
BULK ATMOSPHERIC METAL CONTRIBUTION TO A RIVER 

IN AN INDUSTRIAL AREA 

By 

MICHAEL BOYD TATE 
\\ 

Bachelor of Science in Civil Engineering 

Oklahoma State University 

Stillwater, Oklahoma 

1980 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

In partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 
December, 1981 



BULK ATMOSPHERIC METAL CONTRIBUTION TO A RIVER 

IN AN INDUSTRIAL AREA 

Thesis Approved: 

Dean of the Graduate College 

ii 

11000'17 



ACKNO\.lEDGMENTS 

I would like to use this space to recognize those persons who are 

primarily responsible for my being able to extend my education to this 

point. Firstly, my principal adviser, Dr. Marcia H. Bates, receives my 

utmost respect and appreciation for her exceptional guidance and instruc­

tion during my pursuit of this degree. Her patient and professional 

manner has made the time spent on this project both enjoyable and educa­

tional. I would also like to thank Dr. D. F. Kincannon and Dr. J. N. 

Veenstra for serving on my committee. 

My fellow students in Bioenvironmental Engineering are to be thanked 

for their assistance and their friendship, along with friends outside of 

the department who have been most supportive. 

Lisa Post deserves special recognition for her generosity in typing 

this paper, as well as Duane Phillips for his drafting. 

My gratitude is also extended to my parents, Raymond and Mariana 

Tate. Their love, support, and moral upbringing has given me the ability 

to follow my academic desires where ever they may lead. My sisters, 

Paula and Julie, and their respective families have also provided me with 

an endless amount of emotional support throughout my schooling. I would 

also like to give my sincerest thanks to my grandmother, Bobbie 

Rosenberger. Her love and encouragement is deeply appreciated. 

Lastly, I acknowledge my grandfather, the late Charles P. 

Rosenberger. His assistance and encouragement to grasp for academic 

excellence will always be remembered. To him I dedicate this work. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION. 

II. LITERATURE REVIEW 

Atmospheric Contribution of Metals 
Factors Affecting Metal Concentrations 

and Contributions .. 
Trends Observed. . . . ••. 
Methods of Sampling. 

III. MATERIALS AND METHODS . 

Sample Collection .. 
Sample Digestion ...•.• 
Analysis 

IV. RESULTS • . 

V. DISCUSSION. 

Seasonal Trends •.. 
Precipitation Amount . 
Locational Trends .•. 

VI. CONCLUSIONS ... 

VII. RECOMMENDATIONS 

BIBLIOGRAPHY . . . . . 

iv 

. . . . . . " . 

Page 

1 

4 

7 

7 
9 

11 

14 

17 
17 
18 

19 

33 

33 
34 
36 

42 

44 

45 



LIST OF TABLES 

Table 

I. Metal Concentrations and Loadings ... 

II. Comparison of Data to Previous Studies. 

v 

l 

Page 

20 

40 



- --------

LIST OF FIGURES 

Figure 

1. Locations of Sampling Sites. 

2. Sample Collectors ...... . 

3. 

4. 

5. 

Average Precipitation Volume Versus Sampling Day .. 

Average Concentration of Cadmium, Chromium, and Nickel 
Versus Precipitation Event .......•....• 

Average Concentration of Lead and Zinc Versus 
Precipitation Event. . . . . . . . . . . . .. 

6. Average Loading of Cadmium, Chromium, and Nickel Versus 

Page 

15 

16 

21 

23 

24 

Precipitation Event. • . . . • . . • . . . . • • . . • 25 

7. Average Loading of Lead and Zinc Versus 
Precipitation Event. . . . . • . .•.• 

8. Average Loading of Cadmium Versus Average 
Precipitation Volume ....... . 

9. Average Loading of Chromium and Nickel Versus Average 
Precipitation Volume .••....•..... 

10. Average Loading of Lead and Zinc Versus Average 
Precipitation Volume ....•.•••..... 

11. Total Combined Metal Loading At Individual Sites . 

12. Total Loading of Cadmium, Chromium, Nickel, Lead, 
and Zinc at Individual Sites .....•..•• 

vi 

26 

27 

28 

29 

30 

32 



CHAPTER I 

INTRODUCTION 

In recent years the detrimental effects of certain metals on human 

health as well as on other animals have been documented by medical 

professionals. Metals are an important pollution problem for several 

reasons; two of which are their tendency to bio-accumulate and their many 

avenues to the aquatic environment (i.e., direct discharge from industry­

both air and water, natural contributions, and oil and coal burning). 

Evidence that metals are moving to the forefront of toxic pollutants can 

be witnessed by the fact that fifteen metals are included on the U.S. 

Environmental Protection Agency's (EPA) priority pollutant list which 

·contains 129 toxic pollutants (21). The list of pollutants was 

originally ordered to be published by the Clean Water Act of 1977. The 

Act orders the EPA administrator to publish an up-to-date list of any 

pollutant or combination of pollutants which are toxic. Toxicity, as 

defined by the Act, is any disease-causing pollutant which, when 

assimilated into an organism can cause, among other things, death, 

disease, cancer, behavioral abnormalities, or deformation in off-spring 

(29). 

All of the metals analyzed for in this project are toxic, but to 

varying degrees. The order of most toxic to least toxic is: cadmium, 

nickel, lead, chromium, and zinc. Cadmium is found naturally around coal 

and zinc mining areas, while atmospheric contributions result from the 
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smelting of metals, primarily zinc. The chief medical problems 

attributed to cadmium are cardiovascular disease and hypertension. 

Nickel pollution is associated with diesel oil combustion, coal burning, 

catalyst manufacturing, and steel alloying. Nickel is thought to be a 

health hazard only in its carbonyl form with strong evidence linking it 

to lung cancer. Lead is a major atmospheric pollutant because of its 

widespread use as a gasoline additive. Lead can cause brain damage, 

convulsions, and behavioral abnormalities (2). Chromium is released to 

the environment from metal plating, metal fabrication and, to some 

extent, from cooling towers where it is used as an anti-corrosive. 

Chromium is moderately toxic and will interfere with metabolic processes 

in both humans and animals. Zinc finds its way to the environment from 

plating operations, hot dip galvanizing, smelting of zinc ore and other 

metals. Zinc, also, is a moderately toxic pollutant which, when in 

excess, interferes with enzymatic reactions (16). 

While all of the aforementioned metals are toxic at varying 

concentrations, two are essential for life. Chromium is necessary in 

insulin reactions. Zinc is of importance in enzymatic activity (16). 

Natural scientists and medical doctors have detailed the gloomy 

results of organisms exposed to toxic amounts of metal pollutants 

generated mainly by industry. So-cal 1 ed 11 envi ronmental i sts 11 decry 

industry discharging pollutants to the environment and demand immediate 

action. It then becomes the responsibility of the engineering 

profession, particularly environmental engineers, to identify pollution 

sources and to devise means for reducing exposure to pollutants while 

helping industry to maximize production of beneficial goods. 

2 
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The scope of this project was to identify and quantify five metals 

in bulk atmospheric precipitation collected from a highly industrialized 

area. An estimate was then made as to the amount of metal contributed by 

precipitation to a portion of an adjacent river basin. 

One aim of this project is to identify any problems with respect to 

atmospheric metal pollution. Hopefully, this will provide an impetus for 

government and industry to further investigate the problem and to 

actively and wisely set a course of action to, if not solve, at least 

alleviate the problem. 



CHAPTER II 

LITERATURE REVIEW 

Metal concentrations in the environment have increased considerably 

in the years since the industrial revolution. It is even feared that 

industrial activites, and the subsequent release of metals to the 

environment, could be altering natural geochemical cycles on earth (3). 

Murozumi et al. (15) analyzed annual snow layers from the North Pole and 

Greenland. The findings of this study indicated that concentrations of 

lead tripled from 1750 to 1950. Amounts of lead nearly tripled again 

from 1950 to 1970. The first jump was probably caused mainly by smelting 

lead, while the second increase was more than likely due to the use of 

lead in gasoline (16). Recent studies of lead-accumulating mosses in 

Sweden indicated a four-fold increase in lead content from the 1860 1s to 

the 1960 1s (24). Other investigations have also indicated a rise in the 

lead concentration of surface waters (12). Patterson (17) estimates that 

lead concentrations in surface waters have risen ten times since 

prehistoric eras. 

The fact that Murozumi et al. (15) found detectable amounts of lead 

at the North Pole would lead to the conclusion that lead was transported 

there, most probably through the atmosphere. Several researchers have 

pointed out that both aquatic systems and land masses receive substantial 

amounts of many metal pollutants from dry and wet atmospheric deposition 

(8, 20, 31). Trace metals in the atmosphere have several natural sources 
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emanatinq from the surface of the earth: land masses, oceans, and 

volcanoes to name a few of the more important sources (20). Pierson 

5 

et al. (20) state that large particulates, those greater than ten microns 

in diameter, will return to the earth 1s surface very rapidly by 

sedimentation, but that smaller particles may be carried worldwide. 

Atmospheric deposition of metals is a major health problem to all 

forms of life. Hutchinson and Whitby (12) measured dry and wet 

deposition of several metals near a major nickel smelting region in 

Canada, the Sudbury Region. Results of the study showed that Ni and Zn 

appeared in above normal concentrati ans in pl ants and soil. Al so 

mentioned in the report was that a major loss of vegetation, presumably 

because of acid rain and heavy metal deposition, resulted in only the 

hardiest of species remaining in the area analyzed. Another case study 

near a zinc smelter in Pennsylvania concluded that damage to vegetation 

around the smelter was due more to Cd and Zn than to acid rain (12). 

A more profound problem of metal contamination is the pollution of 

aquatic environments. A large portion of the metals in plants and soils 

will eventually be cycled into groundwater, rivers, streams, lakes, and 

the oceans. Gatz (10) cites work done to determine the atmospheric 

contribution of metals to the Niagra River. Results show that metals 

from the atmosphere constitute 16-41% of the Pb in the river, 58-85% of 

the Zn and 12-15% of the Ni. 

In lake studies, Hutchinson and Whitby (12) refer to work performed 

in 1973 and 1976 that showed toxic levels of Ni and Cu in lakes and algae 

which are in the Sudbury region of Canada. One study referenced by Gatz 

(10) estimated that the atmospheric contribution of Pb to Lake Michigan 

ranges from 20-33% of the total lead in the lake. Gatz concluded from 
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his own work that 3-15% (over 3 metric tons) of the metal emissions from 

the highly industrialized Chicago and northwest Indiana area were 

deposited in Lake Michigan. Ruppert (22) determined that a significant 

amount of numerous metals was contributed to German lakes and rivers 

encompassed by his study. 
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Contamination of surface waters is not limited exclusively to fresh 

water. Tsunogai and Nozaki (30) reported considerable amounts of Pb in 

water from the Pacific Ocean. The authors concluded that the Pb 

originated from atmospheric deposition. Fukuda and Tsunogai (9) also 

determined Pb pollution of the Sea of Japan and Pacific Ocean in their 

work and concluded that aerial deposition was the major source of the Pb. 

Many researchers have reported the effects of atmospheric metal 

pollutants on vegetation and soil (2, 12, 25). The fact remains, 

however, that most metallic pollutants eventually find their way into 

water supplies, groundwater as well as surface water (16). Hutchinson 

and Whitby (12) determined that run-off and sheet erosion accounted for 

extremely high nickel concentrations in the Wanapitei River 48 miles from 

any major industry. The researchers also found large quantities of 

nickel in the Georgian Bay of Lake Huron. Major sources of the metal 

included erosion and leaching from soils. 

Once in surface waters, metals are a health hazard because they are 

not biologically degraded; hence they persist in the environment. They 

are also toxic at low concentrations, and they biologically magnify, or 

accumulate, in aquatic life (16). Bio-accumulation, the concentration of 

pollutants by plants and animals, further increases the risk of poisoning 

or toxicity to humans. One study on the average amount of accumulation 

exhibited by 32 different fresh water plant species yielded the following 



concentration factors for cadmium, chromium, and zinc: Cd--16l0, Cr--

695, and Zn--4600 (4). 

Atmospheric Contribution of Metals 
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Atmospheric metal contributions to aquatic and terrestrial systems 

are broken into two groups, wet deposition and dry deposition. Wet 

deposition includes all forms of wet precipitation, rainfall, snow, ice, 

and sleet which entrap metal aerosols (20). Wet deposition contains 

metals in the soluble form and the insoluble form. Of greatest impor­

tance environmentally is the soluble form because it is more biologically 

active (10, 20). The term biologically active refers to the fact that 

the metals are mobile in soil and are actively taken up by vegetation 

(12). Insoluble or particulate metals tend to bind to the organic por­

tion of a soil (18, 24). 

Ory deposition of metals is dry fallout from the atmosphere through 

sedimentation, impaction and diffusion (5, 14_). Dry deposition in 

conjunction with wet deposition is referred to as bulk, or total depo­

sition (20). 

Factors Affecting Metal Concentrations 

and Contributions 

In any study area the surrounding industry will, to a great extent, 

affect the type and amount of metal in atmospheric deposition. Lazarus 

et al. (14) aptly pointed this out in their study across the entire U.S. 

A northeast to west downward gradient was found. This would implicate 

the more industrialized Northeast as a major contributor of metals. The 

major industries which contribute metals to the atmosphere are ore 
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smelting concerns and coal burning industries, most of which are utilized 

for energy generation (1, 11, 13, 14, 16, 24). 

While anthropogenic sources are the greatest contributors of metals, 

natural sources also exist. As mentioned previously, blowing soils, 

oceans, volcanoes, forest fires, and ore deposits are the most common 

natural sources of metals (13, 20, 24). 

Location of industry and natural sources are of utmost importance in 

determining the types and amounts of metals in the atmosphere, but 

meteorologic factors play the most important role in the distribution of 

metals. Andren and Lindberg (1) point out that the amount of precipi­

tation, frequency of precipitation, wind direction, and wind speed are 

all important factors to be taken into account when analyzing rainfall 

data. Other considerations to be weighed are the geomorphological condi­

tions in the sampling area (22). Andren and Lindberg (1), for instance, 

placed samplers in a valley behind a ridge to determine minimum atmos­

pheric deposition. Ruppert (22) also reported that natural geographic 

barriers reduced atmospheric deposition to a minimum. 

Man-made interferences must be reckoned with also. In populated 

areas, buildings may shield samplers from fallout; therefore, the sampler 

location is a significant factor in any study. In a populous industrial 

area, sampler height is of great importance. Janssens and Dams (13) 

noticed a marked difference in Pb concentrations along city streets in 

Antwerp, Belgium, due to sampler height. If samplers are too low, 

blowing soil might be picked up and this would not be truly indicative of 

atmospheric conditions (11, 20). If samplers are placed too high, 

localized, low-level pollution sources (i.e., automobiles) might not be 



in evidence (13, 22). Schlesinger et al. (23), however, have shown 

sampler height to be relatively insignificant in unpolluted areas. 

Trends Observed 

Various natural and anthropogenic occurences cause distinct trends 

in previous data which have been collected on metals in precipitation. 

The major trends observed in past studies include seasonal, rainfall 

amount, intensity, frequency, geographic location, and the relation of 

various metals to one another. 

Seasonal trends are probably the most often observed in relatively 

unpolluted areas. Many researchers have noticed fncreased metal content 

in rainfall during the winter months (1, 9, 11, 14, 20). Pierson 
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et al. (20) observed wintertime increases in Ni, Pb, Zn and other metals 

in a relatively unpolluted area in England. Lazarus et al. (14) found a 

general increase in atmospheric Pb during the winter months in the United 

States. Hallsworth and Adams (11) reported a generally higher metal 

content in precipitation in the winter than any other season. Again, 

their study was conducted in England. Andren and Lindberg (1) observed 

higher wintertime concentrations for Cr and Ni in northeastern Tennessee. 

Fukuda and Tsunogai (9), in a Japanese study, concluded that Pb 

deposition was higher during the winter months due to increased rainfall. 

Other authors concluded that in the winter, temperature inversions are 

more prevalent than in the summer and do not allow pollutants to disperse 

as well; thus, the higher concentrations (1, 14, 20). Hallsworth and 

Adams (12) attributed their increased winter concentrations to low level 

fog. 



Janssens and Dams (13), in an investigation of Pb concentration in 

Swedish precipitation, found lower concentrations during the winter. 

Their explanation, however, had very little to do with meteorologic 

conditions. It was merely that more automobile traffic was present in 

the summer. 
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Some researchers are able to find correlations between the amount of 

precipitation collected and the amount of metals deposited. Dry and wet 

deposition are important factors to consider here. If the wet deposition 

is greater than the dry deposition, the indication is given that the 

chief mechanism for removal of atmospheric metals is rainout and not 

washout (9). That is to say, the process takes place in a cloud and not 

below a cloud by falling raindrops. Fukuda and Tsunogai (9) found a 

linear, increasing relationship in the deposition rate and amount of 

rainfall for Pb, thus indicating rainout instead of washout. 

Several authors have found no significant relationship between 

amount of rainfall and metal concentration. Andren and Linberg (1) found 

this to be true for several metals including Cr, Ni, Pb, and Zn. Lazarus 

et al. (14) also could find no rainfall-concentration link for Ni, Pb, 

and Zn. Cadmium, Cr, Ni, Pb, and Zn showed little correlation between 

concentration and rainfall amount in work done by Ruppert (22). 

Still other projects have shown an inverse relationship between 

rainfall amount and metal concentration. Hallsworth and Adams (11) found 

this definitive pattern in their work. Inverse relationships with Pb 

have also been observed by Chow and Earl (7) and Schlesinger et al. 

(23). 

Rainfall frequency and intensity play a vital part in atmospheric 

metal analysis. Ter Harr et al. (28) pointed out that large 
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thunderstorms and rapid rainfall tended to lower metal concentrations, a 

slow, steady rain produced higher concentrations. Schlesinger et al. 

(23) and Lazarus et al. (14) found lower Pb concentrations in samples 

from heavy storms than from small storms. The reasoning to support this 

finding is that large storms quickly cleanse the atmosphere then serve 

only to dilute the samples. No significant correlation, however, could 

be drawn between either rainfall amount or frequency and metal concen­

tration by Andren and Lindberg (1). 

Often times trends can be observed in the correlation of one metal 

to another. If metals show a good correlation to one another, or to a 

non-metal, it can safely be assumed that the metals are being emitted 

from a common source (6). A common correlation between a metal and a 

non-metal is lead and bromine. Janssens and Dams (13) and Chan et al. 

(6) observed a Pb/Br relationship in their works. Both groups of inves­

tigators concluded that automobiles were the major source. The latter 

study also pin-pointed steel industries with iron-sulfur correlations. 

Hallsworth and Adams (11) observed a correlation between Cu and Cr near 

coal-fired power stations. Andren and Lindberg (1) attempted to find 

correlations between metals, but their results were inconclusive. 

Methods of Sampling 

Sampling for atmospheric metals involves various techniques. Some 

researchers wish to measure bulk precipitation only, while others sepa­

rate the dry and wet components. Very few studies take bulk samples only 

(11, 22, 23). A more complex investigation involves taking bulk samples 

in conjunction with wet and/or dry precipitation. The usual bulk sampler 

involves a nitric acid-washed polyethylene or polypropylene funnel and 
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bottle arrangement supported in a holder several feet off of the ground 

(6, 11, 12, 20, 22, 23, 26). Those researchers attempting to capture 

only wet deposition used a sampler with a rain-sensing grid that acti­

vates the opening of doors sealing the sample bottle only during periods 

of wet precipitation, thus excluding dry fallout (1, 14). 

Investigations,.attempting to ascertain only dry deposition basically 

involved two types of systems. One system drew air through filter paper 

by means of a suction device. Dry fall out trapped by the filter was then 

analyzed (1, 13). The other system suspended a piece of filter paper 

under a plastic cover to prevent rain from reaching it (20). 

Once samples are collected, they must be stored. There is presently 

a great deal of concern as to what type of storage container is best. An 

in-depth study on this subject was performed by Struempler (27) on 

borosilicate glass, polyethylene, and polypropylene containers. The 

author concluded that polypropylene was the least desirable container for 

storing trace metals because the metals adsorb to the container surface. 

Polyethylene was deemed the most appropriate for field work. To prevent 

any further adsorption to container surfaces and to prevent biological 

activity in the bottle, some authors recommended acidifying the sample 

upon collection (1, 12, 23, 26, 27). Freezing samples upon collection is 

another way to prevent biological activity or adsorption. This 

particular method was practiced by Chan et al. ( 6). 

After retrieving rainwater samples, the analytical procedures 

utilized were varied. The most common method of analysis was by atomic 

absorption spectroscopy using either flame or graphite furnace analysis 

(1, 12, 14, 22, 23, 27). Some investigations utilized acid digestion 

procedures to solubilize any suspended metals (12, 26). Other authors 
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made no mention of any digestion procedure. Other methods used for metal 

determinations included charged particle induced X-ray emission (PIXE) 

(7), optical spectography with a quartz spectrograph (11), X-ray 

flourescence (20), and a radiation counter to determine radioactive Pb-

210 (9). 



CHAPTER III 

MATERIALS AND METHODS 

The purpose of this research was to sample bulk precipitation in a 

moderately industrialized area (west Tulsa). Industries in the immediate 

area include 2 oil refineries, over 12 metal plating firms and 2 steel 

fabricating firms. Sampling points generally followed the shoreline of 

the Arkansas River, Figure 1, so that an estimate might be made as to the 

amount of metal entering that particular stretch of the river via preci­

pitation. 

Stations A and B were located approximately seven feet above the 

ground in a strictly industrial area. Stations C and D were located on 

top of buildings in the downtown area. Station C was located atop a five 

story building, while station D was located on top of a three-story 

structure. Stations E and F again were placed approximately seven feet 

above the ground, but situated in a residential area. 

The collection devices were bulk samplers consisting of a poly­

ethylene funnel and bottle combination with a total volume (bottle plus 

funnel) of 1550 ml, and a total surface area of 27.40 square inches. 

Samplers at stations A, B, E, and F were securely supported by a metal 

holder which was attached to a three-foot long two-by-four. The two-by­

fours were attached to utility poles in right-of-way areas, Figure 2. 

Samplers at sites C and D were supported by a metal holder mounted to a 

five-foot high wooden stand which rested on the building roofs, Figure 2. 

14 
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Figure 1~ Location of Sampling Sites 
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Sample Collection 

Samples were collected the next working day following a precipi­

tation event and new samplers were installed. If an entire month passed 

without rain, the sample bottles and funnels were collected and rinsed 

with deionized water. The collected samples were transported to Still­

water and the volume of each sample was measured and recorded. The 

samples were then transferred to polyethylene bottles with screw caps and 

placed in a freezer. 

Following sample storage the sample bottles and funnels were nitric 

acid washed and placed in plastic bags until needed. It also became 

necessary to wash storage bottles with nitric acid and reuse them when 

needed. 

Sample Digestion 

Digestion was employed to ensure that all metals in the sample were 

soluble. Prior to digestion, the frozen samples were removed from the 

freezer and allowed to thaw at room temperature. As soon as possible 

after the samples had thawed, the digestion procedure was begun. 

The samples were shaken to guarantee homogeneity. Fifty milliliters 

of each sample were measured in a volumetric flask. If the sample volume 

was less than 50 ml, deionized water was used to bring the sample to 

volume. The sample was then emptied into a 150 ml glass beaker. The 

heated nitric acid di9estion process used was recommended by the Perkin­

Elmer Corporation for use with their instruments (19). The procedure was 

followed in its entirety with two modifications; watch glasses covered 

the beakers at all times to prevent any organic contamination, and for 

the final step, any residue in the beaker was solubilized with nitric 



acid instead of hydrochloric acid. 

Following the digestion, the watch glasses and beaker walls were 

rinsed with deionized water into the beakers. The samples were poured 

back into 50 ml "Olumetric flasks and brought to volume with deionized 

water. The sample, then at approximately pH 1, was stored in a 60 ml 

polyethylene screw top bottle. 
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All glassware used in the digestion was used solely in the digestion 

of rainwater samples and was washed with dilute nitric acid and rinsed 

with deionized water just prior to its use. 

Analysis 

All analyses were performed using a Perkin-Elmer Model 5000 atomic 

absorption spectrophotometer equipped with a Perkin-Elmer HGA-400 graph­

ite furnace. All blanks and standards were made with Fisher Scientific 

standard solutions. 

Before any sample analysis was begun, a sensitivity check, a 

standard concentration which gives a known absorbance, was run to verify 

that the instrument was operating properly. Next an internal standard 

curve was set in the instrument. Previous work had determined the linear 

working range of the standard curve. Following standardization, two 

20 ul sample injections were made per individual sample with Eppendorf 

automatic pipettes fitted with disposable plastic tips. The sample 

concentrations were read in mg/l and the two results were averaged and 

recorded. If the two injections yielded answers with more than 10-20% 

difference, two more injections were made. 

All metals had minimum detection limits of 1 ug/l (ppb). Any sample 

below this limit was reported as zero. 



CHAPTER IV 

RESULTS 

The results from the analyses are presented in three basic forms: 

precipitation data, concentration data, and loading data. Precipitation 

values are reported as the volume of the sample collected in ml, concen­

tration is reported as mg/l, and loadings are given as ug of metal. 

A portion of the loading and concentration data are given as 

averages. The term average concentration, as applied to each metal, 

refers to the mean of the concentrations taken over the six sites per 

sampling day. Finding a loading entails multi plying the concentration of 

a specific metal at a site by the corresponding precipitation volume. 

Average loading is merely the mean of the loadings at all six sites per 

sampling day. 

Precipitation volume is also given as an average. Average precipi­

tation volume is the mean of the volume of precipitation collected over 

all sites for each sampling day. 

A summary of all data collected is presented in Table I. The ranges 

for each metal show a wide variation. For most metals the range is so 

wide that the data does not follow a normal distribution and standard 

deviation is of no significance. 

Average volume of precipitation per sampling day is presented in 

Figure 3. The maximum volume, 1550 ml, was collected September 1, 1980. 

The minimum volume collected was O ml on July 27, 1980. This sample 

19 



TABLE I 

METAL CONCENTRATIONS AND LOADINGS 

.--·------, 
Metal I Concentration (mg/l) I Loading (ug) I No. of Samples 

I I I r --------- r-- I - -- . I I 
Range I Mean I Range I Mean I 

I I I r-- - ______ T ___ --

Cd I 0.000-0.017 I 0.003 I 0.000-4.640 I 0.569 135 
I I 

Cr I 0.009-0.158 I 0.028 I 0.765-187.550 I 13.544 135 
I I 

Ni I 0.000-0.091 I 0.016 I 0.000-18.600 I 4.171 135 
I I 

Pb I o.ooo-0.990 I 0.116 I 0.000-213.900 I 16.860 135 
I I 

Zn I 0.392-1.292 I 1.061 I 46.200-1782.500 I 333.527 135 
I I 

N 
0 
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consisted of dry deposition on the collector washed down with deionized 

water. 

The average concentrations per precipitation event for each metal 

are presented in Figures 4 and 5. Note that the maximum and minimum 

values, as well as the average concentrations vary somewhat from the 

values in Table I because these values are averages whereas Table I 

referenced the raw data. The minimum and maximum of the average values 

for each metal are: Cd, 0.000-0.012 rng/l; Cr, 0.014-0.084 mg/l; Ni, 

0.004-0.051 mg/l; Pb, 0.015-0.205 mg/l; and Zn, 0.732-1.173 mg/l. The 

means of the average values detennined from Figures 4 and 5 are: Cd, 

0.003 mg/l: Cr, 0.042 mg/l; Ni, 0.017 mg/l; Pb, 0.064 mg/l; and Zn, 

1.057 mg/l . 
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Average metal loadings per sampling day are given in Figures 6 and 

7. Again, this data will differ somewhat from the raw data in Table I. 

The minimum and maximum of the average values for each metal are: C,d, 

n.037-2.822 ug; Cr, 1.875-87.317 ug; Ni, 0.550-13.568 ug; Pb, 1.400-

82.667 ug; Zn, 47.150-1522.88 ug. The means of the average values 

presented in Figures 6 and 7 are: Cd, .562 ug; Cr, 13.251 ug; Ni, 4.113 

ug; Pb, 16.544 ug; and Zn, 342.293 ug. 

In order to detennine if any relationship existed between average 

loading and average precipitation, the two parameters were plotted. The 

resulting graphical analyses are presented in Figures 8, 9, and 10. 

The last group of figures represents the total loading of metals at 

the individual sampling sites. Figure 11 shows the total loading of the 

combined metals at each site. The order of rank from highest loading to 

lowest loading is F (9119.07 ug), B (9013.56 ug), E (8861.16 ug), A 

(8495.93 ug), D (8123.72 ug), and C (6159.35 ug). The individual metal 
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loading components which comprise the combined loading are represented by 

Figure 12. 
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. CHAPTER V 

DISCUSSION 

The results were analyzed to determine if various trends in the 

precipitation data could be established. The possible trends for metal 

loading and concentration which were investigated were broken into three 

categories: seasonal, precipitation amount, and sampler location. 

Seasonal trends and those trends associated with precipitation amount 

take into account average metal loading as well as average concentration. 

Locational trends contrast site location with total metal loading for 

individual metals and combined metals. 

Seasonal Trends 

Seasonal trends are often reported to occur in studies conducted in 

relatively unpolluted areas (10, 21, 22). No conclusive seasonal trends, 

however, could be drawn from either concentration or loading data, 

Figures 4, 5, 6, and 7. This is not a very surprising revelation for 

this investigation because of the nature of the sampling area. The 

sampling sites are in a fairly industrialized portion of the city. 

Therefore, the major constraint on the amount of pollutant distributed 

in the atmosphere is industrial activity and not seasonal conditions. 

Janssens and Dams (13) reported the same basic conclusion in their work 

by linking Pb loading to industrial activity. 
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Precipitation Amount 

The most obvious trends observed from data associated with 

precipitation amount can be drawn from precipitation amount in conjunc­

tion with either loading or concentration. If the graphical analyses of 

average loading per precipitation event, Figures 6 and 7, are compared to 

the amount of precipitation collected per event, Figure 3, a general 

observation can be made for all metals; loading is approximately propor­

tional to the amount of precipitation. With the exception of a few data 

points, this is a definite trend for all metals but is most clearly 

evident for Pb and Zn. 

The fact that loading increases as precipitation increases suggests 

that a mechanism of deposition involved in this study is rainout (8). In 

other words, the metals are combined with precipitation in the clouds and 

not washed out from below the clouds during a precipitation event. If 

rainout is occurring one can assume that the metals in question are 

generated from industrial processes and not natural sources (18). The 

rationale involved is that only industrial sources, as opposed to natural 

sources, will produce particulates small enough to reach cloud level. 

Loading being proportional to precipitation volume is further illus­

trated in Figures 8, 9, and 10. The loading vs. precipitation plots 

yield a nearly linear relationship with a positive slope, thus indicating 

a direct proportion. Again, Zn is most representative of this trend. 

The linear relationship occurs with Pb; however, two distinct lines 

are observed, Figure 10. The points which generate the upper line are 

composed of data from September 25, 1980 to February 22, 1981. The lower 

line is comprised of the remaining data. The upper line has the greater 



positive slope which means that during the denoted time period the 

loading rate was greater than at other times. 
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The two line phenomenon for Pb was also observed by Fukuda and 

Tsunogai (8) in their work. The greater loading rate was observed during 

the winter months and was attributed to temperature inversions not 

allowing the Pb to disperse as readily. Temperature inversions may have 

been responsible for the results in Figure 10. However, because Pb is 

apparently the only metal affected, other unknown factors must be in 

effect. 

Definitive patterns do not exist for all metals when concentration 

vs. precipitation event data, Figures 4 and 5, are compared to the preci­

pitation-per-event data, Figure 3. The various metals analyzed for 

displayed individual traits. Lead showed an inverse relationship between 

amount of precipitation and Pb concentration over the entire sampling 

period, with only one or two data points out of line. Zinc, on the other , 

hand, shows a 11 spl it 11 relationship. From June to November precipitation 

and concentration show an inverse relationship; while from November to 

May a proportional relationship between the two parameters is prevalent. 

Again it must be emphasized that some points do not follow this pattern, 

but the majority do. 

Chromium and Cd data, while not providing as precise a pattern over­

all as Pb and Zn, do show an inverse relationship. Nickel had a very 

erratic concentration-precipitation plot. The only pattern present is an 

inverse relationship between concentration and precipitation amount for 

five of the six largest precipitation events. 

The literature often cites cases where inverse proportionalities 

exist between concentration and precipitation data. Most authors 
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attribute the inversely related data to the idea that large amounts of 

precipitation tend to cleanse the atmosphere initially. The remainder of 

the precipitation serves only to dilute what has already been collected 

(6, 13, 22). Some researchers extend this theory of atmospheric clean­

sing to stonn intensity, surmising that a very intense storm, which might 

produce only a moderate amount of precipitation, will quickly cleanse the 

atmosphere then serve only as a dilutant {13, 22, 27). 

Locational Trends 

Total metal loadings at the various sampling sites produced some 

interesting results. The loadings at most stations were close with re­

spect to the amount of total combined metals deposited during the 10 

month study period, Figure 11. The two building-top samplers (C and D), 

however, were markedly lower in loading than the remainder of the sam­

plers. The same pattern was also observed by Janssens and Dams (13) in 

their studies on Pb. Assuming that the major contributor of Pb is auto­

motive exhaust, the authors concluded that the bulk of the suspended Pb 

particulates was confined to fairly low levels. 

Reduced loading at higher altitudes indicates that washout as well 

as rainout is a mechanism of deposition in this study. If only rainout 

was occurring the loadings should be consistent everywhere. The reduced 

loadings at the building top implies that some low-level particulate is 

washed out. 

Not only did the height of sampler C play a role in its reduced 

loading characteristics, but its physical location on the building top 

was an additional factor. The sampler was somewhat shielded to the sides 

by the rooftop equipment, thus excluding some precipitation from the 
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sampler on windy days. As pointed out earlier, a proportional relation­

ship exists betwen precipitation volume and loading. Therefore, low 

amounts of precipitation mean low metal loadings. 

Improper interpretation of the total combined loading can produce 

some false impressions. In order to piece together the entire picture on 

metal loading, the individual components must be looked at, Figure 12. 

It can be seen that Zn is the major individual contributor to the total 

combined loading. Zinc loading is consistently high and fairly constant 

in amount from station to station. Because Zn appears in such 

inordinately large quantities, it tends to give a distorted picture as to 

which sites are receiving the greatest overall toxicity if only combined 

loading is considered. The fact that Zn tends to equalize the combined 

loading at all stations could overshadow the contribution of more toxic 

metals. The most obvious example of the combined loading not acccurately 

reflecting the overall degree of toxicity at each site occurs at station 

E. This particular site has only the third highest combined 1 oadi ng 

primarily because the minimally toxic Zn loading at E ranks fourth among 

the Zn loadings at the six sites. However, the more toxic Cd, Ni, and Pb 

loadings at this site were the highest observed. 

By further studying the individual metal loadings specific peculiar­

ities are observed at various sampling sites. Cadmium and Ni, as did Zn, 

showed a fairly constant loading except at site E where both showed high 

loadings relative to the other sites. 

The loading of Pb in the residential areas (sites E and F) is 

approximately twice as high as the average of the loadings from the other 

sites. Both sites are located near Riverside Drive, a heavily travelled 

and often congested city street. The great deal of traffic and 



subsequent automobile exhaust is the probable cause of the high Pb 

loadings (11). Sites A and B border State Highway 51 {21st Street). 
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This is also a fairly well-travelled road but the Pb loading at each site 

is much less than the loading recorded at either site E or F. A possible 

explanation might be that State Highway 51 is not as congested as 

Riverside Drive. 

Stations C and D '{located on building tops) have rather low Pb 

loadings compared to the other sites. That, coupled with the fact that 

Pb is the second largest contributing metal in this study { 4.6% of the 

total), conceivably leads to the conclusion that Pb could make a 

difference in the overall ranking of the sites with respect to combined 

metal loading. It is unlikely that Pb loading alone is affected at high 

altitude. Any of the other metals used by plating firms in the area are 

also exhausted at low altitudes, and could make somewhat of a difference 

in the loading at sites C and D. 

The residential sites also have relatively high loadings of other 

metals. The Cd and Ni loadings at site E are the highest for any of the 

stations. Chromium loading is greatest at site F. The probable reason 

for these high values is the proximity of these sites to metal emitters. 

Sites E and F are located approximately halfway between the two refin­

eries mentioned earlier. The two sites are also situated across the 

river from a natural gas-fired electric generating station. 

Sites A and B, which are located at the boundary of a refinery, show 

inordinately high concentrations for Cr only. Possible explanations for 

this are that chrome plating is taking place nearby or that some process 

at the refinery is releasing particulate Cr to the atmosphere. A poten­

tial source is cooling towers where Cr is used as an anti-scaling agent. 



Chromium is also used as an anti-scalent in certain types of large 

industrial air conditioning units. This might explain the high Cr 

loading at site D because the sampler was located near an air 

conditioning unit. 
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The values for metal concentration presented in this study are for 

bulk precipitation in an industrialized area. In a review of the avail­

able literature, no comparable data was encountered. All of the data for 

bulk sampling was done primarily in rural, unpolluted areas. Pierson 

et al. (18) performed their sampling in a rural section of England, and 

Schlesinger et al. (22) sampled in White Mountain National Forest in New 

Hampshire. Only Ruppert (21) performed his investigations in an urban 

setting. The study was performed in Gottingen, West Germany. Gottingen 

was described as a 11 non-industrialized 11 town of 130,000 people, located 

in a rural area. Table II presents a summary of the data mentioned 

above, along with the data from this study. It can be seen from Table II 

that the concentrations of the metals in this study are considerably 

higher than those in the other studies. The concentration of zinc, for 

instance, is fifteen times higher than that observed by Ruppert (1972). 

As stated in the scope of the project, an estimate would be made as 

to the total atmospheric metal loading to a portion of the Arkansas 

River. Planimetric analysis of a map of the river yielded an area of 

766.7 acres which were encompassed by the sampling network. The total 

average loading was 4.18 lb/acre for the 10-month sampling period. The 

breakdown for the average loading of the individual metal in pounds per 

acre is: Cd, O. 007 lb/ac; Cr, 0.154 lb/ac; Ni, 0.047 lb/ac; Pb, 0.373 

lb/ac; Zn, 3.781 lb/ac. The loading for the entire area is 3,207.45 lb. 



TABLE II 

COMPARISON OF DATA TO PREVIOUS STUDIES 

I 
I AVERAGE CONCENTRATION (mg/l) 
I 
,---. I l 
I Present Study I Pierson et al (1971) I Schlesinger et al (1971) I Ruppert (1972) 
I I I I r--------- -__ T _______ -------- ·-----·r-·--------------·---1 

Cd I 0.003 I <0.018 I 0.0006 I o.00058 
I I I I 

Cr I 0.028 I 0.003 I -- I 
I I I I 

Ni I 0.016 I <0.006 I -- I 
I I I I 

Pb I 0.116 I o.039 I 0.0134 I 0.035 
I I I I 

Zn I 1.061 I 0.085 I -- I o .071 
I I I I 

.j::oo 
0 
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for the 10-month period. Individual totals in pounds are: Cd, 5.37 lb.; 

Cr, 118.07 lb.; Ni, 36.03 lb.; Pb, 285.98 lb.; Zn, 2898.89 lb. 

The loading values are unquestionably large. This is especially 

true when it is considered that atmospheric metals make up only a frac­

tion of the metals entering the river. In a study on lakes, Gatz (9) 

estimated that 3-15% of the total input of the metals into Lake Michigan 

could be attributed to atmospheric desposition. 

The unusually large deposition of metals to the river has a 

potential to adversely affect water quality and aquatic life. Metals 

entering an aquatic system may be taken up by fish or aquatic plants, 

chemically precipitated, or adsorbed onto sediments. That fraction which 

is precipitated or adsorbed may be resolubilized as the result of changes 

in pH and/or the oxidation-reduction potential. Presently, that portion 

of the metals which is not fixed will be carried down river and the 

concentration subsequently diluted. In addition, sediment scour may also 

provide for the transport of precipitated on adsorbed metals. However, 

when the proposed low-water dam is constructed on the river, quiescent 

flow conditions will prevail in the pool area allowing for the accumu­

lation of metals in the aquatic system and resulting in further water 

quality degradation. 



CHAPTER VI 

CONCLUSIONS 

The conclusions drawn from this work are: 

1. No seasonal trends are apparent in the data. 

2. Loading was approximately proportional to precipitation amount. 

3. Lead, chromium, and cadmium concentrations were inversely pro­

portional to precipitation amount. 

4. Zinc concentrations were inversely proportional to precipitation 

amount during the first half of the study period, but the two parameters 

were proportional during the second half of the study. 

5. Little difference existed between any of the sites with respect 

to combined metal loading. 

6. Site elevation appeared to play a significant role in metal 

loading. 

7. Zinc accounted for the majority of the combined metal loading. 

8. The individual metal loadings, as opposed to the combined 

loading, provided a better idea as to which sites were receiving the 

greatest amounts of highly toxic metals. 

9. High Pb loadings in the residential areas could probably be 

attributed to automobile exhaust. 

10. The loading of atmospheric metals to the Arkansas River in the 

study area is high compared to background levels given in other studies. 
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11. Construction of a proposed low-water dam on the Arkansas River 

near 31st Street and Riverside Drive will lead to greater accumulation of 

metals than presently exists. 



CHAPTER VII 

RECOMMENDATIONS 

Recommendations for future work are: 

1. Determine the portions of the bulk atmospheric deposition that 

can be attributed to wet deposition and dry deposition. These two 

parameters will help to isolate the source of the pollution. 

2. Determine the soluble and particulate fractions of the metals 

in precipitation in order to determine the relative mobility of the 

metals in soil and sediment. 

3. Determine metal concentrations at various elevations at the 

same site to more precisely relate metal concentration and loading to 

elevational differences. 

4. Collect a sample at a site isolated from industrial activity to 

determine a background level for metals in the general area being 

sampled. 
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