt. Def. 12, 163 (1985).
3. Weil, J. A., Phys. Chem. Miner. 10, 149 (1984).
4. King, J. C., Bell Syst. Tech. J. 38, 573 (1959).
5. Fraser, D. B., J. Appl. Phys. 35, 2913 (1964).
6. Stevels, J. M., and J. Volger, Philips Res. Rep. 17, 283 (1962).
7. Nowick, A. S., and M. W. Stanley, J. Appl. Phys. 40, 4995 (1969).
8. Toulouse, J., E. R. Green, and A. S. Nowick, in Proceedings of the 37 th Annual Symposium on Frequency Control, p. 125 (1983).
9. Jani, M. G., L. E. Halliburton, and A. Halperin, Phys. Rev. Lett. 56, 1392 (1986).
10. Halperin, A., M. G. Jani, and L. E. Halliburton, Phys. Rev. B 34, 5702 (1986).
ll. Wilson, T. M., J. A. Weil, and P. S. Rao, Phys. Rev. B 34, 6053 (1986).
11. Halperin, A., and S. Katz, Solid State Commun. 63, 697 (1987).
12. Jani, M. G., R. B. Bossoli, and L. E. Halliburton, Phys. Rev. B 27, 2285 (1983).

APPENDIX A

10	REM ${ }^{\text {a }}$ (***** [SIO4/Li] LINE POSITION *******
20	REM
30	DEG
40	OPTION BASE 1
50	DIM $\mathrm{P}(18), \mathrm{Hf}(8), \mathrm{G}(3,3), \mathrm{H}(3,3), \mathrm{Rm}(3,3), \mathrm{R} 2(3,3), \mathrm{R} 3(3,3)$
51	DIM Rt $(3,3), \mathrm{R}(3,3)$
60	$\operatorname{DIM} \operatorname{Tg}(3,3), \operatorname{Th}(3,3), \mathrm{B}(3,3), \mathrm{Tb}(3,3)$
70	DIM $\operatorname{Ar}(16,16), \operatorname{Ai}(16,16), \mathrm{D}(16), \mathrm{E}(16), \mathrm{E} 2(16), \mathrm{Tau}(2,16)$
80	INTEGER I, J, K, L, M, N
90	PRINTER IS 701
100	$P(1)=2.0007$
110	$\mathrm{P}(2)=2.0017$
120	$P(3)=1.999$
130	$P(4)=25$
140	$P(5)=-5$
150	$P(6)=5$
160	$P(7)=2.49$
170	$P(8)=2.75$
180	$P(9)=4.11$
190	$P(10)=-90$
200	$P(11)=-90$
210	$P(12)=-55$
220	$P(13)=-1135.02$
230	$P(14)=-1129.53$
240	$P(15)=-1249.72$
250	$P(16)=90$
260	$P(17)=-90$
270	$P(18)=-20$
280	PRINT "/"
290	PRINT $\mathrm{P}\left({ }^{*}\right)$;
300	PRINT "/"
310	$\mathrm{N}=16$
320	$\mathrm{Nm}=16$
330	$\mathrm{Bl}=9.2741 / 6.6262$
340	Gbnl=1.6547E-3
350	$\mathrm{Gbn2}=8.458 \mathrm{E}-4$
360	Freqq $=9299.076$
370	Allpha=0
380	Beta=-90
390	Ag=SIN (P (4))
400	Aag= $\operatorname{COS}(\mathrm{P}(4))$
410	$\mathrm{Cg}=\mathrm{SIN}(\mathrm{P}(5)$)
420	$\operatorname{Ccg}=\cos (P(5))$
430	$F g=S I N(P(6))$
440	$\mathrm{Ffg}=\cos (\mathrm{P}(6))$
450	$A h=S I N(P(10))$
460	Ach $=\operatorname{COS}(\mathrm{P}(10))$
470	$\mathrm{Ch}=\mathrm{SIN}(\mathrm{P}(\mathrm{ll})$)
480	$\mathrm{Cch}=\cos (\mathrm{P}(11))$
490	$F \mathrm{~F}=\mathrm{SEN}(\mathrm{P}(12))$
500	Ffth= $\cos (P(12))$
510	$A b=S I N(P(16))$
520	$A a b=\cos (P(16))$
530	$\mathrm{Cb}=\mathrm{SIN}(\mathrm{P}(17))$
540	$\mathrm{Ccb}=\cos (\mathrm{P}(17))$
550	$\mathrm{Fb}=\mathrm{SIN}(\mathrm{P}(18))$
560	$\mathrm{Ffb}=\cos (\mathrm{P}(18))$
570	$\mathrm{G}(1,1)=\mathrm{Ffg}{ }^{*} \mathrm{Ccg}-\mathrm{Aag} * \mathrm{Cg} * \mathrm{Fg}$
580	
590	$\mathrm{G}(1,3)=\mathrm{Fg} * \mathrm{Ag}$

```
    6 0 0
    C(2,2)--(Fg*Cg)+Aag*Ccg*F(g
    620 G(2.3)-Ffg*Ag
    630 G(3,1)-Kg*Cg
    6&0 C(3,2)--(Ag*Ccg)
    650 C(3,3)~Aag
    660 H1(1,1)-Ffh*CCh-Aah*Ch*Fh
    670 H(1,2) < Ffh*Ch+Aah*CCh*Fh
    680 H(1,3)-Fh*&h
    690 H(2.1)<-(Fh*CCh)-Aah*Ch*Ffh
    700 H(2,2)<-(Fh*Ch)+Aah*Cch*Ffh
    710 H(2,3)<Ffh*Ah
    720 H(3,1)=Ah*Ch
    730 H(3,2)=-(Ah*CCh)
    70 H(3,3)=Aah
7 5 0
70
7 7 0
70
7 9 0
800
810
820
830
840
850
860
870
80
890
900
910
920
930
940
950
960
970
980
990
1000
1010 R2(3.3)=-1
1020 Kk=K-3
1030 ON NK GOTO 2040,1060,1120
1040 MATT R3= IDN
1050 GOTO 1170
1060 NAT RJ= IDIN
1070 F3(1.1) =COS(120)
1060 R3(1,2) =SIli(120)
1090 RJ (2,1)=-SIN(120)
1100 R3(2,2)=COS(120)
1110 GOTO 1i70
1120 MKT RJ= IDN
1130 R3(1,1)=COS(120)
1140 RJ(1,2)=-SIN(120)
1150 R3(2.1)=SIN(120)
1160 RJ (2,2)=COS(120)
1170 MAT Rt= R2*RJ
1180 MAT R= Rt*Rm
1190 MAT Tg=G*R
```

```
1200
1210
1220
1230
1231
1240
1241
1250
1251
1260
1261
1270
1271
1280
1281
1290
1291
1300
1301
1310
1311
1320
1321
1330
1331
1340
1341
1350
1351
1360
1361
1370
1371
1380
1390
1400 Q1i=W2/2
1410 Q2r=(W4-W7)/4
Q2i=W5/2
Q3 \(=(W 4+W 7) / 4\)
\(1440 \quad\) Q4r=W6/2
\(1450 \quad\) Q4i=W8/2
\(1460 \quad\) Q5r \(=(W 10-W 13) / 4\)
\(1470 \quad \mathrm{Q} 5 \mathrm{i}=\mathrm{W} 11 / 2\)
1480
1490
1500
1510
1520
1530
1540 Ai \((I, J)=0\)
NEXT J
1560 NEXT I
\(\operatorname{Ar}(1,1)=\mathrm{W} 3 / 2+3 *\) W9 \(/ 4+\mathrm{Wl} 5 / 4-3 * \mathrm{Gbnl} * \mathrm{Hh} / 2-\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(\operatorname{Ar}(2,2)=\mathrm{W} 3 / 2+3 * \mathrm{~W} 9 / 4-\mathrm{W} 15 / 4-3 * \mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(\operatorname{Ar}(3,3)=W 3 / 2+W 9 / 4+W 15 / 4-G b n l * H h / 2-G b n 2 * H h / 2\)
A5 \((4,4)=W 3 / 2+W 9 / 4-W 15 / 4-G b n I * H h / 2+G b n 2 * \mathrm{Hh} / 2\)
\(\operatorname{Ar}(5,5)=\mathrm{W} 3 / 2-\mathrm{W} 9 / 4+\mathrm{W} 15 / 4+\mathrm{Gbnl} * \mathrm{Hh} / 2-\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(\operatorname{Ar}(6,6)=\mathrm{W} 3 / 2-\mathrm{W} 9 / 4-\mathrm{W} 15 / 4+\mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1630 \operatorname{Ar}(7,7)=\mathrm{W} 3 / 2-3 * \mathrm{~W} 9 / 4+\mathrm{Wl5} / 4+3 * \mathrm{Gbnl} * \mathrm{Hh} / 2-\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1640 \operatorname{Ar}(8,8)=\mathrm{W} 3 / 2-3 * W 9 / 4-\mathrm{W} 15 / 4+3 * \mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
```

```
\(1650 \operatorname{Ar}(9,9)--N 3 / 2-3 * W 9 / 4-N 15 / 4-3 * \operatorname{Gbnl} * \mathrm{Hh} / 2-\operatorname{Cbn} 2 * \mathrm{Hh} / 2\)
\(1660 \operatorname{Ar}(10,10)--\mathrm{H} 3 / 2-3 * \mathrm{~W} 9 / 4+\mathrm{WlS} / 4-3 * \mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1670 \mathrm{Ar}(11,11)=-\mathrm{W} 3 / 2-\mathrm{W} 9 / 4-\mathrm{Wl} 5 / 4-\mathrm{Gbnl} * \mathrm{Hh} / 2-\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1680 \mathrm{Ar}(12,12)<-\mathrm{H} 3 / 2-\mathrm{W} 9 / 4+\mathrm{W} 15 / 4-\mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
1690 Ar \((13,13)-W 3 / 2+W 9 / 4-W 15 / 4+G b n l * H h / 2-G b n 2 * H h / 2\)
\(1700 \mathrm{Ar}(14,14)<-\mathrm{W} 3 / 2+\mathrm{W} 9 / 4+\mathrm{W} 15 / 4+\mathrm{Gbnl} * \mathrm{Hh} / 2+\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1710 \operatorname{Ar}(15,15)=-W 3 / 2+3 * W 9 / 4-W 15 / 4+3 * \mathrm{Gbnl} * \mathrm{Hh} / 2-\mathrm{Gbn} 2 * \mathrm{Hh} / 2\)
\(1720 \operatorname{Ar}(16,16) \sim-W 3 / 2+3 * W 9 / 4+\) Wl5 \(/ 4+3 * G b n l * H h / 2+G b n 2 * H h / 2\)
\(1730 \operatorname{Ar}(2,1)<Q 7 r / 2\)
1740 Ai \((2,1)=\) Q7i/2
\(1750 \mathrm{Ar}(3,1)=\operatorname{SQR}(3) * Q 4 r / 2\)
\(1760 \mathrm{Ai}(3,1)=\operatorname{SQR}(3) * Q 41 / 2\)
\(1770 \operatorname{Ar}(9,1)=Q 1 r+3 * Q 4 r / 2+Q 7 r / 2\)
1780 Ai \((9,1)=Q 1 i+3 * Q 4 i / 2+Q 7 i / 2\)
\(1790 \operatorname{Ar}(10,1)=\) Q5r
1800 Ai \((10,1)=\) Q5i
\(1810 \operatorname{Ar}(11,1)=\operatorname{SQR}(3) \star Q 2 r\)
1820 Ai \((11,1)=S Q R(3) * Q 2 i\)
1830 Ar (4, 2) =SQR(3)*Q4r/2
1840 Ai \((4,2)=\operatorname{SQR}(3) * Q 4 i / 2\)
\(1850 \operatorname{Ar}(9,2)=Q 6\)
1860 Ar \((10,2)=\) Qlr-Q7r/2+3*Q4r/2
1870 Ai \((10,2)=\) Qli-Q7i/2+3*Q4i/2
\(1880 \operatorname{Ar}(12,2)=\operatorname{SQR}(3) * Q 2 r\)
1890 Ai \((12,2)=\operatorname{SQR}(3) * Q 2 i\)
1900 Ar \((4,3)=\) Q7r/2
\(1910 \mathrm{Ai}(4,3)=\mathrm{Q} 7 \mathrm{i} / 2\)
\(1920 \operatorname{Ar}(5,3)=\) Q4r
1930 Ai \((5,3)=\) Q\&i
\(1940 \quad \operatorname{Ar}(9,3)=\operatorname{SQR}(3) * Q 3\)
\(1950 \mathrm{Ar}(11,3)=\mathrm{Qlr}+\mathrm{Q} 4 r / 2+\mathrm{Q} 7 \mathrm{r} / 2\)
\(1960 \mathrm{Ai}(11,3)=\) Qli+Q4i/4+Q7i/2
\(1970 \operatorname{Ar}(12,3)=Q 5 r\)
1980 Ai \((12,3)=\) Q5i
\(1990 \operatorname{Ar}(13,3)=Q 2 r * 2\)
\(2000 \operatorname{Ai}(13,3)=Q 2 i * 2\)
\(2010 \operatorname{Ar}(6,4)=Q 4 r\)
\(2020 \mathrm{Ai}(6,4)=Q 4 i\)
\(2030 \mathrm{Ar}(10,4)=S Q R(3) * Q 3\)
2040 Ar \((11,4)=\) Q6
\(2050 \operatorname{Ar}(12.4)=Q 1 r+Q 4 r / 2-Q 7 r / 2\)
\(2060 \mathrm{Ai}(12,4)=\) Qli + Q4i/2-Q7i/2
2070 Ar (14.4) \(=\) Q2r*2
2080 Ai \((14,6)=Q 2 i * 2\)
\(2090 \operatorname{Ar}(6,5)=07 r / 2\)
2100 Ai \((6,5)=27 i / 2\)
\(2110 \operatorname{Ar}(7,5)=S Q E(3) * Q \& r / 2\)
2120 Ai \((7,5)=S Q R(3) * Q 4 i / 2\)
2130 Ar \((11,5)=Q \equiv * 2\)
2140 Ar \((13,5)=\) Qlr-Q4r/2+Q7r/2
\(2150 \mathrm{Ai}(13,5)=\) Qli-Q5i/2+Q7i/2
2160 Ar \((14,5)=\) QSr
2170 Ai \((14,5)=\) Q5i
\(2180 \operatorname{Ar}(15,5)=\operatorname{SQR}(3) * Q 2 r\)
\(2190 \mathrm{Ai}(15,5)=\operatorname{SQR}(3) * Q 2 i\)
\(2200 \operatorname{Ar}(8,6)=\operatorname{SQR}(3) * Q 4 r / 2\)
2210 Ai \((8,6)=\operatorname{SQR}(3) * Q 4 i / 2\)
\(2220 \operatorname{Ar}(12,6)=2 * Q^{3}\)
\(2230 \operatorname{Ar}(13,6)=Q 6\)
2240 Ar \((16,6)=\) Qlr-Q4r/2-Q7r/2
```

```
2250 A1(14,6)-Q11-Q41/2-Q71/2
2260 Ar (16,6)=SQR(3)*Q2r
2270 A1 (16,6)=SQR(3)*Q21
2280 Ar (8,7)=Q7r/2
2290 Ai (8,7)=Q71/2
2300 Ar (13,7) =SQR(3)*Q3
2310 Ar(15,7)=Qlr-3*Q4r/2+Q7r/2
2320 Ai (15,7)=Q1i-3*Q4i/2+Q7i/2
2330 Ar (16,7)=Q5r
2340 A1 (16,7)=Q51
2350 Ar (14,8)=SQR(3)*Q3
2360 Ar (15,8)=Q6
2370 Ar (16,8)=Qlr-3*Q4r/2-Q7r/2
2380 Ai(16,8)=Qli-3*Q4i/2-Q7i/2
2390 Ar (10,9)=-Q7r/2
2400 Ai (10,9)=-Q7i/2
2410 Ar (11,9)=-SQR(3)*Q4r/2
2420 Ai (11,9)=-SQR(3)*Q4i/2
2430 Ar (12,10)=-SQR(3)*Q4r/2
2440 Ai (12,10)=-SQR(3)*Q4i/2
2450 Ar (12,11)=-Q7r/2
2460 Ai (12,11)=-Q7i/2
2470 Ar(13,11)=-Q4r
2480 Ai (13,11)=-Q4i
2490 Ar (14,12)=-Q4r
2500 Ai(14,12)=-Q4i
2510 Ar (14,13)=-Q7r/2
2520 Ai (14,13)=-Q7i/2
2530 Ar (15,13)=-SQR(3)*Q4r/2
2540 Ai (15,13)=-SQR(3)*Q4i/2
2550 Ar (16,14)=-SQR(3)*Q4r/2
2560 Ai (16,14)=-SQR(3)*Q4i/2
2570 Ar (16,15)=-Q7r/2
2580 Ai (16,15)=-Q7i/2
2590 GOSUB 2870
2600 GOSUB 3720
2610 ON IC GOTO 2620,2640,2660,2680,2691,2693,2695,2697
2620 Freq(IC)=D(13)-D(I)
2630 GOTO 2700
2640 Freq(Ic)=D(14)-D(2)
2650 GOTO 2700
2660 Freq(IC)=D(15)-D(3)
2670 GOTO 2700
2680 Freq(IC)=D(16)-D(4)
2690 GOTO 2700
2691 Freg(Ic)=D(9)-D(5)
2692 GOTO 2700
2693 Freq(IC)=D(10)-D(6)
2694 GOTO 2700
2695 Freq(Ic)=D(11)-D(7)
2696 GOTO 2700
2697 Freq(IC)=D(12)-D(8)
2698 GOTO 2700
2700 IF ABS(Freqq-Freq(IC))<.05 THEN 2730
2710 Hh=Hh*(Freqq/Freq(IC))
2720 GOTO 1240
2730 Hf(IC)=Hh
2740 IF IC-8=0 THEN 2770
2750 IC=IC+1
27.60 GOTO 1230
```

```
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880 INTEGER U,V,W,X
2890 Tau(1,N)=1
2900 Tau(2,N)=0
2910 FOR Il=1 TO N
2920 D(II)=Ar(II,II)
2930 NEXT Il
2940 FOR Ii=l TO N
2950 U=N+I-Ii
2960 X=U-1
2970 T=0
2980 Sscale=0
2990 IF X<l THEN }306
3000 FOR Kcount=1 TO X
3010 Sscale=Sscale+ABS (Ar(U, Kcount)) +ABS (Ai (U,Kcount))
3020 NEXT Kcount
3030 IF Sscale<>0 THEN 3090
3040 Tau(1,X)=1
3050 Tau(2,X)=0
3060 E(U)=0
3070 E2(U)=0
3080 GOTO 3660
3090 FOR Kl=1 TO X
3100 Ar(U,KI)=Ar(U,KI)/Sscale
3110 Ai (U,Kl)=Ai(U,Kl)/Sscale
3120 T=T+Ar(U,KI)*.Ar(U,Kl)+Ai(U,KI)*Ai (U,KI)
3130 NEXT Kl
3140 E2(U)=Sscale*Sscale*T
3150 Y=SQR(T)
3160 E(U)=Sscale*Y
3170 F=ABS(SQR(Ar(U,X)*Ar(U,X)+Ai(U,X)*Ai(U,X)))
3180 IF F=O THEN 3270
3190 Tau(1,X)=(Ai(U,X)*Tau(2,U)-Ar(U,X)*Tau(I,U))/F
3200 Psi=(Fr(U,X)*Tau(2,U) +Ai(U,X) *Tau(I,U))/F
3210 T=T+F*V
3220 Y=I+Y/F
3230 Ar(U,X)=Y*Ar(U,X)
3240 Ai(U,X)=V*Ai(U,X)
3250 IF X=1 THEN 3610
3260 GOTO 3300
3270 Tac(1,X)=-Tau(1,U)
3280 Psi=Tau(2,U)
3290 Ar (U,X) =Y
3300 F=0
3310 FOR J=1 TO X
3320 Y=0
3330 Gi=0
3340 FOR K2=1 TO J
3350 Y=Y+Ar(J,K2)*Ar(U,K2)+Ai(J,K2)*Ai(U,K2)
3360 Gi=Gi-Ar(J,K2)*Ai(U,K2) +Ai(J,K2)*Ar(U,K2)
```

```
3370 NEXT K2
3380 Jpl=J+1
3390 IF X<Jpl THEN 3440
3400 FOR K3=Jpl TO X
3410 Y=Y+Ar(K3,J)*Ar(U,K3)-Ai(K3,J) *Ai (U,K3)
3420 Gi=Gi-Ar(K3,J)*Ai(U,K3)-Ai(K3,J)*Ar(U,K3)
3430 NEXT K3
3440 E(J)=Y/T
3450 Tau(2,J)=Gi/T
3460 F=F+E(J)*Ar(U,J)-Tau(2,J)*Ai(U,J)
3470 NEXT J
3480 Ha=F/(T+T)
3490 FOR JI=1 TO X
3500 F=Ar(U,JI)
3510 Y=E(Jl)-Ha*F
3520 E(JI)=Y
3530 Fi=-Ai(U,JI)
3540 Gi=Tau(2,Jl)-Ha*Fi
3550 Tau(2,Jl)=-Gi
3560 FOR K4=1 TO J1
3561 O20=Fi*Tau(2,K4)+Gi*Ai(U,K4)
3570 Ar(J1,K4)=Ar(J1,K4)-F*E(K4)-Y*Ar(U,K4)+020
3571 O2I=Fi*E(K4)+Gi*Ar(U,K4)
3580 Ai(J1,K4)=Ai(J1,K4)-F*Tau(2,K4)-Y*Ai(U,K4)-021
3590 NEXT K4
3600 NEXT JI
3610 FOR K5=1 TO X
3620 Ar(U,K5)=Sscale*Ar(U,K5)
3630 Ai(U,K5)=Sscale*Ai(U,K5)
3640 NEXT K5
3650 Tau(2,X)=-Psi
3660 Ha=D(U)
3670 D(U)=Ar(U,U)
3680 Ar (U,U)=Ha .
3690 Ai(U,U)=Sscale*SQR(T)
3700 NEXT II
3710 RETURN
3720 REM *************** Subroutine 3720 ****************
3730 Achep=.00000001
3740 Ierr=0
3750 IF N=1 THEN 4340
3760 FOR Uu=2 TO N
3770 E(Uu-I)=E (Uu)
3780 NEXT Uu
3790 E (N)=0
3800 FOR Xx=1 TO N
3810 V=0
3820 FOR O=XX TO N
3830 IF O=N THEN 3860
3840 IF ABS(E(O))<=AChEp*(2.BS(D(O)) +ABS(D(O+1))) THEN 3860
3850 NEXT O
3860 Pp=D(Xx)
3870 IF O=Xx THEN 4230
3880 IF V=30 THEN 4330
3890 V =V+1
3900 Gg=(D(Xx+1)-Pp)/(2*E(Xx))
3910 Rr=SQR(Gg*Gg+1)
3920 Gg=D(O)-Pp+E(Xx)/(Gg+SGN(Gg)*Rr)
3930 S=1
3940 C=1
```

```
3950 Pp=0
3960 Mml=O-Xx
3970 FOR Iif=1 TO Mml
3980 Uu=O-II1
3990 Z=S*E(UU)
4000 Bb=C*E(Uu)
4010 IF ABS (Z)<ABS(Gg) THEN 4080
4 0 2 0 ~ C = G g / Z ~
4030 Rr=SQR(C*C+1)
4040 E(Uu+I)=Z*Rr
4 0 5 0 ~ S = 1 / R r
4 0 6 0 ~ C = C * S
4 0 7 0 ~ G O T O ~ 4 1 3 0
4 0 8 0 ~ S = Z / G g
4090 Rr=SQR(S*S+I)
4100 E(Uu+I)=Gg*Rr
4110 C=1/Rr
4120 S=S*C
4130 Gg=D(Uu+I)-Pp
4140 Rr=(D(Uu)-Gg)*S+2*C*Bb
4 1 5 0 ~ P p = S * R r
4160 D(Uu+I)=Gg+Pp
4170 Gg=C*Rr-Bb
4180 NEXT Iii
4190 D(XX)=D(XX)-Pp
4200 E(XX)=Gg
4210 E(O)=0
4220 GOTO 3820
4230 IF XX=1 THEN 4290
4240 FOR Iil=2 TO Xx
4250 Uu=Xx+2-IiI
4260 IF Pp>=D(Uu-I) THEN 4300
4270 D(Uu)=D(Uu-I)
4280 NEXT IiI
4290 Uu=1
4300 D(Uu)=Pp
4310 NEXT XX
4320 GOTO 4340
4330 Ierr=Xx
4340 RETURN
4350 END
```

APPENDIX B

MATRIX FITTING PROGRAM
Due to the length of the matrix fitting program, I will describe it with a flowchart rather than with the program listing. The program begins by setting the values for the initial parameters and assigning constants used in the program. Then it produces and diagonalizes the Hamiltonian matrix and obtains the calculated frequencies. It then evaluates the sum of the squares of the differences between experimental and calculated frequencies for the initial parameters. It then adjusts the parameters in a systematic way and obtains a new sum. If the new sum is is smaller than the old sum, the program continues this process until it can no longer reduce the sum. At this point, it reports the final values of the parameters.

VITA

Mark Shannon Gulley
Candidate for the Degree of Master of Science

Thesis: MAGNETIC RESONANCE STUDY OF RADIATION-INDUCED LITHIUM ATOMS IN CRYSTALLINE SiO_{2}
Major Field: Physics
Biographical:
Personal Data: Born in Fort Smith, Arkansas, May 17 , 1963, the son of Roy Gene and Dora Nell Gulley.

Education: Graduated from Southside Senior High School, Fort Smith, Arkansas, in 1981, received Bachelor of Arts Degree in 1985 from Hendrix College, Conway, Arkansas; completed the requirements for the Degree of Master of Science at Oklahoma State University, Stillwater, Oklahoma, in December, 1987.

