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CHAPTER I
INTRODUCTION
1.1 Purpose

Frequency résponse techniques are very useful in the analysis of
linear systems. Block diagram and transfer function representations are
easy to manipulate. Frequency response representations such as Bode
plots, Nyquist plots and Nichol's charts are widely used to‘determine
the degree of stability of . linear systems. The versatility of the
techniques is due to the applicability of the principlg of superposi-
tion. 1In the case of nonlinear systems, the principle of superposition
is not applicable. Hence, the usefulness of the frequenéf response
techniques is diminished. WNevertheless, it is desirable to extend these
techniques to the analysis of nonlinear systems.

'The extension is simple in the case of block diagrams. The
preéence of the nonlinearities imposes some restrictions on the manipu-
lations of the diagram [1]. The extension of the transfer function
representation is more difficult. An equation for the noniinearity in
the frequency domain is fequired. The equation should be compatible
with the transfer function of the linear components. This is done by
. approximating the effect of nonlinear components with a "describing
function" (DF) or a quasi-linear gain. A DF is an amplitude dependent
gain, so one important characteristic of a nonlinear system is retained

in the model.



The frequency ?esponﬁe,data of a nonlinear system is useful in many
ways. The freguency response of é nonlinear system cannot be directly
used to'obtain the time response to any given signal input, as is the
case for a linear system. Yet, it can provide useful spectral informa-
tion, such as system bandwidth,‘reSOnances, etc. Since the output of a
nonlinear system is amplitude'depehdent, the frequency response is a
family of curves rafher than a single curve. By applying the Nyguist's
criterion and Nichol's chart, the frequency response data céuld be used
in the determination of the stability of a nonlinear system [2, 3]. The
frequency response curves aré of great interest for'systems whose inputs
are pgriodic functions of time. Such systems may exhibit "jump

resonance." Thus, for several reasons, it is desirable to obtain the

frequency reéponse of a nonlinear system.
1.2 Background

The objective of the study is to develop a method for obtaining the
frequency response of a nonlinear system when the system equations are
of the form:

é = £ (x, wx (1

where
X = state vector of dimension [n];
u = input vector of dimension [mj;
£ ; function of x and u and is of dimension [n]; and
é = derivative of the state vector.

The nonlinear elements are replaced by their describing functions and
the frequency response is obtained. The theoretical basis of this

approach is outlined below.



Krylov and Bogoliubév [4] derived ;he "equivalent linear para-
meters" method, which is analogoﬁé‘to the describing fuﬁction methods,
from consideration of a second-order differential equation. Johnéon [5]
developed a general definition for describing functions."Sridhar [6]
has developed describing function equations for various forms of
nonlinearities.

Johnson'tS] showed that the frequency response of a nonlinear sys-
tem could be used in the-detérmination‘of limit cycles in syétems con-
taining one nonlinearity.

" Gelb and Vandér Welde [2] suggest an analytical method for finding
the frequency response of a nonlinear system using sinusoidal input
describing functions (SIDF). The method consigts of defining a rela-
tionship between the input to thé‘nonliﬁearity and the input to the
system, expressing the gain of the linear and nonlinear elements in
polar form and solving graphically for the input to the nonlinearity.
It bécomes cumbersome and tedious for systems containing more than one
noniinearity. Taylor ([7].and Hannebrink et al. [8] extended the SIDF
analysis to deﬁermine the limit cycle oscillations of systems containing
many nonlinearities.

The method discussed in this study consists of expressing the sys-
tem in state variable form and replacing the nonlinear elements with
their SIDF gains. The basic’concept was first proposed by Taylor [10]
and developed in the coufse of this study. The algebric equations are
expressed in matrix form, and then, a numerical méthod developed by
Brown [9] is used to solve for the amplitudes of the state variables at
individual frequencies. The computer program developed is capable of
finding the frequenéy response of systems containing many

nonlinearities.



CHAPTER II
DESCRIBING FUNCTION APPROACH
2.1 Introduction

In this chapter, a brief description'of the describing function
method is presented. The state variable formulation of nonlinear sys-

tems is discussed.
2.2 Describing Functions

One of the characteristics of a nonlinear sysfém element is that
its_“géin ratio" is dependen£ on both the amplitude and the frequency of
" the input. If the input to the nonlinearity approximatesva sinusoid,
then the sinusoidal input describing function (SIDF) adeqﬁately des-
cribes the gain ofithe element as a function of the amplitude and the
frequency. The SIDF simply replaces the nonlinearity by an épproximate
"equivalent linear gain," which is dependent on the amplitude as well as
the frequency of the input to the nonlinearity. The SIDF technique is
“usually classified as a frequency domain technique.

Consider a pure sinusoidal signal of constant magnitude and con-
stant frequency applied to a nonlinear element. The output of the non-
linearity would be a periodic nonsinusoidal signal which can be
represented by a Fourier series. If the input to the nonlinear element
(N) is x = A sinwt (assumed to be a scalar in this discussion, not X the

state vector) as shown in Figure 1, the output y(x, x) can be



input | ] output

-------- +| NONLINEAR |=====—=——>

x = Asinwt | ELEMENT | y(x, x)
I

y1(A, w) = Aqsin(wt + ¢3)

Figure 1. Definition of SIDF

represented by the Fourierrseries expansion:

y(A sinwt, Awcos wt) = I A_(A, w) sin [nwt + ¢, (B, )] (2)
n=1

where:
A = the amplitude of the input;
w = frequency of the input;
A, = amplitude of the nth harmonic of the output; and
¢, = phase angle of the nth harmonic of the output.

The sinusoidal input describing function (SIDF) is defined in terms of
the fundamental or first harmonic as:
phasor representation of the

N(A, w) - fundamental component of the output
phasor representation of the input

(3)

AR, w)eld, (A, w)
A

or

: 27 4
N(A, w) = 3/7mA /] y(n sin ¥, A w cos ¥) ei¥q b4 (4)
0

where:



¥ = wt;

/:T; and

.
I

e3¥ = cos ¥ + j sin Y.
In cases where the SIDF depends on the input and its derivative,

the SIDF is complex valued. There are several ways of writing such a

DF: .
1. Proportional plus derivative gain
N(A, w) = ny(A, w) + ng(A; w) g (5)
where:

Op = the in-phase component of the gain

2n ‘ (6)
= 1/7A [ y(A sin ¥, Aw cos ¥) sin ¥ & ¥;
1

Ng = the quadrature component of the gain

2m (7)
= 1/nA'f y(A sin ¥, Aw cos ¥) cos ¥ 4 ¥;
0

and s is the Laplace transform variable.

2., Complex gain:
N(A, @) = np(A, w) + i,nq(A: w)
or
N(A, ®) = py(A, w) eION(A, w)

where:



N = /npz + nq2 = A¢/A; and
= -1
N tan (nq/np).

This latter formulation is especially convenient when using the phasor
representation of sinusoidal variables, ‘as is often done in frequency
domain analysis.

The accuracy of the SIDF analysis is based on the following
assumptions:

1. The system must have reached the steady state.

2. The input to the nonlinearity must be approximately

sinusoidal.

This can be achieved only if the rest of the system acts asla low-pass
filter or if the effect of the nonlinearity is mild.

The characteristics of the éIDF of a nonlineér device are that it

' |

is dependent on the amplitude of ‘the input and possibly on the frequency
of the input as wellf If the nonlinearity is static and single-valued
(that is, the output of the nonlinearity is not dependent on the deriva-
tive of the input and the nonlinearity is memoryless), the SIDF is real-
valued and is independent of the frequency of the input. The derivation
of the SIDF for many types of nonlinear devices are discussed by Gelb
and Vander Welde [2]. The SIDF is generally a nonlinear algebfaic func-
tion of amplitude A.

The SIDF allows the advantages of a linear approximation tb be
retained while continuing to reflect the amplitude-dependence of a
nonlinear element acting on an input signal of finite size. The approx-
imation of a nonlinear operatiqn by a linear one is called quasilinear-
ization. The SIDF as defined in Equation (4) provides the static

quasi-linear gain which yields the minimum mean squared approximation



error. The minimum mean squared‘error concept provides the general
extension of the describing function to other problems such as random

inputs and biases [2].
2.3 State Variable Formulation

The definition of tﬁe SIDF as a éain permits the‘output_y in
Figure 1 to be represented as y = N(A, w) X. Tﬁe input to the non-
linearity in a control system could be a combination of the’state vari-
bles x and the system inputs u. If the input to the system is
sinusoidal, the state variables X couid be assumed to be nearly
sinusoidal under ﬁhé conditions stated previously. Then, the state

vector and input vector may be represented as:

x = Im[reJ®t]
u = Im[cej¥t],
Where:
r = complex amplitude vectof'(phasor) of the state variables;
c = complex amplitude vector (phasor) of the input vector; and

Im represents the imaginéry part.

The complex Vectorbg is represented as:
r=p+ig ' (9)

' where:
‘P = in-phase component of the amplitude vector r; and
d = quadrature component of the amplitude vector r

and the input vector ¢ is represented as:

c=a+jb (10)



where:
a = in-phase component of the input vector; and
2:

quadrature component of the input vector.
Using Fourier transform methods, the operator d/dt-can be replaced by

jwe. Thus, Equation (1) can be represented as:

jwIx = Fpp(r, c)x + Gpp(r, c)u (1)

I = identity matrix of dimension (n x n);

Fprp = Fppr + JFppr = complex-valued quasi-linear state dynamics
matrix of dimension (n x n); and

Gpr = Gppr T JGppr = complex-valued quasi-linear input gllocation
matrix of dimension (n x m).

Using Equations (9) and (10), Equdtion (11) can be writteﬁ as:
jwI(p + jg) = Fpplp + 3g) + Gpgpla + jb) (12)

The matrices Fpp and Gpp are obtained by substituting the SIDF's for the
nonlinearities and they are dependent on the complex amplitude vector r
and the ‘input vector c. Their imaginary parts exist only if nonlinear-
ities with memory (e.g., hysteresis) are present in the system.

Separating the real and imaginary parts in Equation (12),

~WIg =~ Fppr R + Fprr 4 ~ Gprr 2 * Gppr 2 = 0
(13)
wIp ~ Fppr 4 ~ Fprr R ~ Gprr B -~ Gppr 2 = 0
Equation (13) is a set of 2n real-valued nonlinear algebraic equations
in p and g. The elements of p and g together constitute 2n variables.

The solution of Equation (13) will be considered in the next chapter.
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Once the values of p and g are obtained the amplitude and phase of the

state variables x are obtained from the relationship:

/pi +q_i,i=1,2,..o,n

Pq; <

8y = tan'1(qi/pi), i= 1, 2;_. e o ., 1N
where:

pg = magnitude of the amplitude; and

6 = phase angle of the amplitude.



CHAPTER III
SOLUTION OF SYSTEM OF EQUATIONS
3.1 Introduction

In this chapter, the numerical solution method for the system of
equations in Equation (13) is presented. The advantages and disadvan-

tages of the numerical method are also discussed.
3.2 Numerical Solution

One powerful method available for the numerical solution of simul-
taneous, nonlinear algebraic equations is the quadratically convergent
Newtpn—like method based upon Gaussian elimination developed by Brown
[9]. It is an iterative method which is a variation of Newton's method
using Gaussian elimination. In each row, the variable whose correspond-
ing partial derivative is largest in absolute value is eliminated and an
iterative function is formed as discussed in the Appendix. .After ob-
taining the value of the last variable, the values of the other varia-
bles are obtained by back substitution in the iteration function. The
latest values of the functions are used in each step. The partial
derivative is evaluated numerically. A subroutine ZSYSTM developed by
ISML [12] based upon this method was used to obtain the solution. Other
methods such as Newton's method and Gauss-Seidel method were considered,
but this algorithm was chosen because of the following considerations as

discussed by Brown [9].

11
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3.3 Advantages and Disadvantages of the
Quadratically Convergent Newton-Like

Method

The advantages are:

1.

3.

4,
5.
The
it

2.

3.

It requires only (N2/2 + 3N/2) functioh_evaluati§ns per itera-
tive step as compared with (N? + N) evaluations of the dis-
cretized Newton's method.

It uses a numerical method to evaluate the partial derivatives,
thus eliminating the need for defining the corresponding equa-
tions, which may become quite cumbersome for higher o;der
systems. 1In additioh, it saves storage space.

Although rigorous convergence results, are yet to bé obtained,
experimental evidence shows a quadrat;c type of convergence
behavior. |

The computation and inversion of a Jacobian is avoided.

It is rapidly convergent compared to the Gauss-Seidel method.
disadvantages of the method. are:

Riéorous convergence for the method is yet to be proved.

Since the method is'only locally convergent, the initial solu-
tion guess has to be reasonably close to the final solution in
order tb obtain convergence.

As the number of nonlinearities increases, the number of itera-

tions required for convergence increases substantiallye.

The method is very useful for the solution of algebraic simultan-

eous equations which contain mildly nonlinear relations. Many practical

nonlinear systems contain mild nonlinear equations; in addition, the



13

SIDFfs for most nonlinearities are milder than the original nonlinear-
ity, so using gquasi-linear gains should enhance the effectiveness of

this method.



CHAPTER 1V
EXAMPLES
4.1 Introduction

_In this chapter, two examples illustrating the various aspects of
the method are presehted. The results obtained were verified by other

methods and the results of the verification are also provided.
4.2 Example 1

As a simple case, the Duffing's equation,

x + 2a;>+ wo2x + hx3 =u (14)
where:-
wg = natural frequency of the system; and
o and h are constants |
is considered. If the input u is a sinusoid B sinwt, then the states
will also be nearly sinusoidal. If x is nearly sinusoidal, its ampli¥
tude A can 5e determined using SIDF analysis. The SIDF of hx3 is 3/4(h)
IAIZ.‘ Substituting this in Equation (i4) and choésing x = xq and ; = X9
as the state variables yields
[o | 1] 0
Fpp = | - , ., Gpp =

-(wg2 + 3'h |a|2) - 2a 1
2 ,

14
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Selecting h=1, a = 0.1 and mo = 5, the frequency response was
obtained. When the system is driven by a sinusoidal input, the solution
for A can be shown to be the roots of

(w2 -wq42) |al + 3121312 + [2004]8]12 = B2 | (15)

4 .

The systeh exhibits jump resonance [11]. This can be séen in Fiéﬁre 2
which is the frequency response plot for Equation (14). vThe'ampIitudes
obtained by ﬁsing the Newton-like method are shown in Table I. Those
amplitudes.satisfy Equation (15) as shown in Table I. This example
illustrates the effectiveness of the solution method of this study even
where multiple solutionsiexist, as occurs for values of w between 8 and
21 rad/sec. At frequencies where there‘is more than one solution, dif-
ferent initial solution guesses have to:be used for obtaining the dif-
‘ferent amplitudes. Whenever a discontinuity is encountered in a
frequency response plét (as at w = 21-rad/sec), the analyst ought to

seek other roots.
4.3 Example 2

In this example, the system shown in Figure 3 is considered. The
system is part of a gimballdrive system. The system is of fourth order
and contains two nonlinearities, a coulomb friction type nonlinearity
(N¢q) and a limiter type honlinearity (No), shown in Figurés 4 and 5.
The frequency response of the syétem is desired, where the input to the
system is pressure and the output is angular displacement-e. The state
variablés (x) chosen are indicatéd in Figure 3.

First, the effects of the nonlinearities were suppressed.and the

frequency response of the linear system was obtained in order to
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AMPLITUDE

16

B =100

-
0 ] 1 l 1 |
0 10 20 30
FREQUENCY (RAD/SEC)
Figure 2. Frequency Response for Duffing's Equation



TABLE I

17

AMPLITUDES FOR B = 100 IN DUFFING'S EQUATION

0.2404

Frequency Amplitude‘of X Input Amplitude B,
- (RAD/SEC) (a) Computed From A, Eq. (15)

1 3.17057 100.
2 3.38107 100.
3 3.7588 100.
4 4.33162 100.
5 5.10651 100.
6 6.05283 100.

7 7.11638 99.9998
8 8.24771 100,
3.17808 100.

9 9.41409 100.0006

7.56317 99.9998

1.87265 100.2732

10 " 10.597 100.0005

9.26606 99,9997

1.35788 100.0001

12 12.97803 99.999

12.1734 100.0004

0.84395 99,9997

15 16.5428 100.003

16.10649 99.9994

0.50041 99,9993

18 20.08119 99.9995

19.84861 99.9987

0.33452 100.0007
20 22,419445 100.

22.419442 99,9989

0.26669 100.0002

21 23.56841 100.0005

100.0011
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TABLE I (Continued)

Frequency Amplitude of x Input Amplitude B,

(RAD/SEC) : (a) ‘ Computed From A, Eq. (15)
22 ' 10.21787 99.9992
23 | 0.19842 | 100.002
24 0.18149 100.0003
25 0.16667 100.002

30 ‘ 0.11428 99,9962




PRESSURE
SUPPLY .
- FLOW .
PRESSURE_ PC1)%(S+P(2)) 4. P(5)/P(6) ‘ , |/' X()] ANGULAR
u ' 4 P(3)%(S+P(4)) ) +4 P(5) P(7)/P(6) _/I ) DISPLA
X(4 ' —
- TORQUE INERTIA e
VALVE _ MOTOR y(3) LIMITER
" Ya—{p(11
+ DAMPIN
FH
i |
FRICTION
P(8)
0.9 P(10)/P(8)-
CANCELLATION

" P(1) = 3.3798 P(5) = 40000 P(9) = 268.5
P(2) = 1847 ~ P(8)=0.05  P(10)=9.21 X 105

P(3) = 12485 P(7) =6.0 X 10-4 P(11)=18000

P(4) = 25 P(8) = 2.24

Figure 3. Block Diagram for Example 2

61
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determine the region of maximum importance. It was found to be in the
frequency range of 1.0 to 100 Hz. Then, the frequency response of the

system with the nonlinearities was obtained.

X

| ~D =wo©

Figure 4. Friction Type Nonlinearity

Figure 5. Limiter

The SIDF of a friction type nonlinearity is:

Nq = 4D | , (16)
TA1
where:
D = value of friction level
and -

Aq = amplitude of‘the input to the nonlinearity.
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The SIDF of a limiter is:
Np = mt(ﬁ/hz) . - (17)

where: ‘ ;
Az = amplitude of the input to the limiter;
§ = gaturation limit; |
m = gain ofltho slement hoforq saturation;

and

£(8/A3) u 2/7 (sin=1(8/A3) + (8/A3) VT = (8/A312] for |8/agl < 1
= 1 o for |8/agl » 1

Using the sbove SIDY's for tho two nonlinearities, it can be shown

thats

0 1 1 o ]
~ 3430 -(67 + Ny) 0.0083xN, 0
Pop = ' ' 7.2 {18)
0 -7,168x108-" 2786 2,3x108
1.82x10% o 0.49321N; =28
her od
and
Spr ™ o t19)
2,71%10"3
0.4932
where s

Ny = 4D/%Ays
Mg = £(8/23)
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A, amplitude of x5, the input to the friction nonlinearity; and

Ag amplitude of x3, the input to the limiter.
Note that Fpp and Gpp are both real.
The géin of the system was obtained for the following cases:
1. The nonlinéarities absent.
2, For input amplitudes of 250, 500, and 1000 psi when both the
nonlinearities are present.
3. For input amplitudes of 500 énd 1000 psi when only N4 is
present.
4. For input amplitudes of 500 and 100 psi when only N5 is
present.
The results for cases (1) and (2) are shown in 'Figure 6. At low fre-
quencies, the amplitude of the input has a significant effect ‘on the -
.gain of the system. This is becausge the limit;r saturates. At high
frequencies, the gain does not change with input amplitude as the
limiter does not saturate.
The effect of the nonlinearities is considerable at a frequency of
1 Hz and an input amplitude of 1000 psi. So, a more detailed study was
undertaken for those conditioﬁs. The frequency response géins predicted
by the SIDF method were compared with the fundamental component of the
output obtained .using Fourier analysis of the time doman simulation.
The fesults and the percentage error beﬁween the two methods are shown
in Table II. The percentageverror is defined as (amplitude gain using
SIDF-amplitude gain using Fourier analysis)/(amplitude gain using
Fourier analysis).

The two methods compare quite well for only one nonlinearity being

present. The error when both nonlinearities are present is 11.2
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percent, which is fairly typical of SIDE’analysis results. This error
is due to the inputs to the nonlinearities not being nearly sinusoidals,
as shown in their time histories in Figures 7 and 8. Considering the

large higher harmonic contact the SIDF method did quite well.

TABLE II

COMPARISON OF FOURIER ANALYSIS AND SIDF PREDICTIONS

Amplitude Amplitude Gain
Nonlinearity Gain Using Using %
Present SIDF Method Fourier Analysis Error
No Nonlinearity 0.1358E-4 - ~ 0.1357E-4 0.00
Friction (N4) Only 0.962E-5 © 0.974E-5 ~1.23
Limiter (Ngy) Only 0.4973E-5" 0.4824E-5 -3.08
Both Nonlinearities 0.47951E-5 0.4314E-5 -11.15

The frequency response curves for cases (3) and (4) are shown in
Figufes 9 and 10. The friction level used (D = 600) is not a reaiistic
operating condition; it was chosen because the signals are quite non-
sinosoidal and the nonlinearity effect is substantial at this level.
The nonlinearities have considerable effect on the gain at low frequen-
cies and high input amplitudes.

The time domain simulation of the system also indicated that there

were no small limit cycles or self-starting large limit cycles. The
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determination of the possibility of large limit cyéles involves the use
of two sinusoidal input describing functions and is beyond the scope of
this study.

" . This example'illustrates the amplitude dependency of theifrequepcy
response of A nonlinear system. it also illustrates the error.involved

when the input to the nénlinearity is not exactly sinusoidal.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

A technique for finding the'frequency response of a nonlinear sys-
tem using the digital computer has been developed. The method involves
expressing the system equations in state Qariable form, replacing the -
nonlinearities in the system with their respective sinﬁéoidal input des-
cribing functions and solving the resultant set of nonlinear algebraic
equations numerically. The numerical method that was.employed is effec-
tive in solving systens cont&ininé mildl? nonlinear equations. It
requires fewer evaluations per iteration than the Newton's Method and
less iterations than the Gauss—Séidel method [9]. This technique can be
used only when the system considered does not exhibit limit cycles.

Taking rigorous care to eliminate the possibility of large limit
cycles existing in addition to the resbonse to the sinusoidal input is
a difficult task, in general. Extensive simulation (using a ?ariety of
.initial conditions) is required, or two-sinusoidal input DF methods may
be employed. Smaller limit cycles can be ruled out with congiderable
confidence if the frequency response plots do not exhibit sharp resonant
péaks (so that Fpp does not have eigenvalues near the jw-axis), or if
the response is simulated without limit cycles showing up. Both of
these latter conditions have been met in the studies described here.

A restriction imposed on this technique is that the rest of the

system must be capable of filtering the higher order harmonics generated
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by thevnonlinearities so that the input to the nonlinearities are nearly
sinusoidal. This can be checked by éerforming a few time domain simula-
tions, as was done in this study.

The extension of the technique to systemS-containing static ele-
ments with memory needs furthef-iﬂvestigation. There is no apparent
reason why the method used hére Qill nét be effective, but examples.
should be studied. Although the quadratically convergent Newton-like
method is quite effective in solving mildly ndnlinear equations, no
proof Qf convergence has been obtained. The usefulness of the technique
would be increased if a more powerful method than the quadratically con-

vergent Newton-like method is used.
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QUADRATICALLY CONVERGENT NEWTON-LIKE METHOD

BASED UPON GAUSSIAN ELIMINATION
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A powerful method available for ﬁhe sqlution of nonlinear
simultaneous algebraic equations.is'fhe quadratically convergent
Newton-like method based upon Gaussian elimination developed by Brown
[9].

Consider a real-valued twicé cqntinuously differentiable system of

n nonlinear equations in n unknowns. Let it be expressed as:

£4(x) = £4(xq, X9, X3, o « ¢, %X,) =0
£a(x) = £5(xq, X9, X3, o o o, X)) =0 (20)
fn(g.c_) = £.(Xq, Xg, X3, « o oy Xp) =0
or in vector fofm as::
f(x) =0 (21)

It is assumed that Equation (20) satisfies the following conditions.
1« In a élosed region.R whose ;nterior contains a root x =r of
(21), £(x) is twice continously differentiable..
2, The Jacobian J = dg/d§ is nonsingular'at X = r.
3. The initial guess 50 is chosen in R sufficiently close to r.
r of (zd) and if

1f ii denoted an ith approximation to the root x =

the above conditions hold, the following steps can be applied.

Step 1. f1(§)'is expanded in a Taylor series about the point 5?,

retaining only the first order terms, to give the linear approximation

£4(x) = £4(xi) + f1x1(_>_<_i)(x1 - x::) + f1x2(§i)(x2 - xiz) R
| A | (22)
£15 (x1)(x, - xi) :
n n
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where £, is the partial derivative of the kth function with respect to
J .
Xj-
Equating the right side of (25) to zero and solving for that
variable, say Xpe whose corresponding partial derivative is largest in

. absolute value, one can obtain

- 1 \ :
= xi - nz (£ L /£ L ) (x4 = xi) = fi/f (23)
Xp 1x /Fix j 1/f1x
P 4=1 3 P 3 P

Assumption (2) above guarantees such a solution. The constants
flxj/flx (ﬁi), j=1,2,p~-1,p+ 1, n -1, and f%'-/flx are saved for
p p

future use. The left-hand side of Equation (23) is renamed bP:

bp(x1' xz' « o ey x‘_“' xp.’.-l, s s ey Xn) "‘
‘ (24)
right hand side of (23).
Step 2. A function g3 of just (n - 1) variables, x4, X3, « + o,

Xp=1s Xp+1s ¢ o ¢4 Xp 18 defined as:
g2 = £2(xq, X2/ Xpaqs bps Xpe1s %p) (25)

_ Expanding g5 in Taflor series about the point (x4, x5, %X,.1, Kpir o o ;,
¥n)ir line&rizing and solving for that variable whose corresbonding
paftial.derivative is largest in absolute value,‘one ;epeats the process
until new values of all state variables have been calculated. The point
b thus obtained is used as the improved approximation x1+1 £o the root

r. Brown [9] has shown that for the conditions stated above, this

process is well defined.
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