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CHAPTER I 

INTRODUCTION 

Mankind's rapid progress towards a truly viable and advanced 

technological society; has had a profound impact on the earth's 

environment. Pollution of soil, water, and air has risen to such 

increasing proportions and magnitude, that governments all over the 

world had to step in and pass legislation to ensure clean air, water 

and soil. In the United States, with the passage of Federal Water 

Pollution Control Act Amendments of 1972 (Public Law 92-500) (40), and 

the Clear Air Act, a basis for a prudent and pragmatic program with 

long term goals on reducing air and water pollution was laid down. 

As a result of the above measures, states and EPA have set up 

stringent waste water effluent standards; therefore, it has become im-

perative that all the existing and future waste water treatment plants 

in the country operate efficiently and be able to meet the effluent 

guidelines satisfactorily. However, this seems to be becoming in-

creasingly difficult and elusive due to the changing of characteris-

tics of waste water as a result of dumping or discharge by i ndust ri es 

and other consumers of all types of new organic compounds, heavy 

metals and other pollutants into the waste water treatment systems. 

With an impending water crisis looming ahead, it is all the more 

important for Environmental Engineers to ensure that all the existing 

and future waste water treatment plants perform efficiently and meet 
' 
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the effluent standards, as the water obtained from these plants is 

most likely going to be recycled back to water treatment systems or 

be used for land irrigation or other industrial applications. 

Since the passage of PL 92-500, multibillion dollar federal con­

struction programs of waste water treatment facilities has been em­

barked upon all over the country. Technology is now currently avail­

able to produce almost any desired effluent quality. In spite of all 

this; a survey by EPA in 1976 showed that 33% to -50% of all the waste 

water treatment facilities do not meet the design criteria for BOD5 

and suspended solids removal in the effluents (45). A lot of public 

expenditure has already been incurred in construction of these waste 

water treatment facilities. 

There are numerous reasons for this state of affairs, and the 

main ones are: 

a. Poor or substandard equipment used in construction of the 

waste water treatement plant or facility. 

b. Poor or inadequate design of the waste water treatment 

facility. 

c. Inadequate or improper operations and maintenance of the 

treatment plant. 

d. Inadequate laboratory facilities; and testing programs to 

monitor process control and equipment malfunctioning. 

e. Poor process control. 

It was also noticed that in waste water treatment plants, where 

regular preventive maintenance programs, operator training, routine 

process monitoring and lab tests were implemented, they achieved 
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better operational control of the treatment facility, thereby meet­

ing the design criteria or the effluent guidelines. 

To improve operational control in a waste water treatment plant, 

we need a multipronged approach to evolve a good plan of management 

and operation of the treatment facility. This can be achieved only if 

we first examine and scrutinize each individual plant in detail for 

the above causes and also look ihto the past historical performance 

record of the treatment plant before any new operational strategies 

and modifications are recommended or implemented. 

It is needless to emphasize the importance of process control in . 

the overall performance of the treatment plant; hence we must study it 

in depth so as to enable us to indentify the key parameters, which 

can be controlled or varied to influence the actual process, and 

achieve better operational control of treatment plant. 

Activated sludge has been extensively used as a waste water 

treatment process. This process has been studied in detail for the 

past three decades. Different kinetic models have been developed, 

though most of them are based on "steady state" or "quiscent" condi­

tions, wi.th an average influent flow rate; but this is not always the 

case in real life. The influent flow, concentration, and temperature 

vary with time and it is most difficult to regulate or control them; 

and this leaves us with the only other option--that is to achieve 

better process control (operational control). In this connection it 

is relevant to examine the suitability of Lawrence and McCarty's (24) 

kinetic model, which advocates control of activated sludge by the 

unifying parameter MCRT (ec) as an operational control parameter. 
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In order to control the operation of activated sludge process, we 

must be able to monitor the entire process--that is to find the influ­

ent strength, the treatment efficiency, etc. Therefore, we normally 

use BOD5, COD and TOC analysis to monitor the performance of the 

treatment plant. Each test has its own inherent advantages and dis­

advantages. BOD5 is a good test, but it requires five days for the 

test to be completed. COO test fakes two hours and is expensive. 

Utilization of the carbon variable to describe the dynamic behavior of 

activated sludge when subjected to shock loads has been recommended 

(49). The carbon variable is a powerful tool as it is subject to much 

faster and more precise quantification in TOC analysis. 

The main objective of the study was to evolve operational and 

control techniques to achieve enhanced activated sludge waste water 

treatment, using Lawrence and McCarty (24)Kinetic Model, and at the 

same time assess the effectiveness of TOC analysis in control and 

operation of waste water treatment plant. The secondary objective 

was to recommend control strategies to reduce the impact of quantita­

tive shock loads. 
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CHAPTER II 

LITERATURE REVIEW 

Activated Sludge Control Methods 

Activated sludge processes are now being widely used in waste 

water treatment plants all over the world. The main objective is to 

produce secondary effluent that meets the local or federal effluent 

standards being enforced in waste water treatment. Though most of the 

older plants were designed on an empirical or mass loading criteria, 

the design of newer plants are more or less based on new kinetic 

models and concepts developed in the last two decades. Operation and 

maintenance of the existing and new plants being built all over the 

country is of paramount importance. Due to increasing sophistication 

and automation in the waste water treatment plants, the need for well 

trained operators who are familiar with the activated sludge process 

and plant operations involving mechanical, hydraulic, electrical, and 

electronic equipment need not be emphasized. 

There are various methods and operational control strategies 

available for the efficient operation and control of the activated 

sludge process. The operator must select proper operational param­

eters that provides the best performance at the least cost {40). The 

plant operator must be cost conscious and at the same time be commit­

ted to conservation of power and production of an effluent that meets 

the discharge requirements. Activated sludge process basically offers 
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only four possible control actions: (1) sludge recycle ratio, (2) 

sludge wastage rate, (3) aeration rate, and {4) effluent recycle. 

Several important methods which have been evolved over the past and 

have received considerable attention are as follows (48, 46, 18, 20, 

21, 24, 40): 

1. Constant F/M ratio 

2. Constant MLSS or MLVSS ~~thad 

3. Constant MCRT (ec) method 

4. Gould Sludge Age 

5. Oxygen Uptake Rate Control method 

6. Sludge Quality Control 

7. Other Methods 

We will briefly discuss these methods. 

Constant MLSS or MLVSS Method 

This is a very simple and reliable method; with limited labora­

tory work. The operator maintains a constant biomass concentration X 

in the aeration basin, by controlling sludge wastage Fw from the aera­

tion basin; to obtain desired effluent quality. This method ignores 

the F/M ratio, and micro-organism growth rate for maintaining optimum 

sy~tem balance, and in addition it could lead to a process failure 

when subjected to shock loads (5, 6, 40). 

Constant Food: Micro-organism Ratio (F/M) 

The maintenance of a constant F/M ratio assures that the activa­

ted sludge process is being loaded at a rate micro-organisms are able 
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to utilize most of the food supply and this will result in a more con-

sistent plant operation and effluent quality. 

F/M ratio is defined as 

F/M = Si = food applied per day 
Xf ..,..,M,......a-s -s -o_,f:::--=m_,.i~c-r..:;.Jo-wo.:....r.:....g.....:a.....:n...,.i J....sm~,-:-. n~t-:-h-e-s y-s_,t_e_m 

(2.1) 

F/M is based on MLVSS, and five day averages are used to calcu-

late F/M. Once a typical F/M ratio is chosen, Fw is controlled to 

maintain the chosen F/M ratio. 

Thus this method ensures the presence of adequate biological 

solids to any organic food loading. Some typical values for various 

activated sludge process are found in References 40 and 43. 

F/M control is best when used in conjunction with MCRT (ec) con­

trol. Cashion (50) applied computer simulation and pilot plant study 

to evaluate instantaneous F/M control strategies; the results indica-

ted that meaningful F/M ratio could not be achieved unless the system 

provided external solids storage in addition to the clarifier. 

Constant Mean Cell Residence Time 

(MCRT - ec) Method 

This is considered the best control method available to a plant 

operator. The value of ec describes the mean residence time of an 

activated sludge particle in the system and is a true measure of the 

age of activated sludge. When constant MCRT method is adopted, it 

automatically ensures maintenance of a constant F/M ratio, in addition 

Fw can be calculated, as suggested by Lawrence and McCarty (24). 

{2.2) 
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The daily wastage rate is determined by 

MCRT (ec) selected should provide best effluent quality and 

should correspond to its related F/M loading. 

(2.3) 

Jenkins and Garrison (20) concluded in their paper that MCRT 

method was a kinetically rational basis for design, control and opera-

tion of activated sludge plants. The substrate removal rate can be 

measured by COD analysis, while other operational parameters can be 

determined quickly. Burchett and George (5) in their study suggested 

this method offered the following advantages: 

1. Minimum operator attention 

2. It is relatively inexpensive for automated control system 

3. Provides more positive control 

4. Process operation is more stable. 

Constant Gould Sludge Age Control 

This is based on the ratio of the lbs/day of influent waste water 

suspended matter to the solids inventory in the aeration tank. The 

Gould Sludge Age (GSA) is based on the assumption that the ratio be-

tween the BOD and suspended matter is fairly constant in waste water. 

The GSA ranges from 3 to 8 in most activated sludge plants. The con­

trol is established by wasting sludge to maintain a constant GSA which 

produces the best effluent quality (40). 
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Oxygen Uptake Rate Control Method 

Haas {18) proposed a method of activated sludge control process 

based upon oxygen uptake rate, as it is a rapidly quantified activity 

parameter. It involves the measurement of all parameters in addition 

to oxygen uptake rate. ec and hydraulic detention time are selected 

on the basis of past experience fpr desired effluent quality. Oxygen 

uptake rate measured is compared with oxygen uptake rate calculated 

using the equation modeled in the paper. If the theoretical oxygen 

uptake rate is less than the measured oxygen uptake rate, recycle is 

increased; and if theoretical oxygen uptake rate is more than the 

measured oxygen uptake rate, recycle is decreased. Thus, Si and oxygen 

uptake rate continuously monitored and changes in recycle are effec­

ted. Modeled adjustment of OUR through variation in cell recycle was 

considered theoretically analogous to direct control of F/M ratio. 

This model also demonstrated the responsiveness of the specific oxygen 

activity parameter in detecting shock loads of toxic and biodegradable 

materials. This method permits reagentless assays and can be adopted 

for automation. The change in process loading due to toxic wastes 

etc; can be compensated by adjustment of oxygen uptake rate. 

Giona and Annesini (50) derived an expression showing a correla­

tion between specific OUR and ec or temperature. The ratio between 

actual and maximum A02/AS (oxygen utilization per unit substrate 

removal) was suggested as a possible process control parameter by 

Benfield and Randall (4). 
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Sludge Quality Control 

This control program formulated by West (40, 48} involves the fol-

lowing tests and observations which are very quick and economical: 

1. Thirty minute sludge settleability test 

2. Measurement of sludge blanket depth 

3. MLSS by centrifuge test~, 

4. Recycle sludge concentration by centrifuge test 

5. Secondary effluent turbidity 

6. DO in the aeration tank. 

West derived a formula for clarifier sludge flow demand (CSFD}, 

which enabled the treatment plant operators to adjust the clarifier 

sludge flow to approximate the demand. The equation for CSFD is de­

rived from the mass balance of the final clarifier only. Thus opera­

tors in every shift perform the above tests, and calculate CSFD and 

carry out the necessary adjustments in the treatment plant. Many 

operators find this method difficult. to maintain a steady state condi­

tion, as they are either recycling sludge too much or wasting too much 

(51). Therefore, Carter (51) proposes another mathematical model to 

overcome the shortcomings of West•s method. In brief, he writes a 

mass balance around the aeration tank and the final clarifier, and 

derives equations for Fw, FR, Fe, solids produced, and Sludge Age. He 

advocates comparison of the Sludge Age calculated from the model to 

the theoretical Sludge Age, to assess the plant performance. The daily 

wastage Fw, to maintain a desired sludge age, can be calculated and 

accordingly the wastage Fw is controlled to achieve better steady state 

operation. The operator has to follow this sequence to attain proper 



control: (1) determine the theoretical sludge age, (2) solve for the 

"desired" solids produced as in the model, and (3) solve for Fr, Fe 

and Fw as modeled. Then make necessary control changes, based on the 

above results. 

Other Methods 

In addition to the above, fh~re are many more techniques and 

other operational strategies suggested. We shall examine a few 

briefly. Roper and Grady (33) elaborated the concept of hydraulic 

control of ec for activated sludge process to include loss of sus­

pended solids in secondary clarifier effluent. They developed a cali­

bration coefficient to relate the true ec value to its hydraulic 

approximation. Further it was related to a ratio of effluent sus­

pended solids concentration to the concentration of substrate removed. 

A graphical technique is presented for determination of feasible 

sludge recycle ratios, integrated sludge settling characteristics 

influent substrate concentration, influent plant flow rate, and 

desired MLSS values into the recycle flow rate selection process. 

Keinath, Ryckmann, Dana and Hofer (46) present a unified systems 

approach for design and operation of activated sludge process. They 

employ "settling flux approach" to monitor the operational state of 

activated sludge process. Settling flux curves or a batch flux plot 

'is made. In addition, the recycle line and clarifier overflow rate 

line are also plotted on the same plot. The intersection of the two 

operating lines is defined as the "state point concept" and the clar­

ifier is critically loaded. The state point shifts when: 
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1. There is an increase or decrease in Si or F, due to con­

sequent change in recycle line slope and clarifier overflow rate. 

2. If there are changes in sludge settling characteristics 

(settling flux curves change). 

3. Fw is increased or decreased to control ac; the state opera­

ting point goes up or down, which is compensated by increasing or 

decreasing Fr as the case may be t"o' get critical loading of the clari­

fier. Thus one must make necessary changes in Fw or Fr so that the 

clarifier is always critically loaded. 

Busby and Andrews (47) discuss several operational strategies. 

They demonstrate that application of ratio control to the sludge re­

cycle flow rate to be beneficial. The best ratio was found to be a 

function of sludge settling and detention time in the aeration tank. 

They also investigated the effects of recycle flow rate in accordance 

with height of the sludge blanket in the clarifier. They recommended 

a sludge wastage using a control algorithm which controls sludge 

wastage; if the sludge blanket height falls below a preset level, the 

wastage is stopped until the blanket height builds up to the preset 

level. Using this strategy they were able to reduce Xe, i.e. prevent 

excessive loss of solids in the process effluent. Another technique 

they suggest is the manipulation of waste sludge flow, so that Fw is 

reduced when it is regulated as a function of time. Finally, they 

present the operational advantages of step feed configuration, which 

are as f o 11 ows : 

1. It can adjust the contacting pattern, for example it can 

increase MLVSS when there is an increase in organic loading. 
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2. Permits control of bulking sludge. 

3. It prevents upsets caused by shock loads. 

Cuny (53) suggests four alternative control strategies based upon con­

trolled application of solids and effluent recycle. He compares the 

activated sludge process to a feedback control system and derives 

equations for process optimization. He treats the aeration basin as 

a bio-amplifier, sludge recycle~~ positive feedback and effluent 

recycle as negative feedback. Each alternative strategies he suggests 

have their own merits and demerits. 

Dynamic Behavior of Completely Mixed Activated 

Sludge Systems With External Recycle 

Herbert (19) showed that recycle of biological solids offers two 

more control variables, in addition to the dilution rate D, they are 

hydraulic recycle ratio a 
a = FR 

F 
(2.4) 

and recycle concentration factor C, which is the ratio of biological 

solids in the recycle line XR and in the reactor X. 

C = XR x 
From mass balance equations, the following equations are derived 

or 

~n 0(1 + a - aC)-Kd 

1._ = £. (1 +a·­
Sc V 

a 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 
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interpreting Kd as the maintenance coefficient (42• 11) we can rewrite 

equation (2.6) as 

~n = D(1 + a - ac)-Kd ( 2. 9) 

Gaudy and Srinivasaraghvan (11, 42) have proposed a constant 

microbial cell concentration in the recycle line as a system constant 

instead of C = XR/X as proposed by Herbert (11). They demonstrated, 

in their reseach work, that the model proposed offered better system 

control. The main drawbacks in Herbert's model seems to be the opera­

tional difficulty in trying to keep C = XR/X constant every time X 

varied. 

14 

Gaudy (42) is rather aggressive in promoting XR as a control param­

eter in recycle systems. Once XR is chosen, as a system control, it 

no longer depends upon X, subsequently Se is affected by Si. Increas­

ing XR or C will lower Se· Grady and Williams (16) indicated that 

with heterogenous populations Se will increase linearly with increase 

in Si, whereas in Herbert's (19) model Se remains constant irrespec­

tive of Si value. Using XR as a control parameter fairly reproducible 

results were obtained using their model. Their results indicate the 

presence of a pseudo state in X and S. Their system follows the general 

trend of decrease in Xw as the growth rate ~n is decreased (or MCRT 

(ec) is increased). The use of kd -maintenance coefficient to evalu­

ate X and S resulted in very little differences, however they found 

a significant difference in prediction of Xw at higher specific growth 

rate. 

The dynamic behavior of completely mixed activated sludge was in­

vestigated by Chu, Erickson and Fan (15), by subjecting the activated 



sludge system with external recycle to step changes in Si, a, and Fw· 

When the system was subjected to a three fold increase in Si, the fol­

lowing events occurred. 

1. Soluble COD and ATP in the aeration tank and effluent 

COD changed in the first thirty minutes following the 

change in Si. 

2. Recycle sludge concentration C was found to decrease 

during the first several hours. 

3. MLSS in the aeration tank fluctuated during the initial 

five hours, before it increased and subsequently sta­

bilized. 

When the activated sludge system was subjected to a step increase 

in recycle flow rate, they obtained the following results: 

1. XR was found to be a constant; increased Fr did not 

alter XR significantly. 

2. X in the aeration tank increased at first, then 

decreased and finally increased to a steady state. 

3. Se - the effluent COD decreased 

When sludge wasting (Fw) was increased, MLSS(X) decreased to a 

lower steady state value, XR decreased, and Se decreased nominally 

before reaching a steady state value. When sludge wasting (Fw) was 

decreased, MLSS(X) in the aeration basin increased, Se increased, and 

Xe the effluent solids also increased. 

The ATP/MLSS ratio was found to be dependent upon F/M ratio. 

Time constant analysis showed that MLSS time constants were directly 

relaterl to MCRT. Soluble COD time constants were directly related to 

hydraulic retention time. 
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Adams and Eckenfelder (1) studied transient organic loadings 

in an internal recycle activated sludge system. They concluded that 

Eckenfelder•s kinetic model satisfactorily predicted the transient 

and steady state response to organic shock loads. The average sub­

strate removal coefficient K appears to increase under most transient 

conditions over steady state response values. Oxygen uptake as de­

fined by the model, was found to be adequate for transient and steady 

state conditions. However, due to transient organic shock load, they 

noticed, that the microbial species in the system changed predomi­

nance; more filamentous growth was observed, and a loss of biological 

solids (an increase in Xe) in the effluent. Sludge settling deterio­

rated and endogeneous rate of specific oxygen uptake increased. 
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A successful response to transient shock loads is the achievement 

of a low steady value of Se in the effluent, as predicted by the vari~ 

ous kinetic models and well within the effluent guidelines, both during 

steady and transient operating conditions (42). Gaudy and his co­

workers at Oklahoma State University studied extensively all types 

of shock loads and their impacts on activated sludge. All the results 

are well documented (10-14, 21, 23, 25, 26, 31, 32, 34). 

Gaudy and Kivanich (42) found that with -50% step increase in Si, 

the soluble Se was constant before and after the increase. The micro­

bial population X increased at a rate sufficient to consume additional 

S;. As per Monads equation, there should have been no discernible 

change in Se• However, the system may have responded to minute changes 

in Se by minute changes in~. thus increasing X continually with addi­

tional substrate and no change in Se• This may have been due to the 



slow application of shock load (D = 0.125 hr-1) to permit the biomass 

to accomodate the change. 

In another study Gaudy and Gaudy {12) adapted from Storer and 

Gaudy (37) found that there was a leakage in Se, with a glucose feed, 

(D = 0.244 hr-1) and a three fold shock load. On analysis of the 

effluent they found that the effluent was not the original substrate 

but metabolic intermediates and/~~ end produc~s of cells (42). There­

fore, they concluded that the quantitative shock load terminated in a 

qualitative/quantitative shock load. 

Thabaraj and Gaudy (39) found that in the initial response to 

an increase in Si, there was no effluent substrate leakage Se, and no 

discernible changes in microbial species; subsequently there was a 

severe dilute out of microbial eel Is and effluent Se shot up, and most 

of it was due to original influent substrate, accompanied by a drastic 

change in predominance of the microbial species, i.e. bio-mass turned 

filamentous. Biomass X initially increased, then decreased and 

increased, before it dropped down on termination of the shock load. 

Thus there may be drastic changes in the predominating species in 

response to a change in Si (or any other type of shock 1 oad). 

Krishnan and Gaudy (23) studied the effect of dilution rate on 

the response of a heterogeneous Biomass in a once through reactor, and 

the system was subjected to a three fold and five fold step increase 

inS;. Their findings were systems with higher hydraulic detention 

time 1 (linear dilution rate) leaked less substrate, but they were not 

able to explain whether this was due to slower growth rate or slower 

rate of application of shock load, nor were they sure whether it was 
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the intensity of change in S; or mass loading rate that was signifi­

cant in course of its response. They found that cell recycle had a 

beneficial impact on the transient substrate leakage, in addition it 

seems to have smoothed out fluctuations in the effluent substrate 

curve during the transient phase. Thus it may be said that cells 

with a ''slow growth" history before the shock can adjust more readily 

to the changes than a faster growth rate systems. Cell recycle slows 

the growth rate (lower values of ~ and higher ec)· 

Saleh and Gaudy (34) studied response of activated sludge with 

external recycle and constant XR to quantiative shock loads. They 

operated an activated sludge plant with external recycle at (t = 8 hr, 

a= 0.25, XR = 8000 mg/1), which is typical of field treatment plants. 

In the first case, the unit was subjected to a three-fold shock load 

which was repeated one year later also. There was very little loss of 

either solubable substrate or biological solids in response to the 

18 

step change. In the second case, when they subjected the unit to a 

sixfold shock load there was a significant leakage of solubable sub­

strate and biological solids. The system recovered after a significant 

but rather short period of time from the shock load. There was an 

increase in filamentous micro-organism with the shock load, ultimately 

the unit recovered from the shock load, accompanied by a change in 

predominance of the micro-organisms. 

Carl Parrot (53) studied the lawrence McCarty (24) ec design model 

as an operational control method for activated sludge. He found that 

he was able to predict and attain successful response using Lawrence­

McCarty kinetic model to operate an internal recycle activated sludge. 



He was able to maintain consistent steady state operation. Throughout 

the study_he was able to meet most of the predictions based on the 

model; including response to different shock loads. The various 

parameters monitored, like X, and Se responded as predicted by the 

model. In fact, Se was better (lower) than the predicted values. He 

found that use of TOC analysis in controlling the activated sludge 

process offers a great deal of flexibility in the daily operation con­

trol as it is an instantaneous, easily reproducible test and fairly 

reliable. 

Manickam (27) found that a six fold quantitative shock led to 

substrate leakage, but he achieved some attenuation by increasing XR 

from 5,000 to 10,000 mg/1. In general, he observed that the higher 

the recycle sludge concentration the better the response. 
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CHAPTER III 

EXPERIMENTAL METHODS, MATERIALS AND KINETIC MODEL 

Description of the Unit 

A single bench scale pilot plant activated sludge unit was set up 

and operated, as depicted in Figure 1. External recycle of sludge 

from clarifier to the reactor was accomplished using a Colepalmer 

sludge recylce pump, in conjunction with a timer to control the sludge 

recycle flow rate. Another sludge pump, finger type (Sigma motor Model 

T-8), was used with a timer to waste sludge from the recycle line. 

The unit basically comprised of a glass reactor for biological 

solids, outfitted with a stone aerator for air diffusion at 4,000 ml/ 

min to ensure adequate oxygen concentration in MLSS for biological 

solids and in addition meet the mixing requirements. The effective 

r~LSS volume was 2.4 liters. The clarifier volume was 5 liters. A Mil­

ton Roy pump was used to pump the synthetic waste fran a 20 liter glass 

container into the Reactor. The flow diagram is shown in Figure 2. 

Synthetic ~1aste Composition 

The synthetic waste utilized during this study is listed in Table 

I. All the constituents were mixed with tap water proportionally 

to yield an average BOD of 280 mg/1 for steady state operation. How­

ever, during shock loads the proportion of constituents was increased 
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TABLE I 

COMPOSITION OF SYNTHETIC WASTE· 

CONSTITUENTS CONCENTRATION QUANTITY 
(mg/1) 

ORGANIC 

Acetic Acid 73.47 113 ml/liter 
Ethyl Alcohol 57.96 113 ml /1 iter 
Ethylene Glycol 81.40 113 ml/liter 
Glutamic Acid 73.45 113 gms/1 iter 
Glucose 73.45 113 gms/1 iter 
Phenol 14.69 22.6 gms/1 iter 

INORGANIC 

Ammonium Sulfate 130 200 gms/1 iter 
Magnesium Sulfate 52 80 gms/liter 
Manganous Sulfate 5.2 8 gms/liter 
Calcium Chloride 5.2 8 gms/1 iter 
Ferric Chloride 0.26 0.4 gms/liter 
Ortho Phosphoric Acid 18.78 15.75 ml/liter 

BOD5 of 130 ml of Synthetic Waste = 280 mg/1. 



proportionally to yield the desired influent substrate concentration 

values. 

General Operation of the Unit 

The continuous flow unit was started by pumping influent synthe­

tic waste from the feed container by the Milton Roy pump at 5 ml/min 

so that the hydraulic retention time was 8 hours. The dilution rate 

of 0.125 hr-1 was maintained throughout the study. The initial bio­

logical seed for the system was obtained from the activated sludge 

treatment plant, located in Ponca City, Oklahoma. The Biomass devel­

oped from this seed was utilized for the entire study. The mixed 

liquor from the reactor overflowed into the clarifier by gravity. The 

sludge settling in the clarifier was recycled and wasted from the 

sludge recycle line as dictated by the Lawrence-McCarty kinetic model 

predictions which were evaluated in advance. This system was operated 

from May 1980 to February 1981 at a constant MCRT (ec) of 10 days in 

accordance with Lawrence and McCarty Kinetic Model. Five quantitative 

shock loads under different operating parameters were inflicted on the 

system; these are described later in this chapter. The unit was ad­

ministered shock. loarls for 48 hours only when it was always operating 

in a steady state condition, this transient phenomenon lasted approxi­

mately 12 days for each shock load, before the unit was returned to 

steady state operation once again. 

Types of Influent Shock Loads 

Five different step increases in the influent substrate concen­

tration Si (each lasting 48 hours) were made during the course of this 
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study. The unit was operated at steady state in accordance with 

Lawrence and McCarty Kinetic Model. MCRT (ec) of 10 days was main­

tained b.Y controlling the sludge wastage Fw from the recycle line. 

No changes were made in the hydraulic detention time. 

Run No. 1: Si was doubled and a - t~e recycle ratio was varied 

to maintain a constant XR/X ratio. 

Run No. 2: Si was doubled, and recycle ratio a was tripled at 

the same time. 

Run No. 3: Si was tripled and a was doubled during the same 

period. 

Run No. 4: Si was tripled and a was tripled for the same dura-

tion. 

Run No. 5: S; was tripled, and at the same time all the Biolo­

gical solids in the clarifier were recycled into the aeration tank. 

a was kept constant throughout the run. 

Analytical Procedures 

The following analyses were performed in course of the study. 

Suspended Solids 

The membrane technique with a 0.45 micron filter paper was used 

to measure the total suspended solids in 

a. Reactor mixed liquor- X· 

b. Effluent from the clarifier - Xe 

c. Biological solids in the recycle line - XR 
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Total Organic Carbon (TOC) Test 

The total organic carbon in the influent Si and soluble effluent 

Se was measured with the Beckman model No. 915 TOC analyzer. 

Biochemical Oxygen Demand (BOD5) 

This test was used to measure the influent substrate concentra-

tion Si and the soluable effluent substrate concentration Se• In 

order to determine the soluable BOD5, the effluent sample is filtered 

through a 0.45 micron (membrane) filter paper. A Beckman DO probe was 

used to determine the initial and final DO concentration after it was 

calibrated. The samples were incubated for 5 days at 20°C after meas-

uring the initial DO. Necessary seed and dilution water corrections 

were incorporated into the test. 

Lawrence-McCarty Kinetic Model 

This model advocates the maintenance of MCRT (ec) as the primary 

control parameters. It is also the reciprocal of net microbial growth 

lln· From the model, the following equations are utilized to make 

predictions. 

vx (3 .1) 

( 3. 2) 
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Ks(l+Kdec) 
ec(YtK-Kd)-1 

X ~ F ec Yt(Si-Se) 
V (1 +Kd ec) 

_1 ~£:.(1+a-a~) 
ec V X 

a 
~ 1-V/(F ec) 

(3.3) 

(3. 4) 

( 3. 5) 

(3.6) 

The other control parameters at our disposal is hydraulic recycle 

ratio a, which is the ratio of cell recycle flow Fr to the feed flow F 

F a = r r 
(3. 7) 

and the cell recycle concentration factor C, which is the ratio of 

cell concentration in the recycle line XR and in the reactor X. 

(3. 8) 

The kinetic constants used in this study were obtained from units 

being operated in Bioenvironmental Labs, Oklahoma State University, 

using the same synthetic waste, but with internal recycle of sludge. 
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TABLE II 

KINETIC CONSTANTS USED IN THE MODEL 

Parameter BOD 5 TOC 

K 1.4 days 2.0 days 

Ks 0.7 mg/1 110 mg/1 

Kd 0.13 day-1 .06 day-1 

Yt 0.45 0.81 

In order to operate the unit using Lawrence and McCarty model, 

the following parameters are monitored continuously, F, Fr, Fw, X, Xe, 

Xr, Si and Se· Once these are known, the equations 3.1 to 3.8 are used 

to determine the necessary control changes required, in the following 

sequence: 

1. Evaluate Fw from equation 3.2, to control sludge wastage 

from recycle line, which is set on the sludge wastage pump, 

in order to acheive an MCRT (ec) of 10 days. 

2. Predict a by equation 3.6, and compare it in the a in equa­

tion 3.7. Adjust Fr to get the desired a if necessary. 

3. Predict the value of X using equation 3.4 and compare with 

actual X, and vary a either to increase or decrease X as 

necessary. 



4. Predict the value of Se using equation 3.3. Try to control 

the value of Se by varying X in the aeration basin 

by means of manipulating a or Fw· 

The unit is continuously monitored and different control strate­

gies are adopted to acheive the desired objectives, and total process 

control. 

Kinetic constants listed in T~ble II for BODs and TOC were used 

in making the above predictions. Since the unit was operated at a 

MCRT (ec) of 10 days, Se as calculated in step 4 above for BODs is 

0.4 mg/1, and for TOC is 12.0S rng/1. The suspended solids in the 

effluent Xe is set at S mg/1. Thus the main objective of the unit is 

to achieve the above standards set for Se and Xe, both during steady 

state and transient operation. 
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CHAPTER IV 

RESULTS 

The results of the experimental work are presented in this chap-

ter. Normal predictions of unit performance was made using kinetic 

constants listed in Table II and the Lawrence and McCarty kinetic 

model and compared with the actual performance. The effluent sub-

strate Se, can be calculated using the kinetic model. 

(4.1) 

For a MCRT (ec) = 10 days, the effluent substrate concentration 

according to equation 4.1 and constants from Table II would be: 

S = 0.7 ~1 + 0.13 X 10~ 
e 10(0.4 x 1.4- 0.13 -1 

= 0.40 mg/1 

For TOC: 

110 1 + 0.06 X 10 
1 0.81 X 2 - .0 -1 

= 12.05 mgjl 
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The effluent suspended solids, Xe, is difficult to predict. It 

was assumed that Xe would be equal to or less than 5 mg/1. In order 

to predict the values of MLSS-X for both TOC and BODs equation 3.4 

was used. 

X = F ec{Yt)(Si-Se) 
V (1 + Kdec) 

a typical calculation for Si(BOD5) = 265 mg/1 and Si(TOC) = 154 mg/1, 

Se(BODs) = 2 mg/1 and Se{TOC) = 29 mq/1, all other parameters are 

constant. 

x = 1551 mg/1 

= 2143 mg/1 

Overall the performance of the unit was quite satisfactory. The 

pH of the mixed liqour in the aeration basin ranged from 7 to 8. The 

DO level in the aeration basin varied between 5 to 6 mg/1. Sludge 

settling in the clarifier was quite good, both during the steady 

state and transient periods. Predictions, and actual results for 

transient periods are listed in Tables III to VII. The data is also 

plotted in Figures 3 to 7. 
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Run I (A Two Fold Step Increase in Si and a-Recycle 

Ratio Varied With C = XR/X Ratio) 

The unit was operated at steady state for several days before it 

was subjected to the shock load. A two fold shock load was adminis­

tered for 48 hours. The influent substrate concentration Si was dou­

bled from a steady state TOC value - 150 mg/1 to 305 mg/1 and BODs-

290 mg/1 to 630 mg/1. The following changes were noticed during this 

transient phase: 

32 

1. MLSS-X - (Refer to Figure 3 and Table III.) As per the model 

predictions X should average around 2,000 mg/1 during steady state and 

around 4,000 mg/1 during the shock load period, but as can be seen from 

the actual X monitored prior to the shock load the steady state values 

of biomass X was much lower than the predicted value of X by the 

kinetic model for both BOD5 and TOC; X rose gradually to a peak value 

of 3920 mg/1 in 3.5 days, instead of the instantaneous increase predic­

ted by the model, with an increase in Si. The unit took almost 6 days 

to return to steady state operation after the onset of the shock load. 

The steady state value of Biomass X after the shock load was closer 

to the values of X predicted by BOD5 rather than TOC. 

2. Effluent Substrate Concentration - Se - (Refer to Figure 3 

and Table III.) The predicted values by the model for TOC = 12.05 

mg/1 and BOD5 = 0.40 mg/1, were not attained. Leakage of substrate 

in the effluent was evident as TOC gradually increased within 18 hours 

to 42 mg/1, and this increase persisted for another 42 hours, before 

it dropped down to a steady value. The actual TOC was consistently 

higher than the predicted Se - TOC. In the case of BOD5 of the 



TABLE II I 

RUN I - SUMMARY OF ACTUAL AND PREDICTED VALUES 
OF X, Xe, a, Se AND F/M 

-----------
Se (mgL!.l 

Predic- Predic-
Sj(mq/1) __ X~.!L.~-,.- 'l IX tion tlon 

Predictwns Based Ac1iJaf Based Based 
Date Based on Xe on = F on Actual on 

(month/day) BOOs TOC Actual BOD5 TOC {mgfl) XR/X Xn/X Fn/F ( 1/day) BOOs BODs TOC 

11/9 270 150 1010 1583 2084 1 1. 54 1. 79 1.79 7.2 0.4 2 12 
11/10 270 I 50 960 1583 2084 1 1.54 I. 79 1.79 7.2 0.4 2 12 
11/11 a.m. 630 305 920 3695 4424 7 2.00 0.97 0.96 7.2 0.4 10 12 
11/11 p,m_ 630 305 I310 3695 4424 3 2.80 0.54 0.54 7.2 0.4 lU I2 
ll/12 a.m. 630 305 l810 3695 4424 I5 I. 95 1.02 1.00 7.2 0.4 3.5 12 
ll/12 P·'"- 615 300 1790 3608 4349 4 1. 75 1,34 1.35 7.2 0.4 6 12 
11/13 a.m. 615 300 1980 3605 4349 9 l.I9 5.09 5.00 7.2 0.4 4 12 
11/13 p.m. 252 175 2970 I477 2~61 7 1.12 8.06 8.00 7.2 0.4 6 12 
ll/14 a.m. 252 180 2520 1477 2537 15 1.07 13.81 13.80 7.2 0.4 5 12 
ll/14 p.m. 250 I80 3920 1465 2537 10 0.99 -- 13.80 7.2 0.4 3.2 12 
ll/15 a.m. 252 180 3470 1477 2537 9 1.01 96.67 13.80 7.2 0.4 5.3 12 
11/15 p.m. 248 180 2620 1453 2537 34 1.02 48.34 13.80 7. 2 0.4 2.3 12 
ll/16 a.m. 310 220 1970 I8I4 314I 16 1.02 48.34 13.80 7.2 0.4 5 I2 
11/16 p.m. 310 220 1130 I814 3I41 9 0.96 -- 13.80 7.2 0.4 7 12 
11/17 310 220 I860 1814 3141 39 1.01 96.67 13.80 7.2 0.4 10 12 
11/18 310 220 2030 1814 314I 10 1.27 3.58 3.50 7. 2 0.4 10 IZ 
11/19 252 150 1650 1477 2084 9 1.47 2.06 2.00 7.2 0.4 6 12 
ll/20 2-18 154 21300 1453 2144 9 1.66 I.4 7 I.46 7.2 0.4 4.7 12 

Actual Fw 
TOC ( 1/day) 

20 0.15 
22 U.12 
27 0.09 
27 0.08 
27 0.09 
42 0.13 
37 0.17 
43 0.19 
40 0.18 
46 0.22 
39 0.22 
30 0.14 
2I O.I8 
15 . 0.19 
20 0.10 
15 0.08 
16 0.13 
16 0.13 

f/M 
~Bi!Sed 

on on 
BOU!i TOC 

0.81 0.45 
O.U6 0.47 
2.08 1.00 
1.46 0.71 
1.U5 0.47 
1.04 0.51 
0.94 0.46 
0.26 0.1/l 
0.30 0.22 
0.19 0.14 
0.22 0.16 
0.29 0.21 
0.'18 0.34 
0.83 0.5':1 
0.51 0.36 
0.46 0.33 
0.46 0.28 
0.27 O.ll 

w 
w 
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effluent, leakage of substrate occurred at two separate times, ini­

tially with 12 hours of ttJe onset of shock load, then it steadied 

around 5 rng/1; shortly there was second leakage accompanied by an 

increase in BODs. BODs was well above the predicted values. 

3. Effluent Suspended Solids - Xe - {Refer to Table III.) There 

was a significant loss of biological solids in the effluent. Xe rose 

after the fourth day. Subsequently it lowered, but the unit could not 

attain the Xe value of 5 mg/1. 

4. C = XR/X Ratio and a - (Refer to Figure 3 and Table III.) 

The ratio XR/X varied with the shock load, it increased to a value 

35 

of 2.8 and decreased to 0.99 on the fourth day. The recycle ratio, a, 

was increased to a peak of 13.8 from 0.54 during the transient period, 

though the calculated values were much higher for a, they were ignored, 

as it was not practical to increase recyle to those high rates. Even­

tually XR/X increased and a was lowered to the calculated values. 

5. F:M Ratio- {Refer to Table III.) The food to micro-organism 

ratio varied with MLSS-X. However, it was tripled or quadrupled dur­

ing the shock load period due to increased Si• which indicated that 

the biological soilds ought to be increased to bring down the F/M 

ratio. Accordingly a was increased, and the F/M ratio dropped as MLSS 

increased gradually, but by then Si was also dropped back to steady 

state value. It was generally within the recommended values. 

Run II (Two Fold Step Increase in Si and 

a-Recycle Ratio is Tripled) 

The shock load was inflicted on the unit after it was operated at 

steady state for several days. BODs and TOC of the influent substrate 



TABLE IV 

RUN II - SUMMARY OF ACTUAL AND PREDICTED VALUES 
OF X, Xe, a, Se AND F/M 

Se (mg/ I) 
Predic- Predic-

Sj(mgfl) X(mg/1} a 0 tlon tlon F/M 
---- p;::e;:ncn ons Based Acfiiaf Based Based Based llased 

Date Based on Xe on " F on Actua 1 on Actua 1 Fw on on 
(month/day) BODs TOC Actual BOOs TUC (mg/1} XR/X XRIX FR/F (1/day) B005 BOOs TOC TOC (1/day) BOOs TOC 

11/20 248 154 2800 1453 2141 9 1.66 1.47 0.45 7.2 0.4 4.7 12 16 0.13 0.27 0.17 
11/21 250 154 2630 1465 2144 3 1.74 1.30 0.45 7.2 0.4 2.8 12 3 0.13 0.29 0.18 
ll/22 a.m. 600 301 1920 3511 4364 7 1.65 1.49 0.45 7.2 0.4 3.5 12 8 0.13 0.43 0.25 
ll/22 p.m. 600 301 2660 3511 4364 4 1.58 1.67 1.48 7.2 0.4 3.5 12 4 0.15 0.68 0.34 
11/23 a.m. 600 308 2360 3511 4470 3 1.73 1.32 1.48 7.2 0.4 6.0 12 6 0.13 0.77 0.40 
11/23 p.m. 600 308 2520 3511 4470 7 1.52 1.86 1.48 7.2 0.4 4.1 12 14 0.14 0.72 0.37 
11/24 a.m. 600 310 2880 35ll 4500 7 1.40 2.42 1.48 7.2 0.4 4.0 12 4 0.16 0.63 0.33 
11/24 p.m. 308 178 2280 1806 2507 7 1.24 4.03 1.48 7.2 0.4 3.8 12 7 0.18 0.41 0.24 
11/25 a.m. 307 179 2790 1802 2521 6 1.76 1.27 1.48 7.2 0.4 4.5 12 13 0.14· 0.33 0.19 
ll/25 p.m. 307 180 2770 1800 2537 10 1.76 1.27 1.48 7.2 0.4 3.0 12 5 0.12 0.34 0.20 
ll/26 a.m. 307 180 2710 1800 2539 3 1.35 2.76 1.48 7.2 0.4 2.0 12 14 0.17 0.34 0.20 
ll/26 p.m. 300 181 2440 1759 2552 5 1.50 1.93 1.48 7.2 0.4 3.0 12 23 0.15 0.37 0~22 
ll/27 300 186 2440 1759 2627 5 1.24 4.03 1.48 7.2 0.4 3.0 12 2 0.18 0.37 0.23 
11/28 300 183 2350 1759 2582 5 1.25 3.87 0.50 7.2 0.4 4.0 12 18 0.18 0.39 0.24 
ll/29 285 185 1550 1670 2612 8 0.83 -- 0.50 7.2 0.4 3.0 12 6 0.25 0.56 0.36 
11/30 2fl5 183 2510 1670 25!12 13 1.42 2.30 0.50 7.2 0.4 4.0 12 8 0.14 0.54 0.22 
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was increased to 600 mg/1 and 308 mg/1 respectively during the 48 hours 

shock load period. In this case a - the recycle ratio was tripled to 

observe its impact on the system. The following events occurred during 

this transient phase: 

1. MLSS-X - (Refer to Figure 4 and Table IV.) Using the kinetic 

model, the steady state and transient values of X are evaluated; which 

are (1,500-2,000) mg/1 for steady state and (3,S00-4,SOO) mg/1 during 

transient period. Before the shock load the value of Biomass X was 

greater than the value of X predicted for both BODs and TOC. Once 

again the response of the unit was sluggish, X increased gradually to 

a peak value of 2,880 mg/1 in 48 hours. It dropped back to steady 

state values, once the shock 1 oad was terrni nated. During this steady 

state period, X was closer to the predicted value for TOC than BODs; 

but during the transient period it was much below the predicted value. 

2. Effluent Substrate Concentration - Se - (Refer to Figure 4 

and Table IV.) The predicted effluent substrate concentration are 

Se(BODs) = 0.40 mg/1, and Se(TOC) = 12.0S mg/1. Actual Se-B005 was 

fairly close to the predicted value. The average B005 for the entire 

run is 3.67 mg/1; whereas TOC of Se fared much better, though it 

fluctuated quite a bit, it was within the predicted values of 12.05 

mg/1. The average mean TOC for the run was 9.43 mg/1, which is below 

the predicted values. 

3. Effluent Suspended Solids - Xe - (Refer to Table IV.) There 

was no significant loss of biological solids in the effluent. The 

sludge was settling well. However the set Xe = 5 mg/1 could not be 

achieved in the run, the average Xe for the run was 6.37 mg/1, which 

was fairly close to the set Xe. 



St (mg/1) 

Date 
(month/day) noo5 TOC /\ctua l 

9/8 312 I 75 2500 
9/9 310 178 2610 
9/10 a.m. lOBO 420 2850 
9/10 p.m. 1100 420 3810 
9/11 a.n1. 1120 415 3960 
9/11 p.m. 1115 415 5370 
9/12 a.m. 1115 415 4820 
9/12 p.m. 298 188 4725 
9/13 a.m. ?.95 184 4100 
9/13 p.m. 300 184 4060 
9/14 300 187 4130 
9/15 298 186 4170 
9/16 300 188 3825 
9/17 285 178 2880 
9/18 287 178 2644 

TABLE V 

RUN III - SUMtMRY OF ACTUAL AND PREDICTED VALUES 
OF X, Xe, a, Se AND F/M 

Se (!!!9/1) 
Predic- Predic-

X (mg/l~ a " tlon tlon 
Preilctlons Based ~ Based Based 
Based on Xe on = F on Actu~1 on 

BOOs TOC (rng/l) XR/X XRIX FR/F (1/day) R005 BOOs TOC 

1826 2461 2 2.28 o. 75 0.45 7.2 0.4 3 12 
1814 2507 4 2.98 0.49 0.45 7.2 0.4 4 12 
6326 6161 4 2.03 0.94 1.00 7.2 0.4 6.5 12 
6454 6161 8 1.95 1.48 1.00 7.2 0.4 10.5 12 
6561 6085 3 2.00 0.96 1.00 7.2 0.4 8.7 12 
6352 6085 9 1. 90 1.07 1.00 7.2 0.4 4.4 12 
6352 6085 10 1. 90 1.07 1.00 7.2 0.4 1.2 12 
1744 2658 6 2.10 0.88 1.00 7.2 0.4 2.1 12 
1729 2597 2 2.50 0.64 1.00 7.2 0.4 3.6 12 
1729 2597 4 1. 74 1. 31 1.00 7.2 0.4 5 12 
1759 2643 3 1. 90 1.07 1.00 7.2 0.4 6.6 12 
1744 2627 4 1.76 1.27 1.00 7.2 0.4 6.8 12 
1759 2658 3 1.83 1.16 1.00 7.2 0.4 4 12 
1760 2507 2 2.28 0.75 1.00 7.2 0.4 2.9 12 
1682 2507 5 2.47 0.66 l.OU 7.2 0.4 3.2 12 

Actua 1 F w 
TOC ( 1/day) 

22 0.10 
21 0.08 
23 0.11 
35 0.12 
30 0.12 
27 0.12 
25 0.12 
21 0.11 
32 0.09 
38 0.13 
38 0.12 
21 0.13 
24 0.13 
21 0.10 
25 0.09 

F/M 
!lased tJased 

on on 
BOOs TOC 

0.38 0.21 
0.36 0.21 
1.15 0.45 
0.1.19 0.33 
0.86 0.32 
o. 61 0.23 
0.70 0.26 
O.l'i 0.12 
0.22 U.l4 
0.22 0.14 
0.22 0.14 
0.22 0.14 
0.24 0.15 
0.30 0.19 
0.33 0.20 

w 
1..0 
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4. C = XR;X ratio- (Refer to Figure 4 and Table IV.) It was 

quite steady, there were no drastic changes. The calculated recycle 

ratio was much higher than tf1e a-recycle ratio of 1.5 that was used in 

the study. 

5. F:M Ratio- (Refer to Table IV.) The variation in the F/M 

ratio was considerably lower when compared with other runs, as the 

actual X was quite high and constant during the steady state. It 

doubled during the shock load period, and dropped down to a steady 

value after the shock had ended. Tripling a did not decrease F/M 

ratio during the shock load. 

Run III (Three Fold Step Increase in S; and 

a-Recycle Ratio Doubled) 

As in the previous runs, a steady state operation with MCRT{sc) 

of 10 days was maintained by controlling sludge wastage Fw as pre­

dicted by the model. A three-fold step increase in Si was made so 

that BODs- was increased from 310 mg/1 to 1120 mg/1, and TOC was 

increased frorn 175 mg/1 to 420 mg/1. The observations made are given 

below: 
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1. MLSS-X - (Refer to Figure 5 and Table V.) The kinetic model 

predicted an average value of X(l,700-2,500) mg/1 during the steady 

state period and (6,000-6,500) mg/1 during the transient period. Prior 

to tf1e shock 1 oad the observed bi omass-X was very close to the values 

predicted by TOC and higher than the values predicted by BODs. Actual 

X increased gradually to a peak value of 5,370 mg/1 within 36 hours of 

the onset of the shock load. It decreased also slowly with termination 

of the shock load. It took 5 days for the unit to recover from the 



TABLE VI 

RUN IV - SUMMARY OF ACTUAL AND PREDICTED VALUES 
OF X, Xe, a, Se AND F/M 

Se !•ng/1) 

St (mg/1) 
Predic- Predic-

X (mg/1) " a tion ti on ---- Predict ions Based ACfilaT Based Based 
nate Based on Xe- on ~ F on Actual 011 

(month/ dily) BODs TOC Actual BODs TOC (mg/1) XR/X XR/X FR/F (l/day) BODs BODs lOC 

9/30 285 168 1240 1670 2356 4 2.64 0.59 0.40 7.2 0.4 1.5 12 
10/l 290 165 1620 1700 2310 4 2.76 0.55 0.48 7.2 0.4 1.0 12 
10/2 a.m. 292 163 1760 1712 2280 1 2.38 o. 70 0.48 7.2 0.4 2.5 12 
10/2 p.m. lllU 427 2230 6444 6267 7 1.79 1.22 1.54 7.2 0.4 9.4 12 
10/3 a.m. 1120 422 2610 6561 6191 10 1.39 2.48 1.54 7.2 0.4 3.1 12 
10/3 p.m. 1115 424 2700 6352 6221 13 1.83 1.17 1. 54 7.2 0.4 6.9 12 
10/4 a.111. 1120 421 6650 6561 6176 lO o. 72 -- 1. 54 7. 2 0.4 5,6 12 
IG/4 p.m. 1114 425 3520 6350 6236 7 1. 77 1.26 1.54 7.2 0.4 2.8 12 
10/5 a.m. 285 175 3256 1670 2461 1 1.86 1.12 1. 54 7.2 0.4 5.6 12 
10/5 p.m. 283 178 3030 1660 2507 10 1.65 1.49 1.54 7.2 0.4 3.6 12 
10/6 a.m. 264 169 3220 1547 2371 8 I. 77 1.26 1.54 7.2 0.4 5.6 12 
10/6 p.m. 262 167 3040 1540 2341 10 1.63 1.53 1.54 7.2 0.4 7 .o 12 
10/7 260 172 3000 1523 2416 4 1.53 1.82 1.54 7.2 0.4 1.5 12 
10/8 285 178 2436 1670 2507 5 1.75 1.29 0,5 7.2 0.4 2.1 12 
10/9 284 180 1845 1664 2537 4 2.08 0.90 o.s 7. 2 0.4 2.5 12 
10/10 285 177 1715 1670 2492 7 1.89 1.09 0.5 7.2 0.4 1.8 12 

Actual Fw 
rue (!/day) 

21 0.08 
24 0.08 
23 0.10 
54 0.12 
30 0.15 
29 o.u 
<'4 0.32 
20 0.13 
26 0.12 
23 0.13 
20 0.13 
22 0.13 
21 0.15 
18 0.13 
22 O.lt 
21 0.11 

f/H 
Based Based 

on on 
BOOs roc 

o. 70 0.41 
0.54 0.31 
0.50 0.28 
I. 51 o. Ml 
1.30 0.49 
1.25 0.48 
0.52 0.19 
0.96 0.37 
0.27 0.16 
0.28 0.18 
0.25 0.16 
0.26 0.17 
0.26 0.17 
0.35 0.22 
0.47 0.30 
0.50 0.31 

~· 
N 
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shock load. After the shock load, observed biomass X decreased slowly 

over the next 5 days. Th€ steady state biomass was much higher than 

the steady state values predicted for both TOC and BOD5. Only on the 

fifth day X reached a steady state level closer to the value predicted 

by roc. 

2. Effluent Substrate Concentration - Se - (Refer to Figure S 

and Table V.) The predicted values of Se(BODs) = 0.40 mg/1 and 

Se(TOC) = 12.05 mg/1 are the same. A significant leakage of substrate 

~ccurred 24 hours after the onset of the shock load; then it gradually 

decreased during the next 48 hours. During this period the shock load 

was terminated. Once again there was a substantial substrate leakage 

24 hours after the shock 1 oad was terminated. Both BODs and TOC 

reflect the leakage. The mean (BODs) was 4.83 mg/1 and TOC was 26.80 

mg/1 which are well above the predicted values. 

3. Effluent Suspended Solids - Xe - (Refer to Table V.) In 

this run the set objective of Xe = S mg/1 was attained. The average 

mean value was 4.6 mg/1 during this run. The biological solids 

settled extremely well, and the effluent was clear. 

4. C = XR/X Ratio- (Refer to FigureS and Table V.) This 

ratio was quite consistent throughout the entire run. a - the 

recycle ratio was doubled with the onset of shock load. The calcu-

lated a was quite close to the actual a, throughout, except a few 

times. 

S. F:M Ratio- (Refer to Table V.) F/M ratio was within the 

specified limits, tho~gh being 3 to 4 times higher during the shock 

load period than the steady state values. X did not increase rapidly 



enough, as required by the model, even with a being doubled during 
! I 

this run. F/M reached steady state values after the shock load was 

over. 

Run IV (Three Fold Step Increase in Si and 

Tripling a-Recycle Ratio) 

In this run, a-the recycle ratio was tripled with the onset of 
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the shock load. The unit was under steady state operation prior to the 

shock load, at an MCRT (eel of 10 days. The increase in the influent 

substrate concentratioh was for BOD5 from 292 mg/1 to 1120 mg/1 and 

TOC from 163 mg/1 to 427 mg/1. The following observations were made: 

1. MLSS-X -(Refer to Figure 6 and Table VI.) The model pre­

dicted an average value of X to be (1,500 to 2,500) mg/1 during the 

steady state and around (6,000-6,500) mg/1 during the transient period. 

The model predicts an instantaneous increase of biological solids X at 

the time shock load begins. Actual MLSS-X was fairly close to the 

steady state model predictions prior to the shock load, as seen in 

Figure 6. However, during the transient period the increase in X was 

rather slow and gradual. It did go up to 6,650 mg/1 in 48 hours which 

was above the predicted value. Biomass X decreased steadily, after 

release of the shock. After three days it dropped to a level, inbe-

tween the predicted steady state levels for both TOC and BOD5. 

2. Effluent Substrate Concentration - Se - (Refer to Figure 6 

and Table VI.) The predicted values for Se(BOD5) = 0.40 mg/1 and 

Se(TOC)- 12.05 mg/1. In this run the average TOC during the steady 

state period was around 20 mg/1 and BOD5 5 mg/1. There was a leakage 



TABLE VII 

RUN V - SUMMARY OF ACTUAL AND PREDICTED VALUES 
OF X, Xe, a.' Se AND F ;r1 

Se {1119/ll 
Predic- Prei:llc-

Sj (mg/1) X(mg/ll a a tion tton 
Predict 10ns BaSed . ACTUal Based Based 

Date Ba$ed on X on = F on Actua 1 on 
(month/day) B005 TOC llctual BOOs TOC (m911) XR/X XR/X FR/F ( 1/day) 8005 BOOs TOC 

2/9 265 154 3020 IS51 2143 1 1.39 2.48 0.27 7.2 0.4 2 12 
2/10 265 154 2560 1551 2143 1 1.10 9.67 0.25 7.2 0.4 1.3 12 
2/ll 275 1S6 1940 1601 2173 1 1. 82 1.18 0.26 7.2 0.4 1.1 12 
2/12 a.m. 1110 473 1530 6502 6960 10 2.39 o. 70 0.21 7.2 0.4 1.25 12 
2/12 p.m. 1140 473 2470 6678 6960 0 1.64 1.51 0.27 7.2 0.4 5.1 12 
2/13 a.m. 1140 475 2730 6678 6990 7 2.61 0.60 0.21 7.2 0.4 20 12 
2/13 p.m. 1110 475 3370 6502 6990 25 1.40 2.42 0.21 7.2 0.4 30 12 
2/14 a.m. 1110 475 3770 6502 6990 32 1.47 2.06 0.25 7.2 0.4 08 12 
2/14 p.m. 326 168 6000 1908 2355 70 1.32 3.02 0.25 7.2 0.4 76 12 
2/15 a.m. 326 173 2650 1908 2430 15 1.50 1.93 0.21 7.2 0.4 57 12 
2/15 p.m. 326 171 2730 1908 2400 38 1.62 1.56 0.25 7.2 0.4 16.8 12 
2/16 a.m. 300 168 2940 1755 2355 19 1.72 1.34 0.24 7.2 0.4 14 12 
2/16 p.m. 300 162 2440 1755 2264 28 1.84 1.15 0,20 7.2 0.4 2.25 12 
2/17 a.m. 264 163 2190 1545 2279 9 3.10 0.46 0.27 7.2 0.4 1.5 12 
2/17 p.m. 267 163 1860 1562 2279 10 1.81 1.19 0.26 7.2 0.4 7.6 12 
2/18 264 163 1800 1545 2279 12 1. 94 1.03 0.26 7.2 0.4 24.2 12 
2/19 270 163 2780 1580 2279 5 1.76 1.27 0.20 7.2 0.4 4.1 12 
2/20 270 163 1630 1580 2279 6 3.74 0,35 0.24 7.2 0.4 2.2 12 

Actual fw 
TOC (!/day) 

29 0.17 
32 0.22 
43 0.13 
44 0.10 
43 0.13 
46.5 0.08 
84 0.13 

145 0.12 
133 0.12 
34.5 0.13 
19.5 0.09 
19.5 0.11 
32.5 0.09 
39.5 0.07 
46.5 0.12 
96 0.10 

5 0.13 
32.5 0.06 

f/M 
Based Bas eel 

on on 
BOOs roc 

0.27 0.15 
0.31 0.18 
0.43 0.2~ 
2.20 0. 94 
1.40 0.58 
1.27 0.53 
1.00 0.43 
0.26 0.13 
0.16 0.08 
0.37 0.20 
0.36 0.19 
0.31 0.17 
0.37 0.22 
0,37 0.23 
0.43 0.26 
0.44 0.27 
0.29 0.18 
0.50 0.30 

"""' 0"1 
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of substrate in the effluent as seen by the sharp increase in TOC and 

BODs 12 hours after the shock load began Se-TOC gradually decreased 

to a steady value, while the Se-BODs fluctuated for 5 days before 

reaching a steady value. The mean average for Se(TOC) = 24.80 mg/1 

and Se(BODs) = 3.90 mg/1. Se(TOC) was above the predicted value, but 

Se(BODs) was fairly close to the predicted value. 

3. Effluent Suspended Solids - Xe - (Refer to Table VI.) There 

was no significant change in Xe except for a nominal increase in Xe 

for 24 hours after the shock load, and also after 3 days, otherwise 

the sludge settled well, and there was no change in predominance of 
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the biological solids. The mean value was 6.93 mg/1, which is slightly 

higher than the set value of Xe = 5 mg/1. 

4. XR/X Ratio- (Refer to Figure 6 and Table VI.) This ratio 

was quite steady throughout, except during the shock load period, 

when it decreased. Calculated and set a were fairly close throughout 

the run. 

5. F:M Ratio - (Refer to Table V.) F/M ratio was well within 

the limits. F/M ratio was four to five times higher during the shock 

load period due to increased influent substrate concentration Si, 

without corresponding increase in X. F/M reached a steady value after 

the shock load. 

Run V (Three Fold Step Increase in Si With a Simul­

taneous Transfer of all Biological Solids 

in the Clarifier to the Reactor) 

The unit was operated at steady state several days before the 

shock load was inflicted on the system. As usual MCRT(ec) of 10 days 



was maintained in accordance with the model. In this particular ex­

periment, all the biological solids in the clarifier were pumped into 

the reactor, at the beginning of the shock load, in order to increase 

the MLSS-X to the levels predicted by the kinetic model. The unit was 

subjected to a three fold step increase in the influent substrate i.e. 

an increase in BODs of S; from 26S mg/1 to 1140 mg/1 and TOG from 156 

mg/ to 4 73 mg/ 1 • 

1. MLSS-X- (Refer to Figure 7 and Table VII.) The average 

predicted values by the model for solids in the reactor- X are 

(1,500-2,500) mg/1 during steady state and (6,S00-7,000), mg/1 dur­

ing the transient period. The actual X monitored was very close to 

the steady state values prior to the shock load, but during the 

shock load period, X rose gradually to a peak value of 6000 mg/1 in 

2.5 days and dropped back to steady state value immediately. The 

steady state values of actual biomass X, fluctuated between the pre­

dicted levels of X for both BODs and TOC. Thus actual X was fairly 

close to the predicted values before and after the shock load. 

2. Effluent Substrate Concentration - Se - {Refer to Figure 7 

and Table VII.) The model predicts Se(BODs) = 0.40 mg/1 and Se(TOC) 

= 12.05 mg/1 during the entire run. If we examine the data in 

Table VII and Figure 7, during steady state Se-BODs is fairly close to 

the predicted value, though there was distinct leakage of substrate 

at two different times, that is at 36 hours and 6 days after the onset 

of shock load. Se-TOC was higher than the predicted values during 

the entire run. It must be noted that maximum leakage of effluent 

substrate, both Se-BODs and TOG were well above the predicted values. 
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3. Effluent Suspended Solids - Xe - (Refer to Table VII.) 

There was some loss of biological solids, due to change in predomi­

nance from a flocculant to a filamentous growth. This lasted for 

nearly four days, after which Xe subsided to normal steady state 

value. It exceeded the set Xe 5 mg/1 due to the shock 1 oad, as it 

was below 5 mg/1 before the shock load during steady state. 

4. XR/X Ratio - (Refer to Figure 9 and Table VII.) This ratio 

was steady except for fluctuations during the shock load period. a 

was kept fixed at 0.25 throughout the run, except for recycling all 

the solids from the clarifier at the beginning of the shock load. 
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5. F/M Ratio- (Refer to Table VII.) F/M ratio was within the 

defined limits, except during the shock load period, it was high due 

to low MLSS-X concentration in the reactor even though all the bio­

logical solids were recycled into the reactor from the clarifier. F/M 

ratio was steady before and after the shock load. 



CHAPTER V 

DISCUSSION 

The Lawrence-McCarty (24) kinetic model was used for operations 

and control of the unit throughout the study. Kinetic constants 

listed in Table II, which were generated from research units being run 

in the the OSU Bioenvironmental Engine~ring labs, were utilized in the 

equations. The kinetic model was used to predict the behavior of the 

system and to adopt necessary control strategies to obtain desired Se· 

Since the unit was oper~ted at MCRT(ec) of 10 days, the values of 

Se-BOD5 and TOC evaluated from the kinetic constants and Lawrence­

McCarty model are 0.40 mg/1 and 12.05 mg/1. 

Examining Figures 3 to 7, one finds that the biological solids­

X in the aeration basin, always increased gradually, in response to an 

influent shock load (increase in Si) while the kinetic model predicts 

a sharp instantaneous increase in X as a response to an increase in 

S;. It took more than 36 hours after the application of the shock 

load for biomass-X to increase to the levels predicted by the model, 

in spite of increasing a-the recycle ratio to aid in increasing X. 

Gaudy and Kiavanich (42) show that X increases in the reactor in a 

once through system, in a manner parallel to the dilute- in of influ­

ent Si in the reactor; though in this case, it was not true. In 

experiments conducted by Saleh and Gaudy (34) biomass X took almost 



36 to 48 hours to increase with the onset of an influent shock load, 

which seems to agree with this study's findings, even though Saleh and 

Gaudy use a constant recycle with MLSS in recycle line- XR values 

ranging from 5,000 mg/1 to 10,000 mg/1. XR in this study increased 

with X, but never reached the desirable XR/X ratio greater than or 

equal to 4. This may be one of the causes of sluggish increase of X 

in the reactor. With the onset of shock load, the biomass may respond 
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in t~o ways (42), first it may increase replication i.e. synthesis of 

new cells, by rapidly consuming the influent substrate or it may resort 

to oxidative assimilation of substrate as storage products. The 

response of the biomass either way seems to have the same effect on 

the effluent subtrate. 

Lawrence and McCarty's (24) kinetic model predicts an instantane-

ous increase in biomass X, as a response to an influent shock load or 

an increase in Si. The system will reach a new steady state if the in­

crease in Si persists for a long duration. On tennination of the shock 

load, or if there is a decrease in S;, the kinetic model predicts a 

decrease in MLSS-X, instantaneously, after this decrease the process 

reaches a new steady state condition. It is clearly evident from the 

results of the five experimental runs, that the biomass-X increases and 

decreases gradually or slowly; although the kinetic model predicts a 

sharp (instanteous) increase or decrease with a variation in Si. How­

ev~r if the fluctuations in Si were to presist long enough the biomass 

X would increase to the new levels predicted by the kinetic model and 

reach a new steady state condition. This was shown by Parrot (53) in 

his study. The kinetic model was unable to predict accurately the 

transient responses to short term variations or pertubrations in Si. 

•. 1' .. ' '\ 



This poses a problem to the operator, who has to decide and opt for a 

suitable control strategy to combat the impact of the shock load. 
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In order to resolve this operational problem the effects of manip­

ulating a-recycle ratio and Fw-sludge wastage were studied to let the 

process function as predicted by the kinetic model; thus control over 

a and Fw was exercized. MCRT (ec) of 10 days was successfully main­

tained by controlling Fw, while a-recycle ratio was doubled or tripled, 

and in one instance, all solids in the clarifier were recycled into 

the reactor, in order to achieve an instantaneous increase in biomass 

X and decrease in Se of the effluent; as forecasted by the model. 

Figures 3 to 7, show that by increasing a-the recycle ratio, a 

rapid increase in the biomass concentration X in the reactor could 

not be achieved as predicted by the kinetic model. However, greater 

attenuation of the substrate in the effluents with higher a was 

achieved. In the five different runs conducted, maximum substrate 

leakage occured in those runs in which a was not changed. Higher 

attenuation of substrate leakage was achieved, when a was tripled. 

Even though the biomass - X could not be be increased with the onset 

of the shock load, attenuate on the effluent substrate to a certain 

extent was noticed by increasing a, i.e. recycling more biomass-X. 

An ideal situation would be where biomass X in the reactor could be 

increased to the levels predicted by the kinetic model to achieve 

predicted Se• 

By trying to increase biomass X in the aeration basin an attempt 

is being made to decrease and stabilize the F/M ratio, which triples 

or quadruples on the application of a shock load down to a more 



reasonable value for better performance and better sludge settling 

in the process. 

54 

Several options are available to increase the biomass in the aera­

tion basin. The first is to increase the recycle a, but this may not 

always contribute positively, especially if XR in the recycle sludge 

is low. Trierefore Gaudy (42} suggests, incorporation of an extra tank 

to receive and thicken sludge from the clarifier and recycle back with 

a constant XR values ranging from 5,000 mg/1 to 10,000 mg/1. This 

unfortunately adds to the operational costs and may not always be eco­

nomically feasible. Gaudy and Manickam (26} show that they can achieve 

better attenuation of effluent substrate with higher XR values. Reddy 

(44} in his Ph.D. thesis recommends the use of biological solids from 

an aerobic digester, as this provides a steady source of cells, which 

can be utilized, when a shock load is applied. He also states that the 

recycle of solids from such digesters improve sludge compaction, and 

also reduce the growth of filamentous micro-organisms, but this implies 

addition of an aerobic digester to the waste water treatment plant 

facility, which again is not economically attractive, unless it is 

already included in the initial plant design for aerobic sludge diges­

tion. 

The.other alternative is to increase the aeration basin volume, 

to accommodate more biomass by recycle. This demands great flexibil­

ity in the design and construction of the aeration basin so that it is 

easy to increase or decrease the volume of the aeration basin, along 

with associated aeration equipment as and when required and this 

may not be economically feasible. Increased biomass concentration, 

implies operating the system at higher MCRT(ac) and lower specific 



growth rates Pn, which means more aged cells and better response to 

shock loads. Gaudy and co-workers have shown that such a system was 

more resistant to leakage of Se· {42). This method has not yet been 

fully researched and neither the economic feasibility studied. 

On analysis of the effluent substrate concentration Se for all 

five runs {Figures 3 to 7) it is clear that Se-BOD5 and TOC are much 

higher than the predicted values by the kinetic model. 

Run 
Number 

1 

2 

3 

4 

5 

TABLE VI II 

PREDICTED AND ACTUAL MEAN VALUES 
FOR Se FOR EACH RUN 

Se-BOD5 (mg/1) Se-TOC (mg/1) 
Mean for Mean for 

Predicted Each Run Predicted Each Run 

0.4 5.66 12.05 27.90 

0.4 3.67 12.05 9.43 

0.4 4.83 12.05 26.80 

0.4 3.90 12.05 24.80 

0.4 19.60 12.05 51.33 

Xe 

11.83 

6.37 

4.6 

6. 93 

16.5 
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The mean BOD5 is less than or equal to 5 mg/1 in the first four 

runs, which seems to be quite reasonable, as it is v1ry difficult to 

achieve a BOD5 of 0.4 mg/1 in the effluent, though predicted by the 

model. The TOG values of Se were rather high, and this is attributed 

to the production of intermediate compounds or non-biodegradeable 

material. In Run II Se-TOC was lower than the predicted value, where­

as in three other runs, it was twice the predicted value. In the 

last run both BOD5 and TOC are high, indicating a substantial leakage 

of substrate in the effluent. The effects of the production of inter­

mediate compounds have not yet been incorporated into the kinetic 

model, which is a drawback when using TOC analysis. 

Another important aspect one must discuss here is the effect of 

the clarifier on the effluent substrate concentration Se. Due to t~e 

large volume of clarifier and the presence of the biological solids~ 

there seems to be some substrate removal by the biomass in the clari­

fier; thus the clarifier provides a little extra biological treatment 

and reduces both Se and SR (26). 

It was also noted that, at least in two of the runs, the leakage 

of substrate in the effluent occurred distinctly at two different 

times after the application of the shock load, once during the shock 

1 oad, an9 the other immediately after the unit returned to steady 

state conditions. Sudden decrease of S; after the application of 

shock load may have been perceived as a shock by the biomass, which 

explains the latter leakage of substrate in the effluent. As if it 

were subjected to two different shock loads, i.e. (increase and 

decrease inS;). This phenomenon was more prevalent in the runs with 
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fixed or lower a. While it was not so evident in the runs when a was 

tripled. 

The accuracy of the predictions for Se and X by the kinetic model 

depend heavily upon the kinetic constants utilized. In this study, 

the predictions for X before and after the shock load are fairly 

close, but this was not the case with Se, which was consistently 

higher for both TOC and BOD5. It would have been more appropriate if 

the kinetic constants had been determined first before proceeding with 

the experimental work. This raises a very fundamental question about 

the very reliability of the bio-kinetic constants! The bio-kinetic 

constants utilized in this study were determined over a period of two 

years, using the same synthetic waste, in an internal recycle activa-

ted sludge units in Bio-Environmental Energy Laboratories of Oklahoma 

State University. It is now well understood that the bio-kinetic con-

stants vary with diff~rent wastes and environmental conditions. Some 

authors refer to Ks, K, ll, Ye, kd, and llmax as bio-chemical kinetic 

constants, while the latter prefer to call them kinetic coefficients. 

However, everyone agrees that these kinetic coefficients or constants 

exhibit some degree of variability, due to the heterogeneous nature of 

the microbial populations used in activated sludge systems. 

The predictive equations derived from the kinetic model were 

based on the premise that a steady state would be maintained; ie 

~. 0 and~+ 0 (42). It is also evident from this study that the 
dt ' dt 

predictions were not accurate during the transient stage; and the 

kinetic model may have to be modified to incorporate the transient 

phenomenon in the process, which is seen quite often due to variations 

in F and Si and other environmental factors. 

57 



Therefore, it is quite sensible to determine the bio-kinetic con­

stants or coefficients, and update the process' control and operational 

strategies, as one cannot for certain tell when the characteristics of 

the wastewater or of the nature of microbial populations change. 

A change in the predominance of the microorganisms was noticed 

only in those runs, in which a three fold shock load was inflicted. 

In those cases a-the recycle ratio was either constant or varied with 

the ratio XR/X. This clearly indicates the beneficial effects of 

increased a-recycle ratio. 

The'leakage of biological solids in the effluent are shown in 

Table II I for each run. The mean values are between 4. 6 to 16. 5. The 

higher loss of solids was in Runs I and V, and it was also in these 

runs higher leakage of substrate in the effluents occurred. Thus one 

can expect some temporary loss of solids in the effluent, due to 

shock loads. Greater Fw would have meant lower biomass in the reactor 

and vice versa (15). Wasting from the recycle line seems to have had 

no impact on XR. 
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The recycle ratio a, was set, as predicted by the model, depending 

upon the ratio XR/X. Since high XR/X ratio was not achieved, the 

recycle ratio a, was on the higher side during steady state operation. 

In ~11 but one run, a was either doubled or tripled arbitariarilyt in 

order to increase biomass X in the aeration basin and decrease Se in 

the effluent. Latest trends in return sludge recycling provide capaci­

ties of 50 to 100% of influent flow for large plants and up to 150% for 

smaller plants (43). Thus making it a very important tool in daily 

operational control of the activiated sludge treatment plant. a, can 

be manipulated to keep F/M ratio in the reactor constant, or reduce 



drastic variations; even though during the shock load periods, it can­

not reduce the F/M ratio quickly and sharply as desired. A steady F/M 

ratio could be achieved using this model, as seen from the data in 

Tables III to VII. 

TOC, BOD5, COD Analysis 

BODs is an excellent and economical bioassay test, to measure the 

pollution potential of the influent and effluents in a waste water 

treatment plant (42). The only problem with this test is the time 

factor, it requires 5 days! In a dynamic situation such as the con­

tinuous flow activated sludgi treatment plants, where operational 

changes are made on an hourly basis, one cannot wait for five days, 

but that does not necessarily mean this test should be abandoned, in 

favour of others, this test should be used in conjunction with other 

tests, due to its own advantages. 
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TOC is a quick and accurate test, the main problem with this test, 

is when metabolic intermediates are produced, as was the case in this 

study, the effluent TOC values are higher resulting in an awkward 

situation where TOC's are high and BOD's are low for which the kinetic 

model is not geared. However, this test could be used with the 

Lawrence McCarty model to acheive better operational control over an 

activated sludge system. The plant operator could monitor influent 

and effluent substrate concentration Si and Se, continuously and 

quickly adopt remedial control strategy to nullify the effect of in­

crease in Si or Se, quite easily; by any control strategy he chooses. 

COD tests are now available in package fonns, like the Hach kit, 

it takes two hours to run the test. One can easily measure COD of the 



influent and effluents. This test is expensive, but accurate, and it 

can be used to monitor the performance of the waste water treatment 

plant easily. 

In a five-week process study by Hawthorne and Sanders (48) they 

found a line or relationship between BOD vs TOC with a correlation 

coefficient of 0.81 and high degree of confidence of the regression, 

that they justify the use of TOC as a measure of substrate concentra­

tion and recommend incorporation of an on-line TOC analyzer in the 

design for automation of Chester waste water treatment plant in Penn­

slyvania. 
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As far as operational control of the activated sludge plant, it is 

more prudent to use TOC analysis due to its inherent advantages over 

BOD5; primarily because this is an instantaneous test which is easily 

reproducible and can be automated in treatment plants for continuous 

measurement of Si and Se (48). In this study TOC analysis proved very 

satisfactory when used in conjunction with the Lawrence-McCarty kinetic 

model. 

Comparison of Methods of Control 

Reviewing the results of this study, it becomes quite evident 

which ~ethod offers the best possible control on the activated sludge 

process, it is obviously the MCRT(ac) method. This method incorporates 

two other methods, indirectly. Use of the Lawrence McCarty kinetic 

model, enables the operator to quickly adjust the operational aids at 

his disposal to effect remedial action. The operator will be able to 

use the model to predict Se, X and determine Fw and ex, for a constant 



MCRT(ec)· By making necessary changes in a or Fw, he is able to 

achieve positive control on the operation of the plant. Using this 

model, he can achieve the desired X, a, Fw, Se, and this indirectly 

controls MLSS or MLVSS and F/M ratio. Thus, when there is shock load 

(increase or decrease inS;), the operator cannot do much in MLSS or 

MLVSS and F/M ratio methods except try to control the biological 

solids in the reactor by controlling Fw, whereas using the kinetic 

model, he is able to control F/M ratio, as this is related to MCRT(ec) 

and also MLVSS, by increasing or decreasing a-the recycle ratio, and 

Fw· He can also achieve constant substrate utilization rate in 

Lawrence and McCarty method, without any difficulty. 
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GSA control technique assumes that the ratio between the BODs and 

suspended matter is fairly constant, which is not the case always, 

especially during shock loads. Problems do arise when BOD to suspended 

solids ratio in the influent changes! This method is not kinetically 

rational, as it does not address characteristics of microbial growth 

etc. 

In Oxygen Uptake Rate control method, MCRT (ec) and hydraulic 

detention time are selected arbitararily on past plant performance 

for the desired effluent quality. This method involves calculation of 

theoretical 02 uptake, and then cOmparison with the actual measured 02 

uptake, and accordingly a-recycle ratio is varied. This permits us to 

control one parameter a. only. This method is complex, and requires a 

well trained operator. 

Sludge quality control is another method which has been tried out, 

and advocated by West (48, 40). This method requires relatively simple 

tests in comparision with the Lawrence and McCarty's (24) method; but 
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it has many shortcomings, and operators often find it quite difficult 

to maintain a steady state, as they are either recycling too much or 

too less most of the time. This method is based critical loading of 

the secondary clarifier. Carter (51) proposed some modifications very 

recently, which allows the operator to control ec, Fw, Fr, and Fe· The 

operator has to calculate theoretical ec, and solve for Fw, Fr and Fe 

from the model. This method is quite involved and recent, it requires 

more study and experimental verification. 



CHAPTER VI 

CONCLUSIONS 

1. The Lawrence and McCarty (24) kinetic model is a useful aid 

in operating activated sludge process, especially during steady state 

operation. The kinetic model has its limitations in modelling the 

dynamic response i.e. when the process is subject to rapid quantita­

tive and qualitative influent pertubrations. 

2. The dynamic response of the kinetic model to short duration 

shock loads or perturbration is far from satisfactory. It predicts 

a sharp and instantaneous increase in steady state levels of biomass 

X when subjected to a shock load; but the actual increase in biomass 

X to the new steady state level has always been gradual. However, 

during long duration perturbrations or shock loads, the model seems 

to give satisfactory predictions. 

3. A high value of C = XR/X ratio is desired for better perfor-

mance. 

4. A three-fold shock load with low o:, resulted in greater effl u­

ent substrate leakage, while higher o: attenuated this leakage to a 

certain extent. 

5. The activated sludge system can easily absorb three-fold shock 

loads of short duration, without any adverse impacts on the unit opera­

tion and Se. 
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6. If the biomass X could be increased in the reactor, to the 

levels predicted by the kinetic model, then it may be possible to 

minimize or reduce any adverse impacts on the operation of the unit; 

especially leakage of Se and Xe. 

7~ The activated sludge unit recovered quite quickly after each 

shock load, and resumed normal steady state operation. The average 

recovery time was four days after a 48 hour shock load. 

8. TOC analysis provides us with a quick effective monitoring 

of the activated sludge process. Therefore, it is recommended for 

use in controlling the process; in addition it is easily adaptable for 

automation and computer control. 
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CHAPTER VII 

SUGGESTIONS FOR FUTURE STUDY 

Reviewing the results of this study, it is clear that the kinetic 

model is not satisfactory during transient conditions; therefore, 

further studies are recommended in the following areas: 

1. The effects of effluent recycle (negative feedback) on the 

operation and control of activated sludge systems. 

2. Study the effects of influent pertubrations at different sludge 

ages in an activated sludge system. 

3. Research into the possibility to use extended aeration or total 

oxidation as a means of achieving better process and effluent quality. 

4. A detailed study on the kinetic constants or coefficients as to 

why they vary 111ith time, or type of wastes and their reliability. 

5. Improve existing kinetic model or evolve a reliable new model 

to accurately predict the transient behavior of activated sludge 

systems. 

6. Use an on-line TOC analyzer and Lawrence-McCarty (24} kinetic 

model in an actual treatment plant and study the effectiveness of the 

kinetic model. 

1. Whether total process automation will achieve better opera­

ational control and be cost effective! 
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