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ABSTRACT

Binary liquid mixtures which are miscible at atmospheric tem­

perature and pressure can sometimes be made to separate into two liquid 

phases by isothermal application of external pressure. Qualitative and 

quantitative methods of predicting such separations using fundamental 

thermodynamic data are presented. PVTX and density measurements were 

made for a binary system and used with available low-pressure solution 

behavior data to predict the occurence of phase separation at elevated 

pressure. The predictions were checked by visual observation of phase 

separation at pressures up to 90,000 Ib./sq. in.
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CHAPTER I

INTRODUCTION

The ability to predict the physical and chemical properties of 

mixtures is one of the prime objectives of both physical chemists and 

chemical engineers. In the design of a process which involves the sep­

aration of two or more phases in equilibrium it is essential that the 

equilibrium phase behavior be known. If this behavior can be accurately 

predicted from other available or more easily obtainable data, it is, 

of course, highly desirable.

The separation of two liquid phases in equilibrium has been the 

subject of much study (3), and thus the phase behavior of a large num­

ber of binary liquid systems has been examined. While both temperature 

and pressure affect the phase behavior of such systems, few of the in­

vestigations have been concerned with the pressure effect (43). Corre­

spondingly, the prediction of the effect of pressure on liquid-liquid 

phase behavior has received almost no attention whatever (31).

Previous Investigations 

Timmermans (42) was among the first to investigate experimentally 

the effect of pressure on the mutual solubility of binary liquid mix­

tures. Subsequent studies of this type have been recently catalogued 

by Timmermans in a rather comprehensive fashion (43).
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The general techniques for the use of thermodynamics in the pre­

diction of the effect of pressure on phase equilibria were elucidated 

ovei thirty years ago by Adams (1), and have been used to predict iso­

thermal solubility diagrams of solids in liquids (e.g., 1,2) and the 

isothermal solid-liquid phase behavior of binary systems which form 

solid solutions (47). There has, however, been no attempt to use these 

techniques for the prediction of the pressure effect on the mutual solu­

bilities of liquid pairs.

Necessary Data

The thermodynamic prediction of the pressure effect on phase 

equilibria is invariably dependent on knowledge of solution behavior 

data for the system in question at some reference pressure as well as 

the volumetric properties of the phases as functions of pressure (1). 

Solution behavior data, usually expressed in terms of activities, has 

been the object of a large amount of research, especially for binary 

mixtures of nonelectrolytes (43). The volumetric properties of condensed 

phases under pressure have not been nearly as well investigated.

Although some cursory investigations of the effect of pressure 

on the properties of liquids were conducted in the latter part of the 

19th century, comprehensive studies of this type began with Bridgman in 

the early part of this century (7). It was the work of Bridgman which 

raised the limits of obtainable working pressures to over a million psi. 

However, his work was devoted exclusively to pure compounds (e.g., 8,9, 

11,12,14). The effect of pressure on the physical properties of liquid 

mixtures has, as would be expected, received less attention. Aside from 

compressibilities at one atmosphere, calculated from velocity of sound
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measurements (e.g., 5,38,44), the works of Gibson (21), Eduljee (18), 

Reamer (33), and Cutler (17) concerning binary liquid compressions for 

a total of nine systems stand alone. The prediction of the pressure ef­

fect on liquids has been almost completely limited to single component 

systems (24,28,6).

It was decided to undertake an investigation which would allow 

visual observation of the effect of pressure on the liquid-liquid phase 

behavior of a binary mixture of nonelectrolytes and develop a method for 

predicting such behavior. The data necessary for the prediction would 

also be obtained and the predicted phase diagram compared with the ob­

served results.



CHAPTER II

THERMODYNAMIC DEVELOPMENT

Qualitative Methods 

The solution behavior of liquid mixtures is most readily repre­

sented by use of the activity coefficient:

(1)
where: JT- = activity coefficient of component i in

 ̂ solution.

^  = fugacity of component i in solution.

» fugacity of pure component i at the temperature
* and pressure of the system.

X j  = mole fraction of component i.

Mixtures whose components exhibit activity coefficients near 

unity are classed as near ideal mixtures. Such mixtures will show lit­

tle or no heat or volume change on mixing and will tend to remain com­

pletely mutually soluble over large ranges of temperature and pressure. 

Those mixtures whose components show activity coefficients substantially 

greater than unity will usually exhibit positive heat and volume changes 

on mixing*, while the opposite is true for those mixtures with activity 

coefficients less than one.

*The rigorous correlation between heat and volume change on mix­
ing is shown by use of the thermodynamic relation derived by Mathieson 
(25);
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Prigogine (32) has classified binary liquid systems as shown in 

Table 1. Because tendency toward immiscibility is characterized by 

large values of the activity coefficient the effect of temperature and 

pressure upon the mutual solubility can be predicted from their effect 

on the activity coefficients (24);

inwhere: //. = partial molal enthalpy of component i
solution,

= pure molal enthalpy of component i at the temp- 
“  erature and pressure of the system.

and; ^ ^  ]/i (4)
I J r

where: = partial molal volume of component i in
 ̂ solution.

^  = pure molal volume of component i at the temp­
erature and pressure of the system.

Referring to Table 1, systems in classification I will all tend toward

immiscibility with decreasing temperature because increases, while

the opposite is true for those in classification II*. Increasing pres-

where: = molal change in enthalpy on mixing.
molal change in volume on mixing.

who notes that the signs of and ^ y ^ a r e  usually the same. He re­
ports further that the shapes of the curves of A^^vs. X and vs. X are 
generally very similar for any given binary nonelectrolyte mixture.

*It is assumed that the sign of the term is the same for
each component as the sign of While some deviations from this rule
are known, they are extremely unusual, occuring only over small ranges 
of composition in very few systems (32).



TABLE 1

CLASSIFICATION OF BINARY LIQUID SYSTEMS

I. Systems with Positive (Endothermie) Heats of Mixing. 

Activity Coefficients greater than unity.

A. Those with Positive Volume Changes on Mixing 

Example: CSg - Acetone

*B. Those with Negative Volume Changes on Mixing 

Example: n-hexane - nitrobenzene

II. Systems with Negative (Exothermic) Heats of Mixing. 

Activity Coefficients less than unity.

A. Those with Positive Volume Changes on Mixing

None Known

B. Those with Negative Volume Changes on Mixing 

Example : CO 2  - o-nitrophenol

*Only relatively few of these systems are known.
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sure will bring about mutual insolubility for systems in classifications

I.A. and II.A. while increasing solubility for those in I.E. and II.B.*

Quantitative Methods 

Using the latter conditions it is possible to predict the effect 

that increasing external pressure will have upon the mutual solubility 

of a binary liquid system. In order to determine quantitatively the iso­

thermal liquid-liquid phase diagram, however, a somewhat different attack 

must be pursued.

At constant pressure and temperature the criterion for equilib­

rium in any system is that the free energy must be at a minimum (27). 

Thus, a binary liquid system will separate into two liquid phases only

if such a configuration will provide the system with a lower free energy

than would be available if the system remained as a single phase. It 

remains only to provide a relationship which will allow the calculation 

of the free energy of such a system in terms of thermodynamic quantities 

which are either available or obtainable in the laboratory.

The molal free energy of mixing, is defined as the dif­

ference between the free energy of a mole of solution and the sum of the 

free energies of the unmixed components:

(5)

where: “ molal free energy of the solution.

= molal free energy of pure component i at the 
temperature and pressure of the system.

The molal free energy of the solution can be expressed in terms

*The same argument is true for /A]/T
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of the partial molal free energies of the components in solution as:

where: = partial molal free energy of component i in
solution.

These pure and partial molal free energies of the components, 

^jand 6t|Can be expressed in terms of fugacities as:

U G X = ( R T U U , f , X  

(G -aX., = RT
(7)

(8)

Substituting Equations (6) and (8) into (5), the familiar expres­

sion is obtained for the free energy change on mixing in terms of the 

activity, :

A G "  =  y  f v. /.. =  1 1 (9)
X T

Where: 2^ = / ,
' i

For a binary system Equation (9) reduces to:

=  (x, U  a ,  t  X .  U  a . ) |
^ R"I" J

(10) 
T.P.X

True Free Energy Diagram

If the activities of some binary systems are known at some pres­

sure P* and temperature T, Equation (10) can be plotted and will appear 

similar to Figure 1 if substances 1 and 2 are completely miscible. If, 

instead, a plot such as Figure 2 is obtained, a miscibility gap is indi-

*Pressure cannot actually be held constant in determining the 
isothermal activity data. However, the small variation involved is 
disregarded.
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cated. Any mixture whose homogeneous* concentration lies between X' and 

X'', say at Xq , will be in equilibrium only when two liquid phases of 

compositions X' and X'' are present. Points a and b are determined from 

the points of tangency of a straight line, cd. In this composition 

range the free energy of two such phases is lower than that resulting 

from a single phase, The portion of the curve between a and b is dotted 

because this is a hypothetical region.

With reference to Figure 2 it is now to be shown that: (1) the

concentrations of the phases in equilibrium are determined by a straight 

line drawn tangent to the curve at two points** and (2) the true portion 

of the curve between these two concentrations is this same straight line.

(1) Equation (5) can be written for a binary mixture as:

(1 1)
X

and differentiated with respect to X, at constant temperature and pres­

sure :

(12)

Equation (12) can be simplified by use of the Gibbs-Duhem equa­

tion which cancels the last two terms leaving:

^ J  =  3, -  ô f , -  G , + Q 2. (13)

On differentiating Equation (11) again, this time with respect

*That concentration which would result were the mixture a 
single phase.

**This development is essentially the same as that of Rowlinson
(35).



12

to %2 , Equation (14) is obtained:

Combining Equations (11) and (13):

G .  =  A S " -  +  G .

and combining Equations (11) and (14):

/t.P

Using the criterion of equilibrium, namely:

g ;  =  G , "

(14)

(15)

(16)

(17)

and

G . = g ;

where superscripts refer to phases, the following relationships are ob­

tained:

(18)

( A ê - ; i  = ('AS'/'- -  G : .  g ; (19)

and

( A 0 . ( A i - r . I  - s ; v20)

where ; . ' ^  n

and e; = q :
On subtraction of (19) from (20):

I Jt,P \ Jt.P
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from which relation is observed that the slope of the free energy curve 

is the same at each equilibrium concentration.

Combining (21) with (19):

\ c)Xjt /y~p \
“  ' (22)

J .̂,p
from which it is observed that the slope is as drawn in Figure 2, line 

cd.

(2) If the free energy of the mixture is now expressed in terms 

of two phases in equilibrium:

A G ’'̂  X'(a Q'')' + x"(AG''j" (23)

where: x = mole fraction of total mixtures that exists
in phase 1.

and: x'' = mole fraction of total mixture that exists
in phase 2.

and making use of the mass balance:

X  ' =  I —  x '  (24)

substituting (24) into (23):

A§'̂ ~ x7ùa")‘-t-(/-x‘)(Aa''J"
and rearranging:

A&''= y'[(AQy~ (26)
Since ( A § ^ ) '  and ( A $ ^ )  ' ' are constant in the interval from 

x' to x'', Equation (26) is that of a straight line between these two 

points. Thus, the true free energy diagram is as drawn in Figure 2.

The reasons for general use of the continuous curve are given by Rowlin­

son (34) and will not be covered here.
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Effect of Pressure

The effect of external pressure on the free energy of mixing of 

a binary liquid system can be described by starting again at the defi­

nition of the free energy change on mixing:

f/^S — ̂ fGi X,Qi,
L Ji;p,

(11)
X

and differentiating with respect to pressure at constant temperature 

and mole fraction:

'Mr '■Mr ».(M (27)

From basic thermodynamics:

(28)

and
/  ;)/;-• 1 —

(29)

Equations (28) and (29) can be substituted into (27) to obtain:

The right hand side of Equation (30) is recognized as the defi­

nition of the change in volume on mixing for a binary system, ^  V  . 

Therefore, Equation (30) becomes:

Dividing both sides of (31) by RT and integrating between some 

pressure Pq and some other pressure P:
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(32)

Equation (10) can be substituted into Equation (32) to obtain:

( a:, Y. /ft 6 ,  Æ J ) « «

■ H
By use of Equation (33), the free energy of mixing for any binary 

system can be evaluated at any pressure if activity data are known at 

some pressure Pq and change in volume on mixing data are available from 

pressure Pq to the pressure desired over the entire range of composition. 

If the system in question is completely miscible at pressure P^, but be­

comes partially immiscible upon application of pressure, this effect will 

be indicated by a straight line portion in the free energy diagram (See 

Figure 2) as explained above.

Effect of Temperature

The change in the free energy of mixing with temperature is 

described by the relation (24):

(34)

Jp,x
where: molal change in enthalpy on mixing.

Over any sizeable range in temperature, the function, must be

considered a variable also (24):

I (35)
'P.K
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where: ~ molal specific heat of the mixture at constant
pressure,

( C p J ~  molal specific heat of pure component i at 
'i constant pressure.

The right hand side of Equation (35) is denoted by the molal

change in specific heat on mixing:

P

Equations (35) and (36) are combined and integrated to yield:

(36)

(37)

If an average value of can be assumed without serious error,
*-P

Equation (37) reduces to

f̂ X : f# X  -
r,

clT (38)

T , X
where: = arithmetic average of between T and T^.

Determination of Activities from Free Energy

If Equation (10) is written on a total moles basis instead of a 

molal, or per mole basis and differentiated with respect to the number 

of moles of component one with the moles of component two fixed:

= r t [ ^ (N, )

3 N, " (39)

where: “ total change in free energy on mixing,

= moles of component 1.

Ng = moles of component 2.
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Carrying out the differentiation:

^  -  4 4  (40)

But the Gibbs-Duheni equation equates the differential terms on the right 

hand side of Equation (40);

M  =  - / %  " à É n A i  (41)

Because; ^  <3^=^ ( ^ / i  (43)

4 , a , =  P f ^ ' V - « A ’. M g % T 7 ?  (44)

If the free energy of mixing diagram is represented by a power

series :

4 f " = 2 P ^ (  =  y c x . )

where: Aj = coefficient of i term.

= mole fraction of 2nd component.

Then ;

A, a,
L J i r

(45)

(46)

But, % 2 = Ng/UNi + N^) (47)

4 t  â, =  * A4. ) f  ?So; ^  ^  L (48)

-  , . 'V,
Carrying out this differentiation:
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Uaol ■= Â/, ¥ - / V , . l ^  .. .]

(49)

Simplifying Equation (49) and replacing Xg for Nĵ /(Nĵ  + N 2 ):

^ -  2 A ^ X ^  — 3 ------------   ( 50)

or;
M

1*1 à, — —  y[(i-2)Aj Xa'~'^J (51)
i*3

where; M = number of coefficients in polynomial for
A  a % T

because Aj is forced to zero in the curve fitting of So that

In a, is directly obtained from the coefficients of the polynomial ex- 

pressing

Similarly In %2 tan be found:

U  5 , =  7  (33)

L  J r , P , N ,



CHAPTER III 

CHOICE OF SYSTEM 

Se lection

Use of the qualitative tools presented in Chapter II permits the 

selection of a system which will separate into two liquid phases under 

isothermally increasing pressures. Three criteria were used in this 

selection:

1. The system must be a binary nonelectrolyte solution.

2. It must either;

a) have been noted to separate under isothermally increasing 

pressures or

b) be expected to do so as a consequence of large activity 

coefficients at one atmosphere pressure, and positive 

volume changes on mixing.

3. Solidification must not occur at pressures below those neces­

sary to cause liquid-liquid phase separation.*

To make a quantitative prediction of the phase diagram using 

Equation (33) it is necessary that the activities at one atmosphere and

*Relations which allow the prediction of solidification of a 
binary system under pressure have been reported by Adams (1) for eutectic 
forming mixtures and by Winnick and Powers (47) for solid solution form­
ing mixtures. Such predictions are, however, dependent on knowledge of 
the behavior of the solid phase under pressure, which is, at present, 
extremely scarce.

19
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volumetric behavior over the entire range of pressures be known. The lat­

ter data are virtually non-existent; however, the existence of the former 

can be used as a fourth criterion in the choice of the system:

4. The activities must be accurately known at a temperature

where phase separation can be induced with pressures with­

in the range of the experimental equipment (90,000 psi).

A large number of systems was considered and Table 2 lists these 

as to whether they: l) are known to separate under increasing pressure;

2) possess large values of activity coefficients at one atmosphere; 3) 

exhibit positive volume changes on mixing and; 4) have accurate activity 

data available. All of the systems listed show positive enthalpy changes 

on mixing and hence belong in classification I (See Chapter II),

Of these mixtures, the seven with accurate activity data as well 

as positive or unknown volume changes on mixing were chosen. These were: 

carbon tetrachloride-acetonitrile, benzene-acetonitrile, butyl acetate- 

methanol, n-hexane-chlorobenzene, n-butanol— benzene, carbon disulfide- 

methylal, and carbon disulfide-acetone. Because, as described in Chapter 

II, the only type of known binary system which separates into two liquid 

phases under increasing pressures is an endothermie system with an upper 

critical solution temperature, these systems will also tend to separate 

if the temperature is sufficiently lowered isobarically. For this reason, 

these seven mixtures were cooled slowly to liquid nitrogen temperatures.

In all but two of the solutions, carbon disulfide-methylal and carbon 

disulfide-acetone, freezing occurred before any sign of mutual immisci- 

bility. From these two systems, carbon disulfide-acetone was chosen for 

study because its activity coefficients were more accurately known.*

*See Appendix II.



TABLE 2 

CHOICE OF SYSTEM

System Reference

Separates
Under
Increasing
Pressure

High Values 
of Activity 
Coefficients?

Positive 
Volume 
Change 
On Mixing

Accurate
Activity
Data?

Methanol--
cyclohexane 65 Yes Yes Yes No

Methanol-- 
n-hexane 6 6 Yes Yes Yes No

Carbon tetrachloride-- 
nitromethane 63 Yes Yes Yes No

Aniline-- 
cyclohexane 6 6 Yes Yes Yes No

Acetonitrile-- 
cyclohexane 63 Yes Yes Yes No

Acetic Anhydride-- 
cyclohexane 63 Yes Yes Yes No

Nitromethane--
cyclohexane 63 Yes Yes Yes No

Aniline-- 
n-decane 63 Yes Yes Yes No

Cyclohexane--
methylene iodide 6 6 Yes Yes Yes No

Benzene-- 
formic acid 6 6 Yes Yes Yes No

Ethyl acetate-- 
i-amyl ether 58 ? Yes Yes No

Ethyl acetate-- 
amyl acetate 58 ? Yes Yes No

Benzene--
m-xylol 58 ? Yes Yes No

to



TABLE 2--Continued

System Reference

Separates
Under
Increasing
Pressure?

High Values 
of Activity 
Coefficients?

Positive 
Volume 
Change 
On Mixing?

Accurate
Activity
Data?

o-xylol--
m-xylol 58 ? Yes Yes No

Ni trobenzene-- 
monoethylaniline 58 ? Yes Yes No

Nitrobenzene--
o-toluidine 58 ? Yes Yes No

Nitrobenzene-- 
monoethylaniline 58 ? Yes Yes No

Benzene--
m-kresol 58 ? Yes Yes No

Toluene--
m-kresol 58 ? Yes Yes No

Methanol-- 
propanol 58 ? Yes Yes No

Ethanol--
cyclohexane 56 ? Yes Yes No

n-Propanol--
cyclohexane 56 ? Yes Yes No

n-Butanol--
cyclohexane 56 ? Yes Yes No

Benzene-- 
i-butanol 56 ? Yes Yes No

Carbon disulfide-- 
ethanol 62 ? Yes Yes No

Carbon disulfide-- 
n-propanol 6 2 ? Yes Yes No

Glutaronitrile-- 
ethanolamine 61 ? Yes Yes No

to
to



TABLE 2--Continued

System Reference

Separates
Under
Increasing
Pressure?

High Values 
of Activity 
Coefficients?

Positive 
Volume 
Change 
On Mixing?

Accurate
Activity
Data?

Glutaronitrile-- 
n-tnethy lacet ami de 61 ? Yes Yes No

Glutaronitrile-- 
ethyl glycol 61 ? Yes Yes No

Glutaronitrile-- 
pyridine 61 ? Yes Yes No

Glutaronitrile--
ethylene cyanohydrin 61 ? Yes Yes No

Glutaronitrile-- 
cyclohexane 61 ? Yes Yes No

Glutaronitrile-- 
adiponitrile 61 ? Yes Yes No

Glutaronitrile-- 
formamide 61 ? Yes Yes No

Ethyl acetate-- 
carbon disulfide 6 2 ? Yes Yes No

Hexane-- 
acetone 6 2 ? Yes Yes No

Carbon disulfide-- 
hexane 62 ? Yes Yes No

Ethanol--
ethyl acetate 62 ? Yes Yes No

Benzene--
methyl acetate 6 2

9 Yes Yes No
Carbon tetrachloride-- 

ethanol 59 ? Yes ? No
Benzene-- 

ethanol 52 9 Yes 9 No

roU)



TABLE 2--Continued

System Reference

Separates
Under
Increasing
Pressure?

High Values 
of Activity 
Coefficients?

Positive 
Volume 
Change 
On Mixing?

Accurate
Activity
Data?

Carbon tetrachloride-- 
acetonitrile 52 ? Yes ? Yes

Benzene--
acetonitrile 54 ? Yes 7 Yes

Ether--
acetoni tri le 57 ? Yes ? No

Benzene-- 
i-propanol 53 ? Yes 9 No

2 , 2 , 4  Trimethylpentane-- 
ethanol 51 ? Yes ? No

Butyl acetate-- 
methanol 64 ? Yes ? Yes

Ethanol--
methylcyclohexane 52 9 Yes Yes No

Benzene-- 
acetic acid 67 ? Yes Yes No

Acetone-- 
i-propanol 60 7 Yes Yes No

Benzene-- 
methanol 59 ? Yes ? Yes

Carbon tetrachloride-- 
acetic acid 59 ? Yes ? No

Carbon tetrachloride-- 
trifluoroacetic acid 59 ? Yes ? No

n-Hexane--
chlorobenzene 50 ? No ? Fair

Acetic acid-- 
toluene 67 i Yes Yes No

hJ
-p-



TABLE 2--Continued

System Reference

Separates
Under
Increasing
Pressure?

High Values 
of Activity 
Coefficients?

Positive 
Volume 
Change 
On Mixing?

Accurate
Activity
Data?

Methanol-- 
acetonitrile 57 ? Yes ? No

Methyl acetate-- 
e thano 1 49 9 Yes ? No

Benzene--
nitromethane 53 No Yes No Yes

n-Butanol--
benzene 55 9 No Yes Fair

Carbon disulfide-- 
methylal 67 9 Yes Yes Yes

Carbon disulfide-- 
acetone 67 ? Yes Yes Yes

roLn

References are to separation under pressure when observed.
Otherwise, activity coefficient data are referred to where available.
In the absence of either, change in volume on mixing at one atmosphere is noted.



26
Adjustment of Temperature 

Although the activities for the chosen binary liquid system, 

acetone-carbon disulfide, are known quite accurately at 35.17°C, the 

pressure needed to cause liquid-liquid phase separation at this tempera­

ture would be beyond the range of the equipment. If a prediction of the 

phase behavior is to be made and compared with that observed, the temp­

erature must be identical. The temperature 0 °C was chosen.*

In order to convert the free energy diagram as determined from 

the data of Zawidzky (48) from 35.17°C to 0°C, the enthalpy of mixing 

data of Schmidt (36) at 16°C, and the specific heat data of Staveley (41) 

at 20°, 30° and 40°C were used along with the thermodynamic relations 

presented in Chapter II. The details of the calculations as well as the 

results can be found in Appendix III.

To complete the prediction of the pressure-composition liquid- 

liquid phase diagram then, the volumetric behavior of the system at 0°C 

over the necessary range in pressure and complete range of composition 

is all that is yet required.

*While it was originally believed that 0 °C would be low enough 
to allow adequate determination of the observed phase diagram, it was 
later decided to lower the temperature of these observations to -2°C in 
order to provide a more complete diagram without jeopardizing the equip­
ment .



CHAPTER IV 

EQUIPMENT

Pycnotr.eter

As mentioned in Chapter III, the thermodynamic functions neces­

sary for the prediction of the isothermal phase diagram must be known 

at a temperature at which phase separation can be induced below 90,000 

psi. For the chosen system, acetone-carbon disulfide, this temperature, 

at which all but the visual measurements were made, was 0°C. (See "Vis­

ual Observation" subheading in Chapter VI.)

The density data available for this system at 0 °C were found to 

be unreliable (19,40,45) (See Figure 3). Thus, since the densities of 

the mixtures need be accurately known in order to determine the P-V-T 

behavior (see "Treatment of Data"), an investigation toward this end was 

carried out.

The measurements were made using a 10 ml high-volatility type 

pycnometer (See Figure 4). In a small room maintained at -2 to 2 °C and 

equipped with a Seederer-Kohlbusch analytical balance, the necessary mate­

rials were left for a day in order to bring them as nearly to thermal equi­

librium with the surroundings as possible. A 1000 ml beaker filled with 

clear ice and distilled water served as the constant temperature bath. As 

testification to the temperature of the room, the distilled water main­

tained a partly liquid-partly frozen condition over a 5 day period.

27
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P-V-T Cell

In order to ascertain the change in volume on mixing as a func­

tion of pressure over the entire range of composition, a piezometer sim­

ilar to that used by Bridgman (10) was used. Figures 5 and 6  show the 

piezometer and high pressure enclosure. The cell consists of a four inch 

diameter hardened steel vessel, 1 , with a six inch diameter sleeve, 2 , 

shrunk over it. The pressure seal is made with a rubber "0" ring, 17, 

a lead washer, 18, and a steel ring, 19.

The mixture under observation is contained in a brass sylphon 

bellows, 7, which is sealed by means of the cap screw, 3. This bellows 

is held firmly in place at one end by the retainer, 5, also made of brass. 

The other end of the bellows is free to move. A piece of Karma wire, 9, 

is fixed at one end to this free end of the bellows by a set screw, 24, 

and at the other to two flexible electrical connections, 13. One is a 

current and the other a potential lead. This orientation eliminates the 

necessity of correcting for lead wire resistance. The connections are 

led out of the cell through porcelain insulators, 14. The Karma wire 

passes across a fixed contact, 25, to which it is firmly pressed by a 

spring, 11, and Teflon piston, 12. An electrical lead from the fixed 

contact, 30, as well as the leads from a chromel alumel thermocouple,

33, 34, are brought out of the pressure chamber in the same manner as 

the Karma wire leads. The thermocouple junction lies in the space to the 

right of the Teflon piston, 12. The bellows is removed from the cell 

body by unscrewing the end plug, 21, from the cell body. Three brass set 

screws, 6 , holding the bellows to the retainer, 5, and the screw, 24, 

holding the Karma wire to the bellows are then removed, releasing the 

bellows for cleaning and refilling.
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TABLE 3 

LISTING OF BALLOONS

1 - Vessel
2 - Sleeve
3 - Cap screw
4 - Front bellows end plate
5 - Retainer
6 - Set screws
7 - Syphon bellows
8 - Rear bellows end plate
9 - Karma wire

1 0 - Fixed connection housing
1 1 - Spring
1 2 - Teflon piston
13 - Electrical connection
14 - Porcelain insulator
15 - Unsupported area seal
16 - Unsupported area seal
17 - 0 -ring
18 - Lead washer
19 - Steel ring
2 0 - Closure
2 1 - Drive plug
2 2 - Nut
23 - Closure bolt
24 - Set screw
25 - Fixed contact
2 6 - Fixed contact insulator
27 - Insulating spacer
28 - Insulating spacer
29 - Insulating spacer
30 - Electrical leads
31 - Electrical leads
32 - Ground
33 - Thermocouple lead
34 - Thermocouple lead



34

The entire cavity around the bellows is filled with the pressure 

transmission fluid, JP-4 jet fuel. This was chosen for its comparatively 

low viscosity at high pressures and low temperatures, its low cloud point, 

and its relatively low cost. As pressure is applied to the pressure trans­

mission fluid, the bellows contracts, equilibrating the pressure within it 

to that without. This movement occurs along its longitudinal axis due to 

the design of the bellows (10). The Karma wire is pulled past the fixed 

contact, and a change in the resistance between either end of the wire 

and the fixed contact is observed. Suitable calibration yields change in 

volume to be ascertained as a function of change in resistance (See Chap­

ter V).

The thermocouple potential was measured using a Leeds and Northrup 

Precision Potentiometer. With it, the temperature could be measured to 

t 0 .2 °C. The small temperature control bath (See ’’Temperature Control" 

subheading in this chapter) served as the cold junction. No calibration 

was carried out.

Measuring Bridge

The electrical bridge used to note this change in resistance is 

shown as Figure 7. When the slide wire has ceased to move on the fixed 

contact, the resistance of the segment between the fixed contact and the 

right hand end of the wire is balanced against the lower section of the 

bridge by closing the upper DPDT switch to the left, and adjusting the 

500 ohm rheostat. A Rubicon Instrument Company Galvanometer indicates 

the null in the circuit. The upper DPDT switch is then closed to the 

right and the upper portion of the bridge is balanced against the lower 

by adjusting the 7 ohm rheostat, Rw-Rw'. This configuration eliminates
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the need of a standard potential source (See Appendix I). The lower DPDT 

switch is used in the same manner to measure the resistance of the entire 

Karma slide wire. The two decade resistors, and , are General Radio 

Company Resistance Boxes. The two 500 ohm rheostats, Rn and V 2 , are 

Clarostat No. 59-145A "potentiometers." The constant value resistors are 

standard 0 .1 % precision wire-wound units.

Visual Cell

The visual observation cell as shown in Figure 8 , is constructed 

of 4340 steel hardened to about 40 Rockwell C. The cell body is ten 

inches long by four inches in diameter. The two end plugs are 3^ inches 

long by 2 inches in diameter. The maximum safe pressure for the cell is

90,000 psi. Two 1/32 inch holes lying on a diameter of the cell midway 

along its length allow access to the cell interior. The yolk, as pictured 

with its driving plugs, holds two double ended cones of 5/16 inch tubing 

firmly into these holes. Replacement of the top coned tubing with a solid

double ended cone resulted in a dead end seal.

The two transparent sapphire windows, which permit visual obser­

vation of the experimental mixture in the center of the cell, are 1 inch 

in diameter by 0.4 inch thick. The pressure seal is made similar to that 

reported by Poulter (29), where the window is sealed against the face of 

the end plug using the unsupported area principle of Bridgman (13). Seal­

ing between the end plug and cell is made by a soft steel ring of square 

cross section which under an applied load, rides up the 45° angle of the 

end plug and firmly into the cell. In order to seal securely the window 

to the end plug, both had to be nearly optically flat. The end plugs

were first lapped flat by hand using No. 900 wet grit and then polished
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with No. 3/c emery polishing paper. However, because the sapphires were 

found to be dish-shaped to about 5 wavelengths from flatness, a good seal 

was not obtained until some pressure was applied to the chamber. For 

this reason, a vacuum was applied to the rear of the windows whenever 

there was no pressure inside the cell. A silicone rubber "0" ring, as 

shown in Figure 8  provided an initial seal between the end plug and cell 

until a pressure high enough to deform the steel ring was obtained.

Mercury Reservoir 

To prevent contamination of the sample in the visual observation 

cell by the pressure transmission fluid, JP-4 jet fuel, an intermediate 

pressure transmitter had to be used which would act to deliver the pres­

sure into the cell yet not mix with the sample. Mercury was chosen to 

fulfill this duty. A simple reservoir (Figure 9) was constructed to con­

tain about lOcc of mercury and thus keep the JP-4 from ever reaching the 

lowest point in the line connected to the optical cell (See Figure 10c)

If this occurred, the JP-4 would rise above the remaining column of mer­

cury and contaminate the sample under observation.

Pressure Measurement 

Pressures below 50,000 psi were measured using either of two 

Heise Bourdon Tube gauges of 20,000 and 50,000 psi. maximum. These 

gauges had been previously calibrated against a dead weight tester and 

found to be accurate to 0.25% of maximum scale reading (47). High pres­

sure measurement was made using a manganin coil enclosed in a jacketed 

vessel (23). The resistance of this coil was compared with that of a 

similar coil mounted outside the vessel. A Foxboro recording potentio­

meter (23) indicates directly the pressure applied to the inner coil
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after suitable calibration (See Chapter V).

Pressure Application 

Pressure was initiated by means of either a 10,000 psi or 40,000 

psi maximum Blackhawk hydraulic jack. When higher pressures were neces­

sary a Harwood Engineering Company piston-type intensifier (23) was used. 

As shown in Figure 10b and c, the piston could be reversed by means of a

1 0 , 0 0 0  psi jack connected to the high pressure side of the intensifier.

A check valve, also supplied by the Harwood Engineering Company (23), re­

tains the pressure on the system as the piston reversal is carried out.

A needle valve (23) between the reversing jack and the intensifier pro­

tects the jack when high pressures are being applied. Another needle

valve acts as a dump, or release, valve from the high pressure side of

the apparatus to the atmosphere. The three tees as shown on the high 

pressure side in Figure 10 are also manufactured by the Harwood Engineer­

ing Company (23). All of the Harwood equipment has a maximum pressure 

limitation of 200,000 psi. The valve between the 40,000 psi jack and the 

intensifier is a 30,000 psi maximum Autoclave Engineers needle type. The 

mercury leg seen in Figure 10c is constructed from 100,000 psi. Auto­

clave Engineers tubing.

Temperature Control 

A cascaded temperature control mechanism is used for both the 

PVT and visual cells. A 35 gallon drum containing an ethylene glycol-

water solution is cooled by a k h.p. refrigeration unit. This bath is

controlled at -10 - 1 °C by a Honeywell on-off controller in line with the 

refrigeration unit. A 1/3 h.p. gear pump circulates the solution con­

tinuously through a copper coil immersed in a 5 gallon insulated bucket
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containing the same mixture as the drum. The temperature in this bath 

is controlled within about 0 .2 °F by a Lux Scientific Company mercury con­

tact thermostat connected to a 100 watt immersion heater. The small and 

large baths are stirred vigorously at all times with a Precision Scien­

tific Co. Laboratory Stirrer and a \ h.p. "Lightnin" mixer respectively.

To control the temperatures of the high-pressure vessels, the fluid from 

the small bath is pumped through coils of copper tubing wrapped around 

them using a 1 / 8  h.p. centrifugal pump. These coils are covered with 

fiberglass insulation held down with heavy-duty cloth-backed tape. 

"Thermon" high-conductivity cement is used to achieve effective heat 

transfer between the PVT cell and its cooling coil. The coil surround­

ing the visual cell is soldered to the yolk over about 50% of its surface. 

About 20 ft. of 3/8 in. tubing is used for the PVT cell and about the 

same length of \ in. tubing for the visual cell.

Safety

All the pressure equipment was contained behind a thick steel

barricade reinforced on the inside with 2" x 4" wood beams. Only valve

handles, pressure gauges and hydraulic jacks protruded.



CHAPTER V 

CALIBRATION OF EQUIPMENT 

P-V-T-Cell

The measurements made during compression of the liquid samples 

in the sylphon bellows were of the resistance of the section of Karma 

wire between the fixed contact and flexible leads (See Figure 6 ) and 

of the applied pressure. In order to obtain the fractional volume 

change of the samples with pressure, three things must be known:

1) The initial volume of the bellows;

2) The relationship between the change in length of the bellows 

and its change in volume;

3) The relationship between the change in resistance of the 

Karma wire and its length, and hence, the length of the 

bellows.

The first of these, the initial volume of the bellows, was cal­

culated from the weight of the sample within it and the density at one 

atmosphere.

Instead of determining the other two relations separately, it 

was decided to carry out a calibration incorporating both.

If a linear relationship is assumed between the change in volume 

of the bellows with pressure and the change in resistance of the Karma 

wire segment with length then:

43
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A p V ^  K  (ApRs) (55)

(56)

where: ^ p V  = change in bellows volume during pressure
change ee

^p/i^ - change in resistance of Karma wire segment
during same pressure change, ,
ohms.

K = bellows constant, cc/ohm, 

then, dividing by V ° , the initial volume of the bellows:

where; ^ p ^ ^ j =  fractional change in volume during pressure
change ^  P  .

A relationship is obtained which describes the fractional volume change 

of a sample with pressure. The constant K is determined by making use 

of the literature data (37) for CS 2  at 0 °C and modifying Equation (56):

K .
A p  R s

w h e r e : A p O ^ ^ =  fractional change in volume of pure CS» at 0°C 
during pressure change /V P. as reported (37).

The constant K can then be evaluated by superimposing the end 

points (at one atmosphere and 15,000 psi) of the resistance versus pres­

sure readings on the (V/V°)^ versus pressure plot. This operation was 

carried out and the bellows constant found to be 7.0232 cc/ohm. Also, 

the data were found to be congruent within .0002 cc/cc* as shown in Table 

4. The values in the last column were calculated using the above con­

stant. This agreement indicates that the assumption of linearity Equa­

tion (55) is valid at least to the limit of the calibration, 15,000 psi.

*At all but 50 atmospheres.
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TABLE 4 

CALIBRATION OF BELLOWS

K = = 7.0232 cc/ohm

P ,atm (V/V°)

1 1 . 0 0 0 0 1 . 0 0 0 0

50 .9967 .9963
1 0 0 .9925 .9925
150 .9889 .9889
2 0 0 .9855 .9854
250 .9822 .9821
300 .9790 .9789
350 .9759 .9758
400 .9729 .9728
450 .9700 .9699
500 .9672 .9671
550 .9645 .9644
600 .9619 .9617
650 .9593 .9592
700 .9567 .9565
750 .9542 .9541
800 .9518 .9517
850 .9494 .9494
900 .9470 .9470
950 .9447 .9447

1 0 0 0 .9425 .9425

'■'Seitz, W. and Lechner, G. Annalen der Physik, XLIX, 1916,
p. 93.
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To evaluate the effect of higher pressures on the linearity as­

sumption, two tests were carried out; First, the change in bellows vol­

ume with length was determined over a large range in volume and second, 

the resistance of the Karma wire was measured as a function of pressure. 

These tests are described below:*

In order to determine whether the volume change on the bellows 

remained linear with its change in length, the bellows was removed and 

placed in a close fitting but nonbinding sleeve, (See Figure 11.) A 

4 foot capillary tube was calibrated using a serological pipette of 

0 . 0 0 1  ml resolution and found to be linear to this degree with a capac­

ity of 0.0276 ml/in. Ten by ten to the half inch graph paper allowed 

reading of the level in the capillary to 0 . 2  divisions or 0 . 0 1  inch.

The liquid level could thus be measured within 0.0003 ml. By means of 

a specially constructed cap, the bellows was filled with benzene and 

connected to the capillary. Thick-walled polyethylene tubing was used 

to make this connection so as to avoid stretching during the subsequent 

operation. By compressing the bellows with a micrometer directly along 

its axis, the change in level in the capillary was measured against the 

change in length of the bellows. The results showed the bellows to be 

as linear as was able to be determined using this technique (to.5% during 
a compression of 10%) (See Appendix I). Bridgman has found, however, 

with bellows' of much more crude construction, that the linearity is bet­

ter than 0.1% (10). Also, because any small non-linearity would not 

cause a measureable error in the volume change on mixing values (these 

being determined by relative and not absolute compressibilities), no

*The tests for linearity were essentially the same as those 
used by Bridgman (10) and also by Cutler (17).
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further attempts at calibration were carried out.

The exact absolute resistivity* of the Karma wire was never meas­

ured. However, the resistance of the entire wire was measured at various 

pressures (See Chapter IV) and found not to change enough to be measure- 

able.

The bellows constant, K, as determined to 15,000 psi, was used 

unaltered over the entire range of pressures.

Manganin Pressure Gauge

The manganin pressure gauge and recorder were calibrated simul­

taneously by use of another manganin coil previously calibrated by means 

of the freezing points of mercury (24). The two coils were attached to 

the same pressure apparatus, the resistance of the standard coil being 

measured on a Mueller bridge. The results showed the recorder reading 

to be a linear function of applied pressure, reproducible on each scale 

to .25% of the maximum scale reading of 50,000, 100,000, and 200,000 psi.

Measuring Bridge

The only part of the measuring bridge which was calibrated was 

the slide wire rheostat, Rw-Rw', as it was the only variable which af­

fected the calculation of the resistance of the Karma wire section.

(See Appendix I.) This calibration was carried out using a Mueller 

bridge accurate to 2x10"^ ohms. The variation from linearity was found 

to be about 1.7x10"^ ohms. No calibration curve was drawn, however, as 

this precision is approximately the same as that allowed by the vernier.

*It was found to be approximately 8 ohms per foot..



CHAPTER VI

PROCEDURE

Density Deterrrânations

The pycnonieter described in Chapter IV was used to determine the 

density-composition diagram of the system acetone-carbon disulfide at 

0°C.

Samples of known mole fraction of acetone-carbon disulfide were 

made using the method of Powers (30), whereby samples of the pure liquids 

are injected into a pre-weighed, rubber covered glass bottle using a 

hypodermic needle and syringe.

The pycnometer was filled with the liquid in question and placed 

in the ice bath up to the neck. After 20 minutes, the stopper was in­

serted rather abruptly so as to cause a jet of liquid to be ejected 

through the hole in its center. The stopper and outer ground glass 

joint on the pycnometer body were then carefully dried so as to leave 

the level of liquid exactly even with the top of the stopper and the cap 

firmly pressed in place. Any vaporization then taking place does not 

cause a weight loss as the vapor is trapped in the cap. The pycnometer 

was then weighed, disassembled, and refilled with the same sample, the 

procedure then being repeated. The density of each sample was measured 

at least four times, or until three readings of the weight agreed with­

in 1 mg. The pycnometer was then dried and weighed and the procedure

49
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repeated for the next sample. In all, ten samples were run: doubly

distilled water serving as a calibration, pure acetone, pure carbon di­

sulfide, and seven mixtures of varying mole fractions (See Chapter VII),

P-V-T Measurements 

For determination of the isotherms of various mole fractions of 

acetone-carbon disulfide mixtures the vessel shown as Figure 5 was used 

in combination with the measuring bridge (Figure 7). The cell was main­

tained at 0 °C at all times by means of the temperature control described 

in Chapter IV. In preparation for the determination of an isotherm, a 

sample was prepared in the same manner as for the density measurements.

The bellows was removed from the Karma wire and retainer, cleaned thor­

oughly with acetone and then ether, dried by vacuum and weighed along 

with the screw cap. The sample was then inserted by alternately compress­

ing the bellows and then slowly filling with a hypodermic needle and 

syringe as the bellows was allowed to expand. When no air bubbles were 

seen during the compressions, the bellows was assumed full of liquid.

An excess of liquid was allowed to remain which was then forced out as 

the cap was screwed in. The bellows was then rinsed in ether and vacuum 

dried. Special care was exercised in drawing out liquid which remained 

in the threads of the opening. When the bellows ceased to lose weight 

on standing, the weight was recorded and the bellows reinserted into the 

retainer, the Karma wire fixed into its housing on the bellows, and the 

entire assembly replaced into the cell. About three hours were allowed 

to assure temperature equilibrium. Although the thermocouple potential 

would stabilize after about twenty minutes, the bellows and its contents 

were not assumed to be at temperature equilibrium until no change in
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resistance with time was noted on the measuring bridge. This indicated 

the bellows was no longer contracting. Pressure was then applied in an 

increment of 2500 psi and after thermal equilibrium was again attained 

the resistance of the section of Karma wire between the fixed contact 

and the flexible leads was recorded. About 20 minutes was usually suf­

ficient to assure this equilibrium. The change in the resistance during 

a pressure change of 2500 psi was about 0.005 ohms.

Seventeen samples of different mole fractions were investigated. 

Eleven of these were examined from 1 atmosphere to 30,000 psi, the pres­

sure limit for the needle valve between the jack and the PVT cell, using 

the arrangement shown in Figure 10a. The other six were examined from 

1 atmosphere to 100,000 psi using the arrangement shown in Figure 1 0 b.

The measurements were divided into these two groups in order to obtain 

the best possible accuracy in pressure measurement in the low pressure 

range where the compressibilities are high. The Heise Bourdon Tube Gauge 

allowed pressure measurement to -50 psi. Using the manganin gauge and 

recorder, the precision dropped to -250 psi. However, in the high pres­

sure range, the compressibility is lowered, so the precision in the 

calculation of relative volume is not greatly affected.

The freezing point of pure acetone is believed to be about

90,000 psi at 0°C (58) and that of carbon disulfide 150,000 psi (15) 

at this same temperature. No studies have been made on the freezing 

pressures of mixtures of the two. Because freezing may permanently dis­

tort the bellows and render it useless, samples of high acetone concen­

trations were taken no higher than 85,000 psi. The samples richer in 

carbon disulfide were compressed up to 1 0 0 , 0 0 0  psi and pure carbon di­

sulfide up to 125,000 psi.
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Visual Observation 

The Visual observation cell is shown as Figure 5. Before assem­

bly, all parts of the cell were thoroughly cleaned with acetone. A nylon 

bristle brush was used to clean the threads in the cell and on the end 

plugs. The faces of the end plugs were scrupulously cleaned and wiped 

dry with lens tissue until no dust was apparent. The sapphires were 

then pressed on firmly. When the interference pattern caused by the air 

space between sapphire and end plug ceased to change when hand pressure 

was removed, the sapphire was assumed in place. At this time, vigorous 

shaking would not dislodge the sapphire. Using a Cenco vacuum pump, a 

vacuum was pulled behind both sapphires to assure that they remained in 

position. The steel rings were then set in place and the silicone rubber 

"0" rings were slipped on above them. The cell was set into position in 

the yolk and the bottom driving plug and cone were threaded in until the 

cell was firmly pressed against the top underside of the yolk. This 

arrangement made a temporary seal at the bottom so that the liquid sample 

could be inserted. The end plugs were then carefully inserted after all 

threads were coated with molybdenum disulfide grease. The vacuum was 

maintained behind the sapphires at all times (See Figure 8 ). The mer­

cury leg and reservoir were cleaned with acetone, filled with mercury 

and placed into position. The first liquid sample was then injected us­

ing a hypodermic syringe and a length of 0.5 mm I.D. stainless steel 

tubing. The top cone and driving plug were screwed in tightly using a 

16 inch smooth-jawed wrench. Because carbon disulfide attacks all known 

elastomer "0 " rings, including silicone rubber, the pressure was raised 

rather rapidly so as to set the steel rings before the " 0 " rings dissolved 

enough to fail. About 60,000 psi was sufficient. The pressure was then
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slowly released and the sample left in for 24 hours to allow it to dis­

solve out as much of the "0 " rings as possible, and thus prevent contam­

ination of subsequent samples. The cell was then drained and the pro­

cedure repeated. Rinsing was carried out with acetone, using the hypo­

dermic syringe and tubing, and the experimental trials begun. As long 

as the end plugs were not moved, the steel rings provided a seal over 

the entire pressure range. If, however, they had to be removed, the 

entire sealing procedure had to be repeated using new steel and rubber 

rings. On removal, the ”0” rings were found to be ragged, soft and 

rather lifeless. On immersion in carbon disulfide no further dissolution 

was apparent.*

Each experimental sample was prepared according to the method 

of Powers (30). The sample was inserted in the same manner as the first 

and the pressure raised to about 20,000 psi. After fiberglass insula­

tion was wrapped around the cell, cooling was begun and about 1 2  hours 

were allowed to assure thermal equilibrium. The vacuum was removed from 

behind the sapphires and a mercury-in-glass thermometer was placed into 

one end plug with its bulb resting against the sapphire, a rubber stopper 

at the outer end of the plug acting as an insulator. The temperature 

read on the thermometer was essentially the same*'' as that of a copper- 

constantan thermocouple lying between the yolk and cell. The pressure 

was increased until cloudiness occurred. It was held there and the

■"'The "0" rings were left in a beaker of carbon disulfide for 
about an hour and removed, the carbon disulfide then being allowed to 
evaporate. At dryness, no residue was noted. When the same experiment 
was carried out with a new silicone "0 " ring, a visible film of sedi­
ment was observed.

■"'■"■To within 0.2°C, or as accurately as the thermocouple potential 
was measured using the same Leeds and Northrup Potentiometer as was used 
with the PVT cell.
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temperature allowed to restabilize. The pressure was then lowered until 

the solution cleared, and then raised again to the translucent pressure. 

These two pressures, that necessary to cause cloudiness and that to 

cause clearing coincided within about 500 psi.

That no JP-4 entered the cell during the experimentation was 

known on the basis of two observations: First, at all times there was

a slight leak at the fitting at the bottom of the mercury reservoir. As 

long as mercury was leaking, it could be safely assumed that no JP-4 

could reach the cell. If JP-4 were leaking, it was possible that the 

column of JP-4 had reached the low point in the mercury leg and could 

rise into the cell. Second, when JP-4 did enter the cell it was evi­

denced by streams of high viscosity having an index of refraction much 

different from the experimental mixture.

Nine mixtures ranging in composition from 14.79 to 93 percent 

acetone were examined at -2 °C. This temperature was used instead of 

0°C, where the PVT and density measurements were made, in order to ob­

tain a more complete phase diagram. This was the case since the range 

of pressures where separation occurred was uncomfortably near the limit 

of the equipment. In order to estimate the effect of temperature on the 

separation pressure, three samples were allowed to warm slightly, while 

the pressure was raised sufficient to maintain cloudiness. (See Chap­

ter VII.)

At the conclusion of each trial, the cell was warmed by pumping 

30°C water through the copper tubing. This was done to prevent any water 

from condensing inside the pressure chamber during the time the cell was 

open for rinsing and sample insertion.
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Reagents

The reagents used exclusively in the study were Fischer Reagent 

Grade acetone and Baker Reagent Grade carbon disulfide. Each was dis­

tilled with the first 10 and last 40% being discarded. The acetone ac­

cepted had an observed boiling point range from 132.5 - 133°F. The 

carbon disulfide ranged from 113.5 - 1’4°F.

Althougn the samples had some exposure to the atmosphere during 

preparation and insertion into the sylphon bellows and also into the 

visual observation cell, no appreciable contamination of the acetone 

with water was believed to have taken place. Griswold and Buford (22) 

report excellent accuracy in vapor-liquid equilibrium studies using ap­

proximately the same purification and handling techniques for their 

acetone.



CHAPTER VII

RESULTS

Density Determinations 

The densities of the nine different composition acetone-carbon 

disulfide mixtures were calculated directly from the weight of the sam­

ple and volume of the pycnometer obtained from the water calibration. 

These results are shown as Figure 12 and column 2 in Table 5.

The molal volume of each sample was calculated from the density 

and mole fraction of the sample:

y ; =  [ i
where: molecular weight of acetone.

= molecular weight of CS 2 .

These results were fit to a 5th order polynomial using a least 

squares routine on an IBM 1410 Data Processing System, using twenty dec­

imal accuracy.* The resultant polynomia 's shown above Table 5 with 

the values listed in column 3. The curve is drawn in Figure 13.

The molal change in volume on mixing at 0 °C and one atmosphere,

*The program used for all smoothing operations was the IBM No. 
7.0.002 least square routine for the 1620 Data Processing System. How­
ever, it was found that for polynomials of 4th order and higher that the 
eight digit capacity of the 1620 caused large cumulative errors, actually 
worsening the fit with increasing order. Thus, for the 5th order poly­
nomials, the program was altered so as to be used on the 1410 and make 
use of the 2 0  decimal accuracy.

56
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TABLE 5

RESULTS OF DENSITY DETERMINATIONS

Acetone - CS 2  0°C 1 Atmosphere

\/f = 58.8741 + 16.0970% - 1.1526%2 - 9.8920x3 + 15.9456x4 - 8.4328x5

Xace -rt (ay“7°
0 . 0 0 0 0 0 1.29339 58.871 0 . 0 0 0 0

0.08742 1.23702 60.277 0.3072
0 . 1 0 0 0 0 0.3333
0.17477 1.18488 61.598 0.5303
0 . 2 0 0 0 0 0.6040
0.26538 1.13310 62.962 0.7554
0.30000 0.7974
0.40000 0.9174
0.40644 1.06024 64.892 0.9124
0.50000 0.9748
0.55761 0.98805 66.870 0.9904
0.60000 0.9783
0.70000 0.9258
0.76863 0.89741 69.377 0.8451
0.80000 0.7911
0.87559 0.85600 70.457 0.5807
0.90000 0.5162
1 . 0 0 0 0 0 0.81299 71.440 0 . 0 0 0 0

Density of pure acetone literature (46) . 0.81248
Density of pure CS9  literature (46) = 1.29319
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CS« - A C E T O N E

P R E S S U R E  = 14.7 p.s. i .

I . 0 - -

. 9 - -

. 20  . 3 0  . 4 0  . 5 0  . 6 0  . 70  . 8 0  . 9 0  1.000 .10
M O L E  F R A C T I O N  A C E T O N E

Figure 12.--Densities at 0  C and One Atmosphere
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^ A  Ÿ**) ’ calculated from the results of the smoothing and the defi­

nition of :

Av'’s ~2;xivç* (59)
For the system in question:

=  V m  +  X'wf (]lcs^ —  Vjttt) -  (60)

These results are listed as column 4 in Table 5 and the curve 

drawn in Figure 13.

Compression Measurements 

The resistance versus pressure data from the PVT cell were 

smoothed in the same manner as , this time using third order poly­

nomials. A sample curve is shown as Figure 14. These data were con­

verted to (V/V°) vs. pressure values using Equation (56) and the initial 

volumes of the bellows calculated from the densities of the mixtures and 

the weight of samples in the bellows:

=  /- =  /- -0; (Ap ^ s ) (61)

One result is shown as Figure 15. The complete results are tabulated as 

Table 6 .

Observed Separations 

The results of the visual observations are listed as Table 7.

The resultant curve at -2 °C and that envisioned at 0°C are shown as Fig­

ure 16. The points at 0 °C were extrapolated on the basis of the appar­

ent effect of temperature on the separation pressures of four samples.
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Figure 15.--Sample (V/V°) vs. P



63

TABLE 6  

(V/V°) vs P

A. %ace - 0 . 0 0 0 0 0 ^ace - 1 . 0 0 0 0 0

( v / v ° ) P,psi ( v / v ° ) P,psi
1 . 0 0 0 0 14.7 1 . 0 0 0 0 14.7
0,9948 1 , 0 0 0 0.9937 1 , 0 0 0

0.9572 10,000 0.9485 1 0 , 0 0 0

0.9418 15,000 0.9304 15,000
0.9288 20,000 0.9150 2 0 , 0 0 0

0.9172 25,000 0.9039 25,000
0.9070 30,000 0.8919 30,000
0.8977 35,000 0.8817 35,000
0.8890 40,000 0.8727 40,000
0.8811 45,000 0.8647 45,000
0.8737 50,000 0.8575 50,000
0.8669 55,000 0.8509 55,000
0 . 8 6 0 6 60,000 0.8449 60,000
0.8549 65,000 0.8389 65,000
'■'.8495 70,000 0.8335 70,000
0.8445 75,000 0.8281 75,000
0.8398 80,000 0.8239 80,000
0.8354 85,000 0.8196 85,000

C • %ace “ 0.10401 D. Xace " .15436

(V/V°) P,psi ( v / v ° ) P,psi
1 . 0 0 0 0 14.7 1 . 0 0 0 0 14.7
0.9948 1 , 0 0 0 0.9947 1 , 0 0 0

0.9759 5,000 0.9756 5,000
0.9562 1 0 , 0 0 0 0.9557 1 0 , 0 0 0

0.9399 15,000 0.9394 15,000
0.9262 2 0 , 0 0 0 0.9257 2 0 , 0 0 0

0.9142 25,000 0.9138 25,000
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TABLE 6 --Continued

^ace = 0.25778 ^ • ^ace = 0.40473

(v/v°) P,.psi (V/V°) P,psi
1 . 0 0 0 0 14.7 1 . 0 0 0 0 14.7
0.9941 1 , 0 0 0 0.9942 1 , 0 0 0

0.9733 5,000 0.9733 5,000
0.9520 1 0 , 0 0 0 0.9520 1 0 , 0 0 0

0.9349 15,000 0.9348 15,000
0.9208 2 0 , 0 0 0 0.9205 2 0 , 0 0 0

0.9084 25,000 0.9070 25,000

G. %ace = 0.50608 ^ace = 0.51046

(V/V°) P,psi (V/V°) P,psi
1 . 0 0 0 0 . 14.7 1 . 0 0 0 0 14.7
0.9942 1 , 0 0 0 0.9940 1 , 0 0 0

0.9730 5,000 0.9722 5,000
0.9512 1 0 , 0 0 0 0.9500 1 0 , 0 0 0

0.9335 15,000 0.9323 15,000
0,9190 2 0 , 0 0 0 0.9178 2 0 , 0 0 0

0.9064 25,000 0.9057 25,000

^' ^ace = 0.60187 ^ace = 0.75209*

(V/V°) F,psi (V/V°) P,psi
1 . 0 0 0 0 14.7 1 . 0 0 0 0 14.7
0.9937 1 , 0 0 0 0.9933 1 , 0 0 0

0.9714 5,000 0.9700 5,000
0.9492 1 0 , 0 0 0 0.9474 1 0 , 0 0 0

0.9318 15,000 0.9301 15,000
0.9174 2 0 , 0 0 0 0.9160 2 0 , 0 0 0

0.9044 25,000 0.9027 25,000
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TABLE 6 --Continued

K. %ace = 0.89391 ^ace - 0.22262

(V/V°) P,psi (V/VO) P.psi
1 . 0 0 0 0 14.7 0.9001 30,000
0.9935 1 , 0 0 0 0.8899 35,000
0.9707 5,000 0.8807 40,000
0.9480 1 0 , 0 0 0 0.8722 45,000
0.9304 15,000 0.8645 50,000
0.9157 2 0 , 0 0 0 0.8575 55,000
0.9026 25,000 0.8510 60,000

0.8451 65,000
0.8396 70,000
0.8345 75,000
0.8296 80,000
0.8250 85,000

^ace = 0.42235 ^ ' ^ace ~ 0.60720

(V/V°) P,psi (V/V°) P.psi
0.8955 30,000 0.8930 30,000
0.8851 35,000 0.8827 35,000
0.8758 40,000 0.8734 40,000
0.8673 45,000 0.8649 45,000
0.8598 50,000 0.8571 50,000
0.8530 55,000 0.8500 55,000
0.8466 60,000 0.8436 60,000
0.8408 65,000 0.8376 65,000
0.8353 70,000 0.8321 70,000
0.8299 75,000 0.8269 75,000
0.8247 80,000 0.8220 80,000
0.8198 85,000 0.8173 85,000
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0" %ace - 0.75209

(V/V°) P,psi
0.8919 30,000
0.8816 35,000
0.8722 40,000
0.8637 45,000
0.8560 50,000
0.8489 55,000
0.8423 60,000
0.8364 65,000
0.8309 70,000
0.8258 75,000
0.8209 80,000
0.8158 85,000

TABLE 6--Continued

'Both runs made with same sample in bellows.
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TABLE 7

OBSERVED LIQUID-LIQUID SEPARATIONS

Xace

Acetone - CS 2  

T,°C P,psi

.1479 -2 >  82,000*

.2022 -2 76,000

.2022 -1.75 75,500

.2494 -2 72,500

.2971 -2 73,600

.2971 -1 76,000

.40 -7 64,000

.40 -2 73,000

.4717 -2 74,500

.5267 -2 78,000

.5267 -1.25 79,500

.6422 -2 >85,000*

.93 -2 > 7 7  ,500*

*No separation was noted to this pressure.
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CHAPTER VIII

TREATMENT OF DATA

Calculation of A

In order to obtain the change in volume on mixing for mixtures 

of acetone-carbon disulfide over the range of pressure necessary to inte­

grate Equation (33) and hence predict the isothermal phase diagram, it 

was necessary to perform four operations on the volume-pressure data:

1) The (V/V°) data were smoothed as functions of mole fraction 

at 5000 psi increments in pressure using the "least squares" 

method.

2) The change in volume on mixing ( was calculated from

1) at each mole fi^.ction and each pressure.

3) The results of 2) were smoothed as a function of mole fraction 

at each pressure using the "least squares" method.

4) The results of 3) were smoothed as a function of pressure at 

each mole fraction using the "least squares" method.

Each of these operations is described in greater detail below:

1) The (V/V°) data were smoothed with respect to mole fraction 

at each 5000 psi increment in pressure using a 3rd order poly­

nomial. These results are also shown in Table 8. The curve 

at 10,000 psi is drawn as Figure 17. These results should be 

able to be compared, at least qualitatively, with the isothermal

69
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TABLE 8 

(V/V°) vs Xace (SMOOTHED)

Pressure = 1,000 psi Pressure = 5,000 psi

^ace ( v / v ° ) ^ace (v/v°)
0.00000 0.99482 0.00000 0.97628
0.10000 0.99474 0.10000 0.97575
0.20000 0.99460 0.20000 0.97499
0.30000 0.99438 0.30000 0.97408
0.40000 0.99414 0.40000 0.97312
0.50000 0.99391 0.50000 0.97220
0.60000 0.99370 0.60000 0.97142
0.70000 0.99355 0.70000 0.97084
0.80000 0.99349 0.80000 0.97057
0.90000 0.99354 0.90000 0.97065
1.00000 0.99373 1.00000 0.97117

Pressure = 10,000 psi Pressure = 15,000 psi

%ace (V/V°) %ace (v/v°)
0.00000 0.95726 0.00000 0.94180
0.10000 0.95595 0.10000 0.93970
0.20000 0.95449 0.20000 0.93767
0.30000 0.95301 0.30000 0.93585
0.40000 0.95158 0.40000 0.93421
0.50000 0.95028 0.50000 0.93282
0.60000 0.94921 0.60000 0.93171
0.70000 0.94842 0.70000 0.93090
0.80000 0.94798 0.80000 0.93041
0.90000 0.94795 0.90000 0.93022
1.00000 0.94837 1.00000 0.93034

Pressure = 20,000 psi Pressure = 25,000 psi

%ace (V/V°) %ace ( v / v ° )
0.00000 0.92884 0.00000 0.91721
0.10000 0.92615 0.10000 0.91442
0.20000 0.92372 0.20000 0.91179
0.30000 0.92163 0.30000 0.90894
0.40000 0.91986 0.40000 0.90739
0.50000 0.91841 0.50000 0.90569
0.60000 0.91731 0.60000 0.90439
0.70000 0.91652 0.70000 0.90352
0.80000 0.91605 0.80000 0.90310
0.90000 0.91584 0.90000 0.90309
1.00000 0.91581 1.00000 0.90349
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TABLE 8--Continued

Pressure = 30,000 psi

%ace (V/V°) Xace
0.00000 0.90705 0.00000
0.10000 0.90369 0.10000
0.20000 0.90066 0.20000
0.30000 0.89812 0.30000
0.40000 0.89597 0.40000
0.50000 0.89427 0.50000
0.60000 0.89303 0.60000
0.70000 0.89220 0.70000
0.80000 0.89179 0.80000
0.90000 0.89170 0.90000
1.00000 0.89188 1.00000

Pressure = 40,000 psi Pressure

^ace (V/V°) ^ace
0.00000 0.88903 0.00000
0.10000 0.88497 0.10000
0.20000 0.88145 0.20000
0.30000 0.87857 0.30000
0.40000 0.87625 0.40000
0.50000 0.87450 0.50000
0.60000 0.87330 0.60000
0.70000 0.87258 0.70000
0.80000 0.87232 0.80000
0.90000 0.87238 0.90000
1.00000 0.87267 1.00000

Pressure = 50,000 psi Pressure

Xace (V/V°) Xace
0.00000 0.87368 0.00000
0.10000 0.86938 0.10000
0.20000 0.86562 0.20000
0.30000 0.86253 0.30000
0.40000 0.86005 0.40000
0.50000 0.85820 0.50000
0.60000 0.85700 0.60000
0.70000 0.84637 0.70000
0.80000 0.85632 0.80000
0.90000 0.85668 0.90000
1.00000 0.85743 1.00000

Pressure = 35,000 psi

(V/V°) 
0.89769 
0.89390 
0.89059 
0.88785 
0,88562 
0.88390 
0.88268 
0.88193 
0.88157 
0.80150 
0.88168

45.000 psi

(V/V°)
0.88106
0.87683
0.87316
0.87016
0.86775
0.86596
0.86475
0.86409
0.86393
0.86414
0.86465

55.000 psi

(V/V°)
0.86689
0.86256
0.85873
0.85558
0.85303
0.85114
0.84991
0.84932
0.84934
0.84985
0.85081
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TABLE 8--Continued

Xace

Pressure = 60,000 psi

(V/V°)
0.86062 
0.85626 
0.85239 
0.84919 
0.84660 
0,84468 
0.84345 
0.84288 
0.84286 
0.84362 
0.84476

Pressure

0.00000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 
0.70000 
0.80000 
0.90000 
1.00000

Pressure

Xace 
0.00000 
0.10000  
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 
0.70000 
0.80000 
0.90000 
1.00000

70,000 psi

(V/V°)
0.84946
0.84499
0.84103
0.83777
0.83513
0.83319
0.83197
0.83143
0.83156
0.83222
0.83339

Pressure = 80,000 psi

Xace 
0.00000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 
0.70000 
0.80000 
0.90000 
1.00000

65,000 psi

(V/Vü)
0.85484
0.85043
0.84651
0.84329
0.84068
0.83874
0.83751
0.83694
0.83703
0.83764
0.83874

Pressure = 75,000 psi

(V/V°) 
0.84446 
0.83986 
0.83582 
0.83252 
0.82989 
0.82797 
0.82677 
0.82624 
0.82637 
0.82699 
0.82805

■^ace 
0.00000 
0.10000 
0.20000 
0.30000 
0.40000 
0.50000 
0.60000 
0.70000 
0.80000 
0.90000 
1.00000

Pressure = 85,000 psi

^ace (V/V°) ^ace (V/V°)
0.00000 0.83978 0.00000 0.83534
0.10000 0.83504 0.10000 0.83060
0.20000 0.83089 0.20000 0.82636
0.30000 0.82751 0.30000 0.82189
0.40000 0.82482 0.40000 0.82006
0.50000 0.82290 0.50000 0.81802
0.60000 0.82174 0.60000 0.81680
0.70000 0.82131 0.70000 0.81636
0.80000 0.82160 0.80000 0.81672
0.90000 0.82245 0.90000 0.81774
1.00000 0.82381 1.00000 0.81942
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PRESSURE = 10,000 psi
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MOLE FRACTION ACETONE
Figure 17.--Sample (V/V ) vs. X
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compressibilities of this mixture determined at 1 atmosphere 

(See Appendix IV).

2) The changes in volume on mixing for each 0.1 increment in mole 

fraction and 5000 psi increments in pressure were calculated 

using the smoothed (V/V°) data from operation 1), and molal 

volumes at one atmosphere:

(62)

where: A V ^ =  molal change in volume on mixing for mixture
of composition X at pressure P.

volume occupied at pressure P by that mass of 
sample of composition X which occupied unit 
volume at one atmosphere.

volume occupied at pressure P by that mass of
acetone which occupied unit volume at one at­
mosphere.

volume occupied at pressure P by that mass of 
*■ carbon disulfide which occupied unit volume at 

one atmosphere.

3) These results were smoothed with respect to mole fraction at 

each pressure using a 5th order polynomial, as was used in 

constructing the change in volume on mixing curve at one at­

mosphere. Table 9 shows the results of this procedure. Fig­

ures 18 and 19 illustrate the curves from 5000 psi to 70,000

psi. The curves above 70,000 psi are not shown as they are

probably not representative of the true behavior. (See 

Appendix IV).

The data points shown on the alternate curves are calculated 

from the (V/V°) vs P curves and Equation (62). Thus, the 

deviation of these points from the smooth curves shows the
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TABLE 9

MOLAL CHANGE IN VOLUME ON MIXING AT 0°C AS A FONCTION OF 

COMPOSITION (SMOOTHED)

ACETONE-CARBON DISULFIDE

PxlO'^psi

^  = Axace +
A

4 3 Bxace Cxgcg

B

+ Dxgce 

C

GXace

D E

0 -8.433 15.946 -9.892 -1.153 3.532
1 -8.433 15.946 -9.555 -1.551 3.592
5 -8.433 15.946 -8.810 -2.333 3.629

10 -8.433 15.946 -8.827 -2.006 3.319
15 -8.433 15.946 -9.278 -1.104 2.869
20 -8.433 15.946 -9.579 - .448 2.513
25 -8.433 15.946 -9.100 - .929 2.516
30 -8.433 15.946 -9.507 - .154 2.149
35 -8.433 15.946 -9.710 + .331 1.865
40 -8.433 15,946 -9.731 + .542 1.676
45 -8.433 15.946 -9.637 + .577 1.546
50 -8.433 15.946 -9.481 + .493 1.473
55 -8.433 15.946 -9.314 + .368 1.433
60 -8.433 15.946 -9.192 + .294 1.385
65 -8.433 15.946 -9.221 + .366 1.342
70 -8.433 15.946 -9.204 + .408 1.283
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effect of smoothing operations 1) and 2) and offer a good 

representation of the experimental error. Table 10 lists 

the points calculated to 75,000 psi at each 5000 psi.

4) In order to integrate Equation (33) and hence predict the 

isothermal carbon disulfide-acetone liquid-liquid phase dia­

gram, the results of operation 2) were smoothed with respect 

to pressure at each 0.02 increment in mole fraction from 10 

percent to 80 percent acetone. These polynomials are listed 

as Table 11. One sample curve is shown as Figure 20. The 

curves were extrapolated to 100,000 psi, permitting graphical 

integration to this pressure.

Prediction of Phase Behavior 

The third order polynomials expressing ^y^*as a function of 

pressure at each 0.02 increment in mole fraction were integrated to 

pressures of 25,000, 50,000, 60,000 and 70,000 psi. The extrapolated 

regions were used to graphically integrate to 75,000, 80,000, 90,000 and

100,000 psi. These areas were then divided by RT and substituted into 

Equation (33):

.AI \p»
(63)

- m )

and thus added to the free energy curve at 0°C and 1 atmosphere (See 

Appendix III). The results are shown as Table 12. The shape of the free 

energy diagrams at each pressure is shown as Figures 21 and 22.

Using the method outlined in Chapter II tangents were drawn to 

the curves at two points where possible. At pressures below 75,000 psi, 

the free energy diagram exhibits no inflection point and hence, sépara-
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TABLE 10 

^ \ / * V S  X CALCULATED DIRECTLY

P = 14.7 psi

X /IV"’
0.00000 0.0000
0.08742 0.3072
0.17477 0.5303
0.26538 0.7554
0.40644 0.9124
0.55761 0.9904
0.76863 0.8451
0.87559 0.5807
1.00000 0.0000

P = 5,000psi P = lOjOOOpsi P = 15,000psi

X /iv"’ AV"! a r
0.00000 0.0000 0.0000 0.0000
0.10401 0.3535 0.2628 0.2938
0,15436 0.4904 0.4684 0.4369
0.25778 0.6298 0.5435 0.4748
0.40473 0.8516 0.7941 0.7426
0.50608 0.9168 0.8539 0.7869
0.51046 0.8649 0.7740 0.7030
0.60180 0.8381 0.7728 0.7323
0.75209 0.6804 0.6230 0.6221
0.89391 0.4518 0.4244 0.4248
1.00000 0.0000 0.0000 0.0000

P = 20,000psi P = 25,OOOpsi

X A  v"’ A f
0.00000 0.0000 0.0000
0.10401 0.1891 0.2340
0.15436 0.4037 0.3846
0.25778 0.4190 0.3722
0.40473 0.6902 0.6309
0.50608 0.7226 0.6613
0.51046 0.6496 0.6176
0.60187 0.6892 0.6042
0.75209 0.6081 0.5080
0.89391 0.3947 0.3134
1.00000 0.0000 0.0000
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TABLE 10--Continued

p = 30,000psi P = 35,000psi P = 40,000psi

X A  V"’ A  V™ A f
0.00000 0.0000 0.0000 0.0000
0.22262 0.4017 0.3588 0.3223
0.42235 0.5508 0.5015 0.4608
0.60720 0.5971 0.5620 0.5218
0.75209 0.5563 0.5278 0.4887
1.00000 0.0000 0.0000 0.0000

P = 45,000psi P = 50,000psi P = 55,000psi

X Af" A V ™ A
0.00000 0.0000 ÏÏ7Ô5ÔÔ 0.0000
0.22262 0.2870 0.2603 0.2366
0.42235 0.4218 0.4031 0.3851
0.60720 0.4777 0.4372 0.4026
0.75209 0.4449 0.4024 0.3648
1.00000 0.0000 0.0000 0.0000

P = 60,000psi P = 65,000psi P = 70,000psi

X A f A f A  v"’
0.00000 0.0000 0.0000 0.0000
0.22262 0.2164 0.2046 0.1958
0.42235 0.3698 0.3664 0.3509
0.60720 0.3730 0.3670 0.3485
0.75209 0.3291 0.3287 0.3142
1.00000 0.0000 0.0000 0.0000

P = 75,OOOpsi

X A
0.00000 0.0000
0.22262 0.1890
0.42235 0.3335
0.60720 0.3404
0.75209 0.3106
1.00000 0.0000
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TABLE 11

MOLAL CHANGE IN VOLUME AT 0°C AS A FUNCTION OF PRESSURE (SMOOTHED)

A f '  =: A + BP + Cp2 + Dp3

X A BxlO^ CxloS DxlO?

0.10 0.3463 -5.3662 1.6227 2.1109
0.12 0.4074 -6.3214 2.0513 2.3125
0. 14 0.4652 -7.2359 2.5066 2.4496
0.16 0.5196 -8.1090 2.9850 2.5259
0.18 0.5706 -8.9404 3.4844 2.5443
0.20 0.6182 -9.7290 3.9987 2.5106
0.22 0.6622 -10.4752 4.5286 2.4253
0.24 0.7028 -11.1774 5.0670 2.2953
0.26 0.7400 -11.8354 5.6117 2.1233
0.28 0.7738 -12.4489 6.1605 1.9121
0.30 0.8043 -13.0173 6.7098 1.6656
0.32 0.8316 -13.5398 7.2553 1.3884
0.34 0.8559 -14.0156 7.7935 1.0842
0.36 0.8772 -14.4449 8.3227 0.7556
0.38 0.8957 -14.8265 8.8384 0.4072
0.40 0.9115 -15.1597 9.3360 0.0437
0.42 0.9247 -15.4443 9.8141 -0.3327
0.44 0.9355 -15.6799 10.2693 -0.7183
0.46 0.9440 -15.8656 10.6974 -1.1086
0,48 0.9503 -16.0011 11.0958 -1.5006
0.50 0.9544 -16.0854 11.4602 -1.8896
0.52 0.9566 -16.1184 11.7882 -2.2727
0.54 0.9567 -16.0992 12.0758 -2.6458
0.56 0.9550 -16.0272 12.3193 -3.0047
0.58 0.9513 -15.9018 12.5152 -3.3454
0.60 0.9457 -15.7229 12.6620 -3.6661
0.62 0.9380 -15.4895 12.7547 -3.9613
0.64 0.9284 -15.2020 12.7932 -4.2305
0.66 0.9165 -14.8577 12.7671 -4.4633
0.68 0.9022 -14.4576 12.6784 -4.6610
0.70 0.8854 -14.0014 12.5240 -4.8199
0.72 0.8657 -13.4877 12.2987 -4.9349
0.74 0.8428 -12.9162 11.9997 -5.0025
0.76 0.8164 -12.2864 11.6235 -5.0189
0.78 0.7860 -11.5974 11.1662 -4.9799
0.80 0.7512 -10.8492 10.6260 -4.8832
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TABLE 12

MOLAL CHANGE IN FREE ENERGY ON MIXING AT 0°C AS A FUNCTION
OF COMPOSITION 

ACETONE-CARBON DISULFIDE

Xace

P = 25,000psi 50,000psi 60,000psi 70,000psi

0.00 0.0000 0.0000 0.0000 0.0000
0.10 0.0855 0.0717 0.0676 0.0638
0.12 0.0923 0.0760 0.0712 0.0667
0.14 0.0983 0.0797 0.0741 0.0690
0.16 0.1041 0.0833 0.0770 0.0713
0.18 0.1096 0.0868 0.0799 0.0736
0.20 0.1150 0.0899 0.0824 0.0759
0.22 0.1198 0.0932 0.0852 0.0779
0.24 0.1245 0.0963 0.0878 0.0801
0.26 0.1289 0.0992 0.0903 0.0822
0.28 0.1333 0.1023 0.0930 0.0845
0.30 0.3174 0.1052 0.0955 0.0867
0.32 0.1410 0.1078 0.0977 0.0887
0.34 0.1445 0.1103 0.1000 0.0908
0.36 0.1478 0.1127 0.1022 0.0927
0.38 0.1509 0.1152 0.1044 0.0948
0.40 0.1538 0.1174 0.1064 0.0966
0.42 0.1567 0.1197 0.1086 0.0986
0.44 0.1594 0.1218 0.1105 0.1004
0.46 0.1615 0.1237 0.1122 0.1020
0.48 0.1637 0.1255 0.1139 0.1036
0.50 0.1657 0.1272 0.1155 0.1051
0.52 0.1677 0.1289 0.1170 0.1066
0.54 0.1696 0.1306 0.1187 0.1081
0.56 0.1712 0.1320 0.1200 0.1093
0.58 0.1728 0.1334 0.1214 0.1105
0.60 0.1741 0.1347 0.1224 0.1116
0.62 0.1752 0.1357 0.1233 0.1124
0.64 0.1757 0.1362 0.1238 0.1127
0.66 0.1763 0.1369 0.1244 0.1132
0.68 0.1767 0.1373 0.1248 0.1135
0.70 0.1764 0.1373 0.1248 0.1135
0.72 0.1761 0.1373 0.1247 0.1134
0.74 0.1750 0.1367 0.1242 0.1129
0.76 0.1730 0.1353 0.1229 0.1116
0.78 0.1706 0.1338 0.1215 0.1104
0.80 0.1668 0.1311 0.1191 0.1081
1.00 0.0000 0.0000 0.0000 0.0000



84

TABLE 12--Continued

^ace
75,OOOpsi

-

80 jOOOpsi 90,000psi lOOjOOOpsi

0.00 0.0000 0.0000 0.0000 0.0000
0.10 0.0620 0.0603 0.0569 0.0536
0.12 0.0646 0.0623 0.0585 0.0545
0.14 0.0666 0.0642 0.0597 0.0554
0.16 0.0686 0.0659 0.0608 0.0558
0.18 0.0706 0.0676 0.0618 0.0564
0.20 0.0724 0.0693 0.0632 0.0573
0.22 0.0745 0.0711 0.0646 0.0583
0.24 0.0764 0.0729 0.0660 0.0593
0.26 0.0785 0.0746 0.0673 0.0604
0.28 0.0805 0.0766 0.0691 0.0617
0.30 0.0826 0.0785 0.0707 0.0631
0.32 0.0844 0.0803 0.0723 0.0646
0.34 0.0864 0.0822 0.0740 0.0661
0.36 0.0882 0.0839 0.0754 0.0672
0.38 0.0903 0.0858 0.0772 0.0687
0.40 0.0920 0.0875 0.0788 0.0704
0.42 0.0939 0.0894 0.0806 0.0720
0.44 0.0957 0.0911 0.0823 0.0731
0.46 0.0972 0.0926 0.0836 0.0750
0.48 0.0988 0.0942 0.0852 0.0765
0.50 0.1002 0.0955 0.0865 0.0779
0.52 0.1017 0.0970 0.0882 0.0798
0.54 0.1021 0.0984 0.0895 0.0812
0.56 0.1043 0.0996 0.0907 0.0825
0.58 0.1055 0.1007 0.0917 0.0833
0.60 0.1066 0.1018 0.0927 0.0843
0.62 0.1073 0.1025 0.0934 0.0850
0.64 0.1076 0.1027 0.0937 0.0853
0.66 0.1080 0.1031 0.0940 0.0856
0.68 0.1083 0.1033 0.0940 0.0855
0.70 0.1083 0.1033 0.0941 0.0856
0.72 0.1082 0.1032 0.0938 0.0853
0.74 0.1076 0.1026 0.0932 0.0846
0.76 0.1064 0.1014 0.0921 0.0836
0.78 0.1052 0.1002 0.0910 0.0826
0.80 0.1050 0.0981 0.0889 0.0804
1.00 0.0000 0.0000 0.0000 0.0000
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tion into two liquid phases is predicted only at pressures above this 

at 0°C. The compositions of the phases in equilibrium at high pressures 

as determined by the tangents are shown as Figure 23.

It should be .iOted here that the free energy diagrams as shown 

in Figure 22 exhibit "humps" or regions of metastable and unstable con­

ditions instead of straight lines between the compositions in equilibrium 

(See Chapter II). This occurs because of the smoothing operations on 

the PVT data. If the data were accurate enough to show discontinuities 

when they occurred, as pictured diagrammatically as Figure 24, the true 

free energy curve would be obtained. Instead, the smoothing operations 

tend to round off these discontinuities and the continuous free energy 

curves are obtained. Also, if these changes in volume on mixing data 

were this accurate, prediction of the isothermal liquid-liquid phase 

diagram could be made directly from such figures without need for the 

change in free energy on mixing diagrams.

The predicted and observed phase diagrams are reproduced as Fig­

ure 25. The shapes are markedly similar to the isobaric results of 

Clusius and Ringer (16) at one atmosphere (Figure 26).
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CHAPTER IX

CONCLUSIONS

The agreement between the predicted phase diagram for the system 

acetone-carbon disulfide at 0°C and the experimental points extrapolated 

to that same temperature (Figure 25) seem to indicate, neglecting the 

possibility of fortuitous error cancellations, rather acceptable results. 

As determined in "Error Analysis," the expected accuracy in the change 

in volume on mixing was from one to five percent. The prediction, based 

in part on this term, deviates from the observed behavior by an average 

of three percent in pressure. If the activity data of Zawidzky (48), 

heat of mixing data of Schmidt (36), and specific heat data of Staveley 

(41), are all considered perfect, the error in the prediction can be 

assumed to be completely the fault of the measurements made in this in­

vestigation. However, as seen from the scatter in the heat of mixing 

data (Appendix III), a final judgment of the accuracy of the data must 

await a more precise means of ascertaining the free energy diagram at 

0°C and one atmosphere. With this stipulation, the contributions of 

the work may be listed as follows:

1) The fractional change in volume with pressure for one binary 

liquid system at one temperature has been obtained to 85,000 

psi over the entire range of composition.

2) A method has been described which allows the use of this
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data, along with solution behavior and density data at one 

atmosphere, in predicting the isothermal liquid-liquid phase 

diagram of the system or;

3) If the isothermal phase diagram is available, permits a check 

on the accuracy of the thermodynamic data.

4) The isothermal liquid-liquid phase diagram for the system has 

been obtained and found to compare favorably with the pre­

diction.



TABLE OF NOMENCLATURE

a = defined by Equation 93.

= activity of component i (See Equation 9)

= activity of component 1 

% 2  = activity of component 2

Aĵ  = i c o e f f i c i e n t

A = coefficient

b = defined by Equation 93

B = coefficient

C = coefficient

(£p)^ = molal specific heat of pure component i , cal./mole °K.

(C^p)^ = molal specific heat of mixture, cal./mole °K.

^ C p " ’ = molal change in specific heat on mixing, cal./mole °K.

^  Cp"̂  = average molal change in specific heat on mixing.
cal./mole °K

D = coefficient

E = coefficient

= function

f^° = fugacity of pure component i

= fugacity of component i in solution 

= molal free energy of pure component i 

üj = partial molal free energy of component i in solution

= molal free energy of pure component 1
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Gi = partial molal free energy of component 1 in solution

Gg = molal free energy of pure component 2

G 2  = partial molal free energy of component 2  in solution

= molal free energy of pure component 1 referred to phase 1

_ t
Gj = partial molal free energy of component 1 in solution in

phase 1

I f
Gj = molal free energy of pure component 1 referred to phase 2

I I
ü| = partial molal free energy of component 1 in solution in

phase 2

G 2 ' = molal free energy of pure component 2  referred to phase 1

G 2 ' = partial molal free energy of component 2  in solution in
phase 1

Gg ' = molal free energy of pure component 2  referred to phase 2

G 2 '' = partial molal free energy of component 2  in solution in
phase 2

G^ = molal free energy of mixture

^  g "̂ = molal change in free energy on mixing

^  G*̂  = total change in free energy on mixing

(AG™) = molal change in free energy on mixing in phase 1

= molal change in free energy on mixing in phase 2  

= molal enthalpy of pure component i 

= partial molal enthalpy of component i in solution 

A  H™ = molal change in enthalpy on mixing

K = bellows constant, cc/ohm (See Equation (57)

L = length of bellows, in.

= moles of component 1  

N 2  = moles of component 2

P “ pressure, psi.

P = initial pressure, psi.
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^  P = change in pressure, psi.

q = defined by Equation (64)

Q = defined by Equation (64)

r = resistivity of Karma wire, ohms/in.

Rl,R2 ,R2  = constant value resistors, ohms

Rg = resistance of Karma wire segment as measured, ohms

R„ - R^' = slide wire rheostat

R = gas constant

pRg = change in resistance of Karma wire segment during pressure
change P, ohms.

r = temperature, °K.

V = volume, cc.

V° = volume of bellows at one atmosphere, cc.

Vi = molal volume of pure component i at pressure P, cc.

Vj = partial molal volume of component i in solution at pres­
sure P., cc.

Yi = molal volume of pure component 1 at pressure P, cc.

V^ = partial molal volume of component 1 in solution at pres­
sure P . , cc.

Vg = molal volume of pure component 2 at pressure P, cc.

^ 2 - partial molal volume of component 2  in solution at pres­
sure P . , cc,

Vĵ  = molal volume of mixture at pressure P, cc.

= molal volume of mixture at 1 atmosphere, cc.

= molal volume of pure CS^ at one atmosphere, cc.

— °ace = molal volume of pure acetone at one atmosphere, cc.

V°CS 2

(V/V°) = volume occupied by mass of mixture at pressure P which
occupied unit volume at one atmosphere.

( 4  V"’)° = molal change in volume on mixing at one atmosphere, cc.
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^  = molal change in volume on mixing at pressure P, cc.

^ p ( V / V ° )  = fractional change in volume during pressure change P.

^  p(V/V°)' = fractional change in volume during pressure change P
as reported in the literature

W = weight of sample, g

X = mole fraction

= mole fraction component i

X^ = mole fraction component 1

X 2  = mole fraction component 2

X]̂ ' = mole fraction component 1  in phase 1

X^'' = mole fraction component 1 in phase 2

X 2 ' = mole fraction component 2  in phase 1

X 2 ' ' = mole fraction component 2  in phase 2

x' = mole fraction of total system existing as phase 1
x’’ = mole fraction of total system existing as phase 2

(MW)g^g = molecular weight of acetone, g

(MW)cs2  = molecular weight of carbon disulfide, g

^  g = adiabatic compressibility (See Equation (94))

^  j. = isothermal compressibility (See Equation (93))

S' = error

TT = activity coefficient (See Equation (l))

= density, g./cc.

^  = density at one atmosphere, g./cc.
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APPENDIX I 

ERROR ANALYSIS

Using the technique outlined by Mickley, Sherwood and Reed (26), 

for calculating the error in the function;

<3 fg»', I?:, ) (64)

where: = Error in Q.

5"q^= Error in variable q̂ .̂ 

the error in each of the reported quantities can be estimated.

PVT Measurements

I. Bellows Linearity

The ratio of change in volume to change in length of the sylphon 

bellows was obtained by measuring the change in height of the liquid 

in a capillary as the bellows was compressed with a micrometer. The 

ratio can be expressed in terms of the measured variables:

? z ;/V)

where: / ^ J = ratio of volume change to length change or 
'B bellows, cc/in.’ (éi)»'

j = ratio of change in 
L/t of liquid in capil

volume to change in height 
lary, cc/in.

cILc = ratio of change in height of liquid in capillary 
L m  to change in length of micrometer, in/in.
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The maximum possible error in these measurements is written:

(67)

where the terms can be broken down to:

r v  h  1 (68)

and, n W I ' l  _  J _  i W V l  -t- “i s ,  i W W c  (69)

For a compression of the bellows of 0.10 in, or about lOX, of its 

maximum:

M Z-A1 ^  O. lO I  elLc ^  t S  j  ctVe ^  cc

/o-"') = ^ 0 . 2 5  

*  § ^ . 0 .0 , % 9 x / a - « -  « Ç / L ,

II, Mole Fraction, (X):

The mole fraction of samples prepared by the method of Powers 

(30) was calculated as:

------------------------------------- ( 70)

C y  =    r | ) î ^ *  1  ,,,,

tv)c%_________________________ r^/<»cf ” 1
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where: W^ce ~ weight of sample of acetone.

Wcs 2  = weight of sample of CS2 .

Since two weighings on an analytical balance of 0.1 mg precision 

were necessary and the weight of an average sample was 4g.;

' S ' S  *

III. Average Molecular Weight, (MW).

The average molecular weight of any sample was calculated as:

A l W  =- ^  (72)

So, the maximum error is predicted by:

StAwj = To-XMf) =.3.2»/o~V^ _
IV. Density Determinations. (^°)

= Weight of Sample (Wg) % J c c  (73)
Volume of Pycnometer (Vp)

So that;

(74)

a) The samples in the pycnometer agreed in weight within O.OOlg:

S  W s  ™  O.OCt (75)

b) The volume of the pycnometer was determined by the weight of 

distilled water it held:

cc (76)
' r » » o

(77)

The calibration samples agreed in weight to 0.0005g. and the 

density of water is assumed known as 0.99987 g/cc (46):

^ V / >  =  5 ' x  / ô ~ ^  c c (78)
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Equation (74) becomes:

f/O* =  —  X O.ÛÛI -h )ùk. y S k/0~'̂
r  Vp

=  y X / û ~ ^  p  s ' x / o ' ^  -  y  S ' X

V. Error in Density of Bellows Samples

The density of each sample used in the PVT measurements was de­

termined from the curve obtained from the density experiment and the 

calculated mole fraction of the bellows sample. The effect of the 

latter is shown as:

«■ (79)

And since the mole fraction can be determined to *2.4 x 1 0 "^:

Jjo® =■ ̂ -5-X ZAx/Ù-'^-^/Zx/O-^
or only about 1 0 % of the error in the density determinations.

VI. Initial Volume of Bellows, (V°):

\/®=i W e / ^  (81)

( 82)

The weight of the sample in the bellows requires two weighings, 

so that ;

==. / X ^ x / O " ^  y- 3 x Z S ' x / û - ' ^ ^  V . Z S " ce.

where the density is assumed known to half the error of each exper­

imental sample due to smoothing.

VII. Molal Volume at 1 atmosphere, (Vjm°) ;

(80)
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^ ^  =  S x / o - ^  (84)

VIII. Volume of Bellows at Pressure, P (V);

a) Resistance of Karma wire section (Rg)

P  _  ^ 1  +  ^ 3 ) ^ A m s

”  ^TTRTTiêTT^cTrRUr (86)

=  - R i ^ — --------  (87)

Lwhere J R^ = 0.0017 ohms 

S"Rs = 5x10”  ̂ ohms

b) Length of Bellows ( A t - ) :

L  === =  7 . S x /o - ^ ù k

where r = resistivity of Karma (approx. 8  Jl/ft.)

So that;

S  V  V  ̂ Yùy\ X  7-S' X / a ~ ^  =  J x / d - 4 ' c c

Incorporating the effect of pressure;

using an average compressibility in the low pressure range where 

the error is greatest.

In this range, the Heise gauge is used to measure pressure to 

tSO psi, so:

^ ^  ^ P  =  2  k / o ~ ^ X S o  ~  / x / û  ^ o A-7^ (88)

*As determined in calibration of bellows with micrometer and capillary 
tube (See Chapter V).
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This corresponds to an error in length of 1.5x10"^ in. and volume 

of 6 xlO~^cc. The total maximum error in the volume of the bellows 

at any pressure is then:

IX. Fractional Change in Volume at Pressure P, (V/V°):

p=- ^  K O.OOOŸ -f-lK-^X /O"^

=. S . S ' K r o - ^
Using the large value of Icc for

X. Change in Volume on Mixing, (2^ V'̂ ) :

~  y » ,

T a V ' *  +  v : S ' I V m -) *  X...

*  < ■ ' - y v- 4 f  T a - i c . , . )  ( , u

0 . 0  Q 2 l

which is about the same as the maximum deviation of the points 

shown on Figures 18 and 19 from the smooth curves. These points 

were calculated directly from the unsmoothed (V/V°) vs P data.

Temperature variation during any trial was not considered be­

cause no appreciable hysteresis was noted. That is, points taken 

during increasing pressure lay on the same line as points taken dur­

ing decreasing pressure. If the temperature did change during any 

run enough to cause a measureable error, this reproducibility would, 

in all probability, have not occurred.
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Visual Observation 

The observed phase separation data are affected only by errors 

in temperature, pressure and composition. Since the temperature was 

measured directly, it was probably not in error by more than 0.5°F.

This would cause an error in the pressure of separation of about 600 

psi. The pressure was measured to within 100 psi, so the total effect 

of temperature and pressure variation was no greater than 700 psi.

The effect of composition is more difficult to ascertain. The 

presence of water would certainly cause a decrease in the pressure of 

separation, while presence of a hydrocarbon soluble in both CSg and 

acetone would cause an increase in the pressure (20). Because the 

amount of impurities would not have been the same in any sample, some 

idea of the error can be obtained from the manner in which the data fit 

a smooth curve, pressure and temperature variation considered non­

existent. Since the data do seem to fit within 1000 psi, the effect 

of composition is probably about the same as the effect of the other 

two variables.



APPENDIX II

CONSISTENCY OF ACTIVITY DATA

The data reported by Zawidzky (48) for the system acetone-carbon

disulfide at 35.17°C and one atmosphere is shown in Table 13 as columns

1-3. The activities were calculated from the data as:

â. = P./P° (92)

where: P. = partial pressure of component i (calculated
assuming ideal behavior in the vapor phase).

P° = vapor pressure of pure component i at the temp­
erature of the system.

The thermodynamic consistency of this data were checked using

the method illustrated by Rowlinson (35), whereby the logarithm of the

ratio of the activity coefficients is plotted against mole fraction.

The difference between the positive and negative areas give at least a

qualitative indication of the consistency of the data.* As shown in

Figure 27, the areas are as identical as can be determined graphically

on 8%xll paper. Enlargement of the graph would be of little value as

the test itself is not perfectly rigorous (35).

’’'Consistent data yield equal areas.
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TABLE 13

ACTIVITY DATA AT 1 ATMOSPHERE 
CS2 -- ACETONE 

35.17°C
Zawidzky Z.P.C. 35, 129, (1900)

%1* pace Pcs2 In a2 In a^ Xjlna+X2lna2

1.0000 343.8 0
0.9376 331.0 110.7 -1.533 -0.0375 -0.1308
0.9330 327.8 119.7 -1.455 -0.0472 -0.1415
0.9289 328.7 123.1 -1.427 -0.0445 -0.1428
0.8788 313.5 191.7 -0.9840 -0.0918 -0.1999
0.8670 308.3 206.5 -0.9096 -0.1085 -0.2150
0.8143 295.4 258.4 -0.6854 -0.1513 -0.2505
0.8009 290.6 271.9 -0.6345 -0.1677 -0.2606
0.7915 283.4 283.9 -0.5902 -0.1932 -0.2760
0.7239 275.2 323.3 -0.4614 -0.2222 -0.2882
0.7131 274.2 328.7 -0.4447 -0.2258 -0.2886
0.6498 263.9 358.3 -0.3585 -0.2640 -0.2971
0.6449 262.1 361.3 -0.3503 -0.2709 -0.2991
0.5942 254.5 379.6 -0.3008 -0.3003 -0.3005
0.5859 253.0 382.1 -0.2942 -0.3062 -0.3012
0.5526 250.2 390.4 -0.2727 -0.3173 -0.2973
0.5470 247.6 394.2 -0.2630 -0.3278 -0.2984
0.5067 242.8 403.2 -0.2406 -0.3473 -0.2947
0.5026 242.1 404.1 -0.2383 -0.3503 -0.2946
0.4298 232.6 419.4 -0.2011 -0.3902 -0.2824
0.4270 232.2 420.3 -0.1989 -0.3920 -0.2814
0.3876 227.0 426.9 -0.1833 -0.4146 -0.2730
0.3854 225.9 427.7 -0.1815 -0.4195 -0.2732
0.3839 225.5 428.1 -0.1806 -0.4213 -0.2730
0.3287 217.0 438.0 -0.1577 -0.4597 -0.2570
0.3287 217.6 437.3 -0.1593 -0.4570 -0.2572
0.2780 207.7 446.9 -0.1375 -0.5035 -0.2392
0.2803 207.1 447.5 -0.1363 -0.5063 -0.2400
0.1720 180.2 464.9 -0.0980 -0.6455 -0.1922
0.0809 123.4 490.7 -0.0440 -1.024 -0.1233
0.0758 120.3 490.0 -0.0455 -1.050 -0.1216
0.0650 109.4 491.9 -0.0416 -1.144 -0.1133
0.0593 103.5 492.0 -0.0414 -1.200 -0.1101
0.0451 85.9 496.2 -0.0329 -1.386 -0.0939
0.0380 73.4 500.8 -0.0237 -1.544 -0.0815
0.0308 62.0 502.0 -0.0213 -1.713 -0.0734
0.0000 0.0 512.3

’’'Component 1 refers to acetone.
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TABLE 14 

CONSISTENCY OF ACTIVITY DATA

%CS2(2) %ace( lnXcS2 Iri %ace (lnj%X2-ln3iXi) inîi/yj

.0670 .9330 -2.703 - .069 -1.4080 1.226

.1212 .8788 -2.112 - .129 - .8922 1.091

. 1857 .8143 -1.685 - .205 - .5341 .946

.2761 .7239 -1.287 - .323 - .2392 .725

.3502 .6498 -1.050 - .431 - .0945 .5245

.4058 .5942 - .902 - .520 - .0005 .3815

.4530 .5470 - .792 - .603 .0648 .254

.4974 .5026 - .698 - .688 .1120 .122

.5730 .4270 - .557 - .851 .1931 - .101

.6161 .3839 - .484 - .957 .2407 - .232

.6713 .3287 - .399 -1.112 .2977 - .415

.7197 .2803 - .329 -1.272 .3700 - .573

.8280 . 1720 - .189 -1.760 .5475 -1.0235

.9242 .0758 - .079 -2.580 1.0045 -1.4965

.9470 .0593 - .061 -2.827 1.1586 -1.607

.9620 .0380 - .039 -3.270 1.5203 -1.711

.9692 .0308 - .031 -3.480 1.6917 -1.757
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Figure 27.--Consistency of Activity Data



APPENDIX III

CONVERSION OF FREE ENERGY DIAGRAM

As mentioned previously, 0°C was chosen as the temperature at 

which to predict the liquid-liquid phase behavior of the system acetone- 

carbon disulfide in order to lower the pressure required for separation 

to within the limits of the visual observation equipment. To make such 

a prediction, as is explained in Chapter II, the change in free energy 

on mixing of the system need be accurately known at this same tempera­

ture and some low pressure. Unfortunately there exist no such data. 

Therefore, the accurate* data at 35.17°C (48), (Table 13), were con­

verted by use of the enthalpy of mixing data of Schmidt (36) at 16°C, 

the specific heat data of Staveley (41) at 20°, 30° and 40°C., and the 

relation:

j A £ ]  . f A o r ]  _
L « T  L n r  /  I ---------------(38)

30t./7*/C. J
The values of ( ^  H ' ^ ) u s e d  were obtained by fitting Schmidt's

data by a least squares method. The resultant curve, along with the 

experimental points is shown as Figure 28. A fifth degree polynomial 

seemed to afford the best curve. It is of interest to note that the 

same degree equation was necessary to adequately fit the change in

*See Appendix II.
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16°C
O

3 2 0

3 0 0

2 8 0

C S ,  -  A C E T O N E2 6 0

2 4 0

O  220 -
z
• 200 .

1 8 0 -

160X
<] 140

From Schmidt (36)120
100 -

8 0  -

6 0 -

4 0

20

1.0985 6 .740 2 3

M O L E  F R A C T I O N  A C E T O N E

Figure 28.--Heat of Mixing
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volume on mixing data at one atmosphere.

The values used for^iÇ^ were the arithmetic average from 40°C 

to 0°C (See Figures 31, 32, and 33). The difference in the change of 

free energy calculated in this manner and that calculated using an ex­

pression f o r o f  the form:

= a + bT (93)

is found to be less thanftl?»* in the worst cases.

Equation (38) was integrated at each 0.1 increment in mole frac­

tion and a smooth curve drawn (Figure 34). This curve was then added 

to the free energy of mixing curve at 35.17°C. The results are tabulated 

in Table 15. Column 2 shows the data for the free energy diagram at 

35.17°C, column 3 the results of the integration of Equation (38) from 

35.17°C to 0°C., and column 4 the data for the diagram at 0°C.

*The exact error in the calculation is:

/ /  '  ■ r  }

At X=0.5, this amounts to -0.00005 or about 0.1% (See Table 15),

'At
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Figure 29.--Specific Heats as Functions of Temperature
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Figure 30.--Specific Heats as Functions of Temperature
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Figure 31.--Specific Heats as Functions of X
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Figure 32.--Specific Heats as Functions of X
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Figure 33.--Specific Heats as Functions of X
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Figure 34-.--Change in Free Energy from 35.17 to 0°C
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TABLE 15

CONVERSION OF FREE ENERGY DIAGRAM TO 0°C

^ace
/35.17°C. ( /35.17°C.

-/ a ü )
\ /o°c.

. 10 0.1420 0.0350 0.1070

.12 0.1569 0.0393 0.1176

. 14 0.1703 0.0431 0.1272

. 16 0.1828 0.0464 0.1364

. 18 0.1946 0.0493 0.1453

.20 0.2050 0.0516 0.1534

.22 0.2147 0.0538 0.1609
,24 0.2237 0.0556 0.1681
.26 0.2323 0.0575 0.1748
.28 0.2405 0.0592 0.1813
.30 0.2479 0.0607 0.1872
.32 0.2546 0.0621 0.1925
.34 0.2609 0.0634 0.1975
.36 0.2666 0.0646 0.2020
.38 0.2719 0.0656 0.2063
.40 0.2767 0.0666 0.2101
.42 0.2813 0.0675 0.2138
.44 0.2853 0.0683 0.2170
. 46 0.2887 0.0689 0.2198
.48 0.2918 0.0694 0.2224
.50 0.2943 0.0696 0.2247
.52 0.2964 0.0696 0.2268
.54 0.2982 0.0694 0.2288
.56 0.2996 0.0692 0.2304
.58 0.3008 0.0690 0.2318
.60 0.3012 0.0683 0.2329
.62 0.3008 0.0672 0.2336
. 64 0.2994 0.0657 0.2337
. 66 0.2978 0.0641 0.2337
.68 0.2955 0.0622 0.2333
.70 0.2924 0.0602 0.2322
.72 0.2882 0.0574 0.2308
.74 0.2831 0.0546 0.2285
.76 0.2764 0.0514 0.2250
.78 0.2687 0.0478 0.2209
.80 0.2592 0.0441 0.2151
.90 0.1795 0.0220 0.1575



APPENDIX IV

COMPARISON OF COMPRESSIBILITY CURVE

Because the isothermal compressibility is defined as

it would be expected that a minimum in the (V/V°) data would occur at 

approximately the same mole fraction as a maximum in the compressibility 

curve and vice versa. Such is found to be the case if the data is com­

pared to the results of Sokallu (39). Although the quantity reported by 

Sokollu is the adiabatic compressibility:

the difference between the two (41);

4  - A

is nearly constant for the system acetone-carbon disulfide (41). There­

fore, a plot of the adiabatic compressibility versus mole fraction will 

have essentially the same shape as that of the isothermal compressi­

bility.

At a composition of approximately 80 mole percent acetone, the 

(V/V°) data (Figure 17) show a definite minimum. The compressibility 

data of Sokollu (Figure 35) at one atmosphere show a large maximum near
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this same concentration. The data of Staveley (41), on the other hand, 

do not show a maximum compressibility at any concentration. He does 

mention that some data in this region of concentration were thrown out. 

It is possible that these data would cause the maximum obtained by 

Sokollu. The absence of the minimum in the (V/V°) curves at 20,000 psi 

(Table 8) undoubtedly results from the smoothing.

The curves above 70,000 psi are not as accurate as those below 

because the samples rich in acetone were not compressed to more than 

85,000 psi. For this reason, the (V/V°) vs. P curves for these samples 

are probably not well established at the high pressures and hence, the 

(V/V°) vs X curves will be in error.



APPENDIX V

FREE ENERGY CURVES AND ACTIVITIES

The activities of the system acetone-carbon disulfide were cal­

culated at five pressures, 14.7, 25,000, 50,000, 75,000 and 100,000 psi, 

by fitting the free energy curve at each pressure with a 10th order 

polynomial and making use of Equations (45), (51) and (54):

(45)

(51)

—  7 ’n - w A i X f ' ^  (54)

The results are listed as Table 16.
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TABLE 16

COEFFICIENTS OF FREE ENERGY POLYNOMIAL AND ACTIVITIES AT 0°C

I. P = 1 atmosphere

Al
A2
A3

Ae
A?
As
Ag
AlO
A n

=  0
-2.10869 
18.8372 

-125.272 
530.306 

-1452.35 
2621.25 
-3100.89 
2314.19 
-988.125 
184.163

^ace In acs2 &ace
0.00 0.0000 - ee
.05 -.0241 -.9642
. 10 -.0523 -.6172
.15 -.0639 -.5179
.20 -.7384 -.4705
.25 -.8665 -.4265
.30 -.1028 -.3840
.35 -.1199 -.3483
.40 -.1365 -.3206
.45 -.1524 -.2990
.50 -.1685 -.2812
.55 -.1860 -.2654
.60 -.2066 -.2499
.65 -.2345 -.2340
.70 -.2772 -.2132
.75 -.3488 -.1867
.80 -.4691 -.1522
.85 -.6658 -.1100
.90 -.9863 -.0661
.95 -1.5272 -.0228

1.00 - eo 0.0000
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TABLE 16-”Continued

II. P = 25,000 psi

Aj = 0
A 2  = -1.91798
A 3  = 19.8937
A 4  = -139.645 
A 5  = 619.321
k(y = -1791.23 
A 7  = 3436.54
Ag = -4338.30 
Ag = 3461.11
Aïo = -1580.15 
A n  = 314.384

Xgce ]-"_̂ cs2 &ace
0 . 0 0 0 . 0 0 0 0 -  f*

.05 -.0244 -.7407

. 1 0 -.0486 -.4171

.15 -.0585 -.3440

. 2 0 -.0637 -.3190

.25 -.0705 -.2957

.30 -.0793 -.2726

.35 -.0884 -.2535

.40 -.0973 -.2387

.45 -.1063 - . 2 2 6 6

.50 -.1157 -.2161

.55 - . 1 2 6 0 -.2070

. 6 0 -.1381 -.1978

. 6 5 -.1569 -.1875

.70 -.1889 -.1717

.75 -.2439 -.1516

.80 -.3295 -.1277

.85 -.4570 -.0988

.90 -.6801 -.0664

.95 -1.1906 -.0310
1 . 0 0 00 0 . 0 0 0 0
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TABLE 16--Continued

III. P - 50,000 psi

Al
A2
A 3

A 4

A 5

Ae
A?
As
^9
AlO
All

-1.71900
18.2978

-121.553
501.472

-1341.369
2370.95

-2750.82
2015.57
-846.212
155.383

'•ace In aCS2 In âace
.00 0.0000 - eo
.05 -.0233 -.6112
. 10 -.0470 -.2933
.15 -.0556 -.2289
.20 -.0574 -.2199
.25 -.0596 -.2124
.30 -.0638 -.2015
.35 -.0687 -.1913
.40 -.0733 -.1836
.45 -.0779 -.1773
.50 -.0836 -.1710
.55 -.0914 -.1641
.60 -.1019 -.1561
.65 -.1167 -.1478
.70 -.1396 -.1365
.75 -.1789 -.1219
.80 -.2487 -.1024
.85 -.3691 -.0758
.90 -.5804 -.0461
.95 -.9625 -.0156

1.00 -  0 0 0.0000
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TABLE 16--Continued

IV. P  = 7 5 , 0 0 0  psi 

Al =  0
A 9  »  - 1 . 5 3 6 0 0
A 3  =  1 5 . 9 0 1 1
A 4  =  - 9 3 . 5 6 5 3
A 5  =  3 2 0 . 6 8 9
Ag =  - 6 5 0 . 3 4 9
A 7  =  7 2 5 . 1 2 1
Ag =  - 2 8 2 . 6 1 3
Ag =  - 2 4 6 . 9 6 9

A^O =  3 0 9 . 8 6 7
Ail =  - 9 6 . 5 4 6 3

Xgce ®cs2 ^ace
.00 0.0000 -  é t o

. 0 5  - . 0 2 1 6  - . 5 2 7 9

. 1 0  - . 0 4 5 5  - . 2 0 9 3

. 1 5  - . 0 5 3 8  - . 1 4 6 8

. 2 0  - . 0 5 3 0  - . 1 5 0 1

. 2 5  - . 0 5 1 5  - . 1 5 5 4

. 3 0  - . 0 5 2 4  - . 1 5 3 1

. 3 5  - . 0 5 4 6  - . 1 4 8 4

. 4 0  - . 0 5 6 5  - . 1 4 5 3

. 4 5  - . 0 5 8 3  - . 1 4 2 9

. 5 0  - . 0 6 2 2  - . 1 3 8 6

. 5 5  - . 0 7 0 5  - . 1 3 1 2

. 6 0  - . 0 8 2 8  - . 1 2 2 1

. 6 5  - . 0 9 7 0  - . 1 1 3 8

. 7 0  - . 1 1 2 5  - . 1 0 6 1

. 7 5  - . 1 3 8 6  - . 0 9 6 6

. 8 0  - . 2 0 1 1  - . 0 7 8 7

. 8 5  - . 3 3 8 2  - . 0 5 0 0

. 9 0  - . 5 6 7 9  - . 0 1 7 5

. 9 5  - . 7 9 3 4  . 0 0 0 0
1.00 - gc 0.0000
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TABLE 16--Continued

V. P = 100,000 psi

Al 0

A2 -1.48010
A3 = 16.6617
A4 = -100.969
A5 = 353.968
A6 - -735.511
A? = 848.097
Ag = -369.867
Ag = -238.518
AlO =» 334.640
Ail = -107.022

In acs2 Iti aace
. 0 0 0 . 0 0 0 0 - 4PO
.05 - . 0 2 2 2 -.4378
. 1 0 -.0454 -.1260
. 15 -.0517 -.0775
. 2 0 -.0485 -.0920
.25 -.0447 -.1055
.30 -.0429 -.1103
.35 -.0417 -.1127
.40 -.0397 - . 1 1 6 1

.45 -.0378 -.1187

.50 -.0394 -.1170

.55 -.0473 -.1099

.60 -.0613 -.0996

.65 -.0777 -.0900

.70 -.0940 -.0819

.75 -.1179 -.0731

.80 -.1734 -.0573

.85 -.2953 -.0318

.90 -.4885 -.0042

.95 -.6163 . 0 0 0 0

1 . 0 0 - 0 0 0 . 0 0 0 0



APPENDIX VI

UNSUCCESSFUL SEALING PROCEDURES

Several ocher sealing methods were attempted before Poulter's 

(29) was decided upon. A number of "O’* rings were used in attempting 

to seal in the manner of Winnick and Powers (47), whereby the "0" ring 

makes the actual seal with the sapphire and pressure cell wall (See 

Figure 36a). Five different compounds were tried: Neoprene, Silicone,

Thiokol, Viton and Teflon. The first four did not seal due to their 

rapid dissolution in the acetone-carbon disulfide mixture. The Teflon 

ring never seemed to make a seal due to its "cold-flow" or plastomeric 

behavior. A Teflon covered Silicone "0" ring was then tried, but it 

too failed to make a seal either at the sapphire or cell wall (See 

Figure 36b).

To eliminate this problem, a seal was designed which would not 

require the use of an "0" ring. As shown in Figure 36c) two copper 

rings were constructed for each sapphire which would act to make an 

unsupported area seal, the initial seal being obtained by driving the 

end plugs firmly into the rings and steel inner plug. This seal proved 

effective to about 50,000 psi above which pressure leakage occurred.

Other seals utilizing the same principle were attempted, as 

shown in Figure 36d) and e), also with unsuccessful results. Those 

rings with large angle S (See Figure 36d) and hence high mechanical
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Figure 36.--Unsuccessful Sealing Devices
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advantage, would break the sapphire under pressure while those with 

smaller angles would not affect a seal. There undoubtedly is some con­

figuration which would allow a non-"0" ring seal to be made; however, 

it would seem to be a problem which only costly trial and error proce­

dures can solve.


