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CHAPTER I 

INTRODUCTION 

1.1 · Purpose 

Frequency response techniques are very useful in the analysis of 

linear systems. Block diagram and transfer function representations are 

easy to manipulate. Frequency response representations such as Bode 

plots, Nyquist plots and Nichol's charts are widely used to determine 

the degree of stability of.linear systems. Th~ versatility of the 

techniques is due to the applicability of the principle of superposi­

tion. In the case of nonlinear systems, the principle of superposition 

is not applicable. Hence, the usefulness of the frequency response 

techniques is diminished. Nevertheless, it is desirable to extend these 

techniques to the analysis of nonlinear systems. 

The extension is simple in the case of block diagrams. The 

presence of the nonlinearities imposes some restrictions on the manipu­

lations of the·diagram [1]. The extension of the transfer function 

representation is more difficult. An equation for the nonlinearity in 

the frequency domain is required. The equation should be compatible 

with the transfer function of the linear components. This is done by 

approximating the effect of nonlinear components with a "describing 

function" (DF) or a quasi-linear gain. A OF is an amplitude dependent 

gain, so one important characteristic of a nonlinear system is retained 

in the model. 
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The frequency response.data of a nonlinear system is useful in many 

ways. The frequency response of a. nonlinear system cannot be directly 

used to. obtain the time response to any given signal input, as is the 

case for a linear system. Yet, it can provide useful spectral informa-

tion, such as system bandwidth, resonances, etc. Since the output of a 

nonlinear system is amplitudedependent, the frequency response is a 

family of curves rather than a single curve. By applying the Nyguist's 

criterion and Nichol's chart, the frequency response data could be used 

in the determination of the stability of a nonlinear system [2, 3]. The 

frequency response curves are of great interest for systems whose inputs 

are periodic functions of time. SUch systems may exhibit "jump 

resonance." Thus, for several reasons, it is desirable to obtain the 

frequency response of a nonlinear system. 

1.2 Background 

The objective of the study is to develop a method for obtaining the 

frequency response of a nonlinear system when the system equations are 

of the form: 

• 
f (~, ~)x ( 1 ) 

where 

x =state vector of dimension [n]; 

u =input vector of dimension [m]; 

f = function of x and u and is of dimension [n] ~ and 

x = derivative of the state vector. 

The nonlinear elements are replaced by their describing functions and 

the frequency response is obtained. The theoretical basis of this 

approach is outlined below. 
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Krylov and Bogoliubov [4] derived the "equivalent linear para­

meters" method, which is analogous to the describing function methods, 

from consideration of a second-order differential equation. Johnson [5] 

developed a general definition for describing functions. Sridhar [6) 

has developed describing function equations for various forms of 

nonlinearities. 

Johnson [5] showed that the frequency response of a nonlinear sys­

tem could be used in the determination of limit cycles in systems con­

taining one nonlinearity. 

Gelb and Vander Welde [2] suggest an analytical method for finding 

the frequency response of a nonlinear system using sinusoidal input 

describing functions (SIDF). The method consi~ts of defining a rela­

tionship between the input to the nonlinearity and the input to the 

system, expressing the gain of the linear and nonlinear elements in 

polar form and solving graphically for the input to the nonlinearity. 

It becomes cumbersome and tedious for systems containing more tha~ one 

nonlinearity. Taylor [7] .and Hannebrink et al. [8] extended the SIDF 

analysis to determine the limit cycle oscillations of systems containing 

many nonlinearities. 

The method discussed in this study consists of expressing the sys­

tem in state variable form and replacing the nonlinear elements with 

their SIDF gains. The basic concept was first proposed by Taylor [10] 

and developed in the course of this study. The algebric equations are 

exp~essed in matrix form, and then, a numerical method developed by 

Brown [9] is used to solve for the amplitudes of the state variables at 

individual frequencies. The computer program developed is capable of 

finding the frequency response of systems containing many 

nonlinearities. 



CHAPTER II 

DESCRIBING FUNCTION APPROACH 

2.1 Introduction 

In this chapter, a brief description of the describing function 

method is presented. The state variable formulation of nonlinear sys-

tems is discussed. 

2.2 Describing Functiors 

One of the characteristics of a nonlinear system element is that 

its "gain ratio" is dependent on both the amplitude and the frequency of 

the input. If the input to the nonlinearity approximates a sinusoid, 

then the sinusoidal input describing function (SIDF) adequately des-

cribes the gain of the element as a function of the amplitude and the 

frequency. The SIDF simply replaces the nonlinearity by an approximate 

"equivalent linear gain," which is dependent on the amplitude as well as 

the frequency of the input to the nonlinearity. The SIDF technique is 

usually classified as a frequency domain technique. 

Consider a pure sinusoidal signal of constant magnitude and con-

stant frequency applied to a nonlinear element. The output of the non-

linearity would be a periodic nonsinusoidal signal which can be 

represented by a Fourier series. If the input to the nonlinear element 

(N) is x = A sinwt (assumed to be a scalar in this discussion, not x the 
. 

state vector) as shown in Figure 1, the output y(x, x) can be 

4 



input I output 
--------+1 NONLINEAR. 1--------+. 

x = Asinwt · I ELEMENT I y(x, x) 
1 _____ 1 

Y1 (A, W) = A1sin(Wt + <!>2) 

Figure 1. Definition of SIDF 

represented by the Fourier series expansion: 

y(A sinwt, Awcos wt) 

where: 

00 

. L An (A, w) sin [nwt + <l>n (A, w)) 
n=1 

A the amplitude of the input; 

w = frequency of the input; 

An = amplitude of the nth harmonic of the output; and 

<l>n = phase· angle of the nth harmonic of the output. 
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( 2) 

The sinusoidal input describing function (SIDF) is defined in terms of 

the fundamental or first harmonic as: 

or 

where: 

phasor representation of the 
N(A, w) = fundamental component of the output 

phasor representation of the input 

N(A, W) 

= A1 (A, w)ej<!> 1 (A, w) 
A 

21T 
j/1TA J y(A sin~. A w cos ~) ej~d ~ 

0 

( 3) 

(4) 



'¥ = wt; 

j = /=-1; and 

ej'l' cos '¥ + j sin '¥. 

In cases where the SIDF depends on the input and its derivative, 

the SIDF is complex valued. 'rh.ere are several ways of writing such a 

DF: 

1. Proportional plus derivative gain 

where: 

N(A, w) = np(A, w) + nq(A, w) s 
w 

np = .the in-phase component of the gain 

21f 
= 1/1fA J y(A sin '¥, Aw cos '¥) .sin 'l' d 'l'; 

1 

nq = the quadrature component of the gain 

21f 
1/1fA f y(A sin 'l', AW cos 'l') cos '¥ d 'l'; 

0 

and s is the Laplace transform variable. 

2. Complex gain: 

or 

where: 

6 

(5) 

(6) 

( 7) 



PN lnp2 + nq2 = A1/A; and 

6N = tan-1 (nq/np). 

This latter formulation is especially convenient when using the phasor 

representation of sinusoidal variables, as is often done iri frequency 

domain analysis. 

The accuracy of the SIDF analysis is based on the following 

assumptions: 

1. The system must have reached the steady state • 
.. 

2. The input to the nonlinearity must be approximately 

sinusoidal. 

This can be achieved only if the rest of the system acts as a low-pass 

filter or if the effect of the nonlinearity is mild. 

The characteristics of the SIDF of a nonlinear device are that it 
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is dependent on the amplitude of 4:he input and possibly on the frequency 

of the input as well. If the nonlinearity is static and single-valued 

(that is, the outvut of the nonlinearity is not dependent on the deriva-

tive of the input and the nonlinearity is memoryless), the SIDF is real-

valued and is independent of the frequency of the input. The derivation 

of the SIDF for ·many types of nonlinear devices are discussed by Gelb 

and Vander Welde [2]. The SIDF is generally a nonlinear algebraic func-

tion of amplitude A. 

The SIDF allows the advantages of a linear approximation to be 

retained while continuing to reflect the amplitude-dependence of a 

nonlinear element acting on an input signal of finite size. The approx-

imation of a nonlinear operation by a linear one is called quasilinear-

ization. The SIDF as defined in Equation (4) provides the static 

quasi-linear gain which yields the minimum mean squared approximation 



error. The minimum mean squared error concept provides the general 

extension of the describing function to other problems such as random 

inputs and biases [2]. 

2.3 State Variable Formulation 

The definition of the SIDF as a gain permits the output.Y in 

Figure 1 to be represented as y = N(A, w) x. The input to the non­

linearity in a control system could be a combination of the state vari­

bles x and the system inputs ~· If the .input to the system is 

sinusoidal, the state variables x could be assumed to be nearly 

sinusoidal under the conditions stated previously. Then, the state 

vector and input vector may be represented as: 

x = Im[,Eejwtl 

u Im[_£ejWt]. 

Where: 

r complex amplitude vector · (phasor) 

c = complex amplitude vector (phasor) 

Im represents the imaginary part. 

The complex vector r is represented as: 

of the state variables; 

of the input vector; and 
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r = .E. + jg (9) 

·where: 

.E. = in-phase component of the amplitude vector £1 and 

g = quadrature component of the amplitude vector r 

and the input vector .£ is represented as: 

c = a + j~ ( 10) 



where: 

a = in-phase component of the input vector; and 

b = quadrature component of the input vector. 

Using Fourier transform methods, the operator d/dt can be replaced by 

jw. Thus, Equat~on (1) can be represented as: 

9 

( 11 ) 

where: 

I identity matrix of dimension (n x n); 

FoF = FoFR + jFDFI = complex-valued quasi-linear state dynamics 

matrix of dimension (n x n); and 

GoF GoFR + jGDFI = complex-valued quasi-linear input allocation 

matrix of dimension (n x m). 

Using Equations (9) and (10), Equation (11) can be written as: 

( 12) 

The matrices FoF and GDF are obtained by substituting the SIDF's for the 

nonlinearities and they are dependent on the complex amplitude vector E 

and the 'input vector ~· Their imaginary parts exist only if nonlinear­

ities with memory (e.g., hysteresis) are present in the system. 

Separating the real and imaginary parts in Equation (12), 

-WI~ - FDFR £ + FDFI ~ - GDFR ~ + GDFI b = 0 

( 13) 

WI£ - FDFR g - FDFI £ - GDFR £ - GoFI a = 0 

Equation (13) is a set of 2n real-valued nonlinear algebraic equations 

in £ and g. The elements of £ and g together constitute 2n variables. 

The solution of Equation (13) will be considered in the next chapter. 



Once the values of E and g are obtained the amplitude and phase of the 

state variables x are obtained from the relationship: 

pqi = ipi2 + qi2, i = 1, 2, • • ., n 

ei· = tan- 1(qi/Pi), i = 1, 21 

where: 

• • ,. n 

pq = magnitude of the amplitude; and 

e phase angle of the amplitude. 

10 



CHAPTER III 

SOLUTION OF SYSTEM OF EQUATIONS 

3.1 Introduction 

In this chapter, the numerical solution method for the system of 

equations in Equation (13) is presented. The advantages and disadvan­

tages of the numerical method are also discussed. 

3.2 Numerical Solution 

One powerful method available for the numerical solution of simul­

taneous, nonlinear algebraic equations is the quadratically convergent 

Newton-like method based upon Gaussian elimination developed by Brown 

[9]. It is an iterative method which is a variation of Newton's method 

using Gaussian elimination. In each row, the variable whose correspond­

ing partial derivative is largest in absolute value is eliminated and an 

iterative function is formed as discussed in the Appendix. After ob­

taining the value of the last variable, the values of the other varia­

bles are obtained by back substitution in the iteration function. The 

latest values of the functions are used in each step. The partial 

derivative is evaluated numerically. A subroutine ZSYSTM developed by 

ISML [12] based upon this method was used to obtain the solution. Other 

methods such as Newton's method and Gauss-Seidel method were considered, 

but this algorithm was chosen because of the following considerations as 

discussed by Brown [9]. 

11 



3.3 Advantages and Disadvantages of the 

Quadratically Convergent Newton-Like 

Method 

The advantages are: 
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1. It requires only (N2/2 + 3N/2) function evaluations per itera­

tive step as compared with (N2 + N} evaluations of the dis­

cretized Newton's method. 

2. It uses a numerical method to evaluate the partial derivatives, 

thus eliminating the need for defining the corresponding equa­

tions, which may become quite cumbersome for higher order 

systems. In addition, it saves storage space. 

3. Although rigorous convergence res~lts! are yet to be obtained, 

experimental evidence shows a quadratic type of convergence 

behavior. 

4. The computation and inversion of a Jacobian is avoided. 

5. It is rapidly convergent compared to the Gauss-Seidel method. 

The disadvantages of the method.· are: 

1. Rigorous convergence for the method is yet to be proved. 

2. Since the method is only locally convergent, the initial solu­

tion guess has to be reasonably close to the final solution in 

order to obtain convergence. 

3. As the number of nonlinearities increases, the number of itera­

tions required for convergence increases substantially. 

The method is very useful for the solution of algebraic simultan­

eous equations which contain mildly nonlinear relations. Many practical 

nonlinear systems contain mild nonlinear equations; in addition, the 
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SIDF's for most nonlinearities are milder than the original nonlinear-. 

ity, so using quasi-linear gains should enhance the effectiveness of 

this method. 



CHAPTER IV 

EXAMPLES 

4.1 Introduction 

In this chapter, two examples illustrating the various aspects of 

the method are presented. The results obtained were verified by other 

methods and the results of the verification are also provided. 

4. 2 Example 1 

As a simple case, the Duffing's equation, 

. 
X + 2ax + WQ2X + hx3 ~ U (14) 

where:· 

wo = natural frequency of the system~ and 

a and h are constants 

is considered. If the input u is a sinusoid B sinwt, then the states · 

will also be nearly sinusoidal. If x is nearly sinusoidal, its ampli-

tude A can be determined using SIDF analysis. The SIDF of hx3 is 3/4(h) 

IAI 2• Substituting this in Equation (14) and choosing x = x1 and x = x2 

as the state variables yields 

1 0 

- 2a 1 

14 
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Selecting h = 1, a= 0.1 and wo = 5, the frequency response was 

obtained. When the system is driven by a sinusoidal input, the solution 

for A can be shown to be the roots of 

(15)· 

The system exhibits jump resonance [11]. This can be seen in Figure 2 

which is the frequency response plot for Equation (14). The amplitudes 

obtained by using the Newton-like method are shown in Table I. Those 

amplitudes satisfy Equation (15) as shown in Table I. This example 

illustrates the effectiveness of the solution method of this study even 

where multiple solutions exist, as occurs for values of w between 8 and 

21 rad/sec. At frequencies where. there is more than one solution, dif-

ferent initial solution guesses have to·be used for obtaining the dif-

ferent amplitudes. Whenever a discontinuity is encountered in a 

frequency response plot (as at w = 21 rad/sec), the analyst ought to 

seek other roots. 

4.3 Example 2 

In this example, the system shown in Figure 3 is considered. The 

system is part of a gimbal drive system. The system is of fourth order 

and contains two nonlinearities, a coulomb friction type nonlinearity 

(N1) and a limiter type nonlinearity (N2 ), shown in Figures 4 and 5. 

The frequency response of the system is desired, where the input to the 

system is pressure and the output is angular displacement e. The state 

variables (~) chosen are indicated in Figure 3. 

First, the effects of the nonlinearities were suppressed and the 

frequency response of the linear system was obtained in order to 



w 
c 
::J 
1--...J 
fl. 
::E 
< 

16 

25----~~--~----~----~----~----~ 

8 = 100 

20 

15 

10 

5 

10 20 30 
FREQUENCY (RAD/SEC) 

Figure 2. Frequency Response for Duffing's Equation 
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TABLE I 

AMPLITUDES FOR B = 100 IN CUFFING'S EQUATION 

Frequency Amplitude of ~ Input Amplitude B, 
(RAD/SEC) (A) Computed From·A, Eq. ( 15) 

1 3.17057 100. 

2 3.38107 100. 

3 3.7588 100. 

4 4.33162 100. 

5 5.10651 100. 

6 6.05283 100. 

7 7.11638 99.9998 

8 8. 24771 100. 
3.17808 100. 

9 9.41409 100.0006 
7.56317 99.9998 
1.87265 100.2732 

10 10.597 100.0005 
9.26606 99.9997 
1.35788 100.0001 

12 1.2.97803 99.99,9 
12.1734 100.0004 
0.84395 •99.9997 

15 16.5428 100.003 
16.10649 99.9994 

0.50041 99.9993 

18 20.08119 99.9995 
19.84861 99.9987 
0.33452 100.0007 

20 22.419445 100. 
22.419442 99.9989 

0.26669 100.0002 

21 23.56841 100.0005 
0.2404 100.0011 
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TABLE I (Continued) 

Frequency Amplitude of x Input Amplitude B, 
(RAD/SEC) (A) Computed From A, Eq. (15) 

22 0.21787 99.9992 

23 0.19842 100.002 

24 0.18149 100.0003 

25 0.16667 100.002 

30 0.11428 99.9962 
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PRESSURE 

~ 

u 

PRESSURE 

_FLOW 
,.--------.... I .----~. 

4. P(5)/P(6) ! . v-P( 1 )*(S-+P(2)) 

P(3)*(S+P(4)) 
I IXC4) 

VALVE 

. P(1) = 3.3798 

P(2) = 1847 

P(S) = 12485 

P(4) = 25' 

+4 PIS) P(7)/P(8) / ~' 

MOTOR X(S) LIMITER 

P(5) = 40000 

P(8):: 0.05 

P(7) = 6.0 X 10-4 

P(8) • 2.24 

FRICTION 

P(9) = 268.5 

P(10)= 9.21 X 105 

P(11)= 18000 

Figure 3. Block Diagram for Example 2 

X(1) 

--10 



determine the region of maximum importance. It was found to be in the 

frequency range of 1.0 to 100 Hz. Then, the frequency response of the 

system with the.nonlinearities was obtained. 

y 
D 

X 

Figure 4. Friction Type Nonlinearity 

Figure 5. Limiter 

The SIDF of a friction type nonlinearity is: 

20 

N1 = 40 ( 16} 
1TA1 

where: 

D value of friction level 

and 

A1 = amplitude of the input to the nonlinearity. 



The SIDF of a limiter iaa 

A2 • amplitude of the input·to the limiterr 

6 • _8&turation limitr 

m • gain of the element before 1aturationr 

• 1 for 16/A:al ~ 1 

V•int tn. above ltDr'a for the t~ 1;1onlinearitiiea, it a&n be ahown 

-thats 

ami 

0 

,.- 3430 
:rw • 

0 

1.12x1o5 

w1 = 4D/wA2, 

w2 = ICI/A3), 

1 

•(17 + .,) 

-7.118x1oe/ 

0 

~ .. 
0.4132 

, 0 

o.ooa3xNa 0 
'5·2-

2'711 a.Jx1o' 
r-= 

o • .at3axw1 -as 

21 

( 17) 

(18) 



A2 = amplitude of x2 , the input to the friction nonlinearity; and 

A3 amplitude of x3 , the_input to the limiter. 

Note that FoF and GoF are both real. 

The gain of the system was obtained for the following cases: 

1. The nonlinearities absent. 

2. For input amplitudes of 250, 500, and 1000 psi when both the 

nonlinearities are present. 

3. For input amplitudes of 500 ~nd 1000 psi when only N1 is 

present. 

4. For input amplitudes of 500 and 100 psi when only N2 is 

present. 

The results for cases _( 1) and ( 2) are shown· in· Figure 6. At low fre­

quencies, the amplitude of the input has a significant effect on the 

gain of the system. This is because the limiter saturates. At high 

frequencies, the gain does not change with input amplitude as .the 

limiter does not saturate. 
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The effect of the nonlinearities is considerable at a frequency of 

1 Hz and an input amplitude of 1000 psi. So, a more detailed study was 

undertaken for those conditi.ons. The frequency response gains predicted 

by the SIDF method were compared with the fundamental component of the 

output obtained-using Fourier analysis of the time doman simulation. 

The results and the percentage error between the two methods are shown 

in Table II. The percentage error is defined as (amplitude gain using 

SIDF-amplitude gain using Fourier analysis)/(amplitude gain using 

Fourier analysis). 

The two methods compare quite well for only one nonlinearity being 

present. The error when both nonlinearities are present is 11.2 
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Figure 6. Results of Example 2 When Both Nonlinearities are Present N 
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percent, which is fairly typical of SIDF analysis results. This error 

is due to the inputs to the nonlinearities not being nearly sinusoidals, 

as shown in their time histories in Figures 7 and a. Considering the 

large higher harmonic contact the. SIDF method did quite well. 

TABLE II 

COMPARISON OF FOURIER ANALYSIS AND SIDF PREDICTIONS 

Amplitude Amplitude Gain 
Nonlinearity Gain Using Using % 

Present SIDF Method Fourier Analysis Error 

No Nonlinearity 0.1358E-4 0.1357E-4 o.oo 

Friction {N 1) Only 0.962E-5 0.974E-5 1.23 

Limiter (N2) Only 0.4973E-5 0.4824E-5 -3.08 

Both Nonlinearities 0.47951E-5 0.4314E-5 -11.15 

The frequency response curves for cases {3) and (4) are shown in 

Figures 9 and 10. The friction level used {D = 600) is not a realistic 

operating condition; it was chosen because the signals are quite non-

sinosoidal and the nonlinearity effect is substantial at this level. 

The nonlinearities have considerable effect on the gain at low frequen-

cies and high input amplitudes. 

The time domain simulation of the system also indicated that there 

were no small limit cycles or self-starting large limit cycles. The 
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determination of the possibility of large limit cycles involves the use 

of two sinusoidal input describing functions and is beyond the scope of 

this study. 

This example. illustrates the amplitude dependency of the frequency 

response of a nonlinear system. It also illustrates the error involved 

when the input to the nonlinearity is not exactly sinusoidal. 



CijAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

A techni9.ue for finding the·frequency response of a nonlinear sys­

tem using the digital computer has been developed. The method involves 

expressing the system equations in state variable form, replacing the · 

nonlinearities·in the system with their respective sinusoidal input des­

cribing functions and solving the resultant set of nonlinear algebraic 

equations numerically. The numerical method that was employed is effec­

tive in solving systems containing mildly nonlinear equations. It 

requires fewer evaluations per iteration than the Newton's Method and 

less iterations than the Gauss-Seidel method [9]. This technique can be 

used only when the system considered does not exhibit limit cycles. 

Taking rigorous care to eliminate the possibility of large limit 

cycles existing in addition to the response to the sinusoidal input is 

a d.ifficult task, in general. Extensive simulation (using a variety of 

initial conditions) is required, or two-sinusoidal input OF methods may 

be employed. Smaller limit cycles can be ruled out with considerable 

confidence if the frequency response plots do not exhibit sharp resonant 

peaks (so that Fop does not have eigenvalues near the jw-axis), or if 

the response is simulated without limit cycles showing up. Both of 

these latter conditions have been met in the studies described here. 

A restricti.on imposed on this technique is that the rest of the 

system must be capable of filtering the higher order harmonics generated 
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by the nonlinearities so that the input to the nonlinearities are nearly 

sinusoidal. This can be checked by performing a few time domain simula­

tions, as was done in this study. 

The extension of the technique to systems containing static.ele­

ments with memory needs further investigation. There is no apparent 

reason why the method used here will not be effective, but examples 

should be studied. Although the quadratically convergent Newton~like 

method is quite effective in solving mildly nonlinear equations,. no 

proof of convergence has been obtained. The \,lsefulness of the technique 

would be increased if a more powerful method than the quadratically con­

vergent Newton-like method is used. 
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APPENDIX 

QUADRATICALLY CONVERGENT NEWTON-LIKE METHOD 

BASED UPON GAUSSIAN ELIMINATION 
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A powerful method available for the solution of nonlinear 

simultaneous algebraic equations is the quadratically convergent 

Newton-like method based upon Gaussian elimination developed by Brown 

[9] • 

Consider a real-valued twice continuously differentiable system of 

n nonlinear equations in. n unknowns. Let it be expressed as: 

(20) 
' . 

or in vector form as: 

!_(,!) = 0 (21) 

It is assumed that Equation (20) satisfies the following conditions. 

1. In a closed region R whose interior contains a root x = r of 

(21), !_(_!) is twice continously differentiable. 

2. The Jacobian J = df/d,! is nonsingular at .! = E• 

3. The initial guess .!0 is chosen in R sufficiently close to r. 

If .!i denoted an ith approximation to the root x = r of (20) and if 

the above conditions hold, the follo-Wing steps can be applied. 

Step 1. £ 1(,!) is expanded in a Taylor series about the point _!i, 

retaining only the first order terms, to give the linear approximation 

(22) 
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where fkx is the partial_derivative of the kth function with respect to 
j 

Equating the right side of (25) to zero and solving for that 

variable, say xP' whose corresponding partial derivative is largest in 

absolute value, one can obtain 

(23) 

Assump17-ion (.2) above guarantees such a solution. The constants 

flx /flx (!,i), j • 1, 2, p -1, p + 1, n -1_, and fi/f1x are saved for 
J p 1 p 

future use. The left-hand side of Equation (23) is renamed bp: 

(24) 
right hand side of (23). 

Step 2. A function 92 of just (n - 1) variables, x1, x2, ••• , 

Xp-1' Kp+1' ••• , Xn is defined as: 

Expand-ing g2 in Taylor series about the point (x1, x2, Xp-1' Xp+1t ••• , 

Xn> 1 , linearizing and solving for that variable whose corresponding 

partial derivative is largest in absolute value, one repeats the process 

until new values of all state variables have been calculated. The point 

E thus obtained is used as the improved approximation xi+1 to the root 

r. Brown [9) has shown that for the conditions stated above, this 

process is well defined. 
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