
MULTI-USER DISK OPERATING SYSTEH

FOR 8080 BASED MICROCOMPUTERS

By

REGINALD BYRON MASON
II

Bachelor of Science in Electrical Engineering

University of Oklahoma

Norman, Oklahoma

1970

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
HASTER OF SCIENCE

July, 1981

. '

/<.'

MULTI-USER DISK OPERATING SYSTEM

FOR 8080 BASED MICROCOMPUTERS

Th s Adviser

/2;1;~~£~

~~~ 
l)~n~· 

Dean of the Graduate College 

ii 

1089596 



PREFACE 

This project involved the design of hardware and writing of 

software necessary to implement a multi-user environment on a single 

processor microcomputer system. The primary objective was to develop a 

versatile time sharing system for use by the microcomputer lab in 

teaching microprocessor fundamentals. 

The author wishes to express his appreciation to his thesis 

adviser, Dr. Edward Shreve, for his guidance in the initial stages of 

this project. The author also wishes to thank Dr. Louis Johnson for his 

assistance in the final installation and benchmarking of the system. 

The author extends a note of acknowledgement to Dr. Richard Cummins 

for his assistance and advice throughout the course of study. 

A note of gratitude goes to my boss, Mr. Truman Hefner, and to the 

Western Electric Company, Oklahoma City Works, for providing the 

physical resources necessary for the culmination of this project. 

Special acknowledgement is especially due to my wife, Becky, for 

her understanding and constant encouragement. She sacrificed many long 

hours diligently typing the early drafts and the final preparation of 

this manuscript. 

Finally, special gratitude goes to my dedicated wife, Becky, our 

son, Brad, and our daughter, Beth, who often sacrificed their "family 

time" in order that I could pursue my graduate study, in addition to my 

work at Western Electric. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION • 1 

II. SYSTEM HARDWARE 5 

Computer Configuration 5 
Context Switching Board • 7 
CRT Multiplexer 10 
Startup Procedure • 11 

III. ZDOS ORGANIZATION 17 

System Overview • 17 
Diskette Organization • 19 
Memory Organization • 19 
File Specification 20 
Command String Interpreter 20 
Intrinsic Commands 23 

IV. ZDOS FILE SYSTEM • 33 

Directory Organization 33 
Storage Allocation Map 34 
Directory Map • 38 
File Allocation Map 39 

v. INTERFACING WITH ZDOS 46 

File Control Block 46 
System Calls 48 
Error Handling 62 

vi. MULTI-USER IMPLEMENTATION 65 

Initialization 65 
Context Switching 67 
Interlock System 69 
LDM File Format 72 

VII. SUMMARY AND CONCLUSIONS 75 

A SELECTED BIBLIOGRAPHY 78 

iv 



Chapter Page 

APPENDIX A - SYSTEM CALLS • • • • . . . . . . . . . . . • • • 79 

APPENDIX B - INTRINSIC COMMANDS • • • • . . . . . . . . 81 

APPENDIX C - SYSTEM ERROR MESSAGES 

APPENDIX D - HEXADECIMAL FILE FORMAT 

. . . . . . . . . 
. . . . . . . . . 

. . . . 

• • 82 

APPENDIX E - EDITOR USER'S MANUAL ••••••• 

APPENDIX F - 8080/Z80 ASSEMBLER USER'S MANUAL • • • . . . . 

83 

84 

• 103 

v 



LIST OF FIGURES 

Figure Page 

1 Multi-user System Configuration • • • • • • • • • • • • • • • 4 

2 Context Switching Board Block Diagram • • • • • • • • • • • • 13 

3 CRT Multiplexer Block Diagram • • • • • • • • • • • • • • • • 14 

4 Process Status Byte • • • • • • • • • • • • • • • • • • • • • 15 

5 CSB/MUX Input and Output Port Addresses • • • • • • • • • • • 15 

6 CSB/MUX Circuit Board • • • • • • • • • • • • • • • • • • • • 16 

7 Eight-user RS-232 Serial I/O Cable • • • • • • • • • • • • • 16 

8 8" System Diskette Organization . . . . . . . . . . . . . . . 31 

9 System Memory Map • • • • • • • • • • • • • • • • • • • • • • 32 

10 Storage Allocation Map (SAM) • • • • • • • • • • • • • • • • 43 

11 File Allocation Map (FAM) Block • • • • • • • • • • • • • • • 44 

12 Disk File Organization • • • • • • • • • • • • . . . . . 45 

vi 



NOMENCLATURE 

Allocation Technique - The method of providing a process access to a 

shared resource. 

Blocked - The state of a process waiting for either CPU time or a 

resource. 

CDOS - Cromemco Disk Operating System. 

Concurrency - The simultaneous logical and /or physical execution of 

several parts of a program. 

Context Block - The state of a processor defined by the set of processor 

registers. 

Context Switching - The swapping of a previously saved state of the 

processor with the current state of the processor in order to activate 

the previous process. 

CP/M - Software operating system sold by Digital Research, Garden Grove, 

California. 

CPU Central Processing Unit (such as Z80, Intel 8080, etc.). 

CRT- Cathode Ray Tube (user consoles). 

CSB- Context Switching Board (provides time-multiplexing for system). 

DMA - Direct Memory Access. 

EOF- End-of-file mark (control Z = lAH). 

FAM - File Allocation Map. 

ISIS - Intel System Implementation Supervisor. (MDS-800 Operating 

System). 

vii 



Kernel - An operating system module that implements software processes 

and furnishes the means of interprocess communication; usually written 

in assembly language. 

LDM - Load Module format file. 

MDOS - Single user version of ZDOS that runs on an MDS-800. 

Mutual Exclusion - The property that guarantees two or more different 

processes do not access a common resource, such as a buffer, 

simultaneously. 

MUX - Multiplexer Circuit that provides interface to user consoles. 

PL/M - Intel high level language similar to PL/I. 

Priority 7 A property that designates a process' relative urgency. 

Process - The basic unit of computation within an operating system. 

Also termed a software process to distinguish it from an abstract 

process, which is the task the software process implements. 

Process-control Block - The data structure that defines a software 

process and its status. 

Protection - A mechanism by which inviolate walls between any two 

processes is achieved; usually implemented in hardware. 

PSB Process Status Byte. 

RAM - Random Access Memory. 

RDOS - Firmware monitor supplied with Cromemco System. 

Re-entrancy - A property of code that allows multiple copies of a code 

module to execute simultaneously; the code must not be self modifying, 

and data references must occur relative to the stack region. 

Resource - Any device or item used by a computer, including special 

areas of memory such as buffers. 

ROM - Read Only Memory. 

viii 



SAM - Storage Allocation Map. 

Time-slicing - The sharing of CPU time among several software processes 

by giving each process a defined interval (slice) of the CPU's time. 

USART - Universal Synchronous-Asynchronous Receiver Transmitter. 

Virtual Processor - The state of a processor normally defined by the 

ZDOS -Multi-user Disk Operating System designed for Cromemco systems. 

set of internal registers, the stack pointer and the program counter. 

ix 



CHAPTER I 

INTRODUCTION 

In September of 1978, Dr. Edward L. Shreve requested that the 

author investigate the possibility of providing the necessary hardware 

and ·software to implement a multi-user disk operating system for use by 

the Oklahoma State University Microcomputer Department. · Since the 

author was familiar with Cromemco's Z80 based computer system, it was 

suggested that OSU purchase a Cromemco System Three. Cromemco was 

contacted about the possibility of converting CDOS (Cromemco Disk 

Operating System) software to a multi-user type environment. Cromemco 

had attempted this at one time, but ran into the problem of conflicting 

system calls. After consulting various references on time sharing 

techniques, it was decided that the system software had to be written 

from scratch. This thesis describes the culmination of this two and 

one-half year project. 

In the beginning, the following design goals were formulated: (1) 

Write system software in a re-entrant form, i.e., no local variable 

storage, in order to facilitate conversion to a multi-user environment. 

(2) As a result of constraint #1, the system software could be ROM­

based, which would add some intrinsic system memory protection and 

system reliability. (3) Include system files, such as the Editor and 

Assembler, as part of the ROM-based software, in order to save disk 

space for user files. This constraint was added to allow use of mini-

1 



2 

floppy disks as a mass storage device, despite their limited storage 

capabilities at the time. (4) Provide most system functions as system 

calls to enable the user to interface with system resources easily and 

efficiently. (5) Eliminate all the gingerbread that experience has 

shown to be relatively useless, e.g., default list files on the disk. 

As the project progressed, the above stated goals were modified as more 

experience was gained with the actual system results. 

The Cromemco system software was not efficient and powerful enough 

to handle the task of creating the multi-user software on the target 

hardware environment. An MDS-800 Development System was available and 

provided the necessary software to complete the task. Early in the 

design cycle, the code was prepared on the MDS-800 and burned into ROMS 

for debugging on the target hardware system. But this proved to be 

tedious and very time consuming in light of the multitude of changes 

necessary. A scheme was therefore developed, whereby the overall system 

software as single-user could be simulated on the MDS-800. 

CompatibilitY was maintained in passing parameters to disk drivers. 

so that Cromemco 4FDC disk controller drivers could be substituted in 

the final linking process to create the system software for use on the 

Cromemco computer. All code was located at 4000H and higher, so as to 

maintain the ISIS operating system in memory in case it was necessary to 

make code changes in the debugging process. It was therefore possible 

to boot from ISIS to MDOS (MDOS refers to the single-user version of the 

software that runs on the ~IDS-800) with relative ease, which made the 

development of the software run much smoother. 

Another helpful aid in system development involved using the boot 

facility of the RDOS ROM in the Cromemco system. A program called 



3 

Loader was written on the MDS-800 using the ISIS system calls. This 

program copies a short binary bootstrap loader similar to the one that 

boots CDOS. onto a blank formatted disk located in Drive 1. It then 

copies ZDOS onto track 0 through 2 (about 8K). A modified version of 

RDOS now boots ZDOS in the same manner as it boots enos. In this way, 

it is not necessary to burn ROMS each time a change is made. If these 

methods were implemented earlier in the design process, countless hours 

of development time could have been spared. The current implementation 

of ZDOS is still being booted from a disk into RAM. Figure 1 gives a 

pictorial representation of the multi-user system. 

Once the basic operating system reached a certain level of maturity 

and the Editor and Assembler were written, it was possible to use the 

system itself to make or try modifications to itself. In fact, since 

MDOS is written in assembly language, as opposed to PL/M in the case of 

ISIS, MDOS runs about 3 to 4 times faster than ISIS. It became easier 

to write patches to ~IDOS, using MDOS than to re-edit MDOS sources files 

and re-link to whole system. There are still, however, areas of MDOS 

that would have to be improved to bring it up to the full power of ISIS. 



4 

DISKS LINE 
PRINTER 

RAM RAM 
USER #1 . . . . . . . . . . . . . . . USER f/8 

t 
DISK LINE 

CONTROLLER -i t 
PRINTER 

INTERFACE 

SYSTEM 
CPU I CSB 

ROM l 

CRT 
MUX 

~ 

CRT CRT 
USER #1 . . . . . . . . . . . . . . . USER 1!8 

Figure 1. Multi-user System Configuration 



CHAPTER II 

SYSTEM HARDWARE 

Computer Configuration 

Multi-user ZDOS was developed for implementation on a Cromemco Z2-D 

or System 3, but should work with little or no modification on any S-100 

bus microcomputer equipped with bank switchable memory boards. Any 

discussion of specific hardware will assume a Cromemco Z80 based system 

as the hardware environment. A Z80 processor is not necessary, as the 

system software was written in 8080 code. It would be necessary 

however, to change the interrupt scheme for context switching. 

ZDOS was written in such a manner as to be ROM-based. The present 

configuration runs out of a 16K RAM board located at 8000H~ This allows 

retaining the RDOS ROM at OCOOOH, enabling the system to run the 

Cromemco supplied CDOS operating system. ZDOS software is writt-en in a 

re-entrant fashion, and as such, does not store any variables local to 

itself. There is no system RAM to maintain. All data variables and 

symbols are stored in user RAM. All user RAM occupies the same address 

space in one of eight banks of memory. This hardware feature is 

available on Cromemco and other S-100 bus memory boards. Output port 

40H is used as the bank switching port. Each bit corresponds to a bank 

of 64K of addressing space. The bank select logic circuit decodes 

commands sent to output port 40H by the CPU to determine if the memory 

bank requested should be active. If the CPU sends a logic one to any 

5 



6 

bit position for which the bank select switch is on, the board will be 

enabled. Otherwise the board will be disabled.· On power-up, the active 

memory bank is 0. Only one bank of memory is active at any given. time. 

Each user may have as much as 32K of memory in the current 

configuration. The RAM board at 8000H on which the system software 

resides is set up with all eight bank switches on so that it will be 

enabled in all banks when context switching occurs. Cromemco supplies 

memory boards in 4K and 16K increments, but 16K of RAM per user is 

suggested as an ideal configuration. For more information, refer to the 

Cromemco 16KZ RAM Instruction Manual. 

The Cromemco prpcessor card is a Z80 based CPU designed to simulate 

all the S-100 bus signals that were originally defined for an 8080 

processor chip. The CPU card is switch selectable to run at 2 or 4 MHz. 

This switch setting is irrelevant to zoos. 

The Cromemco 4FDC Disk Controller card is a non-DMA, programmed I/O 

type interface. It uses a Western Digital 1771 Disk Controller chip. 

This type controller is not the best suited for a multi-user 

environment, but ZDOS makes up for this by the use of a novel 

interlocking scheme. This technique is discussed briefly in the next 

section. 

A custom hardware board, CSB/MUX (Context Switching/CRT 

Multiplexer), is required to implement a multi-user environment. The 

CSB supplies interrupts at 33 msec. intervals (unless modified by system 

software). The CRT Multiplexer handles the interface of eight CRT 

consoles to the system. This special hardware will be described in more 

detail in the next section. 

-



An ideal hardware configuration suitable for immediate 

implementation with current software and hardware available would 

consist of the following: 

1 Cromemco Z2-D or System 3 computer 

1 Cromemco zao cPu board 

1 Cromemco 4FDC Disk Controller 

1 Cromemco 16K RAM board for system software 

1 Cromemco 16K RAM board per user 

1 Custom buiit CSB/}ruX board 

Context Switching Board 

7 

The CSB is the heart of the multi-user system. The CSB generates 

the basic 33 msec. time slice used by the system to share system 

resources among 8 users. Refer to Figure 2 for a block diagram of the 

CSB used in the following discussion. The system clock is fed to a 

divider chain that produces a 33 msec. pulse train. This pulse train 

sets the interrupt flip-flop, which in turn applies a· ground to the 

interrupt request line (PINT) of the processor. During software 

initialization, the !-register was loaded with the upper 8 bits of a 

vector address of the context switching subroutine and the processor was 

placed in interrupt mode 2 (IM 2). When the interrupt occurs, the CPU 

issues an interrupt acknowledge (SINTA) which gates the lower 8 bits of 

the vector address of the context switching subroutine onto the data 

bus. The CPU uses this vector to fetch the address of the context 

switching subroutine and branches to the same. Since the interrupt 

enable flag is disabled, no other interrupt can occur until context 

switching has been completed. Refer to the section on context switching 



8 

in Chapter VI for further explanation. 

If a user is performing a compute bound function, i.e., not doing 

disk I/O or console I/0, a full 33 msec. time slice is given to the 

user. Otherwise, the length of the time slice is a function of the I/O 

being performed. The system software relinguishes use of the current 

time slice by the use of an output instruction to port OEFH. This 

action causes the time slice clock to be cleared and forces an immediate 

context switch to the next user. In this manner, a 33 msec. time slice 

is not wasted looping on a CRT ready flag or doing a disk seek command. 

This scheme increases the throughput of the system several orders of 

magnitude. The average time slice length in this case is approximately 

140 usee. 

The CSB also maintains a user number port at OEEH. Each bit of 

this port corresponds to a user (bit O=user l, ••• ,bit 7=user 8). The 

context switching software maintains this port by reading the port, 

rotating the contents to the left, and writing it back out. The system 

reads this port during directory accesses to check to see if the current 

user owns the file being requested. This port is duplicated as a write 

only port for use by the CRT multiplexer to gate the proper USART status 

and data onto the data bus. The format of this port is identical to the 

format of bank switching port. 

The CSB maintains a port at OE8H called the Process Status Byte 

(PSB). The PSB can be considered as a collection of 8 flags that the 

system uses to keep track of the system resources. These flags form an 

interlocking mechanism that prevents fatal conflicting calls to shared 

resources. Refer to Figure 4 for an explanation of the PSB bits. For 

example, a user may request a sector of data from the disk, set bit 0 of 



9 

the PSB and force a context switch to the next user. In this manner, 

disk I/O does not hold up the system while doing a seek. The bit set in 

the PSB prevents the next·user from initiating a conflicting disk 

request until the current disk I/O is complete. In using this method, 

the need for system memory to store I/O queues was eliminated. The only 

drawback is that disk I/O is not necessarily first come, first serve. 

For example, let us assume user #1 currently has control of the disk and 

user #7 requests disk services. User #7 sees that bit 0 of the PSB is 

set. User #7 forces a context switch to user #8. User #7 status is 

saved at the disk seek routine. Now assume user #1 has completed 

reading a sector of data. The system resets bit 0 in the PSB and forces 

a context switch. This prevents any one user from ''hogging" the disk. 

User #2 is doing compute bound operations and utilizes a full 33 msec. 

time slice. But now assume user #3 decides to read the disk. Since bit 

0 in the PSB is reset, user #3 is able to request a seek to the disk. 

Now user #3 has the disk tied up and when user #7 is switched in, he 

finds the disk busy again. If user #4 through #6 likewise in the 

interim queue up for the disk, user #7 must wait. On the average, this 

does not cause much of a wait. At no time can any one user access more 

than one sector before all other users have a chance to access a sector. 

For a clearer understandin~ of how this method of using the PSB works. 

refer to the listing of the DSEEK subroutine in module ZTYPE. The input 

port at OEFH is used during booting and system initialization. The 

modified RDOS ROM checks to see if the CSB/MUX board is installed in the 

system. If not, the RDOS monitor is entered. If the board is present, 

bit 7 of port OEFH contains the status of the multi-user switch. If the 

multi-user mode is enabled. the system bootstrap loader is read from 



10 

track O, sector 1 into memory bank 0 and executed. This bootstrap in 

turn boots the system kernel into a 16K RAM board at 8000H. The system 

initialization-routine inputs the BCD number of users switch setting 

from port OEFH, bits 0-3. If the number of users selected is out of the 

range of 1 to 8, then the system reports: 

ILLEGAL MAX USER 

and halts. The input port at OEBH is wired such that: 

value3 1 SHL (number of users) 

USER NO. 

1 
2 
3 
4 
5 
6 
7 
8 

PORT VALUE 

0000 0010 
0000 0100 
0000 1000 
0001 0000 
0010 0000 
0100 0000 
1000 0000 
0000 0000 

The reason for this implementation was to reduce the computation 

necessary by the context switching subroutine, thereby reducing the time 

overhead necessary to switch to the next user. For a better 

understanding of this, refer to the discussion of the context switching 

subroutine SWITCH in module ZTYPE. 

CRT Multiplexer 

The CRT Multiplexer circuit is responsible for interfacing all 

eight users to the system. The design utilizes eight Intel 8251A 

Universal Asynchronous-Synchronous Receiver-Transmitters (USART). Refer 

to Figure 3 for a block diagram of the MUX used in the following 

discussion. As mentioned in the last section. the user number port at 

OEEH is duplicated as write only port. Whenever the I/O decodin~ 



11 

circuit detects an I/O DATA or STATUS, this signal is gated with the 

current user number, and is used to assert the chip select line on the 

current user's USART chip. Therefore the correct USART chip will drive 

the data bus in response to an I/O DATA or STATUS request. The USARTs 

are initialized to the proper mode of operation during system 

initialization at boot time. 

Figure 5 gives a breakdown of the port addresses used by the 

CSB/MUX circuit board. 

Startup Procedure 

After following the instructions supplied by Cromemco and checking 

basic system sanity by booting up enos, perform the following steps to 

reconfigure the system for ZDOS: 

1. Replace the RDOS ROM on the Disk Controller with the modified ROM. 

2. Mount the eight user I/O cable to the back of the computer. 

3. Install the CSB/MUX board in the system and hook up 8 user I/O 

cable. 

4. Install a 16K RAM board at 8000H with all 8 bank switches enabled. 

(Note: this is very important as the system RAM must answer to all banks 

when a context switch occurs). 

s. Install a 16K RAM board at OOOOH for each of the users to be 

implemented. Set the bank switch for each user RAM board accordingly, 

i.e., user 1 in bank 0, user 2 in bank 1, etc. 

6. Set multi-user mode switch on CSB/MUX board. LED should be on. 

7. Turn on system and insert multi-user system disk in drive 0. System 

should boot and prompt on each user's CRT. 



12 

In order to boot CDOS, turn off multi•user mode switch, and switch 

user #1 CRT cable to I/O connector on 4FDC board. Insert CDOS disk in 

drive 0 and reset the computer. CDOS should boot into memory. 



13 

S-100 Bus 

2 Mhz Clock msec 
j I 

Chain I -L) INT Timing 
F/F i)--

L Reset 

33 

PINT ..,. 

AO-A7 --
SINP OUT CONTXT 

Multi-user 
PDBIN I/O Mode 

Decode Switch 

SOUT Number of Users 
Selector Switch 

PWR 

... OFEH.~ 4/10 Decoderj 

-f i 
SINTA Interrupt MAXUSR MULTI/NUMUSR 

Vector Port Port 

'~ ~ 

IN OEBH IN OEFH 

DIO-DI7 

~ 

IN OEEH ... Current IN OESH .., Process 
OUT OEEH User OUT OESH Status 

Number Byte 

DOO-D07 

Figure 2. Context Switching Board Block Diagram 



S-100 Bus ~ US ART 
USER 

- lf8 

DI0-DI7 . - . - . 
. 
. . 
. 
. 

DOO-D07 
1-

. 

. 
0 

. 

. 

. 

. 

. 

. 
0 

. 
AO-A7 0 

I/0 0 

SINP D STAT+DATA . 
E 

PDBIN c 
0 

SOUT D 
E 

PWR 

OUT OEEH 

. - USART 

rt=>--: 
USER 
Ill 

l...{lloJolo o 1 o 1 o 
Bit 

7 

RS-232 
Interface 

o I 
Bit 

0 

-

. 

. 

. . . 

. 

. 

. . 
0 

. 

. . 

. 

. 

. 

. 

. 

. 

. 

. 

. . 

Current User 
Number Port 
(Write Only) 

Figure 3. CRT Multiplexer Block Diagram 

14 

CRT 
USER 

118 

. 

. . 

. 

. 

. 

. . . 
0 

0 

0 

. 

. 

. 
0 

. 

. 

. 
0 

. 
0 

. 
CRT 

USER 
Ill 



Bit 
7 

Bit 
0 

LPT SUF e:.Tfit//'iV//1 DIR ., SIP DIP 

Bit 0 

Bit 1 

Port Address = OE8H 

(DIP) Disk I/0 in Progress 

(SIP) Sector Allocation in Progress 

Bit 2 (DIR) Directory Allocation in Progress 

Bit 3-5 - Reserved for future use 

Bit 6 

Bit 7 

(SUF) Super User Flag 

(LPT) Line Printer in Use 

Figure 4. Process Status Byte 

PORT INPUT OUTPUT 
ADDR 

E8 PSB PSB 

E9 - -

EA - -
EB MAXUSR -

EC CRT DATA CRT DATA 

ED CRT STATUS CRT COMMAND 

EE CURRENT USER CURRENT USER 

EF MULTI/NUMUSR CONTXT 

Figure 5. CSB/MUX Input and Output Port Addresses 

15 



16 

" . 

Figure 6. CSB/MUX Circuit Board 

Figure 7. Eight-User RS-232 Serial I/O Cable 



CHAPTER III 

ZDOS ORGANIZATION 

System Overview 

At present, there are two implementations of the basic disk 

operating system software; MDOS and znos. MDOS is the single-user 

version that runs on the Intel MDS-800 Development System. ZDOS is the 

multi-user version that runs on the Cromemco Z2-D or System Three. The 

only considerations that differentiate the two systems are the system 

I/O driver modules MTYPE and ZTYPE. These modules contain disk I/O 

software drivers, console and line printer I/O drivers and system 

initialization routines. ZTYPE contains additional routines to 

implement the multi-user system. The intended purpose in future 

discussions will center on descriptions of ZDOS, but general software 

descriptions not involving multi-user capability will also apply to 

MOOS. 

ZDOS is a multi-user disk operating system designed to allow eight 

users to share a single processor system through time division 

techniques. Each of the users' CRT consoles are interfaced through a 

special CRT multiplexer circuit, hereafter referred to as the MUX. 

Existence of multiple terminals is invisible to system I/O software, 

i.e., all terminals are referenced through the same data and status port 

number. The context switching board (CSB) provides the necessary clock 

and timing control of interrupts to multiplex each user with the system. 

17 



18 

Currently, ZDOS is loaded from the disk into a 16K Ram board 

addressed at BOOOH. The first 600H bytes of user RAM is reserved for 

system variables, buffers, etc. This leaves 14,848 bytes of RAM 

available to each user. Track 3 of the disk is reserved for the storage 

allocation map (SAM) and disk directory. Track 0 through 2 contains the 

bootstrap loader and the ZDOS system software. This leaves 1924 blocks 

of 128 bytes each (246,272 bytes) available for user files. The 

directory may contain 192 files. Each file carries with it a user ID 

number which makes it accessible only to its owner. In this manner, a 

single disk directory appears to the users as eight separate 

directories, each of which are invisible to· the other users. The basic 

interface between ZDOS and the user is accomplished through the use of 

system calls. Using a single system call, e.g., a user may fetch a 

single byte at a time from a disk file. ZDOS contains intrinsic 

commands that perform useful tasks such as, listing the directory, 

erasing a file from the directory or typing a file on the console. The 

user may create extrinsic command files using the ZDOS Text Editor and 

8080/Z80 Assembler. ZDOS contains a rather useful intrinsic command 

called DISK which allows individual track and sectors to be read, 

modified and written back on the disk. Certain intrinsic commands, such 

as DISK, are reserved for the exGlusive use of the system administrator 

and are controlled by the use of the "super user" function. 



19 

Diskette Organization 

The mass storage medium for ZDOS is a dual-drive Per Sci Model 277 

eight inch floppy disk supplied as standard equipment with Cromemco 

Computer Systems. This drive uses a standard IBM 3740 soft sectored 

format single density diskette. Each diskette can store 256 Kilobytes 

of data. An eight inch disk· is organized as 77 concentric tracks, each 

containing 26 sectors of 128 bytes each. The ZDOS bootstap loader is 

located on track 0, sector 1. The modified RDOS ROM loads the bootstrap 

into bank 0 at address SOH in the same manner as it loads enos. The 

bootstrap reads the ZDOS kernel from track 0. sector 2 through track 2. 

sector 26 into the RAM board located at address 8000H. Track 3, sector 

1 ·and 2 contains the storage allocation map for the entire diskette. 

Track 3, sector 3 through 26 contains the disk directory. Out of the 

possible 2002 sectors available on a disk, only 78 are reserved for 

system use. This leaves 1924 blocks of 128 bytes each (246,272 bytes) 

available for storage of user files. Refer to Figure 8 for the layout 

described above. 

Memory Ogranization 

Each user in the current implementation of ZDOS is allocated 16 

Kilobytes of RAM located in the address space 0 to 3FFFH. The first 

600H bytes of each user RAM is reserved for use by the system. This 

organization is defined by the module ZPAGEO. The remaining 14,848 

bytes of user RAM is available for use by system or user defined 

extrinsic commands or programs. User RAM can be expanded by adding 



20 

another 16K RAM board in the address space 4000H to 7FFFH. This will 

give the user about 31K of useable RAM. ZDOS occupies the address space 

8000H to OBFFFH, residing in a 16K RAM or ROM board. Currently, ZDOS is 

executing out of RAM. The address space OCOOOH to OFFFFH is occupied by 

a lK RDOS ROM (OCOOOH to OC3FFH). Refer to Figure 9 for the layout of 

the system memory. 

File Specification 

All data stored on the disk, whether ASCII or binary, is referred 

to by the system through a file specification. A file specification 

consists of an optional disk drive specification, a file name, and an 

optional file type extension. All ZDOS device specifications contain 

two characters enclosed by colons. Drive 0 is specified by :DO: and 

drive one by :Dl:. File names are limited to a maximum of six 

characters, the first of which must be alphabetic. File extensions are 

limited to a maximum of three characters, the first of which must be 

alphabetic. File type extensions are normally used to give an 

indication of the type of data in the file. ZDOS only reserves the use 

of .HEX for hexadecimal files, .JOB for submit command files, ASCII 

source files an extension of some kind, such as .ASC or .SRC. Most 

executable system programs or extrinsic commands have no extension. 

Command String Interpreter 

After the system hardware boots in ZDOS, control is transferred to 

the DOS base level routine which performs system initialization and some 

preliminary housekeeping chores. System initialization is quite 

involved and will be discussed in another section. 



21 

The stack pointer is set and system initialization subroutine is 

called. After.this ZDOS looks for a file on the disk called POWRUP.HEX. 

If this file exists, it is loaded and executed. In this way, the user 

may define the way ZDOS is booted. POWRUP.HEX may contain instructions 

for a different boot message format to be printed on the console or may 

load still another user created program that would utilize ZDOS without 

allowing it to report its existence. If POWRUP.HEX does not exist, then 

ZDOS reports the following to the console: 

ZDOS, Vx.x 

where x.x is the current version number. The console bell is sounded 

with the boot message. ZDOS then prompts with the current logged-in 

drive which in this case is the default drive 0: 

DO> 

This is the prompt of the ZDOS base level entry point. Whenever the 

system completes an intrinsic command or performs a system exit, this 

prompt signifies to the user the successful completion of the task and 

the continued sanity of the system. Sometimes this prompt is provided 

by the batch file handler (SUB intrinsic command. At this point in the 

base level, the BATCH flag is checked. If set, the submit command re­

entry point is fetched and entered. If BATCH=O, page 0 of memory is 

re-initialized. Page 0 initialization involves restoring the jump to 

base level instruction at address OOOOH and restoring the jump to the 

system call handler at address OOOSH. This insures basic system sanity, 

in case a users program destroyed ZDOS reserved RAM inadvertently. The 

default File Control Blocks, FCB 1 and FCB 2, are initialized in case 

they were closed out properly. 



22 

The base level prompt is actually provided by the command string 

interpreter subroutine, GETCMD. GETCMD inputs a command string from the 

user while checking for some basic syntax. GETCMD will only return with 

a valid command string. Extraneous spaces are eliminated from the 

command string as it is entered. If control R is typed, the current 

command string along with the prompt is reprinted for viewing by the 

user. If control X is typed, the command string buffer pointer is reset 

and the system reprompts for a new string. If an illegal character is 

inputted, GETCMD reports: 

SYNTAX ERROR 

on the console. Legal input characters are upper case alphanumerics and 

the following legal delimiters: period, space, comma, colon and carriage 

return- line feed. If the rubout key is typed, characters are erased 

and echoed on the console. If rubout past the beginning of the command 

string is attempted, the system will reprompt. The command string input 

buffer is 128 bytes long. Buffer overflow will result in a syntax error 

message. 

When GETCMD returns with a valid (syntactically only) command 

string, the system compares the first name in the command string with 

the list of current intrinsic commands. Intrinsic commands are 

utilities resident in the kernel of the system which perform certain 

mundane tasks necessary for maintenance of the system, e.g., ERA erases 

a file from the disk or DIR lists the directory. See the section on 

intrinsic commands for their descriptions. If an intrinsic command is 

found, the command string buffer pointer is updated to the first 

character following the command delimiter and control is passed to the 

command. If the name was not in the intrinsic command list, then the 



23 

system assumes this is the name of an extrinsic command (either system 

or user created). ZDOS now searches the current logged-in disk for the 

filename. If not found, the system reports to the console: 

:Dx:FILE.EXT, NO SUCH FILE 

where x is the current logged-in disk. If the file is found, the system 

attempts to load and execute the program. If the user inadvertently 

typed the name of a non-hex or non-binary format file, the system 

reports: 

ACCESS ERROR 

If the file was indeed an executable program, the program is loaded, the 

command string pointer is updated to the first byte following the 

filename delimiter and control is transferred to the program. Through 

the use of the GETUSR system call, the user may pass switches and 

parameters to the program from the input command string. 

Once the program is loaded, the system is at the mercy of the 

user's program. ZDOS will maintain checks on the proper use of its 

resources through the use of system calls, but ntherwise cannot prevent 

an invalid jump or infinite program loop from hanging up the system. If 

this occurs, the user·may utilizes the local rebooting facility of the 

BREAK key. User programs should use the EXIT system call to re-enter 

ZDOS properly. 

Intrinsic Commands 

Intrinsic commands are resident utility programs that perform 

useful system functions. Most of the commands use the PARSER system 

call to process their command string. Therefore the command format is 

input specification to output specification. Some input specifications 



24 

only involve a drive number and some output specification only a list 

device. In all cases the default drive is 0 and the default list device 

is the CRT. Optional parts of the command will be enclosed in <>. We 

will define filespec as :Dx:filename.extension. The following is a list 

and brief description the current commands available. These commands 

can be found in the module INTRIN. 

*** ERA *** 

Erase a file intrinsic command is used to delete files from the 

disk directory. The format of the command is: 

ERA filespec !,filespec 2, ••• ,filespec n 

There are three situations reported by ERA: 

filespec, ERASED 
filespec, NO SUCH FILE 
filespec, WRITE PROTECTED 

*** FREE *** 

Free blocks intrinsic command reports to the console the number of 

free sectors remaining on the disk. The format of the command is: 

FREE <:Dx:> <TO> <:list dev:> 

The number of free blocks is reported to the console: 

xxxxx FREE BLOCKS ON DRIVE x 

where xxxxx is the decimal number of free sectors and x is the drive 

number. 

*** ATR *** 

Attribute intrinsic command modifies the write protect flag of the 

file in the disk directory. 

ATR filespec WO 
ATR filespec Wl 

The command format is: 

;to reset the flag 
;to set the flag 

The command reports "SYNTAX ERROR" if the W switch is missing or if the 

0 or 1 is incorrect. 



*** REN *** 

Rename intrinsic command renames a file on the disk from the old 

name to the new name. The command format is: 

'REN oldfilespec TO newfilespec 

If the oldfilespec does not exist: 

oldfilespec, NO SUCH FILE 

If the oldfilespec is write protected: 

oldfilespec, WRITE PROTECTED 

If the newfilespec name already exists on the disk: 

newfilespec, ALREADY EXISTS 

If the old file name and the new file name are not on the same drive: 

SYNTAX ERROR 

25 

This prevents a user from inadvertently renaming a file of the same name 

on another drive. 

*** TYPE *** 

Type a file intrinsic command lists a file on the system list 

device. The format of the command is: 

TYPE filespec -<TO> <:list dev:> 

If an attempt is made to type a non-ASCII file, the system reports: 

ACCESS ERROR 

*** LOG *** 

Log intrinsic commands allows a user to change the default disk 

drive from drive 0 to drive 1 or back again. The format of the command 

is: 

LOG :Dx: 

For example, if a user logs on drive 0, ZDOS will prompt with 'Dl>', 

instead of 'DO>'. If the user types DIR without a device specification, 



the directory for drive 1 will be listed. To get the directory for 

drive 0, the command would have to be DIR :DO:. 

*** BYE *** 

26 

Bye intrinsic command exits the ZDOS base level to the system 

monitor level, if the current ZDOS implementation allows it. In the 

multi-user configuration, ZDOS can't allow exitting to Cromemco's RDOS 

monitor, due to the differences in the CRT port addresses. In MDOS, the 

MDS-800 monitor is entered. 

*** DEBUG *** 

Debug intrinsic command sets the system debug mode flag, loads the 

file specified and reports the start1:ng address to the console. The 

format of the command is: 

DEBUG filespec 

The system reports: 

START ADDRESS=xxxx 

where xxxx is the hex starting address of the loaded program. This 

address is passed to the debug monitor by the user. The current 

implementation of ZDOS has the resident debugger disabled. In the MDOS 

single-user mode, the user passes the starting address to the monitor 

with the G command. 

*** GET *** 

Get file intrinsic command loads a file into memory without 

transfering control. This command is useful in loading several modules 

of a program into memory. The user can create a submit command file 

consisting of several GET command lines and then load the mainline 

control program to begin execution. GET is also very handy in 

overlaying patches created by the system to modify itself. The format 



of the command is: 

GET filespec 

*** DIR *** 

Directory intrinsic command lists the disk directory on the list 

device. The format of the command is: 

DIR <:Dx:> <TO> <:list dev:> 

The DIR command lists the filename and extension, user ID, number of 

bytes in the file, the number of disk blocks associated with the file, 

the write protect flag and the file type attribute. The number of 

blocks used out of 2002 blocks available is also listed. 

*** SUB *** 

27 

Submit intrinsic command allows command strings to be entered to 

the system from a disk file. The user creates the submit file as an 

ASCII file using the system editor. The file must have a .JOB extension 

in order to be recognized by the system as a submit file. It is not 

necessary to include the .JOB extension in the SUB command string. The 

format of the command is: 

SUB filename<.JOB> 

The system opens the submit file for input using FCB 3 and continues 

reading an executing commands until an end-of-file mark is encountered. 

The submit file is fully interactive, i.~., a command string in the 

submit file may call the Editor. The user can edit the file opened by 

this command. When an exit from the editor is performed, the submit 

command immediately takes up where it left off. The SUB command has the 

interesting characteristic in that it can call itself recursively. If 

for example, the last command line in a submit file called EXAM.JOB was 

SUB EXAM, the system will simply re-open EXAM.JOB and start all over 



again. The only way to escape from the infinite loop is to use the 

BREAK key to reboot oneself. Caution must be used in doing this, as a 

reboot does not close out any files currently open for output and will 

therefore not deallocate unused blocks. These blocks will be lost for 

use by the system. Only type the BREAK key during commands that are 

simply listing files or the directory. The main function of this 

recursive ability of SUB is to set up non-interactive jobs to test the 

system operation of all 8 users by one person. 

*** DISK *** 

28 

Disk intrinsic command is actually a collection of commands into a 

resident monitor that allows real-time examination and repair of the 

disk resource. Since this monitor allows the modification of individual 

sectors on the disk, its use by the average user should be discouraged. 

The DISK command prompts for local commands with an asterisk (*)· The 

local commands are as follows: 

*R - read a disk sector 

The read command prompts for drive number, track number and 

sector number. It then displays the sector read on the list 

device in an 8 by 16 matrix. The ASCII equivalent of the 

nytes in the sector are also displayed. If a line feed or 

a space is typed, the next sequential sector is read and 

displayed. This can continue until track 76, sector 26 is 

displayed. The track and sector numbers are entered as 

hexadecimal values (tracks 0 to 4CH, sectors 1 tolAR). 

*W - write a disk sector 

The write command prompts for drive number, track number and 

sector number. It then writes out the current disk I/O buffer 



to the sector specified. 

*E - exit to DOS 

29 

The exit command returns to the DOS base level. 

*Dxxxx,yyyy - display command 

The display command displays all bytes on the list device from 

xxxx to yyyy. Both are hexadecimal values. 

*Sxxxx - substitute command 

The substitute memory command will continue to display the 

contents of memory locations starting at xxxx as long as the 

space bar is typed. The contents of these locations may be 

modified by entering the new value. A cr-lf terminates the 

command. 

*Fxxxx,yyyy,zz - fill command 

The fill memory command fills all locations from xxxx to yyyy 

with the value zz. 

The substitute command can be used to modify the IOBYT to change 

the list device from the console to the line printer.. The display, fill 

and substitute command follow the same command input format as the Intel 

monitor. 

*** COPY *** 

Copy intrinsic command copies files. The format of the command is: 

COPY filespec 1, filespec 2, ••• , filespec n TO output filespec 

Copy allows copying of ASCII or hex files only. If any of the input 

file specifications do not exist on the disk, the output file is closed 

and deleted, and the non-existent file is reported to the console. The 

following intrinsic commands exist only in the multi-user ZDOS system: 



*** WHO *** 

The who intrinsic command reports user ID number to the user's 

console. 

USER x 

where x is in the range 1 to 8. 

*** CID *** 

30 

The change ID intrinsic command changes the user ID number to allow 

access to a file by more than one user. The format of the command is: 

CID filespec oldiD newiD 

The old ID is replaced with the new ID on filespec. Since access to 

user files is privileged, only the super user is allowed to change ID 

numbers. The CID command prompts for a password before allowing its 

execution. The password is fixed at system generation and cannot be 

changed in real-time. 

*** SLIST *** 

The super list directory intrinsic command allows the super user to 

get a directory listing of all the files on the disky regardless of ID 

number. As with the CID command, SLIST prompts for the password. 



31 

Track 76 

USER 
1- FILE -

SPACE 

~~ 
1924 Sectors 

~~ 246 KBytes 

1- -
Track 4 

Directory 
Track 3 24 Sectors Sector 3 - 26 

192 Entries 

Storage Allocation Map Sector 1 & 2 

Track 2 ZDOS 
BINARY 
MEMORY 

1- IMAGE -
77 Sectors 

Track 1 9856 Bytes 

- -
Track 0 Sector 2 - 26 

BOOTSTRAP Sector 1 

Figure 8. Eight Inch System Diskette Organization 



USER ill 

Bank 0 

FFFFH 

COOOH-C3FFH 

BFFFH 

8000H 
7FFFH 

4000H 
3FFFH 

OOOOH 

RDOS ROM 

ZDOS 
(RAM or ROM) 

USER RAM 

(16 K) 

Bank N 
(N=O - 7) 

Figure 9. System Memory Map 

USER #8 

Bank 7 

w 
N 



CHAPTER IV 

ZDOS FILE SYSTEM 

Directory Organization 

The ZDOS directory resides on track 3, sector 3 through 26 of the 

disk. These 24 directory sectors each contain space for 8 entries for a 

total of 192 possible files. Directory entries are 16 bytes in length. 

The entry format is as follows: 

Byte 1-6 

Byte 7-9 

Byte 10 
Byte 11 bit 
Byte 11 bit 
Byte 12 
Byte 13 

Byte 14 

Byte 15 
Byte 16 

Six character file name, left justified, padded 
with spaces. 
Three character extension, left justified, padded 
with spaces. 
User identification number 

0,1 File type (OO•ASCII, 01=BINARY, 10•HEX, ll=SYSTEM) 
7 Write protect flag 

Byte count less than a complete block (1 to SOH) 
Low block count of number of blocks allocated to 
file. 
High block count of number of blocks allocated to 
file. 
Sector containing first File Allocation Map block. 
Track containing first File Allocation Map block. 

The total byte count of a file is defined by byte 12, 13, and 14 

(BYTNUM,LBLKNO and HBLKNO respectively) according to the following 

algorithm: 

BYTE COUNT•128*(BLOCKS - (BLOCKS/62 + 2)) + BYTNUM 

where BLOCKS=HBLKNO SHL 8 + LBLKNO. The maximum byte count of a file is 

only limited by the physical storage space on the disk. 

Byte 15 and 16 (FAMSEC and FAMTRK respectively) contain a sector 

and track which hold the first File Allocation Map (FAM) of the file. 

33 



34 

The FAM is a 128 byte block that contains a list of track and sectors 

associated with a particular file. The FAM is actually considered as 

part of the file. The number of blocks required for a file of N bytes 

can be found by: 

TOTAL BLOCKSz63*(N/128)/62. 

Directory entries are created and maintained by the system invisible to 

the user. 

Storage Allocation Map 

Program module SAMIO (Storage Allocation Map Input/Output) includes 

seven subroutines necessary to control allocation of disk storage 

resources; namely SAMSCH, READSM, WRTSAM, ALLCAT, DEALLO, COMPUT, and 

FILSAM. A description of each will be covered in a moment. 

The Storage Allocation Map (SAM) resides on sector 1 and 2 of the 

directory track (normally track 3). The information contained in these 

two sectors should be viewed as a sequence of 2002 bits, each bit 

representing one of 2002 sectors on the disk (77 tracks times 26 

sectors/track equals 2002 sectors). A one bit indicates the particular 

sector represented is not currentlv associated with any file (free disk 

space). A zero bit indicates this sector is not free. The allocation 

of sectors for files is totally random in nature (except in the case of 

LDM files as will be explained later). When a sector is requested, the 

next available sector starting at the left end of the bit stream is 

returned. See Figure 10. A better understanding of the mechanics of 

disk sector allocation can be provided by briefly covering the 

individual routines in module SAMIO. 



35 

SAMSCH (Storage Allocation Map Search) 

SAMSCH is made up of two routines, Samsch and Getnxt. Getnxt is 

the re-entrant part of SAMSCH. Samsch is always called first in order 

to initialize SAMPTR to point at the SAMBUF (SAMBUF is 256 bytes 

reserved by the system strictly for use by SAMIO) and SAMCTR to 0 to 

count the bit position from the beginning of the buffer (0- 2001). 

SAMPTR and SAMCTR are maintained by the system so that each subsequent 

call to Getnxt returns the next available free sector on the disk 

without starting the count from the beginning. Getnxt does this by 

fetching each byte from the SAMBUF and rotating all 8 bits through the 

carry flag until a non-zero bit is found. The carry flag is set to zero 

and the bits are rotated back the correct number of times until the 

current byte is restored and placed back in the SAMBUF. Since SAMCTR 

was bumped for each bit rotated, it now contains the bit position from 

the beginning of SAMBUF which corresponds to the track and sector number 

to be returned. By maintaining SAMPTR and SAMCTR, Getnxt is made re­

entrant, thereby saving valuable time that would be wasted by making 

Getnxt start looking for the next free sector at the beginning of the 

bit stream each time. SAMSCH reports "DISK FULL" to the console and 

flags an error if no more sectors are available. 

COMPUTE (Compute track and sector) 

The bit position in SAMCTR is passed to the COMPUT subroutine which 

computes the track and sector number of the next available sector for 

use by the system disk I/O routines. This accomplished by the following 

algorithm: 

TRACK~SAMCTR/26 SECTOR=SAMCTR MOD 26 + 1 



36 

It is necessary to add one to the sector number since sectors count from 

1 to 26, instead of 0 to 25. 

READSM (Read SAM into SAMBUF) 

READSM reads the SAM from the disk directory track into memory. 

WRTSAM (Write SAM from SAMBUF to the disk) 

WRTSAM writes the SAM from the S~ffiUF in memory to the directory 

track on the disk. 

Both READSM and WRTSAM check the MAPSW to determine whether the SAM 

is being read from a mini-floppy (1 sector) or an 8 inch maxi-floppy (2 

sectors). 

ALLCAT (Allocate a full FAM block) 

Since ZDOS has been written in a manner to facilitate conversion to 

a multi- user environment, ALLCAT and DEALLO were written specifically 

for multi-user implementation of the system software. In a multi-user 

mode, writing a single sector of 128 bytes would require the following 

sequence: 1) reading the SAM into memory 2) obtaining the next available 

sector 3) writing out the SAM to the disk (as all users are using the 

same copy of the SAM) 4) writing out the block of 128 bytes to the disk 

file. An ASCII source file of 50 blocks is not uncommon. Writing out 

this file would require 150 accesses to the disk. Disk accesses slow 

system response time, especially if several of the users were doing 

similar tasks of writing to the disk. Disk activity would be frantic to 

say the least. One possible alternative to remedy this problem would be 

to allocate certain portions of the disk to each user. But this 

proposal ties up valuable disk space. The method chosen uses a 

preallocation scheme to reduce disk accesses. Each FAM (File Allocation 

Map) block points to a possible 62 sectors associated with each file. 



37 

Therefore instead of filling the FAM block one sector at a time, the 

entire FAM is preallocated with the full complement of 62 sectors. As 

the file is written out to the disk, the FAMBUF is used as the source of 

the next available sector. After the file is completely written out, 

the unused sectors are returned to the SAM. Now the sequence of events 

for writing a file are: 1) read SAM into memory 2)preallocate FAM with 

62 sectors 3) write out SAM to disk 4) write each block to file on disk 

5) read SAM again 6) return unused sectors to SAM 7) write SAM to disk. 

In a file of 50 blocks, only 54 disk accesses are required, as compared 

with 150. In general, most ASCII files are less than 62 blocks. If 

greater than 62 blocks, it still only requires 4 accesses per each 

additional 62 blocks, as opposed to 124 additional accesses. There are 

slight drawbacks to this method. Take for example the case where the 

disk is nearly full. ALLCAT grabs all sectors remaining for current use 

(less than or equal to 62). Even though this user may only require 5 

sectors for his use, all other users will be advised that the disk is 

full. After this user closes the output file and DEALLO returns unused 

sectors to the SAM, free blocks will be shown as available. Any other 

user at this time could ignore the warning and grab some more blocks as 

ALLCAT will preallocate sectors even though there are less than 62 

remaining. Since this problem presents itself only when the disk is 

nearly full, preallocation is still the best method of reducing disk 

activity to a minimum. 

FILSAM (Fill in the SAM) 

FILSAM uses the current track and sector number to set the 

appropriate bit in the SAM to indicate that this sector is now available 

for use. It performs the reverse function of SAMSCH. FILSAM is used by 



the DELETE system call to erase files from the disk by means of the 

following algorithm: 

SAM BIT OFFSET=TRACK*(SECTORS/TRACK) + (SECTOR - 1) 

38 

SAMIO is an integral and important part of the disk file handling 

system. Incorrect handling of the SAM results in a crashed disk as we 

shall see in the section on multi-user implementation of the storage 

allocation map. 

Directory Map 

The directory map was implemented to decrease disk accesses 

necessary to list the system directory. This implementation aided both 

single-user and multi-user modes of operation. This was especially 

important to the multi-user mode in that directory listing is a function 

performed quite often and when multiplied by 8 users, amounts to a lot 

of disk activity, most of which contained no information useful to the 

user. 

The directory consists of 24 sectors each containing 8 file 

entries. On a disk with as few as 32 files, only 4 sectors in the 

directory would contain useful information. This would mean 20 seeks 

were unnecessary. Assuming all 8 users requested directory listings at 

the same time, this would amount to 160 disk seeks and reads. Therefore 

it was decided to implement a directory map using three bytes of the 

SAM. Refer to Figure 10. 

As with the SAM, the DIRMAP can be thought of as a bit stream of 24 

bits. Each bit represents a single sector of the directory (or 8 

possible entries). If any one of the 8 entries in a directory sector is 

occupied, the DIRMAP bit is set to a zero. When all 8 entries in a 



39 

sector are empty, the bit is only then set to one. The directory 

listing intrinsic command DIR then uses the DIRMAP to determine if a 

sector will be searched for an entry or not. Response time to DIR is 

greatly enhanced and without much software overhead to implement DIRMAP. 

File Allocation Map 

Sectors allocated to a file are kept track of by the use of FM1 

blocks. FM1 blocks can be thought of as a sub-directory of a file. A 

FAM block is organized as a 128 byte sector containing a reverse link to 

the previous block, a forward link to the next block and 62 pairs of 

sector and track numbers assigned to this particular file. Refer to 

Figure 11. The reverse link in the first FAM block is always zero, and 

the forward link in the last FAM block is always zero. 

Refer to Figure 12 as we discuss the operation of the FETCH 

subroutine found in module FTCNXT, in order to gain a better 

understanding of the FAM block. FETCH is used by the RDBYTE (read a 

byte) system call to read the next byte from a file open for input. The 

FAMENT byte (FAM entry number) in the FCB (File Control Block) points to 

the current pair of track and sector numbers (1 to 62) located in the 

current FAM block resident in the system FAMBUF (reserved by each FCB). 

FAMENT also doubles as a flag to maintain proper control of reading in 

new FAM blocks. FAMENT is set to 0 by the OPENI system call. This 

signifies that there is no FAM block resident in the FAMBUF associated 

with this FCB. When FAMENT=O, FETCH gets the FAMTRK and FAMSEC from the 

FCB. FAMTRK (FAM track) and FAMSEC (FAM sector) point to the location 

on the disk of the first FAM block. This block is read into the FAMBUF 

associated with this file and FAMENT is set to a one to be used as an 



40 

offset to the first pair of track and sector numbers. Notice also since 

it is non-zero, FAMENT also now signifies that a FAM block is resident 

in memory. If the pair equals zero, there are no more sectors to be 

read from this file. If the pair is non-zero, they are returned in 

TRACK and SECTOR to the calling routine and FAMENT is bumped to point to 

the next pair in the FAMBUF. When FAMENT=63, this is one more than the 

number of possible pairs in this FAM. When this occurs, the forward 

link to the next FAl1 block is fetched and the next FAM block is read 

into the FAMBUF. FAMENT is then set to one again and the process of 

fetching sectors and FAMs is continued until a zero pair is encountered. 

At this time, FETCH signals the calling program that there are no more 

blocks to be read. Although the system does not currently use the 

reverse link, it is maintained by the system to allow backing up in a 

file at some future time. 

WRNBLK performs the reverse role of FETCH in that it creates and 

maintains the FAM blocks as records are being written to a file. It 

uses FAMENT as a flag in the same manner as FETCH. OPENO (Open for 

output) system call sets FAMENT=O. When FAMENT=O, WRNBLK fetches a 

sector from the SAM and assigns it to the FCB as the current FAMTRK and 

FAMSEC. At this time, it also preallocates the FAM block with 62 pairs 

of track and sector numbers from the SAM. As each call to WRNBLK is 

made, the next track and sector is fetched from the FAMBUF until all 62 

pairs are exhausted. At this time, FAMENT•63 signaling that the current 

FAMBUF must be written out to the disk and a new FAM allocated. Before 

the current FAM is written out, the forward and reverse links are 

updated, thereby linking the FAMs. When all bytes have been written to 

the file, the CLOSE system call deallocates all unused track and sector 



41 

numbers from the current FAMBUF, and writes out this FAM to the disk. 

The DELETE system call uses the linked FAM blocks to erase a file 

from the disk. FAMTRK and FAMSEC from the directory image is used to 

read in the first FAM block. All track and sector pairs are deallocated 

and returned to the SAM. Deletion is terminated when the first zero 

pair is encountered. If the FAM was full, then the forward link track 

and sector is used to fetch the next FAM block. This process continues 

until the file has been effectively erased from the disk. Please note 

that this system does not fill erased sectors with deleted file marks 

(OESH) as some systems do. It is therefore possible to regenerate an 

erased file by recreating the directory entry as long as the first 

FAMTRK and FAMSEC were known and no disk output was performed in the 

meantime. 

All file handling and disk storage allocation described up to this 

point is totally invisible to the user and is maintained accurately by 

the system. The RDBYTE and WRBYTE system calls are the main means of 

data transfer between the system and the user. In many ways, RDBYTE and 

WRBYTE are very similar to FETCH and WRNBLK, respectively. As with 

FAMENT, BYTNUM is an offset maintained by the system in the FCB. BYTNUM 

points at the current byte being read or written (1 to 128) in the FCBUF 

(File Control Block Buffer) associated with this file. BY~I also 

doubles as a flag. In RDBYTE, when BYTNUM=O, this indicatesno bytes 

have been read from the file. After FETCH has been called to make FAM 

block resident and return next block to read, the block is read into the 

FCBUF and BYTNUM is set to a one as an offset to the first byte to be 

returned. Each call to RDBYTE returns a byte to the user in the A­

register and bumps BYTNUM· When BYTNUM=81H, this signals the system to 



42 

read in the next data record into FCBUF. This continues until an end­

of-file mark (EOF=lAH) is encountered. An error is reported if FETCH a 

no more blocks to read indication before an EOF is found. A similar 

discussion applies to BYTNUM as used by IV:RNBLK and can been readily seen 

by examining the module WRNBLK. 



- ------

TRACK 3 

(Trk 0, Sec 1) 

B it 0~ Bit Stream 

0 0 0 0 0 

1-

1-

1-

~ ~ 
1-

1-

1 1 1 1 1 

1 1 1 1 1 

1-o 

1-
~ ~ (Trk 76, Sec 26) · 1-

Bit 2001 - ~-~(-nd of SAM 

1 1 vI I 1/ I 1 I /j 
"/I VII VI) rTf fTJ7 
If! I VII I/ IJ II VI/ 

/ 0 0 1 1 

Directory Sector 3 
DIRECTORY MAP 

TRACK = BIT NUMBER / 26 
SECTOR = BIT NUMBER MOD 26 + 1 

43 

N t F rex S ctor ree e 

1 1 

1 1 

1 1 

Lf vI II 
"II v !!J 
VI/ VI IJ 

1 

-
-
-
e 

-
-

1 

1 

-
-
~ -
-

ill/ 
'1/J 
1/J 

~ 

~ 

Byte 0 

SECTOR 1 

Bit 1023 
(Trk 38, Sec 10) 
Byte 127 

Byte 128 

SECTOR 2 

Byte 250 

Byte 253 

Byte 254 

Byte 255 
t 

Directory Sector 26 

Figure 10. Storage Allocation Map (SAM) 



Reverse Link Sector 
Track 

Pair 1 
r---A-----. 

RLS RLT FLS FLT s T 

~k & Sector of first 
128 byte record in file 

Forward 
Link Sector----_. 

Forward Link Track ' 

62 Pairs (Sector, Track) 

Figure 11. File Allocation Map (FAM) Block 

Byte 15 

Byte 127 

s 

..,::­

..,::-



FILE 
CONTROL 

BLOCK 
(FCB)--J 
in 

Memory 

Points to current FAM Block 
pointer pair (FE= 1 to 62) 

DIRECTORY IMAGE 

I II II I I II I II I I 

Reverse---1~ on 
Link on 
first FAM=O 

Figure 12. Disk File Organization 

Zero pair 
indicates 

Data 

45 



CHAPTER V 

INTERFACING WITH ZDOS 

File Control Block 

All files on the disk are referenced by the user through file 

control blocks. FCBs are 32 bytes of memory space that contain 

information the system uses to access a file on the disk. The first 16 

bytes of information is temporary in nature, in that it is maintained 

only so long as the file is open for I/O. The second 16 bytes is the 

exact image of the directory entry and is saved in the directory when 

the file is closed. The format of the FCB is as follows: 

FCBSTT - Byte 0 is the file control block status word. 

bits 0-3 are· unused 

bit 4 defines the file access type. if bit 4•0, the file is open 

for input. if bit.4•1, the file is open for output. 

bit 5 is unused. 

bit 6 is set if directory update is required when the file is 

closed. 

bit 7 is set if the file control block is active. 

BUFPTR- Byte 1,2 is a buffer pointer to a 128 byte disk I/O buffer 

associated with this FCB. 

FAMPTR - Byte 3,4 is a buffer pointer to a 128 byte file allocation map 

(FAM) block buffer associated with this FCB. 

46 



FAMENT - Byte 5 is an offset to the next track and sector pair in the 

· current FAM block. 

ENTCNT - Byte 6 is an offset to the directory entry (0-7) located on 

DIRSEC' and DIRTRK. 

47 

DIRSEC - Byte 7 is the directory sector where the entry associated with 

this file resides. 

DIRTRK - Byte 8 is the directory track where the entry associated with 

this file resides. 

BYTNUM - Byte 9 is an offset to the current byte position in the file 

I/O buffer (FCBUF). The system uses BYTNUM=O to indicate that 

no bytes have been read from or written to a file. BYTNUM is 

in the range from 1 to 80H. BYTNUMa81H signals the system to 

read another sector into the file I/O buffer. 

UNUSED - Bytes 10 through 14 are reserved for future use. 

DRSPEC - Byte 15 contains the disk drive specification associated with 

this file. 

DIRECTORY IMAGE 

FILNAM - Byte 16 - 21 contains the six character file name, left­

justified, padded with spaces. 

EXTEN - Byte 22 - 24 contains the three character extension, left­

justified, padded with spaces. 

USERID - Byte 25 contains the user identification number associated 

with this file. 

ATTRIB - Byte 26 contains the file attributes. 

bit 7 is set if the file is write protected. 

bits 6 - 2 are unused at present. 

bits 1,0 specify the file type; OO=ASCII, Ol=HEX, lO=BINARY, 



ll=SYSTEM. 

BYTES - Byte 27 contains the number of bytes less than a block in a 

file (128). 

LBLKNO - Byte 28 is the low byte of the number of blocks count. 

HBLKNO - Byte 29 is the high byte of the number of blocks count. 

FAMSEC - Byte 30 is the sector of the first FAM block associated with 

this file. 

FAMTRK - Byte 31 is the track of the first FAM block associated with 

this file. 

48 

At present, the system maintains two default file control blocks 

that it uses for intrinsic commands and extrinsic file accesses. For 

example, EDIT uses FCBl for the input file and FCB2 for the output file. 

The default FCBs are available for use by the user. More FCBs may be 

created by the user at any time. Each additional FCB requires 32 bytes 

for itself and two contiguous 128 byte buffers for disk I/O and FAM 

block maintenance. The INTFCB system call will initialize the extended 

FCBs for the user. Once created, the extended FCB is maintained by the 

system software. One additional FCB is maintained by the system for use 

by the batch file (SUB command) handler. This FCB is not available for 

use by the user. 

System Calls 

Most of the physical resources of the system can be accessed 

efficiently and easily through the use of system calls. During system 

initialization, address 5 (4005H in MDOS) is set to contain a jump 

instruction to the ZDOS system call handler. The normal call procedure 

involves passing the call number in the C-register, passing the address 



49 

of the File Control Block (FCB) in the DE-register and performing a call 

subroutine instruction to address 5. For example, assuming FCB 1 

contains the name of a file, doing a directory search for this file name 

would be performed as follows: 

MVI C,lO 
LXI D,FCBl 
CALL ZDOS 
ORA A 
JZ FOUND 

;DNSRCH system call 

;where ZDOS was equated to 5 earlier 

Since the address of the default FCBs are not known by the user, the 

system call handler accepts FCBl=l and FCB2a2 as parameters passed in 

the DE-register. Extended FCBs are addressed by their absolute 

addresses supplied by the user. The system call handler saves all 

registers, but each system call may or may not return certain registers 

intact to the user. The current legal range of system call numbers is 0 

to 63, although not all numbers are used at present. If a non-

implemented or number greater than 63 is passed to the handler, the 

following message is reported to the console: 

ILLEGAL SYSTEM CALL n 

where n is a decimal number in the range 0 to 255. An illegal system 

call is treated as a fatal error condition. Any open files are closed 

and control is not returned to the user's program. 

The following is a list of the currently available system calls and 

a brief description of their function. Included in each description are 

input parameters to be passed to the call, output parameters returned by 

the call and a list of registers destroyed or modified by the call. The 

number in parentheses is the system call number. 



The following system calls are found in the module SCALLO: 

*** EXIT *** (0) 

Exit system call closes both default file control blocks before 

returning to the DOS base level routine. No registers are saved since 

there is no return to the calling program. No parameters are passed. 

*** CNSIN *** (1) 

so 

Console in system call returns a character from the console in the 

A-register with the parity bit stripped off. No parameters passed. A­

register is only one modified. 

*** CNSOUT *** (2) 

Console out system call outputs a character passed in the A­

register to the console device. A-register is 'Only one modified. 

Certain special control characters are filtered by the call. Control S 

halts the output listing to the console. Any other key will restart the 

listing. Control C does a system exit to DOS base level. Any other key 

entered is returned in the A-register. 

*** CNSTAT *** (3) 

Console status system call returns the console ready indication in 

the A-register. If A=OFFH, then there is a character awaiting input 

from the console. If A=O, then there is no input. No parameters are 

passed. 

*** LSTOUT *** (4) 

List out system call outputs a character passed in the A-register 

to the list device specified by the IOBYT (either the console or the 

line printer). System call IOSET is used to set the I/O byte. Control 

S and control C perform the same function as in CNSOUT. If any key is 

pressed during listing, the character inputted is returned in the A-



register. 

*** IOSET *** (5) 

I/O set system call sets the system I/O byte to the list device 

passed in the B-register. Line printer is specified by SOH and the 

console is specified by 40H. A and B registers only ones used. 

*** IOGET *** (6) 

I/O get system call fetches the system I/O byte into the A­

register. The IOBYT format is compatible with Intel's definition, 

although only bits 0,6 and 7 are used. Bit 0 is normally set to a one 

to indicate the CRT is the console device. Bits 6 and 7 define the 

system list device. Bit 6 set indicates CRT (40H) and bit 7 set 

indicates line printer (80H). The user must mask the IOBYT to get the 

bits of interest. 

*** LISTHL *** (7) 

51 

List HL system call lists the string addressed by the HL-register 

on the list device specified by the IOBYT. The string address is the 

only parameter passed. The string must be terminated.by a 0. The HL­

register is returned pointing at the first byte passed the 0 terminator. 

Tabs (ctrl I) are maintained at 8 character position intervals. 

Registers used are A,B and c. 

*** BINASC *** (8) 

Binary to ASCII system call lists a binary number on the list 

device passed in the B-register as a string of 5 ASCII characters, right 

justified, with leading zeroes suppressed and printed as spaces. The 

binary number is passed in the HL-register. The IOBYT remains unchanged 

after the return from the system call. B=40H specifies the CRT as list 

device and B=80H specifies the line printer. 



The following system calls are found in the module SCALL1: 

*** DNSRCH *** (10) 

52 

Directory search system call searches for the existence of a file 

name on the disk. The file name is assumed to have been already 

appended to the FCB by the MOVNAM system call. The FCB address is 

passed in the DE-register. DNSRCH returns the status of the name in the 

A-register. A=O if the file, extension and user ID matched the FCB. 

A=OFFH if the name was not found in the directory. All registers are 

maintained. 

*** PRTNAM *** (11) 

Print name system call prints the filename specification contained 

in the FCB passed in the DE-register. No cr-lf preceeds or follows the 

output to the console. E.g., if filename was HELLO, the extension was 

ASC and the drive specified was 1, the following would be printed on the 

console: 

:D1 :HELLO.ASC 

*** RENAM *** (12) 

Rename system call renames the name in the FCB specified in the 

DE-register to the new name pointed to by the address in the HL­

register. The new name string must be terminated by a legal terminator 

(cr, lf, space, tab). The status of the call is returned in the A­

register. A=O if the rename was successful. A=1 if the old name in the 

FCB is write protected. A=2 if the new name already exists on the disk. 

A=OFFH if the old name does not exist on the disk. Note: The RENAME 

intrinsic command checks to see if both names have the same drive 

specification before renaming, RENAM system call does not. Therefore 

there it is possible to change the name of a file on drive 0 that you 



intended to change on drive 1. 

*** DELETE *** (13) 

Delete system call erases a file name specified in the FCB passed 

in the DE-register from the disk. The status of the deletion is 

returned in the A-register. A=O if name was found and deletion was 

successful. A=l if file is write protected. A=OFFH is file was not 

found. All registers are maintained. 

*** MOVNAM *** (14) 

53 

Move a name system call appends a name pointed to by the HL­

register to a~ FCB specified by the DE-register. The HL-register is 

returned pointing to the first character following the string d~limiter 

which must be legal (cr, comma, space). The filename must be 6 

characters or less and the extension must be 3 characters or less. The 

first character of the filename and extension must be alphabetic. If a 

legal drive specification is included (:DO:,:Dl: or :D2:) the DRSPEC in 

the FCB is updated. MOVNAM reports "ILLEGAL DEVICE" or "SYNTAX ERROR" 

to the console and exits to DOS base level. The current user ID is 

appended to the FCB at this time. If no drive is specified with the 

name, the default drive 0 is appended. 

*** RENEXT *** (15) 

Rename the extension system call renames only the extension in the 

FCB specified in the DE-register to the new extension pointed to by the 

HL-register. HL-register is returned still pointing at new extension 

string. The extension string must consist of 3 characters. If less 

than three alpha-numerics, left justify and pad with spaces. 



The following system calls are found in the module SCALL2: 

*** OPENI *** (16) 

54 

Open for input system call opens the file specified in the FCB 

passed in the DE-register for input of bytes from the file to the user. 

OPENI copies the directory entry information for this file into the FCB. 

It performs all the necessary initialization. Since no links are 

created between the disk file and the FCB, the same file may be opened 

for input by several users. No parameters are passed or returned by the 

call. A and C registers are used. 

*** OPENO *** (17) 

Open for output system call prepares a file specified in the FCB 

passed in the DE-register for write access. OPENO provides all the 

necessary initialization of the FCB for outputting of bytes to the file. 

A directory entry for this file is reserved on the disk. OPENO reports 

"ALREADY EXISTS" if file name is not unique. Any file opened for output 

must be closed, otherwise bytes still in the file disk I/O buffer are 

lost. 

*** CLOSE *** (18) 

Close file system call performs the necessary housekeeping required 

to terminate I/O with a file. Closing a file open for output writes out 

remaining bytes in the disk I/O buffer and outputs the current FAM block 

to the disk. The directory entry for this file is updated on the disk 

to contain the final byte count of the file. The FCB address is passed 

in the DE-register. No parameters are returned. 

*** REWIND *** ( 20) 

Rewind system call resets file pointers in the FCB to the beginning 

of a file open for input. The FCB address is passed in the DE-register. 



55 

This call allows making another pass through the file without having to 

close it and ~hen re-open it. It is used by the Assembler at the end of 

pass 1 to re-initialize for pass 2. 

*** RDSECT *** (21) 

Read a sector system call reads a physical sector from the disk 

into a buffer pointed to by the HL-register. This buffer must be 128 

bytes in length. It is necessary to specify an FCB since the disk I/O 

drivers fetch the drive specification from the current FCB. Both 

default FCBs default to drive 0. If drive 1 is desired, use the STORDR 

system call to set the correct drive specification. The HL-register is 

returned pointing to the first byte following the 128 byte buffer. No 

other parameters are returned. 

*** WRSECT *** (22) 

Write a sector system call writes a physical sector from a buffer 

pointed to by the HL-register to the disk. See RDSECT above for further 

details. 

*** INTFCB *** (23) 

Initialize an FCB system call clears the buffer and initializes the 

FCB buffer pointer (FCBUF) and FAM block buffer pointer (FAMPTR). The 

FCB address is passed in the DE-register. The address of two contiguous 

128 byte buffers is passed in the HL-register. This call can be used by 

the user to create extended FCBs. 

The following system calls are found in the module SCALL3: 

*** RDBYTE *** (24) 

Read a byte system call returns the next byte in a file to the user 

in the A-register. The system handles reading of the FAM blocks and 

data records to the disk I/O buffer in a manner invisible to the user. 



56 

The end-of-file mark (EOF=lAH) is returned to indicate no more bytes to 

be read from this file. The FCB address is passed in the DE-register; 

All registers are maintained. 

*** WRBYTE *** (25) 

Write a byte system call writes a byte passed in the A-register to 

to the file specified in the FCB passed in the DE-register. The call 

handles all creation of FAM blocks and writing of the disk I/O buffers 

at the proper time in a manner invisible to the user. An end-of-file 

mark (EOF=lAH) should be written to all ASCII files before closing. All 

registers are maintained. 

*** RDLINE *** (26) 

Read a line system call reads a line terminated by CR or EOF to a 

buffer from a disk file specified by an FCB passed in the DE-register. 

The HL-register points to a user supplied line buffer of the following 

format: The length of the buffer is passed in the first byte of the 

buffer. The actual number of bytes returned is placed in the second 

byte of the buffer by the system call. If buffer overflow occurred, the 

call returns OFFH in the second byte. The HL-register is returned 

pointing at the actual byte count (second byte) of the buffer. An error 

is reported if an EOF was encountered, but was not the first character 

in the line (this would constitute an incomplete line in the file). The 

average length of a line buffer reserved should be 84. This would allow 

2 bytes for the buffer length and bytes transfered, 80 bytes for the 

maximum CRT line length and 2 bytes for a cr-1£. This system call is 

useful in reading sources that are to be processed a line at a time, 

e.g., an assembler. 



57 

*** WRTFIL *** (27) 

Write a file system call writes out a buffer terminated by an EOF 

mark to a file specified by an FCB passed in the DE-register. Mainly 

used to output entire ASCII buffers such as those used by Text Editors. 

*** LOADHX *** (28) 

Load hex file system call loads an Intel standard hexadecimal 

format file from the disk into memory. Control is transferred to the 

loaded program at the starting address specified in the end-of-file 

record. If debug flag is set, a breakpoint is set at the starting 

address and the debug monitor is entered. If the file is of the ZDOS 

binary load module (LDM) format, the binary loader is called (see the 

section on the LDM format). Both loaders perform checksum comparisons 

in order to assure successful file transfers. Also checks are made to 

insure that ZDOS reserved ram is not overloaded by the file. There is 

no return to ZDOS from this call. 

*** SAVHEX *** (29) 

Save a hex record system call saves a memory segment as a 

hexadecimal record in a file specified by the FCB address passed in the 

DE-register. The HL-register points to a segment data block. The first 

word of the data block is the load address of the file. The second word 

is the starting address of the memory segment to be saved and the third 

word points to the end of the memory segment. The system call handles 

all conversion of bytes to ASCII and checksums for the hex records. In 

this manner, an assembler can create a binary image of a program segment 

in memory and save it as a hex file without resident conversion 

routines. The file has to be currently open for output. For more 

information, see the section on hexadecimal file formats. 



58 

*** EOFHEX *** (30) 

End of hex record system call writes an end-of-file data record to 

a hexadecimal file specified by. the FCB passed in the DE-register. The 

HL-register contains the starting address of the file. If there is no 

starting address, HL=O. An end-of-file mark (lAH) is appended .to the 

end of the file since the hex file is basically an ASCII file. The file 

has to be currently open for output. 

The following system calls are found in the module SCALL4: 

*** FTCHAT *** (32) 

Fetch attributes system call returns the file type attributes in 

the A-register from the FCB passed in the DE-register. The file types 

are: OO=ASCII, Ol=BINARY, lO=HEX, ll=SYSTEM. All registers are 

maintained. 

*** STORAT *** (33) 

Store attributes system call sets the file type attributes in the 

FCB passed in the DE-register. The new attributes are passed in the A­

register. Only bits 0 and 1 are stored according to the file types 

specified in the previous system call. All registers are maintained. 

*** FTCHDR *** (34) 

Fetch the drive specification system call returns the disk drive 

specification associated with the FCB passed in the DE-register. The 

drive is returned in the A-register. The legality of the drive 

specification is not checked by this routine. All registers are 

maintained. 

*** STORDR *** (35) 

Store the drive specification system call sets the drive 

specification passed in the A-register in the FCB passed in the DE-



register. The legality of the drive specification is not checked by 

this routine. All registers are maintained. 

*** SETPRT *** (36) 

59 

Set protection system call sets the write protect bit in the 

directory entry associated with the file specified by the FCB passed in 

the DE-register. A and C registers are used. 

*** UNPROT *** (37) 

Unprotect system call clears the write protect bit in the directory 

entry associated with the file specified by the FCB passed in the DE­

register. A and C registers are used. 

*** CPARID *** (38) 

Compare ID system call compares the user identification port value 

with the user ID stored in the FCB specified by the DE-register. User 

ID=O and user ID=OFFH always match with any ID (for further explanation, 

see section on user IDs). If a match occurs, the Z-flag is a one. 

*** STORID *** (39) 

Store ID system call stores the user identification port value in 

the FCB specified by the DE-register. A and C register are used. 

The following system calls are found in the module SCALL5: 

*** GETDSK *** (40) 

Get disk system call returns the currently logged-in disk drive 

specification in the A-register. No parameters are passed. No other 

registers are used. 

*** SETDSK *** (41) 

Set disk system call stores the disk drive specification passed in 

the A-register into the current logged-in disk location. No other 

registers or parameters are used. Changing the current logged-in disk 



is normally a system function provided by the LOG intrinsic command. 

*** GETCUR *** (42) 

60 

Get current pointer system call returns the current command string. 

buffer pointer in the HL-register. This call can be used by programs to 

fetch the remainder of a command string for processing. See the section 

on the command string interpreter for more information. 

*** GETTOP *** (43) 

Get top of ram system call returns the address of the last 

available byte of ram computed by the system at initialization in the 

HL-register. 

*** REPORT *** (44) 

Report errors system call allows the user to utilize the system 

error handler to report errors to the console. The error number is 

passed in the B-register. There is no return to the user program. The 

system closes out all open default FCBs. All error numbers 0 to 127 are 

reserved for system use. User defined error numbers are in the range 

from 128 to 254. Error number 255 is reserved by the.system to report a 

fatal hardware error. The error handler prints the error number and the 

value of the program counter (PC) where the error occurred. Fatal 

system errors (greater than 50) are reported as such. Certain error 

numbers cause the system to print the filename associated with an FCB in 

addition to a descriptive error message. For more information, see the 

section on system error handling. 

*** GETUSR *** (45) 

Get user number system call converts the user identification ID 

port value to a BCD number (0 to 9) and returns it in the A and C 

register. 



61 

*** DVCHEK *** (48) 

Device check system call checks· the command string pointed to by 

the HL-register with the list of current legal system devices. The 

string must contain a legal two character device name enclosed in 

colons. The call is entered with HL pointing at the first colon and 

exits with HL pointing at the first location past the second colon. If 

the device is not legal, the system reports: 

ILLEGAL DEVICE 

and does a system exit to the DOS base level. The current list of legal 

devices is: 

. 
:DO: disk drive 0 
:Dl: disk drive 1 
:D2: disk drive 2 
:CO: console device 
:LP: line printer 

No registers are maintained by this call. 

The following system calls are found in the module SCALL6: 

*** PARSER *** (50) 

Command string parser system call parsers a command string in the 

system input buffer into input and output file specifications. The 

command string specification is as follows: 

<:input device:>filename<.extension><,file list ••• >< TO > 
<:output device:><filename><.extension><parameters>cr-lf 

All specifications enclosed in <> are optional. No parameters are 

passed to the call. The call returns the HL-register pointing at the 

input file name in the command string and DE-register pointing at the 

output file name in the string. DE=O if there was no output file name. 

The current command buffer pointer is returned pointing at the parameter 

list and can be accessed using the GETCUR system call. All registers 



62 

are used. See the section on the command string interpreter for further 

information. 

*** NEXTIN *** (51) 

Next input file system call loads FCB 1 with the next input file 

specification from the command string buffer. If there are no more 

input files, the carry flag is returned set. NEXTIN must not be called 

until after PARSER has scanned the command string first. All registers 

are used. NOTE: PARSER and NEXTIN were not initially intended for 

general use by all users, but more advanced programmers with a better 

understanding of the system could make good use of these two calls and 

the GETCMD routine to process their own command strings. 

This is the end of the list of currently available system calls. 

Gaps in the number sequence were left intentionally for future 

expansion. Existing call numbers are fixed and will not be changed to 

insure proper operation with user programs. 

System Error Handling 

There are two types of errors reported by the system to the user; 

fatal and non-fatal. Non-fatal errors are mostly informational 

warnings, whereas fatal errors result in immediate cessation of the 

current process. Error numbers 0 through 49 decimal are reserved for 

non-fatal errors. Error numbers 50 through 127 are reserved for fatal 

system errors. Error numbers 128 through 254 are reserved for user 

defined errors. Error number 255 is used by the system to report a 

probable system hardware failure. Error 255 is bad news. A list of the 

current reserved list of system errors is given at the end of this 

section. For information on the mechanism for reporting errors to the 



63 

system, refer to the REPORT system call (44) in the chapter on system 

calls. 

A fatal error is reported to the console as: 

FATAL ERROR xxx PC=yyyy 

where xxx is the decimal error number in the range 50 to 127 and yyyy is 

the hexadecimal user program counter pointing to the CALL ERROR 

instruction in the user program. If the error occurred in a command 

that was being executed from a submit command file, the batch mode flag 

is cleared and the submit file is closed in FCB 3. The system exits to 

the DOS base level through the EXIT system call in order to close out 

any default FCBs. 

Non-fatal errors 0,1 and 2 report a file name associated with the 

current active FCB. Errors 3 through 8 report simple warnings. 

Error 0 filespec, NO SUCH FILE 
Error 1 filespec, ALREADY EXISTS 
Error 2 filespec, WRITE PROTECTED 
Error 3 SYNTAX ERROR 
Error 4 ILLEGAL DEVICE 
Error 5 SYSTEM FILE 
Error 6 ACCESS ERROR 
Error 7 DIRECTORY FULL 
Error 8 LOAD ERROR 

Error 0 (no such file) occurs when the file specified in the FCB does 

not exist on the disk drive specified. Error 1 (already exists) occurs 

when the file specified in the FCB matches a name that already resides 

on the disk drive specified. Error 2 (write protected) occurs when an 

attempt is made to delete or rename a write protected file. Error 3 

(syntax error) occurs when an illegal character or file name is inputted 

to the command string interpreter. Error 4 (illegal device) occurs when 

a device is specified in a command string that does not match the 

current list of legal system devices. Error 5 (system file) occurs when 



64 

any attempt is made access or use the reserved system file names. Error 

6 (access error) occurs when an illegal access is made to a file, e.g., 

attempting to print a non-ASCII file. Error 7 (directory full) occurs 

when a request is made for a directory entry after all 192 entries a 

occupied. Error 8 (load error) occurs when a user's program attempts to 

load over ZDOS reserved RAM locations 0 through 5FFH. The following is 

a list of currently defined fatal errors reported by the system: 

Error # description 

50 Attempt to read a null file. 
51 Attempt to close an inactive FCB. 
52 Attempt to open an active FCB. 
53 not used 
54 Attempt to read an inactive FCB. 
55 Attempt to write to an inactive FCB. 
56 Missing EOF mark in file. 
57 EOF not first character in line buffer. 
58 Attempt to rewind an inactive FCB. 
59 Attempt to rewind a file open for output. 
60 Attempt to write a hex segment to an inactive FCB. 
61 Attempt to write a hex segment to a file open for input. 
62 LDM track > 76. 
63 Rex segment start address less than stop address. 

101 Bad checksum in binary file. 
102 Bad LDM checksum. 
255 Fatal hardware error. 



CHAPTER VI 

MULTI-USER IMPLEMENTATION 

System Initialization 

System initialization is accomplished at two levels, namely system 

and user. System initialization begins by clearing the Process Status 

Byte (PSB) which unlocks all system resources. Next the contents of the 

vector address used by interrupt mode 2 and the CSB is initialized to 

point at the context switching subroutine. The number of users switch 

is read to check for its proper setting. If the setting is illegal, the 

following is reported to user l's console: 

ILLEGAL MAX USER 

The processor halts until the setting is corrected and the system is 

rebooted. At this point, the user level of initialization begins. 

First the user's console interface is initialized in case the subsequent 

test fails. The user ram is then checked to see if it is present in the 

system. If not present, the system reports to user l's console: 

USER x HAS NO MEMORY 

where xis the user number (1 to 8). The processor halts until the 

system configuration error has been corrected. 

The stack pointer is set and the cold start subroutine is called. 

This routine computes the top of the user's memory bank and saves it in 

TOPRAM. The default list device (CRT) is set in IOBYT. The current 

logged-in disk is set to drive o. The batch mode flag is reset. The 

65 



66 

user's copy of the PSB byte is cleared. Finally, the ZDOS boot message 

is sent to the console. At this time, the DOS base level re-entry 

address is pushed on the user's stack five times, in order to simulate 

previous saved status. The current value of the stack after the pushes 

is stored in SAVSTK. The reason for this is that after the last user 

has been initialized, the interrupts are going to be enabled, at which 

time context switches are going to start to occur. It is therefore 

necessary to have some previous state to which the virtual processor can 

return. Since the DOS base level address was pushed on the stack as the 

PC, the processor will return to the base level. If a previous state 

was not simulated, a stack underflow would have occurred and the state 

returned to would have been undefined. 

Now that a single user has been initialized, the next user must be 

switched to an active state. The user number port is read, the bit 

position rotated to the left and returned to the user port. This bit 

pattern is also outputted to the bank switching port. This enables the 

next user's ram bank. This user number is compared to the previously 

saved number of users value to determine if all users are initialized. 

If not, the user initialization process repeats as above until done. 

At this point, all users have been initialized. User 1 is switched 

to an active state. The I-register in the processor is set to the high 

byte of the vector address. The interrupt mode of the processor is set 

to IM 2. Now the processor interrupts are enabled with an EI 

instruction. In case there is not an interrupt pending, the program 

jumps to the DOS base level. The ZDOS multi- user mode is now active 

and under complete control of the context switching hardware. 



67 

Context Switching Subroutine 

When the CSB generates an interrupt, interrupt mode 2 (IM 2) of the 

Z80 produces a vector address to the context switching routine. The 

function of this routine is to save the status of the current user, 

switch to the next active user, and restore the status of the user that 

was saved previously. Since this subroutine is an essential part of the 

system software, additional comments are appropriate at this time. The 

routine begins with the following code: 

SWITCH: PUSH PSW 
PUSH B 
PUSH D 
PUSH H 
LXI H,O 
DAD SP 
SHLD SAVSTK 

;Save registers 

;Save current stack pointer 

At this point, the "virtual processor" has been saved in the 

current memory bank. In the large mainframes or minicomputer machines, 

all the virtual processors normally reside in a single memory space. In 

the ZDOS system, each user or "virtual processor" reside in their own 

physical memory board (or bank). This method adds some inherent memory 

protection in that if _a user's program loses control, the only virtual 

processor he will likely destroy is his own. 

The system must now determine the next user to restore. This 

routine is considered as part of the software overhead necessary to 

implement a multi- user system. In other words, this routine has a 

direct bearing on the system response time. In order to reduce this 

overhead, a constraint in the method of adding additional users was 

formulated; i.e., all user memory banks are contiguous, starting with 

bank 0, and any additional user must occupy the next sequential memory 

bank. Through the use of the number of users switch and the specially 



68 

implemented maximum user port on the CSB, the number of users can be 

changed at boot time by adding the appropriate number of RAM boards and 

setting the current number of users switch accordingly. 

The next user is accessed as follows: 

IN USERN 
RLC 
OUT USERN 
OUT BANK 

;Rotate bit in port OEEH 
;Switch to next bank. 

At this point, we may or may not have switched to the next active 

bank of memory. If the next bank or user has not been implemented, user 

#1 (bank 0) must be again selected. The maximum number of users port at 

OEFH is read and compared with the current user port at OEEH. If 

MAXUSR~O, then all 8 users are on line. 

IN MAXUSR 
MOV C,A 
ORA A 
JZ OK 

If MAXUSR > USERN, the limit of current users has not been reached. 

IN USERN 
CMP C 
JC OK 

Otherwise, wrap around to user #1. 

MVI A, 1 
OUT USERN 
OUT BANK 

The switch routine checks the USART for a framing error on every 

pass. A framing error occurs whenever the BREAK key on the console is 

pressed. Control is then transferred to a routine that re-initializes 

the current user. In this manner, a user can recover from a 

catastrophic program crash or infinite loop without having to reboot the 

whole system. 



IN STAT 
ANI FRMERR 
JNZ RBUSER 

69 

The previously stored status of the current user is now restored to 

the CPU, interrupts are enabled and a return to the current program 

counter location is performed. 

LHLD. SAVSTK 
SPHL 
POP H 
POP D 
POP B 
POP PSW 
EI 
RET 

The average time necessary to perform a context switch is 

approximately 120 usecs. 

Interlock System 

A very important aspect of the ZDOS Multi-user System is the 

interlock system provided by the Process Status Byte. ZDOS does not 

maintain job queues or lists for scheduling each of the tasks requested 

by the users. In keeping with the constraint of a re-entrant, ROM-based 

operating system, it was necessary to devise another scheme for process 

scheduling. The PSB provides a rotational, non-prioritized sheduling 

method to meet this constraint. In order to explain more fully this 

scheme, the console input routine will be examined. 

In a typical single-user, programmed I/O approach, a device driver 

would be coded as follows: 

LABEL: IN STATUS 
ANI RDY 
JZ LABEL 
IN DATA 
RET 

;input device status byte 
;check device ready status bit 
;loop back if not ready 
;device now ready, input data byte 
;return to calling program 



70 

In a single-user environment, the system can afford to wait forever 

until the device is ready with a new byte of information. In the 

multi-user mode, this waiting slows system response. If enough users 

are on line, this may even cause input characters to be lost. If, for 

example, ZDOS waited the full 33 millisecond time slice for console 

output flags and there were eight users on line, each user would see 

approximately four character per second output rate, which about two and 

one-half times slower than a teletype. 

All the device drivers in ZDOS utilize the PSB and the context 

switching hardware on the time slice clock to shorten the overall time 

intervals by many orders of magnitude. The console input routine is 

coded as follows: 

CI: IN STAT 
ANI DAV 
JNZ CIRDY 
OUT CONTXT 

JMP CI 

CIRDY: IN DATA 
ANI 7FH 
RET 

;input console status byte 
;is a data byte available for input 
;if there is, jump to input code. 
;reset time slice clock, and force a context 
;switch to the next user. 
;when the system rotates back around to this 
;user, this will be the point of entry. The 
;flag will be checked again. 

;data is available. input the data byte. 
;strip parity bit. 
;return to calling program. 

The above example shows how the context switching hardware is used with 

a device driver that can be interrupted at any point in the routine 

without any loss of data or any conflict with any other device. Each 

user console has its own dedicated hardware interface. This method will 

not hold true for shared resources such as a disk or line printer. 

With shared resources, it is necessary to use the PSB to lock out 

the other users during critical access and to use the enable and disable 

interrupt instructions during the setting and resetting of the 

interlocks. Failure to do so at the proper time and in the proper 



71 

sequence results in system hangups and crashed disks. As an example of 

a driver for such a shared resource, the DSEEK (disk seek) routine is 

coded as follows: 

DSEEK: 
SWAIT: DI 

IN PSB 
ANI DIP 
JZ NBUSY 
OUT CONTXT 

EI 

JMP SWAIT 

NBUSY: IN PSB 
ORI DIP· 
OUT PSB 

;check bit 0 of PSB to see if disk is busy. 
;disable further interrupts until this routine 
;is finished checking the DIP bit (disk I/O in 
;progress). 
;fetch Process Status Byte 
;test disk busy bit. 
;if not busy, go seize control for this user. 
;disk is busy with another user. force a 
;context switch to the next user. 
;re-enable the interrupts so that the context 
;switch can occur. 
;when the system rotates around to this user 
;again, this will be the entry point. 

;disk is not busy. set it so now. 
;set disk I/O in progress bit. 
;restore Pr6cess Status Byte. 

The code from this point on is the disk seek hardware driver. At this 

point, the steps taken depend on the type of disk hardware available on 

the system. If the disk is DMA or interrupt driven, one could force a 

context switch and enable the interrupts to further improve system 

throughput. Since the current ZDOS implementation runs on a Cromemco 

system that has a programmed I/0 type disk controller, the interrupts 

are not re-enabled until the disk read or write has been completed. At 

this time, the DIP bit in the PSB is cleared, a context switch is forced 

on the system and the interrupts re-enabled. This prevents a single 

user from seizing control of the disk for multiple sector transfers, 

which could cause another user to lose console input data. As mentioned 

in the hardware section, a DMA disk controller would greatly enhance the 

throughput and data transfers of the system. 



72 

Load Module File Format 

In some of the earlier configurations of ZDOS, the Assembler and 

Editor were linked with the system as resident intrinsic commands. 

Although this had the advantage of very fast response to assembly and 

editing requests, it had the disadvantages of overflowing the 16K 

resident RAM constraint and required the system to be regenerated each 

time an update was made to the assembler or editor. It was decided to 

remove the assembler and editor to disk as extrinsic command files. 

Since the format of these files were hexadecimal, they proved to be very 

slow in loading, even in the single-user mode. On the MDS-800, the 

assembler took 19 seconds to load and the editor took 11 seconds. This 

was a nuisance in the single-user mode, but a disaster in the multi-user 

mode. 

The solution involved the use of core image files. Core image 

files, located in contiguous sectors on the disk load extremely fast. 

For example, the same assembler loaded from an MDS-800 disk takes 1.5 

seconds and the editor takes less than a second to load. It was 

therefore decided to create a new file type called an LDM (Load Module). 

The format of the LDM file is as follows; the file resides on the 

disk as a block of contiguous sectors, the first of which contains 

information necessary to load, check the success of the load and 

transfer control to the program. This first sector is called the header 

block. The header blocks contains the load address where the subsequent 

sectors are to be read and stored, the number of sequential sectors to 

be read, the starting address of the loaded program, and a 16-bit 

checksum to check the results of the transfer. The sectors read from 

the LDM file are written directly into memory, instead of being read to 



73 

a disk I/0 buffer first. The FAMSEC and FAMTRK in the directory entry 

point to the track and .sector where the header block resides on the 

disk. 

Since the LDM format file requires a contiguous block of sectors 

for storage, the normal system S~1SCH subroutine could not be used to 

allocate sectors for the file. It was therefore necessary to write a 

special LDM converter program. This LDM converter program converts a 

standard INTEL hexadecimal format file to a ZDOS LDM format file. It 

also searches the ZDOS disk for a contiquous block of sectors for 

storage. The current implementation of this converter program reads the 

hexadecimal file from an ISIS disk and outputs the LDM file to a ZDOS 

disk in drive 1. This has the advantage that any executable object 

format file that runs on the MDS-800, can be made to run on the ZDOS 

hardware by simply converting the .OBJ file to a .HEX file using OBJHEX 

and then pass the .HEX file to the LDM converter. 

The main use of the LDM converter is to create system programs on 

the disk at system generation time. If desired, the current LDM 

converter program could be modified to convert ZDOS hex files to LDM 

files, but in general, user hex files are short and load fast enough. 

Because the LDM file format does not conform the usual system file 

format, it was necessary to make additions to the DELETE and LOADHX 

system calls to handle LDMs. Also, LDM files cannot be listed on the 

console or copied from one disk to another (except possibly in a 

wholesale disk fast copy routine). 

Since the LDM file resides on the disk as contiguous, sequential 

sectors, it was considered allowing the LDM loader to seize control of 

the disk for the duration of the load in the multi-user environment. 



74 

This idea was discarded for the following reasons: 1) The nature of the 

current disk I/O drivers only allow a user to read one sector at a time. 

· 2) The disk hardware is not DMA, which would prevent the system from 

responding to console I/O during this seizure. 

Due to the fact that only one sector is read at a time, when more 

than one user is loading an LDM file, there is some increase in load 

time due to rotational latency of the disk. If the LDM files reside on 

different tracks, the disk is activity is frantic due to the alternate 

seeks from one track to the next and back again. In order to get around 

the problem of not having DMA disk hardware, a future version the CRT 

Multiplexer board should include an on-board processor whose sole 

function would be to collect user command strings for transfer to the 

system only when a cr-lf is entered. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The ZDOS Multi-User Operating System was designed and written to 

fill the need for a relatively inexpensive, dedicated training aid for 

the teaching of microprocessor programming fundamentals to electrical 

engineering students. This project was not an attempt to build on 

traditional multi-user approaches, but rather to devise a concept 

tailored to a specific microcomputer hardware environment. What has 

evolved is a very viable operating system that can be used as a host 

operating system or can be linked with user programs to give even the 

simplest task full disk file handling capabilities. 

ZDOS utilizes a time-~ultiplexing technique to achieve apparent 

concurrency of programs on the processor. By the us~ of a specially 

implemented blocking technique, the level of actual concurrency has been 

increased in the I/O hardware. This is accomplished by the use of the 

context switch request function on the CSB. The same blocking scheme 

prev~nts conflicting requests for use of shared resources, such as the 

disk. 

Another diversion from traditional time share systems, is in the 

implementation of the console interface. Most systems utilize separate 

I/O hardware drivers for each user console, thus requiring separate 

software driver modules. ZDOS uses the user identification number in 

conjunction with a hardware gating method, in order to address all 

75 



consoles at the same I/O address. This allows the use of a single 

software driver for all consoles. This eliminates the need of a 

scheduling method for access to console drivers. 

76 

Traditional systems have need of a memory manager to dynamically 

allocate the system memory resource. This method was departed from by 

the use of bank switching capabilities of the memory board hardware. 

Since each user addressable memory space is in a separate bank, the 

amount of potentially accessable memory by each user is increased. That 

is, eight users in a single 64K memory space can potentially have less 

than 8K each, but eight users in a bank switched system can potentially 

have 64K (assumming of course the system overhead is zero). Since the 

bank switching is a function performed by the hardware, the need for a 

software memory manager has been eliminated. Additionally, by the use 

of this method of memory allocation, some inherent memory protection is. 

afforded. Since each user occupies a separate memory space, an out of 

control process cannot destroy the sanity of other users. 

Additional memory protection is provided if the system software is 

placed in ROM. This is possible because of the re-entrant nature of the 

system software. Since the hardware provides many of the scheduling 

functions that the processor normally handles in traditional approaches, 

ZDOS does not require system RAM. There are no system tables, queues or 

stacks to maintain. Each user's virtual processor is saved on their own 

stack, resident in their own memory space. 

In the course of this project, one concept has become readily 

apparent; the software design process must become more disciplined. In 

the past two and one-half years, thousands of hours have been spent at a 

hit and miss approach by an engineer to a computer science problem. As 



77 

the project progressed, new approaches to software design were tested 

and discarded for still better methods. As this particular design 

project draws to completion, it is hoped that the thousands of hours 

spent in a hit and miss approach to software design by an engineer has 

been replaced by a more disciplined structured approach of a computer 

scientist. 

ZDOS is currently running on three different target hardware 

systems in both single and multi-user modes. It is the basic operating 

system for two different testing systems at Western Electric. Although 

the basic kernel of the system is fairly finalized, extrinsic programs 

are being constantly created by a small group of users. Utility 

programs are available for interchange of data files between ZDOS and 

ISIS-II. There is in the works, a version of ZDOS that will run CP/M 

based programs such as CBASIC, SID, TEX and RMAC. The main advantage to 

a system such as ZDOS is that if the user does not care for a feature or 

wants to add features, the source listing is available for such changes 

and a custom version suited to his needs can be generated. 



SELECTED BIBLIOGRAPHY 

(1) Cromemco, Incorporated. CDOS User's Manual. Mountain View, 
California, 1977. 

(2) Cromemco, Incorporated. RDOS Instruction Manual. Mountain View, 
California, 1978. 

(3) Intel Corporation. ISIS-II User's Guide. Santa Clara, California, 
1976. 

(4) Intel Corporation. 8080/8085 Assembly Lang~age Programming Manual. 
Santa Clara, California, 1977. 

(5) Intel Corporation. 8080/8085 Macro Assembler Operator's Manual. 
Santa Clara, California, 1977. 

(6) Texas Instruments Incorporated. The TTL Data Book for Design 
Engineers. Dallas, Texas,. 1973. 

(7) Zilog Incorporated. 280 CPU Technical Manual. 
California, 1977-.- --

Cupertino, 

78 



APPENDIX A 

SYSTEM CALLS 

The following is an abbreviated list of system calls: 

No. Name 

0 EXIT 
1 CNSIN 
2 CNSOUT 
3 CNSTAT 
4 LSTOUT 
5 IOSET 
6 IOGET 
7 LISTHL 
8 BINASC 
9 

10 DNSRCH 
11 PRTNAM 
12 RENAM 
13 DELETE 
14 MOVNAM 
15 RENEXT 
16 OPEN! 
17 OPENO 
18 CLOSE 
19 
20 REWIND 
21 RDSECT 
22 WRSECT 
23 INTFCB 
24 RDBYTE 
25 WRBYTE 
26 RDLINE 
27 WRTFIL 
28 LOADHX 
29 SAVHEX 
30 EOFHEX 
31 
32 FTCHAT 
33 STORAT 
34 FTCHDR 
35 STORDR 
36 SETPRT 
37 UNPROT 

Description 

Exit to ZDOS base level 
Return character from console in A-register 
Output character passed in A to console. 
Return console status. A•O if not ready. 
List.character passed in A on list device in IOBYT. 
Set IOBYT to list device passed in B. CRT•40H, LPTz80H. 
Return IOBYT in A-register. 
List string pointed to by HL on list device in IOBYT. 
List binary number in HL on list device in B. 

Search directory for file in FCB. 
Print file specification in FCB on console. 
Rename old name in FCB to new name in HL. 
Delete file name specified in FCB. 
Append name pointed to by HL to FCB. 
Rename extension in FCB to new extension in HL. 
Open file in FCB for input. 
Open file in FCB for output. 
Close file in FCB. 

Rewind file in FCB to its head. 
Read a physical sector from the disk. 
Write a physical sector to the disk. 
Initialize an FCB. Buffer address passed in HL. 
Read a byte from an open file to the A-register. 
Write a byte from the A-register to an output file. 
Read a line from an open file to buffer in HL. 
Write a buffer terminated by an EOF to a disk file. 
Load an executable file into memory. 
Save a binary memory segment as a hexadecimal file. 
Write an end of file record to a hex file. 

Return file attributes in A-register. 
Store file attributes passed in A in FCB. 
Return drive specification from FCB in A. 
Store drive specification in A into FCB. 
Set write protect attribute in FCB. 
Reset write protect attribute in FCB. 

79 



38 CPARID 
39 STORID 
40 GETDSK 
41 SETDSK 
42 GETCUR 
43 GETTOP 
44 REPORT 
45 GETUSR 
46 
47 
48 DEVCHK 
49 
50 PARSER 
51 NEXTIN 

Compare user ID in FCB with user port. 
Store user ID in FCB. 
Return current logged-in disk in A-register. 
Set current logged-in disk passed in A-register. 
Return current command string buffer pointer in HL. 
Return address of last RAM location at top of memory. 
Report error number passed in B-register to console. 
Return current user ID number in A and c. 

Check legality of device pointed to by HL. 

Parse incoming command string. 
Fetch next input file in list into FCB. 

80 



APPENDIX B 

INTRINSIC COMMANDS 

The following is an abbreviated list of intrinsic commands: 

Command Description 

ERA filel, ••• ,file2 Erase file list from disk. 

FREE <:Dx:> TO <:list:> Display number of free blocks on list device. 

ATR file WO/Wl Set or reset write protect flag on file. 

REN oldfile TO newfile Rename old file name to new file name. 

TYPE file TO <:list:> Type file on list device. 

LOG :Dx: Log in on device specified. 

BYE Exit to the system monitor. 

DEBUG file Load file, set debug mode, and enter monitor. 

GET file Load file into memory and return to ZDOS. 

DIR <:Dx:> TO <:list:> Print directory on list device. 

SUB file<.JOB> Execute indirect command file. 

DISK Disk examination utility monitor. 

COPY file!, ••• TO file Copy input file list to output file. 

WHO Report current user ID number to console. 

CID file oldiD newiD Change file user identification number. 

SLIST Super user directory listing command. 

81 



APPENDIX C 

SYSTEM ERROR MESSAGES 

The following is an abbreviated list of system error messages: 

No. Description 

0 filespec, NO SUCH FILE 
1 filespec, ALREADY EXISTS 
2 filespec, WRITE PROTECTED 
3 SYNTAX ERROR 
4 ILLEGAL DEVICE 
5 SYSTEM FILE 
6 ACCESS ERROR 
7 DIRECTORY FULL 
8 LOAD ERROR 

50 Attempt to read a null file. 
51 Attempt to close an inactive FCB. 
52 Attempt to open an active FCB. 
53 
54 Attempt to read an inactive FCB. 
55 Attempt to write to an inactive FCB. 
56 Missing EOF mark in a file. 
57 EOF not first character in line buffer. 
58 Attempt to rewind an inactive FCB. 
59 Attempt to rewind a file open for output. 
60 Attempt to write a hex segment to an inactive FCB. 
61 Attempt to write a hex segment to a file open for input. 
62 LDM track greater than 76. 
63 Hex segment start address less than stop address. 

101 Bad checksum in a binary file. 
102 Bad LDM checksum. 

255 Fatal hardware error. 

82 



APPENDIX D 

HEXADECIMAL FILE FORMAT 

The system object code is stored on the disk in the INTEL standard 

hexadecimal paper tape format. The code is blocked into records, each 

of which contains the record type, length, type, memory load address, 

and checksum in addition to the data. Each record is stored as ASCII 

and is terminated by a carriage-return line feed. The record mark is a 

colon(3AH) and is used to signal the start of a record. The record 

length is the count of the data bytes in the record. A record length of 

zero indicates end-of-file. The load address specifies the address at 

which the first data byte will be loaded. The successive data bytes 

will be stored in successive memory locations. The record type 

specifies the type of this record. All data records are type o. End­

of-file records can be type 0 or 1. The data consists of two ASCII 

characters per memory byte. The data is represented by hexadecimal 

values OOH through FFH. The checksum is the negative of the sum of all 

8-bit bytes in the record, beginning with the record length and ending 

with the last data byte, evaluated modulo 256. The sum of all bytes in 

the record (including the checksum) should be zero. 

83 



APPENDIX E 

ZDOS TEXT EDITOR 

Introduction 

The ZDOS Text Editor enables a user to create and edit ASCII 
text files. The Text Editor can be used to manipulate and edit 
text on a line or character basis. One or more characters can 
be inserted in, deleted from, or changed in a line of text. 
Insertions and deletions can be made that cover more than one 
line of text. The point of insertion or deletion can be freely 
selected to be at the beginning of text, the end of text, the 
beginning of a line, the end of a line, or at any point within 
the text. Line numbers and other extraneous information need 
not be added to the text in order for the text editor to operate 
correctly. 

Overall Flow of Text Editting 

The usual procedure for creating a new text file is to call the 
text editor, enter the text from the system console, perform 
whatever editting functions are desired, and then output the 
text file to a disk for storage. To edit an existing file, call 
the text editor, input the text from the file, edit the text, 
and output the editted version to a disk file. 

Memory Requirements, Work Space, and Text Buffer. 

The ZDOS Text Editor is loaded from the disk into memory 
starting at BOOR. In the current version of EDIT, the text 
buffer starts at 1B27H. The remaining RAM space to 3FFFR is 
available as buffer and work space. 

The text buffer is the portion of the RAM currently being used 
by the text editor to store text. The size of the text buffer 
varies, increasing as text is entered, and decreasing as text is 
deleted. When the buffer is empty, beginning and end of the 
buffer coincide. 

84 



Buffer Pointer. 

The buffer pointer is used to locate the position in the text 
buffer where editting is to occur. The buffer pointer can be 
positioned as follows: 

85 

1. Before the first character in the text buffer (beginning of 
the buffer) • 

2. Immediately following the last character in the text buffer 
(end of the buffer). 

3. Between two adjacent characters in the text buffer. 

The buffer pointer is never positioned directly on a particular 
character but points before it or after it. Text is placed into 
the buffer at a point immediately preceding the buffer pointer. 

You can move the buffer pointer to any position inside the 
buffer. Any command attempting to move the buffer pointer past 
the boundaries of the text buffer is terminated when the buffer 
pointer reaches the boundary, even though the command specified 
has not been completed. 

The buffer pointer can be moved by characters or by lines. A 
line of text in the text buffer is a string of characters having 
a line feed as its last character. The next character in the 
text buffer immediately following the line feed is in the next 
line. If no line feed characters are used in the text, the 
entire text is consisdered to be one line. Line feeds are 
automatically inserted following a carriage return whenever the 
carriage return key is depressed. 

Calling the Editor 

The ZDOS Text Editor is an extrinsic command invoked by the name 
EDIT. As opposed to the Intel ISIS software, the ZDOS Text 
Editor can be executed from a submit command file. The syntax 
of the EDIT command is: 

EDIT filespecl <TO filespec2> 

where 

filespecl is either the name of a new file to be created and 
editted or the name of an existing file to be editted. 

If filespecl is a diskette file and filespec2 is not specified, 
the action taken by the editor depends on whether filespecl is 
a new or existing file. If filespecl is new, it is created for 



output. If it exists and is not write-protected, it is opened 
for input. A special file, EDITOR.TMP, is created for output. 
When the editting session is ended with the EXIT command, the 
files are closed and the following occurs: 

1. filespec! is renamed to filespecl.BAK. 

2. EDITOR.TMP is renamed to filespec!. 

For example, after an editting session that started with the 
command 

EDIT FILE.TXT 

86 

the files FILE.BAK and FILE.TXT are on drive O. FILE.BAK is a 
backup version that represents the state of the text file before 
the editting session. 

filespec2, if specified, is the name of the output file to which 
the results of the editting session are written. The action of 
the editor depends on whether filespec2 is a new file or an 
existing file. If it is a new file, the editor creates it for 
output. If filespec2 already exists, an error is reported to 
the console. 

ZDOS will not allow filespec! and filespec2 to be the same. 

The filename EDITOR.TMP should be reserved for the editors' use 
as any file on the same disk as the input file called EDITOR.TMP 
will give a warning error. Note that when an editting session 
is aborted through means other than a valid command, the 
temporary output file, EDITOR.TMP, remains on the disk. 

Example 1: Suppose you want to create and edit a new file 
called FILEl.ASC on drive 1. You would enter the following in 
response to the ZDOS command prompt DO>: 

DO>EDIT :Dl:FILE.ASC 

The system responds with: 

ZDOS TEXT EDITOR, Vx.x 
NEW FILE 

* 
where x.x is the current version number of the editor. NEW FILE 
is stated confirming the creation of a new file. Finally, the 
text editor prompts with an asterisk (*)• 

Example 2: Suppose on some other occassion you want to edit an 
existing file on drive 1 called CRUD.SRC. You would enter the 
following: 

DO>EDIT :Dl:CRUD.SRC 



The system responds with: 

ZDOS TEXT EDITOR, Vx.x 

* 
The NEW FILE message is not given in this case because an 
existing file is being editted. 

Editor Commands and Command Syntax 

The text editor signals its readiness to accept commands by 
prompting with an asterisk (*)• 

Commands can be entered singley or in a command string. The 
commands in a command string are executed in the order they are 
entered. A command string is terminated with two successive ESC 
characters (or ALT MODE characters on some terminals). The ESC 
characters are displayed on the console as dollar signs ($). 
However, text strings within commands must be terminated by one 
ESC. A substitution command includes a new text string to be 
entered into a file in place of an old text string. 

This command is replacing old text with new text, thus 

Sold text$new text$$ 

87 

Command strings are stored from the top of available RAM memory 
down. The first command character is stored in the highest 
available location, with succeeding characters in descending 
locations. If a command attempts to overwrite the text buffer, a 
bell sounds. Press the rubout key to delete the command you are 
entering. Then write out the buffer with the W command to free up 
space for further editting. 

Carriage Return and Line Feed. 

When you enter text, the text editor automatically generates a lin~ 
feed following a carriage return. Thus, if you want to delete a 
carriage return, you must delete two characters to eliminate the 
line feed also. 

Deleting Typographic Errors (RUBOUT and Control-X). 

Any typographic errors in entering a command can be removed by 
pressing the RUBOUT key once for each character to be removed. As 
each character starting from the last one entered is deleted, the 
editor echoes the deleted character on the console. Entering a 
Control-X causes characters to be deleted from the command back to 
the last carriage return and line feed. 



88 

Inserting Tabs (Control-!). 

The editor generates a horizontal tab when you enter a Control-! 
(or TAB key on some terminals). A Control-! is stored in the text 
buffer as single character (09H). The system accepts this 
character to generate a sufficient number of spaces to position the 
next character at the next tab position. Tab stops are located 
every eight character positions accross a line of text (0, 8, 16, 
24, etc.). 

Command Descriptions 

Two Basic Commands - Insert and Type. 

The insert and type commands allow you to insert text in the 
buffer and to type or echo the text back onto the console for 
your inspection. 

I - Insert Text in Buffer. 

The insert (I) command is used to insert text in the text buffer 
from the system console. The new text is entered immediately 
before the buffer pointer. The syntax of the I command is: 

I text$$ 

where text can include carriage returns. After recognizing the 
letter it encounters an ESC or ALT MODE. 

Example: 

*Ito be or not to be,<CR> 
that is the question.<CR> 
$$ 

In this example, two lines are entered before the buffer 
pointer. 

T - Type Text in Buffer on Console. 

To type back the entered text in order to verify it was entered 
correctly, use the type (T) command. The syntax of the T command 
is: 

nT 

where n is a decimal integer ranging from 

-9999 to +9999 



89 

if n is positive, the text is typed from the current position of 
the buffer pointer forward to the nth line feed. If n is negative, 
typing begins from n lines before the beginning of the current line 
(the line containing the buffer pointer) and continues until the 
buffer pointer is reached. If n is zero, typing is from the 
beginning of the current line up to the buffer pointer. If no 
value is specified for n, the editor assumes a default value of i, 
which causes typing from the buffer pointer to the end of the 
current line. 

Buffer Pointer Positioning. 

The following four text editor commands, B, z, L, and C, all move 
the buffer pointer. B moves the pointer to the beginning of the 
text buffer. Z moves the pointer to the end of the text buffer. L 
moves the pointer a specified number of lines forward or backward. 
C moves the buffer pointer a specified number of characters forward 
or backward. 

B - Move Pointer to Beginning of Buffer. 

The B command, which moves the buffer pointer to the beginning of 
the text buffer, has several uses. For example: 

Setting a reference point for counting lines of text or 
searching for a word or phrase. 

Defining a starting point when thwhole text buffer 
contents are to be typed out. 

Inserting text at the beginning of the text buffer, in 
front of text already in the buffer. 

Z - Move Pointer to End of Buffer. 

The Z command, whic~ moves the buffer pointer to the end of the 
text buffer immediately following the last character in the buffer, 
is used primarily tprepare to append text to the end of the buffer. 

L - Move Pointer to Next Line. 

The L command moves the pointer a specified number of lines forward 
or backward. The syntax of the L command is: 

nL 

where n is a decimal number in the range 

-9999 to +9999 

A posive value of n advances the buffer pointer to the beginning of 
the nth line following the current line. A negative value of n 
moves the buffer pointer back to the beginning of the nth line 
preceding the current line. When the argument value is -1 or just 



-, the buffer pointer is moved back to the beginning of the line 
preceding the current line. If n is zero, the buffer pointer is 
moved back to the beginning of the current line. 

C - Move Pointer over One Character. 

The C command moves the pointer a specified number of character 
positions. The syntax of the C command is: 

nC 

where n is a decimal number in the range 

-9999 to +9999 

If n is positive, the pointer is moved foward n characters. If n 
is negative, the pointer is moved back n characters. If n is 
omitted, a value of 1 is assumed. A value of zero produces an 
error. 

90 

The C command is not an effictent way to move the pointer over 
large blocks of text, but is best utilized when pointer movement is 
restricted to one line of text. When you need to move the pointer 
over lines or paragraphs, the L and F command should be used. 

Editting Examples with I, T, B, Z, and L. 

The following examples make use of five of the editting commands so 
far presented: I, T, B, Z, and L. 

1. Suppose you have entered data into the text buffer using the I 
command, and you want to type out the entire buffer. The following 
command string can be used: 

*B500T 

The B command move the buffer pointer to the beginning 
of the text buffer. The SOOT command types out the 
entire buffer if it contains 500 lines or less. 
Otherwise, the first 500 lines are typed. 

2. You can use the following command to type the current line of 
text if the buffer pointer is not at the beginning of the line, 
without moving the buffer pointer from its current position: 

*OTT$$ 

The OT part of the command types from the beginning of 
the line up to the buffer pointer. The next T types 
from the buffer pointer to the end of the line. 

3. The current line of text can also be typed by: 

*OLT$$ 



The OL part of the command moves the buffer pointer to 
the beginning of the current line. The T then types 
from the pointer to the end of the line. 

91 

4. You can move the pointer back 5 lines of text and have the line 
where the pointer is positioned typed out by the following command 
string: 

*-5LT$$ 

The buffer pointer is moved back to the start of the 
fifth line before the current line. This new line 
becomes the current line. The T causes the line to be 
typed out. 

Deletion of Text. 

The K and D command are used for deleting text from the buffer. 

K - Kill Lines of Text. 

The K command deletes lines of text. The syntax of the K command 
is: 

nK 

where n is a decimal number in the range 

-9999 to +9999 

If n is positive, the text is deleted from the current position of 
the buffer pointer forward to and including the nth carriage return 
and line feed. If n is negative, deletion starts from n lines 
before the beginning of the current line (the line containing the 
buffer pointer) and continues until the buffer pointer is reached. 
If n is zero, deletion is from the beginning of the current line up 
to the buffer pointer. If no value is specified for n, the editor 
assumes a default value of 1, which causes deletion from the buffer 
pointer to the end of the current line. 

D - Delete Characters from Buffer. 

The D command is used to delete a specified number of characters from 
the text. The syntax of the D command is: 

nD 

where n is a decimal number in the range 

-9999 to +9999 

A positive value of n causes deletion of n characters following the 
buffer pointer. A negative value of n causes deletion of the n 
characters preceding the buffer pointer. If n is omitted, a value 



of 1 is assumed. A command of OD produces an error. 

Editting Examples Using B, T, L, C, K, D 

The following examples make use of the editting commands thus far 
described: 

92 

1. Suppose you want to delete ("kill") the first 20 lines of text. 

*B20K5T$$ 

This command string causes the buffer pointer to be 
moved to the start of the buffer, 20 lines of text to be 
deleted, and the following five lines to be output to 
the system console device. The command terminator is 
placed at the end of the command string; the individual 
commands do not need separate terminators. 

2. Consider the following line of text, where the word MULTUIPLY 
can be corrected by simply deleting the extraneous letter u. 

;THIS ROUTINE WILL MULTUIPLY TWO 16-BIT NUMBERS. 

Because the buffer pointer is at the beginning of the text line, it 
must be moved 23 character positions to the point immediately 
before the letter u. Then the letter U can be deleted with the D 
command. The command to perform these operations follows: 

*23CD$$ 

This is a clumsy way to delete a character. It is included here as 
an example to show the use of the C command. A better command to 
perform the same operation is the S (substitute).command to be 
described later. 

3. Suppose the following text is present in the text buffer: 

THIS IS LINE 1 
THIS :J;S LINE 2 
THIS IS LINE 3 
THIS IS LINE 4 
THIS IS LINE 5 
THIS IS LINE 6 
THIS IS LINE 7 
THIS IS LINE 8 
THIS IS LINE 9 
THIS IS LINE 10 

A carriage return and line feed terminates each line, but is not 
shown here. Assume that the buffer pointer is in line 6, 
positioned between the 'I' and the'S' in the word 'IS'. This 
example shows the effect of various T commands and then shows how 
the L and K commands can be used to delete several lines. 



93 

*OT$$ 

Types out from the start of the current line (line 6) up 
to the buffer pointer. 

THIS I* 

*T$$ 

Types from the buffer pointer to the end of the line. 

S LINE 6 

* 
OTT$$ 

Types the whole line without moving the buffer pointer. 

THIS IS LINE 6 

* 
-5T$$ 

Types 5 lines preceding the current line plus the 
current line from its start to the pointer position. 

THIS IS LINE 1 
THIS IS LINE 2 
THIS IS LINE 3 
THIS IS LINE 4 
THIS IS LINE 5 
THIS I* 

5T$$ 

Types five lines including part of the current line from 
position of the buffer pointer. In this case, five 
lines were typed. However, if the command were '6T', 
the sixth line would not be typed because the sixth line 
after line 6 does not exist inside the text buffer 
boundaries. The five lines would be printed as in the 
example below, then the command would be terminated. 

S LINE 6 
THIS IS LINE 7 
THIS IS LINE 8 
THIS IS LINE 9 
THIS IS LINE 10 

* 
-5T5T$$ 

Types all ten lines of the buffer. Includes the five 
lines preceding the buffer pointer, the line containing 



94 

the buffer pointer (from the beginning of the line up to 
the pointer), the remainder of the current line (from 
the pointer to the end), and the four remaining lines. 

THIS IS LINE 1 
THIS IS LINE 2 
THIS IS LINE 3 
THIS IS LINE 4 
THIS IS LINE 5 
THIS IS LINE 6 
THIS IS LINE 7 
THIS IS LINE 8 
THIS IS LINE 9 
THIS IS LINE 10 

* 
Now, suppose you want to delete lines 3, 4, 5 and 6. 
First, the buffer pointer should be positioned either 
before or after the lines that are to be deleted. We 
can move the pointer in front of the lines and use a 
positive argument K command. Because the pointer.is in 
line 6, it must be moved in front of line 3. Then the 
four lines 3, 4, 5 and 6 can be deleted. The command is 
as follows: 

*-3L4K$$ 

The L moves the pointer to the start of line 3. The 4K 
deletes line 3, 4, 5, and 6. 

Alternatively, the pointer can be moved to the line following the 
lines to be deleted and a negative argument K command used, as 
follows: 

*L-4K$$ 

The L moves the pointer to the start of line 7. The -4K deletes 
lines 3, 4, 5, and 6. 

To verify the deletion, you can type out the entire text buffer. 

*BlOT$$ 

The buffer pointer is moved to the beginning of the 
buffer. The command lOT attempts to type out 10 lines, 
but only six lines remain. The command terminates when 
all six lines have been typed. 

THIS IS LINE 1 
THIS IS LINE 2 
THIS IS LINE 7 
THIS IS LINE 8 
THIS IS LINE 9 
THIS IS LINE 10 



Search Commands 

Two editor commands are available to search for specified text 
strings. The F command finds a particular string of text. the S 
command finds the text string and substitutes another one in its 
place. Both commands start searching at the pointer and search 
forward until the search is satisfied or until the end of the 
buffer is reached. 

F - Find Text String 

The F command finds a text string of up to 255 characters. The 
characters ESC and ALT MODE are not considered to be text because 
of their control functions and cannot be included in the set of 
text characters. 

95 

The ZDOS Text Editor F command differs from the INTEL editor in the 
number of characters allowable in the string (255 versus 16). Also 
ZDOS text editor allows finding the nth occurrence of the string. 
The value of n can be in the range 1 to 9999. A negative n or On 
produces an error message. 

The syntax of the F command is as follows: 

nFtext$$ 

where text is the specified text string of 1 to 255 characters, 
including non-printing characters. 

The F command causes the editor to search for the nth occurrence of 
a character string matching the character string specified in the 
command. All characters must match, including printing and non­
printing characters (such as cr-lf). The search is started at the 
current location of the buffer pointer and continues until either 
the end of buffer is reached or a successful match is made. 

If a successful match is made, the editor terminates the command, 
leaving the buffer pointer immediately following the last 
character. A prompt character is output, requesting the next 
command. 

If no match is found before the end of the buffer is reached, the 
editor prints the message: 

CANNOT FIND "text" 

where text represents the specified string. The buffer pointer, in 
this case, remains unchanged. If the specified string is larger 
than 255 characters, the editor reports: 

STRING TOO LONG 

If there is no text between the F and the first ESC, the editor 



96 

reports: 

NULL STRING 

If the F command is part of a command string, a single ESC 
character terminates the text string, allowing additional commands 
to be appended. If no other commands are to be included, the text 
string and command string can both be terminated with ESC ESC 
(which is echoed on the console as$$). 

It is important to remember to terminate the text string before 
additional commands are appended. Otherwise, the additional 
commands are treated as part of the text string. For example, the 
command: 

FDIVIDEOLT$$ 

initiates a search for the string 'DIVIDEOLT', instead of the 
intended string 'DIVIDE'. The correct format for this command is: 

FDIVIDE$0LT$$ 

It is wise to verify that the search has been successful by typing 
out the line. In some cases, the search string can appear in 
several unexpected places prior to the line being sought. For 
example, if the label 'DIV:' is being searched for and several 
occurrences of the string search string can produce spurious 
results. A unique combination of characters is required. In this 
case, it would be better to search for "DIV:" and then verify 
search results by typing out the line. 

If a carriage return occurs in the search string of an F or S 
command, the editor automatically generates a line feed following 
it. Thus: 

*FEND. 
NEXT$$ 

search for the string 'END.cr-lfNEXT'. 

S - Substitute Text String 

The S command finds a text string and substitutes another in its 
place. The substitution is made only if the search is successful. 
The syntax of the S command is: 

Soldtext$newtext$$ 

where newtext is substituted for oldtext if it is found. Each of 
the strings must be terminated with an ESC. The first string, 
oldtext, is the search string. Only the first 255 characters are 
used. The second string, newtext, is the substitution string and 
can contain any number of characters (excluding the characters ESC, 
ALT MODE, and CONTROL-C. The substitute string must be terminated 



97 

with an ESC or ALT MODE. 

If newtext is omitted, the search string is found and deleted. The 
S command can be used in this manner to selectively delete strings 
up to 255 characters long. 

In searches using the S command, the string searched for must 
exactly match the string specified in the command, including upper 
and lower case, punctuation, carriage returns and line feeds. At 
the completion of the S command, the buffer pointer is located 
after the last character substituted. 

Examples Using Search Commands {F and S) 

1. Suppose you want to delete the string 'OFF' from a line in your 
program that reads: 

PARAM: CALL BACKOFF ;BACK IS THE RETURN. 

An F command is used to position the buffer pointer before the 
string to be deleted. A command to accomplish this is: 

*BFBACK$3DOTT$$ 

This command string moves the pointer to the start of 
the buffer, then commences a search for the string 
'BACK'. At the first occurrence of this string, the 
pointer is positioned following the K in BACK. The next 
three characters, OFF, are deleted, and finally the line 
is typed out. The $$ terminates the command string. 

When completed, the line of text will appear as follows: 

PARAM: CALL BACK ;BACK IS THE RETURN. 

Notice that the S command could be used to produce exactly the same 
result, as follows: 

SBACKOFF$BACK$0TT$$ 

In this case, the string 'BACKOFF' is replaced with 'BACK', having 
the same effect as deleting 'OFF'. 

If you are uncertain whether the search string occurs in a prior 
line of the program, you can do a simple search for the string with 
the F command and type out the line found with OTT before 
substituting or deleting, to make sure you have the desired line of 
text. 

2. Suppose you want to search for a string and delete it. This can be 
done by combining the F and D commands. For example, to delete the 
label 'PARAM:' in the following line: 

PARAM: CALL SUB! 



98 

a command such as the one below could be used: 

BFPARAM: $-6D$$ 

The string 'PARAM:' is found with the F command, the buffer pointer 
is left after the colon (:), and the preceding 6 characters are 
deleted. The S command would be easier to use in this case, as it 
would not be necessary to count the number of characters to delete 
in the search string. 

BSPARAM:$$ 

3. An error to corrected consists of a misspelled word. The following 
command is used to search for the incorrect word and replace it with the 
correct one. Once corrected, a typeout is specified to verify the 
operation: 

SINITAIL$INITIAL$0TT$$ 

The editor responds by performing the substitution and typing out 
the corrected line. At the termination of the operation, the 
buffer pointer is positioned at the location between the L in 
INITIAL and the following space. It is more common practice to use 
'OLT' instead of 'OTT' to verify the correction. This leaves the 
pointer at the beginning of the line. 

Input and Output Commands 

The next five commands are concerned with input from and output to 
files on which the text editting is being performed. 

R - Read Text into Buffer 

The R command is used to fetch text from the input file on the disk 
into the text buffer. The R command appends the text read to the 
end of the buffer, regardless of where the buffer pointer is 
pointing. The R command is normally the first command to be used 
when you want to edit an already existing file, since you must 
bring the text from the input file into the text buffer to edit it. 
Once initiated, the R command continues reading text until one of 
the following conditions is satisfied: 

* An end of file character (CONTROL Z) is read. The end 
of file character is not placed in the text buffer. 

* The work space is full. The work space will be filled 
only to within 80 bytes of the upper end of RAM memory. 

* n lines of text are input to the text buffer. 

* The end of file is reached. 

The ZDOS Text Editor R command reads n lines of text into the 



99 

buffer ( n is a positive number in the range 1 to 9999). If the 
input file is small enough to fit in the buffer, one can use a 
command such as 1000R$$ to read the entire file into memory. If 
the file is too large, the buffer will be filled to within 80 bytes 
of the top of RAM and the .editory will report: 

BUFFER FULL 

Example: 

To input 150 lines of text from the existing diskette file FLOW.SRC 
on drive 1, perform the following command: 

DO>EDIT :D1:FLOW.SRC 

ZDOS TEXT EDITOR, V3.3 
*150R$$ 

* 
W - Write Text to Output File 

The W command is used to write out n lines of the text buffer to 
the output file specified in the EDIT command. The text is always 
taken from the beginning of the text buffer regardless of the 
current position of the buffer pointer. After n lines of the text 
is written to the output file, n lines are deleted from the text 
buffer, and the remaining text is moved up to the beginning of the 
text buffer. 

The read and write commands can be used in any order with any 
argument. E.g., one can read 1 line, read 10 more lines, write 2 
lines, read 5 more lines, insert some text, write 5 lines at a time 
until the buffer is empty. ZDOS and the Text Editor will maintain 
the file and buffer pointers. 

A - Append 50 Lines of Text from the Disk 

The Append command was implemented in the ZDOS Text Editor in order 
to maintain compatability with the INTEL Editor for those who are 
used to using the A command. The A command appends 50 lines of 
text from the input file to the end of the text buffer. If an 
argument n is supplied, it appends n times 50 lines. 

E - Exit After Writing Buffer to Output File 

The E command is used to write out the contents of the text buffer, 
as well as the rest of the input file text still remaining on the 
disk and exit to ZDOS. The system closes all files and returns to 
base level. 

Q - Quit the Editor 

The Q command can be performed to terminate an editting session in 
progress without doing any output. The input file is unchanged. 



100 

The output file is closed and deleted from the disk. Caution must 
be used in using the Q command, as any text in the buffer or 
already written to the output file is lost forever. 

M - Memory 

The M command computes and displays on the console the amount of 
work space remaining for use by the editor. The editor reports: 

11KMORY LOCATIONS=xxxxx 

where xxxxx is a decimal integer with a maximum value 65,535. 
Note: if you are editting a large file and are running out of work 
space, use the W command to write out part of your file to the 
disk. This will free additional work space for the editor's use. 

Command Iterations 

A command or command string can be repeated any number of times by 
enclosing the string in angle brackets '<' and '>', preceded by a 
number that specifies how many times the iteration is to be 
performed. The syntax of the command is as follows: 

n<command string>$$ 

where n specifies the number of times the command enclosed in angle 
brackets is executed. 

For example, if your program contains a label 'DIVID' ten times in 
the source file and you want to shorten the label to 'DIV', you can 
use an iterative S command, as follows: 

*Bl0<SDIVID$DIV$0LT>$$ 

The B command moves the pointer to the beginning of the text 
buffer. The substitute and print the line command string is 
repeated ten times. 

The command iteration can be a boon to a user who knows how to use 
it, but can be disaster to the uninitiated. For example, suppose 
the label 'DIVID' appears ten times in the source file and you want 
to change it to 'XDIVID'. Please observe what the at first seem 
obvious command string does for you: 

*Bl0<SDIVID$XDIVID$0LT>$$ 

At the first occurrence of the label your would have: 

XXXXXXXXXXDIVID 



101 

The correct command string is: 

*B10<SDIVID$XDIVID$0LT$L>$$ 

Normally, one doesn't know the number of times a certain string 
exists in the source file. You can therefore pick a large number 
for n, such as 100 or 1000. When the iteration runs out of text, 
the editor will report: 

CANNOT FIND "text" 

and terminate the command iteration. It quite obvious that if a 
large value of n is chosen, you better know how to construct a 
workable command iteration string. It is a good idea to perform 
these command iterations at the beginning of an editting session, 
before large amounts of console input text is appended to the 
buffer, so that if the iteration goes berserk, then you can quit 
the editting session without losing text. 

The ZDOS Text Editor does not support nested command iterations, as 
a single level is complex enough for most purposes. Just think 
what an eight level command iteration could do to your buffer if 
you got your angle brackets out of line. 

Additional Commands 

The ZDOS Text Editor has three additional commands not supported by 
the INTEL Text Editor. 

P - Display Next Page on Screen 

The P command effectively performs the same function as the ~ommand 
string 23L23T$$. On a CRT with 24 lines, this command allows the 
viewing of the text buffer as successive pages of 23 lines each. 
The buffer pointer is moved with each page request. 

V - Verify Text Surrounding the Current Pointer Location 

The V command effectively performs the same function as the command 
string -11T12T$$. On a CRT with 24 lines, this command allows 
viewing the previous 11 lines and the following 12 lines without 
moving the buffer pointer. 

X - Display Address Pointed to by Buffer Pointer 

The X command displays the address of the current position pointed 
to by the buffer pointer as a four digit hexadecimal number. This 
command is of no particular use to the average user and is 
mentioned only as reference in case an X is typed inadvertently as 
a command. 



Text Editor Error Messages 

The ZDOS Text Editor prints messages on the system console to 
notify the user of various status conditions. 

"n" ILLEGAL HERE 

illegal command character that was The "n" represents the 
incorrectly typed in. 
character, the editor 
carriage return would 

If the character is a non-printing ASCII 
will make it visible. For example, a 
be printed as <013>. 

CANNOT FIND "text" 

102 

Where "text" represents the string which the editor could not find 
during an F or S command. 

ARG > 9999 

This message occurs if the value of n specified was greater than 
9999. 

STRING TOO LONG 

A string in an F or S command was greater than 255 characters. 

NULL STRING 

The string between the F or S and the first ESC was missing. 



APPENDIX F 

ZDOS ASSEMBLER 

Assembler Overview 

An assembler performs the clerical function of converting one's 

assembly language program into machine-executable form. It accepts an 

ASCII source file and, depending on the output options selected, can 

produce an executable object file, a listing of the source and assembled 

code. 

ZDOS supports two versions of assemblers; a 8080/Z80 Assembler 

called ASM and a 6502 Assembler called KIM. Both assemblers reside on 

the system disk as LDM files. The basic ZDOS assembler can be modified 

for other processors if desired. All that is required is modification 

of the opcode lookup tables and minimal modification of subroutines to 

handle various special instruction types. Operation of the basic 

assembler is the subject of this section. Specific references to ASM or 

KIM will be so noted. 

Assembler Hardware Environment 

The ZDOS Assembler requires the following hardware: 

* Cromemco system with Multi-user hardware 

* Console device (CRT) 

* Diskette unit 

* Line printer ·(if available)· 

103 



104 

Symbol Table 

Each symbol requires 8 bytes of memory. With 16K of memory, there 

is space for about 900 symbols. Each additional 16K of RAM would add 

space for 2048 symbols. The assembler checks for symbol table overflow 

and reports to the console: 

SYMBOL OVERFLOW 

· Input/Output Files 

The input to the ZDOS Assembler is an ASCII source file consisting 

of lines containing instructions, comments and assembler directives. 

Only the assembly language instructions are converted into executable 

object code. 

The output from the assembler is a hexadecimal format object file 

stored on the system disk. The HEX object file contains machine 

language instructions and data that can be loaded into memory for 

execution. (This applies to ASM output only, as the Cromemco system 

cannot run 6502 code. Output from KIM has to be down loaded to the 

KIM-1 boards for debugging using KLOAD.) In addition, the HEX file 

contains control information governing the loading process and the 

starting address of the program. 

The list file is a formatted file designed to be output to a line 

printer or console. Included in the listing is the assembled object 

code, source program statements and a summary of assembly errors. 



105 

Assembler Controls 

.Assembly-Time Commands 

The ZDOS Assembler is invoked by entering the extrinsic file name 

ASM or KIM. The command string includes the name of the file being 

assembled and any assembler controls desired. Items in the control list 

are separated by spaces. The command string is terminated by a 

carriage- return. 

ASM filespec <control-list> 

The control-list is optional. The filespec can consist of an optional 

device specification, filename and extension. 

Control Effect 

E 

L:LP: 

L:CO: 

List only those lines containing errors. 

List assembler output on the line printer. 

List assembler output on the console. 

The ZDOS Assembler defaults to L:CO: and no errors printed. 

Assembler Operation 

The following command activates and completes a ZDOS assembly: 

ASM FILE.ASC 

By default, there will be no assembly listing and a HEX object file is 

created and output to the disk in a file named FILE.HEX. If this file 

had been assembled previously, the old copy of FILE.HEX would be erased 

first, before assembly. The assembler sends out a sign-on message to 

the console: 

ZDOS 8080/Z80 ASSEMBLER, V4.1 



After execution, the assembler issues a sign-off message and error 

summary: 

ASSEMBLY COMPLETE 

0 ERRORS(S) 

106 

In the program source input stage of development, valuable time can be 

saved by using the E (errors only) control. In this way, simple syntax 

errors can be corrected at the console without wasting line printer 

time. 

Assembly Listing Format 

The assembler outputs the list file to the line printer, providing 

all the necessary pagination and formatting. An output page consists of 

66 lines, 80 characters wide, with a 3 line margin at the top and bottom 

of the page, a page header and assembly output lines. 

Page Header 

Columns Description 

1 The string "ZDOS 8080/Z80 ASSEMBLER, V4.1" 

or The string "KDOS 6502 ASSEMBLER, V4.0" 

48 The module name supplied by the NAME directive. 

64 The string "PAGE". 

67-72 Five character position containing the page number. 

Assembly Output Line 

Columns Description 

1 

2 

3-6 

Assembler error code. Blank if no error. 

Blank 

The address assigned to the first byte of the object 



7 

8-9 

10-11 

12-13 

14-15 

16-17 

18-21 

22 

23- ••• 

code shown in columns 8-9 of this line is printed in 

hexadecimal. In addition, the result of the value­

generating assembler directives ORG, EQU, and END 

107 

will appear in this field. For END, the program start 

address value will appear in this field if specified; 

otherwise blank. 

Blank 

The first byte of object code produced by the assembler 

for this source line is printed here in hexadecimal. 

If the source statement produces no object code (comments 

and assembler directives), this field is blank.. 

Second byte of object code in hexadecimal. This field 

will be blank is the source statement generates only 

one byte of object code or no object code. 

Third byte of object code in hexadecimal, if generated; 

otherwise, blank. 

Fourth byte of object code in hexadecimal, if generate~ 

by a DB string statement; otherwise, blank. 

Blank 

Five character positions containing the source line 

number in decimal,right justified and left blank-filled. 

Blank 

Listing of assembler source text. This field terminates 

at column at column 80 for most output devices other than 

the line printer, which terminates at column 132. 



108 

Error Summary 

After listing the last line of the assembly output and spacing one line, 

the assembler lists an error summary line in the following format: 

Columns 

1-19 

Second line: 

1-5 

6 

7-14 

Description 

The string "ASSEMBLY COMPLETE". 

Number of errors. Five character positions containing 

the number of errors in the source encountered during 

assembly. This decimal number is right-justified and 

left blank-filled. 

Blank 

The string "ERRORS(S)". 

Error Detection and Reporting 

The assembler detects and reports three classes of errors; source file 

errors, run time errors, and assembler control syntax errors. 

Source file errors are indicated in the assembly listing by single 

letter codes listed in column 1 of the erroneous source statement. If 

multiple erros occur in the same statement, only the first error is 

reported. A summary of source file errors is sent to the console and 

list devices. 

Run time errors cause the assembly to terminate abnormally. A run time 

error message is of the form: 

error type ERROR 

When such an error occurs, assembly is aborted, open files are closed, 

and control is returned to the ZDOS base level. 



109 

Assembler control errors in the command string are reported as syntax 

errors or device errors by the system. Under certain circumstances, 

fatal system errors may be reported. 

Error Codes 

Source File Errors 

Code Source 

E 

I 

0 

p 

Q 

Expression error. An expression has been constructed 

erroneously; usually a missing operator or delimiter. 

Illegal character. A statement contains an invalid 

ASCII character, or a specified number is illegal in 

the context of the number base in which it occurs. 

Also issued if a carriage-return is not followed by 

a line-feed. 

Opcode or operand is illegal. An opcode or operand 

is illegal in this particular device's instruction 

set. 

Phase error. Value of symbol being defined has 

changed between passes 1 and 2 of the assembly. 

Caused by a forward reference of an operand in 

an ORG or DS directive. This assembler does not 

flag multiple definitions with an M error code, as 

does the INTEL assembler. Instead the first 

occurrence of the multiply defined label is flagged 

as a phase error on pass 2. 

Questionable syntax. .Invalid syntax, usually due to 



R 

u 

v 

Run Time Errors 

Message 

EOF ERROR 

a missing opcode. 

Register error. 

Undefined symbol. Symbol used has not been defined. 

Value illegal. Value exceeds permissible range 

for this operation or is null. 

Explanation 

End-of-file (control-Z) has been encountered 

before an END directive or END was not terminated 

by a carriage-return, line-feed. 

SYMBOL OVERFLOW Assembler symbol table has overflowed the available 

memory space. Add more memory or reduce the 

the number of symbols. 

Assembler Control Errors 

Message 

SYNTAX ERROR 

Explanation 

Assembler console command line syntax is illegal, 

usually due to a missing or illegal delimiter or 

parame.ter. The entire command line is ignored. 

ILLEGAL DEVICE Illegal disk drive or output list device specified. 

For system errors, refer to the ZDOS system error messages. 

Downloading 6502 Programs 

110 

The KIM assembler creates an absolute hex object file in INTEL 

hexadecimal format. The extrinsic command KLOAD converts this hex file 

to MOS Technology hex file format and then down loads to the KIM-1 

boards at each user station. KLOAD is invoked as follows: 



111 

KLOAD FILE. HEX 

When KLOAD has finished converting the hex file, it prompts with: 

PRESS RS BUTTON ON KIM, THEN TYPE RETURN 

After typing return, KLOAD sends rubouts to the KIM-1 to set the baud· 

rate, and then outputs the hex file to the KIM-1. The hex file appears 

on the console in its ASCII format. The system then enters a dummy wait 

loop. The user can reboot ZDOS by using the BREAK key on his console. 

While ZDOS is asleep, the user can use the KIM-1 to run and debug his 

program without affecting the system. 



VITA' 

Reginald Byron Mason 

Candidate for the Degree of 

Master of Science 

Thesis: MULTI-USER DISK OPERATING SYSTEM FOR 8080 BASED 
MICROCOMPUTERS 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in San Francisco, California, February 5, 
1947, the son of Mr. and Mrs. Robert D. Mason. 

Education: Graduated from Midwest City High School, Midwest 
City, Oklahoma, in May 1965; received Bachelor of Science 
in Electrical Engineering degree from the University of 
Oklahoma in 1970; completed requirements for the Master 
of Science degree at Oklahoma State University in July, 
1981. 

Professional Experience: Development Engineer for Western 
Electric in computer controlled test set design, 1970 
to present. 


