
EFFECT OF DATA FLOW ARCHITECTURE ON

PROGRAMMING LANGUAGE DESIGN

BY

KRISHNAN VENKATARAMAN
It

Bachelor of Engineering

Bangalore University

Bangalore, India

1978

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University

in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 1981

EFFECT OF DATA FLOW ARCHITECTURE ON

PROGRAMMING LANGUAGE DESIGN

Thesis Approved:

ii

1089688

PREFACE

This study is concerned with the aspects of data flow

architecture. A survey of data flow processors is

presented. The two broad classes of languages, procedural

and applicative, are considered for the language design for

the data flow arc~itecture. Starting from the basic data

flow program representation, the study extendends to the

high level languages. Method for translating the

conventional

presented.

language to data flow representation is

Consideration is given to the conventional

structured languages. A general discussion 6f usage of

appli.cative language classes are presented, without

considering specific syntax. The material presented can be

extended to specific syntax design and its practical use can

be studied from the given general discussions.

I wish to thank my adviser, Dr. G. E. Hedrick, for his

guidence and encouragement through out the study. Also I

express my appriciation to other commitiee members, Dr. J.

R. Phillips and Dr. L. Johnson, for their engouragement.

A note of thanks is given to Dr. H. Olin Spivey from

deptartrnent of bio-chemisty, for his great concern and

support. Finally I express my gratitude to my parents, Mr.

and Mrs. S. Krishnan, for their support, encouragement and

sacrifices.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION

Literature Review .

II. DATA FLOW ARCHITECTURES.

1

4

7

7
9

III.

Data Driven
TI Distriduted Processor ..•......
Dennis Data Flow Architecture

Instruction Cell Formats
Data Flow Architecture based on
Token Labelling

Arvind Data Flow Machine
Manchester Data Flow Architecture •.

Demand driven • .
Reduction Machine

Reduction Language . •
Machine Organization
Main Memory
Shift Registers•...
Processing Unit

DATA FLOW BASE LANGUAGE . . .

Elements of Data Flow Constructs.
Link ·
Actor.

Data Flow Schemas
Apply Actor
Data Flow Structures ..

Select Actor
Append Actor

Procedure Implementation and Activation .
Streams
Symbolic Data Flow Representation

16
21

24
25
27
30
32
32
34
34
36
36

40

40
40
41
45
46
47
50
so
51
58
59

IV. CONVENTIONAL LANGUAGES FOR
DATA FLOW PROCESSOR 63

Lexical and Syntax Analysis 65
Data Flow Restructuring 65

Motivation 65
Block Transformation 68
Loop Transformation. • . . 69
Loop Invarient Computations. 69

iv

Chapter

Loop Unrolling.
Loop Jamming.
Loop Unswitching.
Restructuring
Final Restructuring
Optimization

Data Flow Code Generation.
Structured Languages

Language Representation .
Language Extentions

Page

70
70
70
74
74
75
77
78
81
82

V. APPLICATIVE LANGUAGES 85

Definitional Language 87
Compilation Techniques 90

Functional Language 91
Lambda Notation. 92
Lambda Expression. 93
Basic Rules of Lambda Calculus . 93
Reduction Rule 94
Renaming Rule. 94
Operations in Lambda Calculus. . . . 94
Practical Application. 97

VI. SUMMARY, CONCLUSIONS AND SUGGESTED FUTURE WORK. 101

BIBILOGRAPHY.

APPENDIXES ..

104

110

APPENDIX A - SUMMARY OF DATA FLOW MACHINES. 111

APPENDIX B - SYMBOLIC REPRESENTATION FOR DATA
FLOW PROGRAMS 112

APPENDIX· C - GLOSSARY 117 .

v

Table

I.

II.

LIST OF TABLES

A Data Flow Coding Scheme ...•..

Gating Codes and their Functions .

III. Summary of Data Flow Machines ...

vi

Page

11

24

111

LIST OF FIGURES

Figure Page

1. Data Flow Graph Representation of the Program. 10

2. Block Diagram of DDP System.

3. Simple Data Flow Processor ..

4. Parallel Layout of Processing Units.

5. Elementary Data Flow Processor .

6.

7 .

8.

Structure of Cell Block ...

Basic Data Flow Processor ..

Structure of Receiver ...

9. Instruction Cell Formats .

10. Arvind Data Flow Machine

11.

12.

. 13.

Manchester Data Flow Organization. . .

Extended Manchester Architecture

List Representations .

14. General Representation of Expressions
and Functions.

15. Basic Organization of Reduction Machine.

16. Organization of Processing Unit of the

17.

18.

Reduction Machine

Data Link and Control Link .

Actors and Their Firing Rules ...

19. Control, Merge and Boolean Actors ..

20. Well Formed Data Flow Schema .

21.

22.

Apply Actor ...

Apply Actor Illustration .

vii

. . . 12

15

15

17

18

20

22

23

26

28

30

33

35

35

37

42

43

44

46

47

48

Figure

23 .. Single Dimension Array Implementation ..

24. Two Dimension Array Implementation .

25. Select Actor .

26. Append Actor .

27. Example to Illustrate Static Parallelism .

28. Procedure Structure ..

29. Activation Structure .

30. Loop Unrolling Illustration ..

31.

32.

33.

34.

Loop Jamming Illustration. . . .

Loop Unswitching Illustration.

Exposing Parallelism .
i

Optimization Procedure Implementation ..

35. Restructuring for Definitional Languages .

36.

37.

Graphical Representation for Example-1 .

Graphical Representation for Example-2 .

viii

Page

49

49

52

53

53

57

57

71

72

I 73

79

80

91

114

116

CHAPTER I

INTRODUCTION

Ever since Von-Neumann proposed

architecture, there has been no

structure of computer organization

advancement in device technology

a model for computer

change in the basic

until recently. The

is responsible for

remarkable changes in the generations of computer, in terms

of both cost and performance. Future generations of

remarkable computing performance are awaiting, due to

current research in the fields of micro-electronics and

super-conductors. It has been anticipated that it is

possible to come up with computer organizations having

performance cababilities of one hundred times better than

existing machines, with the help of super-conducting devices

(14).

The first generation computers had very primitive

instructions, sufficient to handle the problems at that

time. The complexity of the problems to be solved increased

along with the generations of computers. The current models

for computing machines are incapable of fully utilizing the

inherent parallelism exhibited by the problem (31, 39, 48,

SO, 51). In order to take advantage of inherent parallelism

there have been several proposals which lead to the

development of parallel processors. The main drawbacks of

1

2

these.machines are:

1. The model is based on the Von-Neumann model. As a
result there is a sequential constraint due to the
program counter.

2. The existing language models are based on the best
adaptation of the current architecture. Hence they
do not have ablity to specify the parallel
structure of the problem.

3 .

4.

The architecture is not transparent to
programmer. The programmer must know about
organization so as to partition the problem
could best exploit the parallel nature of
machine.

the
the

that
the

Because
parallel
less a
general

of the above reason presently available
processing machines, tend to be more or
special purpose machine rather than a

purpose machine.

5. Efforts have been made to analyze the performance
improvement of these type of multiprocessors
relative to cost. The analysis showed that the
performance is flat after a certain limiting cost.
The cost is directly proportional to the number of
processors that is being used in a multiprocessor.

In order to overcome these basic difficulties it is

necessary to remove the sequencing constraint fixed by the

program counter. There is a significant loss of time in

fetching instructions and operands from the memory prior to

the instruction execution. A new architecture is proposed

in which there is no program counter, preventing an explicit

sequencing constraint. The proposed machine executes an

instruction whenever all of its operands are available.

There is no need for instruction fetching, as required in

current architectures. Whenever an instruction is ready for

execution, it is directed to the processing unit for

execution and the instruction is said to be enabled; i.e.,

ready to fire. The execution of an instruction is based on

3

a basic firing rule. The firing rule is a rule on which the

internal hardware is constructed to effect the correct flow

of information. These are known as data flow architectures

(16, 17, 21, 23, 49, 63). The main aims of this thesis are:

1. To bring out the
architecture and a
data flow machines.

basic aspects of data flow
survey of some of the proposed

2. To determine the basic programming method for data
flow architecture.

3. To determine
conventional
machines and
translation?

whether it is possible to use
programming languages on data flow

if so, what are the requirements for

4. To determine whether it is possible to simplify the
process of translation by using structured
languages.

5. To introduce applicative language
usefulness on data flow machines.

and its

This thesis discusses the basic concepts of data flow

machines. It includes survey of some of the proposed data

flow machines. Then the effect of programming languages on

these architecture is examined. To begin with, the basic

aspects of programming on data flow machine is presented.

Further, from the point of view of high level languages, a

method for translating the conventional language to a data

flow language is presented. The translation procedure is

simplified by considering the structured languages.

Language extentions are presented to facilitate problem

specification, that could better utilize the property of

data flow machines. Conventional languages are based on the

objects, refering to a storage location either directly or

indirectly. This concept of object is changed for better

4

adaptation of high level languages on data flow machine.

The objects represent values rather than a storage location

and this results in a value oriented language. The function

evaluation in conventional languages are not 'pure'; i.e.,

not evaluated by substitution. Lambda calculus languages

are based on pure function evaluation. The aspects of value

oriented languages and functional languages for data flow

machine are presented.

Literature Review

Theoretical basis for the data flow architecture was

done by Karp and Miller in 1966 (38). Between 1966 and 1974

there was some work on the representation of data flow

programs and models. In 1975, a preliminary architecture

for data flow processor was proposed by Dennis (21); this

machine is designed to execute data flow programs (20).

Misunas (47) extended this model to make it suitable for

handling data structures.

In 1978, Texas Instuments developed a distributed data

flow machine designed to execute FORTRAN programs (34, 46,

69). Meanwhile, attention is focused to develop data flow

processors, taking advantage of the developments in

microelectronics. In 1977, Arvind and Gostelow (7) proposed

a data flow machine architecture that can be implemented by

using large scale integration (LSI). The main idea of using

LSI is to favor distributed processing among many processors

without any need for partitioning the programs to exploit

concurrency. In 1976, Davis (16, 17) proposed a data flow

5

machine (DDM1 - data flow machine # 1) and built at

Burroughs advanced system development organization.

Rumbaugh (57, 58, 59), in 1977, proposed. a data flow

multiprocessor for LSI implementation. In 1979, Watson and

Gurd (27, 33) gave an account of machine implementation for

Manchester data flow architecture. In the following year

(28), they gave the design aspects of a highly parallel data

driven system (extended Man6hester data flow architecture).

Late in 1960's and early 1970's, the concept of data

flow has been given a prominant place in the development of

optimizing compilers (3, 4, 8, 29, 30). A comprehensive

study of these techniques is displayed by Shichi Yi-Lee

(60). Considering the language issues for data flow

machines, Ackerman (2) has given an account of the

properties of the data flow languages based on VAL (Value

oriented Algorithmic Language) and ID (Irvine Data flow).

Studies on implementation of streams for concurrent

computation is done by Dennis and Weng (22) in 1979. A

procedure for the translation of a high level data flow

language was developed by Allen and others (5).

Following the studies of lambda calculus by Landin and

others (32, 40) in 1963, later studies have revealed that

functional languages can be better adapted for data flow

machines than conventional languages. There have been

significant contributions from Backus (9), Berkling (10,

11), Turner (66, 67) and Friedman (24), in the studies of

functional languages. In 1977, Treleaven (62, 63, 64, 65)

proposed a multiprocessor reduction machine cabable of

6

executing reduction language. In 1979, Mego (42) proposed a

network of microprocessors that can execute reduction

language. In 1980, attention is focused on very large scale

integration (VLSI) for advances in data flow architecture,

that can utilize the functional languages (35, 37, 41, 61).

CHAPTER II

DATA FLOW ARCHITECTURES

Data flow architectures can be classified into two

types according to the characterstics of the information

flow within the processor; viz., data driven architectures

and demand driven architectures. A discussion of each of

these types follows.

Data Driven

Data driven data flow processors execute data flow

programs in a data driven manner. Data driven means that

each instruction of a data flow program is enabled for

execution if and only if all of the required operands are

available. The basic data flow program is represented in

the form of a directed graph, in which the nodes represent

operators. The nodes are interconnected by arcs along which

the data values are conveyed. The presence of data item in

any arc is refered as token. The operator i.e., node, is

enabled when tokens are present on all input arcs. When an

operator is enabled the tokens at the input arcs are lost

and the computed value is placed on all of the output arcs.

The process of enabling the operator to place a result token

on the output arc is called as firing. The operator is said

to be fired when this action occurs. An operator is fired

7

8

only when the following two conditions are met:

1. The tokens are present at all of its input arcs;

2. And no token is present at any of its output arcs.

A typical data flow machine has the following:

1. Memory - to store the data flow instructions.

2. Controller - to control the flow of instructions
between memory and the .. processing units. This unit
is responsible for finding enabled instructions and
sending them to the operation unit for execution.

3. Processing unit(s) or operation. unit(s) to
perform arithmetic and logical functions.

Various methods for the design of data: flow

architectures have been developed and implemented. The

following section considers some of the methods that have

been developed to implement data flow machines. The

essential programming aspects of a typical data flow

machine, present an idea of the programming requirements for

using data flow architectures.

Consider the following example program:

Input a, b, c ;

T :=SQRT (b**2 - 4*a*c);

Xl:= (-b+T)/2*a;

X2:= (-b-T)/2*a;

Output Xl, X2;

It is necessary to generate data flow code in order to

execute this program on a data flow machine. The program

can be represented in the form of a directed flow graph in

which the nodes specify the components of program and the

unidirectional arcs specify the data paths. The minimum

sequencing constraint is determined by the data paths. This

9

directed graph representation is the usual representation

for a data flow program. A data structure of desirable form

must be chosen, so that the graphical representation of the

program (shown in Figure 1) represents a coding scheme for

the data flow machine. The data flow code consists of an

operation, input paths, and output path, in the realization

of graphical representation. Let there be a maximum of two

paths for input and output arcs respectively, from any node.

Further, let each node represent only a single operation.

One possible coding scheme is shown in Table I. This

represents the data flow code for the example program. The

given scheme does not represent exact machine code, but it

demonstrates the form of data flow implementation.

TI Distributed Processor

The data flow architecture developed by Texas

Instruments Inc. (TI) is known as a distributed data

processor (DDP). The system consists of processing elements

(PE) interconnected by means of a packet switching network.

Each processing unit contains arithmetic logic units (ALU),

local memory, a controller and an 1/0 port.

The main features of this system (34,

Figure 2 are:

46) , shown in

1. A data directed hardware along with a host for
software processing.

2. High performance obtained by exploiting the program
parallelism

3. The use of high
makes the data
user.

level language programming which
flow hardware transparent to the

4

b 2

i
z.1 x2

Figure 1. Data Flow
Representation
of the Program

10

11

TABLE I

A DATA FLOW CODING SCHEME

INSTRUCTION OPERATION INPUT PATH DESTINATION PATH
1 2

1 COPY 1.1
2 COPY 2.2
3 ** 1.1 (2)c
4 * 2.1 2.2
5 * 3.1 (2)c
6 * 5.1 (4)c
7 6.1 6.2
8 NEG 4.1
9 v 7.1

10 NEG 9.1
11 10.1 10.2
12 + 8.1 8.2
13 I 11.1 11.2
14 I 12.1 12.2

()r - Defines the Result.
()c - Defines Constant to be placed

- at the input paths~
i.j Path j of node i.

1 2

4.1 10.2
3.1
6.1
5.1

12.1 11.2
6.2

7.1
8.1
9.1 8.2

10.1
12.2

11.1
(X1)r
(x2) r

12

32 X 32 K MEMORY

OPERATIONAL UNIT 990/ 10

- r
PROGRAM MEM. UNIT ~ -L.. 16 x 96 K

MEMORY

r•

- -
'""' - '-

"'

,. FRONT . END _,. .
INTERFACE

-r- 1...

EXECUTION BUS
RING INTERCONNECT

OPTIONAL _,..
' / PROCESSING - L- / ' ELEMENTS

PROCESSING ELEMENTS

Figure 2. Block Diagram of DDP System

13

Each processing unit corresponds to a simple data flow

processor. Figure 3 shows the layout of simple TI-type data

flow processor, consisting of an operation unit and a

program memory unit. The operation unit performs arithmetic

and logical functions, I/O operations and provides data

memory access. The program memory unit maintains an

instruction queue which contains instructions ready for

execution. The memory unit includes both memory and an

update controller unit. Each instruction _packet is composed

of an operation code specifing the instruction task,an input

operand list, a list of successor instruction addresses, and

a predecessor count; it is controlled by an update

controller. Initially, the predecessor count determines the

number of input operands that are required by the

instruction prior to execution. The count is decremented by

one whenever an input operand arrives at the instruction

packet. When the count becomes zero, then the instruction

is placed at the rear of the instruction queue. The

instructions from the front of the instruction queue are

sent to an operation unit for execution. The result

obtained from the operation unit is then distributed to all

of the successor instruction packets.

An advantage of this system over other data flow

systems is that hardware expansion is simple. Hardware

expansion is the expansion of the number of operation units
(

of the system in order to obtain a multiprocessor

environment. By increasing the number of operation units,

it is possible to improve the exploitation of program

14

concurrency. The operation units and memory units are

interconnected by means of instruction bus and result bus.

The instruction bus connects the program memory unit to the

operation unit and it carries instruction packets. The

result bus connects the operation unit to the program memory

unit and it carries result packets. The processing element,

composed of an operation unit and a memory unit, forms the

basic building block for hardware expansion. Communication

among the various procesing elements is controlled by means

of a packet communication network. A typical parallel

layout of the processing units is shown in Figure 4.

The TI . DDP system includes both the hardware system

described above ~nd a separate software system. The basic

components of the TI.software system are as follow~:

1. Compiler: A FORTRAN cross compiler which executes
on a TI Advanced Scientific Computer (ASC) and
produces object modules for the TI DDP.

2. Link editor:
mutiple object
for the DDP.

Executes on the ASC to combine
modules into an executable program

3. Allocator: Partitions programs among the
processing elements.

4. Loader: Loads programs into the processing
elements assigned by the allocator.

5. Performance monitor: Collects· performance
statistics while the program is running.

6. Dump formatter: Formats the program dumps for easy
readability.

15

-- OPERATIONAL UNIT

INSTRUCTION RESULT
BUS BUS

UPDATE
CONTROLLER

INSTRUCTION ,,
QUEUE -

• MEMORY

PROGRAM MEMORY UNIT

Figure 3. Simple Data Flow Processor

I

-/
INSTRUCTION BUS _,.

PE • . .

'

'
RESULT BUS

I 110J • • • •

PE - Processing Element; I/O - Input/output unit.

Figure 4. Parallel Layout of Processing Units

16

Dennis Data Flow Architecture

The elementary data flow processor suggested by Dennis

(21) is shown in Figure 5. The elementary data flow

program, represented in the form of directed graph, is

stored in the memory within the processor, and is executed

in the data driven manner.

The memory, called a cell block, is organized into

instruction cells. The structure of the cell block shown in

Figure 6, maintains an association table and an instruction

stack along with the instruction cells.

cell is composed of three registers.

Each instruction

The first register

holds the instruction,

performed on the data.

specifying the operation to be

The operands are held in the other

two registers.

The instruction has three fields containing an

operation code and two destination addresses respectively.

A cell containing an instruction is enabled, ·when it

receieves all of its necessary operands. Each instruction

cell has its corresponding entry in the association table,

which maintains the s~titus of the instruction cells. An

instruction cell may enter any one of the following as its

status, depending on the associated condition of the cell:

1. 'free' - the cell does not contain any instruction.

2. 'engaged' - the cell contains an instruction and
waiting for the arrival of the operands.

3. 'occupied' - the cell has received its necessary
operands and can be enabled.

-- ------··· --------·---

..---~~--~~~OPERATION UNIT 1

"
•

-------!OPERATION UNIT nt1e---------i

DATA PACKETS

IC

DNW MEMORY

IC

DWN DISTRIBUTION NETWORK
AWN - ARBITRATION NETWORK
IC - INSTRUCTION CELL

I

OPERATION
PACKETS

ANW

Figure 5. Elementary Data Flow Processor

. 17

18

··-----------

CONTROL PACKETS

~c

ASSO- OPERATION

DATA ... _ CIATION PACKETS

PACKETS TABLE
DECISION • I PACKETS

I I
I ~STRUCTION

1 STACK
PACKETS

IC I
I
I

!

\L
I

MEMORY COMMAND PACKETS

(a)

INSTRUCTION CELL

INSTR

f -OPERAND 1 ·

f OPERAND I
j

(b)

Figure 6. Structure of Cell Block

19

The stack maintains the order of the enabled

instruction cells. An enabled cell signals the arbitration

network that it is ready to send its contents to the

operation unit. The operation code of each instruction

consists of two parts: one, a specification of the operation

unit, and two, a specification of the function. The main

purpose of the arbitration unit is to accept the

instructions that are enabled simultaneously, and to send

only one instruction packet at a time to a particular

operation unit. Similarly, the distribution network accepts

the data packets from the operation unit and stores them in

appropriate register cells in the memory.

The elementary data flow processor is extended to

handle decision operators by using decision units and

control networks. It is also essential to incorporate a

multilevel memory system; such that, only the active

instructions of the program occupy the instruction cells of

the processor memory. The extended organization is shown in

Figure 7. The instruction cells are arranged to act as a

cache for the most active instructions of the data flow

program. Instruction memory can be slower than the

instruction cells. As the computation proceeds the required

instructions are retrieved from the auxilary memory, termed

the instruction memory, and placed into instruction cells.

OPERATION PACKETS
OPERATION UNITS

CONTROL
PACKETS

DECISION UNITS

DNW

RETRIVE

CONTROL
NETWORK

MEMORY

MEMORY
COMMAND
NETWORK

.COMMAND
PACKET

COMMAND

INSTRUCTION
MEMORY

DNW - DISTRIBUTION NETWORK
ANW - ARBITRATION NETWORK

DECISION
PACKETS

ANW

STORE

Figure 7. Basic Data Flow Processor

20

21

Instruction Cell Formats

Instruction packets containing the instruction for

arithmetic operations, known as operation packets, are

processed in operation units. Control packets contain the

instructions for decisions and boolean functions are

processed in decision units. There are two types of control

packets; viz., gate type control packets and value type

control packets.

The gate type packet performs a gating function at the

addressed operand register; i.e., the packet is transfered

to an operand register if the

The value type of control

operator has the truth value.

packet performs a boolean

operation on the operands of the instruction, and provides

a boolean value to the addressed operand register. Each

operand register has both a gating code and either a data

receiver or a control receiver. The gating code performs

gating action by comparing its truth value with the truth

value of incoming token. The different types of gating

codes and their functions are shown in Table II.

The structure of the receiver is shown in Figure 8.

The receiver receiving the result packet with data value is

termed as data receiver, where as the

result packet with boolean value is

receiver receiving

termed as control

receiver. The receiver consists of a gate field, a value

field and a data field. The instruction register of the

control packet has a 'result tag' associated with the

destination field. The result tag indicates whether the

22

control packet is a value type or a gate type. The

different instruction cell formats are shown in Figure 9.

• I
- VALUE (Data or Boolean)

-- VALUE FLAG (On/Off).

- GATE FLAG Off ~ /True/False)

Figure 8. Structure of Receiver

A memory command packet is an instruction to the

instruction memory either to store an instruction cell in

instruction memory or to retrieve an instruction cell from

the instruction memory. The input port through which these

commands are placed is known as the command port. The

memory command packet requests either the retrieval or

storing of an instruction packet of the form (a, x); where,

a is the address and x is the data. In the case of a

retrieve command the value 'x' is retrieved through the

retrieve port and stored in the instruction cell, specified

by the address 'a'. In the case of store command the value

to be stored, given by 'x' is placed at the store port of

instruction memory. The value is stored at the location of

the instruction memory specified by the address 'a'. The

23

instruction memory address consists of two parts; viz., a

major address and a minor address. One complete cell block

is associated with each possible major address. The

instruction cells inside the cell block are addressed by the

minor address. When the instruction packets are sent from

the cell block, the minor address is appended to the

corresponding major address.

I OP I D1
i

I PR Tl Dl I BO Tl Dl
.

D Gl I
!

Vl D Gl Vl B Gl Cl T2 D2

ttz! V2 D G2 V2 B G2 C2 T3 D3

(a) OPERATOR (b) DECIDER (c) BOOLEAN OPERATOR

OP - Operation Code
PR - Predicate Code
BO - Boolean Operation Code
Dl, D2, D3 - Instruction Destination Addresses
Tl, T2, T3 - Result Tags
Gl, G2 - Gating Codes
Cl, C2 - Control Receivers
Vl, V2 - Data Receivers

Figure 9. Instruction Cell Formats

Gating code

no

true

false

cons

TABLE II

GATING CODES AND THEIR FUNCTIONS

Action

The operand is not gated
no gating function.

The operand value is accepted
if and only if it is associated
with a true gate packet.

The operand value is accepted
if and only if it is associated
with a false gate packet.

The operand is'a constant value.

Data Flow Architecture Based

on Token Labelling

24

Two types of data flow machines which are based on

token labelling architecture are:

1. Arvind data flow machine.

2. Manchester data flow machine.

The concept of token labelling is based on the re-

entrant data flow programs. A re-entrant data flow program

can be interpreted in two ways:

1. The iterations can be queued and executed one after
another as they appear in the program. This is
termed as queued interpretation.

25

2. The different instances of iterations can be
executed in parallel and this is termed as
unfolding or unraveling interpretation.

If all the instances of the iterations are independent

and free from side effects then all the instances can be

executed concurrently. In general, if the multiple

instances are not free from side effects then it is

necessary to distinguish the different instances. A unique

label can be assigned to all of the tokens of each different

instance to differentiate among them. The operator of any

instance will be executed only if all the input tokens

having the same label arrives at its input arcs. This is

the basic principle used in the hardware of the token

labeled data flow architecture.

Arvind Data Flow Machine

The Figure 10 shows the data flow architecture proposed

by Arvind and Gostelow (7). It has an array of processing

elements. The processing elements of the same column are

linked to a common communication bus. Different columns of

processing elements communicate among themselves by means of

a token communication system. The processing elements can

be allocated dynamically~ Each column of processing

elements is connected to a communication switch in the main

communication ring. Each communication switch contains an

associative memory.

26

Bl B2 Bn
Token Communication

'-----1 Tl l!C------1 T2 Tn

PE PE PE

M M M

Array of Processin ~

Elements and .
Memory Units

Lfj
Figure 10. Arvind Data Flow Machine

27

The associative memory maintains a table of the

activity names of the allocated processors in the column

associated with it. The communication switch transfers the

tokens to and from the communication ring to the column of

the processing element that is associated with it. The ring

bus of the main communication system is implemented by means

of shift registers. The tokens are circulated in the

communication ring until it finds a match in any one of the

association table maintained in the associative memory.

Each processor in a column of processor el~ments has an

independent memory, which is both local to the processor and

global to the overall system. An instruction queue and a

token queue are maintained in the memory. The main purpose

of the queue is to overcome the deadlock due to having both

a finite number of storage elements and a finite number of

tokens circulating in the communication ring.

Manchester Data Flow Architecture

The basic organization of Manchester

architecture (28, 33) is shown in Figure 11~

data flow

The basic

units; viz., token queue, match unit, ·instruction store,

processing elements, and a comunication switch, are

connected in a ring. The ring structure implies that the

individual functions of different units can be overlapped.

The processing elements communicate to the other

peripherals through the communication switch. The

peripherals may be another identical ring, a host machine or

an input/output device. The token queue is a buffer used to

28

TOKEN - TOKEN ...
INPUT . OUTPUT

SWITCH TOKEN - QUEUE - -

PE - ::NSTRUCTION - MATCH -- - -
STORE UNIT

PE - Processing Elements

Figure 11. Manchester Data Flow Organization

29

prevent the deadlock due to the limitation of the number of

tokens that can flow in the ring. The buffer represents a

first in first out queue for the tokens. Tokens carry the

data value and the destination instruction. Each token is

identified by a unique label associated with it. The token
\

label is concatenated with the destination instruction of

the token to form the association field. The association

field is searched in the associative memory for a match. If

a match is found then the token is sent to the instruction

store along with the match. If a match is not found then

the token is stored in the associative memory. If the

operator requires only one input token (or an unlabelled

token), then the token bypasses the match unit since it does

not require any match.

The instruction store maintains a queue of instruction

that are to be executed. It sends the instructions from the

queue to the free processor in the processing elements for

execution. This basic organization can be extended for an

array of processing elements consisting of several rings.

The different rings communicate among themselves by means of

an arbitration network and· a distribution network. The

extended organization is shown in Figure 12.

Ar'bitration and
- Dis~ribution Network

c- PE IS MU '

-

- II II
'

.
•
.

- H ' L_i i

PE - Processing Unit
IS - Instruction Store
MU - Match Unit
TQ - Token Queue

30

TQ , -

--
--

"

Figure 12. Extended Manchester Architecture

Demand Driven

Demand driven means that, an instruction is executed if

and only if the computed result is required. In this type

of data flow model the flow of operands among various tasks

are implemented in a demand driven manner. This model is

31

also known as a reduction machine or an applicative system.

The machine language used for this model is termed either a

reduction language, or an applicative languag~. A machine

language program is essentialy a functional program based on

constructions appropriate for binary tree representations.

Unlike the previous model, the machine level representation

for demand driven machines is a linear representation of the

flow graph. The two types of data flow architectures share

the common feature that both of the models can be programmed

using an applicative language.

Any program can be modelled as having a set of inputs

and set of outputs mapped by a function. A conceptual

computational model can have a set of main processors so

that there are as many as the number of output elements in

the function. Each output processor demands the required

arguments from its sub-processors. A simple arithmetic

function demonstrates the concept of demand driven

architectures. From the basic definition the computation of

arithmetic expression demands results from other sub

expressions, which in turn demands results from others. A

sub-expression can become a reducible expression if the· sub

expression represents either a constant or a definition.

The propagated demand travels along the expression until it

hits a reducible expression. The values produced are now

propagated backwards, along the same path on which the

demands traveled. This is

expression in the form of a

implemented by representing the

binary tree. The root node of

the tree places the demand on its successors, which in turn

32

places demands on its successors, etc., until the leaves are

reached. The reduction of the sub-expressions is now

propagated in the opposite direction until the final result

appears at the root node.

The tree representation is analogous to the syntax

trees that are generated during the compilation of

conventional languages. It is possible to have a list

representation of the trees; e.g., postfix, infix, or

prefix. Thus, it is possible to have a demand driven model

based either on trees or on list representations of trees.

The variations in list representations allows user

specified languages. Because of tqe reduction property,

some machines of this type are called reduction machines as

well as demand driven machines.

Reduction Machine

Reduction machines are a class of demand driven

machines that process the reduction lanuages most naturally.

A multiprocessor reduction machine architecture has been

proposed by Treleaven (63). It scans for the the reducible

sub-expressions and evaluates them concurrently with other

reducible sub-expressions. Each processor is controlled by

a state transition table for the given reduction language.

Reduction Lanuage

A reduction language uses the list representation of

the binary tree structure. It can also be defined as a sub-

class of functional languages. The simple example shown in

33

Figure 13. illustrates different list representations of a

simple expression. This illustrates why the language could

In general, a tree has an operand on its be user defined.

root node, operating on the subexpressions on its left and

right successors as shown in Figure 14. In the general

case, the root node represents an operator applied to a

function on one of its successors and the required operands

on the other. Some of the aspects of this type of language

are discussed in Chapter IV .•

Expression: ((a+ b) * ((c + d))/(e + f)
Infix: a + b * c + d I e - f
Prefix: I * + a b + c d - e f
Postfix: s b + c d + * e f - I .

Figure 13. List Representations

Machine Organization

The multiprocessor reduction machine (63)

the following units:

1. A main memory where the definitions
expressions are stored.

2. The processing units

34

consists of

of sub-

3. A shift register which holds the expression to be
evaluated; The surplus part of the expression
resides in a backing unit, which communicates on
either side of the shift register.

Main Memory

The basic organization of the reduction machine is

shown in Figure 15. A main memory, common to all of the

processors, is used to store the definitions. Either an

arbitration unit or a packet switching network is essential

to communicate with the various processors simultaneously.

The main commands for memory operations are load (L) and

store (S) operators.

A reducible load sub-expression is of the form (L n);

where, n represents a definition name, L performs a memory

operation load. This command loads the defintion of the

sub-expression from the memory and the sub-expression is

said to be reduced or evaluated. An evaluated expression

can be stored as a definition in the memory, using the store

operator S. An evaluated or reduced expression is of the

form (S n v), where v represents the value of the

definition name n. Another important use of main memory is

to pass parameters between the processo~s. The parameter

OPERATOR APPLY

/ \ I\
LEFT RIGHT FUNCTION ARGUMENT

(a) (b)

Figure 14. General Representation of
Expressions and Functions

j BACKING STORE
..-~~~l ________ ~(-E_x_p_r_e_s_s_i_o_n_> ________ ~.......~~--;

DQ

PU

MEMORY

DQ - Double Ended Queue PU - Processing Unit

Figure 15. Basic Organization of a Reduction
Machine

35

36

passing is implemented by means of apply actors, which use

load and store. The apply actor can implement both call by

value and call by name as illustrated below:

(apply, f, x)

·(apply, f, (L x))

call by name

call by value

Memory organization of reduction machine is simple when

compared to data driven models.

Shift Registers

The shift register is segmented and a processing unit

is inserted in between the segments. Each segment of the

shift register is a double ended queue along which the

expression travels. The two segments of the shift register

C::1h~municate with the adjacent processors on either side.

The segment of the shift register on the right and left of

the processor are called as the right shift register and the

left shift register, respectively. The shift registers act

as a buffers to store the part of the expression between two

processing units and mantain the order of the expression.

Only one processor can read a queue at a time. As a result

two processors can never access the same item

simultaneously.

Processing Unit

The organization of each processing unit is shown in

Figure 16. The processing unit consists of:

1. Four registers named as follows:
a. Buffer register
b. Input register

DQ LEFT . 'DQ RIGHT

BR IR I DR s

REDUCTION
"' .

TABLE ~ ACTION UNIT

'I\

·~

OPERATION
STORE

. '
..

MEMORY

BR - Buffer R~gister IR - Input Register
DR - Direction/Regis·ter
IR - Input Register
SR - State Register

Figure 16. Organization of Processing tJ,nit of
the Reduction Machine

37'

38

c. Direction register
d. State register

2. A processor controlled by a reduction table, called
the action unit.

3. An operator store.

Each processor unit (PU) serves as path for connecting

the left and right shift registers. The PU takes in the

items of the sub-expressions from the left or right shift

register, depending on the direction, indicated by the

direction register. The reduction table · defines a new

direction for the direction register and the actions to be

taken by the action unit. The contents of the input

register is transfered to the buffer register, and a new

item is taken into the input register. The contents of the

buffer regis~er either are retained in the buffer register

or they are sent to the shift register segment in the

opposite direction, depending on the state defined in the

stat·e register. The state specified in the state register

informs the action unit whether a reducible expression is

found or not found. When the state register defines the

state that a reducible expression is found, the contents of

the buffer register and the input register are sent to the

action unit for processing.

The common features of most data flow schemes are

summarized:

1. An operation is executed as soon as
values are available; i.e.,
availability.

all its input
activity by

2. When an operation is executed the input data values
are lost, but it can produce more than one output
value.

39

3. There is no concept of data storage such as
variables as used in conventional machines and the
operations are not allowed to retain internal state
representation.

4. There are no control flow specifications; i.e., no
sequencing constraints are given beyond the data
flow specification.

The main features of demand driven machines are:

1. An instruction is executed only if the result of
the computation is required.

2. As in data driven machine, there ls no control flow
specification. The control sequence is implied.

3. The machine level program is at higher level, when
compared to data driven.

4. Architecture is simple, since it is not necessary
to update the operand counter of the instruction,
when it receives an operand.

CHAPTER III

DATA FLOW BASE LANGUAGE

Elements of Data Flow Constructs

In the data driven data flow machine the instructions

are executed only on the availability of all the required

operands. The sequential representation of the instructions

has no significance. The program representations used are

designed to reveal the data dependencies ~nd to expres~ the
I

concurrency present in the computation. The basic program

representation at the machine level, is termed as data flow

base language. A data flow base language (20) is desired,

so that other high level languages can be translated to a

common data flow notation. The data flow base language

represents a program as a directed graph with the functional

operators as nodes. The functional operators are called as

actors and are connected by means of links. The incident

arcs and the exit arcs of the actors are known · as input

links and output links respectively.

Link

The data flow graph contains are some non-functional

nodes known as link nodes. There are two types of links:

data links and control links.

40

41

The data links carry data packets; whereas, the control

links carry contr~l packets. The data dependencies in the

program are specified by the links. The link nodes divert

the control or data values in different directions of the

link. The representation of data and control link and their

firing rules are shown in Figure 17.

Actor

An actor is a functional node of the data flow graph;

it represents the operation to be performed on the input

tokens placed at the input arcs of the node. There are

three types of actors: data actors and control actors and

boolean actors. Different types of actors along with their

firing rules are shown in Figure 18.

Th2~e are two types of data actors; operator actors and

decider actors. The operator actor operates on the data

packets placed on its input links and place a result packet

at its output arc. Therefore, the input and output links of

an operator actor are always a data link. The decider actor

places a control value at its output control link, acting on

the data values appearing at its input data links. The

operator of a decider actor is termed as a predicate.

There is no computation involved in the case of a

control actor. The flow of data packets from the input link

to the output link of the node is controled by a control

token. As a result this actor must contain a control link

in addition to the input and output data links. The control

actors and merge actor are illustrated in Figure 19.

42

(a) Data Link (b) Control Link

(c) Firing Rule

Figure 17. Data Link and Contol Link

43

(a) Operator

I
0.

(b) Decider

Figure 18. Actors and Their Firing Rules

44

(~l True Gate (b) False Gate

/\.V.¢

(c) Merge Actor (d) Boolean Actor

Figure 19. Control, Merge and Boolean Actors

45

The boolean operator performs a boolean operation on

the input control tokens appearing at the input control

links. The result is a control token placed at the output

control link of the node.

Data Flow Schemas

A program represented in the form of directed graph is

termed a data flow schema. A data flow program is said to

be well-formed if and only if it produces only one set of

tokens at its output links, when input tokens are present at

its input links. There are some restrictions in using the

actors in the data flow programs. There is a possibility of

creating either a deadlock or non-determinestic behaviour,

when arbitrary interconnection between various actors is

permitted. This situation can be avoided by using well

formed data flow program representation. Under certain

circumstances the data flow program representation may not

result in a well-formed schema. A typical example is the

case of a iteration construct. Such situations can be

handled by using apply actors, to implement the well formed

schemas indirectly. A well-formed data flow construct is

illustrated in Figure 20. The Figure shows a conditional

construct, where the output is always a single set of result

for a given set of input, depending on the value of the

conditional construct.

46

Apply Actor

The action of the apply actor is illustrated in Figure

21. Input to the apply actor is a set of tokens from a

well-formed data flow schema. The actor is enabled when all

the input tokens are present at its input arcs.

1 n Well Formed

...... " .. - - -1

FUNCTION

.. . .
2

1 m

Figure 20. Well Formed Data Flow Schema

The effect of an enabled apply actor is to replace the

actor with the specified well-formed data flow schema

representing a function. The Figure 21 illustrates how a m

input apply actor is applied to a fuction of m-input arcs.

This type of replacement action enables iteration and

recursion to be implemented. The action of the apply actor

is analogous to call by value in conventional languages.

The apply actor is mainly used for procedure activations,

47

and a simple procedure activation is illustrated in Figure

22. The apply actor activates the function F, when the

actor receives all of its input tokens. The results of the

activated function are placed at the output arcs of the

apply actor.

-·--~
-----------~--

1 n

·1 1 n

F F

1 · . . -· ..

1 rn 1 m

Figure 21. Apply Actor

Data Flow Structures

The values in any data flow program can be represented

in the form of a structure, which is a finite, acyclic,

directed graph having one or more root nodes. A data flow

structure is a set of ~selector valuet pairs; where the

selector is a distinct identifier represented as an integer

or a string, and the value is the data flow value (47). The

value may be either an elementary or structured value. An

elementary value represents the value of the data item which

may be an integer, real, character or boolean value. A

48

structured value is an identifier which represents a

structure. The branches of the structure are labelled with

the selector. A node in the structure could represent either

an elementary node or a structured node depending on the

value that is held by the value field of the structure.

Simple arrays of single and two dimensions could be

implemented as shown in Figure 23 and Figure 24

respectively.

F

F

Activate Function

n

m

Terminate Function

Figure 22. Apply Actor Illustration

49

I
I

I
sl s2 sn

I I
vl v2 vn

Figure 23. Single Dimension Array
Implementation

a

sl sk

I
al

I
ak

I
sll·· -sln· · · · · - · · · · · · · ·

I
vl vn

Figure 24. Two Dimension Array Implementation

Select Actor

The select

corresponding to

actor selects a structure

a selector specified to the actor.

50

value

The

function of the select actor is illustrated in Figure 25.

The select actor has two input arcs, through which the actor

receives .the structure identifier (b) and the selector value

(s1) respectively. The actor selects the data value

corresponding to the selector value and place the data value

at the output arc of the actor.

Append Actor

The append actor creates a new s~ructure value without

modifying the original structure. In order to avoid the

cyclic structures a reference count can be maintained for

each node of the structure. The reference count specifies

the number of references to that node. The reference count

is decremented by one, for every reference to a node and if

the reference count becomes zero, then that node will be

deleted from the structure. The function of the append

actor is illustrated in Figure 26. The append actor has two

input arcs, through which the two structure identifiers (a

and b) are placed as input tokens respectively. The actor

creates a new structure under the name c. The new structure

identifier is placed at the output arc of the actor.

51

Procedure Implementation and Activation

A procedure may represent one or more functions. A

function can be defined as a set of instructions (26). In

order that a function to be independent it has to exhibit

the following properties:

1. Asycnchrony: The asynchrony property
from the basic property of data flow
instruction is executed only when all
required operands are available.

is viewed
that an
of its

2. Free from side effects: If the data dependency
within the function have the same sequencing
constraints then it is said to be free from side
effects. A procedure represents a function for
the given program. From this point of view a
procedure is free from side effects, since it does
not have any data dependency other than the set of
input parameters that are passed to it. The
results of the procedure are presented in the form
a set of output parameters, must be different from
those of the input parameters. It is assumed that
the all the computations within the procedure have
a scope within the procedure itself. In order to
avoid the modifications of the values that are
passed by the inpµt parameters the procedure call
is implemented similar to call by value in
conventional languages.

These properties serve as an important tool for

analyzing the parallel execution of procedures or functions.

One can visualize the parallelism exhibited by a procedure

in two different ways: static parallelism and dynamic

parallelism. The static parallelism is the inherent

parallelism within the program, emphasized by the graphical

representation. Considering the simple example shown in

Figure 27, the two functions Fl and F2 can be executed

concurrently. The parallelism exhibited by a re-entrent

function or a procedure at execution time is termed as

dynamic parallelism. The reentrant functions can be

52

interpreted in two different ways: queued interpretation and

unraveling interpretation.

sl
b

I

sl
I

v1

Figure 25. Select Actor

i
sn ~

s1. sk

vn I I
v1

D
vk

I
1

I
a b
I I

sn I
I sl sk

vn I I
vl vk

Figure 26. Append Actor

Fl F2

F3

Figure 27. Example to Illustrate
Static Parallelism

53

54

A queued interpretation considers different instances

of the function asynchronously in the same sequence as they

appear in the program. The unraveling interpretation

exploits the concurreny dynamically. This interpretation

could be either implemented in hardware as in the Manchester

data flow architecture (33) or by means of a structure

implementation with corresponding actors. A token labeled

architecture is used in Manchester data flow organization.

In general the dynamic parallelism exhibited either by a

procedure or by a function within a procedure, that has .

several instances of execution. It is possible that these

multiple instances are free from side effects, and in such a
I

situation, executing all the instances concurrently is

worthwhile. One of the methods suggested by Gostelow (26)

is to unfold all the side effect free instances and execute

them simultaneously. When the multiple instances are not

free from side effects then a pipelined method can be used

to exploit the dynamic parallelism. In order to implement a

pipelined feature there are certain other criteria to be-

considered in addition to the use of an apply actor.

I

1. The execution of an instance is defined as an
activity. In order to distinguish multiple
instances of the same function it is necessary have
a unique identification for each activity,
referenced as the activity name (26).

2. The destination of the result packets for different
instances of the activity may be different.
Therefore, it is necessary to group tokens
according to the different activity names. One of
the methods is by means of colored tokens as
suggested by Dennis (20).

3. A particular instance
the input tokens of

can be executed only if all
the corresponding instance

55

arrives at its input arcs. In other words
execution of instance should exhibit the asynchrony
property independently.

Dynamic parallelism can be accomplished best by means

of a structure representation as suggested by Fanell and

others (22) • Procedures in a data flow schema can be

represented in the form of a data flow structure known as a

procedure structure. The same method can also be utilized

in a case of re-entrant functions. The components of this

structure are the instructions' representing a structure

value. These components are assigned by unique selector

name, usually an integer. Figure 28 illustrates the

representation of the procedure structure. The number of

components n, depends on the number of activities. Each

instruction structure has two components; viz., an

elementary value representing the actor, which specifies the

action of the instruction and a structure value for

destination fields. The selector values of destination

field depends on the number of destinations to which the

result packet is to be distributed. Each destination field

has three components:

1. Selector value of the destination instruction;

2. Input arc of the destination actor;

3. A count of number of operands required by the
destination instruction.

In order to implement pipelined concurrency of multiple

instances, a structure for each activity must be maintained.

Each activity is identified by an activation record. The

structure builds up dynamically as the number of activations

56

of the procedure increses. Each activation record has two

components, one of which has an elementary value denotes the

procedure to which it belongs, and the other has a structure

value. The number of selector values in the structure

correspond to the number of instructions in the activity.

Each instruction selector holds another structure value

termed as operand record. The operand record has one

elementary value to announce the arrival of all the input

operands of the corresponding instance. The number of

selector value's of the operand structure depends on the

number of input arcs (or operands). The activation

structure representation is illustrated in Figure 29. It is

necessary to define the following, operations on the

activation structure, in order to implement procedure

activations.

1. Create activation(P): Creates a new
record for newly invoked instance.
created activation record has only one
the procedure to which it belongs.

activation
The newly

component P,

2. Insert(A,i,k,v): Inserts a value v to the k th
input arc of the i th instance of the activity
record A of the activation structure. The
'arrival' count keeps the count of number of input
required to enable the execcution of an instance.
The result packets are associated with the a number
of input count of the destination along with the
result token. This count is compared with the
updated 'arrival' count and the instance is enabled
when they become equal.

3. Remove(A,i): When an instance
enabled its operand record is
activation structure.

is ready to
removed from

be
the

4. Free(A): The activation record A is relesed to the
a available memory list, when it is no longer
required.

1

1

op 1 p

I
Opcode

Inst arc

I
Integer

57

n
Instruction
Selector Values

i Instruction

Count

Destination

Figure 28. Procedure Structure

I
1

vl

r Activation Record

I
k

l
1

vi
Operand RE:cord

n

I
Arrival

I
Integer

Figure 29. Activation Structure

p

Name

58

The procedure activation takes the following sequence.

of steps:

1. A procedure activation is requested by means of an
apply actor.

2. The request causes the creation of an activation
record, marking the arrival of a new instance and
its corresponding input parameter values.

3. The computed result tokens of different instances
create corresponding result structure.

4. The output arcs of the apply actor receives the
result structure of a completed activity and the
corresponding activation record is freed.

Streams

A stream is a sequence of values of the same type, each

being passed successively. In other words, stream is a

fragmented data structure and each fragment represents only

one element. Streams can be used to implement the data flow

structure effeciently.

The main bottleneck in the data flow structure

representation can be illustrated by using the following

example. Consider two functions, one of which creates an

array element by element and the other reads this array

element by element. In such a situation the second function

has to wait untill the action of the first function

terminates, since both functions can not use the same

structure simultanously. The stream representation is

analogous to the list representation in LISP. The various

stream operations (22) can be defined as follows:

1. cons(c,s): Constructs a stream 's' with 'c' as its
front element and the remaining elements are the

2.

3.

59

elements of the stream. A special case of this
operation is to create a new stream, when 's' is
empty. An empty stream is denoted by ().

first(s): Choose the first
's'. The value is undefined
empty.

element of the stream
if the stream 's' is

rest(s): Choose all the elements of
other than the first element. The
undefined if the stream is empty. The
empty if the stream has only one element.

the stream
value is
result is

4. empty(s): Returns a boolean value of true if the
stream 's' is empty.

In summary, the value held by a stream is a sequence.

If there is no element in the sequence then the stream is

empty. The stream operators are independent of the value of

elements of the stream; but the operations on the elements

depends on the data type. Cons and rest stream operations

results in a stream. The result of first operation depends

on the usage in the language; that is, either it may result

a value as a part of an expression or it may assign a value

to an identifier. The empty stream operation is used to

test a stream whether it is empty.

(boolean value) if the stream is empty.

The result is true

Symbolic Data Flow Representation

In addition to the graphical representation of the

programs for data flow machines, symbolic representation is

also used, for such programs. The primitive instruction in

symbolic representation consists of three fields. The

instruction types are classified into seven basic types:

DEF, EVAL, MERGE, SWITCH, TG, FG, and APPLY. The second

field corresponds to a single identifier.· An identifier

60

represents an unique element of the set of class grouped by

a function of two dimensions: value and link(path). The

computation

identifier.

on any identifier always produces another

For example, the conventional strategy such as

i := i + 1

is not true in the symbolic representation. If an

identifier carries the same value but changes its path then

it denotes a different iderttifier. Semantically, these can

be refered as value oriented objects. The third field

specifies the operation to be performed. Apart from regular

expressions there are special instructions that can be

specified in the third field. A STOP to terminate the

execution and RETURN to return the result of computation.

An identifier not only represents a value that it carries,

but it also defines the link. For any value there can be

exactly one link. Programs must be constructed adhering to

this restriction. Special symbols are prefixed with the

identifier to differentiate whether they represent data

values or a control values or a definition names. If the

identifier is not prefixed with any of the special symbols,

then it represents a data valu~ (a member of a set of

defined class. of numbers). If the identifier is prefixed

with the special symbol '@' then it represents a control

value (a set of two elements - true or false). If an

identifier is prefixed with a special symbol '&' then it

defines a function name or a program name.

The DEF type of instruction is used to define or to

initialize the values, and thus, has no significance once

61

the program is machine coded. It indicates, that the

identifier in the second field is to be initialized with the

value specified in the third field. The EVAL instruction

indicates that the identifier specified in the second field

is to take the value obtained after evaluating the

expression specified in the third field. The type of value

computed depends on the type of identifier specified in the

second field. The instruction types TG and FG corresponds

to true and false gates respectively. The instruction types

APPLY, MERGE, and SWITCH correspond to apply, merge and

switch actors respectively. The instruction representation

is illustrated with example in Appendix B.

The symbolic data flow, representation presented here is

primitive. This can be extended to a powerful and efficient

instruction representations. As in conventional assemblers,

it may be possible to implement macros to simplify

programming task. The importance of this representation is

in the area of intermediate representation during

compilation of high level language for data flow machines.

Aspects of data flow language can be summarized as

follows:

The data flow language represents the machine level

representation of a program on a data driven machine. The

program representation is in the form of the directed

graph. The nodes of the data flow graph represents the

instruction, called actors, that is to be executed by the

data flow machine. The arcs of the data flow graph

represents the data dependencies and indicates the path

62

along which the result of the instruction must travel. The

structure operations can be implemented by means of

structure actors. Subroutine calls can be implemented by

apply actors. The data flow language can also be

represented symbolically, which is analogous to conventional

machine language.

CHAPTER IV

CONVENTIONAL LANGUAGES FOR

DATA FLOW PROCESSOR

Machine level programming on a data flow processor

requires a graphical representation of the program. The

development of such a representation is tedious. Another

important factor to be considered is that the various

existing software techniques must be available to use the

data flow processor easily and economically. Conventional

languages can be used as the high l~vel language for data

flow machines. It is assumed that a host machine is

available to generate data flow code for the data flow

processor.

The main goal of the compiler is to translate the

conventional language to a data flow notation to be used at

the data flow machine level. The different phases of a

conventional compiler are lexical analysis, syntax analysis,

intermediate code generation, an optional optimization

process, and. machine code generation. The optimization

process is essentially a flow analysis of the source program

represented in an intermediate form. The flow analysis is

·classified in to two types: data flow analysis and control

flow analysis. Control flow analysis deals with the

construction, representation, structure, properties of a

63

64

flow graph or control flow graph. It is a pre-requisite for

.data flow analysis. Data flow analysis is used to obtain

more accurate representation of control flow. It is

essentially a pre-execution process of collecting and

ascertaining information. The information deals with the

data values or the quantities that are preserved, modified

and used in the program. The main aim of a conventional

optimizing compiler is to utilize the data flow information,

in order to obtain optimized machine code that would improve

the running time. The analysis ultimately results in the

constr~ction of a data flow graph. The data flow graph has

no significance at the machine level of the conventional

host machine. For the data flow machines, the flow graph
I

representation of the program. is significant at the machine

level as well as at the execution level. Therefore, the

techniquies for the conventional optimization process can be

used to translate the conventional programs into data flow

machine language.

While considering the compilation process for a data

flow machine, the initial phases; i.e., lexical and syntax

analysis, remain the same. The optional optimization

process, is no longer optional and serves as an important

phase of the compilation step. The main uses of flow

analysis are:

1. To obtain a graphical representation of the program
that could be used for data flow analysis.

2. Restructure the graphical representation
to the data dependencies and
constraints.

according
sequencing

65

3. To exploit the inherent parallelism of the program.

Lexical and Syntax Analysis

Lexical analysis, also known as scanning, seperates the

tokens 1 , builds a symbol table which contains information

about constants, variables, and labels that are used in the

program. The syntax analyzer· or parser groups the tokens 1

into syntactic structures according to the rules of the high

level language. The main functions of this phase are:

1. To detect syntax and semantic errors in the source
program

2. To create a parse tree that could be used in the
subsequent phases.

An intermediate representation of the program is obtained by

using the parse tree. Detailed treatment about these phases

could be found in references (3, 4, 15, 52, 53).

Data Flow Restructuring

Motivation

The motivation of restructuring is to find the. data

flow graph based only on the data dependencies b2tween

various nodes of the directed graph. The flexibility of

flow of control in the program is a major hurdle in

achieving the motivation. The first step towards the

restructuring phase is to construct a flow graph.

1 The term token used here has no
that are discussed in data flow
means a group of characters of
logical meaning such as keywords,

relation to the "tokens"
architecture. Here it

source program giving a
identifiers, etc.

66

Definition: A flow graph is a triple G = (N, A, s)

where (N, A) is a directed graph and there is a path from

initial node 's' belongs to N, to every node.

N - is a set of nodes

A - is a set of arcs.

Logically, the source program is a flow graph with each

statement of the program representing one node and the

direction of the control flow between the statements

representing the arcs of the flow graph. In order to

simplify the flow analysis all the statements where the flow

of control is unidirectional can be grouped together, to

represent a single node of a program flow graph. Such a

group of statements are called blocks. In other words, a

basic block is a sequence of statements either at source or

intermediate level, which may be entered only at the

begining and the statements within the block can be executed

with out halt or transfer of control, except at the end of

block. The block containing the first statement of the

source program is termed the initial node. The block

containing the last statement in the program is termed as

exit node. The first statement within a block is known as

the leader of the block and each block represents the node

of the flow graph.

Definition: A block B is a triple (p' I' U) where, p

is a set of statements Sl, 52, 53, . . . ,Sn ;n 0

I is a set of input variables, and

u is a set of output variables.

Definition: A statement is a string of the form

A - p I1, ... ,Ir

67

where, A,I1, ., Ir are variables and r is a set of

operators.

If a statement Sj in a block references a variable A

then A is either an input variable or defined in a statement

before_Sj. If a variable is referenced-in a statement, then

it is said to be in use in the block containing the

statement. If the data value of a variable is modified in a

statement either by assignment or reading a value for a

variable, then it is said to defined. The definition of a

variable may not be unique in a program, since it may be

redefined at any other point the program. Each different

definition of the same variable has

created by the redefinition. With

a scope of its

in the scope

own,

of a

definition there may be several uses or none. Therefore, it

is necessary to collect all the definitions of a variable

and its use. In general, a node of a flow graph can have

more than one predecessors or may lie with in a loop formed

in the flow graph. In such a situation more elaborate

analysis regarding the definitions and its use is essential.

It is necessary travel along all different arcs connecting a

node to its predecessors and successors to analyze the

behaviour of the data value of a data item or variable.

This analysis is known as data flow analysis and the result

of the analysis gives complete information about the

definition and use of the variables. From these details it

is possible to create a successor list for each definitions

68

representing its corrsponding use. This representation

essentialy results in a data flow graph.

The information obtained during data flow analysis can

be used to perform certain optimizing transformations. The

optimizing tranformations can be viewed in rwo ways, the

first one being the tranformations before the data flow

analysis, and the other being the transformations after data

flow analysis. These transformations are usually termed as

block transformations and loop transformations respectively.

Block Transformation

Block transformation plays the dual part in

optimization and program level transformation. If a block

Bl is transform~d to block B2 then they are said to be

equivalent, if and only if their values are equal. The

value of block is a set of all the values of the definitions

with in the block. The value of a variable is based on the

value of the expression that defines or assigns the

variable. As a result each definiton has a unique value

representation. There are four different block

transformations (3) as listed below.

1. Elimination
variable is
active with
statement is

of useless computations
assigned a statement and
in its scope then the

redundant.

If a
it is not
assignment

2. Elimination of redundant computations This
transformation involves in detecting common sub
expressions or expressions with in the block and
avoids unnecessary repetation of computations.

3. Renaming : If an assigned variable A in a
statement of the form

A o Il,12, .•. ,Ir

is replaced by an another variable C that
active with in the scope of the statement is
renaming. Then all the references of A with
scope are replaced by C.

69

is not
called
in its

4. Flipping Flipping is the transformation by
which two statements or the entries Si and Si+l of
the block can be interchanged, so that the
resulting block is equivalent to the original
block.

The last two transformations signifies the construction

of directed graph for the block.

Loop Transformations

Execution time can be improved by means of several loop

transformations. A loop can be defined as a cycle in a flow

graph characterizing the following properties:

1. A loop
node

has a single entry node known as header

2. Loop is a strongly connected region of the flow
graph.

Definition: A strongly connected region of a graph

G is a sub-graph of G in which there is a path between all

pairs of nodes.

Loop Invarient Computations

Some of the computations with in the loop are invarient

as long as they are with in the loop and such computations

can be moved above the loop header. As a result these

computations will not be repeated unnecessarily through out

all the iterations of the loop. In order to perform this

transformation information regarding the live definitions

are necessary. This information can be obtained during the

data flow analysis.

70

Loop Unrolling

The main advantage of loop unrolling transformation is

that it is possible to expose more insructions for parallel

computation. A loop can be unrolled so that all the

iterations can computed in parallel, assuming a number

processors, as many as the number of iterations are

available. It is also possible to unroll the loop partially

and these transformations are illustrated in Figure 30.

Loop Jamming

Another important loop tranformation that could expose

more instructions for parallel computation is loop jamming.

Merging of two loops together is called loop jamming and it

is ill~lbtrated in Figure 31. The following criteria to be

met in order that two loops can be merged:

1. The loops that are to be jammed
same execution conditions. If
iterations are different two
conditions has to be used.

should have the
the number of
seperate test

2. The computations of the two loops should not be
interdependent. There certain situations where
this condition can be relaxed.

Loop Unswitching

This transformation is opposite to loop jamming and one

of the situation under which this can be used is illustrated

in Figure 32. The above mentioned transformations can also

be applicable under nested loop situations.

for i = 1 to n step 1
ARRAY1(i) = ARRAY1(i) + ARRAY2(i)
end

After unrolling by 2:

for i = 1 to n step 2
ARRAY1(i) = ARRAY1(i) + ARRAY2(i)
ARRAY1(i+1) = ARRAY1(i+1) + ARRAY2(i+1)
end

Figure 30. Loop Unrolling Illustration

71

for i = 1 to n step 1
ARRAYl(i) = 0
end
for i = 1 to n step 1
ARRAY2(i) ~ ARRAY3(i) + CONST
end

After loop jamming:

for i = i to n step 1
ARRAYl(i) = Q·
ARRAY2(i) =ARRAY3(i) +CONST
end

Figure 31. Loop Jamming Illustration

72

for i = 1 to n step 1
if (cond) then

ARRAY1(i) = ARRAY1(i} * ARRAY2(i)
else
ARRAY1(i) ARRAY1(i) I ARRAY2(i)

end

After loop unswitching:

if (cond) then
for i = 1 to n step 1
ARRAY1(i} = ARRAY1(i) * ARRAY2(i)
end

else
for i = 1 to n step 1
ARRAY1(i} = ARRAY2(i) / ARRAY3(i}
end

Figure 32. Loop Unswitching Illust~ation

73

74

Restructuring

The intermediate form of the program is partitioned to

basic blocks and a flow graph is constructed with basic

blocks as nodes and their successor relationships as arcs.

The construction of flow graph could be a pre-pass or as a

part the previous phase. This is an essential requirment

during the first level of restructuring. The details of

flow graph construction can be found in references (29, 60).

The second level of the restructuring process is data

flow analysis. The data flow analysis is used to obtain the

necessary data flow information utilized during the final

restructuring stage and optimization of data flow graph.

The motivation of this analysis is to determine reaching

definitions to establish the relationship between the data

dependencies amoung the various blocks. There are two

methods for data flow analysis:

1. Iterative data flow analysis.

2. Interval data flow analysis.

A three phase method for interval data flow analysis is

implemented in PL/1 by Allen and Cocke (6). A comparative

study of the two methods of data flow analysis is given in

the report of S. Y. Lee (60).

Final Restructuring

This phase is the final restructuring in the sense that

a complete data flow graph will be available at the end of

this phase. During this phase the use and definitions

75

amoung the various blocks are linked by means of a successor

list at the generated node. The generated node at each

block is considered individually and all the other blocks

are scaned for their use. For each definition of the block

a list is created with a header containing the information

about the definition. The live definitions of the other

blocks give the information about the use of a definition.

If there is a use of the definition the use node is inserted

in the corresponding list. At the end of scan, the lists

are transfered as a successor lists of the respective

definition nodes in the block.

Optimization

The data flow graph present at this stage is sufficient

to generate desired data flow machine code. In order to

improve the run time and expose more parallelism certain

optimizing transformatins can be performed. The notation of

the variables are completely lost at this situation and they

do not have any signific~~ce. The data flow graph is

completly based on the flow of data between the various

nodes. Each block now represents a data flow graph,

consisting of one or more nodes where the computation is

involved. Thus a block forms a cluster of nodes and it can

be termed as cluster node. The

computation can be termed as atom

therf ore consists of one or more

interval header is a cluster node.

nodes

node.

cluster

involving the

An interval

nodes and the

For each cluster node

there is an information about the the reaching definitions

76

and live definitions. A loop may consists of several

cluster nodes or a cluster node itself form a self loop.

The optimization transformations are simplified, by applying

only to loops with in the intervals. The . effect of

optimization plays a dual role· under the . following

situations:

1. Move a cluster node out of an interval to expose
more parallelism or to avoid redundant computations
with in a loop.

2. Split a cluster node into one or more cluster nodes
to expose more parallelism or to avoid redundant
computation with in the loop.

In order that a cluster node with in an interval to be

exposed for parallelism the uses of the cluster nodes should

have live definitions at the header of the interval and the

generated definitions should not have live definitions at

the header. The reason for this is due to the fact that use

of a definition at any cluster will be live at the interval

head if and only if it is not redefined in any of the path

between the head to the point under consideration. At the

same time, a cluster node may use a definition and redefine

it. If the redefined definition has an use at any point

between the header and the definition then it will be live

at the header. It means that a definition being used at

every iteration and redefined with in a loop. Another way

of interpreting this transformation is that a cluster node

can be moved out of a interval if and only if the successor

list of all the atom nodes with in the cluster does not

contain any atom nodes with in the interval.

The computations with in a cluster node may contain

77

more than one independent computation. In such cases a

cluster node can be split into two or more clusters, all of

which can be computed in parallel. When a cluster node

itself represents a loop then the same rules as that of

loops in intervals holds good. The . different situations

exposing the parallelism and loops are illustrated in Figure

33. A procedure implementation of opimization phase is

shown in Figure 34. Different types of loop transformations

are already illustrated. The loop unrolling is essentially

same as spliting of the cluster node. Here the loop

representing a cluster node is split into a number of

cluster nodes as many as the number of iterations in the

loop. The loop jamming is essentially merging two different

cluster nodes, which are identical but different in the

sense of computation. the loop switching involves in

duplicating a cluster node under a special situation; for

e.g. in an if construct as illustrated earlier.

Data Flow Code Generation

The main task of this phase is to interface the

generated data flow graph to the data flow machine under

consideration. It depends on the machine organization. One

of the method of generating the data flow code is to

interpret the genarated data flow graph to a data flow

notation. The data flow notation or the base language is

mapped, either by hardware or software translator. This

transformation is essential, in order to implement the

conditional and loops in the data flow machine. These

interpretations

chapter. Each

78

are already discussed in the earlier

cluster node of the data flow graph has a

successor list. All the successors of a cluster node can be

computed concurrently.

case of a atom node.

The situation is different in the

The successors of a atom node

specifies the destination nodes for the computed result.

Although the splitting of the cluster nodes to expose

paralelism, it is not absolutly essential because of the

properties of the data flow. But ii could be helpful under

the situations where it is possible to allocate different

sets of computations to different sets of processors.

Structured Languages

A program is said to be well structured if the program

segments are easy to understand and the control paths

between the segments of the program are minimal. The

conventional languages can be classified either under

absolutely unstructured or structured. By structured, it

means that it is possible to develope well structured

programs using such languages. The main objective is to

find a suitable language or a subset of a language which

will always result to structured programs.

In conventional language the flow of control i.e., the

order in which the statements are to be executed in

sequence, is sequential. The sequential flow can be altered

by means of conditional or unconditional transfer

statements. As a result programs can be developed with out

any control flow restrictions. This is the cause for the

79

complexity of the data flow analysis. The analysis could be

simplified by restricting the use of control statements,

which ultimatly leads to structured programs.

{a)

(a)

(b)

(c)

.(b) (c:)

A Flow Graph with Interval = (Bl._;_B~ T
and Interval 2 = (B3, B4)

Assume Bl ~nd B2 are Independent,
Loop Invarient Computation exists in B3 and B4
Exposing Parallelism in Bl and B2
Exposing Parallelism by removing Loop

Invarient Computations in B4

Figure 33. Exposing Parallelism

OPTIMIZER: procedure
for each interval of the flow graph do

for each block j in the interval do
FLAG = 0
call MOV BLK OUT

for each entry e in the block j do
if ENT IN USE(e) = L!V DEF(j) then do
scan tne tree for definitions

80

if definition= LIV DEF(j) then do
create a new block For the entry
include the new block in SUCC LIST of

end do
end do

end OPTIMIZER

end if
end do

MOV BLK OUT: procedure

the predecessor of j -
if FLAG = 0 then call MOV BLK OUT
end if

-if LOC USE(j) =LIV DEF(h) and GEN_DEF(j) =LIV DEF(h)
then do -
include j in SUCC LIST of predecessor of h
delete j from the-current SUCC LIST
FLAG = 1
end if

return
end MOV BLK OUT

Figure 34. Optimization Procedure Implementation

81

Language Representation

There is no need to be alarmed as a result of the above

mentioned restriction in the language representation. The

same effect of the contr61 statements can be well

established by means of conditional iterative constructs. A

typical grammer of such a language is shown below in BNF.

<statement> : : = < simple statement> I< compound statement»

<simple statement> : := < assign stmt >I<: proc stmt >I

<call stmt>

< compond statement> : : = < set of stmts > l <: cond stmt >I

< iter stmt >

< 3.Ssign stmt > : : = < simpl asgn > j <: compute asgn >

<:simpl asgn > : : = < identifier> : = < identifier> I< constant >

<compute asgn > : : = < identifier > : = < expression >

< proc stmt > : : = < proc keyword>< identifier>~ set of parms >

<call stmt >: := CALL <identifier> <set of parms>

<Set of stmts> ::=BEGIN (<stmtatement> !<set of stmts>) END

< cond stmt> : : = IF < cond> THEN <set of stmts>

IF < cond> THEN <set of stmts> ELSE <set of stmts>

< iter stmt> : : = < steped iter> · I <cond iter>

<Steped iter> ::= ITER <identifier> :=<limits> <set of stmts>

<Cond iter> ::= ITER <cond> <set of stmts>

Conventional compilation techniques employ a source to

source conversion to develope an intermediate representation

of the program in the form of triples or quadraples. Such

intermediate form is essentially based to suit the

82

conventional machine architecture. It is necessary to

consider a suitable intermediate representation that will

simplify the construction of data flow graph construction.

In an earlier discussion it has been emphasized that a

control flow analysis is a prerequisite for the data flow

analysis. This type of data flow analysis is known as low

level data flow analysis A high level data flow analysis (5,

8, 30, 56) eliminates the control flow analysis requirement.

The main advantages of this language representation are:

1. High level data flow analysis.

2. Simplification of data flow analysis.

3. Improvement in program structure and readability.

Language Extentions

The main idea behind the use of the structured language

is to reduce burden of the data flow analysis. It is

worthwhile to focus the attention to reduce the number of

passes with out loosing much of effeciency in code

generation. Through some language extentions, it is

possible to take advantage by exposing the .parallel

structure of the problem. Live variable analysis and loop

optimizations are required to remove loop invarient

computations. By including an iteration construct UNROLL,

it is possible to inform the compiler explicitly, that the

loop is to be unrolled to expose parallelism. Using the

locality of effect the burden of detecting the loop

invarient computations can be reduced or ignored. The

83

locality of effect means ,that the data dependencies among a

set of instructions is fixed. Thus the use of data item at

different blocks of program are independent. By defining a

scope to a data item, the data flow analysis of the data

item can be restricted with in the scope, rather than

scanning through out. the program where ever it is used.

Scope is a block or set of instructions over which the

definition and use of a data item is effective. The problem

of side effect is to be tackled while exposing more

computations for parallelsim. Particularly, the side effect

is more pronounced when a loop or a function or a procedure

is unrolled. Under these circumstances it is important that

different activities of the same computation are

independent. The definition of a data item in one activity

should not effect the computation in the other parallel

activity.

Consider two concurrent activites of a function as an

example. Let the input to the function be passed by means

of a set of parameters. If any change in the input

parameter during the activity one will affect the use of the

particular data item in activity two, assuming that both the

activities are sharing a common set of input parameters.

This hazardous effect can be observed easily, if the

activities are based on the conventional call by reference.

Call by reference passes an address pointer to the function.

If several activties of the function appear in parallel,

then all of them share the same memory location. This

common reference location for different activities may

84

result in side effects. In order to prevent side effects,

each activity of the function should have an independent

copy of the parameters. This essentially means that each

activtiy has to be provided with the actual values of of the

input parameters rather then sharing a common memory

location. This implementation is similar to the call by

value in conventional languages.

Use of conventional language on data flow machine is

possible. The techniques of data flow analysis can be used

to construct the data flow graph of the high level language

program. The data flow machine code is generated from the

data flow graph. In addition to the construction

Considerable importance has to be given to optimization, in

addition to construction of data flow graph during language

translation. The main motivation of optimization is to

expose parallelism in the program. The optimization process

follows the data flow analysis to perform the following:

1. The invarient computations in each interval is
moved to expose parallelism.

2. The parallelism in loops are exposed by performing
the transformations: loop unrolling, loop jamming,
and loop unswitching.

The data flow analysis is complex because of

unrestricted control flow. The analysis can be simplified

in structured language where control flow is absolutely

restricted. Special constructs can be used to expose

parallelism explicitly.

CHAPTER V

APPLICATIVE LANGUAGES

A program can be considered as a representation of a

function (f) applied to a set of data elements (x) which

results a set of values y [y=f(x)]. The representation of

function depends on the · language under consideration.

Depending upon the representation, the function must undergo

many further transformations before it can be applied to its

arguments. Procedural languages , exhibiting explicit

sequencing constraints, based on the conventional

architectures. In procedural languages a procedure can be

used to represent a function, and use of the function at

different parts of the program is implememted by means of

call to the procedure.

The properties of the programming language are

characterized by its syntactic and semantic spec~fications.

Syntax specification specifies the class of strings

representing a program. Semantics concerns with the various

objects used in the program. The objects are of two types;

viz., objects internal to the language and objects external

to the language (68). The term object refers to the

external objects unless otherwise specified. From the point

of view of conventional architectures, an object defines a

storage location. The object can be a value rather than a

85

86

storage location, since a value oriented objects are

suitable for data flow architectures.

If a function can be evaluated by means of physical

substitution of its arguments, then it is called

substitutive function. A macro call, function subprogram in

FORTRAN are close examples of a practical implementation of

substitutive functions. The function evaluation in a

procedural language are not 'pure' since they are not

substitutive. This section is concerned about the languages

which are value oriented and employs substitutive function

evaluation technique.

Languages based on functional application on the values
I

are called applicative languages and the operators represent

the function (24, 43, 44). By means of applicative language

one can specify what results are required, instead of

specifying how to compute the result. A definitional

language is a value oriented language and based on

definitions. The function evaluation in a definitional

language may or may not be substitutive. Best known pure

function evaluation techniques are based on the lambda

calculus and combinatory logic, an extension of lambda

calculus. In genaral, a functional evaluation in a

functional programming language can involve an unlimited

number of arguments. For all practical purposes, a subset

of functional language can be choosen involving functional

application not more than two arguments. Such a language is

termed as reduction language (63).

87

Definitional Language

As mentioned earlier, a definitional language is a

value oriented language. An identifier holding a value is

defined by means of definition statement. It is obvious

that value held by an identifier is unique. Therefore, it

is necessary to define a scope to the ideritifier. The above

mentioned facts can be condensed as a rule, known as single

assignment rule, which characterizes the definitional

language.

follows:

The single assignment rule can be stated as

An identifier used on the right hand side of an

assignment statement can not appear on the left hand side

with in its scope.

The program representation is a procedure, which

includes definitions and problem statements. There is a

procedure statement to mark the beginning of the program and

a procedure end statement to mark the end of program. A

definition is assumed to appear prior to its use with in its

scope. This is not very critical, but enables the programs

to be well structured, free from definition ambiguties and

fewer passes during compilation stage. The definition

statement are of three types:

1. Function definition: Defines a function of given
name representing a procedure. The values can be
passed in or out of the function definition only
through a set of parameters.

2. Expresion definition: A direct value assignment to
an identifier. It is a single statement by means
of which an identifier is assigened by evaluation
of expression.

88

3. Count definition: A count definition is used to
define an identifier as a counter. The operation
on the count identifier can be either incremental
or decremental.

Within a procedure a scope can be defined by means of

scope begin and scope end statements. The conditional and

iteration constructs can be implemented using the

conventional syntax. An acyclic directed graph can be used

to implement structures as discussed previously. The value

of a structure, A, and selector, s, can be denoted by A(s),

and can be used in the program like any other identifier.

During the code generation this is implemented by means of a

select structure operation (or select actor). Other

structure operations can be implemented by using the

following syntax.

1.

2.

3.

mod(structure,selector,expr):
structure definition of a
selector.

To modify
given structure

create(structure,selector,expr):
structure definition in a given
selector.

append(structure,selector,expr):
structure definition to a given
selector.

To create
structure

To append
structure

the
and

a
and

a
and

Structure operations always result in a new structure,

retaining the old structure on which the operation performed

intact. This facilitates the use of same structure for

various concurrent activities with out any side effect. It

can be noted that all structure operations are implemented

in a form of simple functions. A grammar for a definitional

language is given below in BNF.

89

< Procedure > : : = < proc stmt >< stmt > • • . < proc end >

< proc stmt > : : = Procedure <parameters >

< stmt > : : = <def stmt >I< cond stmt >I< iter stmt>

< def stmt > : : = < assignmrnt >I< func def >

< assignment > : : = < identifier > : = <identifier >I< expr >

< expr > : : = <value ><operand > . . . <value >

<value > : : = < identifier >I< func name >I< struc func >

< struc func > : : = < opr >< struc id ><selector >< expr >

< opr >

< struc id >

< cond stmt >

< iter stmt >

< func def >

=~=create I append I modify

: : = < identifier >

.. -.. -

.. =

: : =

if < cond >then < expr >else < expr >

iter < cond >< expr >
'

Function < func name ><procedure >

Compilation Techniques

The intermediate representation of the program is

created during initial phases of compilation. The

intermediate form is a simple structure consisting of two

information fields and a link field to link all the entries

of the intermediate form. The two information fields

represent the type field and tree pointer field

respectively. The type denotes the type of statement and

the tree pointer points to the tree structure of the

statement if available, otherwise it is set to zero (i.e.,

to indicate that the tree is not available). The data flow

graph construction is straight forward from the intermediate

form with out any complex analysis. A stack of definition

lists is maintained and the list on the top of the stack

corresponds to the current active scope. A data flow graph

is constructed for each of the procedure independently.

Various steps involved in the construction of a data

flow graph for a procedure is shown in Figure 35. A list of

function def intions is maintained which indicates the

location of the corresponding data flow graph. A reference

to the function name implies function evaluation with the

given set of parameters. The function reference can be

implemented by following different methods.

1. A simple method is to substitute the complete data
flow graph of the corresponding function reference,
instead of the function name. This method may not
prove efficient . under all1 circumstances. The
following methods using apply actors can be
prefered instead of substitution.

2. The same copy of the function used for several
concurrent activities. The above method implies
all the activities absolutly concurrent. But this
method and following method implies a pipelined
cocurrency of various activities. The second
method is by means of maintaining a structure of
various activities of the function as discussed in
one of the eariler chapters.

3. The third method is to pass the location of the
apply actor that activates the function. This
distinguish the various concurrent activities and
the results are passed to the respective
distributers of the apply actors.

Functional Language

This discussion has progressed from conventional

languages to the value oriented languages which are based on

both values as objects and on function definitions. This

can be further extended to languages that are based on pure

RESTRCTURE: PROCEDURE
DO for each entry in intermediate form

IF type = procedure or function then do
Initialize stack
Push the procedure or function identifier

and its information
END IF
IF type = scope then do
CASE

:scope = begin:
Increment stack pointer
:scope = end:
Decrement stack pointer

END CASE
END IF
IF tree is avilable then do
s~an the leaves of tree

DO for each leaves of tree
Search for its avilability in defintion lisi
IF available = true then adjust the node pointers

ELSE error
END DO

Include the definitions in tree in defintion list
END IF

END DO
END RESTRUCTURE

Figure 35. Restructuring for Definitional Languages

91·

92

function evaluation technique. As mentioned earlier a

functional language is a lambda calculus language which has

simple syntax and simple semantics. It is possible to

arrive at different language representation by altering the

syntax of the lambda calculus. SASL, . LISP are examples of

the languages based on lambda calculus. Lambda calculus is

a language of pure function evaluation and it composed of

lambda expressions. Variables are used as the building

blocks of lambda expressions.

Lambda Notation

Church introduced a method of defining functions known

as lambda notation, in which the symbol lambda plays a

special part (68).

Example: A function f(x) = ax~:+bx+c can be represented

in lambda notation as follows:

~ f =A&. ax +bx+c

A function definition generally consists of three

parts:

1. The name of the function being defined (f)

2. The variable (x)

3. An assosiated form of the function which is an
expression determines the value of the function.

93

Lambda Expression

A Lambda expression is a function repreesenting an

expression using the lambda notation. The genaral form of a

lambda expression is denoted by Ax. M. The notation .AX· M

means that a result of lambda expression M is composed by

the abstraction of x from M. The variable between lambda

and dot (".") is known as the bound variable. M is said to

be the body of the lambda expression. The variables that

are not bound in M are said to be free variables. The

representations A xM and (~(M))

A x. M:.

Basic Rules of Lambda Calculus

give the same meaning as

Let F be a lambda expression of the form Ax. M. If

there exisist a definition D for the bound variable then the

function can be evaluated by substituting the definition to

all the bound variables that occur in the body of the lambda

expression. The representation of a lambda expression along

with the definition of the bound variable can be denoted by

(F D), termed as operator-operand combination. The

definition D is known as auxilary definition for the lambda

expression F. The function evaluation in lambda calculus

(13, 68) is based on the following two basic rules:

1. Reduction rule.

2. Renaming rule.

94

Reduction Rule

The expression .\xM !) can be reduced by applying the

operator Ax.M to the operand D. The definition D is

substituted in all occurance of the bound variable x in M.

The substitution is valid if and only if,

1. D does not contain a free variable that is bound in
M.

2. M should not contain an inner lambda expression
with the same bound variable that is bound in
outer lambda expression. In order to overcome the
naming conflicts the following renaming rule can be
applied to simplify the reduction rule application.

Renaming Rule

In lambda expression AxM the bound variable x can be

replaced by any any other variable i.e., the expression can

be renamed from x to any other variable name~ The renaming

is legitimate if and only if the new variable does not occur

in M either as a free variable. If the inner bound variable

of the lambda expression is the same as that of the outer

bound variable then the renaming of outer variable should

not consider the inner bound variables.

Operations in Lambda Calculus

A lambda expression of the form AXA represents a

function of one argument. If the body A represents a lambda

expression of zyB then the lambda expression represents a

function of two arguments. Extending further lambda

expression can be genaralized to represent a function of n

95

arguments. If D represents an auxilary definition of the

lambda expression "):;i{.A then D is the domain of the function

and the set of all possible values of ('Jix.A D) represents the

range of the function. In arithmetic operations the domain

and range are restricted to a defined class of numbers·.

In logical operations the domain and range are

restricted to a set of two elemants representing values of

true and false, respectively. A conditional statement which

is most common in all programming languages, selects one of

the two specified alternatives depending on the logical

value of the condition. In lambda calculus such a

conditional statement can be regarded as a function of two

arguments. v:hich selects a list of two elements. The list

of two elements specifies the required alternatives for the

condition. A true value from the function selects the first

element of the list and the false selects the second element

of the list. The logical true and false can be implemented

by a two argument functions At A ft and At Aff respectively.

Consider a list (F1,F2), where the elements Fl and F2 are

two functions. Applying true function to the list:

At Aft (Fl F2) = >.. f Fl (F2) = Fl

Applying false function to the list.:

>..tAff(Fl F2) = >..ff(F2) = F2

Another important use of logical functions is that they

can serve as a list selectors. This aspect is already

illustrated in representing the conditional construct in

lambda calculus. This can be extended for a general list

representation, which can be used for defining data

96

structures. By operating a truth function on a list it is

possible to select the the first element of the list. A

false function on a list selects all the the elements except

the first. Therefore, a successiv~ false and true on a list

selects the second element of the list. This can be

generalised as i successive false followed by a single true

function operation selects the (i+1)th element of the list.

A list can be represented as a function of one

argument. The list function can be operated on the list

operators, represented by true and/or false functions. This

operation is much simpler than the list operations on the

list as discussed earlier. The notation for the list

representation is illustrated in the following example:

aO

a0,a1

=

=

).l.(la0)¢ where <1> is a null list.

).1. ((laO)).1. ((la1)¢))

).1. laO a1

The list operations on a list of two elements are

illustrated as follows. The first example indicates a list

operation to select the first element of the list and the

second example illustrates the operation to select the

second element of the list.

Example 1: (aO, a1) T

list operated on a true function operator T.

((). x (xa 0)). x (xa 1) <P)). t). f t)

(().t ().f t)aO)). xx al) <P

aO

Example 2: (aO, al) FT

a false and a true operator FT.

().x (xaO)).x (xal) ¢).t).f (fT))

((().t). f f T) a 0)). x xa 1 ¢)

(). t (). f f t). f t) aO)). x xal ¢

(). x xa 1 ¢)). t f t

().t ft al ¢)

al

Practical Application

97

In order to use the lambda calculus language

conveniently, it is necessary to !define a syntax that

corresponds to lambda expressions. A lambda expression of

the form).x.M represents a function and if D defines the

arguments of the function, then the lambda expression is

represented by using the auxilary definition i.eAx.MD. It

is possible to arrive at different types of syntax for this

representation and some of them are illustrated as follows:

1. M where x = D.

2. let x = D in M.

3. substitute (x, D) M.

The interpretation technique varies for different

notation. In the first type of notation shown above, the

arguments are specified after the expression, where as in

others it is viceversa.

The conditional statement can be formed by applying

true or false functions on a list of two elements and the

98

following syntax can be used:

if C then T

else F

This is equivalent to (if C) (Ax.T, Ax.F), where 'if'

is a functional operation results in a true or false

function. A true operation on the list yields the first

element T of the list and a false operation yields the

second element of the list. Similar to 'if' function,

functions such as case, head, tail, first, rest,

functions,, and recursive functions can be defined. It is

possible to come up with unlimited number of such functions

to perform various operations. A complete discussion of

varying types of syntax for such functions are beyond the

scope of this thesis.

Mego (41, 42) has proposed an architecture, which

executes the functional language. The computational model

is based on the reduction rule of lambda calculus. The

machine has two types of cells, interconnected in a regular

manner.

program.

One type of cell is known as leaf cell, holds the

The other type of cells are interconnected in the

form of binary tree. The reducible expressions are

distributed to the tree cells and computation is performed

on the basis of reduction rule. The result obtained at the

root node will be placed at the appropriate leaf cell, where

the corresponding reducible expression is present. Mego

(42) has proved the following propositions:

1. Every tree cell other than the root cell is
connected to its parent cell either by two branchs
of two different areas or by a single branch of one
area.

99

2 .. Each tree cell holds one, two, three or four nodes
each belonging to a different area.

In addition, the following features of this machine

illustrates that the architecture with functional

programming cababilty can exploit the advantages of VLSI

implementation.

1. Since the computation is based on the reduction
rule, the result due to application is placed at
the leaf cell where the reducible expression was
held. Therefore there is no need for additional
cells to save the results.

2.

3.

The reducible expressions can be reduced
independently in the tree cells. Therefore there
is no need for interconnection between the tree
cells of the same level.

Since there is no interconnection between the tree
cells of the same level, the tree cell
interconnections are simple and regular an
important requirement for the ef f ecient VLSI
implementation.

Definitional language is a value oriented language

based on single assignment rule. Every program can be

represented as a procedure. There are three different types

of defintion statements: function definition, expression

definition, and count definition. In addition, statements

such as mod, create, and select are used to perform the

structure operations. The data flow graph can be

constructed directly without much complex analysis.

Definitional language can be effectively used as a high

level language on data driven machines.

Functional language is based on the functional

application properties of lambda calculus. The importance

of the language on demand driven data flow machines is due

to the reduction rule of

are not best suitable

conventional architecture.

100

lambda calculus. These languages

for sequential nature of the

Attempts have been made (13, 68)

to come up with lambda calculus based machines, which served

as a model for the development of compilers of such

languages for conventional architecure (for eg. LISP). In

the case of data flow machines, the execution of an

instruction based on the availability of the operands with

out any sequencing constraint. This property enables the

data flow machines best suitable for languages based on

lambda calculus. A typical practical example is the

Treleaven's reduction machine(63). The data flow

architectures based on the functional languages can be

regarded as high level language architectures. The main

reason being that the the functional language could be the

direct meachine representation, unlike the other languages.

The cellular architecture proposed by Mego can demonstrate

that the functional language based models can be implemented

by VLSI. As a result of VLSI implementation, it is possible

to develop highly parallel architectures at low cost,

without much complexity in hardware.

CHAPTER VI

SUMMARY, CONCLUSIONS, AND SUGGESTED

FUTURE WORK

A survey of data flow architecture was presented. Main

attention was focused on the following architecturs: Dennis

data flow architecture, the TI distributed data flow

machine, Arvind data flow machine, Manchester data flow

machine and Treleven's reduction machine. Aspects of data

flow program representation and notations were presented.

Starting from the data flow a~chitecture, use of

conventional langages on these machines were con~idered. It

was found that the compilation techniques can be simplified

by using structured languages. The importance lies in the

restriction of the control flow, which leads to

simplification of data flow analysis.

language extent ions were considered

parallelism of the problem.

The next consideration was given

languages. Definitional languages

Possibilites of

to expose the

to the applicative

are a class of

applicative languages, known as value oriented language.

The aspects of definitional language and language

specifications were presented. The characterstics of the

definitional language makes it better suitable for data flow

machines than the procedural languages. Functional language

101

102

is another class of applicative language, based on the

functional evaluation techniques of lamdbda calculus.

Following the basic aspects of lambda calculus, the

correspondence between functional and lambda calculus were

presented.

The current developments in VLSI necessiates the

consideration to be given tolanguage first rather than

considering the language design from the architecture point

view. The development in microelectronics technology

enables to take advantage of the inherent parallel

specification of the functional language. The main

advantages of VLSI are (45):

1. Simple and regular. interconne'ction leading to cheap
implementation.

2. High density leading to high performence and there
is no over head for support components.

These advantages enables VLSI highly suitable for

hardware implementation of parallel algorithms. Discussions

on imple.menting matrix algorithms and hierarchical

organization can be found in (45). Current research is to

develop data flow machines having hundreds of processors

with a functional language as its machine language. This

results in the data flow machines being high level machines.

Turner has suggested a reduction machine, which has some

features of hierarchical organization. The reduction

machine proposed by Treleven seems to be suitable for VLSI

implementation (63). Mego has proposed a tree structured

architecture that can execute reduction language and it can

be implemented by VLSI (41, 42) • The future studies of

103

functional languages must go in parallel with the study of

VLSI. The aspects of functional langages can be elaborated

to a powerful language specification and their hardware

implemetation is to be considered.

The material presented here can be extended for future

studies on simulation of data flow language and

architechture, constructional aspects of data flow

interpreters and compilers. The material can serve as

background for the study of applications of data flow

processors in the fields of fault tolerant computer

architecture and use of data flow processors as special

purpose machines ·in the fields such as signal processing,

artificial intelligence (18).

BIBILOGRAPHY

(1) Ackerman, W.B. "A Structure Processing Facility for

(2)

(3)

(4)

(5)

(6)

Data Flow Computers." Proceedings of
International Conference on Parrallel
Processing, 1978, 166-172.

"Data Flow
of AFIPS Conference, Proceedings

1087-1095.

Languages."
1979,

Aho, A. V and Ullman, Jeffrey. D The Theory of
Parsing, Translation and Com Vo1C1,2).

Priciples of Comliler Design.
California: Addison-Wesley, 978.

Allan, Stephen J. and Oldehoeft, Arther E. "A Flow
Analysis Procedure for the Translation of High
Level Languge to a Data Flow Language."
Proceedinps of International Conference on
Parallel recessing, 1979, 26-34.

Allen, F. E. and Cocke J. "A Program
Analysis Procedure .. " Communications
ACM, Vol 19, Mar 1976, 137-149.

Data Flow
of

(7) Arvind and Gostelow, K. P. "A Computer Capable of

(8)

(9)

Exchanging Processor for Time." Information
Processing 77, 1977, 849-853.

Babich, A. and Jazayari, M. "The Method of Attributes
for D.ata Flow Analysis." Acta Informica,
1978, 245-272.

Backus, J.W. "Can Programming be Liberated
Von Newann Style? A Functional Style and
Algebra of Programs." Communications of
ACM, Vol 21, Aug 1978, 613-647.

from
its

(10) Berkling K. J. "Computing Machines Based on Tree

(11)

Structures." IEEE Transactions on
Computer, Vol 20, Apr 1971, 404-418.

Machine."
International

"Reduction Languages for
Proceedings of

Symposium on

104

Reduction
Second

Computer

105

Architecture, 1975, 133-140.

(12) Burge, William H. "Cornbinatory Programming and
Combinatorial Analysis." IBM Research and
Development, Vol 16, No 5, Sept 1972.

(13) . Recursive Programming
'rechrtiques. California: Addison-Wesley, 1978.

(14) Caswel 1, H.. b. "Superconducting Josephens on
Computers." Proceedings of IEEE COMPON
1979, Feb 1979, {54-157~

(15) Cocke, John and Schwartz J. T. Programming
· ···. Lang4ages and their Gompilers. · Preliminary

notes, New York University, Apr 1970.

(16) Davis, A. L. "The Architecture and System Model of
DDMl: A Recursively Structured Data Driven
Machine." Annual Symposium on Computer
Architecture, 1978, .210--215.

(17) Davis, A. L. "A Data Flow Evaluation System Based on
Concepts of Recursive Locality." Proceedings
of AFIPS conference, 1979, 1079-1086.

(18) Davis, A. Land Stanek, J. A. "A Computer Music
Synthesis Study -0n Tree Structured Data Driven
Machine." Proceedings IEEE Compean 80,
Feb 1980, 188-201.

(19) Dennis, Jack B,. "Packet Communication Architecture."
Proceed,in s of Sagamore Com uter Conference
on rocess1ng,

(20) .. "First Version of Data Flow Procedure

(21)

Language." ·Lecture Notes on Computer
Science, Vol 19, 1974, 362-376.

ArchitecJiture ;. 1 75, · 126-132.

(22) Dennis, Jack B. and Weng, Ken K.S. "An Abstract
Implementation for Concurrent. Computation with
Streams." · Proce·edings of · International
Confer~nce on Parallel Processing, 1979,
35-45.

(23) Fanell, Edward P., Ghani, Noordin and Treleaven,
Philip C. "Concurrent Computer Architecture and
Ring Based Implementation, Data Driven Machine.''
Annual Stm~osium on Computer
Architecture,9 9, 1-12.

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

106

Friedman, Daniel P. and Wise, David S. "Aspects of
Applicative Programming for Parallel Processing."
IEEE Transactions on Computers, Vol 27,
Apr 1978, 289-296.

Gelly, 0. et.al. "LAU-System Software: A High Level
Data Driven Language for Parallel Programming."
Proceedin's of International Conference on
Parallel recessing, 1976, P255.

Gostelow Kim, P. and Thomas Robert "A View of Data
Flow." Proceedings of AFIPS Conference,
1979, 629-636.

Gurd, J and Watson, I. "A Multilayered Data Flow
Architecture." Proceedings of International
Conference on Parallel Processing, 1977, 94.

"Data Driven System for High Speed
Parallel Computing, Part 1,2." Computer
Design, July 1980, 97-106.

Hecht, Matthew s. Flow Anal{sis of Computer
Programs. Holland: North Hol and, 1977.

Hecht, Matthew S. and Ullman, Jeffrey D. "A Simple
Algorithm for Global Data Flow Analysis
Problems." S.I.A.M Journal on Computing,
Vol 4, Dec 1975, 519-532.

Ricking Anne, "Translation of some Sequential Language
Constracts into Code for Parallel Interpreter."
M.Sc Dissertation, University of Nottinghan,
Mathematics Dept., Jan 1980 .

. I

(32) Hindley J. R and et. al. Introduction to
Combinatory Logic. London: Cambridge
University Press, 1972

(33) Ian Watson and John Gurd, "A Prototype Data Flow
Computer with Token Labelling." Proceedings
of AFIPS Conference, 1979, 623-628.

(34) Jensen, John. C. "Basic Program Representation in
Texas Instruments Data Flow Test Bed
Compiler." Texas Instruments Incorporated,
Jan 1980.

(35) Johnson, D and et.al. "Automatic Partition of Program
in Mutiprocessor System." Proceedings IEEE
Compean 80, Feb 1980, 175-178.

(36) Kan J. B. and Ullman J. D. "Global Data Flow Analysis
and ·Iterative Algorithms." Journal of
ACM, Vol 23, Jan 1976, 158-171.

107

(37) Karp R. M. and Miller R. E. "Properties of Model for
Parallel Computations: Determinacy, Termination,
and Queuing." SIAM J. Applied Maths.,
Vol 11, Nov 1966, 1390-1411.

(38) Keller, R. M. and et.al. "Data Flow Concepts for
Hardware Design." Proceedings IEEE Compcon
80, Feb 1980, 105-111.

(39) Kvcil, David J. "Parallel Processing of Ordinary
Programs." Advances in Computer, Vol 15,

(40)

1976, 119-179.

Landin P. J.
Expressions."
1964, 308-320.

"The Mechanical Evaluation
Computer Journal, Vol 6,

of

(41) Mago' Y. A. "A Cellular Computer Architecture for
Functional Programming." IEEE Compcon
80, Feb 1980, 179-187.

(42) . "A Network of Microprocessors to
Execute Reduction Languages." International
Journal of Comtuter and Information Sciences,
Vol 8, no 5,6, 979,349-385.

(43) Maurer W. D. The Programmer's Introduction to
LISP. New York: American Elsevier, 1972.

(44) Mccarthy, J. LISP 1.5 Programmer's Manual.
· Massachusetts: MIT Press, 1970.

(45) Mead C. A. and Conway L. A. Introduction to VLSI
Systems, California: Addison-Wesley, 1979.

(46) Merrill Cornisn. "The TI Data Flow Architecture: The
Power of Concurrency for Avionics." Texas
Instruments Incorporated, 1979.

(47) Misunas, David P. "Structure Processing in a Data
Flow Computer." Proceedings of Sagamore
Com~uter Conference on Parallel Processing,
197 ' 230-234. .

(48) Oldehoeft, A. E and et.al. "Measurement of
Parallelism in Computer Programs Through Analysis
of Program Graphs." Presented at First
Euro ean Conferance on Parallel and Distributed

(49) Plas, A., et.al. "LAU-System Architecture: A Parallel
Data Driven Processor Based on Single
Assignment." Proceedings of International
Conference on Parallel Processing, 1976,
293-302.

108

(50) Ratna Dhas, C. "Performance Evaluation of Feedbac1k
Data Flow Processor using Simulation," Dept. of
Quantitative and Information Sciences, Western
Illinois University, Illinois.

(51)
in High
Execution."
Information
University,

"Estimation of
Level Programs

Dept. of
Sciences,

Illinois.

Intrensic Parallelism
using Data Flow
Quantitative and
Western Illinois

(52) Rustin, Randel. "Des.ign and Optimization of

(53)

(54)

Compilers." Courant Computer Science
Symposium 5, New Jersey: Prentice-Hall, 1971.

. "Formal Semantics of Programming
______ L_a_n_g_u_a_g_e_s." Courant Computer Science

Symposium 2, New Jersey: Prentice-Hall, 1970.

Riccelli, R.F.
Element."
conference
173-180.

"The Design
Proceedings

on Parallel

of Data Driven Prossing
of International
Processing, 1978,

(55) Rosen, Barry K. "Data Flow Analysis for Procedural
Languages." Journal of the ACM, Vol 26,

(56)

(57)

Apr 1979, 322-344.

Rosen, Barry K. "High Level Data
Communications of the ACM, Vol
1977, 712-724.

Rumbaugh, James. "A Data Flow
IEEE Transactions on Computers,
Feb 1977, 138-146.

Flow Analysis."
20, Oct

Multiprocessor."
Vol 26,

(58) Rumbaugh, James. "Data Flow Languages."

(59)

Proceedings of Sagamore Computer Conference
on Parallel Processing, 1975, 217-219.

Rumbaugh, James. "A Data Flow Multiprocessor."
Proceedin s Sagamore Com uter Conference
on ara rocessing,

(60) Lee, Shieh-Yi. "A Survey of Data Flow Analysis using
Interval and Iterative Analysis Techniques."
M.S. Report, Department of Computing and
Information Sciences, Oklahoma State University,
July 1980.

(61) Sleep, M. R. "Applicative Languages, Data Flow and
Pure Combinatory Code." Proceedings IEEE
Compcon 80, Feb 1980, 112-115.

(62) Treleaven, Philip C.T. "Exploiting
Concurrency in Computing
Computer, Vol 12, Jan 1979, 42-50.

109

Program
Systems."

(63) Treleaven, Philip C. and Mole, Geoffrey F. "A
Multiprocessor Reduction Machine for user Defined
Reduction Language." Computing
laboratory, University of Newcastle upon
Tyne, Sept 1979.

(64) Treleaven, Phi 1 ip C. "Program Evaluation
Prespective." Computing Laboratory,
University of Newcastle upon Tyne, July 1979.

(65) Treleaven, Philip C., et.al. "Data Driven and Demand
Driven Computer Architecture." Computing
Laboratory, University of Newcastle upon
Tyne, July 1980.

(66)

(6 7)

(68)

Turner, D.
Computer
1976.

A. SASL Language Manual.
Labor_a_t_o_r_y-,--~u-n_i_v~e~r--s~i~t-y---o-f._.K_e~nt, Dec

Turner, D. A. "A new Implementation Technique for
Applicative Languages." Software Practice
and Experience, Vol 9, 1979, 31-49.

Wegner, D. Pro§ramming Languages, Information
Structure an Machine Organization. New York:
Mcgraw-Hill, 1968.

(69) William Sauber. "A Data Flow Architecture
Implementation."
Incorporated, 1980.

Texas Instruments

APPENDIX A

SUMMARY OF DATA FLOW MACHINES

110

111

TABLE III

SUMMARY OF DATA FLOW MACHINES

Name Type Host Language Features

TI DDP Data TI 990/10 ASC Simple hardware
driven FORTRAN expansion.

No Special
Structure
processing;
No token
labelling;

Dennis Data Data flow Modular;
driven language Structure

processing units
can be usedfor
structure
operations;
No token
labelling

Arvind Data Data flow Tokens are
labelled;

driven language Highly parallel
and has LSI
implementation ..

Manchester Data PDP 11 Data flow Tokens are
labelled;

driven language Highly parallel
and has LSI
implementation.

Reduction Demand Reduction High level
machine driven language architecture;

Highly parallel
and has LSI
implementation.

APPENDIX B

SYMBOLIC REPRESENTATION FOR

DATA FLOW PROGRAM

112

field 1
DEF
DEF
EVAL
EVAL
TG
FG
MERGE
SWITCH
APPLY
TG
FG
SWITCH

Example 1

In~.t_ruction Examples

field 2
I
@I
I
@X
@I
@I
@Il
@l
&FUN
@I
@I
@I

field 3
0
false

K + P * Z
(P+Q)=(R+S)
11 -+ 12
11 -+ 12
11, 12 + . l
I + Il,12
P1,P2,P3,@l
RETURN(Z)
STOP
l + Il, RETURN(I)

INPUT (x,y,n)
i = 0
do while(i>n)
i = i + 1
z(i) = x(i) + y(i)
end

OUTPUT (z)

113

A graphical representation for the example · program is
shown in Figure 36. The set of instruction for the symbolic
representation of the program is as follows:

output
z

Figure 36. Graphical Representation for Example-1

114

1-
1

115

DEF I 0
DEF @I false
MERGE @i n,nl -+- n2
MERGE @i i,il -+ i2
MERGE @i y,yl -+ y2
MERGE @i x,xl -+ x2
MERGE @i z,zl + z2
EVAL @i i2 -+ n2
TG @i n2 -+ nl
EVAL i3 i2 + 1
TG @i i3 -+ il
TG @i x2 -+ xl
TG @i y2 -+ yl
EVAL z2(i3) x2(i3) + y2(i3)
SWITCH @i z2 -+ zl, RETURN(z2)

Example 2

if (y > 1) then x = x + 10
else x = x + 100

y 1

Figure 37.

x

Graphical Representation
for Example-2

The instructions for example-2 are as follows:

EVAL
SWITCH
EVAL
EVAL

@y
@y
x3
x4

y -> 1
x ~ xl ,x2
xl + 10
x2 + 100

116

APPENDIX C

GLOSSARY

117

118

Activity
The execution
activity.

instance of a function is called

Activity name
Unique identification given to an activity.

Actor
Data flow operator.

Arbitration network
Receives operation packets from
present in the memory, and
appropriate operation unit.

the instruction cells,
sends them to the

Assignment function
An activity which
(program locality)
(physical locality).

maps the logical activity names
to physical processor address

Associative memory
This is also known as content addressable memory (CAM).
The memory is scaned by means of a key associated with
the information (or the information itself) rather by
means of a memory address. A hardware or software
hashing techniques may be necessary for memory storage
and retrievel.

Association table
This is similar to associative memory.

Asynchrony
Operaters executed, if and only if the operands are
available at the input arcs of the data flow graph.

Balanced tree

Cache

Tree structure balanced with respect to the root node.
eg. AVL tree, B_tree, B*_tree

Cache is a scrach pad random access memory usually
semiconductor type, holds the information that are most
often required by the processor. Other information
about the program is kept in a slower main memory. The
information is passed to the cache, based on certain
policies whenever it is required.

Control network
A network which handles control packets. The network
consists of arbitration and distribution units.

Data driven
The class
executed

of data flow in which the instructions are
when all the operands required by the

119

instruction are available.

Data flow structure
Structured data residing on conventional memory.

Data packets
Instruction cells containg data values is known as data
packets.

Decision unit
It is a hard ware unit performs boolean operations and
gives the result in the form of control packets.

Demand driven
The class
executed
demanded.

of data flow,
only if the

in which the instructions are
result of the instruction is

Distribution network
Receives results from the operation unit in the form of
data packets and place them in the instruction cells,
present in the memory.

Dynamic parallelism

Fired

The same function replicated and the resuling functions
exhibit the property of inherent parallelism, with out
side effects.
e.g. In an iteration the function could be replicated
as many times as the number of iterations if the
resulting functions are free from side effects.

When tokens are present at the input arcs of a data
flow.graph the node is enabled and the operands are
removed from the input arcs. i.e. the operands a~e
fired.

Function
A segment or an instruction which is independent.

ID
Irvine Data flow - data flow language.

Instance
Different stages encountered in data flow machine.

Instruction cell
The memory is organized into instruction cells. Each
instruction cell consists of three or more registers to
hold the data and operator.

Instruction packet
A packet containing
instruction packet.

a data flow instruction
There are three

is called
types of

Link

120

instruction packets viz., operation packet, control
packet, and memory command packet.

The program in an elementary data flow language
directed graph in which the nodes are operators.
nodes are interconnected by means of links.

is a
The

Locality
Working set or the working area in the memory i.e.
Physical locality or program locality.

Locality of effect
Means that the instruction donot have unnecessary for
reaching data dependencies.

Operation packet
Operation packet
packet, that are
operation packet
(operands) and an

is one of the types of instruction
handled by the operation unit. Each
contains one or more data packets
operator (instruction).

Operator
Operators are the data flow instructions. Refer link.

Packet

Scope

The information, may be either data or operator, sent
from one uni.t to other unit of a data flow machine is
termed as a packet.

A variable can be assumed to have a definite scope,
i.e. , a region of a program in which the variable is
active.

Selector
Used in the representation of data flow structures - an
integer or a strin~. The structure node is represented
as ~selector:value~.

Selector vector
String or integer used as selectors and ordered values
are stored in a contiguous memory words.

Shift register
A register which transfers bit information serially, is
called shift register.

Side effect
If the concurrent computations are interdependent then
it is called side effect. A defined function always
free from side effect.

Single assignment

121

The single assignment rule is that a name may appear on
the left hand side of assignment(definition) only once
with in its scope.

Speed
Switching time and delays in the fabricated devices
influence the computing time.

State transition table
A table describing the state diagram of
logic (or a finite state machine) is
transition table.

a sequential
called state

Static parallelism
Two or more dissimilar functions
property of inherent parallelism.

exhibiting the

Stream
Stream is a sequence of values of the same type, each.
value being passed successively.

Token
Refers to the presence of data item (value) in an arc
(link) of a data flow graph.

Unfolding interpreter
Data flow interpreter
program, having the
parallelism.

seperates the portions of the
property of the inherent

Update controller
Every data flow instruction at the machine level is
associated with a counter. The counter is preset with
the number of operands that are required by the
·instruction before it could be executed. The counter
is decremented by one whenever the instruction receives
a result packet. The hard ware unit which presets and
updates the counter is known as update controller.

Value
Data flow value. Refer selector.

VLSI
Very large scale integration.

VITA~

Krishnan Venkataraman

Candidate for the Degree of

Master of Science

Thesis: EFFECT OF DATA FLOW ARCHITECTURE ON
PROGRAMMING LANGUAGE DESIGN.

Major Field: Computing and Information Sciences.

Biographical:

Personal Data: Born Aug 10, 1955, Tamilnadu, India,
the son of Mr. and Mrs. S. ~rishnan.

Education: Graduated from University College of
Engineering, Bangalore, India in July 1978;
ieceived Bachelor of Engineering degree ·from
Bangalore University in 1978. Completed
requirements for Master of Science degree at
Oklahoma State University in July 1981.

P~ofessional Experience: Graduate Research Assistant
in Department of Bio-chemistry, Oklahoma State
University (1979-81).

