TURBULENCE MEASUREMENTS IN A COMPLEX

FLOWFIELD USING A SIX-ORIENTATION HOT-WIRE PROBE TECHINIQUE

By
SALIM IOBAL JANJUA
Bachelor of Science University of Punjab
Pakistan
1971
Bachelor of Engineering
Concordia University
Montreal, Canada
1980

Subimitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
December, 1981

$$
\begin{aligned}
& \text { Thesis } \\
& 1981 \\
& \text { J33+ } \\
& \text { cop. }
\end{aligned}
$$

FLOWFIELD USING A SIX-ORIENTATION

HOT-WIRE PROBE TECHNIQUE

Thesis Approved:

ACKNOWLEDGMENTS

The author wishes to express his appreciation to his major adviser, Dr. David G. Lilley for his advice and guidance concerning this work. Gratitude is also extended to other committee members, Dr. John A. Wiebelt and Dr. Troy D. Reed.

Further appreciation is extended to Dr. Dennis K. McLaughlin for his great help and useful advice during major part of this study.

The author also wishes to thank Mrs. Camille Tindall for her expert typing skills and advice in the preparation of this thesis.

Finally, the author recognizes the financial support of National Aeronautics and Space Administration through Grant No. NAG3-74, 1980.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 The Combustor Flowfield Investigation 1
1.2 Previous Experimental Studies on ExpansionFlows2
1.3 The Turbulence Measurement Problem 2
1.4 The Scope of the Present Study 4
II. EXPERIMENTAL FACILITY AND INSTRUMENTATION 6
2.1 Idealized Flowfield 6
2.2 Hot-Wire Instrumentation 7
2.3 Calibration Nozzle 8
III. STATISTICAL ANALYSIS PROCEDURE 9
3.1 Response Equations 9
3.2 Calculation of Covariances 15
IV. UNCERTAINTY ANALYSIS 19
4.1 Effect of Pitch and Yaw Factors 19
4.1.1 Laminar Flow 20
4.1.2 Turbulent Flow 20
4.2 Effect of Correlation Coefficients 20
4.3 Experimental Uncertainty 21
4.3.1 Laminar Flow 22
4.3.2 Turbulent Flow 23
V. RESULTS 24
5.1 Mean Velocities 25
5.2 Turbulence Intensities 25
5.3 Shear Stresses 26
VI. CLOSURE 28
6.1 Summary 28
6.2 Further Work 29
REFERENCES 30
Chapter Page
APPENDICES 32
APPENDIX A - TABLES 33
APPENDIX B - FIGURES 38
APPENDIX C - USER'S GUIDE TO COMPUTER CODE FOR SIX-ORIENTATION HOT-WIRE DATA REDUCTIONTECHNIQUE 53
APPENDIX D - LISTING OF THE COMPUTER PROGRAM 62

LIST OF TABLES

Table Page
I. Values of $A 0, B O$, and $C O$ in Various Equation Sets 34
II. Matrix (T) in Equation 30 35
III. Effect of Input Parameters on Turbulence Quantities 36
IV. Scatter Among the Turbulence Quantities When Solved by Six Different Combinations 37
V. List of Fortran Variables and Their Meaning in Response Equations 59

LIST OF FIGURES

Figure Page

1. Typical Axisymmetric Combustion Chamber of a Gas Turbine Engine 39
2. The Flowfield Being Investigated 40
3. Schematic of Overall Facility 41
4. Hot-Wire Constant Temperature Anemometer 42
5. Manual Traversing Mechanism Used for Hot-Wire Orientations in the Flowfield 43
6. Mounting the Hot-Wire Probe on the Test Section 44
7. The Three-Directional Hot-Wire Calibration 45
8. Plots of Pitch and Yaw Factors Versus Hot-Wire Voltage 46
9. Radial Distribution of Normalized Time-Mean Axial Velocity in Nonswirling Confined Jet 47
10. Radial Distribution of Normalized Time-Mean Radial Velocity in Nonswirling Confined Jet 48
11. Radial Distribution of Axial Turbulence Intensity in Nonswirling Confined Jet 49
12. Radial Distribution of Radial Turbulence Intensity in Nonswirling Confined Jet 50
13. Radial Distribution of Azimuthal Turbulence Intensity in Nonswirling Confined Jet 51
14. Radial Distribution of Shear Stress $\overline{u^{\top} v} v^{\top} / \bar{u}_{0}^{2}$ in Nonswirling Confined Jet 52

NOMENCLATURE

A, B, C	Calibration constants in Equation 1
AO, BO, CO	Cooling velocity functions in Table I
D	Test section diameter
d	Inlet nozzle diameter
E	Hot-wire voltage
F1	Velocity function for axial velocity
F2	Velocity function for azimuthal velocity
F3	Velocity function for radial velocity
G	Pitch factor
K	Yaw factor
$\begin{aligned} & K_{Z_{P} z_{Q}} \\ & P, Q, R \end{aligned}$	Covariance for cooling velocities Z_{p}, and Z_{Q} Selected hot-wire probe positions
T	Matrix given in Table II, Appendix A
u	Axial velocity
v	Radial velocity
w	Azimuthal (swirl) velocity
$\hat{u}, \hat{w}, \hat{v}$	Probe coordinate system defined by Figure 6, Appendix B
x, r, θ	Axial, radial, azimuthal cylindrical polar coordinates
Z	Effective cooling velocity acting on a wire
α	Side-wall expansion angle

σ^{2}	Variance of a given quantity
π	Function defined by Equation 31, 32, and 33
ϕ	Inverse function of calibration equation
ρ	Function of selected mean effective cooling velocities given by Equations 34 through 36
	Subscripts
1, 2, 3, 4, 5, 6	Refer to the six probe measuring positions
i, j, P, Q, R	Refer to the three selected cooling velocities
rms	Root-mean-squared quantity
	Superscripts
-	Time mean average
1	Fluctuating quantity

CHAPTER I

INTRODUCTION

1.1 The Combustor Flowfield Investigation

Understanding the fluid dynamics of the flow in a gas turbine combustion chamber has been of great concern to designers in recent years. A gas turbine combustor, shown in Figure 1, Appendix B, must burn fuel completely, cause little pressure drop, produce gases of nearly uniform temperature, occupy small volume, and maintain stable combustion over a wide range of operating conditions. The designer has a formidable problem in aerothermochemistry, and more thorough and accurate procedures can help in accomplishing the design objectives more quickly and less expensively in the near future.

Intensive research is being carried out at Oklahoma State University on the subject of gas turbine flowfield investigations in the absence of combustion. Figure 2, Appendix B, shows the characteristics of the simplified flowfield being investigated. Flow enters through a jet of diameter d into a tube of diameter D, after being expanded through an angle α. Before entering the tube, the flow may be swirled by a swirler located upstream of the inlet plane. The flowfield is presently being investigated using various methods of approach, such as computer modeling of the flowfield and flow visualization for both swirl and nonswirl conditions (2, 3).

1.2 Previous Experimental Studies on Expansion Flows

Several studies on time-mean flowfields of the type just described have been carried out using various turbulence measuring techniques (411). Unfortunately, most of the techniques used do not give complete and detailed information about the flow in terms of all its time-mean and turbulence quantities. There is a strong need to obtain all the turbulence quantities in a complex flowfield using a minimum amount of instrumentation and without causing a great deal of interference with the flow.

1.3 The Turbulence Measurement Problem

Turbulence measurement in a complex flowfield has always been a complicated problem encountered by engineers. In the past, turbulence phenomena have been discussed by various authors in detail and various methods of turbulence measurement have been suggested (12-15). One of the most widely used instruments to obtain turbulence quantities is the hot-wire anemometer. The most common of all hot-wire anemometers is a single hot-wire. When used at a single orientation and in a twodimensional flow, a single hot-wire can measure the streamwise components of the time-mean velocity and the root-mean-square velocity fluctuation at a particular location in the flowfield. A two-wire probe can be used to determine the time-mean velocities, streamwise and cross stream turbulence intensities, and the cross correlation between the two components of the velocity fluctuations (16-18). To measure the three velocities and their corresponding fluctuating components in a three-dimensional flowfields such as encountered in combustor simulators, there are two
methods that can be employed at a point in the flowfield:

1. A multi-wire probe used with a single orientation.
2. A single-wire probe used with a multi-orientation.

Multi-wire techniques, with three hot-wires mounted on the same base so that they all lie within the same volume of the flowfield, permit the necessary three sets of readings to be made simultaneously. The requirement is to determine all three components simultaneously. The main disadvantages of such a technique are:
i. It requires three closely matched anemometer units.
ii. The probes interfere with each other unless they are carefully placed relative to the time-mean velocity vector.
iii. The spatial resolution is poor because of the large size of the probe assembly.
iv. Heat can be convected from one wire to another giving biased readings.

Multi-orientation of a single hot-wire is a novel way to measure the three components of a velocity vector and their fluctuating components. A method devised by Dvorak and Syred (19) uses a single normal hot-wire oriented at three different positions such that the center one is separated by 45 degrees from the other two. The velocity vector at a location is related to the three orthogonal components using pitch and yaw factors as defined by Jorgensen (20). The data are obtained in the form of mean and root-mean-square voltages at each orientation. However, the measurements done with a single wire do not supply all the information needed to obtain the turbulence quantities. Therefore in addition to a single wire, Dvorak and Syred used a cross-wire probe to obtain the covariances between the voltages obtained at adjacent hot-wire
orientations. A cross-wire probe, two wires mounted on the same base and separated by 45 degrees from each other, poses the same problems as already discussed for a multi-wire probe.

King (21) modified the technique developed by Dvorak and Syred. His method calls for a normal hot-wire to be oriented through six different positions, each orientation separated by 30 degrees from the adjacent one. Thus, one measures mean and root-mean-square voltages at each orientation. The data reduction is done using some assumptions regarding the statistical nature of turbulence, making it possible to solve for the three time-mean velocities, the three normal turbulent stresses, and the three turbulent sheer stresses. Having obtained these quantities, one can in addition calculate the kinetic energy of turbulence. Various recent studies discuss the turbulence measurement problem, with emphasis on hot-wire and laser anemometer applications to swirl flows (22-23).

1.4 The Scope of the Present Study

In the present study, the six-orientation single normal hot-wire technique is being employed to obtain the turbulence quantities in the combustor simulation confined jet flowfield. Measurements have been carried out for nonswirling flow with expansion angles of 90 degrees (sudden expansion) and 45 degrees (gradual expansion).

Chapter II gives background information on the various components of the experimental facility and the instruments employed for the hot-wire measurements.

The response equations using King's approach are given in Chapter III. Certain deviations from the procedures suggested by King are also
included in this chapter. A thorough uncertainty analysis of the technique is carried out in order to judge the accuracy and the reliability of the six-orientation hot-wire technique. The salient features of the analysis are discussed in Chapter IV.

Turbulence quantities obtained, using this hot-wire technique, are part of Chapter V which discusses the results in detail. Some of the turbulence quantities are compared with measurements done by Chaturvedi (5) using cross-wire probe in a corresponding flow situation. Chapter VI concludes by summarizing the major achievements of the present study and suggesting some avenues for further research activity.

CHAPTER II

EXPERIMENTAL FACILITY AND INSTRUMENTATION

2.1 Idealized Flowfield

The facility, designed and built at Oklahoma State University, is a simulation of a typical axisymmetric combustion chamber of a gas turbine engine shown in Figure 1, Appendix B. The schematic of the test facility with idealized flowfield is shown in Figure 3, Appendix B. Ambient air enters the low-speed wind tunnel through a rubber foam air filter. Next the air flows through an axial flow fan driven by a 5 h.p. varidrive motor. Thus the flow rate can be varied for different test conditions. Then the flow is gradually expanded through the tunnel cross-section without separation because numerous fine mesh screens are encountered by the flow along the way.

Next, the flow goes through a turbulence management section which has two fine-mesh screens, a 12.7 cm length of packed straws, and five more fine-mesh screens. When the flow passes through the turbulence section, small eddies are formed which dissipate much quicker than the large eddies. The turbulence management section thus keeps the turbulence level down.

Having left the turbulence management section, the air enters into a contoured nozzle leading to the test section. This axisymmetric nozzle was designed to produce a minimum adverse pressure gradient on the
boundry layer to avoid flow unsteadiness associated with local separation regions. The area ratio of the cross sections of the turbulence management section to that of the nozzle throat is approximately 22.5. The diameter, d, of the nozzle throat is approximately 15 cm .

Next, the air enters the test section. The test section is composed of a swirler (optional), an expansion block, and a long plexiglass tube. The swirler currently available is a variable vane-angle type device to impart swirl to the flow entering the test section. The expansion block, attached after the swirler, is a 30 cm diameter disk of wood. At present, there are three expansion blocks, and the appropriate choice gives $\alpha=90,70$, or 45 degrees. The flow is expanded into a plexiglass tube of diameter, D, of 30 cm , thus giving diameter expansion ratio (D / d) of 2 .

A typical real combustor, shown in Figure 1, Appendix B, is idealized in the present study, as there are no film cooling holes or dilution air holes, and the chamber wall of the test section is a constant diameter pipe. The test section is carefully aligned using a laser beam so that the test section and wind tunnel centerline are colinear.

2.2 Hot-Wire Instrumentation

Figure 4, Appendix B, shows the circuit diagram for a constant temperature anemometer. The anemometer used for the present study is DISA type 55M01, CTA standard bridge. A normal hot-wire, type 55P01, manufactured by DISA, is used to carry out the measurements of time-mean and root-mean-square voltages. These probes have two prongs set approximately 3 mm apart and carry $5 \mu \mathrm{~m}$ diameter wire which is gold plated near the prongs to reduce end effects and strengthen the wire. The
time-mean voltage is measured with Hickok Digital Systems, Mode1 DP100, integrating voltmeter and the root-mean-square voltage is measured using Hewlett Packard, Model 400 HR, voltmeter.

The hot-wire is mounted on the facility with the help of a traversing mechanism shown in Figure 5, Appendix B. It consists of a base that is modified to be mounted on the plexiglass tube of the text section at various axial locations. The hot-wire probe is inserted into the tube through a rotary vernier and the base. The rotary vernier is attached to a slide which can traverse up to approximately 14.5 cm . Thus it becomes possible for the probe to be traversed at any location in the combustor flowfield and rotated through 180 degrees. Figure 6, Appendix B, shows the test section with the probe mounted on it.

2.3 Calibration Nozzle

The hot-wire is calibrated on a small air jet. The facility consists of a compressed air line, which delivers the desired flow rate through a small pressure regulator and a Fischer and Porter Model 10A1735A rotameter. The jet housing consists of an effective flow management section followed by a contoured nozzle with a 3.5 cm diameter throat.

A rotary table is used to hold the probe while it is being calibrated in three different orientations which are discussed in Chapter III.

CHAPTER III

STATISTICAL ANALYSIS PROCEDURE

3.1 Response Equations

The six-orientation hot-wire technique requires a single, straight, hot-wire to be calibrated for three different probe directions in order to determine the directional sensitivity of such a probe. The three directions and the three calibration curves are shown in Figure 7, Appendix B. Each of the three calibration curves is obtained with zero velocity in the other two directions. The calibration curves demonstrate that the hot-wire is most efficiently cooled when the flow is in the \hat{v} direction. Whereas, the wire is most inefficiently cooled for the flow in \hat{w} direction. Each of the calibration curves follows a second order, least square fit, of the form:

$$
\begin{equation*}
E^{2}=A+B Z^{\frac{1}{2}}+C Z \tag{1}
\end{equation*}
$$

where A, B, and C are the calibration constants and Z can take a value of \hat{u}, \hat{v}, and \hat{w} for the three calibration curves, respectively.

When the wire is placed in a 3-dimensional flowfield, the effective cooling velocity experienced by the hot-wire, in terms of the probe coordinator and pitch and yaw factors (G and K) as defined by Jorgensen (20) is:

$$
\begin{align*}
& z^{2}=\hat{v}^{2}+G^{2} \hat{u}^{2}+K^{2} \hat{w}^{2} \tag{2a}\\
& G=\frac{\hat{v}(\hat{w}, \hat{u}=0)}{\hat{u}(\hat{w}, \hat{v}=0)}, \tag{2b}
\end{align*}
$$

$$
\begin{equation*}
K=\frac{\hat{v}(\hat{w}, \hat{u}=0)}{\hat{w}(\hat{v}, \hat{u}=0)} \tag{2c}
\end{equation*}
$$

evaluated from the three calibration curves for a constant value of E^{2}. To carry out measurements in the combustor flowfield, the wire is aligned in the flow in such a way that in the first orientation, the wire is normal to the flow in the axial direction and the probe coordinates coincide with the coordinates of the experimental facility. Thus the six equations for the instantaneous cooling velocities at the six orientations, as given by King (21) are:
$z_{1}^{2}=v^{2}+G^{2} u^{2}+K^{2} w^{2}$
$z_{2}^{2}=v^{2}+G^{2}\left(u \cos 30^{\circ}+w \sin 30^{\circ}\right)^{2}+k^{2}\left(w \cos 30^{\circ}-u \sin 30^{\circ}\right)^{2}$
$z_{3}^{2}=v^{2}+G^{2}\left(u \cos 60^{\circ}+w \sin 60^{\circ}\right)^{2}+k^{2}\left(w \cos 60^{\circ}-u \sin 60^{\circ}\right)^{2}$
$z_{5}^{2}=v^{2}+G^{2}\left(w \sin 120^{\circ}+u \cos 120^{\circ}\right)^{2}+k^{2}\left(u \sin 120^{\circ}-w \cos 120^{\circ}\right)^{2}(7)$
$z_{6}^{2}=v^{2}+G^{2}\left(w \sin 150^{\circ}+u \cos 150^{\circ}\right)^{2}+k^{2}\left(u \sin 150^{\circ}-w \cos 150^{\circ}\right)^{2}$

Replacing the sines and cosines and expanding the square brackets:
$Z_{1}^{2}=v^{2}+G^{2} u^{2}+K^{2} w^{2}$
$z_{2}^{2}=v^{2}+G^{2}\left(u^{2} \frac{3}{4}+\frac{w^{2}}{4}+u w \frac{\sqrt{3}}{2}\right)+k^{2}\left(w^{2} \frac{3}{4}+\frac{u^{2}}{4}-u w \frac{\sqrt{3}}{2}\right)$
$z_{3}^{2}=v^{2}+G^{2}\left(\frac{u^{2}}{4}+w^{2} \frac{3}{4}+u w \frac{\sqrt{3}}{2}\right)+k^{2}\left(\frac{w^{2}}{4}+u^{2} \frac{3}{4}-u w \frac{\sqrt{3}}{2}\right)$
$z_{4}^{2}=v^{2}+G^{2} w^{2}+k^{2} u^{2}$
$Z_{5}^{2}=v^{2}+G^{2}\left(\frac{u^{2}}{4}+w^{2} \frac{3}{4}-u w \frac{\sqrt{3}}{2}\right)+k^{2}\left(\frac{w^{2}}{4}+u^{2} \frac{3}{4}+u w \frac{\sqrt{3}}{2}\right)$
$Z_{6}^{2}=v^{2}+G^{2}\left(u^{2} \frac{3}{4}+\frac{w^{2}}{4}-u w \frac{\sqrt{3}}{2}\right)+K^{2}\left(w^{2} \frac{3}{4}+\frac{u^{2}}{4}+u w \frac{\sqrt{3}}{2}\right)$
Solving simultaneously any three adjacent equations provides expressions for the instantaneous values of the three velocity components, u, w, and v, in terms of the equivalent cooling velocities $\left(Z_{1}, Z_{2}\right.$, and Z_{3} for
example, when the first three equations are chosen). King refers to these instantaneous velocity components as F1, F2, and F3 as follows:

$$
\begin{align*}
& \left.F 1=\left[\left\{A O+\left(A O^{2}+\frac{B O^{2}}{3}\right)^{\frac{1}{2}}\right\} * \frac{1}{\left(G^{2}-k^{2}\right.}\right)\right]^{\frac{1}{2}} \tag{9}\\
& F 2=\left[\left\{-A O+\left(A O^{2}+\frac{B O^{2}}{3}\right)^{\frac{1}{2}}\right\} * \frac{1}{\left(G^{2}-K^{2}\right)}\right]^{\frac{1}{2}} \tag{10}\\
& F 3=\left[C O-\frac{\left(G^{2}+K^{2}\right)}{\left(G^{2}-k^{2}\right)} *\left(A O^{2}+\frac{B O^{2}}{3}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} \tag{11}
\end{align*}
$$

The values of $A O, B O$, and $C O$ depend on the set of the three equations chosen and are given in Table 1, Appendix A, for appropriate equation sets.

However, these equátions cannot be directly used because it is impossible to obtain Z_{1}, Z_{2}, and Z_{3} at a single instance in time. There fore Equation 9 through 11 must be expressed in terms of mean and root-mean-square values. Equation 1 can be written as:

$$
\begin{equation*}
\phi\left(E_{i}\right)=Z_{i}=\left[\left[-B+\left\{B^{2}-4 C\left(A-E_{i}^{2}\right)\right\}^{\frac{1}{2}}\right] / 2 C\right]^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

The above equation is in terms of instantaneous velocity Z_{i} and instantaneous voltage E_{i}. In order to obtain an expression for time-mean velocity as a function of time-mean voltage, a Taylor series expansion of Equation 12 can be carried out.

$$
\begin{align*}
& \text { Since } Z_{i}={ }_{\phi}\left(\bar{E}_{i}+E_{i}^{\prime}\right) \\
& Z_{i}={ }_{\phi}\left(\bar{E}_{i}+E_{i}^{\prime}\right)={ }_{\phi}\left(\bar{E}_{i}\right)+\frac{E_{i}^{\prime}}{1!} \cdot \frac{\partial \phi}{\partial E_{i}}+\frac{E_{i}^{\prime}}{2!} \cdot \frac{\partial^{2} \phi}{\partial E_{i}^{2}} \tag{13}
\end{align*}
$$

The Taylor series is truncated after second order terms assuming the higher order terms to be relatively small. Time averaging both sides of the above equation and employing the fact that $\bar{E} '=0$, yields:

$$
\begin{equation*}
\bar{z}_{i}=\bar{\phi}+\frac{1}{2} \frac{\partial^{2} \phi}{\partial E_{i}^{2}} \cdot \sigma_{E_{i}}^{2} \tag{14}
\end{equation*}
$$

where $\bar{\phi}$ indicates that the function is evaluated for \bar{E}_{i}. To obtain $\bar{Z}_{i}^{\prime}={ }^{2}{ }^{2} Z_{i}$, the relationship as given by Hinze (13) is:
$\overline{z_{i}^{2}}{ }^{2}=\sigma_{Z_{i}}^{2}=\operatorname{Expec}\left[\bar{z}_{i}^{2}\right]-\left(\operatorname{Expec},\left[Z_{i}\right]\right)^{2}$
Since Expec $\left[Z_{j}^{2}\right] \propto \bar{\phi}+1 / 2 \frac{\partial^{2} \phi}{\partial \bar{E}_{\mathfrak{j}}{ }^{2}} \cdot \sigma_{E_{i}}{ }^{2}$,
the differential in Equation 16 can be evaluated as:

$$
\begin{equation*}
\frac{\partial^{2} \bar{\phi}^{2}}{\partial E_{\dot{i}}^{2}}=2\left(\frac{\partial \bar{\phi}}{\partial E_{i}}\right)^{2}+2 \bar{\phi} \cdot \frac{\partial^{2} \bar{\phi}}{\partial E_{\dot{i}}^{2}} \tag{17}
\end{equation*}
$$

Then Equation 16 becomes:

$$
\begin{equation*}
\operatorname{Expec}\left[Z_{i}^{2}\right] \simeq \bar{\phi}^{2}+\left(\frac{\partial \bar{\Phi}}{\partial E_{i}}\right)^{2} \cdot \sigma_{E_{i}}^{2}+\bar{\phi} \cdot \frac{\partial^{2} \bar{\phi}}{\partial E_{i}^{2}} \cdot \sigma_{E_{i}}^{2} \tag{18}
\end{equation*}
$$

Squaring Equation 14 and substituting with Equation 18 into Equation 15 gives:

$$
\begin{equation*}
\bar{Z}_{i}^{T 2}=\sigma_{Z_{i}}^{2} \simeq \frac{\partial \bar{\Phi}}{\partial \bar{E}_{i}} \cdot \sigma_{E_{i}}^{2}-\left(1 / 2 \frac{\partial^{2} \bar{\Phi}}{\partial \bar{E}_{i}} \cdot \sigma_{E_{i}}^{2}\right)^{2} \tag{19}
\end{equation*}
$$

Thus Equations 14 and 19 give the mean and variance of individual cooling velocities in terms of the mean and variance of the appropriate voltage.

In a 3 -dimensional flow, it is usually desired to obtain the mean and variance for the individual velocity components in axial, azimuthal, and radial directions, and also their cross correlations.

The procedure to obtain the mean and variance of the individual
velocity components is the same as for the effective cooling velocities except that u, w, and v are functions of three random variables and there are extra terms in the Taylor expansion to account for the covariances of the cooling velocities. Thus the three mean volicities as given by Dvorak and Syred (19) and King (21) are:

$$
\begin{equation*}
\bar{u}=F 1\left(Z_{P}, Z_{Q}, Z_{R}\right)+\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 1}{\partial Z_{i}^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i<j}^{3} \frac{\partial^{2} F 1}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i} Z_{j}} \tag{20}
\end{equation*}
$$

where time-mean values are to be understood on the right side of this and subsequent equations.
$\bar{w}=F 2\left(Z_{p}, Z_{Q}, Z_{R}\right)+\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 2}{\partial Z_{i}^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i<j}^{3} \frac{\partial^{2} F 2}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i} Z_{j}}$,
and
$\bar{V}=F 3\left(Z_{p}, Z_{Q}, Z_{R}\right)+\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 3}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i<j}^{3} \frac{\partial^{2} F 3}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i} Z_{j}}$
where $K_{Z_{i}} Z_{j}$ is the covariance of the cooling velocity fluctuations and is defined as:
$k_{z_{i} z_{j}}=\frac{1}{T} \int_{0}^{T}\left(z_{i}-\bar{z}_{i}\right)\left(z_{j}-\bar{z}_{j}\right) d t$
Also the normal stresses are given as:

$$
\begin{align*}
& \overline{u^{\prime} 2}=\sum_{i=1}^{3}\left(\frac{\partial F 1}{\partial Z_{i}}\right)^{2} \cdot \sigma Z_{i}{ }^{2}+\sum_{\substack{i \neq j \\
i \neq j}}^{3} \frac{\partial F 1}{\partial Z_{i}} \cdot \frac{\partial F 1}{\partial Z_{j}}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 1}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\right. \tag{24}\\
& \left.\sum_{i<j}^{3} \frac{\partial^{2} F 1}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]^{2} \text {, } \\
& \overline{W^{12}}=\sum_{i=1}^{3}\left(\frac{\partial F 2}{\partial Z_{i}}\right)^{2} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{\substack{3 \\
i \\
i \neq j}}^{3} \frac{\partial F 2}{\partial Z_{i}} \cdot \frac{\partial F 2}{\partial Z_{j}}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 2}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\right. \tag{25}\\
& \left.\sum_{i<j}^{3} \frac{\partial^{2} F 2}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]=,
\end{align*}
$$

and

$$
\begin{gather*}
\overline{v^{\prime 2}}=\sum_{i=1}^{3}\left(\frac{\partial F 3}{\partial Z_{i}}\right)^{2} \cdot \sigma Z_{i}^{2}+\sum_{\substack{i \\
i \neq j}}^{3} \sum_{j}^{3} \frac{\partial F 3}{\partial Z_{i}} \cdot \frac{\partial F 3}{\partial Z_{j}}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 3}{\partial Z_{i}{ }^{2}} \cdot \sigma Z_{i}{ }^{2}+\right. \\
 \tag{26}\\
\left.\sum_{i<j}^{3} \frac{\partial^{2} F 3}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]^{2},
\end{gather*}
$$

Also the shear stresses as given by Dvorak and Syred (19) arc:

$$
\begin{align*}
& \overline{u^{\prime} w^{\prime}}=\sum_{i=1}^{3} \frac{\partial F 1}{\partial Z_{i}} \cdot \frac{\partial F 2}{\partial Z_{i}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i}^{3} \sum_{i \neq j}^{3} \frac{\partial F 1}{\partial Z_{i}} \cdot \frac{\partial F 2}{\partial Z_{j}} \cdot K_{Z_{i} Z_{j}}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 1}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}\right. \\
& \left.+\sum_{i<j}^{3} \sum_{i<j}^{3} \frac{\partial^{2} F 1}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 2}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\underset{i<j}{3} \sum_{i<j}^{3} \sum_{j}^{j} \frac{\partial^{2} F 2}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right] \tag{27}\\
& \overline{u^{\top} v^{\top}}=\sum_{i=1}^{3} \frac{\partial F 1}{\partial Z_{i}} \cdot \frac{\partial F 3}{\partial Z_{i}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{\substack{i \\
i \neq j}}^{3} \sum_{j}^{3} \frac{\partial F 1}{\partial Z_{i}} \cdot \frac{\partial F 3}{\partial Z_{i}} \cdot K_{Z_{i}} Z_{j}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 1}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}\right. \\
& \left.+\sum_{i=j}^{3} \sum_{i<j}^{3} \frac{\partial^{2} F 1}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 3}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i<j}^{3} \sum_{i<j}^{3} \frac{\partial^{2} F 3}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i} Z_{j}}\right] \tag{28}
\end{align*}
$$

and finally,

$$
\begin{align*}
\overline{W^{\prime} V^{\prime}}= & \sum_{i=1}^{3} \frac{\partial F 2}{\partial Z_{i}} \cdot \frac{\partial F 3}{\partial Z_{i}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{\substack{i \neq j}}^{3} \sum_{i \neq j}^{3} \frac{\partial F 2}{\partial Z_{i}} \cdot \frac{\partial F 3}{\partial Z_{j}} \cdot K_{Z_{i}}-\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 2}{\partial Z_{i}^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\right. \\
& \left.\quad \sum_{i}^{3} \sum_{i<j}^{3} \frac{\partial^{2} F 2}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i}} Z_{j}\right]\left[\frac{1}{2} \sum_{i=1}^{3} \frac{\partial^{2} F 3}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}+\sum_{i<j}^{3} \sum_{i<j}^{3} \frac{\partial^{2} F 3}{\partial Z_{i} \partial Z_{j}} \cdot K_{Z_{i} Z_{j}}\right] \tag{29}
\end{align*}
$$

3.2 Calculation of Covariances

Dvorak and Syred (19) used a DISA time correlator (55A06) to find the correlation coefficients between the velocity fluctuations in the three directions. The method adopted by King (21) is to use the information obtained by all six orientations and devise a mathematical procedure to calculate the covariances.

The covariance matrix as derived by King is:

$$
\begin{equation*}
\left[k_{z_{i} z_{j}}\right]=[\pi][T]-1 \tag{30}
\end{equation*}
$$

where

$$
\mathrm{k}_{\mathrm{z}_{\mathrm{i}} z_{j}}=\left[\begin{array}{c}
\mathrm{k}_{z_{p} z_{Q}} \\
\mathrm{k}_{z_{p} z_{R}} \\
\mathrm{k}_{z_{Q} z_{R}}
\end{array}\right],
$$

and

$$
\pi=\left[\begin{array}{l}
\pi_{1} \\
\pi_{2} \\
\pi_{3}
\end{array}\right]
$$

where

$$
\begin{align*}
& \Pi_{1}=\bar{Z}_{p+3}-\rho_{1}-\frac{1}{2} \sum_{i=p}^{R} \frac{\partial^{2} \rho 1}{\partial Z_{i}{ }^{2}} \cdot \sigma_{Z_{i}}{ }^{2}, \tag{31}\\
& \Pi_{2}=\bar{Z}_{p+4}-\rho_{2}-\frac{1}{2} \sum_{i=p}^{R} \frac{\partial^{2} \rho_{2}}{\partial Z_{i}^{2}} \cdot \sigma_{Z_{i}}{ }^{2}, \tag{32}
\end{align*}
$$

and

$$
\begin{equation*}
\Pi_{3}=\bar{Z}_{p+5}-\rho_{3}-\frac{1}{2} \sum_{i=p}^{R} \frac{\partial^{2} \rho_{3}}{2 z_{i}{ }^{2}} \cdot \sigma_{z_{i}}{ }^{2} \tag{33}
\end{equation*}
$$

Al so

$$
\begin{align*}
& \rho_{1}=\bar{Z}_{p}^{2}-2 \bar{Z}_{Q}^{2}+2 \bar{Z}_{R}^{2} \tag{34}\\
& \rho_{2}=2 \bar{Z}_{p}^{2}+3 \bar{Z}_{Q}^{2}+2 \bar{Z}_{R}^{2} \tag{35}
\end{align*}
$$

and $\quad \rho_{3}=2 \bar{Z}_{P}^{2}-2 \bar{Z}_{Q}^{2}+\bar{Z}_{R}^{2}$

Matrix (T) is a three by three matrix and is given in Table II.
King discovered that matrix (T) is a singular matrix for all cases and hence equation 30 cannot be solved. Therefore, to get covariances one needs extra information. King has made an assumption about the relationship between the covariances in the form:

$$
\begin{equation*}
K_{Z_{P} Z_{R}}=\eta \frac{K_{Z_{P} Z_{Q}} \cdot{ }^{K_{Z_{Q}} Z_{R}}}{\sigma_{Z_{Q}}^{2}} \tag{37}
\end{equation*}
$$

Where n is given a numerical value of 0.8 .
Also $K_{z_{p} z_{Q}}$ is obtained from the quadratic equation:

$$
\begin{align*}
& K_{Z_{p} Z_{Q}}^{2}\left[\frac{-2 \bar{Z}_{p}^{2} \cdot n}{\sigma_{Z_{Q}}^{2}}\right]+K_{Z_{p} Z_{Q}}\left[6 \bar{Z}_{p} \bar{Z}_{Q}-\frac{\bar{Z}_{p}}{\bar{Z}_{Q} \sigma_{Z_{Q}}^{2}}\left(\pi 1 \cdot \bar{Z}_{R+1}^{3}-\pi 3 \cdot \bar{Z}_{R+3}^{3}\right)\right] \\
& \tag{38}\\
& \quad+\left[\pi 1 \cdot \bar{Z}_{R+1}^{3}-2 \pi 3 \cdot \bar{Z}_{R+3}^{3}\right]=0
\end{align*}
$$

Equation 38 provides the two values for $K_{z_{p} z_{Q}}$. The covariance is related to the correlation coefficient as:

$$
\begin{equation*}
r_{Z_{p} Z_{Q}}=\frac{K_{Z_{p} Z_{Q}}}{\left[{ }_{Z_{p}}{ }^{2} \cdot{ }^{\left.\sigma_{Z}{ }_{Q}^{2}\right]^{\frac{1}{2}}}\right.} \tag{39}
\end{equation*}
$$

where $-1<\gamma_{z_{i} z_{j}}<1$

Therefore, Equation 39 is written in the form:

$$
\begin{equation*}
K_{Z_{p} Z_{Q}}=\gamma_{Z_{p} Z_{Q}} \cdot\left[\sigma_{Z_{p}}{ }^{2} \cdot \sigma_{Z_{Q}}{ }^{2}\right]^{\frac{1}{2}} \tag{40}
\end{equation*}
$$

The two calculated values of $K_{z_{P} Z_{Q}}$ from equation 38 are then substituted in Equation 39, and the two corresponding values of $\gamma_{z_{p} z_{Q}}$ are calculated. The correlation coefficient which lies within the required range of ± 1, is used. For the case when the absolute values of both the correlation coefficients are larger than 1, the covariance is given by

$$
\begin{equation*}
K_{Z_{P} Z_{Q}}=0.9\left[\sigma_{Z_{p}}^{2} \cdot \sigma_{Z_{Q}}^{2}\right]^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

Having calculated $K_{z_{P} z_{Q}}, K_{z_{Q} z_{R}}$ can be calculated from the relationship:

$$
\begin{equation*}
K_{Z_{Q} Z_{R}}=\frac{1}{2 \cdot Z_{Q} Z_{R}}\left[2 \cdot \bar{z}_{p} \cdot \bar{Z}_{Q} \cdot K_{Z_{p} Z_{Q}}+\pi_{1} \cdot \bar{Z}_{p+3}^{3}-\Pi_{3} \cdot \bar{z}_{p+5}^{3}\right] \tag{42}
\end{equation*}
$$

A similar test is applied to ensure that the absolute value of $\gamma_{Z_{Q} Z_{R}}$ is less than one otherwise $K_{z_{Q} z_{R}}$ is calculated from the relationship:

$$
\begin{equation*}
K_{Z_{Q} Z_{R}}=0.9\left[\sigma_{Q}^{2} \cdot \sigma_{R}^{2}\right]^{\frac{1}{2}} \tag{43}
\end{equation*}
$$

$K_{Z_{p} Z_{R}}$ can now be calculated from equation 37 . The calculated value of $K_{Z_{p} z_{Q}}, K_{z_{Q} z_{R}}$, and $K_{Z_{p} z_{R}}$ can now be substituted in equations 20 thru 22 , and 24 thru 29 to calculate the mean velocities and Reynold stresses.

It was observed during the present study that King's method is not self-consistent in calculating the covariances. The correlation coefficients were found to have values greater than one and therefore it was necessary to have a more consistent method to calculate the covariances. Occasionally, King's method assumed that $\gamma_{z_{p} z_{Q}}$ and $\gamma_{Z_{Q} Z_{R}}$ had values of 0.9 and $\gamma_{z_{p} z_{R}}$ had a value of 0.648 . But this was done only when some of the correlation coefficients were greater than one. The present method assumes constant values of the correlation coefficients. King has suggested that if two wires are separated by an angle of 30 degrees, the fluctuating sianals from the wires at the two locations would be such that their contribution to the cooling of the wire would be related by the cosine of the angle between the wires therefore, $\gamma_{z_{p} z_{Q}}=$ $\cos 30^{\circ}=0.9$ and similarly we would get

$$
\gamma_{Z_{Q} z_{R}}=0.9
$$

also $\gamma_{Z_{p} Z_{R}}={ }_{\eta} * \gamma_{Z_{p} Z_{Q}} * \gamma_{Z_{Q} Z_{R}}=0.648$

Therefore the present method allows the covariances to be calculated using the following three equations:

$$
\begin{align*}
& K_{z_{p} z_{Q}}=0.9\left[\sigma_{z_{p}}^{2} \cdot \sigma_{z_{Q}}^{2}\right]^{\frac{1}{2}} \tag{41}\\
& K_{z_{Q} z_{R}}=0.9\left[\sigma_{z_{Q}}^{2} \cdot \sigma_{z_{R}}^{2}\right]^{\frac{1}{2}} \tag{35}\\
& K_{z_{p} z_{R}}=0.648\left[\sigma_{z_{p}}^{2} \cdot \sigma_{z_{R}}^{2}\right]^{\frac{1}{2}} \tag{44}
\end{align*}
$$

CHAPTER IV

UNCERTAINTY ANALYSIS

An uncertainty analysis is presented here with a view to demonstrate the reliability of the six-orientation hot-wire technique and its sensitivity to various input parameters which have major contributions in the response equations. The analysis is done for both laminar and turbulent flow cases. The salient results are tabulated in Tables III and IV of Appendix A.

4.1 Effect of Pitch and Yaw Factors

Pitch and yaw factors (G and K) are used in the response equations described in Chapter III in order to compensate and account for the directional sensitivity of the single hot-wire probe. Figure 8, Appendix B, shows the pitch and yaw factors plotted against the hot-wire mean effective voltage. Both the pitch and yaw factors are functions of the hot-wire mean effective voltage, but the yaw factor is far more sensitive. A 10 percent increase in the voltage reduces the yaw factor by 56 percent and the pitch factor by 13 percent. The value of the pitch factor stays very close to one and hence does not have a major contribution in the response equations. For this reason, it is necessary to further consider the yaw factor, which is now examined for both laminar and turbulent flow conditions.

4.1.1 Laminar Flow

For laminar flow cases, the covariances $K_{z_{i}} z_{j}$ become zero and drop out of the response equations. Then Equations 20, 21 , and 22 can be written as:

$$
\begin{aligned}
& \bar{u}=F 1\left(\bar{Z}_{p}, \bar{Z}_{Q}, \bar{Z}_{R}\right) \\
& \bar{w}=F 2\left(\bar{Z}_{p}, \bar{Z}_{Q}, \bar{Z}_{R}\right) \\
& \bar{v}=F 3\left(\bar{Z}_{p}, \bar{Z}_{Q}, \bar{Z}_{R}\right)
\end{aligned}
$$

Experiments were performed on a calibration nozzle free jet in the potential core where the flow can be idealized as being laminar.

As Table III, Appendix A, shows, the effect of yaw factor on timemean axial and swirl velocities is insignificant for the laminar flow case.

4.1.2 Turbulent Flow

The variation of yaw factor is studied on the turbulence quantities such as mean velocities, turbulence intensities and the shear stress $\overline{u^{\prime} v^{\top}}$. As stated in Table III, all turbulence quantities behave differently to the variations in the yaw factor. The effect on all the turbulence quantities, except the mean radial velocity, is insignificant. In the case of mean radial velocity, the term $\left(G^{2}-K^{2}\right)$ in the denominator of Equation 9 changes the value of F3 considerably for small changes in the yaw factor.

4.2 Effect of Correlation Coefficients

Correlation coefficients are used in Equation 40 to calculate the
covariances between the fluctuations of the cooling velocities experienced by the hot-wire at adjacent orientations. These are then used in Equations 20 through 29 to calculate various turbulence quantities. A wide range of correlation coefficients $\left(\gamma_{z_{p} z_{Q}}\right)$ between 0.1 to 0.9 are used to study the behavior of the turbulence quantities. Among all the turbulence quantities, $\bar{u}^{\prime} v^{\prime}$ was found to be most sensitive to variations in the correlation coefficient $\left(\gamma_{z_{p} z_{Q}}\right)$. In view of the sensitivity of $\overline{u^{\prime} v^{\prime}}$ to $\gamma_{Z_{p} z_{Q}}$ and the assumptions required to estimate $\gamma_{Z_{p} z_{Q}}$, it is apparent that this is the major source of the significantly large uncertainty in the estimate of the turbulent shear stress. This appears to be an inherent deficiency of the six-orientation single hot-wire method.

King (21) used a parameter Eta (n) to relate the covariances between the fluctuations of the effective cooling velocities that are separated by 30 degrees with the covariance of velocities separated by 60 degrees (see Equation 37). He suggested a numerical value of 0.8 for η. Table III shows the effect of n on the turbulence quantities to be insignificant and hence the present study retains this value of 0.8 in all subsequent deductions.

4.3 Experimental Uncertainty

Experimental uncertainty was tested for both laminar and turbulent flow cases. The main reason for these tests was to determine the mean and variance of the output quantities when obtained from the six possible choices of three from among the six possible response equations (Equations 3 through 8 in Chapter III). Another objective of the study was to judge the extent of errors in output quantities because of errors
in measurement of mean and root-mean-square voltages.

4.3.1 Laminar Flow

The calibration free jet facility was used to conduct laminar flow uncertainty experiments. To generate velocities in the axial and azimuthal direction with respect to the wire, the wire was offset by 45 degrees to the main direction of the flow and placed in the potential core region, thereby achieving two equal components of axial and swirl velocities. However, upon data reduction, it was observed that the two components were not equal. The variation among the two components was different for each choice of the six combinations of three adjacent response equations. In general, the variation among the two components was negligible.

Table III shows the effect of variations in measurements of the hot-wire mean voltages on the turbulence quantities. For laminar flow case, the mean axial and swirl velocities are extremely sensitive to errors in measurements of hot-wire mean voltage. This particular test stresses the need for using precise voltmeters. A 10 percent error in measurement of one of the six mean voltages leads to an error of 90 percent in axial velocity deduction for the conditions of this test. At other flow conditions, similar gross sensitivity may be expected.

Turbulence quantities are calculated using six different combinations of the three mean effective cooling velocities experienced by the hot-wire at three adjacent orientations. Table IV, Appendix A, demonstrates good consistency between the six possibilities for mean axial and swirl velocity determination in laminar flow conditions.

4.3.2 Turbulent Flow

As observed for the laminar flow case, errors in mean voltage measurements are extremely magnified in calculations of turbulence quantities. Table III shows these large variations in the turbulence quantities.

For turbulent flows, a large scatter is observed among the six values of turbulence quantities deduced from the six different combinations. To get an estimate of the scatter, the flowfield location $x / D=$ 2.0, $r / D=0.25$ for the case of side-wall angle $\alpha=45$ degrees was selected inside the main test facility. At this location in the flowfield, the turbulence quantities obtained are good representatives of turbulence level in the combustor flowfield.

Table IV shows that for turbulent flow, all the six combinations do not reveal all the turbulence quantities. The omitted items correspond to occasions when the velocity function F3 attains a complex value via the requirement of the square root of a negative value. Then, no further progress could be made with that particular set of three adjacent orientations in such situations.

Table IV also highlights the scatter among the six values of each turbulent quantity when solved using six different combinations. It is evident that certain quantities (such as mean radial velocity, the radial turbulence intensity, and the shear stress $\overline{u^{\prime} v^{\prime}}$) have very large scatter. This shows a great uncertainty in the use of six-orientation hot-wire technique in measurement of these quantities.

CHAPTER V

RESULTS

The six-orientation hot-wire technique is employed to measure the turbulence quantities for nonswirling conditions. The experiments have been conducted for expansion angles of 90 degrees (sudden expansion) and 45 degrees (gradual expansion). A computer program, listed in Appendix D, written in Fortran language, is used to process the data on an IBM $370 / 168$ computer. For each location in the flowfield, six combinations of three adjacent orientations are selected and six values of each of the nine turbulence quantities are obtained. So, a decision has to be made about the selection of one of the six values. In nonswirling conditions, the flow is mainly dominated by the axial velocity. When the hot-wire is parallel to the axial direction; it experiences the least cooling effect from the axial velocity, whereas the radial and swirl velocities affect the wire most efficiently. Therefore, a small change in the v and w velocities will show a significant change in hot-wire voltage. Hence the set of orientations labeled $(3,4,5)$ in Chapter III (orientation 4 having the hot-wire parallel to the x-direction) is chosen and used in all subsequent results presented, except where noted otherwise. Nevertheless, there are some quantities, such as $v^{\prime}{ }_{r m s}$ and $\overline{u^{\prime} v}$, which appear to be better represented by alternative sets of three adjacent orientations, but the appropriate choice is not known a priori.

5.1 Mean Velocities

Radial distributions of time-mean axial and radial velocities are plotted in Figures 9 and 10, Appendix B, respectively. Mean axial velocities for different axial locations and expansion angles are compared with measurements done with a crossed hot-wire probe by Chaturvedi (5). A good agreement is found between the two studies.

Because of the inability of the hot-wire to determine the sense of the flow direction, the presence of the corner recirculation zone was observed by a sudden increase in the axial velocity closer to the wall. Mean radial velocity was found to increase at the centerline with an increase in the axial distance. The mean velocity profiles tend to get flatter further downstream from the inlet. For $\alpha=45^{\circ}$, mean radial velocity at the centerline increased from 5 percent of the maximum inlet mean velocity at $x / D=0.5$ to 16 percent of the maximum inlet velocity at $x / D=2.0$. A similar increase was observed for $\alpha=90^{\circ}$.

5.2 Turbulence Intensities

The six-orientation hot-wire technique enables one to measure the axial, radial, and azimuthal turbulence intensities at various axial and radial locations in the confined jet flowfield. The radial distributions of these turbulence intensities are plotted in Figures 11, 12, and 13 of Appendix B. The axial and radial turbulence intensities are compared with Chaturvedi's study (5) and reasonable agreement is found in the case of axial turbulence intensities. However, the two studies are not in good agreement for radial turbulence intensities. The peak values measured in the present study are much lower, in certain cases
being only 50 percent of the previously measured peak values (5). While solving the six sets of combinations of three adjacent orientations, it was found that $v^{\prime}{ }_{r m s} / \bar{u}_{0}$ has a large scatter. For example at $x / D=2.0$, $r / D=0.300$, and $\alpha=45^{\circ}$, the mean and the standard deviation of $v^{\prime}{ }_{r m s} /$ \bar{u}_{0}, among the six sets of readings, were found to be 0.1447 and 0.0330 , respectively. This large scatter shows that in nonswirling flow this technique is not a very accurate way of measuring the radial turbulence intensities. Nevertheless, results shown in Figure 11 have been obtained with the set of orientations $(3,4,5)$ being used.

5.3 Shear Stresses

In nonswirling flow conditions, measurements have been made of the turbulent shear stress $\overline{u^{\prime} v^{\top}}$. The radial distribution of $\overline{u^{\prime} v^{\top}} / u_{0}{ }^{2}$ at various axial locations is plotted in Figure 14, Appendix B, and is compared with the earlier study done by Chaturvedi (5). In general, the two studies are in good agreement, but they do differ in two respects: the centerline values far downstream and the peak values near the inlet.

Chaturvedi (5) measured $\overline{U^{\prime} v^{\prime}}$ to be zero at the centerline at all axial locations. However, in the present study, $\overline{u^{\prime} v^{\top}}$ is found to be nonzero at the centerline at axial locations greater than $x / D=0.5$ for both side-wall angles $\alpha=45^{\circ}$ and $\alpha=90^{\circ}$. A detailed study shows that
 cent orientations, is quite large. The ratio of standard deviation to the mean is approximately 0.6 and varies with position.

Peak values of $\overline{u^{\prime} v^{\top}}$ are seen to be in good agreement except close to the inlet. At $x / D=0.5$, Chaturvedi (5) measured peak values approximately 50 percent higher than in the present study. It must be
remembered that there is always difficulty in measuring shear stress values in thin shear layer regions. In the present study, there is also the previously-discussed deficiency, see Chapter IV, because of the assumpitions made about the correlation coefficients $\gamma_{z_{i}} z_{j}$. These assumptions may be the major source of significantly large uncertainty in the calculation of turbulent shear stress values.

CHAPTER VI

CLOSURE

6.1 Summary

The six-orientation hot-wire technique is a relatively new method to measure time-mean values and turbulence quantities in complex threedimensional flowfields. Applied in this study to nonreacting nonswirling axisymmetric flowfields, measurements of time-mean and root-meansquare voltages at six different orientations contain enough information to obtain the time-mean velocities, turbulence intensities and shear stresses. At each location in the flow, there are six different values of each of the above quantities that can be obtained by using six sets of measurements of three adjacent orientations. Because of axial velocity domination, a particular set of orientations was chosen. Nevertheless, the measurement accuracy can be well judged by the scatter of the values of turbulence quantities among the six different combinations of sets of three mean effective cooling velocities. The nonswirling confined jet flow was investigated with this technique. It was found to be an excellent method to find time-mean velocities. It also gave good results for turbulence intensities and shear stresses. An uncertainty analysis done on this technique reveals that certain output parameters such as the axial, radial, and azimuthal turbulence intensities and shear stresses are extremely sensitive to some input
parameters such as yaw factor and mean voltages.

6.2 Further Work

The multi-orientation single-wire technique is a useful costeffective tool for the investigation of complex flowfields. At present, there is a need to check repeatability under nonswirling conditions before progressing to the investigation of flows with moderate and strong swirl. This would lead to further evaluation of reliability and accuracy of the technique in general flowfields. Thus far, there is an a priori assumption about the evaluation of covariances, which entails the use of constant values for the correlation coefficients. Further work might call for the development of alternative methods to specify the covariances. Nevertheless, the method has potential for further use in the experimental evaluation of complex flowfields.

REFERENCES

(1) Lefebvre, A. H. (ed.). Gas Turbine Combustor Design Problems. New York: Hemisphere-McGraw-Hil1, 1980.
(2) Rhode, D. L., "Predictions and Measurements of Isothermal Flowfields in Axisymmetric Combustor Geometries," Ph.D. Thesis, Oklahoma State University, Stillwater, Oklahoma, 1981.
(3) Rhode, D. L., D. G. Lilley, and D. K. McLaughlin. "On the Prediction of Swirling Flowfields Found in Axisymmetric Combustor Geometries." Proceedings, ASME Symposium on Fluid Mechanics of Combustion Systems. Boulder, Colo., June 22-24, 1981, pp. 257-266.
(4) Krall, K. M., and E. M. Sparrow. "Turbulent Heat Transfer in the Separated, Reattached, and Redevelopment Regions of a Circular Tube." Journal of Heat Transfer (Feb., 1966), pp. 131-136.
(5) Chaturvedi, M. C. "Flow Characteristics of Axisymmetric Expansions." Proceedings, Journal of the Hydraulics Division, -ASCE, Vot. 89, No. HY3 (1963), pp. 61-92.
(6) Phaneuf, J. T., and D. W. Netzer. Flow Characteristics in Solid Fuel Ramjets. Report No. NPS-57Nt74081. Prepared for the Naval Weapons Center by the Naval Postgraduate School, Monterey, California, July, 1974.
(7) Back, L. H., and E. J. Roschke. "Shear Layer Flow Regimes and Wave Instabilities and Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion." Journal of Applied Mechanics (Sept., 1972), pp. 677-681.
(8) Roschke, E. J., and L. H. Back. "The Influence of Upstream Conditions on Flow Reattachment Lengths Downstream of an Abrupt Circular Channel Expansion." Journal of Biomechanics, Vol. 9 (1976), pp. 481-483.
(9) Ha Minh, H., and P. Chassaing. "Pertubations of Turbulent Pipe Flow. " Proceedings, Symposium on Turbulent Shear Flows. Pennsylvania State University, April, 1977, pp. 13.9-13.17.
(10) Moon, L. F., and G. Rudinger. "Velocity Distribution in an Abruptly Expanding Circular Duct." Journal of Fluids Engineering (March, 1977), pp. 226-230.
(11) Johnson, B. V., and J. C. Bennett. "Velocity and Concentration Characteristics and Their Cross Correlation for Coxial Jets in a Confined Sudden Expansion; Part II: Predictions." Proceedings, ASME Symposium on Fluid Mechanics of Combustion Systems. Boulder, Colo., June 22-23, 1981, pp. 145-160.
(12) Goldstein, S. (ed.). "Modern Developments in Fluid Dynamics," Vol. I and II. New York: Dover Publications, 1965.
(13) Hinze, J. 0. "Turbulence," 2nd Edition. New York: McGraw-Hill, 1975.
(14) Bradshaw, P. An "Introduction to Turbulence and Its Measurement." New York: Pegamon Press, 1971.
(15) Beer, J. M., and N. A. Chigier. "Combustion Aerodynamics," New York, Halsted Press Division, John Wiley \& Sons, Inc., 1972.
(16) Syred, N., J. M. Beer, and N. A. Chigier. "Turbulence Measurements in Swirling Recirculating Flows." Proceedings, Salford Symposium on Internal Flows. London, England: Inst. of Mechanical Engineering, 1971, pp. B27-B36.
(17) Wygnanski, I., and H. Fielder. "Some Measurements in the Self Preserving Jet." Journal of Fluid Mechanics, Vo1. 38, 1969, p. 577.
(18) Pratte, B. D., and J. R. Keffer. "The Swirling Turbulent Jet." Journal of Basic Engineering, Vol. 94 (Dec., 1972), pp. 739748.
(19) Dvorak, K., and N. Syred, "The Statistical Analysis of Hot Wire Anemometer Signals in Complex Flow Fields," DISA Conference, Univ. of Leicester, 1972.
(20) Jorgensen, F. E. "Directional Sensitivity of Wire and Fiber Film Probes." DISA Information No. 11, Franklin Lakes, NJ, May 1971.
(21) King, C. F. "Some Studies of Vortex Divices - Vortex Amplifier Performance Behavior," Ph.D. Thesis, Univ. College of Wales, Cardiff, Wales, 1978.
(22) Habib, M. A., and J. H. Whitelaw. "Velocity Characteristics of Confined Coaxial Jets With and Without Swirl." ASME Paper 79-WA/FE-21. New York, NY, Dec. 2-7, 1979.
(23) Gupta, A. K., and D. G. Lilley. Flowfield Modeling and Diagnostics. Tunbridge Wells, England: Abacus Press, 1982 (in press).

APPENDICES

APPENDIX A

TABLES

TABLE I
VALUES OF AO, BO, AND CO IN VARIOUS EQUATION SETS

Equation Set P, Q, R Choice	A0	B0	CO
1, 2, 3	$\left(z_{2}{ }^{2}-z_{3}{ }^{2}\right)$	$\left(-2 z_{1}{ }^{2}+3 z_{2}{ }^{2}-z_{3}{ }^{2}\right)$	$\left(z_{1}{ }^{2}-z_{2}{ }^{2}+z_{3}{ }^{2}\right)$
2, 3, 4	$\left(z_{2}{ }^{2}-z_{3}{ }^{2}\right)$	$\left(-z_{2}{ }^{2}+3 z_{3}{ }^{2}-2 z_{14}{ }^{2}\right)$	$\left(z_{2}^{2}-z_{3}^{2}+z_{4}{ }^{2}\right)$
3, 1, 5	$\left(z_{3}^{2}-2 z_{4}^{2}+z_{5}^{2}\right)$	$\left(z_{3}{ }^{2}-z_{5}{ }^{2}\right)$	$\left(z_{3}{ }^{2}-z_{4}{ }^{2}+z_{5}{ }^{2}\right)$
9, 5, 6	$\left(-z_{5}{ }^{2}+z_{6}{ }^{2}\right)$	$\left(-2 z_{4}{ }^{2}+3 z_{5}{ }^{2}-z_{6}{ }^{2}\right)$	$\left(z_{4}{ }^{2}-z_{5}^{2}+z_{6}{ }^{2}\right)$
5, 6, 1	$\left(-z_{5}{ }^{2}+z_{6}{ }^{2}\right)$	$\left(-z_{5}{ }^{2}+3 z_{6}{ }^{2}-2 z_{1}{ }^{2}\right)$	$\left(z_{5}{ }^{2}-z_{6}{ }^{2}+z_{1}{ }^{2}\right)$
6,1,2	$\left(-z_{6}{ }^{2}+2 z_{1}{ }^{2}-z_{2}{ }^{2}\right)$	$\left(-z_{6}{ }^{2}+z_{2}{ }^{2}\right)$	$\left(z_{5}{ }^{2}-z_{1}{ }^{2}+z_{2}{ }^{2}\right)$

TABLE II

$$
\text { Matrix (T) in Equation } 30
$$

$$
\frac{2 Z_{P} Z_{Q}}{Z_{P+3}^{3}} \quad \frac{-2 z_{P} z_{R}}{z_{P+3}^{3}} \quad \frac{4 z_{Q} z_{R}}{Z_{P+3}^{3}}
$$

$$
\frac{6 z_{p} z_{Q}}{z_{p+4}^{3}}
$$

$\frac{-4 Z_{P} Z_{R}}{z_{P+4}^{3}}$
$\frac{2 Z_{Q} Z_{R}}{Z_{P+4}^{3}}$

$$
\frac{4 Z_{p} Z_{Q}}{Z_{p+5}^{3}}
$$

$\frac{2 Z_{Q} Z_{R}}{Z_{P+5}^{3}}$

TABLE III
EFFECT OF INPUT PARAMETERS ON TURBULENCE QUANTITIES

PARAMETER	TYPE OF FLOW	$\%$CHANGEINPARAMETER	\% CHANGES IN TURBULENCE QUANTITIES						
			u	w	v	$u_{\text {rms }}^{\prime}$	$w_{\text {rms }}^{\prime}$	$v_{\text {rms }}^{\prime}$	$\overline{u^{\prime} v^{\prime}}$
K	LAM	+10	+0.14	+0.146	--	--	--	--	--
K	TURB	+10	-0.17	--	-5.96	-0.18	-0.18	+0.53	
${ }^{\gamma} z_{p} z_{0}$	TURB	+10	+0.22	--	+2.76	-3.17	-8.15	-0.57	change 40.28
\bar{E}_{1}	LAM	+10	+89.2	+74.5	--	--	--	--	--
$\underset{i=1,6}{\operatorname{ALL}} \bar{E}_{i}$	LAM	+10	+65.9	+65.4	--	--	--	--	--
n	TURB	+10	-0.50	--	+1.37	+4.64	+7.02	+0.88	-1.34
\bar{E}_{1}	TURB	+10	16.3	--	--	-32.8	--	--	+528.3
$\underset{i=1,6}{\operatorname{ALL}} \bar{E}_{\dot{i}}$	TURB	+10	+72.9	--	+97.2	+54.2	+61.7	+64.8	+118.8

TABLE IV
SCATTER AMONG THE TURBULENCE QUANTITIES WHEN SOLVED BY SIX DIFFERENT COMBINATIONS

TURBULENCE QUANTITY	$\begin{aligned} & \text { TYPE } \\ & 0 \mathrm{~F} \\ & \text { FLOW } \end{aligned}$	TURBULENCE QUANTITY SOLVED BY SIX COMBINATIONS						$\begin{aligned} & \text { MEAN } \\ & \bar{x} \end{aligned}$	$\begin{gathered} \text { STANDARD } \\ \text { DEVIATION } \\ \sigma \end{gathered}$	$\begin{array}{\|c\|} \text { PERCENT } \\ \sigma / \bar{x} \end{array}$
		1,2,3	2,3,4	3,4,5	4,5,6	5,6,1	6,1,2			
$\bar{u}(\mathrm{~m} / \mathrm{s})$	LAM	6.92	6.8566	7.1162	7.0224	6.7273	6.9326	6.9291	0.134	1.9
$\bar{W}(\mathrm{~m} / \mathrm{s})$	LAM	7.546	7.4879	7.4093	7.8195	7.557	7.4899	7.5513	0.1414	1.9
\bar{u} / \bar{u}_{0}	TURB	0.3478	0.3115	0.3343	0.3035	0.3398	0.2382	0.3125	0.0402	12.9
\bar{v} / \bar{u}_{0}	TURB	--	0.1818	0.1717	0.1795	0.560	0.1835	0.1545	0.0552	35.7
$u_{r m s}^{\prime} / \bar{u}_{0}$	TURB	0.1758	0.1781	0.1331	0.1711	0.1680	0.2511	0.1795	0.0387	21.6
$v_{r m s}^{\prime} / \bar{u}_{0}$	TURB	--	0.0778	0.0743	0.0783	0.0355	--	0.0665	0.0207	31.1
$\left[\bar{u}^{\top} v^{\top} / \bar{u}_{0}{ }^{2}\right]^{\frac{1}{2}}$	TURB	--	0.136	0.059	0.100	0.0943	--	0.0973	0.0315	32.4
	TURB	0.0185	0.0035	0.0101	0.0036	--	--	0.0089	0.0071	79.8

APPENDIX B

FIGURES

Figure 1. Typical Axisymmetric Combustion Chamber of a Gas Turbine Engine

Figure 2. The Flowfield Being Investigated

Figure 3. Schematic of Overall Facility

Figure 4. Hot-Wire Constant Temperature Anemometer

Figure 5. Manual Traversing Mechanism Used for Hot-Wire Orientations in the Flowfield

Figure 6. Mounting the Hot-Wire Probe on the Test Section

Figure 7. The Three-Directional Hot-Wire Calibration

Figure 8. Plot of Pitch and Yaw Factors Versus Hot-Wire Voltage

Figure 9. Radial Distribution of Normalized Time-Mean Axial Velocity in Nonswirling Confined Jet

Figure 10. Radial Distribution of Normalized Time-Mean Radial Velocity in Nonswirling Confined Jet

Figure 11. Radial Distribution of Axial Turbulence Intensity in Nonswirling Confined Jet

Figure 12. Radial Distribution of Radial Turbulence Intensity in Nonswirling Confined Jet

Figure 13. Radial Distribution of Azimuthal Turbulence Intensity in Nonswirling Confined Jet

Figure 14. Radial Distribution of Shear Stress $\overline{u^{\prime} v^{\top}} / \bar{u}_{0}{ }^{2}$ in Nonswirling Confined Jet

APPENDIX C

USER'S GUIDE TO COMPUTER CODE FOR SIX-ORIENTATION HOT-WIRE DATA REDUCTION TECHNIQUE

USER'S GUIDE TO COMPUTER CODE FOR SIX-ORIENTATION HOT-WIRE DATA REDUCTION TECHMIOUE

A computer code is developed to obtain the turbulence quantities using the technique discussed in Chapter III. Measurements in a turbulent flowfield contain six mean and six root-mean-square voltages. A three-directional hot-wire calibration reveals three calibration constants in each direction. The input to the computer code is the mean, and root-mean-square voltages and also the calibration constants. The experimental data is then processed by the MAIN subprogram and various subroutines to get the output in the form of nine turbulence quantities consisting of the three mean velocities, the three turbulence intensities, and the three shear stresses. To facilitate the use of the computer code, the function of each subprogram is discussed here in detail. 1. The MAIN Subprogram

MAIN is the major part of the computer code which accepts the input in the form of mean and root-mean-square voltages and calibration constants and calls various subroutines to solve the equations listed in chapter III and finally calculates the turbulence quantities.
(8) Calculation of Mean Effective Cooling Velocities and Variances

Main calculates the six mean effective cooling velocities using Equation 14. This equation employs the input values of six mean voltages and calibration constants in \hat{u} direction (see Figure 7, Appendix A). The MAIN then calculates the six values of variances using Equation 19. Equations 14 and 19 give mean and variance of individual cooling velocities in terms of the mean and
variance of the appropriate voltage.
(ii) Calculation of Velocity Functions and Differentials Having calculated the mean effective cooling velocities and variances, the MAIN then calls various subroutines to obtain the necessary information required to calculate velocity functions using Equations 9 through 11. The main then calculates the first and the second differentials of the three velocity functions with respect to the three selected mean effective cooling velocities. The differentials are given as:

$$
\begin{align*}
& \frac{\partial \overline{F T}}{\partial \bar{Z}_{i}}=\frac{\left[\frac{B O}{3\left(G^{2}-K^{2}\right)^{2}} \frac{\partial B O}{\partial Z_{i}}+\frac{\overline{F T^{2}}}{\left(G^{2}-K^{2}\right)} \frac{\partial A O}{\partial Z_{i}}\right]}{\left[2 \overline{F T}^{3}-2 F 1 \frac{A O}{\left(G^{2}-K^{2}\right)}\right]} \tag{1}\\
& \frac{\partial \overline{F 2}}{\partial \bar{Z}_{i}}=\frac{\left[\frac{B O}{3\left(G^{2}-K^{2}\right)^{2}} \frac{\partial B O}{\partial Z_{i}}-\frac{{\overline{F Z^{2}}}_{\left(G^{2}-K^{2}\right)^{2}}}{\left.\frac{\partial A O}{\partial Z_{i}}\right]}\right.}{\left[2 \overline{F 2}^{3}+\frac{2 A O}{\left(G^{2}-K^{2}\right)} \overline{F 2}\right]} \tag{2}\\
& \frac{\partial \overline{F 3}}{\partial \bar{Z}_{i}}=\frac{\left[\frac{\partial C O}{\partial Z_{i}}\left\{F \bar{F}^{2}-C O\right\}+\frac{\left(G^{2}+K^{2}\right)}{\left(G^{2}-K^{2}\right)}\left\{A 0 \frac{\partial A 0}{\partial Z_{i}}+\frac{B O}{3} \frac{\partial B O}{\partial Z_{i}}\right\}\right]}{\left[2 \bar{F}^{3}+2 C O \overline{F 3}\right]} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial^{2} \overline{F T}}{\partial \overline{\bar{Z}}_{i} \partial \bar{Z}_{j}}=\frac{1}{2\left[\overline{F T}^{3}-\frac{A 0}{\left(G^{2}-K^{2}\right)} \overline{F T}\right]\left[-\left\{\sigma \overline{F T}^{2}-\frac{2 A 0}{\left(G^{2}-K^{2}\right)}\right\} \frac{\partial \overline{F T}}{\partial \bar{Z}_{i}} \cdot \frac{\partial \overline{F T}}{\partial \bar{Z}_{j}}\right.} \\
& +\frac{2 \overline{F T}}{\left(G_{i}^{2}-K^{2}\right)}\left\{\frac{\partial \overline{F T}}{\partial \bar{Z}_{i}} \cdot \frac{\partial A O}{\partial \bar{Z}_{j}}+\frac{\partial A O}{\partial \bar{Z}_{i}} \cdot \frac{\partial \overline{F T}}{\partial \bar{Z}_{j}}\right\}+\frac{\overline{F T}^{2}}{\left(G^{2}-K^{2}\right)} \cdot \frac{\partial^{2} A O}{\partial \bar{Z}_{i} \partial \bar{Z}_{j}} \\
& +\frac{1}{3\left(G^{2}-K^{2}\right)^{2}}\left\{\frac{\partial B O}{\partial \bar{Z}_{i}} \cdot \frac{\partial B O}{\partial \bar{Z}_{j}}+B O \frac{\partial^{2} B O}{\partial \bar{Z}_{i} \partial \bar{Z}_{j}}\right\} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& -\frac{2 \overline{F 2}}{\left(G^{2}-K^{2}\right)}\left\{\frac{\partial \overline{F 2}}{\partial Z_{i}} \cdot \frac{\partial A O}{\partial \bar{Z}_{j}}+\frac{\partial A O}{\partial \bar{Z}_{i}} \cdot \frac{\partial \overline{F 2}}{\partial \bar{Z}_{j}}\right\}-\frac{\overline{F Z^{2}}}{\left(G^{2}-K^{2}\right)} \cdot \frac{\partial^{2} A O}{\partial Z_{i} \partial Z_{j}} \\
& +\frac{1}{3\left(G^{2}-K^{2}\right)^{2}}\left\{\frac{\partial B O}{\partial Z_{i}} \cdot \frac{\partial B O}{\partial \bar{Z}_{j}}+B O \frac{\partial B O}{\partial Z_{i} \partial Z_{j}}\right] \tag{5}\\
& \frac{\partial \overline{F B}^{2}}{\partial \bar{Z}_{i} \overline{\bar{Z}}_{j}}=\frac{1}{\left[2 \overline{F 3}^{3}-2 C 0 \cdot \overline{F 3}\right]} \cdot\left[=\left[6 \overline{F 3}^{2}-2 C 0\right\} \cdot \frac{\partial \overline{F 3}}{\partial \bar{Z}_{i}} \cdot \frac{\partial \overline{F 3}}{\partial \bar{Z}_{j}}\right. \\
& +2 \overline{\mathrm{FB}} \cdot\left\{\frac{\partial \overline{\mathrm{~F} 3}}{\partial \overline{\mathrm{Z}}_{i}} \cdot \frac{\partial C 0}{\partial \overline{\mathrm{Z}}_{j}}+\frac{\partial C 0}{\partial \overline{\mathrm{Z}}_{i}} \cdot \frac{\partial \bar{F}_{3}}{\partial \overline{\mathrm{Z}}_{j}}\right\}-\frac{\partial C 0}{\partial \overline{\mathrm{Z}}_{i}} \cdot \frac{\partial C O}{\partial \overline{\bar{Z}}_{j}} \\
& +\{\overline{F 3}-C 0\} \frac{\partial^{2} C O}{\partial Z_{i} \partial Z_{j}}+\frac{\left(G^{2}+K^{2}\right)}{\left(G^{2}-K^{2}\right)}\left\{A O \cdot \frac{\partial A O}{\partial \bar{Z}_{i} \partial \bar{Z}_{j}}+\frac{\partial A O}{\partial Z_{i}} \cdot \frac{\partial A O}{\partial Z_{j}}\right. \\
& \left.\left.+\frac{1}{3}\left\{\frac{\partial B O}{\partial \bar{Z}_{i}} \cdot \frac{\partial B O}{\partial \bar{Z}_{j}}+B O \frac{\partial B O}{\partial \bar{Z}_{i} \partial \bar{Z}_{j}}\right)\right\}\right] \tag{6}
\end{align*}
$$

(iii) Calculation of Covariances

At this stage, the user has the option, whether to calculate the covariances by using King's (21) method or by assuming constant values of correlation coefficients. To get the covariances using King's method, the MAIN has to call the subroutine COVAR, otherwise MAIN calculates covariances using Equations 35, 41, and 44.
(iv) Calculation of the Turbulence Quantities

Now the MAIN has all the information needed to calculate the mean velocities using Equations 20 through 22, also to calculate the turbulence intensities using Equations 24 through 26 , and finally to calculate the shear stresses using Equations 27 through 29. The MAIN then prints out the normalized values of the turbulence quantities in the form of nine two by three matrices each containing the six values of a turbulence quantity calculated using six different combinations.

2. Subroutine CPYF

This subroutine calculates the pitch and yaw factors using the calibration constants obtained by three-dimensional calibration. The equations used to calculate these factors are:

$$
\begin{aligned}
& G=\frac{\hat{v}(\hat{w}, \hat{u}=0)}{\hat{u}(\hat{w}, \hat{v}=0)} \\
& K=\hat{\hat{v}}(\hat{w}, \hat{u}=0) \\
& \hat{w}(\hat{v}, \hat{u}=0)
\end{aligned}
$$

evaluated at a constant value of $E^{2} . u$, v, and w are obtained using equation 12 for their respective calibration constants. The value of E^{2} can be adjusted to obtain an interval ΔE to get appropriate values of
G, and K.

3. Subroutine FMCV

The task of this subroutine is to find the mean effective cooling velocity which has minimum value among the six calculated by the MAIN. FMCV also finds the two mean effective cooling velocities which are adjacent to the minimum mean effective cooling velocity and returns the set of the three to be used by MAIN for further data processing.
4. Subroutine SEABC

SEABC recognizes the three selected mean effective cooling velocities Z_{P}, Z_{Q}, and Z_{R}, and sets the three appropriate equations for $A O$, $B O$, and $C O$ in terms of \bar{Z}_{P}, \bar{Z}_{Q}, and \bar{Z}_{R}, using Table V. $A O, B O$, and $C O$, are used by MAIN to calculate the three velocity functions given by Equations 9 through 11.
5. Subroutine CDABC

CDABC calculates the first and second differentials of AO, BO, and $C 0$ with respect to \bar{Z}_{P}, \bar{Z}_{Q}, and \bar{Z}_{R}. It is evident from Table V that $A 0$, $B O$, and $C O$ are functions of \bar{Z}_{P}, \bar{Z}_{Q}, and \bar{Z}_{R} and so are their first and second differentials.
6. Subroutine COVAR

This subroutine calculates covariances using a method suggested by King (21). This method calls for employing Equations 40 through 43. This subroutine can be called only when one desires to calculate covariances using King's method. Otherwise, the covariances are calculated within MAIN by the procedure already described.

TABLE V

LIST OF FORTRAN VARIABLES AND THEIR
 MEANING IN RESPONSE EQUATIONS

TABLE V (Continued)

Derivatives of Velocity Functions F1, F2, and F3

DFIP	$\frac{\partial \overline{F T}}{\partial Z_{P}}$
DF1Q	$\frac{\partial \overline{F T}}{\partial Z_{Q}}$

DFIR $\quad \frac{\partial \overline{F T}}{\partial Z_{R}}$
D2F1P $\quad \frac{\partial^{2} \overline{F T}}{\partial Z_{p}{ }^{2}}$
D2F1Q $\frac{\partial^{2} \overline{F T}}{\partial Z_{Q}{ }^{2}}$
D2F1R
$\frac{\partial^{2} \overline{F T}}{\partial Z_{R}{ }^{2}}$
D2F1PQ $\quad \partial^{2} \overline{F T}$
$\partial Z_{p} \partial Z_{Q}$
D2FIQR
$\partial^{2} \overline{\mathrm{FT}}$
$\partial Z_{Q} \partial Z_{R}$
D2F1PR
$\partial^{2} \overline{\mathrm{~F}}$.
$\partial Z_{p} \partial Z_{R}$

Covariances
AKPQ
$K_{Z_{p}} Z_{Q}$
AKQR
$K_{Z_{Q}} Z_{R}$
AKPR
$K_{Z_{P}} Z_{R}$

TABLE V (Continued)

Output Variables Calculated	
UMEAN	\bar{u}
WMEAN	\bar{w}
VMEAN	\bar{v}
UPRMS2	$\bar{u}^{\prime 2}$
WPRMS2	$\bar{w}^{\prime 2}$
VPRMS2	$\bar{v}^{\prime 2}$
UVPB	$\overline{u^{\top} v^{\top}}$
UWPB	$\overline{u^{\prime} w^{\prime}}$
VWPB	$\overline{v^{\prime} w^{\prime}}$
UDUMO	\bar{u} / \bar{u}_{0}
WMDUMO	\bar{w} / \bar{u}_{0}
VMDUMO	\bar{v} / \bar{u}_{0}
UPDUMO	$\sqrt{\bar{u}^{\prime 2}} / \bar{u}_{0}$
WPDUMO	$\sqrt{w^{\prime 2} / \bar{u}_{0}}$
VPDUMO	$\sqrt{v^{\prime 2} / \bar{u}_{0}}$
UVDUMO	$\bar{u} \bar{u}^{\top} v^{\top} / \bar{u}_{0}^{2}$
UWDUMO	$\overline{u^{\prime} w^{\top} / \bar{u}_{0}^{2}}$
VWDUMO	$\overline{v^{\prime} w^{\top} / \bar{u}_{0}^{2}}$

APPENDIX D

LISTING OF THE COMPUTER PROGRAM

```
\begin{tabular}{|c|c|c|c|}
\hline 00 & C & ****** & \\
\hline 70 & \(c\) & * & * \\
\hline 30 & c & * & * \\
\hline yo & c & * computer peugram to calcuate tujoulenee & * \\
\hline 100 & c & * QUANTITIFS using thf expe:imental data & * \\
\hline 110 & C &  & * \\
\hline 120 & ¢ & * & * \\
\hline 130 & C & * & * \\
\hline 140 & C & * & * \\
\hline 150 & c & * VERSION OF OCT, 1 ¢ E1 & * \\
\hline 100 & C & \# & * \\
\hline 170 & C & * & * \\
\hline 190 & C & * & * \\
\hline \(1 \geqslant 0\) & C & * FFEPAFED EY: & * \\
\hline 200 & c & * SALIM I. janjua & * \\
\hline 210 & c & * SCMCCL of mectanical and aejusiace engineering & * \\
\hline 220 & C & * oklamoma state univefsity & * \\
\hline 230 & C & * STILLbATER CK. 79078 & * \\
\hline 240 & C & * & * \\
\hline \(<50\) & C & * & * \\
\hline 260 & C &  & * \\
\hline 270 & C & & \\
\hline 230 & C & & \\
\hline 290 & C & \(\cdots\) - & \\
\hline 300 & c & & \\
\hline 310 & & DIMENSISN EM(12), EP (12), AMECV(12),VAF(12) & \\
\hline 320 & & DIMENSICA UCUMO( 61. UPDUMO (6),VVDUMC( 6 ), VFDJYJ (ó) & \\
\hline 330 & & CIHENSION WMDU'RO(E), WFDUMC(6), UVDUMC(6).UWDUMO(6). & \\
\hline 340 & & * Vnoumb(e) & \\
\hline 350 & & CATA DIA,EITA/12.0.0.8/ & \\
\hline 360 & & FEWINC 30 & \\
\hline 370 & & \(N S=1\) & \\
\hline 380 & OOE & IF(NS.EQ.J) GO TC 909 & \\
\hline 390 & - & FEAD ( \(30, *)\) A.B.C & \\
\hline 400 & & FEAD (3),*) Ai, Bl, Cl & \\
\hline 410 & & READ(30,*) A2, \(32, \mathrm{C} 2\) & \\
\hline 420 & & WFITE(大, 1111) & \\
\hline 430 & 1111 & FCF:AT(//, AX, 'THE CALIBPATION CCNSTANTS ARE:') & \\
\hline 440 & & WFITE (E,*) A, B, C & \\
\hline 450 & & WFITE (S,*) A1.31, Cl & \\
\hline 460 & & WFITE (5,*) A2, 32, C2 & \\
\hline 470 & 909 & FEAD ( \(30 . *\) ENU \(=5\) ¢9) X,F.EMC.NS & \\
\hline 780 & & \(\operatorname{PEAD}(37, *)(F M(1), 1=1,6)\) & \\
\hline 490 & & READ ( 2 の,*) (ER(1), \(1=1.5)\) & \\
\hline \(\bigcirc 00\) & - & WFITE(E, 1112) & \\
\hline 510 & 1112 &  & . \\
\hline 520 & & WFITE(S.1100) (EM(I), \(\mathrm{I}=1,6\) ) & \\
\hline 530 & & WFITE( 6.1200\()(E P(1) .1=1, \epsilon)\) & \\
\hline ¢ 0 & 1100 & FORMAT( GFG.7) & \\
\hline 550 & 1200 & FCFMAT(EF9.4) & \\
\hline 560 & & FCOIA \(=\) P/DIA & \\
\hline 57J & & XDUIA \(=X /\) II \(A\) & \\
\hline
\end{tabular}
```

```
    URC1=(-R+SOPT(H**2-A.ONC*(A-EMC**?)):/(...い*C)
```



```
    UNO=UYO1*UNOI
    UN=UN!*Uツ!
    UEl=亿/(4.0)#EN(1)*UN!)+C/(2..7*EA(1))
    UNEU=U'A#DEU
```



```
    U:OこNC=1!Nハ!!"C
    UFDU:.N=UPDUN*\MOJMO
    DE 30 1=1.6
    FN?=EN(I)*FM(!)
    FFZ=EF(J)*E?(1)
    B=SGFT(O##C-(4-C*(A-EMO}))
    \rhoトE=:(-R+D)/(2#C))=*2
    CPHE=(2*E!4(I)/C)*(1-(`/\))
* U2ロHE=(1/EN(I))*JFHE+(:(?*EM2)/D**こ
c-----------------------------------------------------
C------------LOCAL MEAN EFFECTIVE C:CLING VELICITY IS CALEULATED
C----------------------------------------------------------------------
    ANECV(I) =PHE+0.5*C2PHE*ERR2
C----------------------------------------------------------------------------
C------------VARIANCE.VAF IS CALCULATEU-------------------
C-------------------------------------------------------------------------
    VAR(I)=((DP+HF**2)*(EF2))-((0.5*D2PF\sqsubseteq*「こ2)**2)
    AMECV(I+G)=A.AECV(I)
    VAR(I+E)=VA=(I)
    HRITE(5.112)
    *FITE(S,110) AMECV(I),VAR(I)
110 FQ=MAT(//.,7X.'ANFCV=',F7.4.5X.'VA==',FF.4)
30 CCNTINUE
C-----------------------------------------------------------------------
C-----------MAIN CALLS THE SUEFOUTINE CPYF TO CALCULATE
C-----------THE PITCH AND YAW FACTCFS.----------------------
    CALL CDYF(A,B,C,A1,B1,C1,A2,B2,C2,PF,YF)
C---------------------------------------------------------------------
```



```
C-------------------------------------------------------------------------
    WFITE(6,54\Xi) PF,YF
54.3 FCOMAT(////.7X.'口ITCH FACICR=',F7.A. ЗX, 'YAW FACTUF=',F7.4)
    AL=PF*OF-YF*YF
    C=PF*PF+YF#YF
    W=ITE(S,Aム4) UMCUMC,UPDUYM
444 FORMAT(///,7X,'AXIAL MEAN VEL/INLET 'MAX VEL=',FS.4.4X,
    *'AXIAL TURR INTEN=',FS.&)
        WRITE(Ó.515) UMD
    515 FCRMAT(//.12X,'MAX INLET VELOCITY='.FO.A)
        DC 222 1111=1.6
        11=111-1
        N=50
        C.ALL STOTZ(UDUMO,WMDUM'J,V YDU`AD,UNOUNO.HEDUMC,VEDUSAB,
        #UVDLMO.UVOUMD.VWOUMO.A.1111
1100 c-------------------------------------------------------------------------
1110 C--mMMAN CALLS THE SURRCUTIVIE FMCV TO FIND THE
1120 C----------------THE MINIMUN CODLING VELCCITY ANO THE TWC
1130 C-------------MDACENT ONES
1140 C-----------------------------------------------------------------------
```

1096

```
    CALL FHCV(AMFCV,N,IP,IO.IR,II)
    ZF=AMECV(ID)
    ZG=AMECV(TQ)
    ZF=A!AECV(IF)
    IF(IG.5T.6) 10=10-5
    IF(IF.GT.6) :&=15-\epsilon
(------------------------------------------------------------------------
C-------------NAII CALLS THE SIJORCUTINE,SEAAC TO SET J=
```



```
C---------------------------------------------------------------------
    CALL SEABC(2P,ZO,ZF,IP,AO,RC,C()
    F=S人RT((A0**?)+(-0**2)/3)
    IF(CC.LT.F*D/AL) GO TO 222
C------------------------------------------------------------------------------
C------------VELOCITY FUNCTIDNS F1.F2.AND FE A2E CALCLLATED-----
C---------------------------------------------------------------------------
    Fi=SQRT((1/AL)*(AO+F))
    IF((1/AL)*(-AO+F).LT.J) GO TO 222
    F 2=SQFT((1/AL)*(-AD+F))
    FE=SQFT (CG-(O/AL)*F)
    IF(F2.FO.0) GO TO 222
```



```
C----------MAIN CALLS THE SUBFOLTINE CDAEC TO CALCULATE
C-------------ME FIFST AND SECOND DIFFERENTIA_S OF AO,RO,
C--------------AND CU------------------------------------------------------
C---------------------------------------------------------------------
    CALL CDABCRDAP,DEF,DCF.D2AF.D2EP.DZCR.[AG.DOQ,DCG,D2AQ,D2RQ,
    *D2C G, CAR.LEF, DEP,D2AR,D2EF,D2CF,ZP, 2O, ZF,IPI
C-----------------MAIN CALCULATES ThE FIF ST ANO SECCIND
C---m----------DIFFEPENTIALS OF THE VELCCITY FUNCTIONS
C--m-m,F2,AND F3 WITH FESPECT TC THE
C---m----m-m_--mECTED SET OF THE THPEE COJLING VELO
C----------------CITIES.--------------------------------------------
    X1=F1*F1
    XE=X1 #F1
    x ==EC/(3*AL*AL)
    x4=x1/AL
    x5=(2**2)-(2*F1*AO/AL)
    x\epsilon=-(\epsilon**1-2*AC/AL)
    Y1=F2#F2
    Y2=Y1*F2
    Y 3=2. )*Y2+2.J*F2*AC/AL
    Y4=Y1/AL
    YE=-(E*Y1+(2.0*AO/AL))
    Z1=F3*F3
    Zこ=Z1*F3
    Z3=2.J*Z2-2.0*CO*F3
    Z&=-(\epsilon.0*Z1-2.0*CC)
    DF1P=(x 3*DRD + XA *DAD )/X5
    DF2P=(x3*DRP-Y4*DAP)/Y3
    DF3P=(DCO*(Z1-CO)+((O*O)/(AL*AL))*(AO*C&P+(90*DBP)/3))/23
    DF1G=(x3*CEG+X**CAQ)/XS
    DF2Q = (X3*DEG-Y4*!)AC)/Y3
    DF3C=(DCO*(Z1-CD)+((O*O)/(AL*AL))*(AO*OAQ+(EO*DBQ)/3))/Z3
    DF1F=(x3*DPR+xQ*DAF)/X5
    DF2F=(X3*DRF-Y4*UAR)/Y3
```

```
1720
1730
1740
1750
1%む0
1770
1750
1790
1こ0つ
1310
1020
1030
1040
1050
10も0
1:70
1330
1090
1700
1%10
1920
1530
1>40
1550
1=60
1ヶ7u
1:80
1590
2000
2010
2u20
2030
2040
2050
2000
2070
2080
2J90
2100
2110
2120
2130
<140
2150
210
2170
2190
200
221
2<2
2<30
2%*0
2250
226
C-----------MAIN CALCULATFS THE AXIAL: FAOIAL,AND
```


2290	
2300	
2－10	＊＋D2F1PO＊AKフO＋D2F1GF＊AKこ＋D 2F1FF＊AKFF
2320	
2，3J	
2340	
2350	
2j00	
2j70	＊+2$)$
2530	
く390	
2－00	
2－10	
2420	UF5＝UP $3+\cup \sim 4$
2730	UFINS2＝UP1＋UFZ－UF5＊＊2
2440	WF1＝DF 2 P＊DF2D＊VAR（IP）＋CF 2 Q＊DF2G＊VAF（1P＋1）＋DF2F＊DF2F＊VAF（IP
2750	＊+ E）
2.60	
2470	
2480	WF3 $=0.5$（ D2F2？＊VAF（IP）＋D2F20＊VAF（IF＋I）＋O2F2Q＊VAF（IP＋2）$)$
2490	WPG＝D2F $2 P O * A K P D+U 2 F 2 Q R * A K Q N+D 2 F 2 F R * A K D R ~$
2500	$k P S=W P 3+W P_{4}$
C210	
2523	
2ऽ30	＊＋21
2540	
2550	＊K 0 ＋＋DF 3R\＃DF 3D＊AKRP＋DF 3R＊DF30＊AKFQ
2.260	$V P 3=0.5 *(D 2 F 30 * V A R(1 P)+02 F こ 0 * V A R(I F+1)+02 F 3 F * V A F(I F+2))$
2570	$V F 4=025306 * A K D Q+O 2 F 30 Q * A K O P+D 2 F 3 D R * A K P R$
2580	$V F 5=V P 3+V P 4$
2390	VFRMS2 $=$ VP1＋VP2－VPS＊＊2
2000	UVI＝OFIP＊DF3P＊VAR（IP）＋OF 10＊DF3G＊VAR（ID＋1）＋DFIR＊DF3R＊VAR（ID
2010	＊＋2）
20 20	
2030	＊KQR＋DFIR＊DF 30＊AKFF＋JF 1F＊DF 30＊AKFO
2し40	UVE＝0．5＊（D2FIP＊VAP（ID）＋D2F10＊VAP（IF＋！）＋U2FIR＊VAF（IP＋2））
2う50	
2660	UVE＝0．5＊（D2F3P＊VAR（IP）＋DaFこG＊VAR（IF＋！）＋C2F3F＊VAF（IP＋1））
くu70	UVG $=D 2 F 3 D Q * A K P Q+D 2 F 30 R * A K Q P+D 2 F 3 P R * A K D R$
2080	UVPQ＝UV1＋UV2－（（UVこ＋UV4）＊（UVS＋UVS））
2090	
2700	＊＋ 21
2710	
2720	
2730	$V * 3=0.5 *(D 2 F 3 P * V A=(I P)+D 2 F こ G * V A F(I F+!)+D 2 F 3 マ * V A R(1 P+2))$
2740	$V * 4=02 F 3 P Q * A K P O+J 2 F 3 C F * A K G F+O 2 F 3 D * * A K D$
2750	
2760	$\forall W O=D 2 F 2$ OO＊AKPQ＋D2F2OF＊AKQO＋D2F203＊AK．$D 0$
2770	$\left.V W P B=V W 1+V W 2-\left(V^{\prime} E+V W 4\right) *(V 45+V W 5)\right)$
2790	
2780	＊＋2）
2：300	Un2＝OF1P\＃DF $20 * A K R G+D F 1 P * D F 2 R * A K P F+D F: C * D F 2 F * A K Q P+D F 1 Q * C F 2 F * A ~$
2三10	＊KGF＋DF1F＊DF $2 P * A K \Gamma P+D F 1 F * O F 20 * A K E O$
2心 20	
2530	
2040	
2550	

```
. 250
2<i70
2cと0
2%SU
ぐOJ
Z=10
2=2u
2,3u
<+4u
25う.J
2`60
2>70
<>50
2;50
3000
3.11J
3020
3030
3040
3u50
300
3070
3080
309
3100
3110
3120
3130
3140
3150
3160
317J
3180
3190
3<00
3210
3<20
3<30
3240
د250
3<6u
3270
3%30
3290
3000
3こ10
`320
30
3340
3う50
3300
3570
3د80
3う90
3400
3+10
342J
```



```
    LDUP!O(1111)=1要AN/U4C
```

 LDUP!O(1111)=1要AN/U4C
 mPDUMC(1:1:)= wMr: A:A/UMN
 mPDUMC(1:1:)= wMr: A:A/UMN
 vMNUMC(:11)= \44=4F!/U&N
 vMNUMC(:11)= \44=4F!/U&N
 IF{UPF'S2.GT.O.O) JFOUMC(III)=SORT(LNRッS.?)/IMO
    ```
    IF{UPF'S2.GT.O.O) JFOUMC(III)=SORT(LNRッS.?)/IMO
```



```
    1F(VE=MS2.CT.).つ) VつこUNJ(1:1)=SCOT(Vワ-VS?)/JMO
```

 1F(VE=MS2.CT.).つ) VつこUNJ(1:1)=SCOT(Vワ-VS?)/JMO
 UVOUNC(111)=リVアコルハし**2
 UVOUNC(111)=リVアコルハし**2
 VWDUMC(I11)=v!,O:3/U10**2
 VWDUMC(I11)=v!,O:3/U10**2
 UnDUMC(I!:)=U**P.3/!J+C**2
 UnDUMC(I!:)=U**P.3/!J+C**2
 112 FCrNAT(: ')
 112 FCrNAT(: ')
 22こ CCHTINJE
22こ CCHTINJE
nतITE(0.!13) rjOIA
nतITE(0.!13) rjOIA
WFiTE(r, 114) X!OIA

```
        WFiTE(r, 114) X!OIA
```



```
    113 FCFNAT(;/,2nX,'RADIAL DISTANCE F/D=',F5.4)
```

 113 FCFNAT(;/,2nX,'RADIAL DISTANCE F/D=',F5.4)
 WFITE(S.112)
 WFITE(S.112)
 *FITE(6,112)
 *FITE(6,112)
 HFITE(6,1000) (UDL'0(I).1 =1.3)
 HFITE(6,1000) (UDL'0(I).1 =1.3)
 *FITE(5.1000) (UDUMD(I). i=^,t)
 *FITE(5.1000) (UDUMD(I). i=^,t)
 KFITE(%,112)
 KFITE(%,112)
 kFITE(b,112)
 kFITE(b,112)
 WRITE(5,200n) (:MDUMO(I), I=1, 2)
 WRITE(5,200n) (:MDUMO(I), I=1, 2)
 HFITE(E.,20J0) (*NOUNC(I),1=&,も)
 HFITE(E.,20J0) (*NOUNC(I),1=&,も)
 WFITE(j.112)
 WFITE(j.112)
 HFITE(6.112)
 HFITE(6.112)
 WF1TE(E,30\cap0) (VMNUNO(I),I=1,3)
 WF1TE(E,30\cap0) (VMNUNO(I),I=1,3)
 WFITE(5,3000) (VMDUMO(1),I=4,E)
 WFITE(5,3000) (VMDUMO(1),I=4,E)
 WFITE(5,112)
 WFITE(5,112)
 WFlTE(5,112)
 WFlTE(5,112)
 *FITE({.40OJ) (UPDUMO(I), I=1,3)
 *FITE({.40OJ) (UPDUMO(I), I=1,3)
 WFITE(S.400)) (UPDUMO(I).I=4.6)
 WFITE(S.400)) (UPDUMO(I).I=4.6)
 WRITE(S.112)
 WRITE(S.112)
 WFITE(G,112)
 WFITE(G,112)
 WFITE(S,5000) (WPDLNC(1).I =1.3)
 WFITE(S,5000) (WPDLNC(1).I =1.3)
 HFITE(:),5000) (WPDUMO(I), I=4,E)
 HFITE(:),5000) (WPDUMO(I), I=4,E)
 NFITE(f,g112)
 NFITE(f,g112)
 WFITE(S.112)
 WFITE(S.112)
 hFITE(E,EOOO) (VPDUNO(I).I=1,3)
 hFITE(E,EOOO) (VPDUNO(I).I=1,3)
 WRITE(0.S.0)) (VFDUNC(I), I=4,0)
 WRITE(0.S.0)) (VFDUNC(I), I=4,0)
 WFITE(S.112)
 WFITE(S.112)
 WFITE(5,112)
 WFITE(5,112)
 WFITE(5,700)) (UVD:MC(1), I=1,3)
 WFITE(5,700)) (UVD:MC(1), I=1,3)
 WFITE(5,700n) (UVOUMC(I), I=4,\epsilon)
 WFITE(5,700n) (UVOUMC(I), I=4,\epsilon)
 W=ITE(n,112)
 W=ITE(n,112)
 WGITE(S.112)
 WGITE(S.112)
 WFITE(5, E00)) (UWDUMC(I), I=1,3)
 WFITE(5, E00)) (UWDUMC(I), I=1,3)
 WFITE(o, عOoJ) (UWDUMC(I),I=4,6)
 WFITE(o, عOoJ) (UWDUMC(I),I=4,6)
 WFITE(6,112)
 WFITE(6,112)
 WEITE(G,112)
 WEITE(G,112)
 #FITE(5.112)
 #FITE(5.112)
 WF:TE(S,GOOO) (VWDUNO(I), I=1,3)
 WF:TE(S,GOOO) (VWDUNO(I), I=1,3)
 MFITE(E,F000) (VNDUNG(I), I=4,6)
 MFITE(E,F000) (VNDUNG(I), I=4,6)
 MFITE(5.112)
 MFITE(5.112)
 WFITE(6,112)
 WFITE(6,112)
 1000 FORNAT(/,7X,'UOUNC=',FF.4.5X,'UDUNO=',F9.4.5X,'UNUMO='.
1000 FORNAT(/,7X,'UOUNC=',FF.4.5X,'UDUNO=',F9.4.5X,'UNUMO='.
\#F5.4)

```
    #F5.4)
```



```
        *rC.4)
```



```
        *FS.&)
```



```
        *, '= ',Fま.4)
```



```
        *,'=',F7.4)
5OOO FCFMAT(/,7X.'VDDUNC=',FF.4.4X.'VP)UN:=',FS.4.4 X,'VFOUMC'
        **'=',F%.4)
7000 FCFMATC/,7x,•UVDLNC=',FS.4,4X,'UV'J!MAC=',FG.4.4X.'UVDL:O='
        #,F5.3)
&JOJ FC?NAT(/,7X,'LNJUNO=',FG.4,4X,'UNOUNC=',FG.7,4X,'U&DUMD='
        *.F?.4)
9000 FC=MAT(/.TX,'VHOUNC='.!-G.4,AX.'VWJUNO=',FG.4.4X,'VNIUMMC='
        *,F?.4)
        GC TO 909
    39G STOD
        END
```

```
c
3u7丘C*####***********************************************************
3こ80 C---------THIS SUBROUTINE SETS TURBULENT OUAIMTITIES TO
3090 C---M----IEEJ AT THE SEGIN:NG OF EACH ITEEAT ION
```



```
    SLQRRUTINE STOTZ(UDUAC,NMDUMN,VMDUMC.USCU"O.HPOUMO.
    *VFDUNC.JVOLNC.UNDLMC,V*DUNE.N, I)
        DIMENSION UDUMD(E),W!{NUMO(E), VWDUMO(S).LPDUMO(J), WPDUMO(E)
        DIMENSICN VODU心J(E).JV:JNO(S),UWDUNC(5),VWUJMO(O)
        UOUMO(I)=0.0
        NNDUMO(I)=0.0
        VNDUNC(I)=.)..)
        LPDUMO(I) =0.0
        WPDUMC(I)=0.0
        VPDUMC(I)=3.0
        UVDUME(I)=0.0
        UK\LM((1)=0.0
        VHDUIAC(I)=0.0
        FETUEN
        END
```

3020
3030
3040
3050
3060
3070
3080
3090
3700
3710
3720
3730
3740
3750
3700
3770
3780
3790
3000
3310
3220
3030
3340
3050

303u C
3040 C
3uSu C
3utu C

```
.sou C
3070 C
#u80 C
```



```
3500 C
~yIU C THIS SUZFQUTINE FINOS THE MININOM MEA:I EFFECTIVE
دッ2O C CCCLINU VELCCITY ANJ THE THC ADJACENT Tこ :T.
2530 C
```



```
3ッ50 6
3.50 こ
3>70 C
#>80 C
3990
4000
4010
4Ј20
4J30
4040
4Ј50
4000
4070
4Ј30
4\cup\geqslant0
4100
4 1 1 0
4120
4130
4140
4150
4160
4 1 7 0
4180
4190
4200
4<10
4<20
4230
4240
4i50
4<60
4ご70
4280
4290
4300
4310
4-20
4 3 3 0
4340
4050
4360
4370
4330
4330
4390
4:00
4410
4*20
    <.3J
4.40
4シうご
a+0u
SUBFCUTINE FNCV(CV,N,IX,IY,IZ,II)
SUBFCUTINE FMCV(C
    IF(CV(?).LT.CV(1)) Gח TO 20
    IF(CV(3).LT.CV(1)) GC TC 30
    IF(CV(4).LT.CV(1)) GO TJ 40
        IF(CV(5).LT.CV(1)) GO TJ 50
        IF(CV(5).LT.CV(1)) GO TO \inO
        IX=6
        I Y=1
        IZ=2
        GC TC 100
    20 1F(CV(3).LT.CV(2)) GO TJ 30
        IF(CV(7).LT.CV(2)) GC TO 40
        IF(CV(5).LT.CV(2)) GO TO 50
        IF(CV(S) -LT.CV(2)) GC TO 60
        I X=1
        IY=2
        I Z=3
        GO TC 100
    30 IF(CV(4).LT.CV(3)) GO TO 40
        IF(CV(5).LT.CV(3)) GO TO 50
        IF(CV(5).LT.CV(3)) GO TO GO
        IX=2
        IY=3
        IZ=4
        GC TO 100
    40 I'F(CV(5).LT.CV(4)) GO TO 50
        IF(CV(E).LT.CV(A)) GO TO 60
        I X=3
        1Y=4
        12=5
        GO TO 100
        50 IF(CV(6).LT.CV(5)) GO TO EO
        IX=4
        I Y=S
        IZ=\epsilon
        GO TO 100
        60 I X=5
        IY=6
        1Z=1
    100 IX=IX+II
        IF(IX.GT.6) IX=IX-5
        IF(IY.GT.(.) IY=IY-5
        IF(IY.GT.(.)
        I Y=IXi:
        Iz=1x+2
        RETUFN
        ENO
```

```
4.70 C
```



```
+-10 C
*OU C THIS EUUERUTINE CALCULATES THE NITCH ANE YAW
4こ1J C FACTCES USING THE YH'OESDIRECYIORAL CALIURATIUN
G%20C COMSTINTS.
45j0 C
```



```
4%50 C
4-60 SUGFCUTINE CNYF(A,O,C,A1,B1,C1,NZ,E2:C2,GF,YF)
407C E=3.0
4-50 1C wl=L1**?-A.0*C:*(AI-E**2)
4090 JF(B.1.LT.).J) GC TJ 2J
4000 E=E+0.05
4010 GC TK 1%
4०20 20 E=E-0.1J
4&30 *1=(-\Omega:+52FT(R1**2-4.0*C1*:A1- -**2)))/(2.0*た1)
4c40 n=r.!*&!
```



```
450u V=V1\not=V:
4C70 U1=(-E+SCPT(E**2-A.0*C*(A-E**2)))/(E.J*C)
4080 U=~1*!1
4U90 PF=V/U
47.00 YF=V/W
4:10 FETUEN
4720 ENO
*)
47SOC C THIS SURRCUTINE ST:TS EQUATITNS ROR , MC,EC.ANU CO
47\epsilonJ C THIS SUERCUTINE SITS EQUATITNS THOEG COCLING
4770 C DEPEN:IINS VELCC:TIES CHOSEN.
4 7 9 0 ~ C
4500 C***********************************************************
4510 C
4320
4こ30
4040
4650
4060
4070
4080
4=90
4>00
4910
4720
4\div30
[4:40
4950
4560
4S70
4580
4990
5300
Su10
5J20
5030
3040
5250
5060
5070
5030
5090
5100
    5:10
    5120
    5130
    SLBROLTINE SEABC(A1,AZ,AJ,K,X,Y,Z)
    IF(K.EO.1) GC TO 15
    IF(K.ES.2) GOTO 25
    1F(K.EQ.3) GO TO ב5
        IF(K.EO.4) GO TO 45
        IF(K.EQ.E) GC TO E5
        IF(K.EG.5) GDTCEF
        15 X=A2**2-A 3**2
        Y=-2.0*A1**2+3.0*A2**2-A3**2
        Z=A1**2-A2**2+A3**?
        GC TC 10E
        25 X=A1**2-A2**2
        Y=-(A)**2)+3.0*A2**2-2.0*A3**2
        Z=A1**2-A2**2+A 3**2
        GC TC 195
        35 X=A1**2-2.0*A2**2+A 3**?
        35 X=A1**2-2.0*A
        Y=A1**2-A3**2
        GC TC 105
        45 X=-(A2**2)+43**2
        Y=-2.0*A!**2+3.J*A2**2-A 3**2
        Z=A1**2-A2**2*A3**2
        GCTO105
        s5 }X=-(A1**2)+A2**
        Y=-(Al**2)+3.0*A2**2-2.0*Aこ**2
        Z=A1**2-A2**2+A3**2
        GO TO 10S
        E5 }\quad\textrm{K}=-(A1**2)+2.0*A2**2-A3**
        Y=-(A1**2)+A3**2
        Z=41**2-A2**2+AZ**?
        1.OE FETUFN
        END
```

```
5140 C
S150C******#******************************************************
5160 C
SI70 C THIS SUBFOUTINE CALC:HLATSS THE FIPST AVE SECOND
5180 C DIFFERENTIALS DF THE FUNCTIONS AC,AR,ATID CE MITH
S190 C CESFECT TO THE THEFE CHOSEN 位IN EFFECTIVE COOLING
020J C VELCEITIES.
5210 6
```



```
5<30 C
2<40
5250
5250
5270
5240
5290
5300
5310
5320
5330
5340
5こ50
3 36U
5370
5380
5390
5400
5+10
5420
5430
5440
5450
5460
5470
5%90
5000
う510
5っ20
5530
5.40
5550
5%60
5570
2080
5590
5000
Su10
5020
5030
5040
5050
5060
5070
5080
Su90
5700 36 A1=2.0*X
```

```
い!
びくひ
3730
#7+0
5750
む?50
5770
5/80
5790
ちこ00
5こ10
5320
5030
5040
ごこう0
5050
5370
5030
5350
5500
5510
5y20
Sy30
5940
5550
5¢60
557J
5080
5%90
EuJu
0U10
OJ20
6330
6040
0050
GUGO
Gu70
6080
0090
6100
6110
0120
6130
0140
0150
6100
6170
6180
0 1 9 0
0200.
6210
6220
6230
6240
6250
E250
6<70
~-j0 E1=-2.0* 
uc:0 CJ=2.0* 
CS00 A21=-2.0
Cj10 E21=-2.0
0.20 CE1=2.)
6.330
Cこ+0
レコまい
0350
```

```
66 A A=-2.:) = 人
```

66 A A=-2.:) = 人

```
    21=2.0
```

 21=2.0
 C1=?.O,
 C1=?.O,
 Aट1=\hat{c}.
 Aट1=\hat{c}.
 F21=%.,
 F21=%.,
 C=1=2.3
 C=1=2.3
 A2=-4.1*r
 A2=-4.1*r
 H2=0.0
 H2=0.0
 Cz=-2.)*Y
 Cz=-2.)*Y
 A22=-4.0
 A22=-4.0
 B22=0.)
 B22=0.)
 C22=-2.0
 C22=-2.0
 A 3=2.0%Z
 A 3=2.0%Z
 B3=-?.)*2
 B3=-?.)*2
 Cこ=2.0*L
 Cこ=2.0*L
 A23=2.7
 A23=2.7
 8こコ=-2.0
 8こコ=-2.0
 C23=2.0
 C23=2.0
 Gに TC : 30
 Gに TC : 30
 HE Al=0.0
HE Al=0.0
E1=-:.0*
E1=-:.0*
C1=2.0* x
C1=2.0* x
A21=0.0
A21=0.0
e21=-4.0
e21=-4.0
C21=2.)
C21=2.)
AE=-2.17*Y
AE=-2.17*Y
B2=6.0*Y
B2=6.0*Y
C2=-2..)*Y
C2=-2..)*Y
A 22=-2.0
A 22=-2.0
BE2=c.0
BE2=c.0
C22=-2.0
C22=-2.0
AE=2.0*Z
AE=2.0*Z
Eコ=-2.3*2
Eコ=-2.3*2
CE=2.c*2
CE=2.c*2
A 23=2.0
A 23=2.0
B23=-2.0
B23=-2.0
C23=2.0
C23=2.0
GC TC 10E
GC TC 10E
56 A1=-2.)*
56 A1=-2.)*
R1=-2.0*x
R1=-2.0*x
C1=2.0*x
C1=2.0*x
A21=-2.0
A21=-2.0
Bこ1=-2.0
Bこ1=-2.0
C21=2.j
C21=2.j
A C=2.c*Y
A C=2.c*Y
E2=\epsilon.0* %
E2=\epsilon.0* %
C2=-2.)*Y
C2=-2.)*Y
A22=2.0
A22=2.0
B22=6.0
B22=6.0
C22=-2.0
C22=-2.0
A 3=0.0
A 3=0.0
Bコ=ータ.n*2
Bコ=ータ.n*2
C 3=2.0*Z
C 3=2.0*Z
Aくミ=0.0
Aくミ=0.0
823=-4.0
823=-4.0
C23=2.0
C23=2.0
GO TC 10*
GO TC 10*
C1=-2.0\#x
C1=-2.0\#x
E21=-2.0
E21=-2.0
A2=4.0*Y
A2=4.0*Y
も 2=0.0
も 2=0.0
C2=-2.0*Y
C2=-2.0*Y
A2こ=4.0

```
    A2こ=4.0
```

```
しj?0 &-2:=0.0
ひひこう cここ=-2.つ
0コ水 
0&ण0 &3=2.0%2
6410 C3=2.0*2
t+20 - 23=-2.0
0430 B23=2..)
6440 C23=2.0
=450 10E = ETUFN
O4iU EMD
```



```
ヒんこu<
```



```
0050 C
```



```
0020
o=3u
C40
0-50
0200
6070
0230
0己`0
6703
0710
5720
6730
6740
0750
6760
6770
6 7 8 0
0790
6000
OE10
6020
6030
6340
005.)
0360
0070
608J
6390
0}\geqslant0
O>10
6420
6930
6>40
0950
0so0
6570
6980
0)90
7000
7010
730
7030
    STAKDG=0.G*SOZT(V(IP)*V(ID+1))
        AKOF=0.؟*SORT(V(1D+1)*V(1D+2)?
        AKPR=EITA*AKPQ*AKQR/V(IP+1)
        GO TE 1JT
    103 AKPG=0.0
        AKO: =0.0
        AKDF=0.0
    107 AKGF=AKPO
        AKFC=AKQR
        AK':=AKPR
        RETUFN
        ENG
```


2
 VITA
 Salim Iqbal Janjua
 Candidate for the Degree of
 Master of Science

Thesis: TURBULENCE MEASUREMENTS IN A COMPLEX FLOWFIELD USING A SIXORIENTATION HOT-WIRE PROBE TECHNIQUE

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Rawalpindi, Pakistan, October 17, 1952, the son of Mr. and Mrs. M. Aslam Janjua.

Education: Graduated from Punjab University with a Bacheior of Science degree in Physics and Mathematics in 1971; received the Bachelor of Engineering degree from Concordia University at Montreal, Canada in May, 1980; completed requirements for the Master of Science degree at Oklahoma State University in December, 1981.

Professional Societies: Member of American Institute of Aeronautics and Astronautics.

