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CHAPTER I 

INTRODUCTION 

Oxygen plays an important part in the various chemical and biolog­

ical reactions which occur in nature. In fact, it is undoubtedly the 

single most important element in any life cycle. It is necessary to 

sustain life both on land and in water and since there is a finite amount 

of oxygen available to organisms in water due to the properties of 

saturation, (1), a depletion of the dissolved oxygen (D.O.) can result in 

the destruction of the life forms dependent on it. 

Oxygen depletion can be the result of the introduction of an oxygen 

demanding substance into a natural water system. This may be in the form 

of domestic or industrial sewage (organic matter) which is being 

discharged into a stream or river. As a result of this discharge, 

biochemical reactions take place between the organic material, decom­

posing bacteria and the oxygen. As the volume of organic material 

increases so does the microbial population, and as a result of this 

interaction, the oxygen is used by the microbes until it is depleted, 

leaving none for the naturally occurring aquatic life. 

The previous scenario is a simplified example of the complex prob­

lem of water quality management, a problem which may well be the number 

one concern of the 1980's. The topic of water quality management through 

the use of mathematical models and wasteload allocations to regulate 
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sewage discharges into the nation's water systems has been one of 

increasing concern since Phelps benchmark work in 1909 and 1925 (2)(3). 

Modeling has more recently, through the passage in 1972 of Public Law 

92-500 and its subsequent amendment to PL 95-217 in 1975, developed into 

a very sophisticated science in some respects, yet remains subject to 

much criticism due to the inherent use of assumed values and "engineering 

judgement" in lieu of hard and fast rules. 

A prime example of the uncertainty of modeling lies in the use of 

the BOD test in the assay of organic loads and in the determination of 

the deoxygenation constant Ki. Gaudy and Gaudy (4) provide a great deal 

of insight on the "uses and misuses" of the BOD test and along with Hiser 

and Bush (5) evaluate the use of COD as an alternate test of pollutant 

load. The BOD test has been called probably the most misunderstood and 

most abused of all analytical tools used in stream system analysis (6). 

The purpose of this report is not to belabor the BOD test or the 

many other comp 1 ex and cont rovers i a 1 components that make up a water 

quality model. There have been many books and papers written on nearly 

every aspect of this subject and many more are yet to come. This report 

will provide the basic concepts related to water quality modeling and 

wasteload allocations and show how they can be used as effective manage­

ment and decision making tools. 



CHAPTER II 

LITERATURE REVIEW 

The ability of a stream to degrade its organic load and regenerate 

its oxygen supply is commonly cal led "self-purification, 11 (7). Velz 

correlates the streams assimilative phenomenon to a rational accounting 

system of oxygen credits and debits (8). Nemerow (6) concisely 

summarizes these creditors and benefactors with regard to stream oxygen 

balance; they are as follows: 

Creditors depleting oxygen 

1. Organic matter in continuously flowing water 

2. Slime growth on attached rocks, debris, and other sur-

faces over which water flows 

3. Primary organic bottom sludge deposits (benthal demand) 

4. Secondary organic bottom deposits (dead algae) 

5. Temperature rises causing oxygen vapor loss and increases 

in microbal metabolism 

6. Fi sh and other aquatic respiration needs 

7. Organic contamination in tributary streams 

8. Stream salinity content 

Benefactors contributing oxygen 

1. Surface reaeration due to the physical reaction of the 
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air and water 

2. Photosynthesis 

3. Temperature decrease increasing oxygen saturation 

potential and decreasing microbiological metabolism 

4. Dilution from uncontaminated streams. 

4 

It is obvious that if the totality of the creditors is greater than 

the contributions of the benefactors an oxygen deficit is incurred. The 

loading of the stream with organic matter (creditor #1) is definitely the 

most significant in terms of the quantity and ultimate effect upon the 

stream. Consequently, the normal controlling procedure has been 

directed toward improving industrial and municipal wastewater treatment 

facilities in an effort to reduce the demand from organic loadings at 

identifiable point sources. 

A stream is a conglomerate of complex biological, chemical, phys­

ical, and hydraulic factors. To determine the combined effect of these 

various factors, mathematical models capable of representing some of the 

more important interrelationships between the variables have been devel­

oped (9). The primary objective of many studies is to select, develop, 

and implement such a model that simulates the variations of oxygen 

demanding parameters over time at points along selected stream segments. 

A basic set of established, yet simplified, mathematical formulas, 

based on pertinent stream data, can adequately define and predict the 

assimilative capacity of most streams. The basic Streeter-Phelps equa­

tions developed in 1925 and expanded by Phelps (10) in 1944 are the 

essential core of all major stream assimilative models. These equations 

or updated modifications are utilized in practicially all significant 

contemporary stream studies. The formulas have repeatedly been found to 
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have the best theoretical mathematical rationale and validity. Numerous 

texts expound on the Streeter-Phelps equation and its derivations 

(6) (8) (11) (12) (13). 

Development of Rate Coefficient 

From information derived from the Ohio River Study in 1925, as well 

as many others, the Streeter-Phelps equation was developed. It allows a 

scientist to estimate the effect of a pollutant load to a stream with 

respect to dissolved oxygen. The rate of depletion of oxygen in a stream 

(K1) can be developed mathematically from the first-stage BOO curve of 

the waste. The methods for determining the value for the deoxygenation 

constant (K1) are discussed by Gaudy et al. (14). Gaudy et al. 

evaluated sixteen (16) methods for determining the constant (K1) solely 

as a basis of reference. The most common methodology employed is one 

based on work by Streeter and Phelps and expanded upon by Fair, Geyer, 

and Okun ( 12). 

The rate of deoxygenation is directly related to the organic matter 

remaining to be oxidized at a given time. This load may be made up 

solely of carbonaceous BOD, oxidizable organic nitrogen that exerts a 

nitrogeneous oxygen demand (NOD) or a combination of both. The value of 

Kl can be expressed as the slope of the straight line obtained by plot­

ting the 1og of the organic loads (BOD, NOD) against time (days) or 

distance {miles) on semilog paper. It is extremely notable that while 

this traditional plot (Figure 1) of data usually results in a straight 

line, often two lines may be dictated (Figure 2). For example, when a 

municipal effluent is discharged into a stream, that effluent may con­

tain relatively high settleable solids. As a result, in the vicinity of 



Figure 1. Kl Plot of LOAD vs. TIME 
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the outfall, the removal of ultimate oxygen demand is accomplished by the 

physical settling and the oxidation of the organic matter simul­

taneously. Oxidation of the ultimate oxygen demand requires dissolved 

oxygen, while removal of the ultimate oxygen demand (organic matter) by 

settling does not directly use oxygen. As one proceeds downstream, the 

physical removal is completed and only oxidative removal remains (15). 

The deoxygenat ion constant based on the carbonaceous load of the 

stream is commonly designated as Ki, while the deoxygenation constant 

for the nitrogenous load is referred to as Kn (ultimate NOD vs. time or 

distance). 

The rate of the deoxygenation reaction is a function of temperature 

as biochemical reactions are increased with increases in temperature. 

The best mean conversion formula, from a comparison of several indepen-

dent studies, as adopted by Streeter and Phelps (6), is : 

Kl at Tl = D1 at T2 (1.047) Ti-T2 (1) 

where: 

Kn = reaction rate at temperature 1 

KT2 = reaction rate at temperature 2 

Ti = temperature 1, oC 

T2 = temperature 2, oC 

Stream Sage Curve and Reaerat ion Rate, K2 

Nature provides a physical mechanism for counteracting the 

depletion of oxygen in a stream. This mechanism is reaeration, a means 

by which atmospheric oxygen enters the surface water. Reaeration is a 

rate phenomenon directly proportional to the oxygen deficit in the water 

(the greater the deficit the greater the rate of solution of oxygen). 



Figure 2. Ki Plot with Allowance for Settling 
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Thus, the reaeration rate (K2) is a function of both the deoxygenation 

rate (K1) and the oxygen deficit. Streeter and Phelps originally stated 

this relationship as follows (6): 

deoxygenation 

Lld 
~ 

~- 2.: t~ = Kil - K2D ==== K2 = K1 
6t "-._/ (2) reaeration 

where: 

K1 = deoxygenation rate 

K2 = reaeration rate 

L = average of the upstream and downstream organic load 

D = average of the upstream and downstream oxygen deficit 

t = change in time 

d = change in deficit 

By differentiating this basic equation, Streeter and Phelps devel-

oped the famous "Sag Curve Equation" : 

where: 

Dt 

Lo 

Do 

t 

Dt = ~ (10-K1t - io-K2t) + Do (10-K2t) 
K2-Kl 

= the oxygen deficit at a given time 

= the ultimate organic load 

= the initial oxygen deficit 

= a given time 

This equation has been used in practically all important 

(3) 

studies of 

stream assimilative capacity up to now . The equation defines the basic 

sag curve emboding the effects of deoxygenation and reaeration along a 

given stream segment. Figure 3. illustrates this basic relationship. It 

is apparent from the sag curve that as the two reactions proceed, a 
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minimum D.O. results at a point along the stream. This is typically 

ca1led the "critical point or the critical deficit (De)" and is said to 

occur at a "critical time (tc)." The time to the critical oxygen sag 

point may be obtained by differentiating the sag equation and solving for 

tc : 

(4) 

Numerous modifications of the original sag equation (16) (17) have 

been implemented in contemporary stream models. A typical example is 

illustrated by the following sophisticated equation: 

where: 

Dt= Do(lo-K2t) + KiLo(lo-K1t_10-K2t) 

K2-Kl 

+ KnNo(lo-Knt_10-K2t) + R-P(1-10K2t) 
K2-Kn K2 

+ 2_ (l-10K2t) 
K2 

Dt = oxygen deficit at a given time; mg/l 

t = a given time; days 

Kl = deoxygenation rate of ultimate carbonaceous load; 

day-1 

Kn = deoxygenation rate of ultimate nitrogenous load; 

day-1 

K2 = reaeration rate; day-1 

L0 = ultimate carbonaceous load; mg/l 

N0 = ultimate nitrogenous load; mg/l 

( 5) 



Figure 3. Relationship Between Deoxygenation 
and Reaerat ion 
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R = deoxygenation factor due to respiration in stream; 

mg/l/day 

P = Oxygen produced by photosynthesis in stream; mg/l/day 

S = deoxygenation factor due to benthic deposits in 

stream; mg/l/day 

Although the actual stream reaeration coefficient (K2) can be read­

ily calculated by means of stream D.O. data and utilization of the sag 

curve equation, numerous other methods have been proposed over the 

years. As early as the Streeter-Phelps' work in 1925, it was proposed 

that K2 depended upon physical factors of streams such as velocity, 

depth, slope, and channel irregularity. The majority of these 

'empirical' methods propose a generalized equaiton of the form: 

(6) 

where: 

U = mean stream velocity 

H = mean stream hydraulic depth 

C, x and y = constants 

The obvious differences between the various specific equations lie in 

the assigning of values to the constants. Excellent reviews of the most 

widely used empirical K2 equations are presented by Covar (18) and 

Nemerow (6). Figure 4 shows a range of the reaeration coefficient (shown 

here as Ka) as a function of stream depth and average velocity. The K2 

of a stream can be approximated based on stream depth and velocity using 

the suggested method of Covar using Figure 5. 

The reaeration phenomenon is directly proportional to temperature. 

The following temperature conversion formulated by Churchill (1962) was 



Figure 4. Reaeration Coefficient (Ka) as a Function 
of Depth 
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Figure 5. K2 vs. Depth and Velocity Using the Suggested 
Method of Covar (1976) 
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Figure 6. Assimilation Ratio as a Function of Depth 
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used: 

( 7) 

Stream Assimilative Ratio, F 

Fair (20) originally defined the 'purification constant' or as­

similative ratio as F = K2/K1. Correspondingly, all of the Streeter­

Phelps equations can be expressed in terms of F. With reference to this 

basic concept, Fair published numerous F-values for specific types of 

receiving waters (e.g., slow streams, swift streams, lakes, etc.). The 

F-va1ue is considered to be directly proportional to the water's assimi­

lative capacity, the higher the F-value, the greater the stream 1 s puri­

fication potential. Figure 6 (13) shows the relationship between the 

purification constant F (or 0) and various stream characteristics while 

Figure 7 utilizes localized data from the Oklahoma State Department of 

Health to 'fine tune' the relationship between stream depth and 

assimilation. Table I is an expansion of this information shown in 

Figure 7 (21). 



Figure 7. Assimilation Ratio (Fok) as a Function 
of Depth 
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Samll Trib.Itary Streams 

Intermediate Streams 

Major Streams 

Intermediate Rivers 

Ma jar Rivers 

TABLE I 

SUGGESTED ASSIMILATIOtl R.L\TIOS 
FOR TULSA STRU\rlS 

FLCW DEPTH ASSIMIIATIQIJ RATIO, 
RANGE RANGE Fok 32CC 
(cfs) (feet) range average 

0.5-4 0.3-1 4-40 11.0 

4-10 1-2 3-18 6.1 

10-100 2-5 1-8 2.7 

100-1000 5-10 0.5-3 1.1 

1000-10000 10-20 0.2-1.4 0.5 

Fok 20°c 
average 

14.4 

8.0 

3.5 

1.5 

0.65 

1Repdnted fran "M'.Xleling Analysis of Water Quality for the INCCG Planning Area," prepared by 
Hydroscience, March 1978. These values are not applicable to the impamded sections of rivers. 

Values of F0 k at oci1er temperatures may ee obtained fran the follc:Ming relationship: 

(F ) =fl· ) (l.024~T-20 -
ok T \Fok 20oC 1.041) = Fok 20oC (0.978)T 20 

N 
U-1 



CHAPTER I I I 

APPLICATION 

With the growing evidence that pollution control is expensive, 

especially at levels of treatment greater than conventional secondary, 

and the necessity for water quality programs to compete for funds with 

other equally important programs, a careful balance between the 

determination of the consequences of proposed environmental control 

actions and the costs and benefits associated with such actions must be 

met. The effective attainment of desirable water uses predicates the use 

of a process which results in the equitable distribution of the 

permissible level of waste discharge to achieve a designated water use 

along with an evaluation of the costs, benefits and other implications of 

both the allowable discharge level and the appropriateness of the use and 

the water quality standards. This process is called the wasteload 

allocation (WLA) process. 

The effective attainment of desirable water uses depends on a 

careful balance between the determination of the consequences of 

proposed environmental control actions and the costs and benefits 

associated with such actions. A rigorous and well-founded analysis of 

the estimation of the consequences of environmental controls is one of 

the central components of the process. Such an analysis, when coupled 

with an equally rigorous evaluation of the costs of control, the 

resulting benefits, and socio-political interactions permits the 

26 
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determination of the amount of wastes that may be discharged into a given 

body of water. 

Pr inc i p 1 es of Waste 1 oad A 11 oc at ion 

The wasteload allocation process is therefore the equitable 

distribution of the permissible level of waste discharge to achieve a 

designated water use with suitable recognition of the costs, benefits 

and socio-political implication of the allowable discharge level. 

Note that the concept of a WLA is fundamentally not restricted to 

only a single class of water quality problems, such as dissolved oxygen. 

Rather, if the concept is viable, it should apply to the whole range of 

water quality situations including eutrophication, thermal pollution, 

and chemical discharges. This is not to say that for some situation, the 

WLA may not be zero, as for example, in the case of a highly toxic 

substance where the risk of a ecosystem of public health catastrope is 

substantial. 

The entire concept of WLA is irrelevant if: 

1. the cost of waste reduction or elimination is cheap in some 

sense or 

2. regardless of cost or resulting water quality and water use, 

waste reduction to 11 high 11 levels or complete elimination is 

still worth doing on the general grounds of protecting the 

public health and/or the health of the aquatic ecosystem. 

If either of these assumptions prevail, there is little to be gained from 

an analysis of water quality response and the determination of a WLA. 

However, there is growing evidence that neither of the assumptions are 
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true in totality and the range of costs, effectiveness, and protection of 

water uses is wide indeed. With the growing evidence that pollution 

control is expensive, especially at higher levels of removal and the need 

for water qua 1 ity programs to compete for funds with other equally 

important social programs, the desirability and necessity, of a sound 

WLA procedure becomes more apparent. A useful perspective on WLA can be 

obtained by a brief review of the use of such procedures in water quality 

management. 

The concept of allocating a permissible discharge load to a given 

discharger has had a torturous history. From the earliest beginnings of 

water quality analyses, the basic concepts of WLA have been operative. 

The roots of sound water quality modeling as part of a determination of 

required degrees of water treatment are found in the work of the 1920's 

and 1930's in the Ohio River by Streeter and Phelps and Crohurst (22). A 

comprehensive report on the status of water po 11 ut ion in the U.S. in 1939 

is based extensively on the concepts of WLA, and it is assumed that 

optimum use would be made of the natural purification processes in 

streams, and that, because of differences in stream flow, in polluting 

substances and in water use, much waste would be discharged untreated or 

with only minor treatment. Complete treatment of all waste is not 

attainable. It would cost several times more than the programs outlined 

and would not be necessary even though possible. Moreover, the 

desirable standard of water quality may vary greatly from one part of a 

drainage area to another (23). (At this time, approximately 25% of the 

total urban population received primary treatment and about 25% received 

secondary treatment). This general view prevailed for more than a 

quarter century. 
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One school of thought that developed in the late l960's, during the 

rapidly increasing public awareness of environmental problems, advocated 

a position that largely discarded the concept of WLA. The argument 

rested primarily on the grounds that the process of designating water 

uses, water quality standards, evalation and study of wasteload inputs 

and resulting water quality, and the establishment of allowable waste 

discharge levels from a cost-benefit viewpoint was too cumbersome, time 

consuming and inefficient. The alternate approach was to simply 

establish effluent requirements at various levels of technology on the 

presumption that if such levels were technologically available, their 

use should be mandated. If the application of such levels failed to 

achieve a water quality standard, a higher level would be required. Only 

to this degree was there a recognition of the relationship between waste 

discharge and resulting water quality. The emphasis in this "end of 

pipe" school is on establishing effluent levels that are then written 

into subsequent legislation and/or implementing regulations. The school 

was so successful that in the Federal Water Pollution Control Act 

Amendments of 1972, the first goal of the Act is that the discharge of 

pollutants into the navigable waters be eliminated by 1985 (24). Thus, 

the "end of pipe" school became known as the "zero discharge" advocates. 

Categories of treatment were defined. 

1. Best practical treatment (BPT) for industries by 1977, i.e. 

available and practicable control treatment 

2. Best available treatment (BAT) for industries by 1983, i.e. 

economically available treatment 

3. Secondary treatment for a 11 pub 1 i c ly owned treatment waters 

(POTW) 
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The resulting effect on national water quality planning was 

profound, but relatively short lived. The 1972 Act did continue to 

include language and approaches based on water quality standards. Many 

allocation studies were rapidly done under Section 303 of the Act which 

called for Basin Plan Studies. However, the latitude for evaluating 

alternative wasteload allocations was severely constrained in practice. 

Over the next half dozen years, secondary treatment was promulgated 

as the minimum level for all POTWs on the assumption that the expected 

water qua 1 ity responses were worth the expenditure. Further thrusts 

were made to press on to advanced waste treatment (AWT), often with only 

minima 1 justification of expected water quality benefits. Waste load 

allocation approaches, however, will be continued to be used as part of 

the National Pollutant Discharge Elimination System (NPDES) of permits 

for all discharges. The allocation was used specifically for those 

instances where there was some doubt that the achievement of water 

quality standards could be achieved by secondary treatment alone. 

The pendulum continued to swing between wasteload allocation and 

effluent requirements. Various reports were issued by the Government 

Accounting Office (GAO) chastising the EPA for failing to adequately 

assess water quality costs and benefits, but in turn GAO often failed 

itself to recognize fully the pressures under which EPA was placed to 

achieve virtually impossible goals under a clearly impossible time 

table. The National Commission on Water Quality (NCWQ) created as part 

of PL 92-500, evaluated the situation and reported that the 1977 and 1983 

deadlines could not be met and reviewed in great detail, the results that 

might be expected from the implementation of the effluent criteria. 

Reports and legislation have continued, including the Clean Water 

Act of 1977 and numerous implementing regulations. Water quality 
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criteria for toxic substances has been prepared and, in 1979, EPA 

indicated that any requests for construction funds for AWT must be 

rigorously justified from a cost-benefit viewpoint. It is clear, that 

following this history, a much clearer recognition of the importance of a 

rational approach to water quality management has emerged. The close 

correlation to external political economic forces cannot, however, be 

ignored. Nevertheless, contemporary water quality management programs 

are now an integrated system of basic effluent requirements, 

supplemented by specific analyses of individual situations to arrive at 

a meaningful allowable discharge. Wasteload allocation, therefore, 

continues to be an important part of this overall process. 

Waste load Allocation Procedure 

The principle steps in the WLA process are summarized as: 

1. A designation of a desirable water use or uses, e.g. 

recreation, water supply, or agriculture 

2. An evaluation or water quality criteria that will permit such 

uses 

3. The synthesis of the desirable water use and water qua 1 ity 

criteria to a water quality standard promulgated by local, 

State, Interstate, or Federal agency 

4. An analysis of the cause-effect relationship between present 

and projected wasteload inputs and water quality response 

through use of 

a. available field data or data from related areas and 

b. a calibrated and verified mathematical model 

c. a simplified modeling analysis based on literature, other 

studies and engineering judgment 



5. A sensitivity analysis and projection analysis of achieving 

the water quality standard through various levels of waste­

load input 

32 

6. Determination of the "factor of safety" to be employed through, 

for example, a set aside of reserve wasteload capacity 

7. For the residual load, an evaluation of the 

a. the individual costs to the discharges 

b. the regional cost to achieve the load and the concommitant 

benefits of the improved water quality standard 

G. Given a 11 of the above, a comp 1 ete review of the feasibility of 

the designated water use and water quality standard 

9. If both are satisfactory, a promulgation of the wasteload allo­

cation permitted for each discharger. 

Additional Considerations 

As noted, an integral part of the WLA process is the analysis of 

cause-effect relationships via a mathematical model of waste input and 

resulting water quality response. Figure 8. shows the principal 

components of mathematical modeling framework and shows the need to 

carefully integrate general theory, field and laboratory data with the 

process of model calibration and verifications. The WLA rests heavily 

on the credibility and predictive capability of the mathematical model­

; ng framework. 

However, the adequacy of the modeling framework is only one of many 

issues that must be considered in a WLA process. Table II lists some of 



Figure 8. Illustration of Allocation Procedure 
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TABLE I I 

QUESTIONS RELATING TO THE WASTELOAD ALLOCATION PROCEDURE 

1. How should the cost of waste removal and/or the benefits of water 
quality improvement be incorporated in the allocation procedure, if 
at a 11? 

2. What are the dimensions of the notion of equity? What is a "fair" 
allocation procedure? What does it mean to treat all discharges 
equally? 

3. What kind of water use and water qua 1 i ty prob 1 em contexts are 
amendable to allocation procedures today? Which kind of problems 
may "never" lend themselves to an allocation procedure? 

4. Should other alternatives for improving water quality, e.g. flow 
augmentation, in-stream treatment, spatial distribution of 
effluents be included in the wasteload allocation process? 

5. Is it possible to consider allocations of waste assimilation 
capacity on a time variable (e.g. seasonal) basis ? What might be 
some of the technical, economical and administrative implications 
of such a procedure? 

6. Are the mathematical models available today sufficiently accurate 
to warrant their use in allocation computations? 

7. What kind of sampling programs should be carried out by the 
regulatory agency to ensure that allowable allocations are being 
met, that water quality standards are achieved and that the 
designated water uses are obtained? 

8. How does one incorporate new discharges or increases of existing 
discharges into the allocation procedure? 

9. What kind of incentives can be built into the program to encourage 
dischargers to remove waste beyond their allocation? Are effluent 
charges feasible? 
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the questions associated with these issues. Not all issues arise in all 

cases and some relate specifically to cases where there are interactions 

between discharges. At the present time, there is no widely 

promulgated procedure that addresses each of the issues of Table II in an 

integrated readily usable analysis framework. For example, the issue of 

costs and benefits of waste reduction and water quality improvement is 

considered only in a qualitative manner. In spite of the fact that there 

are techniques available to analyze the cost trade-offs, and in spite of 

the fact that it is widely recognized that cost is an important factor, 

the rigorous inclusion of cost analyses in the WLA procats is not 

usually practical. The first five questions of Table II relate to this 

overall consideration of costs in the WLA. 

The question of model accuracy is often a cruc i a 1 question in 

situations where a given allocation is being negotiated or contested. 

Thomann (26) has discussed this question and compiled a distribution of 

relative errors between model c~libration output and the observed data. 

(Relative error is the absolute value of the difference between observed 

and calculated value divided by the observed value). Figure 9. 

displays the median relative error in dissolved oxygen (DO) for 

water bodies of varying complexity. The models used generally 

represented state of the art DO models, applied by experienced 

practitioners using best judgement on loads, parameters and model 

structure. That is, the calibrations were conducted with defensible 

theoretical bases and not merely to go through the data points. 

The median relative error of 10% with maximum errors of 60% for small 

streams can be noted and is suggestive of present ability to reproduce 

the observed data with a credible model. 



Figure 9. Relative Error in Water Quality Models 
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In order to perform an actual WLA a variety of issues must be 

considered. A specific level of effort must be chosen for the analysis, 

a modeling framework must be determined, specific parameter values must 

be assigned and judgments made on backgound conditions, reserve capacity 

and model accuracy. As an illustration, Figure 8. indicates some of the 

considerations for the allocation of oxygen demanding substances 

(carbonaceous and nitrogeneous BOD) to meet a DO standard. The procedure 

does not address issues of costs/benefits or alternative control 

actions. The procedure also indicates a "minimal effort analysis", e.g. 

extensive collection of field data and model calibrations are not 

employed. Guidelines for a "minimal effort analysis 11 can be found in 

Hydroscience 1974 (27). 

The determination of the DO standard as the first step includes an 

evaluation of the statistical requirements of the standard. Thus, if the 

standard indicates that the DO should "never be less than" 5 mg/l, then 

recognition should be given to random uncontrollable variations in DO. 

For streams and rivers, these fluctuations may be on the order of a 

standard deviation of 0.25 mg/l. Thus, if 0.5 mg/l is added to the 

standard, then the resulting level of 5.5 mg/l represents the target 

minimum level which if attained will meet the absolute minimum level of 5 

mg/l with only a 2-1/2% chance of dropping below the standard. This does 

not imply that the short term fluctuations may or may not be damaging to 

the ecosystem. That determination is part of the interpretation of the 

standard. For other bodies of water, such as estuaries or harbors, other 

analyses may be necessary. 
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The selection of a background DO deficit is subject to a wide 

variation depending on the specifics of the area, such as urban, suburban 

or rural land use. The deficit may be determined from upstream BOD and 

DO conditions and calculated through the region of interest. This 

requires assignment of BOD deoxygenation coefficients. A minimal effort 

analysis would simply assign a constant DO deficit throughout the river 

reach of 0-1 mg/l depending on the problem conditions. This step is 

clearly a subject of potentially widely varying engineering judgment. 

It should be noted that the use of 1 mg/l DO deficit may result in a 

significantly higher degree of required treatment than if no background 

were assigned. 

The inputs from each of the discharges are then estimated following 

general guidelines for expected effluent concentrations. The 

application of the water quality model may also vary widely depending on 

the level of effort; from simplified paper studies to full scale field 

and calibration studies. If the DO standard is achieved with presently 

mandated effluent levels, then the allocation is as given by those levels 

and an "equivalent" reserve capacity can be estimated. If the standard 

is not achieved by application of minimal levels of treatment, the 

procedure continues by incrementing treatment by discrete levels. The 

technological upper bound (e.g. BAT for industry) should be checked 

here. The maximum allowable discharge load is then the load needed to 

achieve the standard. However, this is not necessarily the load to be 

allocated. If a relatively rapid growth is forecasted for the area, then 

some fraction of the maximum allowable load should be placed in reserve 

as a type of "safety factor". Thus, if a reserve factor of 0.8 is 

chosen, then 20% of the allowable load is placed in reserve to be used 
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for new discharges or, if necessary, to increase the allocation of 

existing discharges at a future date. The allocation is given by the 

reserve factor times the maximum allowable load. However, a final check 

should be made to insure that the required treatment level is 

technologically feasible. If an upper technological treatment bound has 

been exceeded, the reserve factor may have to be adjusted. 



CHAPTER IV 

CONCLUSION 

Wasteload allocations or effluent limits are set to protect water 

quality standards. The water quality standards then become a critical 

factor in plant design and resultant costs based on effluents. For this 

reason, the standards should be evaluated whenever accelerated levels or 

treatments must be utilized to meet the standard. 

The classical steps in developing water quality standards are: 

1. A stream or stream reach is designated as having a desirable 

water ~ or uses, such as primary body contact recreation; 

fish and wildlife propagation; drinking water suppply. 

2. In order to protect these uses, certain criteria must be 

determined necessary to be met. These criteria may be general 

or very specific and technically based. 

3. The criteria, along with the beneficial use(s) are then 

adopted as a water quality standard (WQS) by local, state, and 

federal interests. 

In Oklahoma, water quality standards are adopted by the Oklahoma 

Water Resources Board (OWRB) (28) and are subject to review at least 

every three (3) years. Although the review process has been undertaken 

as mandated, many aspects of our WQS have not changed. The main 

shortcoming in our WQS is the 11wholesale 11 beneficial use designation. 

Virtually every stream in the State is assigned the same set of 

42 
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beneficial uses without regard to the applicability or to the 

desirability of the use. Each use is then, for the most part, given the 

same set of criteria as a basis for protection without considering 

background conditions, ambient water quality or attainability. The 

Oklahoma WQS make no provision for variances for whatever reason and do 

not address their economic ramifications. 

The wasteload allocation (WLA) process is the equitable 

distribution of a permissible level of waste discharge to achieve a 

designated water use. In order to determine what is the maximum level of 

waste that can be discharged and still maintain the desired use, several 

interactions must be evaluated keeping the standards in mind. There 

should be: 

a. An analysis of the cause-effect relationship between present 

and projected waste load inputs and water qua 1 ity response 

through the use of: 

1. available field data; 

2. a mathematical model(s); and 

3. a modeling analysis based on literature, other studies 

and engineering judgment. 

b. A sensitivity analysis and projection analysis of achieving 

the WQS through the employment of various levels of wasteload 

input (different treatment levels). 

c. An evaluation of the: 

1. costs associated with the required treatment level; 

and 

2. the benefits of the resultant water quality. 

d. A complete review of the feasibility of the designated water 

use and WQS. 
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In Oklahoma, there is a 5.0 mg/1 dissolved oxygen standard set for 

the protection of the fish and wildlife beneficial use. There is concern 

as to both the appropriateness of this use designation on many streams 

and on the attainability of the 5.0 mg/1 DO where there are municipal 

sewage discharges, regardless of the level of treatment employed at the 

facility. There is also great concern regarding the cost of protecting 

this use. These basic questions now arise: 

1. Do these concerns have any basis? 

2. Can documentation be provided? 

3. If so, what next? 

To determine the applicability of the standard, an 11 instream11 

evaluation would be necessary. This would consist of a detailed sampling 

program, data analysis and water quality model application. The results 

of this modeling effort would then be used to indicate resultant levels 

of treatment, DO, and associated costs along with the potential effects 

on the designated use (in this case, fisheries). Several alternative 

scenarios could then be developed and presented for local input. A 

decision must then be made as to the appropriateness of the use by the 

effected citizenry and if applicable a recommendation made to the State 

that the use and/or standard be changed. 

The main drawback to reevaluating the WQS is that no precedent has 

been set with State in modifying a use designation or standard. EPA 

policy has been that the only change allowed will be toward a more 

stringent standard and the State has paralleled this viewpoint. 

However, it is time for the recognition of the importance of a rational 

approach to water quality management and it has been assured that a 
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concerted effort with adequate justification would be considered in the 

1982 standards update by the State. 

Until that time, municipal facilities should be instructed to 

develop alternative treatment processes where possible (land 

app 1 i cation, tot a 1 retention, etc.) or to "phase" treatment to the 

secondary level while maintaining the capability of expansion to more 

stringent levels of treatment. At the same time, intensive stream 

analysis and modeling must be undertaken to document and technically 

justify all required levels of treatment that are greater then 

secondary. Resultant instream benefits at "marginal" levels of 

treatment could also be predicted by the modeling effort allowing a more 

complete look at what is to be realized by varying levels of treatment. 
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