
THEORETICAL STUDIES OF THE VIBRATIONAL 

PREDISSOCIA TION OF THE C2H4F2 

VANDER WAALS COMPLEX 

By 

ROBERT WILLIAM GRAHAM ,, 
Bachelor of Science 

University of Oklahoma 

Norman, Oklahoma 

1985 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

MASTER OF SCIENCE 
May, 1987 



'"~rn ~, ""~~ '5. 

''19'"1' 
E:l'" f .ttl \ "'\:. 

(!~-·~. 



THEORETICAL STUDIES OF THE VIBRATIONAL 

PREDISSOCIA TION OF THE C2H4F2 

VANDER WAALS COMPLEX 

Thesis Approved: 

Thesis Adviser 

·nean of the Graduate College -

ii 
12'75636 l 

i 



ACKNOWLEDGMENTS 

I would like to thank my parents, Robert and Jane Graham, whose continuous aid 

has made my education possible and successful. I would also like to thank Dr. Lionel Raff 

and Dr. Donald Thompson for their help and guidance throughout the course of my study. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. I~rfRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

II. POTENTIAL-ENERGY SURFACE.............................................. 7 

III. CO.MPUTATIONAL:METIIODS .................................................. 20 

IV. RESULTS AND DISCUSSION................................................... 28 

V. SUMMARY........................................................................... 34 

REFERENCES . . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . .. . . . . . . .. . .. . .. . .. . . . . .. . .. . .. . . . . .. . . . . .. . .. . .. 35 

iv 



LIST OF TABLES 

Table Page 

I. Stabilities and Structures of Various C2~ ... F2 van der Waals 
Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

II. Rates for Four Different Vibrationally Excited States of C2H4 . . . . . . . . . . . . . . . . 33 

v 



LIST OF FIGURES 

Figure Page 

1a. Structure 1- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . • • . . . . . . • •• • •• • .• . • . . . . . . . . . . . •. . •• . . . . •• • •• . . . . . . • • . . . . . . . . 10 

1 b. Structure 2- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 11 

1c. Structure 3- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . . . . . . • . • . • . . . . . . . . . • . • • • • • • • • • • • . . . . . • • • . . . . . • • . . . . . . . . • • . . . 12 

1d. Structure 4- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . . . . . • . . . . . . . . . . . . . . . • • • • • . • . • • • • • • • . . . • • . • • . . . . . . • . . . . . . . . . . 13 

1e. Structure 5- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . . • • •• • • . . .• . . • • • . . .• . . . . . . . . . . . . . . . • •• • . . . . . • • . . •• • • . . . . . . . . 14 

lf. Structure 6 - C2H4 • F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 • • • • • • . • . • . . • • • . . . . • . . . . . • • • . • • • • • • • • . . . . . • . • . . . . . . • • . . . • . . • • 15 

1g. Structure 7- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . . . . . . . . . . • • • . . • • . . • • . • . • . • . • . . . . . . . • . . • . . . . . • • . . . . . • . • . . . • . . 16 

1h. Structure 8 - C2H4• F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • . • • • • • • . • • • • • • • • • . • • • • • • • . • 17 

li. Structure 9- C2H4•F2 Potential Energy vs. Center of Mass Radius 
Between F2 and C2H4 . . . . . . • . . . . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

2. Various Excited Modes of the Ethylene Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 

3a. F2-C2H4 C.M. Variation with Time (Zero-Point Energy)......................... 23 

3b. FrC2H4 C.M. Variation with Time (Non-Planar CH2 Rock).................... 24 

3c. F2-C2H4 C.M. Variation with Time (Symmetric C-H Stretch)................... 25 

3d. FrC2H4 C.M. Variation with Time (Torsional Motion) . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

3e. F2-C2H4 C.M. Variation with Time (Zero-Point Energy)......................... 27 

vi 



LIST OF FIGURES (Continued) 

Figure Page 

4a. Percent ofUndissociated Trajectories at Timet (Zero Point Energy)............ 29 

4b. Percent ofUndissociated Trajectories at Timet (Non-Planar CH2 Rock)....... 30 

4c. Percent ofUndissociated Trajectories at Timet (Torsional Motion).............. 31 

4d. Percent ofUndissociated Trajectories at Timet (Symmetric C-H Stretch)...... 32 

vii 



CHAPTER I 

INTRODUCTION 

Recently, supersonic expansion techniques and the use of lasers have motivated a 

series of studies of various van der Waals complexes. Reactions occurring under matrix 

isolation conditions have been found to exhibit special effects not seen for the comparable 

solution or gas-phase reactions. For example, some reactions show site selectivity and 

structure specificity. In addition, due to the nature of matrix-isolated molecules having 

widely spaced rotational levels, intramolecular energy transfer is reduced. This gives rise 

to the localization of internal energy and increases the possibility of mode-selective rate 

enhancement 

Frei and Pimenteil have reported the results of several photochemically assisted 

reactions occurring under matrix isolation conditions. Their studies show significant 

differences in the rates of product formation upon induced irradiation of various modes. 

That is, they have observed mode-specific rate enhancement The reaction of C2H4 with 

F2 to form either 1 ,2-difluoroethane or HF + CH2 = CHF was found to increase two and 

five orders of magnitude as the photon wave number increases from 953 to 1896 em -1 and 

953 to 4209 cm-1, respectively. The transition from 953 to 1896 cm-1 involve similar 

vibrational motions, therefore they postulated that any difference in quantum yields was 

probably associated with a barrier to reaction between these two photon energies and not 

due to mode specificity. They also found the transition to 2989 cm-1, which involves an 

in-plane C-H stretch, gave a higher quantum yield than the transition to 1896 cm-1, which 

involves an out-of plane motion. They found it unlikely that these differences in the 

quantum yields directly indicate mode specificity of the motions excited. However, they 
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also observed that excitation of the v2 + V12 combination band of C2H4 at 3076 cm-1 

results in a quantum efficiency greater than that for excitation of vg at 3105 cm-1, which 

suggests the possibility of mode specificity being present. 

Supersonic jet spectroscopy has been an important tool in probing the properties of 

van der Waals molecules. Due to the low temperatures created by these techniques, stable 

van der Waals molecules can be produced. Supersonic expansion leads to a simplification 

of the spectrum by depopulating the excited rotational and vibrational states. This is 

important because van der Waals bonds are weak and long with low frequency vibrations 

and large rotational constants. Spectroscopic studies give information about the structure 

but yield little information concerning the potential surface due to the limited number of 

levels probed.2 Fortunately, this somewhat formidable problem has received much 

attention recently using various theoretical methods in generating potential surfaces. 3 

As a first-step in the study of matrix-isolation chemistry, we examine the 

photochemistry of van der Waals complexes. These complexes act as an intermediate 

between a bimolecular gas-phase system and one that is isolated in a matrix. A matrix

isolated system traps such a chemical intermediate whereas the bimolecular system reveals 

the weak bonding forces holding the complex together. Analysis of the reaction dynamics 

for a van der Waals complex using the same potential surface as that for the bimolecular 

system should reveal the onset of the dynamics associated with matrix-isolation reactions. 

A great deal of the experimental measurements of unimolecular decay rates of van 

der Waals complexes has been reported by Levy and co-workers. 4-13 For example, Levy 

et af.4 have determined I2 He lifetimes as a function of the vibrational state of the I2 He 

stretching mode. The method for preparing the van der Waals complexes involves the use 

of supersonic molecular beams or free jets. The cold environment produced by supersonic 

expansion allows the preparation and study of such van der Waals molecules. Excitation 

of the I2 ... He molecules causes a significant amount of the complex to dissociate to I 2 + 
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He. In addition, there have been extensive studies 14-19 on the dynamics of vibrational 

predissociation (VP) of other van der Waals complexes. 

Beswick and Jortner20 have reported studies of VP in X ... BC van der Waals 

systems using a quantum mechanical collinear model with a single electronic potential 

surface. They found that for some of the van der Waals complexes of I2, the vibrational 

predissociation mechanism depended upon initial quantum state, mass, and various 

interaction parameters. 

A classical trajectory study on the He + I2 collision reaction by Noid, Gray, and 

Rice21 found apparent erratic behavior in final vibrational energy vs initial vibrational 

phase angle, a so-called chattering region. In these regions they found a large number of 

smooth, regular, subdomains they call icicles. They found that these icicles led to a fast 

initial decay rate and suggest these icicles to be a non-statistical factor in the dynamics of 

the molecule. In continuing their22 study of Hei2 molecule, they found that for low 

excitation states of the diatomic, decay modes exist only quantum mechanically, but for 

high excitation levels, dissociation acts classically. Most fragmentation of the van der 

Waals complex that occurs at low energy levels must therefore be attributed to tunneling. 

Nesbitt and Hynes23 have carried out quasiclassical trajectory calculations in 

studying highly vibrationally excited anharmonic oscillators, such as the van der Waals 

I2 ... X systems. Vibrational energy transfer for highly excited oscillators was found to 

achieve maximum efficiency at a vibrational level of 80 but becomes progressively less 

efficient as the internal energy approaches the dissociation limit. 

Woodruff and Thompson24 examined the He .. .I2 (B37t) molecule using 

quasiclassical trajectory calculations. They found that increasing the I2 vibrational 

quantum number caust:::d an increase in the rate of decay of He .. .I 2• similar to that found 

by Beswick and Jortner.25 

Noorbatcha, Raff, and Thompson26 have studied the dissociation dynamics of the 

Rgi2 van der Waals complexes (Rg = Ar, Kr, Xe). Three-dimensional quasiclassical 
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were used for computing the rates. Generally the dissociation of these complexes is non

RRKM in character, and is signifcantly influenced by "cage" effects. 

Gerber, Buch, and Ratner27 have used a time-dependent self-consistent field 

(IDSCF) method in combination with classical and semiclassical trajectory calculations to 

analyze the I2 ... Ne van der Waals molecule energy transfer, dynamics, and 

predissociation rate. The TDSCF methods includes formal separability of the modes, each 

of which is governed by a time-dependent potential which is an average of the full 

interaction potential over all other modes. They found TDSCF calculations were useful to 

analyze the dissociation dynamics of weakly coupled molecule. Good values for complex 

lifetime, fragment energy content, and vibrational level population of the final states were 

obtained. 

Schatz, Buch, Ratner, and Gerber28 have studied the dynamics of sequential 

dissociation processes of the type XI2(v)Y ---> X + I2(v)Y ---> X + Y + I2(v) (X, Y = 

Ne, He) using quasiclassical trajectory calculations and TDSCF methods. They use 

statistical RRKM-like models in analyzing the role of X atoms in promoting or impeding 

Y-atom dissociation in the X-I2-Y species as compared to I2-Y; and they compare 

quasiclassical trajectory and classical TDSCF methods to test the reliability of the latter 

approach in describing polyatornic molecule dissociation dynamics. The results of these 

two methods are in agreement for three and four-atom clusters and show that an increase 

in total molecular size gives rise to a faster dissociation of the first atom to leave the 

complex. 

Quasiclassical trajectory calculations were used by Delgado-Barrio, Villareal, 

Mareca, and Albelda29 in treating the He .. .I2 van der Waals molecule. The incorporation 

of rotational degrees of freedom were shown to decrease the VP rate. Their results are in 

agreement with experimental, classical, and quanta! results.7-9 

Brady, Doll, and Thompson30-32 have performed classical studies on the collision of 

a single atoms with small clusters of atoms and the dissociation of quasibound clusters of 
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atoms using classical trajectories. First-order decay rates were found to decrease 

exponentially as the total fixed energy decreases and as the impact parameter increases. 

Theoretical studies of the o3 ... NO van der Waals complex were done by Arnold, 

Gettys, Thompson, and Raff33 using quasiclassical trajectory calculations. The dynamics 

of the o3 ... NO complex to be very different from those previously found for the 

bimolecular gas-phase collision using the same potential energy surface. 34 They found 

significant vibrational rate enhancement as the internal energy content of the molecule is 

increased, and suggest that this rate enhancement is mode specific. However, vibrational 

excitation in the bimolecular reaction shows rate enhancement but no mode specificity. 

They also found the dissociation rate to be dependent upon the structure. 

Collinear A+BC exchange reactions have been analyzed by Agrawal and Raff35 by 

treating the system via perturbation wave packet studies and time-dependent methods. The 

time-dependent methods and close-coupling probabilities obtained for two of the three 

surfaces used were found to be in good accord. Wave packet computations proved to be 

the optimum method for calculation of rate coefficients. Viswanathan, Raff and 

Thompson36 studied the decomposition of the He ... I2 (B3n) complex using similar 

methods. 

In a later paper, Viswanathan, Raff and Thompson 37 computed rate coefficients and 

cross sections for Ar2 +X-> Ar ... X + Ar, Ar2 +X*-> to 2Ar +X, and Ar2 +X-> 

Ar2 ... X where X = N2, CO, C02. They found dissociation cross sections to be 

independent of the vibrational energy transfer from X. For N 2 and CO, the rotational to 

vibrational energy transfer had some effect on Ar2 dissociation, and translational to 

vibrational energy transfer showed N2 to be the most effective in dissociating Ar2. 

Adams38 studied the vibrational predissociation of Ar ... BC13 van der Waals 

complexes using Monte Carlo-RRKM methods. The results were in agreement with the 

experimental rate in that the van der Waals complex dissociates considerably faster upon 

single mode excitation, which implies a rapid internal energy redistribution. 
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It is the purpose of this paper to explore the effects of vibrationally exciting various 

modes of C2H4 in the C2H4 ... F2 van der Waals molecule. 

We present calculations of vibrational predissociation rates using quasiclassical 

trajectory methods. For the C2H4 ... F2 van der Waals complex, it is found that increasing 

the C2H4 internal energy produces an increase in the rate of decay. The results also 

indicates some mode specific rate enhancement is present. In this case, the van der Waals 

complex C2H4 ... F2 dissociates to C2H4 and F2 and upon vibrational excitation of the 

ethylene molecule, we find a significant increase in the predissociation rate. Included are 

rates of decay of the unimolecular complex for excitation of the symmetric C-H stretch, 

torsional motion, and non-planar CH2 rock, or the v 1, V4, and v7 C2H 4 modes, 

respectively. 

The following sections describe the C2H4F2 potential-energy surface, computational 

methods, and results. 



CHAPTER II 

POTENTIAL-ENERGY SURFACE 

We represent the potential-energy surface for the C2H4 ... F2 van der Waals complex 

with the surface used by Raff39 in the study of the bimolecular collision dynamics of the 

C2H4 + F2 reaction. This surface consists of essentially twenty-nine different potential 

terms. The functional form for one bonding structure is 

= 
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The terms in Eq(l) are made up of bond stretching interactions plus bending potentials for 

each of the 12 angles along with torsional terms for the C2H4 and CH2 = CHF molecules. 

The va~ (Ri) terms are bond stretching potentials for the bond whose distance is Ri. The 

ya~ (Si) are the bending potentials for the angle ei. The ethylene torsional potential is 

VTC2H4(<j>1). The torsional potential for CH2 = CHF is VTC2H4F(<j>2). Hyperbolic tangent 

switching functions were used to achieve the correct asymptotic limits for the potential. All 
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terms in the potential were parameterized so that the potential could be fitted to the 

measured fundamental frequencies, equilibrium structures, heats of reactions, and the 

activation energy for the HF abstraction from 1,2-difluoroethane. Computed and 

measured values for vibration frequencies for ethylene and 1,2-difluoroethane, equilibrium 

structures and energies, and the heats of reaction were found to be in fair to good accord 

with experimental results. Certain geometries, fundamental frequencies, and barrier 

heights of transition states are unknown which therefore limits the accuracy of this 

potential. Nevertheless, this representation is reasonably accurate, simple in functional 

form, and can therefore serve effectively as a first approximation in analyzing the 

dynamics of the C2H4 ... F2 van der Waals molecule. 

The potential surface described previously has "van der Waals" minima for the 

C2H4 ... F2 center-of-mass separations between 5.25 to 6.73 angstroms depending upon 

the structure. Table I gives the structures and stabilities of various C2H4 ... F2 van der 

Waals complexes. Figures 1a-li show the variation in potential as a function of separation 

for all structures investigated. As can be seen, structures 1 and 2 are predicted to be the 

- most stable of all the complexes investigated. The values in Table I were calculated by 

holding all the bond lengths and bond angles fixed at their equilibrium positions while 

varying only the center-of-mass distance. Consequently, the fully relaxed structure can be 

expected to have somewhat greater stabilities than those given in Table I. Structures 1 and 

2 have energies of 0.09154 and 0.07413 kcal/mole, respectively, below that for the 

separated molecules. The center-of-mass separation for 1 and 2 are 5.25 and 5.26 

angstroms, respectively. The well depths are relatively small. This is not unexpected 

since the dispersion forces were not explicitly included in the potential surface formulation 

and there is no dipole-dipole interaction. In comparing this to the 0 3 ... NO system,33 it is 

interesting to note that although dipole-dipole interactions are not explicitly included in the 

0 3 ... NO surface formulation, the potential predicts structures with energies that are about 

what are expected for dispersion forces. Table I lists the structures and stabilities for nine 



TABLE I 

STABILITIES AND STRUCTURES OF VARIOUS C2H4 ... F2 VANDER WAALS 
COMPLEXES 

9 

Notation Structure Well Depth (kcal!mole) c.m.-c.m. dist (Angstroms) 

0.09154 5.25 

0.07413 5.26 

0.04500 5.94 

0.02250 5.95 

5 0.02250 5.95 

6 0.01250 6.69 

* * 

0.01111 6.73 

0.01111 6.73 

* =Very unstable complex immediately dissociates; em= center of mass. 
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C2Rt· .. F2 van der Waals complexes on the surface described. Structure 1 is the most 

stable complex. Overall energetic differences for the nine structures are all less than 0.09 

kcaVmole. Structures 7, 8, and 9 were found to be the most unstable. 



CHAPTER ill 

COMPUTATIONAL NIETHODS 

The dissociation dynamics of the C2H4 ... F2 van der Waals complex have been 

studied using quasiclassical trajectory (QCT) calculations. The procedure used in the 

study of the C2H4 ... F2 system is identical to that of Raff40 in his treatment of the 

bimolecular collision dynamics of 1,2-difluoroethane. The only difference in this study is 

the initial-state and conditions of the problem. 

For the following calculations, the initial configuration of the C2H4 ... F2 complex is 

taken to be that of the van der Waals complex yielding the minimum equilibrium structure 

or greatest well depth. The structure found to best fit these requirements was structure 1. 

The vibrational motion of this system is described in terms of the normal modes for 

separated C2H4 and F2. Here, we have excited only various vibrational eigenstates for the 

C2H4 molecules. Initial conditions were to excite a particular mode with one quanta of 

energy while holding all others at zero point energy. We specifically examine the 

symmetric C-H stretch, torsional motion, and non-planar CH2 rock shown in Figure 2a, 

2b, and 2c, respectively. Fundamental vibrational frequencies and anharmonic constants 

were the same as those given by Raff.39 

Phase averaging was the procedure used in selecting the proper initial conditions. 

The cumbersome method involves integrating over 260 vibrational periods of the V 1 

symmetric stretch and storing the phases after each integration step. We then randomly 

selected a set of the vibrational phases from the stored data. Each trajectory was then 

initiated with different vibrational phases. 

20 
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The final state of the individual trajectories was determined by continuously 

monitoring the atom to atom separation and energy. All trajectories of the complex 

dissociated to F2 and C2H4. If the center-of-mass distance for the two molecules in this 

complex exceeded 8.0 a.u., the integration was terminated. If the trajectory did not meet 

these requirements within 1.35 x 1Q-12s, it was terminated. The time limit of integration 

was such that more than 80% of the trajectories dissociated. 

Plots for the time-variation of the center-of-mass separation of C2H4-F2 with time 

for the four different excited states are shown in Figures 3a-3e. The faster decay rate 

seems reasonable. Due to the increase in energy into the system, we expect the molecule 

to come apart much faster. However, it is also interesting to note that the ground state and 

each of the excited modes exhibits a different magnitude in vibrational amplitude. The 

zero-point energy showing to be the greatest in magnitude, the non-planar CH2 rock being 

the smallest, and the symmetric C-H stretch and torsional motion lying between the 

previous two. We also calculated that for a typical trajectory approximately eighty to a 

hundred vibrational cycles were completed before dissociation. 

The numerical integration was carried out using a fourth-order Runge-Kutta-Gill 

routine with a fixed stepsize of 3.23 x 1Q-16s. The integration accuracy was checked 

using back integration and energy conservation. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

As discussed previously in the methods section, a trajectory was considered 

terminated if the integration time exceeded 1.35 x lQ-12 s or if the center-of-mass distance 

exceeded 8.0 a.u. The internal energy of the dissociated species were then calculated and 

compared to their respective bond dissociation energies to determine the final products. 

All of the trajectories were found to dissociate to C2H4 + F2. A total of two hundred 

trajectories were run for each of the different cases we examined. We let N0 denote the 

total number of trajectories in a particular ensemble. The rate of decay for the van der 

Waals complex was determined by the equation k = -ln(Nt/N0 )/t, where Ntis the number 

of nondissociated molecules at time t and k is the rate coefficient. 

In Figures 4a-4d we show plots of ln(N/N 0 ) for the initially excited Vo, v1, V4, and 

V7 states, respectively, in the C2H4 ... F2 van der Waals complex. There are basically three 

regions in each of these plots. The region up to about 4.3096 x lQ-12 s corresponds to the 

first dissociation of F2 and C2H4 molecules. This region is not linear due to the 

incomplete phase averaging over all vibrational phases. Following this is a region where 

the dynamics have properly taken over, thus giving a constant slope in which a least 

squares fit has been done to calculate the rate coefficients k for each of the plots. For 

Figure 4d an upper and lower bound were given in Table II. The third part of the plots is 

what appears to be a leveling off of the rate due to a nonstatistical sampling. The second 

region of these plots were fitted and the resulting decay rate coefficients are given in Table 

II. These rate coefficients are limited in their accuracy by the selection of the ranges fitted. 
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As it can be seen from Table IT, we observed different rate constants for these four 

vibrational quantum states. The nonplanar rock excitation exhibited a rate four times 

greater than that of zero point energy, and approximately three times greater for both the 

torsional motion and symmetric stretch. 

TABLE IT 

RATES FOR FOUR DIFFERENT VIBRATION ALLY 
EXCITED STATES OF C2f4 

Excited Mode Rate (k) s-1* 

None 7.72 X lQll 

C-H Symmetric Stretch 1.59 X 1Q12 

Upper bound to CH Symmetric Stretch 4.12 X 1Q12 

Lower bound to CH Symmetric Stretch 6.82 X lOll 

Torsional Motion 1.11 X 1Q12 

C2f4 Nonplanar Rock 3.14 X 1Ql2 

All rates given in inverse seconds. 

We have stated earlier that the van der Waals complex C2f4 ... F2 is always found to 

dissociate to C2H4 + F2. The results we have obtained indicate that the reaction coordinate 

is affected by exciting various modes in the complex. We notice the complex crosses over 

the critical dividing surface and moves to product configuration space at a much faster rate 

for the excited modes. In contrast to the gas-phase bimolecular reaction, the van der 

Waals molecule's internal energy has does not have sufficient time to diffuse 

intramolecularly and we therefore are able to observe mode specificity among with 

vibrational rate enhancement. 



CHAPTERV 

SUMMARY 

The reaction and dissociation dynamics for the C2H4···F2 van der Waals complex 

have been studied using quasiclassical trajectory calculations. The potential-energy 

surface39 used in these calculations was effective in studying the dissociation dynamics of 

the C2H4 ..• F2 van der Waals complex. The initial state of the complex was determined to 

be that of structure 1 in Table I. We have presented calculations of VP rates for the 

symmetric C-H stretch, torsional motion, and non-planar CH2 rock. The rate coefficients 

were obtained from the decay plots. 

The effect of vibrationally exciting different modes for structure 1 in Table I has been 

determined. We find that increasing the C2H4 internal energy produces an increase in the 

rate of decay. We also find that the rate is dependent upon the particular mode of 

excitation. The results indicate that vibrationally exciting various modes of the ethylene 

molecule gives rise to different rates of decay. The different VP rates indicate mode 

specificity for vibrationally assisted reaction of the C2H4 ... F2 van der Waals complex. 

In conclusion, we presume the mode specificity and rate enhancement are due to the 

van der Waals molecule's inefficiency diffusing energy intramolecularly in the given time 

period. 
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