
T h is  d isse rta tio n  has been 63 -7726  
m ic ro film e d  exac tly  as rece ived

H IN R IC H S , P au l Rutland, 1928- 
M E TH O D S  O F  A D A P T IV E  C O N T R O L .

The U n iv e rs ity  of O klahom a, P h .D ., 1963 
E ng ineering , e le c tr ic a l

University Microfilms, Inc., Ann Arbor, M ichigan



THE UNIVERSITY OF OKLAHOMA 
GRADUATE COLLEGE

METHODS OF ADAPTIVE CONTROL

A DISSERTATION 
SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the
degree of 

DOCTOR OF PHILOSOPHY

BY
PAUL RUTLAND HINRICHS 

Norman, Oklahoma 
1963



METHODS OF ADAPTIVE CONTROL

APPROVED BY
\

-------

DISSERTATION COMMITTEE



ACKNOWLEDGMENT

The author takes this opportunity to express sincere 
gratitude to his advisor. Dr. Thomas H. Puckett, for the 
advice and assistance readily given throughout this work.

Mr. K. A. Bishop has been most helpful by giving his 
assistance with the operation of the Donner 3100 analog com
puter .

The author is most thankful for his National Defense 
Education Act Fellowship which was the author's major finan
cial support. This work was also supported by the National 
Science Foundation who furnished the Process Control Labora
tory with the Donner 3100 analog computer and its associated 
equipment.

Paul Rutland Hinrichs

111



TABLE OF CONTENTS

Page
LIST OF TABLES.......................................... v
LIST OF ILLUSTRATIONS..................................  vi
Chapter

I. ADAPTIVE CONTROL...............................  1
Introduction
Classification of Adaptive Control Systems
Historical Background
Summary

II. PRESENT METHODS OF ADAPTIVE CONTROL...........  15
Marx's System 
Osder's System
The System of Anderson, Buland, and Cooper
Whitaker's Method
Summary

III. ERROR COMPARISON USED IN PARAMETER CONTROL  32
IV. NOISE CONSIDERATIONS...........................  61
V. APPLICATION OF ADAPTIVE CONTROL TO AN

AIRCRAFT......................................  69
VI. SYSTEMS WITH MORE THAN ONE TIME-VARYING

PARAMETER.....................................  89
VII. CONCLUSION......................................  103

BIBLIOGRAPHY............................................ 110
Appendices

A. SQUARED ERROR EVALUATION FOR SECOND-ORDERSYSTEM........................................... 113
B . NOMENCLATURE.................................... 124

iv



LIST OF TABLES

Table Page
1. Integral Error Evaluation............   47
2. Values for Adaptive Parameters..................  57
3. Comparison of the Adaptive Systems..............  109
4. Integral Evaluation for Second-order System  114

V



LIST OF ILLUSTRATIONS

Figure Page
1. Marx's Frequency Sensitive Servo...............  17
2. Pole-zero Diagram for Different Values of the

Product When the Input is a Step.......... 18
3. Energy Density for Different Values of the

Product K^K2  When the Input is a Step.......... 18
4. Osder ' s System..................................  21
5. Root-locus Diagram of Osder's System...........  21
6. Impulse Response of a Second-order System...... 26
7. Figure of Merit Versus Damping Ratio for

k = 6.1.........................................  26
8. Impulse Response of Second-order System

With C = 0.5....................................  27
9. System of Anderson, et al....................... 27
10. Model-reference Adaptive System................  29
11. Error Comparison Adaptive System...............  36
12. Experimental Second-order Plant With Variable

Gain Kg.........................................  40
13. Value of K for Zero Error....................... 46
14. K Versus the Number of Inputs (n) for

aB KgG(A) = constant............................ 51
15. Parameters of Adaptive Control System..........  54
16. Parameters of Adaptive Control System..........  55
17. Parameters of Adaptive Control System..........  56

vi



Figure Page
18. Second-order System Components.................. 59
19. Pole-zero Plot of Second-order System..........  59
20. Error Feedback System With Noise Sources....... 62
21. Motion of an Aircraft Within the Vertical Plane 71
22. A Pitch-rate Control System for a B-25 Aircraft 76
23. Pole-zero Plot of Aircraft Control System...... 77
24. Position of Second-order Auxiliary Plant Poles. 79
25. Aircraft Adaptive Pitch-rate Control System

Outputs..........    80
26. Aircraft Adaptive Pitch-rate Control System

Outputs.....................    81
27. Position of Third-order Auxiliary Plant Poles.. 85
28. Aircraft Control System Outputs With Third-

order Auxiliary Plants  .............   86
29. Aircraft Control System and Plant Outputs...... 87
30. Aircraft Control System and Plant Outputs......  88
31. Developing the Monotonie u-functions...........  93
32. Region of Operation for a Second-order Plant... 97
33. Two-parameter Adaptive System..................   97
34. Plant Outputs for Two-parameter Adaptive System 98
35. Parameters of Two-parameter Adaptive System.... 99
36. Parameters of Two-parameter Adaptive System.... 100
37. Parameters of Two-parameter Adaptive System.... 101

Vll



METHODS OF ADAPTIVE CONTROL

CHAPTER I

ADAPTIVE CONTROL

Introduction
The term "adaptive" was borrowed by Ashby^ from the 

biologists where it describes the ability of an organism to 
adjust to its environment. The connotation of the word "adap
tive" to describe a control system implies that the system is 
self-compensating in some manner for changes that occur rela
tive to the system. The definition of adaptive systems to be
used here will be the same as the one given by Drenick and 

2Shahbender and others and is, in fact, a restriction upon 
the above noted connotation.

Definition; An adaptive control system is a control 
system designed for operation in a slowly-changing

^W. R. Ashby, Design for ^  Brain (New York: John
Wiley and Sons, Inc., 1954), p.57.

^R. F. Drenick and R. A. Shahbender, "Adaptive Servo
mechanisms," AIEE Trans. (Applications to Industry), Vol. 7b 
(November, 1957), pp. 285-292.
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environment in such a way that compensation is made for the 
environmental change.

The phrase slowly-changing environment is used to 
denote environmental changes which are slow compared to the 
system's time-constants. That is, at any particular time 
the system's response can be considered to be time-invariant 
for the duration of the calculation, and only cases where 
this approximation or assumption is valid are to be consid
ered.

Zadeh^ has attmepted a more precise definition of 
adaptive control, but the definition appears to the author 
to be more useful when applied to the learning process than 
to the adaptive process. In general, the two processes can 
be distinguished by the following characteristics. An adap
tive process senses in some manner the state of the plant 
and uses this information to control some of the system's 
variables to effect a useful control system. A learning pro
cess generally tries different methods of control, and in 
some usually random manner weights are associated with each 
trial in accordance with the degree of success of the trial. 
The trials are usually not weighted too heavily at the begin
ning, but as the number of trials increases, and the statis
tics begin to show trends, the weights associated with

^L. A. Zadeh, "On the Definition of Adaptivity,"
Proc. IEEE (Correspondence Section), Vol. 51, No. 3 (March, 
1963), pp. 469-470.
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certain choices increase cumulatively with "good" guesses 
and decrease cumulatively with "bad" guesses.

It is now reasonable to ask, "With the environmental 
restriction noted in the definition, are there enough prob
lems in this category of adaptive control systems to warrant 
the amount of attention that they are now receiving in the 
literature?" (That this list is large and growing rapidly 
is illustrated by Aseltine, et al.,^ in a literature survey 
that was published in 1958.) The answer to the above ques
tion is yes, and several examples will be cited to illustrate 
applications of adaptive systems as defined herein.

Example 1̂. Interest in adaptive controls has been 
stimulated because of the real need for it in the aircraft 
flight stabilization field. As aircraft travel faster and 
higher, the response of the vehicle varies over a wide range 
depending on the changing environmental conditions, and it 
becomes necessary to compensate in some way for the change.
A jet pilot, for example, will subconsciously develop the 
habit of injecting a continual, minute, 1.5 cps test signal 
to the control stick to get the "feel" of the aircraft as 
the environment changes, something the pilot of a conven
tional aircraft does not do.^ He is thus kept up to date on

A. Aseltine, A. R. Mancini, and C. W. Sarture,
"A Survey of Adaptive Control Systems," IRE Trans. on Automat
ic Control, Vol. AC-3 (December, 1958), pp. 102-108.

^N. D. Diamantides, "Informative Feedback in Jet-pilot 
Control-stick Motion," Trans. AIEE, Vol. 75, Pt. 2 (November, 
1957), pp. 243-249.
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the vehicle response so that he can apply the correct stick 
motion for stable maneuvering.

It is just this characteristic of the human being - 
adapting his behavior to a changing environment - that is 
being imitated in adaptive servos. (It has even been sug
gested that all feedback control systems have been designed, 
consciously or not, to imitate the behavior of a human being 
in his comparison, actuation, and anticipation functions 
while controlling a process.)^

Example _2. Drenick and Shahbender^ designed an adap
tive radar system for tracking aircraft. They noted that 
when a target flies a straight path, little bandwidth is 
needed for tracking. In this situation, the bandwidth is re
duced which, in turn, reduces the noise so that tracking ac
curacy is increased. When a target uses evasive maneuvers, 
bandwidth (and therefore noise) is increased to hold the tar
get. The spectra of the tracking signal is sensed, and this 
information is used to make bandwidth adjustments.

Example 2- The mass and moment of inertia of a mis
sile change as the fuel burns. It may be that the rate of 
change of these variables is so fast that the system must be 
considered strictly as a time-varying problem and the system

^L. Braun, "On Adaptive Control Systems," IRE Trans. 
on Automatic Control, Vol. AC-4 (November, 1959), pp. 30-42.

^R. F. Drenick and R. A. Shahbender, loc. cit., pp.
286-292.
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pre-programmed to make the necessary corrections or adjust
ments for these changes. However, if this is not the case, 
then it may be more feasible to build-in an adaptive adjust
ment than to build-in a pre-programmed system. This would 
be especially true if the missile behavior was not completely 
predictable in the various situations it would encounter.

Example 4̂. A radio receiver with automatic gain con
trol is a good example of an adaptive system that has been in 
use for many years. If the average signal level at the de
tector starts to decrease (increase) a corrective signal is 
developed that increases (decreases) the gain in the earlier 
stages of the receiver. A radio receiver's gain or, for 
that matter, any amplifier's gain may also change with 
temperature, radiation, power supply variations, etc. The 
gain of an amplifier is also effectively lowered if it is 
saturated by an excessively high signal level.

There is also a large class of systems, especially 
rockets and high speed aircraft, that are designed adaptively 
due to necessity. This is because the equations of the sys
tem are not known with any degree of accuracy until the sys
tem is built and operating, and at this time, it is general
ly imperative to have a working control system.

In referring to a system, reference is made to a com
plete feedback system considered to be made up of two parts:

1) the controlled element which is an element or 
collection of elements belonging to the system



6
and having characteristics which cannot be modi
fied for control purposes;

2) the controller which is an element or collection 
of elements belonging to a system and having 
characteristics which can be modified for con
trol purposes.

Of concern here are systems in which the controller is cap
able of automatic adjustment or modification of its charac
teristics to obtain the "best" system with changes in inputs 
and controlled element characteristics. Controllers with 
this capability are referred to as adaptive controllers, and 
systems containing adaptive controllers are referred to as 
adaptive systems.

Classification of Adaptive Control Svstems
The number of variables to be sensed and the number

to be adjusted depend, of course, on the particular system to
be designed. For this reason and the fact that there are
about as many ways to implement an adaptive system as there
are control system engineers, the number of ways in which
adaptive systems might be classified is almost unlimited.
The recent interest in adaptive systems has produced many
papers on this subject, and many specific systems have been 

8proposed. The proposed systems cover a wide range of
QJ. A. Aseltine, A. R. Mancini, and C. W. Sarture, 

loc. cit., pp. 102-108.
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applications including process control, flight control, fire 
control, and most other areas where automatic control sys
tems have found widespread application. Although super
ficially some of these systems differ markedly, it is ap
parent that the same principles of operation, viewed either 
mathematically or intuitively, are being used in different 
systems. This has prompted several investigators to suggest 
classification schemes which emphasize these similarities 
and provide a framework for further study in the area of adap
tive control. Schemes suggested by Aseltine, et al.,^ Levin, 
and Dandois^^ are abstracted below and serve to review the 
adaptive principles presently being considered by control en
gineers .

Aseltine and his colleagues classify adaptive systems 
according to the way adaptive behavior is achieved and sug
gest the following five classes.

1) Passive Adaptation; systems which exhibit adap
tive behavior without parameter changes.

2) Input Signal Adaptation: systems which adjust
their parameters in accordance with input signal 
characteristics.

^J. A. Aseltine, A. R. Mancini, and C. W. Sarture, 
loc. cit., pp. 102-108.

^®M. J. Levin, "Methods for the Realization of Self- 
Optimizing Systems," ISA Paper No. ISA-FCS2-58 (April, 1958).

^^M. Dandois, "Self-adaptive Control Systems," Rept. 
No. FZM-1242, presented at the Specialist Meeting of the Institute of Aeronautical Sciences, Texas Section, Arlington 
State College, Arlington, Texas (September, 1958).
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3) Extremum Adaptation: systems which self-adjust

for maximum or minimum of some system variable.
4) System-Variable Adaptation: systems which make

self-adjustments based on measurements of system 
variables.

5) System-Characteristic Adaptation; systems which 
make self-adjustments based on measurements of 
transfer characteristics.

Levin in his classification of adaptive systems con
siders only three categories.

1) Input-Sensing Svstems: systems in which the 
adaptive controller measures input signal charac
teristics during operation and adjusts the system 
on the basis of the measurements.

2) Plant-Sensing Svstems; systems in which the adap
tive controller measures plant parameters and ad
justs the system on the basis of the measurements.

3) Performance-Criterion Sensing Svstems: systems in 
which some quantity indicating the quality of sys
tem performance is measured and the adaptive con
troller acts in some way to drive this quantity to 
a certain value (usually a minimum or maximum).

Dandois, who is primarily interested in flight con
trol systems, also considers three categories of adaptive con
trol .

1) Control through design for operation over wide
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variations in environment without parameter ad
justments .

2) Control by parameter adjustments as functions of 
the system's input and output variables.

3) Control by parameter adjustments based on measure
ments of the system's dynamic characteristics.

These authors present a variety of systems under each 
category. Comparing these three classifications and noticing 
their similarity, one can see that most proposed adaptive 
systems are covered by relatively few operating principles. 
Levin's classification is probably most suitable for the pur
poses of this dissertation since his plant-sensing system 
classification best describes the sense in which the author's 
system is adaptive. Chapter II will also contain examples 
of plant-sensing adaptation schemes.

It is also convenient to classify the time-varying 
parameters into two categories for plant-sensing systems.

1) Parameters that can be directly compensated so 
that the controller can adjust the parameter to 
yield the correct transfer function.

2) Parameters that must be compensated for their 
changes indirectly by a feedback or feedforward

T_ 2Talkin and others have designed systems that depend
arrangement.

1 O:in and oth
upon a signal being artificially injected into the system in

I Talkin, "Adaptive Servo Tracking," IRE Trans. 
on Automatic Control. Vol. AC-6, No. 2 (May, 1961),pp. 167-172
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order to work. In general this is undesirable; however, the 
authors point out that it may only be necessary to update the 
system periodically, or it may be possible to filter the un
wanted signal from the output, or it may be possible to keep 
the output level that results from this injected signal to a

13low enough value that it is not too objectionable. Talkin's
system is mainly a transfer function tracking device and can,
in theory, track two parameters for each perturbing frequency

14introduced. Anderson, et al,, inject what they call dis- 
crete-interval binary noise and cross-correlate this with the 
output to recover the impulse response of the system. This 
will be discussed further in Chapter II.

Another possibly less objectionable technique used 
in signal adaptive systems is that of perturbating or dither
ing a parameter. This technique has been used by McGrath
and his a s s o c i a t e s , a n d  it has been discussed also by 

17Mosner. The perturbating signal usually appears as

l^A. I. Talkin, "Adaptive Servo Tracking," IRE Trans. 
on Automatic Control, Vol. AC-6, No. 2 (May, 1961), fp. 167-172.

14c. w. Anderson, R. N. Buland, and G. R. Cooper, "A 
Self-adjusting System for Optimum Dynamic Performance," IRE 
National Convention Rec., Pt. 4 (1958), pp. 102-108.

l^R. J. McGrath and V. C. Rideout, "A Simulator Study 
of a Two-Parameter Adaptive System," IRE Trans. on Automatic 
Control, Vol. AC-6, No. 1 (February, 1961), pp. 35-42.

l^R. J. McGrath, V. Rajaraman, and V. C. Rideout, "A 
Parameter-perturbation Adaptive Control System," IRE Trans. 
on Automatic Control, Vol. AC-6, No. 2 (May, 1961),ïp 154-162.

17p. Mosner, "Perturbation Approach to the Response 
of a Control System," IRE Trans. on Automatic Control (Cor
respondence Section) , Vol. AC-6, No. 3 (Sept., 1961), pp 361-362.
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modulation on the output signal; thus, when there is no input 
signal, there is no output. For this reason, parameter per
turbation might be less objectionable than signal perturba
tion. Of course, during periods of no input there will be no 
adaptive control signal; whereas, signal injection does have 
the advantage of continuously up-dating the control system.

Adaptive control schemes which perturbate the system's 
parameters, inject artificially an input signal, or generate 
in any way an unwanted signal at the output when the system 
is correctly adjusted will be considered undesirable; there
fore, the adaptive method to be presented by the author will 
be an effort to circumvent these schemes.

18Historical Background 
The intensive and widespread interest in adaptive con

trol has grown not only because of the fascinating potential
ities of adaptive systems, but perhaps even more as a conse
quence of the status of control technology in the late 1950s. 
During the 1940s the standard analytical and design techniques 
for feedback control systems appeared in rapid succession in 
the aftermath of World War II. By 1950, the Nyquist, Bode, 
and Evans plots were widely accepted approaches to linear 
control system design, and the literature already contained 
detailed expositions of the describing-function and phase- 
plane analysis of nonlinear feedback systems. Thus, 1950

, Mishkin and L. Braun, Jr., Adaptive Control Svs
tems (New York: McGraw Hill Book Co., Inc., 1961), pp. 1-3.
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marked a leveling-off point in the development of control 
technology.

The first half of the 1951-1950 decade was charac
terized by a solidification of the technical position gained 
during the 1940s; university courses in automatic control 
became numerous and popular, many texts appeared, and the 
journals published many specific applications.

Another development entered into the control-system 
picture around 1956. Computer technology reached the point 
at which it became feasible to consider the inclusion of 
reasonably complex analog or digital computers as real-time 
elements of the control systems. Digital computers, for 
example, became admissible elements because of the improve
ment of solid-state devices, the development of smaller stor
age units, and the continuing decreases in computation time, 
so that not only was the computer feasible from power-drain 
and size standpoints, but it also was capable of performing 
the control computations with reasonable reliability and in 
time intervals appreciably less than the system response time 
(so that time multiplexing was possible, with the consequent 
reduction in computer cost and size per control channel).

Summary
An attempt has been made to define what adaptive con

trol systems are and to illustrate the wide variety of such 
systems with several examples. The classification of these 
systems was discussed and it was pointed out that they can



13
be conveniently placed into relatively few categories. A 
few comments were also included to indicate the classifica
tion of the systems to be considered in this dissertation 
and what some of the objectives of this dissertation will be. 
A more complete description will follow in the sequel.

For any discussion on adaptive control systems to be 
complete, some discussion of the more representative contri
butions should be included. This will be done in Chapter II 
where the four systems to be discussed are those of M. F .
Marx of the General Electric Company; S. S. Osder of the 
Sperry Gyroscope Company; G . W m . Anderson, R. N. Buland, and 
G. R. Cooper of Aeronutronics Systems, Inc.; and H. P. 
Whitaker of Massachusetts Institute of Technology. All four 
of these systems belong to the plant-sensing categroy of con
trol systems, the same as the systems to be presented in this 
dissertation.

Chapter III will describe the proposed method in de
tail and develop the general theory for its operation. An 
example using a linear control system will be presented to
gether with an analysis of the adaptive feedback-loop. This 
will aid in giving insight into the nature of the feedback- 
loop and yield valuable information concerning the adaptive- 
loop's stability and expected performance.

Chapter IV will point out some general remarks con
cerning noise introduced into the feedback control system and 
its effect upon the adaptive portion of the system.
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The example used in Chapter III dealt with a system 

whose parameters could be directly compensated. Chapter V 
will present an example of the control of the pitch-rate of 
an aircraft. Here, the parameters have many degrees of free
dom, and they cannot be compensated for directly. The ap
proach to the problem is to embed the aircraft into a feed
back control system in such a way as to make the system de
pend, in the main, upon some parameter that can be compensat
ed directly. An effort is also made to develop the simplest 
adaptive system in terms of the amount of hardware needed.

Chapter VI will create an extension of the results of 
Chapter III to a multiple parameter adaptive system, and 
again, an example will be presented to illustrate the effec
tiveness of the method.

Chapter VII, the conclusion, will summarize the re
sults and will compare the author's system to those of Chap
ter II.



CHAPTER II 

PRESENT METHODS OF ADAPTIVE CONTROL

This chapter will present a summary of four papers 
on adaptive control systems. All four illustrate different 
methods of automatic adjustment of system parameters to main
tain specified closed loop pole-zero configurations. Presum
ably, the ideal pole-zero configurations are based on those

19 2 0of Graham and Lathrop's, McDonald's, analog simulation, or
21possibly as a solution of the Wiener-Hopf equation. These 

papers represent, to some extent, the state of the art of 
adaptive control, but more importantly, they illustrate the 
variety of methods of attack used in solving these problems.
An effort has been made to include only the basic ideas of 
each author along with critical comments as to the advantages, 
disadvantages, and limitations of each.

^^D. Graham and R. C. Lathrup, "The Synthesis of Opti
mum Response: Criteria and Standard Forms," Trans. AIEE,
Vol. 72, Pt. 2 (November, 1953), pp. 273-288.

20?. McDonald, "A Development of Standard Form Using 
an Integral Error Criteria" (unpublished Master's disserta
tion, School of Electrical Engineering, University of Okla
homa , 1963) .

21y. W. Lee, Statistical Theory of Communication (New 
York: John Wiley and Sons, Inc., 1960), p. 369.

15
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Marx's System

Marx's^^ approach is best illustrated by the simple 
second-order system shown in Fig. 1. The desired transmit
tance is

E(s) s(s + 2Cu) )
— 7  = ^ ---------- ^  (2 .1)R(s) s^ + 2£uü̂ s +

which is obtained when Kj_K2  = 1. The function of the control
ler is to adjust K2  as varies to keep K^K2  = 1. Fig. 2 
shows the pole-zero pattern and Fig. 3 shows the energy den
sity spectrum of E(s) for a step input for three different 
values of the product K^K2 . The operation of the adaptive 
loop will now be described. When the gain K^K2  is low, cor
responding to peak in the energy density spectrum at , the 
output from the low-pass filter section exceeds that from 
the high-pass filter section and the integrator increases K2  

until the peak in the frequency occurs at (û ; the input to 
the integrator is then zero and the open-loop gain is
unity. The reverse operation occurs when the open-loop gain 
is initially too high. The actual depolarizers used by Marx 
were full-wave rectifiers.

This system was built by Marx and found to operate 
satisfactorily for step inputs. The system is obviously

22m . F. Marx, "Recent Adaptive Work at the General 
Electric Company," Proc. Self-Adaptive Flight Control Svs
tems Svmp. (January, 1959), pp. 201-215.
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limited as to the types of inputs that it can accept and will
tend to be correct only if the input is a step. Also, the
theory of operation is, in actuality, based on the average
energy spectral density since the value of Kg should be
changed only if total high frequency energy is not equal to
the total low frequency energy, but Kg should not respond to
the instantaneous outputs of the depolarizer since K^ by
definition is a slowly time-varying gain. Therefore, the only
way to overcome this difficulty is to reduce the gain of the
integrator circuit. Marx applied his adaptive loop to a
higher order system (an aircraft system which will be treated
in Chapter III) , but he was unable to stablize the system even
for step inputs. The following is a direct quotation from
Marx's article.

Extension to the control of the airplane mode for the 
case on hand has led to difficulty due to the low fre
quency closed loop pole caused by the integrator. For 
cases where the required open loop gain is low, this 
pole results in low frequency components in the error 
which the frequency servo interprets as resulting from 
insufficient gain. Consequently, successive commands 
progressively increase the system gain until the actu
ator roots become oscillatory.

One answer to this difficulty noted by Marx is more 
elaborate filtering, for example, by removing these trouble
some low frequency components. The system, of course, would 
continue to have the disadvantage that it is input type lim
ited, and to remove this limitation will require a basic 
change in the adaptive loop philosophy.

^^M. F. Marx, loc. cit., pp. 201-215.
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The main contribution of Marx, so far as this author 

is concerned, is in the suggested use of filters and depolar
izers with a system to derive a feedback signal to be used 
for the readjustment of the system's parameters. These ideas 
are developed further in the next chapter where parameter 
control is achieved independent of the parameter or input.

Osder’s System
Osder's system^^ is best illustrated with a third 

order plant such as the one shown in Fig. 4. Except for the 
order of the system, the design problem is similar to the 
previous one used to illustrate Marx's system. Again, is 
assumed to vary so that it will be the job of the performance 
computer to keep the product (a constant). The
root-locus plot of the system is shown in Fig. 5. Over the 
range of values that is allowed to have (shown in heavy
lines on the root-locus) in this system, is approximately 
held constant, and in Marx's system, the time constant was 
kept fixed. Like Marx's system, which was especially de
signed to take advantage of a system with a particular root- 
locus , Osder's system was also oriented to take advantage of 
the constant .

The response of the system is determined primarily by 
the complex roots of the system, and it is the function of

S. Osder, "Sperry Adaptive Flight Control Sys
tem, " Proc. Self-Adaptive Flight Control Systems Svmp. 
(January, 1959), pp. 81-122.
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the performance computer to determine their location. This 
is done by applying an impulse function as noted and count
ing number of sign reversals in a given period of time at the 
output. The impulse response is approximately

6 s2 + 2£u)nS + (2.2)

The time response when 6  is a unit impulse is approxi
mately

sin(tUjjt'V 1-C^).
(2.3)

From Equation (2.3) it is clear that the impulse 
response changes sign when

mff
t = m = 1,2,3,...

(«nd-C (2.4)

Since tû  is essentially constant for the allowable range of 
values of the product , the values of t for which c = 0

are directly related to £. The number of reversals in sign 
of the impulse response during the fixed sampling interval 
is, therefore, a measure of the system's damping ratio. When 
the desired damping ratio is denoted by , the number of 
sign reversals in the sampling interval for £ < is larger 
than £ = £(j, and the number of sign reversals for £^ < £ is 
less than for £ = £j. The performance computer counts the
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number of sign reversals in a fixed period of time and, 
based on this count, adjusts the gain K2 .

When no input signal r{t) is applied, the operation 
described is valid. When there is an applied command signal, 
the validity of the foregoing relation between the system 
damping ratio and the number of changes xn sign at the out
put is questionable. This problem is circumvented by apply
ing the test impulses when no command is present or when the 
transients due to an applied command signal have subsided.
The system has been simulated for an F-IOOC aircraft, and 
satisfactory performance was obtained.

The deficiencies of this system are obvious. First, 
it is not easily generalized since it depends upon a root- 
locus with certain desirable characteristics. Second, it 
depends upon the application of a signal which perturbs the 
output to some degree. Third, the updating must be done 
during a period when there are no input signals present and 
all previous transients have subsided. In many systems, 
these last two deficiencies would be too objectionable to be 
considered as a practical solution to the problem.

The System of Anderson, Buland,
o C.and Cooper

The system which is discussed in this section utilizes 
the principles of statistical design theory to determine the

w. Anderson, R. N. Buland, and G. R. Cooper, loc. 
cit.. pp. 102-108.
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impulse response of the plant. Again, a plant which can be 
represented as a second-order system is to be controlled in 
such a way that the damping ratio C is maintained constant.
A figure-of-merit computer is used to establish the damping 
ratio based on the impulse response measurement. The output 
from the figure-of-merit computer is used to adjust the sys
tem open-loop gain to the correct value of the damping ratio.

The impulse response of the system is to be approxi
mated by

Wr ̂G( s) = ujn
s^ + (2.5)

or

g ( t )  = — — — -  ("Gwnt sinCujntV l-£ ^ )  •
(l-;2)% (2.5)

The impulse response given in Equation (2.5) is represented 
in Fig. 5. The figure of merit used for the system is con
structed from the positive and negative areas A_̂  and A _ , 
respectively, of the impulse response. The figure of merit 
is defined as

M = A+ - kA_ (2.7)

where k is chosen to make M = 0  when the desired system damp
ing ratio is attained.

Anderson, et al., show that
M = 1 -k exp(-Cff VT-C^)

1 -exp(-Cff V 1 -C^) (2 .8 )
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When k = 6.1, M versus Q is shown in Fig. 7. In this case, 
when C > h the figure of merit is positive and when Ç < h 
the figure of merit is negative. Furthermore, the figure of 
merit can be made to null at any value of Ç, by proper choice 
of k. The output from the figure-of-merit computer is, 
therefore, an effective error signal on which to base auto
matic changes of compensation.

A periodic signal was injected into the system so 
that the crosscorrelation function could be obtained by inte
grating only over this period. In the system built, twelve 
crosscorrelators were used to find the values for the impulse 
response at the times indicated in Fig. 8 . The figure of 
merit was approximated by

" = (2.9)

where '
^m g(Tm) > 0  

g(Tm) < 0

and Sm = ^^^m+l " ^m-l)" (2.9)

The over-all configuration is shown in Fig. 9.
This technique of attack to the solution to adaptive 

systems should be a powerful one. However, for simple sys
tems, like the one here, the complexity of the auxiliary 
equipment to perform such a relatively simple task is over
whelming. Also, errors were introduced as a result of non
ideal integrators, the use of a relatively short time interval
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FIG. 6. IMPULSE RESPONSE OF A SECOND-ORDER SYSTEM, FROM 

ADAPTIVE CONTROL SYSTEMS, BY MISHKIN 8  BRAUN. COPYRIGHT 

1961. McGRAW-HILL BOOK CO., INC. USED BY PERMISSION.

FIG. 7. FIGURE OF MERIT VERSUS DAMPING RATIO FOR K = 6.1 
USED BY PERMISSION.



27

0.6

0 4

-0.2

Cüht

FIG. 8. IMPULSE RESPONSE OF SECOND-ORDER SYSTEM WITH 3=0.5. 
USED BY PERMISSION.
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to approximate the impulse response, and Equation (2.9).
To adapt this technique to more general systems, figures of 
merit that can be readily calculated must be determined.

Whitaker's Method 
The philosophy described in the previous sections 

requires the identification of some significant character
istic to obtain their adaptive capabilities. In Whitaker's 
s y s t e m , t h e  desired adaptivity is achieved through auto
matic adjustment of the system's gains to minimize or null 
error quantities generated from the error between the output 
of a model and the system's output.

The basic principles of operation are illustrated in 
the system of Fig. 10. When no signal is applied to the sys
tem, the switches and are in position b. With the ini
tiation of an input signal, and are both switched to 
position a for 1  and 1 0  seconds, respectively, and they are 
then returned to position b. The switching operation of 

and S2  occurs each time the input signal changes level.
S3  is switched in accordance with the sign of the input sig
nal so that the error signal will not be sensitive to the 
input polarity.

Each time the level changes, the gains 
are altered by an amount which is proportional to the

P. Whitaker, "MIT Presentation," Proc. Self- 
Adaptive Flight Control Systems Svmp. (January, 1959), 
pp. 58-80.
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FIG. 10. M O D EL-REFERENCE ADAPTIVE SYSTEM. FROM ADAPTIVE CONTROL SYSTEMS,  
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respective error quantities until and are such that 
the error criteria

ri-to rio-to 
I e(t)dt = I ,e(t)dt = 0

(2 .10)

are satisfied. From this point on, the model and system 
responses are about the same so long as and do not
change.

The error quantities are chosen so that they are more
sensitive to the system parameter which they control than to

27the remaining parameters. Bongiorno has illustrated the 
effectiveness of this error criteria for the situation when 
the input is a positive step and shows that it does, indeed, 
have the desired properties.

Care must be taken when specifying the desired error 
criteria in order to insure convergence and to be sure that 
the convergence is single-valued. Analog computer studies 
and flight tests programs have indicated satisfactory per
formance of these model-reference systems.^®

Summary
These papers serve to illustrate several facts con

cerning the state of the art of adaptive systems. One, no

Mishkin and L. Braun, Jr., loc. cit. pp. 339-342.
2ftH. P. Whitaker, loc. cit., pp. 58-80.
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adaptive scheme, to date, is generally applicable to all 
control systems. Also, there are about as many ways to add 
an adaptive-loop to a system as there are groups who have 
considered the problem. The methods discussed were all ori
ented towards adjusting the gain, and it is not clear in each 
case what would be necessary if it was desirable to control 
some other parameter.

The designers of these systems have shown considerable 
ingenuity in both their methods of control and in their ability 
to take advantage of a particular system's characteristics.
The system to be presented in the following chapter is appli
cable to other parameters as well as the gain. It should be 
pointed out, however, that the gain is a natural parameter 
to adjust since it is usually accessible and variations in 
other parameters can often be compensated for directly by 
changing the gain.

Most of the advantages and disadvantages were pointed 
out in each section. A comparison of these systems with the 
one presented in this dissertation is made in Chapter VII.



CHAPTER III 

ERROR COMPARISON USED IN PARAMETER CONTROL

This chapter presents a method of control which, al
though simple in both concept and mechanization, has not been 
heretofore disclosed in the literature. The system is to be 
system adaptive as opposed to being signal adaptive, i.e., 
some plant parameter is slowly time-varying, and for each 
state of this parameter, there is a desired transmittance to 
be achieved. An example is given in this chapter where the 
plant gain is the time-varying parameter so that the adap
tive loop varies the system's open-loop gain such that direct 
compensation is achieved. Since it is not always possible to 
directly compensate for the time-varying parameter (it will 
not always be accessible), Chapters V and VI will be concerned, 
in part, with methods to circumvent this event. When the 
parameter is accessible and direct compensation is feasible, 
then the adaptive portion is implemented in exactly the same 
way as in the example.

The present method will have certain advantages over 
those presented in Chapter II; however, a general comparison 
of the methods will be reserved for Chapter VII. The

32
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adaptive systems of the previous chapter were oriented towards 
the adjustment of a particular parameter, the gain, and were 
generally "tuned" to certain type of inputs for correct oper
ation. The method to be presented represents an approach to 
overcoming both of these diffuculties. The case where a 
single slowly time-varying parameter is to be adjusted will 
be considered in this chapter together with an example, while 
Chapter VI will extend the results to multiple time-varying 
parameter plants.

Let c(r,K,t) be the output of a control system where 
K is the slowly time-varying parameter, and it is assumed that 
K can be compensated for directly. Let c(r,K',t) and 
c(r,K",t) be the outputs from two auxiliary plants that dif
fer from the main system or plant only in the value of the 
parameter K. Two error signals are then developed as

e^(t) = c(r,K,t) - c(r,K',t) (3.1)
and

6 2 (t) = c(r,K,t) - c(r,K",t). (3.2)

These error signals will ordinarily be sensitive to the 
sign of the input so they are applied to depolarizers whose 
outputs are nonnegative and have the following properties:

1 )
2 ) d
3) d ® 1

= d 
< d

. 2

® 2

if and only if 
if and only if

^ 2

® 2

A signal u(r,K,K',K",t) is formed by taking the difference
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of the two depolarized outputs. This gives 

u(r,K,K',K",t) = d

and

Au =,

c(r,K, t) - c(r,K' , t)J
-d|c(r,K,t) - c(r,K",t^

= (3.3)

ad aei / ac(r,K,t) _ac(r,K’,t)
ar ar

ad ae2 / ac(r,K,t) a(r,K",t) \

ar ar
Ar

ad aê  ̂ &c(r,K,t) ad ae 2  ôc(r,K,t)
A K +  • *

ac aK a® 2  sc aK
(3.4)

where the bar indicates that an average has been taken over 
the last T seconds which exceeds the time duration for the 
system's transients to subside. This averaging is to de
crease the system's adaptive loop sensitivity to the instan
taneous time t , and the actual techniques used will be dis
cussed later. Equation (3.4) illustrates the motivation for 
this connection scheme. If K ' and K" are restricted to a 
small region about K, then

ac(r,K, t) - ac (r.K' , t) and ac(r,K, t) - Sc(r,K" , t) 
ar ar ar ar

are relatively small. Within this same small region, K ' and
K" are chosen such that ad is a monotonically increasing

a©!
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function of K as K K' and ad is a montonically decreasing

function as K K" for K in the interval (K',K") This will 
make the term

ad ae^ ac(r,K,t) ad ae2 ac(r,K,t) 
ae^ ac aK ac2  ac aK

ad \ ae-i ac
9^2 I ac aK (3.5)

a monotonie function of K in the interval (K’,K"). Also, 
the terms comprising the coefficients of AK tend to be ad
ditive while the coefficients of At tend to become small.
It appears that this connection scheme has the desired prop
erties, viz., being sensitive to changes in K and less sensi
tive to changes in the input r, at least if K is constrained 
to small enough interval (K',K"). The size of the region that 
can actually be used is determined by the range of the interval 
(K',K") over which the above results generally hold true. In 
many cases, the range of K can exceed the interval 'K',K") 
since the monotonie properties noted will often hold true out
side this interval. Figure 11 illustrates the general adap
tive scheme for control of a single parameter.

The averaging device is necessary in order to keep 
the adaptive action from responding to instantaneous changes 
in the error signals. For example, take the case when K has 
the correct value and no corrective signal should be sent to
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the integrator. The difference between the depolarizer out
puts will not cancel to give an output that is identically 
zero; however, for this scheme to work, we know that the 
average input to the integrator must be zero if we are not 
going to change the output of the integrator. This average, 
then, is to be a function of time, and it should emphasize 
the last T seconds. If the average p(t) were going to be 
calculated on a digital or computer then the function

P^ft) - tJ* ^d^c(T,K) - c(tK') -d c(t,K) - c(T,K")jj dr
(3.6)

might be a reasonable average to work with. However, since 
linear systems were involved already, the function

? 2 (t) = r  €  ̂d | c ( t  ,K)- c ( t  ,K’)J -d c(r ,K)- c ( t  ,K")J j dr
° (3.7)

was used due to the simplicity of its physical implementation. 
It should be realized that neither p^(t) nor Pgft) will, in 
general, be identically zero even when K is set to the cor
rect value, and, for this reason, the output of the integra
tor that follows the averaging device will cause K to vary 
about its correct value. These variations can be minimized 
by reducing a in Fig. 11 at the expense of decreasing the 
parameter-loop gain which, of course, reduces the amount of 
correction that can be applied to K for a given input. The 
variations can also be minimized by averaging over a longer
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time interval, but this will also reduce the effectiveness 
of the adaptive loop. In practice, some compromise must be 
reached between the adaptive loop gain and allowable devia
tion of the parameter K from its correct value. Note that 
K will only receive correction during periods when input 
transients exist since the system is linear up to the de
polarizing element, all plant functions have the same final 
value, and d^oj = 0 .

The depolarizer d^ ej = e^ and dg^ej = e will 
be the ones actually used. d^^ej is used since it can be 
easily implemented on the analog computer and lends itself 
to analysis. d^j^e^ is used since it can be implemented 
with rather elementary hardware. Some general statements

■ i H
about di I e I and Ô.2 e can now be made. Suppose r(t) is 
applied to the input of the system of Figure 11 giving rise 
to error e(t) . Then, since the system is linear up to the 
depolarizer, if Br(t) is applied to the input where B is a 
constant, the error will be Be(t). dj^|^e(t)J = B^e^(t), 
and because both the averaging device and the integrator are 
linear, the parameter's open loop output at the integrator 
varies as the square of the input for a given r(r). Similar
ly, when dg |je J is used, the parameter's open loop output at 
the integrator varies as the absolute value of the input for 
a given r(t). If the lag time for the avererage device were 
large enough so that the value of K was not effectively 
changed for the duration of the input and plant transients.
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then the above statements would also be true for the closed
loop parameter gain.

The first experimental system that was built is shown
in Fig. 12 where the operations of squaring and multiplying 

fare performed in the time domain. Physically, the plant rep
resents any system that can adequately be described with poles 
normalized to 0 . 0  and -1 . 0  and with slowly time-varying gain 
K 2 • The object of the closed loop system is to keep the
overall gain product K^K2  = K constant in the same manner as 

29Marx . Although a multiplier was actually used, the gain 
could just as easily have been set with a servo driven 

potentiometer; by picking a servo motor with suitable charac
teristics, both the integrator and the averaging network 
could possibly be eliminated.

An attempt at analysis of the system of Fig. 12
will now be made for the class of input functions r(t) of the 

-Atform Be , which includes both the step and impulse functions. 
The Laplace transforms of the two errors are

L ĵe J  = R(s) |f (s , K)-F (s ,K')j and (3,8)

L [6 2 ] = R(s) [f(s,K)-F(s,K")^ . (3.9)
Realizing that multiplication in the time domain corresponds

^^M.F. Marx, loc. cit., pp. 201-215
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FIG. 12. EXPERIMENTAL SEGOND-ORDER PLANT WITH VARIABLE GAIN Kg.
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to complex convolution in the transform d o m a i n , i t  follows
that

^tl^"®l^] = ^ j s r  F(X,K')F(s-X,K')

-F(X,K”)F(s-X,K")-2F{s-X,K) [f (X , K' )-F (X, K")j|dX (3.10) 
where advantage has been taken of the fact that

(3.11)I fl(X)F2 (s-X)d> = I F^(s-X)F2 (X)dX
j B r  j B r

as long as the integration can be performed over a suitable 
contour Br. The open loop change in K, AK, for a given in- 
put function B is just the final change in the value of 
the integrator's output. This can be calculated as

Av - Ü"' sa T r 2  ^ 2 1
^  s-K) s(sTf 1 ) L®1 2  J

=
27T jï I |f(X,K’)F(-X,K’)-F(X,K")F(-X,K")

#/Br
-2F(-X,K) [f (X,K')-F(X,K")] j dX.

(3.12)
Since the poles of F(X,K) are in the left half-plane, the 
poles of F(-X/K) will live in the right half-plane so that

F . Gardner and J. L. Barnes, Transients in Linear 
Systems, Vol. 1 (New York: John Wiley and Sons, Inc., 1957),
pp. 275-277.
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a suitable contour of integration is along the j-axis of the 
\-plane.

A typical term of Equation (3.12) is of the form

aB^K^Kg I

J b

dX

2ffj (a 2-x 2) (\2+X+K^) (X^-X+Kg)

Closing the contour, Br, about the left half-plane, the 
residues are as follows:

Res X = -A _ aBrKlK2

2 ff j 2 A(A^-A+Ki) (A/tA+Kg)

Res X =
aB K 1 K 2

2ir j ( 1-4K) ̂  [1 +K 2 -K1 + ( l-4Ki) %

Res -1+ 1-4K,
X = -aB^KjKg

27T j(l-4K^)^ JI+K2 -K^+(1-4Kj^) "J

A^+ Kĵ —ij— ( 1 —4K^) ̂

Res jx = -Aj is to be read as the residue corresponding to 
the root X = -A, etc. From these residues, it follows that
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i f f  I  F(X,K,)F(-X,K2 )dX =
j B r

aB^K^K^ [4A^+ 8A^+A (2Kj^+2K2+4) + (K^-K2) ̂ +2K^+2kJ 

2A(A^+A+K3̂) (A^+A+Kg) 2+2K1+2K2]
(3.13)

As a check on this result, it should be noted that it is 
symmetrical in and which must follow from the property 
of Equation (3.11).

From Equation (3.12) ,

^  = aB^ / K'[a^+2 a 2 +a(K’+ 1 )+kÏ1 

2a(A^+A+K') ̂

-K"[a ^+2A^+A (K"+ 1)+K“]
2 2 2A(A +A+K")

-KK'[4A^+8A^+A(2K+2K'+4)+ (K-K') ̂ +2K+2kÏI 
A(A^+A+K) (A^+A+K') [jK-K ' ) ̂ +2K+2K^

+KK" [4A^+8A^+A(2K+2K"+4)+ (K-K") ̂ +2K4-2K'lI 
A(A?+A+K) (A^+A+K") |jK-K") ̂ +2K+2K'^

(3.14)
Thus ^  can be evaluated for a whole class as A 

varies in the interval (0,®). As A becomes small, the input 
approaches a step function, and if B = A and A->® , the input 
approaches an impulse. In Appendix A the function

£
(Ki,K2 ,t)dt
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is tabulated for a range of values of and K 2  while A 
was allowed to vary through the interval 10“  ̂^ A  ̂ 10^. 
Actually, the calculations were made for a wider range of 
A than indicated; however, the results remained the same as 
A was made less than 10~^ and the result decreased exactly 
as A “  ̂ as A was made larger than 10^.

The tables in Appendix A have several uses, e.g., 
the value of K such that

I CO

I = I fe, ̂  (t)-e22(t)l dt = 0
(3.15)

can be found. For this value of K, there would be no error 
developed to change K when the system is excited with this 
particular input. From physical reasoning, it can be argued 
that this value of K is in the interval K"<K<K'. Also,

,K",t)dt =n  rI e^ (K',K',t)dt - I e

“ r
I e^ (K",K',t)dt - I .

CO

e_2(K",K",t) dt 
 ̂ (3.16)

so that the error is of the same magnitude when K = K' as it 
is when K = K " . The last two comments are true in general 
and do not depend upon the particular plant. For the system 
to be of much practical value, the value of K that satisfies 
Equation (3.15) should be reasonably well-behaved so that 
the final pole-zero configuration is not overly dependent
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upon type of input applied. Fig. 13 is a graph of a root 
of Equation (3.15) versus A which shows that the root remains 
remarkably constant. In fact, for all values of K ' and K" 
that were checked, the value of K turned out to be approx
imately

K  « K +K (3.17)

over the entire range of A which indicates that the desired
desensitivity to the input r has apparently been achieved 
over this range.

The tables in Appendix A can also be used to determine 
I for the range of K, and this has been done in Table 1 for 
K ' = 1.4 and K" = 0.7. Table 1 shows that for a given A the 
open loop error is a reasonably linear function of K over 
the entire range of values recorded. For step inputs (A—►O), 
and, in this case. Table 1 shows that I is approximately

I « 1-K (3.18)

for K' = 1.4 and K" = 0.7. More generally,

I « G(A) (._y.-. - K) . (3.19)

The open loop adaptive gain would equal the closed loop 
adaptive gain if there was a sufficient time delay in the 
adaptive loop so that system transients have effectively sub
sided before K is reset to a new value. Physically, this 
time lag is created by the two integrations involved. In 
this case, the change in loop gain K can be represented by
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K' = 1.4

INTEGRAL 

K" = 0.7

TABLE 1
ERROR EVALUATION 

^ 0 0

I = O.xxxxdo” )

)dt

= O.xxxx(n)

-3 - 2 — 1K A = 10 ^ A = 10 ^ A = 10

0 . 6 0.4471(0) 0.4432(0) 0.4033(0)
0.7 .3228(0) .3205(0) .2956(0)
0 . 8 .2036(0) .2025(0) .1894(0)
0.9 .0918(0) .0916(0) .0881(0)
1 . 0 -.0109(0) -.0078(0) -.0061(0)
1 . 1 -.1039(0) -.1029(0) -.0919(0)
1 . 2 -.1868(0) -.1852(0) -.1689(0)
1.3 -.2597(0) -.2577(0) -.2366(0)
1.4 -.3228(0) -.3205(0) -.2956(0)
1.5 -.3769(0) -.3743(0) -.3461(0)

47



TABLE 1— Continued

A = 1.0 A = 10 A = 10" A = 10'

0.1341(0) 0.2657(-2) 0.2715(-4) 0.2696(-6)
.1045(0) .2 1 1 0 (-2 ) .214K-4) .2142(-6)
.0724(0) .1507(-2) .1503(-4) .1503(-6)
.0392(0) .087K-2) .0886(-4) .0886(-6)
.0065(0) .0127(-2) .0233(-4) .0233(-6)

-.0249(0) -.0407(-2) -.0408(-4) -.0408(-6)
-.0541(0) -.1014(-2) -.1028(-4) -.1028(-6)
-.0808(0) -.1585(-2) -.1608(-4) -.1608(-6)
-.1045(0) -.2 1 1 0 (-2 ) -.2142(-4) -.2142(-6)
-.1250(0) -.2584(-2) -.2624(-4) -.2625(-6)

48
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= %l,n ( K ^  -

which is a difference equation with solution

K = + (K^ - (l-aB^K^G(A))^ (3.21)

where K is the initial value of K, (K, ,K~), and n is theo l,n-l ^
number of times that an input of the form has been ap
plied allowing the transients to subside after each input. 
For stability,

l-aB^K^G(A)| g 1 (3.22)
or

0 g aB^KgGCA) ^ 2, (3.23)
2but since aB K^G(A) is non-negative, only the upper limit is

of concern. For a step, G (A) is approximately one so that
for stability, the magnitude B of an input step must be 
restricted;

B 2  /_2_ . (3.24)
V aK2

This equation illustrates the fact that maximum allowable 
range of B depends upon as well as a. Thus, the choice 
of a will depend upon the largest value that will be allow
ed to assume. This fact is more apparent when it is recog
nized that for a given input K = (K^^t^^) , and, if is
large, then is small so that the change in K can be ap
preciable.
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Fig. 14 is a graph of K versus n with K = 0.5 ando

= 1 . 0  as aB^KgGfA) takes on different values.
The system was built, and it performed pretty much

as predicted. It was observed that the reset adaptive loop
error was proportional to the square of the input amplitude
and, of course. Equation (3.23) had to be satisfied. However,
Fig. 14 indicates that it would also be benificial if the

2average value of aB K 2 G(0 ) = 1, thus minimizing the number
of inputs necessary to reset K to its final value. Actually,
for the system built, the time delay did not sufficiently
approximate an ideal delay so that K was always disturbed
about its correct value even after reaching steady-state.

2A setting of the average value of aB KgGfO) to one-fourth 
proved to be effective with very little disturbance of K from 
its steady-state value.

One question that was too difficult to answer ana
lytically was: What happens for input types that were not
among the class of functions considered, and, in particular, 
what is the effect of applying another input before tran
sients from a previous input have subsided? The system re
mained stable and continued to operate successfully under 
both conditions provided the total peak excursion during ap
proximately one plant time-constant did not exceed the value
of B determined by Equation (3.23). As previously mentioned,

2when the value aB K 2 G(0 ) was equal to one-fourth, K was not 
effectively disturbed from its steady-state values. For
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step inputs with this value of B, at least eight could occur 
with the same polarity without any danger of making the adap
tive loop unstable. Also, there is no apparent harm in 
driving the system with an input so large that the adaptive 
loop is unstable so long as it does not happen repeatedly. 
This large input will cause the system to overshoot to a 
value that is farther from its steady-state value than be
fore it occurred, but if this is followed by a series of 
smaller inputs, the system will stabilize, and K will ap
proach its correct value. Whether or not it would be de
sirable to set a to a value this large would have to be de
termined for a particular system.

The most apparent limitation of the system lies in 
the fact that a perfect time delay is not realizable. If 
it were, the value of K could be held stationary until the 
transients from an input signal had subsided. The integra
ted error signal (if one existed) could then be used to reset
K. This would allow one to choose the maximum gain without
regard to any consequences other than stability. However,
the system as it stands works quite well with the average of 

2aB K 2 G(A) = k> and there is much to be said for the economics
of such a simple system.

The actual graphs of input and output signals, as 
well as the values of and K^, are not displayed here 
since they did not differ pictorially from those of the sys
tem to be discussed next.
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In an effort to explore the possibilities of buil

ding a more economical system, full-wave rectifiers were sub
stituted for the squaring devices used as the depolarizing 
elements. This turned out to be a considerable improvement. 
The gain a could be increased about 50 per cent while main
taining the same margin of stability. The ratio of the maxi
mum input that did not appreciably disturb K. from its steady- 
state value to the maximum allowable input for stability was 
also increased. It was further observed that the adaptive 
loop error voltage varied directly with the amplitude of the 
input variable.

Fig. 15 is a record of the operation of this system. 
At the top is the parameter K 2  which has been disturbed at 
various intervals to illustrate the adaptive nature of the 
system. The degree of disturbance was considerably larger 
than that which would be encountered in what has been defined 
as a slowly time-varying system. However, the parameter K 2  

could drift during periods of no input so that the product
could deviate considerably form its correct value. The 

next strip down shows K 2 , and this should be catipared with 
Fig. 14. The next strip down shows the input which was all 
square waves with frequency low enough to allow the system to 
reach steady-state for each half cycle, and the bottom strip 
shows the output.

In Figs. 15, 16, and 17, K ' = 1.4 and K" = 0.7 so 
that = 1.05. Steady-state values of K, K^, and are
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shown in Table 2.

TABLE 2
VALUES FOR THE ADAPTIVE PARAMETERS

Type Input
% 1 % 2 Kl% 2

Square 1.30 0.720 0.936
Square 2 . 0 0 0.475 0.950
Square 2.70 0.350 0.945
Square 4.85 0 . 2 0 0 0.970
Triangular 0.85 1 . 0 0 0 0.850
Triangular 1.90 0.475 0.904
Sine 1.95 0.475 0.925
Sine 2.90 0.325 0.944
Sine 4.20 0.225 0.945

Fig. 16 is similar to Fig. 15 except that the value
of aB^K2 G(0 ) is much larger which was due, in this case, to
a large value of • This illustrates that a system can be
stable and still not be too useful since the product K K is1 2
disturbed too far from its steady-state value. A more nearly 
perfect time delay would be helpful in reducing these effects, 

Fig. 17 depicts the adaptive process for a variety of 
input signals.

Before continuing, a review of the system from the 
standpoint of practicality will be made. First, it is noted 
that no restrictions were ever found necessary on the types
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of input that could be applied to the system, even with in
puts that never allowed the system to reach a steady state, 
as long as the total peak changes during a system time con
stant remained below some upper bound. However, it was 
found that the parameter's loop gain had to be set the lowest 
for step-type inputs in order that the parameter loop be 
stable.

In terms of economics, it has already been noted that 
a servo driven potentiometer could be used to set , al
though it should be noted that it would have to be driven with 
a suitable power amplifier. The auxiliary plants can usually 
be synthesized economically from passive networks, and using 
two difference amplifiers, the final system might take the 
form as shown in Fig. 18. As can be seen, this is not a 
complicated system considering its capabilities. If the 
values for parameters were not feasible, then active net
works would be necessary. For these simple transfer func
tions, the cost would still not be excessive.

The system discussed has been kept simple purposely 
to allow an analysis of the system. It could be considered 
to be realistic for a more complicated system provided that 
the system could still be adequately described by a pair of 
conjugate poles and, further, that the system have two more 
poles than zeros. In this case the root-locus would have 
the general form shown in Fig. 19 with two of the complex 
roots approaching asymptotes of 90° and 2 70° . These systems
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also have the particularly nice feature that they are usually 
stable for all values of positive K (although the adaptive 
loop might not be) if all of the poles and zeros are origi
nally in the left-half plane as well as the break-point for 
the asymptotes.

This example was in terms of a linear feedback sys
tem, but the general theory of operation is not so restricted. 
The linear system could be analyzed thoroughly so that experi
mental and actual results could be compared.

The most serious limitation with this method of con
trol apparently will be the size of the range of the time- 
varying parameter over which the monotonie properties hold 
as well as the property of being insensitive to input types.
It may be that only a class of functions need to be considered 
as possible inputs, and over this class the range of the para
meter can be extended. This is not the same as saying that 
only members of this class can be applied to the input; it 
only means that members of this class are the most probable, 
and an occasional function from outside the class applied
to the input will not upset the operation as a whole.



CHAPTER IV

NOISE CONSIDERATIONS

For the case when the depolarizer output d[e] = e^, 
the noise problem can be handled with some facility; however, 
when d[e] = |e|, only a few remarks can be made in general. 
The over-all configuration has been redrawn in Fig. 2 0 with 
noise sources introduced as well as the coefficients a. and . 
The auxiliary plants are assumed to be noiseless as compared 
with the main plant. This assumption is made simply because 
it is realistic, not because these noise sources would be 
any more difficult to handle than the ones shown.

The possibilities of applying different percentages 
of the depolarizer outputs, e.g., ad ej - jS d^e^ , should 
not be overlooked since this is a way of changing the steady- 
state value of K without changing the parameters K' and K". 
This would be the case if the auxiliary plant functions were 
constructed for a particular value of steady-state K, and 
then it was desired to operate with some other value of K. 
Another case might be when the particular values of K' and K" 
are not conveniently achievable. Of course, it is still 
necessary to maintain K in the range K" < K < K'.

61
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The coefficients a and /3 can have desirable settings 

when a noisy system is considered as in Fig. 2 0 where the 
effect of noise entering the system at different points is 
to be examined. The effect of the noise can be examined 
most easily if each noise source is considered separately 
as though it were the only source of noise in the system.

First it is noted that the noise source n^(t) at the 
input is welcome so far as the adaptive portion of the system 
is concerned. In fact, if there is no particular harm done 
for a particular system, then it would be desirable to inject 
a small amount of noise into the input. The noise could be 
injected only periodically, just often enough to make sure 
that the system is properly updated. This, then, would re
move one of the disadvantages of the system, viz., that the 
system's parameters can develop lags during periods when
there is no input. All of the systems which are continu-

31 32ously updated depend upon some sort of signal injection ' 
which causes the system's output to be disturbed. This out
put disturbance is analyzed and appropriate corrections to 
the system are made. Therefore, the present system has no 
disadvantages at all when compared to these other methods 
because if signal injection is allowable, it will be used to 
advantage; if it is not allowable, none of these other sys
tems could even be considered.

31s. S. Osder, loc. cit., pp. 81-122.
3^G. W. Anderson, R. N. Buland, and G. R. Cooper, 

loc. cit., pp. 102-108.
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The noise source ngtt) represents noise introduced 

at the output. It might physically result from a radar
antenna's being buffeted by wind or an aircraft's heading
being varied as it encounters air currents. If the outputs 
of the plants labeled K, K', and K" are designated as s(t),
s'(t), and s"(t) respectively, then u(t), as shown in Pig. 2 0,
is

u (t) = ad s(t)-s'(t)+n2 (t) - /3d (t) -s" (t)+n2  (t)̂
(4.1)

In the absence of an input signal, it would be desirable for 
the noise not to alter the value of K. This will only be 
the case when a = /3. When signals are present, about the 
most that can be hoped for is that the noise will not alter
the average value of u(t). Consider the case when d 
Then

= e

u(t) = a |s‘'̂ (t) + s'^(t)+n2 ^(t)-2 s(t)s'(t)+2 s(t)n2 (t)

-2 s ' ( t)n2  (t)) - /S (s'̂  (t) + s"^ (t)+n2  ̂(t)

-2 s(t)s"(t)+2 s(t)n2 (t)-2 s"(t)n2 (t) (4.2)

and

u(t) = a s (t)+s' (t)+n2  (t)-2 s(t)s'(t)+2 s(t)n2 (t)

- P-2 s '(t)n2 (t) s^(t)+s"^(t)+n2 ^(t)-2 s(t)s"(t)

+ 2 s(t)n2 (t)-s"(t)n2 (t) (4.3)
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where the bar is used to indicate the ensemble average value. 
If the signals are independent from the noise so that the 
average of these products can be set equal to the product of 
their averages, and if the noise nglt) has zero for its mean 
value, then Equation (4.3) reduces to

u ( t) = a

-P

s^(t) + s ' ̂ (t)+n2 ^(t)-2 s(t)s'(t)

s^(t)+s"2(t)+n2^(t)-2s(t)s"(t) (4.4)

Again, if a = j8 , then

u(t) = a s'2 (t)-s"2 (t)-2 s(t)s'(t)+2 s(t)s"(t)
(4.5)

so that with the assumptions made, u(t) has its correct aver
age value even in the presence of additive noise.

For the system discussed in Chapter III, it was shown
analytically that u(t) was relatively insensitive to an 
entire class of input signals to the system. It was also
found experimentally that u(t) was just as insensitive to 
signals not in this class. The adaptive feedback loop is 
used to force the time average of u(t) to zero. Assume now 
that the time average of u(t) is zero, so that the parameter 
K is not varying. Assume further that when this occurs the 
signals and noise in the previous equations are stationary 
and ergodic. The ensemble averages can then be replaced with 
their time averages. If noise is present and it is desirable 
to have the system converge to some other value than it does 
when a = jS, Equation (4.4) must be used. The averages
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indicated must all be calculated, and the subsequent values
for which u(t) = 0 must be determined. These averages are 
not known, in general, and must be estimated using a priori 
assumptions. For many systems these averages are not even 
stationary; thus, it will generally be expedient to set 
a = jS when there is output noise present.

Even when a = P the noise terms can cancel only when 
long term averages are considered. The averaging that actu
ally takes place in the adaptive portion must be as short as 
it is deemed practical since longer averaging times reduce 
the effectiveness of the adaptive loop. For this reason, it 
might be desirable to reduce the effects of the noise intro
duced at the output as much as possible before developing 
the difference signals. One way of doing this is to con
struct a filter that minimizes the mean-squared error caused 
by the noise's having been added to the signal. In this 
case, it is desirable to minimize

too

t f j C '

h(T) s(t-r)-n2  (t-r ) dr-s(t)

which can be shown
|0O

33

dt
(4.6)

to reduce

e (t) = fh#/—OD #/ —Ù)
hir )h(cr)(o. . (T-a)dadr-2 

1 1 h(r )<pid(r)dT-<pdd̂ O)
(4.7)

33Y. W. Lee, loc. cit., p. 369.
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where

h(t) = the unit-impulse response of the filter 
p..(t) = the autocorrelation function of the filter11 9

input (the signal s(t) plus the noise ngCt)) 
<p^^(t) = the input-desired-output crosscorrelation 

function
(pdd^O) = the mean square value of the desired filter 

output, viz., the signal s(t).
The minimization of Equation (4»7) requires the solu

tion of the well-known Wiener-Hopf eqijation
kOO/

% / — 00

(pid(r) = I h(CT)<p̂ (̂r-ff)dCT for r  ̂ 0 .
(4.8)

When the above autocorrelation and crosscorrelation functions
are known, h(o’) can be solved for using the methods illus- 

34trated by Lee. A major difficulty generally exists when 
using this method of attack, viz., the filters are reali
zable only in the sense that their output will not precede 
their input and that their Laplace transforms exist. However, 
they do not, in general, turn out to be simple ratios of 
polynomials in s that can be realized by using the simple 
processes of differentiation and integration. Often, the 
desired filters must be approximated, thus giving rise to 
another source of error.

34y. W. Lee, loc. cit.. p. 369.
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Additive noise sources introduced within the plant, 

ng(t), will give rise to a noise term added to the signal at 
the output if the plant is linear. This noise when referred 
to the output can then be treated the same as an additive 
output noise so that the remarks concerning the output noise 
are also true for these noise sources when they are referred 
to the output.

In the case of a nonlinear plant, little can be said 
in general about the effects of noise introduced within the 
plant; however, when a = /3 and there is no signal present, 
the noise will subtract out from the combined depolarizer 
outputs.



CHAPTER V

APPLICATION OF ADAPTIVE CONTROL 
TO AN AIRCRAFT

The control of high performance aircraft has probably 
done more to stimulate interest in adaptive control than any 
other control application. Preprogramming to compensate for 
the changing parameters such as speed, altitude, fuel con
sumption, etc., cannot be predetermined as precisely as in 
the case of a missile. This is due, in part, to the vast 
number of situations which can occur with an aircraft, such 
situations being created by the aircraft's mission, weather, 
etc.

Improvements in aircraft control are necessary for a
pilot to maintain good control during all the many situations
he may encounter. There are many things to consider in an
aircraft's control system, and one of the important consid-

3 5erations is the time-lag problem. Barron and Pennington 
have listed the typical sequence of events shown:

CR. L. Barron and A. J. Pennington,"Dodco, Inc. 
Research in Optimum Adaptive Flight Control," Proc. Self- 
Adaptive Flight Control Systems Svmp. (January, 1959), pp. 
216-251.
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1. The pilot reacts to a combination of stimuli.
2. A control-stick motion or force applied by the 

pilot is converted to a command signal by the 
controller.

3. Hydraulic fluid flows in the servo actuator.
4. The control surface undergoes acceleration.
5. Once sufficient time has elapsed, a significant 

change in control surface displacement will 
occur, and thus the aerodynamic flow pattern 
about the elevator begins to change.

6 . After another delay, the new aerodynamic circu
lation field is obtained, and a new resultant 
force is produced on the control surface.

7. This control force will, in general, alter the 
angular accelerations, 0 (see Fig. 21).

8 . The angular acceleration integrates to a value 9, 
which occurs, initially, primarily in the form of 
an a increment.

9. The new value of o; changes (in the course of 
time) the circulation about the wings and the 
resulting lift.

10. The change in lift produces a change in y.
1 1 . y integrates to a new flight path inclination y. 

If the aircraft does not have a proper control system, these 
lags can produce a dangerous dead time that can result in 
loss of control.
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There are still other advantages in improving an air

craft's control system. For example, better control results 
in better fuel consumption; thus, the range is extended. It 
also results in improved navigation accuracy and better con
trol while bombing, firing missiles, etc. There is a con
siderable effort now being made in France, England, and the 
United States to develop a completely "hands-off" automatic 
landing facility for aircraft so that planes can land safely 
in zero-ceiling weather, and because the landing of today's 
larger jets requires a high degree of pilot skill. These 
automatic landing devices will require the best response 
possible from the aircraft's control system. During a land
ing, the plane is subjected to large changes in both speed 
and altitude so that the aircraft's dynamics vary consider
ably, which points out the necessity of making the aircraft's 
control system adaptive. Pilots even use additional control 
surface at slow speeds to maintain control, and the TFX air
plane being built by General Dynamics will use a completely 
different wing configuration for take-off and landing than 
it will for cruising.

Control of the aircraft's pitch-rate 9 is usually the 
the most difficult, so it will be the one dealt with here. 
There are changes with the aircraft's attitude, speed, alti
tude, fuel consumption, fuel consumption rate, etc. In order 
to emphasize the control system and not the aircraft as such, 
a subsonic low-altitude aircraft, viz., a B-25, will be used
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as an example. In a super-sonic high-altitude aircraft, many 
additional factors would have to be dealt with, e.g., if the 
altitudes are in excess of 150,000 feet, the effect of the 
variation of gravity potential with altitude must be included.

If the aircraft motion is restricted to a vertical 
plane (see Fig. 21), and if we ignore such things as struc
tural elasticity, then the longitudinal equations of force 
and moment balance are:

along the flight path
F cos a -D-mV-mg sin y = 0 (5.1)

normal to the flight path
F sin a +L-mVy-mg cos y = 0 (5.2)

moments about the mass center
= 0 (5.3)

where
Mg+Mjj+Mc - — gY"

F = effective engine thrust
a. = angle of attack (between body axis and velocity 

vector)
D = drag = qS(CQ+kC^^) 
m = mass
y = inclination of the velocity vector 
L = lift = qSa sin a

Mg = static stability moment = qS^aC^
Mq = damping moment = qŜ (ci!Ĉ  + 8 C^)
Mg = control moment = qSg(6 Cg + C^Jôdt)
J = polar moment of inertia in pitch
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0 = angle between body axis and local horizontal = 

a + y

6 = elevator deflection 
S = wing area 

Sg = control surface area 
V = velocity along flight path
g, k, C's are parameters that can be considered as 

slowly time-varying.
This is about the simplest form that can be used to repre
sent the longitudinal dynamics of an aircraft. Equation 
(5.3) can be written in the form

j8 = qScCac^ + 6=6 + 8(=6 - + 6=6 + Cif6dt]
Note the J term whose effects may become significant during 
periods of high fuel flow-rate, such as occurs with after
burner use.

Redefining the coefficients and considering them to 
be slowly time-varying, Equation (5.4) can be transformed so 
that the aircraft's transmittance is

0 _ Kq(S + ^q q )

It is now desirable to build an adaptive control system 
such that the effects of the slowly time-varying parameters 
in Equation (5.5) can be minimized. The usual approach^^'

M. F. Marx, loc. cit., pp. 201-215.
S. Osder, loc. cit., pp. 81-122.
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is to introduce additional high-frequency poles (actuator 
poles) along with a suitable feedback arrangement so that 
aircraft's response depends mainly upon the high-frequency 
poles introduced. This same approach will be used here. 
Consider the control system in Fig. 22 which also defines

38the variables. Using data compatible with a B-25 aircraft, 
the root-locus will vary as in Fig. 23. If the poles can be 
maintained automatically within the boxes shown, suitable 
operation of the aircraft can be maintained.

The system discussed in Chapter III actually had only 
one degree of freedom, K; whereas, the aircraft has many 
degrees of freedom. In fact, the aircraft zero varies from 
-1 to -5 radians per second, and the aircraft's poles, from 
-2±jl to -2±jl0 radians per second. With each position of 
the aircraft's poles and zero, a different gain setting is 
necessary to keep the system's poles within the boxes shown 
in Fig. 23. A general method of handling multidimensional 
problems where many degrees of freedom of the error are in
volved will appear in a later chapter. However, the system 
at hand has the important characteristic that its response 
has been made to depend largely upon a pair of dominant roots, 
and if an error can be developed that is a measure in some 
sense of the location of these dominant roots, then perhaps 
it could be used to develop a feedback signal to alter the 
system's open-loop gain.

F. Marx, loc. cit., pp. 201-215.
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For academic purposes, an effort was made to find the 

simplest plant functions that would maintain adequate control 
of the aircraft. If the poles near the origin were all 
assumed to be cancelled by the zeros near the origin, and if 
the pole introduced by the power actuator were neglected, 
then only the roots introduced by the actuator would be of 
concern. This situation is illustrated in Fig. 24 where only 
the approximate locus of these two roots has been shown. It 
is approximate since the exact trajectory depends upon the 
exact location of the aircraft's poles and zeros. It will 
also be assumed that no events will occur that will cause the 
poles to migrate outside the area darkened on the locus. With 
these assumptions, an attempt to use second-order plants to 
develop the error signal was used, and it was reasonably suc
cessful. The plant's poles were placed at each end of the 
darkened trajectory approximately equidistant from the boxes. 
The exact pole locations for one plant were -10±j38 radians 
per second while the pole locations for the second plant were 
-15±j33 radians per second.

Figs. 25 and 26 show some of the adaptive character
istics of system. When the aircraft's poles or zero was 
moved, the aircraft's gain was also altered and this is re
corded along the top strip of both figures. The next strip 
down shows the system's open-loop gain, while the third and 
fourth strips show the system's input and output respectively.

The system operated quite well with step inputs as 
shown in Fig. 25, and it also operated correctly with random
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type inputs. In fact, the only time incorrect operation was 
observed was when low-frequency ramp-type inputs (triangular 
waves) and high-frequency sinusoids were injected for ex
tended periods of time. The low-frequency triangular wave
forms tended to decrease the gain while the high-frequency 
sinusoids tended to increase the gain. This can be observed 
somewhat in Fig. 26. The high-frequency sinusoids were about 
one cycle per second, and the low-frequency triangular waves 
used to cause a significant drop in gain were about one-third 
cycle per second. Neither type of input could be considered 
realistic; however, it would be desirable to reduce these 
effects as much as possible. A 17 per cent increase and a 
16 per cent decrease in gain were observed in the worst case; 
however, operation was maintained within the limits darkened 
on the locus although these extreme conditions represented 
operation outside the boxes of Fig. 23.

The most logical explanation for this adverse opera
tion noted is that the auxilary plants were oversimplified. 
For example, take the case where a high-frequency signal is 
injected into the system and allowed to reach steady-state. 
For frequencies near forty radians per second, the plant that 
has this frequency as its natural frequency will have a large 
output. When the aircraft's actuator roots are in this vi
cinity, a large output will also emanate from the aircraft.
If the system were properly represented by Fig. 24, then the 
error signal developed as both actuator poles and auxiliary
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plant poles approached the same vicinity should cancel. How
ever, if either the phase or amplitude of these signals differ 
considerably a large error signal can still be developed giv
ing rise to an improper error signal.

Two other phenomena were noticed. The aircraft con
trol system was not sensitive to the location of the aircraft 
zero. Varying the zero from -1 to -5 radians per second had 
virtually no effect upon the closed loop system. The method 
actually used to vary the aircraft's poles also varied the 
aircraft's gain. When the gain was readjusted so that the 
actuator roots were in the correct position, the loop gain 
was approximately the same as the aircraft's poles were 
varied (an open-loop gain of 93,400 was required to keep the 
actuator poles centered in the box when the aircraft's poles 
were in position one of Fig. 23, while a gain of 86,3 00 was 
needed when the aircraft's poles were in position two). This 
showed that the system was most sensitive to the aircraft 
gain as opposed to the aircraft roots. The second phenomenon 
was that the system generally migrated nearer to the auxil
iary plant whose roots were closer to the j-axis than to a 
point, say, half way between the auxiliary plants. This was 
probably due to the fact that the errors could not be made 
zero as in Chapter III when a plant root was placed directly 
over an auxiliary plant root, since the auxiliary plant is 
now only an approximation to the main plant system. The tra
jectories also vary.
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The next step in auxiliary plant sophistication was 

to introduce a pole corresponding to the one introduced by 
the power actuator, as this could be one of the larger 
sources of error introduced. The locations of these roots 
are shown in Fig. 27. Again, the roots tended to migrate 
too close to the j-axis so that the auxiliary plants' roots 
were located further back on the trajectory shown in Fig. 23. 
The location of the roots for these auxiliary plants were as 
follows: plant one, -52.5, -12±j36; plant two, -57.5,
-18±j30. However, the frequency dependence of the adaptive 
portion of the control system was eliminated, and good con
trol followed. This is best seen in Fig. 28.

Figs. 29 and 30 show the control system's output to
gether with those of the auxiliary plants. Here, it is more 
apparent that the actuator roots tend towards the j-axis. 
These figures also show that the system is adaptive well 
beyond the range of the location of the auxiliary plant root 
locations.

It appears from these simulator studies that this 
adaptive method could be used for the control of aircraft.
The system using third-order auxiliary plants proved to be 
successful over the range of inputs applied. Although direct 
compensation of the aircraft's parameters was not feasible, 
an indirect approach was used. The system was made to de
pend upon the location of the actuator roots, and these roots 
could be located in approximately the right position by 
adjusting the open-loop gain of the control system.
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CHAPTER VI 

SYSTEMS WITH MORE THAN ONE 

TIME-VARYING PARAMETER

The example used in Chapter III had one time-varying 
parameter, the gain, and this parameter was subject to direct 
compensation. That is, when the plant gain changed, the 
open-loop gain could be varied to achieve direct compensation, 
If direct compensation were not possible then the general 
scheme developed in Chapter III would not be applicable. The 
aircraft discussed in Chapter V was an example where direct 
compensation was not practical, and in order to apply the 
same techniques already developed, additional parameters (the 
actuator poles) were intorduced in such a way that the system 
was most sensitive to these parameters. The aircraft's con
trol system then appeared to have a single degree of freedom, 
the gain, because the poles were introduced so that they 
would have this feature. Whenever schemes of this sort can 
be applied, there can be considerable simplification in the 
control system. This chapter is concerned with the case 
when direct compensation is not practical and will also in
clude systems with more than one degree of freedom. It is

89
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to be expected that when direct compensation is not possible, 
the complexity of the control system will increase.

It was noted in Chapter III that for correct feedback 
control within the adaptive-loop, the error signal developed 
had to be a monotonie function of the variable to be control
led. For the technique which follows to work, the error 
signals must continue to be monotonie over their entire 
range of operation. Where more than one degree of freedom 
is allowable, multiple error signals will be introduced, and 
these error signals must all be monotonie over the range of 
the variable that they are monitoring and for all possible 
values of the other time-varying parameters. This is the 
only way of guaranteeing the existence of unique solutions, 
and it may turn out to be a restriction on the system. It 
may also be possible, when this restriction appears, to re
define the error variables in such a way that they will be 
monotonie over the region of interest. Also, it is less 
likely that this restriction will be encountered when direct 
compensation is used since feedback causes the transfer func
tion of the system to remain somewhat stationary about the 
time-varying parameter.

Let u(r,t,K,,K-,...,K ) be some function of the errors 1 2  n
developed from the outputs of the depolarizers where r is 
the input signal and K^, ,..., are the slowly time-vary
ing parameters. Again, the u's will be developed from dif
ference error signals in an effort to reduce the sensitivity
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to the type of input signal r and averaged so as to decrease 
their sensitivity with respect to t . When this is true and 
the K's are constrained to a relatively small region, the 
approximation

AÜ « ^  AKp +• • •+ ^  (6.1)
3Ki AK2 ôK^ "

becomes more nearly valid providing these partial deriva
tives exist and are continuous. From Equation (6.1), it can 
be seen that u will be montonic in the K's about some n- 
dimensional region. The actual size of this region defines 
the allowable region of operation, and when direct compensa
tion is used, the region of operation would ordinarily be 
considerably smaller than otherwise. This is, of course, due 
to the fact that the error signals developed tend to cause 
the variables to be reset to their correct value, so that 
although large changes in a parameter can occur, if the para
meters only experience these changes in small steps and if 
sufficient error signals are developed, the system remains 
reasonably stationary in these parameters.

When direct compensation is not feasible, the error 
signals can only be used to indicate the state of the plant 
and to apply appropriate external compensation. The over-all 
system continues to operate in an allowable manner, but 
the plant's parameters are not reset in any way so that the 
region of operation of the plant is not, in general, con
strained to a small range of operation. The monotonicity of
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the errors developed must be checked for the particular plant, 
and if they do not have this required property, then some 
other method of control must be used.

The method of developing the monotonie functions 
will now be described. The average value of u^ is to be 
monotonie in independent of the other Kj's. Let K V  and 
K"^ be such that

Ui(K^) ^ u^(Kp ,

K^, may represent the bounds that the variable can 
achieve although, generally, this will be somewhat conser
vative since the function u^ will in some cases remain mono
tonie in in a region larger than that defined by and 
KV . 2*̂  auxiliary plants will be necessary to develop the
functions u^, and these will be all of the possible
combinations of plants using the extremum values of the K's. 
For large n, the number of plants needed increases exponen
tially so that certainly this must be regarded as a limita
tion. In many cases, however, n will not exceed three, so 
that the amount of auxiliary equipment necessary is not exor
bitant when compared to the task at hand. 2 error signals 
are developed in the same style as before, using the differ
ence signals between the main plant and the 2̂  ̂auxiliary 
plants (see Fig. 31). These error signals are depolarized, 
and difference signals are again formed as follows. To form 
the function u^ whose average value is to be monotonie in K^,
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connect all of the depolarized signals that result from an 
auxiliary plant with the parameter K| to a summing network; 
the parameter K| is chosen such that the output of each 
depolarizer involving a plant with K| as a parameter will be 
a monotonically increasing function. Similarly, the depo
larizer outputs from auxiliary plants corresponding to the 
parameter KV will be monotonically decreasing so that the 
difference between these two signals is a monotonically in
creasing function of . Note that one-half of the auxiliary 
plants involving the parameter K| involve the parameter Kj, 
i^j, and one-half involve the parameter KV, so that half of 
them are monotonically increasing in K^ and half are de
creasing in Kj. This connection scheme is an effort to in
crease the sensitivity of the function u^ to the plant para
meter Kĵ  and to decrease the function's sensitivity to other 
parameters K^. The relative success or failure of this en
deavor will depend upon the particular plant involved.

When direct compensation of the plant's parameters is 
to be used, the u^'s can be averaged and will directly form 
the feedback adaptive error signals, since they are monotonie 
and can be appropriately signed to give corrective action to 
the K^'s.

When direct compensation cannot be used, the u-func- 
tions can still be used to determine the state of the main 
plant. In this case, the average value of the u-functions 
need to be normalized to the average value of the depolarized
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input function d [r (t)]. This could be done most easily

r(t) , providing djr(t)j 7  ̂0by dividing the u-functions by d 
These normalized u-functions can be used to continuously moni
tor the state of plant's variables; however, it might be more 
economical to divide the normalized u-functions into dis
crete intervals and to determine an appropriate plant com
pensation for each interval. Comparators and logic circuitry 
would be needed to automate the choice of feedback to be used 
and, thus, make the system adaptive.

An example using two independent time-varying para
meters will now be given to illustrate the effectiveness of 
the proposed method. Direct compensation will be assumed to 
be feasible, and a second order plant, similar to the plant 
used in Chapter III, will be used. This plant will have the 
transfer function

%11T(s) = —  (6.3)
s +K,^S

where and are independent, slowly time-varying para
meters which can be compensated for directly. The plant is 
to be imbedded in a unity feedback control system together 
with the appropriate compensation so that the over-all trans
fer function is
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In this case the limiting values of K^,{K^’,K^"), and 
K 2 ,(K2 ',K2 "), will define a square region of operation in 
the s-plane as shown in Fig. 32, and the over-all appearance 
of the system is shown in Fig. 33. The depolarizers used 
were full-wave rectifiers.

The values of ' and ' were set to 0.5, while K^" 
and K^" were set to 1.0. It was expected that and Kg 
would both approach the average values of 0.75 with the dam
ping ratio Q % 0.4. Fig. 34 shows the output of the control 
system at the top. The other graphs show the outputs of the 
four auxiliary plants. The input was a square-wave. The 
system's parameters were being varied, and the subsequent 
adaptation was taking place which accounts for the variations 
in the output.

Fig. 35 shows various modes of adaptation for a square- 
wave input, while Figs. 36 and 37 depict the adaptive process 
for different inputs. As in the previous examples, the com
puter multipliers drifted continually and introduced error 
signals even when there was no input to the system. Input 
signals had to be applied to the system at a rate fast enough 
so that these drift errors could be adapted out. Fig. 37 
shows a case where there was no input, and the system was 
allowed to drift until it almost became unstable. Upon ap
plication of an input signal, it can be seen that the system 
adapted itself back to normal rather quickly. This also 
illustrates that the system has a rather large range of
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adaptability. Later, on this same record, noise caused both 

and K ^2 to take on erroneous values, and they both re
adjusted themselves in due time. Use of servo-moters would 
alleviate the drift problem encountered with the electronic 
multimpliers.



CHAPTER VII 

CONCLUSION

An adaptive control method has been developed which 
has several advantages over schemes presently appearing in 
the literature. This particular method has been oriented 
towards plant-sensing adaptive control systems wherein a 
known control system configuration is considered to be opti
mum, and it is the function of the adaptive portion to drive 
the system to this optimum configuration. Presumably these
optimum configurations are the "standard forms" of Graham 

39and Lathrop, or come about using the methods proposed by 
M c D o n a l d . T h e  examples of Chapter II were purposely chosen 
from the literature because they are also classified as plant- 
sensing systems; therefore, direct comparisons are meaningful.

Marx's system had the distinct advantage of simplicity. 
His method of control was basically a frequency sensitive 
servo; thus, the effectiveness of the servo depended upon the 
input characteristics as well as the control system's transfer 
function. The system, as described, depended upon a particular

Graham and R. C. Lathrop, loc. cit., pp. 273-288. 
40T. McDonald, loc. cit.
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feedback control system characteristic, viz., the time- 
varying parameter caused the pole to move parallel to the 
j-axis of the s-plane. There was no clear way to extend the 
results to systems in general; in fact, Marx stated that he 
tried to use the method for a pitch-rate aircraft control 
system without success.

The next system presented in the sequel was Osder's, 
and his system also depended upon a particular characteris
tic of the control system, viz., the time-varying parameter 
only varied the damping ratio over the variation of interest 
so that the natural frequency remained reasonably constant. 
A performance computer was necessary to count the number of 
zero crossings during a preset time interval after an impulse 
function had been injected into the system. The performance 
counter determined the damping ratio from this information 
and adjusted the system accordingly. No straight-forward 
extension to systems in general was apparent, and a moderate 
amount of hardware might be necessary for the performance 
computer and the subsequent parameter control. There is a 
problem also in that the theory only indicates that the sys
tem will work correctly when no input signal has been applied. 
In fact, it can readily be shown that the system will not work 
when steady-state sinusoids are applied to the input. This 
problem is circumvented by applying the test impulses only 
when no command signal is present. Other than this restric
tion on the test impulses, the system can be almost
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continuously updated with the corresponding disadvantage of 
perturbing the output.

The system of Anderson, et al., uses an enormous
amount of equipment to perform the relatively simple task of
keeping the damping ratio constant of a second-order system.
Besides the elaborate and complex equipment, the system also
has the disadvantage that signal injection is used to recover
the system impulse response. Since it was not practical to
perform the crosscorrelations continuously as a function of
r , approximations were necessary and the impulse response
was truncated rather quickly. Nonideal integration led to
other errors, and these are discussed in the Proceedings of

41the Self-adaptive Flight Control Systems Symposium. The 
system has the distinct advantage of being able to update 
the system almost continuously and independently of the 
input signal, since this signal is not correlated with the 
signal injected to recover the impulse response. No straight
forward extension to more general systems was proposed; how
ever, it should not be too difficult to relate the impulse 
response to other system parameters. In most cases, the 
impulse response would have to be recovered in a more com
plete style than the example was. Due to the method used in 
obtaining the impulse response, the method is certainly 
restricted to linear systems.

W. Anderson, R. N. Buland, and G. R. Cooper,
"The Aeronutronic Self-Optimizing Automatic Control System," 
Proc. of the Self-adaptive Flight Control Systems Svmp. 
(January, 1959), pp. 349-406.
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Whitaker's method, like the others, is applicable to 

the plant-sensing category, but the philosophy used appears 
to be more general. Or it may be that it just appears to be 
more general because Whitaker is less specific. Presumably, 
given a system, one is still left the task of finding the 
integral error criterion that is most sensitive to the parame
ter involved. This may or may not be a simple thing to find. 
He has applied his method to a second-order system with two 
time-varying parameters with some s u c c e s s . T h e r e  is also 
no reason to believe that the method is only applicable to 
second-order systems, or for that matter, if appropriate 
error functions can be found, it could even be applicable to 
nonlinear systems as well. As far as the author knows, there 
has been no effort upon Whitaker's part to find a general 
method for determining the proper error functions to use, 
although some approach similar to the ones used in Chapters 
III and VI might be applicable.

In all of these systems, one important aspect of the 
performance of adaptive systems has been omitted as has been 
noted by Bongiorno,^^ and this is a dynamic analysis of the 
stability of these systems. That a stability problem exists 
is obvious: the adaptive circuitry constitutes a feedback
path (usually nonlinear), and introduces the question of 
stability. Unfortunately, the dynamic characteristics of

42H. P. Whitaker, loc. cit., pp. 58-80.
Mishkin and L. Braun, Jr., loc. cit., pp. 323-343.
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adaptive systems are, in general, described by nonlinear 
time-varying differential equations of sufficient complexity 
as to preclude the possibility of a complete dynamic analysis. 
However, for the proposed system of Chapter III, it was pos
sible to make a few simplifying assumptions which allowed a 
fairly reasonable analysis of the adaptive loop. This analy
sis pointed out the way in which the variables enter into the 
stability problem and added considerable insight into the 
operation of the adaptive loop. One of the more important 
results of the analysis was the fact that the stability was 
a function of the input signal amplitude, with instability 
occurring when the amplitude was increased beyond a threshold 
level. Thus, it was illustrated that the adaptive feedback- 
loop gain must be adjusted in accordance with the maximum 
expected value of the input signal.

Some of the more important features of the proposed 
system are the natural way in which the control of any system 
parameter can be effected and the direct extension to multiple 
parameter control when these parameters yield to direct com
pensation. The system does not depend upon any extraneous 
signal application in order to work, but consequently the 
system can develop lags over periods when no input has been 
applied; to date, these two features appear to be mutually 
inclusive. All of the systems discussed that depend upon an 
input signal to develop an error signal would also be con
tinuously updated if extraneous signal injection were used.
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On the basis of computer studies, the authors of aircraft
control systems using test input signals claim that the level
of test disturbances can be made low enough not to bother the 

44 45pilot. For any system, this would certainly have to be
determined and could restrict the use of such methods. Some 
systems that are basically linear do not respond linearly to 
small inputs due to such phenomena as stiction friction.

The results of these comparisons appear in Table 3, 
where an effort has been made to emphasize the most outstand
ing characteristics of each system. Whitaker's method 
appears fairly good on the chart, but this is mainly due to 
his unspecific approach.

All of the systems can be implemented in a more 
straight-forward manner when direct compensation of the time- 
varying parameter is permissible. This feature is not always 
inherent in the plant, but sometimes this property can be 
built into the system such as it was with the aircraft exam
ple of Chapter V. When direct compensation is not permissi
ble, the complexity of the adaptive portion is increased 
considerably. Some discussion of how the present method 
could be extended to such parameters was included in Chapter 
VI; however, this problem is a difficult one, and perhaps 
a better solution will be discovered eventually.

W. Anderson, R. N. Buland, and G. R. Cooper, loc. 
cit., pp. 349-406.

s.  Osder, loc. cit., pp. 81-122.



TABLE 3
COMPARISON OF THE ADAPTIVE SYSTEMS

'Ü c
Q) Q) 0
(0 CO
0 nJ n
A 4J Q) <U X
0 •H T3 'O M

c CO m
& < O s

Applicable to any parameter that can 
be compensated for directly X
Does not depend on input signal type X X  X
Does not depend upon an extraneous
injected input signal X X  X
Does not depend upon some particular
control system characteristic X X
Can be straight-forwardly general
ized to multiple parameter control X X
System continuously updated X X
Estimate of total hardware needed to 
control one parameter: (1) least
hardware needed; (5) most hardware
needed 2 3 5 4 1
Does not depend upon a linear con
trol system X X
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APPENDIX A

SQUARED ERROR EVALUATION FOR 
SECOND-ORDER SYSTEM

For the second-order systems described by the dif
ferential equations

^ + dc(t) K^c(t) = K^rCt) (A.l)
dt^ dt

and

+ ÉSiËl + K_c(t) = K_r(t) (A.2)dt2 dt  ̂ ^

it was necessary to evaluate the integral

n V II [c(r,Kj^,t)-c(r,K2 ,t)J dt = I 2e (K^,K2 ,t)dt
(A. 3)

where r(t) has the form e . Equation (A.3) is tabulated
in Table 4 for a range of values of A, , and •
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TABLE 4
INTEGRAL EVALUATION FOR SECOND-ORDER SYSTEM

= 1.4
■

0.xxxx(10“^) = 0.xxxx(-4)

^2 A = 10“^ A = 10“^ A = 10”^

0.4 0.9534(0) 0.9391(0) 0.8071(0)
0.5 .6643(0) .6569(0) .5836(0)
0.6 .4659(0) .4618(0) .4194(0)
0.7 .3228(0) .3205(0) .2956(0)
0.8 .2173(0) .2160(0) .2015(0)
0.9 .1394(0) .1387(0) .13 05(0)
1.0 .0829(0) .0852(0) .0782(0)
1.1 .0435(0) .0433(0) .0413(0)
1.2 .0181(0) .0180(0) .0172(0)
1.3 .0041(0) .0041(0) .0041(0)
1.4 .0000(0) .0000(0) .0000(0)
1.5 .0037(0) .0037(0) .0036(0)
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TABLE 4— Continued

A = 1.0 A = 10 A = 10% A = 10^

0.2174(0) 0.4074(-2) 0.4130(-4) 0.4130(-6)
.1757(0) .3378(-2) .3426(-4) .3426(-6)
.1379(0) .2719(-2) .2758(-4) .2759(-6)
.1045(0) .2110(-2) .214K-4) .2142(-6)
.0756(0) .1564(-2) .1588(-4) .1588(-6)
.0515(0) .1091(-2) .1108(-4) .1108(-6)
.0323(0) .0698(-2) .0710(-4) .0710(-6)
.0177(0) .039K-2) .0400(-4) .0398(-6)
.0076(0) .0173(-2) .0176(-4) .0176(-6)
.0018(0) .0043(-2) .0043(-4) .0043(-6)
.0000(0) .0000(-2) .0000(-4) .0000(-6)
.0017(0) .0041(-2) .0042(-4) .0042(-6)
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=  1.2

TABLE 4— Continued

K2 A =' 10"^ A = 10-2 A = 10-1

0.4 0.7903(0) 0.7779(0) 0.6631(0)
0.5 .5137(0) .5075(0) .4474(0)
0.6 .3304(0) .3273(0) .2951(0)
0.7 .2049(0) .2032(0) .1861(0)
0.8 .1185(0) .1177(0) .1091(0)
0.9 .0607(0) .0604(0) .0565(0)
1.0 .0247(0) .0246(0) .0232(0)
1.1 .0056(0) .0056(0) .0054(0)
1.2 .0000(0) .0000(0) .0000(0)
1.3 .0048(0) .0048(0) .0046(0)
1.4 .0181(0) .0180(0) .0172(0)
1.5 .0377(0) .0376(0) .0361(0)
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TABLE 4— Continued

A = 1.0 A = 10 A = 10% A = 10^

0.1667(0) 0.2963(-2) 0.3000(-4) 0.3000(-6)
.1260(0) .230K-2) .2330(-4) .2330(-6)
.0909(0) .1705(-2) .1727(-4) .1727(-6)
.0617(0) .1187(-2) .1204(-4) .1204(-6)
.0385(0) .0758(-2) .0769(-4) .0769(-6)
.0210(0) .0424(-2) .0430(-4) .0430(-6)
.0090(0) .0186(-2) .0189(-4) .0189(-6)
.0022(0) .0046(-2) .0047(-4) .0047(-6)
.0000(0) .0000(-2) .0000(-4) .0000(-6)
.0020(0) .0044(-2) .0045(-4) .0045(-6)
.0076(0) .0173(-2) .0176(-4) .0176(-6)
.0164(0) .0378(-2) .0385(-4) .0385(-6)
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TABLE 4— Continued

K, 1.0

K2 -3A = 10 A = 10“^ A = 10"!

0.5 0.3457(0) 0.3412(0) 0.2974(0)
0.6 .1903(0) .1882(0) .1679(0)
0.7 .0938(0) .0930(0) .0843(0)
0.8 .0370(0) .0376(0) .0237(0)
0.9 .0083(0) .0082(0) .0076(0)
1.0 .0000(0) .0000(0) .0000(0)
1.1 .0067(0) .0068(0) .0063(0)
1.2 .0247(0) .0246(0) .0232(0)
1.3 .0508(0) .0507(0) .0478(0)
1.4 .0829(0) .0825(0) .0782(0)
1.5 .1190(0) .1185(0) .1125(0)
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TABLE 4— Continued

A = 1.0 A = 10 A = 10% A = 10^

0.7692(-l) 0.133K-2) 0.1346{-4) 0.1346(-6)
.4762(-1) .0847(-2) .0857(-4) .0857(-6)
.2579(-l) .0471(-2) .0477(-4) .0477(-6)
.llOO(-l) .0206(-2) .0209(-4) .0209(-6)
.0262(-1) .005K-2) .0051(-4) •0015(-6)
.OOOO(-l) .0000(-2) .0000(-4) .0000(-6)
.0238(-l) .0048(-2) .0048(-4) .0049(-6)
.0901(-1) .0186(-2) .0189(-4) .0189(-6)
.1920(-1) .0406(-2) .0413(-4) .0413(-6)
.3226(-l) .0698(-2) .0710(-4) .0710(-6)
.4762(-1) .1053(-2) .107K-4) .107K-6)
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Kl = 0.7

table 4— Continued

K2 A = 10"3 A = 10-2 A = 10 1

0.4 0.2563(0) 0.2512(0) 0.2051(0)
0.5 .0911(0) .0897(0] .0758(0)
0.6 .0188(0) .0186(0) .0161(0)
0.7 .0000(0) .0000(0) .0000(0)
0.8 .0137(0) .0135(0) .0121(0)
0.9 .0476(0) .0471(0) .0424(0)
1.0 .0938(0) .0930(0) .0843(0)
1.1 .1474(0) .1462(0) .1332(0)
1.2 .2049(0) .2032(0) .1861(0)
1.3 .2638(0) .2618(0) .2407(0)
1.4 .3228(0) .3205(0) .2956(0)
1.5 .3806(0) .3780(0) .3497(0)

1 2 0



TABLE 4— Continued

A = 1.0 A = 10 A = 10" A = 10-

0.3930(-l) 0.6040(-3) 0.609K-5) 0.6092(-7)
.1639(-1) .2599(-3) .2623(-5) .2623(-7)
.0383(-l) .0626(-3) .0632(-5) .0632(-7)
.OOOO(-l) .0000(-3) .0000(-5) .0000(-7)
.0322(-l) .0575(-3) .058K-5) .058K-7)
.1235(-1) .2197(-3) .2222(-5) .2222(-7)
.2579(-l) .4713(-3) .4770(-5) .477K-7)
•4255(-l) .798K-3) .8084(-5) .8085(-7)
.6173(-1) 1.1874(-3) 1.2035(-5) 1.2037(-7)
.8257(-l) 1.6279(-3) 1.651K-5) 1.6514(-7)

1.0448(-1) 2.1098(-3) 2.1415(-5) 2.1418(-7)
1.2670(-1) 2.6250(-3) 2.6662(-5) 2.6667(-7)
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TABLE 4— Continued

= 0.5

K2 A = 10"3 A = 10“^ A = 10"!

0.4 0.0455(0) 0.0443(0) 0.0347(0)
0.5 .0000(0) .0000(0) .0000(0)
0.6 .0279(0) .0274(0) .0227(0)
0.7 .0911(0) .0897(0) .0758(0)
0.8 .1712(0) .1687(0) .1444(0)
0.9 .2578(0) .2543(0) .2200(0)
1.0 .3457(0) .3412(0) .2947(0)
1.1 .4315(0) .4261(0) .3738(0)
1.2 .5137(0) .5076(0) .4474(0)
1.3 .5914(0) .5846(0) .5175(0)
1.4 .6644(0) .6569(0) .5836(0)
1.5 .7324(0) .7244(0) .6456(0)
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TABLE 4— Continued

A = 1.0 A = 10 A = 10% A = 103

0.0552(-l) 0.0796(-3) 0.080K-5) 0.080K-7)
.OOOO(-l) .0000(-3) .0000(-5) .0001(-7)
.0452(-l) .0696(-3) .0701 (-5) .0701(-7)
.1639(-1) .2599(-3) .2623(-5) ,2623(-7)
.3346(-l) .5467(-3) .5520(-5) .5520{-7)
.5405(-l) .9093(-3) .9188(-5) .9189(-7)
•7692(-l) 1.331K-3) 1.3460(-5) 1.3462(-7)

1.0112(-1) 1.7986(-3) 1.8200(-5) 1.8202(-7)
1.2596(-1) 2 .3009(-3) 2.3300(-5) 2.3303(-7)
1.5094(-1) 2.8296(-3) 2 .8675(-5) 2.8679(-7)
1.757K-1) 3.3779(-3) 3.4257(-5) 3.4262(-7)
2 .OOOO(-l) 3 .9405(-3) 3.9994(-5) 3.9999(-7)
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APPENDIX B 

NOMENCLATURE

a = constant
A = constant
B = constant
c(t) = output variable
C(s) = Laplace transform of c(t)
d = depolarization operator
D = drag
e(t) = error variable
E(s) = Laplace transform of e(t)
P = thrust
f(t) = function of time
F(s) = Laplace transform of f(c)
g(t) = system impulse response
G(s) = Laplace transform of g(t)
h(t) = system impulse response
I = integral
j = square root of -1
J = polar moment
k = constant
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Kĵ  = slowly time-varying parameter or a constant 
L = lift
m = mass
M = figure of merit

= moment 
n(t) = noise signal
p(t) = average of depolarized signals 
q = slowly time-varying parameter 
r(t) = input signal
R(s ) = Laplace transorm of r(t)
s = Laplace transform variable

= switch or area 
t = time

= time constant 
u(t) = error function
V = velocity
a = constant or angle
/3 = constant
y = angle
6 = deflection or impulse function
€ = base of natural logarithms
C = system damping ratio
9 = angle
X = dummy integration variable
a = real part of s
r = correlation variable

= correlation function 
u) = imaginary part of s


