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CHAPTER i 

REVIEW OF LITERATURE ON NORMAL MODE 

ANALYSIS 

Int reduction 

The nature of inter and intramolecular interactions can be studied 

by a detailed vibrational analysis. A normal coordinate analysis is 

frequently essential to a proper understanding of the vibrations of the 

molecular system in question. The present study attempts a normal coor

dinate analysis of the H20-D20 system at low temperatures, the benzene 

radical anion under a D2h point group symmetry, and the reinvestigation 

of {7,7,8;8-Tetracynoquinodimethane) TCNQ. 

A normal mode is a mode of vibration for which the frequency and 

phase of motion of each atom within the molecule is the same. Each atom 

reaches its maximum displacement from the equilibrium position at the 

same time. Only the relative amplitudes of each atom•s motion differs 

within a normal mode. Each molecule possesses 3N-6, 3N-5 for linear 

molecules, normal modes \'lhich linearly superimposed will completely 

describe the possible vibratory motions of the molecule. Each normal 

mode has a resonant frequency that can couple with the same frequency of 

electromagnetic radiation giving rise to unique infrared or Raman 

spectra for that molecule. Normal coordinate analysis attempts to cor

relate these absorbtion or scattering frequencies with the corresponding 

possible normal modes of vibration of the molecule and the force 
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constants between individual atoms that determine the resonant frequen-

cies. These force constants give a quantitative picture of the forces 

holding a molecule together. 

If the restoring forces between individual atoms are assumed to be 

classical and harmonic over the small vibratory displacements the prob-

lem is simplified. Dennison (1) reviewed many of the earlier methods 

used in solving for force constants from observed vibrational fr~quen-

cies. · However the complexity of solving the secular equation forbade 

applying the technique to even moderately sized molecules. 

Wilson (2) developed a te~hnique where the solution, according to 

the former restrictions, is a secular equation of the form 

2 

IFG- E>.l = 0 (1-1) 

where G is a matrix whose elements are related to the energy T of the 

molecule tiy. 

St is the tth internal coordinate. The matrix F is related to the 

potential energy'V by 

{1-2) 

{1-3) 

E is the identity matrix and the A1 S are constants related to the vibra-

tional frequencies by 

(1-4) 



The G matrix may be evaluated from the geometry of the molecule 

(2}. The A's representing the fundamental frequencies of the molecule 

can be experimentally obtained. The goal of normal mode analysis is to 

take the empirical information and with the approximations implied in 

3 

the technique determine the force constants and form of the normal modes 

of the molecule in question. Equation {1-1) can be rewritten (2) as 

k = 1,2,3, ••• n {1-5) 

where Lk is the kth column of the matrix L and 0 is the zero matrix of 

N rows and one column. Lk gives the linear transformation between the 

normal coordinate Ok and the internal coordinates qi. as 

{1-6) 

Using matrix notation equation (1-5) may be expressed 

GFL = LA (1-7) 

Here Lis the matrix of eigenvectors diagonalizing the matrix GF by a 

similarity transformation. A is the diagonal matrix containing the 

eigenvalues Ak· 

The potential function giving the vibrational potential energy of a 

molecule may be expressed in many different ways. The general quadratic 

potential function given by 

3N-6 
2V = L Ftt' StSt• 

t,t'=1 

yields a matrix F such that an elements Ftt' may contain nonzero 

values. In all but the simplest and more symmetric molecules this 

( 1-8) 
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causes an indeter~inate secular equation since there are more force 

constants to be eval.uated than there are vibrational frequencies to 

determine them. Therefore a more simple approximate force field must be 

used for larger molecules. One such approximation is the modified val-

ence force field. Its predecessor the valence force field is given as 

2V = .EF · r · 2 + E F ·a· 2 
i r1 1 j a.J J (1-9) 

where ri is the extension of bond i, and aj the distortion of the 

valence angle between two adjacent bonds~ If the internal coordinates 

are given as these ri and aj the mJtrix F becomes a diagonal matrix of 

the appropriate Fri and Faj. Often this potential function is too poor 

an approximation so that it must be modified by including intuitively 

selected cross-terms giving 

(1-10) 

where k I 1, m I n, o I p 

where k, 1, m, o, p, are chosen so that F gives a meaningful potential 

function without making the secular equation indeterminate. 

L and F may be found from G and A, equation ( 1-7), but si nee the 

solution is difficult to solve for analytically other ways are sought. 

Iterative calcuations on equation (1-7) where F is varied between calcu-

lations is one technique. But unless the F matrix is varied in a sys-

tematic and logical fashion inefficiency and inconsistent F matrices may 

result since (1-7) possesses no unique solution (3,4). Mann et al. (5) 

first developed such a systematic way of varying F using linear least 
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squares. They were able to show that using the Jacobian of vi with 

respect to Ftt• the linear least square corrections ~Ftt of the F matrix 

elements may be computed from the Jacobian, the difference. between the 

observed and calculated frequencies ~vi, and a diagonal matrix P whose 

elements are 1/(vobserved)2. Hisatune, Devlin, and Califano (6) used 

this technique in finding the potential functions for the nitrogen oxi

des, except they preferred to use 1/(vobserved) for P the weight matrix 

because it gave more reasonable error distributions. 

Overend and Scherer (7) developed a computerized linear least 

squares force constant evaluation using matrix notation in a manner 

similar to reference (5). They defined the matrices J and Z such that 

(1-11) 

where AA is the difference between the observed. and last calculated set 

of frequencies, M the force constant corrections due to M,.J the 

Jacobian as previously defined, and Z the matrix for the linea~ trans

formation between a general quadratic force field and the force field to 

be evaluated. In this notation the linear least square corrections to 

the force constants becomes 

(JZ) 1 P(JZ)(M) = (JZ) 1 P(M) (1-12) 

where P is the diagonal matrix of weighting factors. 

Mann et al. (5) found J by varying Ftt by 0.01 mill·idyne/angstroms 

and then recalculating vi• The difference between the first and second 

calculated set of Ftt and vi gave the estimated derivative elements 

needed for J. This J was used in all other additional force constant 

adjustments on the molecule in question except for a final revaluation 
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of J on the last iterative cycle. Hisatune et al. (6) preferred to 

revaluate J after 3 - 4 cycles. Overend and Scherer (7) calculated JZ, 

from perturbation methods indirectly without explicitly evaluating J, by 

n n 
(JZ)pr = E E ·L·P L·P Zijr 

i=1 j=1 1 J 
(1-13) 

Often in.less symmetrical molecules the simplest force fields con-

tain more force constants than there are frequencies to determine them. 

If the force constants are assumed to be invarient to isotopic substi-

tion, additional frequencies may he obtained from the isotopic analogs 

of the molecule being examined. Thus if isotopic substition yields 

sufficiently different vibrational frequencies a much larger and more 

realistic potential function can be evaluated. Use of isotopically sub-

situted calculated G and Aobs to solve equation·(1-12) is called an 

overlay which was first programmed by Schachtschneider and Synder ( 8). 
. . . 

Several other approaches to evaluating force constants from the 

secul~r equation have been suggested. Panchenko et al. (9) have sug

gested a matching method to find F. Many authors have tried to simplify 

F so that all elements may be calculated (10). But Overend (11) and 

Averbukh (3) have cast serious doubts on these attempts. This has 

prompted Shimanouchi and Nakagawza (12) to quote, 

The method of calculating normal frequencies, isotope fre
quency shifts, ••• and refining the values of these force 
constants by the method of least squares seems to be fairly 
well established (p. 217). 

Since equation (1-7) has no unique L and F solution sometimes more 

than one F matrix may be found that satisfactorily reproduces the vibra-

tianal frequencies. Averbukh ·(3) has discussed the theoretical basis 

for this and pointed out that the reproduction of an experimental set 



of frequencies by a certain matrix F cannot serve as proof that this 

matrix F is the true potential function. McKean {4) studied several 

examples ofF matrix multiplicity such as in the E species of NF3, B2 

species in ketene, and diazomethane, and the A9 species of ethylene. 
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He found that where chemical intuition and symmetric isotopic substition 

could not choose the correct F matrix sometimes asymmetric substitution 

would. Levin {13) found that of two F matrix solutions presented for 

NF3 the correct force field could be detennined by a vibrational band 

intensity calculation. Using the normal modes predicted by the two 

solutions, ·the dipole derivatives were calculated using the INDO and 

CND0/2 molecular orbital programs. The resulting calculated band inten

sities were then compared with the experimental values. 

In this study all normal mode calculations were made using a series 

of Fortran programs developed by Overend and co-workers. These programs 

were run on an IBM 370/168 or 370/158 computer with the Fortran IV {H 

extended) compiler under the optimization level OPT{2) and extended pre

cision increase AUTODBL(DBLPAD4) parameter options unless otherwise 

noted. The former parameter optimizes the program for maximum speed in 

execution whereas the latter promotes all single precision variables to 

double precision and pads all necessary constants appropriately. The 

output from the H compiled program was compared with the output from the 

IBM Fortran G1 com pi 1 ed program and found to be self consistent. 

There are three programs to this series: OVEREND, WMAT, and ZMAT. 

WMAT calculates from the geometry of the molecule the corresponding G 

matrix elements and computes a W matrix (to be discussed later). ZMAT 

calculates the transformation matrix Z from Urey-Bradley space to 

internal coordinate space used in equation (1-11). OVEREND takes the 
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needed Wand Z matrices plus the assigned observed frequencies and cal

culates the best F matrix to reproduce the observed frequencies using 

the least square method (7) previously mentioned. OVEREND also has 

overlay capabilities. Since the transformation matrix Z between valence 

force field space and internal coordinate space is trivial use of ZMAT 

or other like program was unnecessary. 

The algo~ithm used by OVEREND was taken from a method developed by 

Miyazawa (14). The problem with solving equation (1-7) directly is that 

the GF matrix is not necessarily symmetric and hence can be very tedious 

and time consuming to solve even on the computer. But if the GF matrix 

can be transformed by an appropriate similarity tran.sformation into a 

symmetric matrix, fast computer routines such as the Jacobi method can 

be used to find the eigenvalues of GF and eigenvectors L by the appro

priate transformation .• Using the notation of Miyazawa (14) and 

Schachtschneider (8) the method is shown below. 

The matrix G may be diagonalized by 

GA = AT (1-14) 

since the eigenvectors of a nondegenerate hermitian matrix are ortho

gonal 

T = A1 GA = BB (1-15) 

right multiply by A and left by A1 

AA 1 GAA 1 = ABBA (1-16) 

since B is diagonal and B = s• 

G = {AB)(AB) I (1-17) 



define a matrix W such that 

W = AB = AT1/2 

now rewrite equation (1-7) as 

( AB) ( AB ) I F L = LA 

next multiply equation (1-19) by {AB)-1 = s-1A' 

or defining 

(AB)-1(AB)(AB) 'FL = (B-lA')LA 

(AB) 'F(AB)(B-lA')L = (s-lA')LA 

C = (B-1A')L = w-1L 

W'FWC = CA 

now since W'FW is symmetric H may be defined 

H = W'FW 

giving the resulting secular equation 

HC = CA 

9 

{1-18} 

(1-19) 

(1-20) 

(1-21) 

(1-22) 

(1-23) 

{1-24) 

(1-25) 

which can be solved by fast and accurate symmetric matrix diagonaliza

tion routines such as the Jacobi method. L may be found· 

L "' we {1-26) 

Thus using W and F OVEREND can find L and A by finding H and C. 
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OVEREND then uses the linear least squares method of Overend and. 

Scherer (7) to find an F from an initial given F such that the final F 

produces a calculated A that closely approximates the observed or vibra-

tional frequencies. 

OVEREND also has overlay capabilities. By combining equation 

(1-12) for a mo~ucule in an overlay series a partitioned master equation 

can be derived of the form 

v 
E (JiZi)'Pi(JiZ;)M = 

i=1 

v 
E (JiZi}'PiMi 

i=1 
(1-27} 

where the subscript i denotes the matrix for a single molecule .or sym-

metry factored block. This form has the advantage of allowing an over-

lay series to be evaluated but can be broken up into its partioned parts 

for in-core storage and evaluation by a computer. Other forms could 

lead to n~cessarily large matrices. 

Molecular Sytems 

The first molecular system to be examined in this study was the 

thin layer condensed phase H20-D20 matrix. The layer was prepared and 

examined by infrared and laser Raman ~pectroscopy as discussed by Devlin 

et al~ {15,16). Two different types of thin layers were prepared; one 

where H20 was codeposited with a large relative quantity of D20 (5 per

cent H20) at 135°K and the other D20 with a large relative quantity of 

H20 {5 percent D20) at 135°K. After heating the samples to the neces-

sary temperature the spectra were recorded. From these spectra the 

observed vibrational frequencies of D20, H20 and HOD were deduced and 

used in a normal coordinate analysis of D20, H20, and HOD using WMAT 
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an'd OVEREND as described earlier. The data of 020 and H20 was combined 

in an isotopic overlay calculation. 

The next ·sytem to be studied was the thin layer isolated benzene 

radical anion. The layer was prepared and examined by Devlin et al. 

{17). Two different types of benzene radical anions were observed; the 

ion paired benzene radical anion and the isolated benzene radical anion. 

The isolated benzene radical anion was assumed to have a quinoid elec

tronic structure thus necessitating a Dzh point group symmetry. A 

normal coordinate analysis was made for benzene using a D2h symmetry and 

TCNQ radical anion ring stretching force constants. The calculated 

frequencies were then compared with those observed from the thin layer 

isolated benzene radical anion for both C6H6 and C606· 

The third system TCNQ was thoroughly investigated by Khatkale (18) 

who ran several normal coordinate analyses of the neutral, mono, di, and 

trianion sa~ts of TCNQ using the same Z matrix transformation from modi

fied valence space to internal coordinate space as was used by Girlando 

and Pecile {19). Serious discrepancies were found between Khatkale's 

and Pecile's force constant values for the final converged F matrix. 

Later investigat1on uncovered a difference between the Z matrices used 

by Khatkale and Pecile that prompted a new normal coordinate analysis 

of neutral TCNQ. The Z matrix of Khatkale was reconciled to agree with 

Pecile's and a normal coordinate analysis of thin layer neutral TCNQ was 

attempted using the observed frequencies of Girlando and Pecile (19). 



CHAPTER II 

NORMAL MODE ANALYSIS OF CONDENSED Ic 

WATER SYSTEMS 

Introduction 

Water and its isotopes have been the subject of an enormous amount 

of research. In particular much interest has been focused on the vibra

tional frequencies of water and its isotopic analogs in the matrix tso

lated and condensed phases. 

At atmospheric pressure ice exists in three forms, ice Ia (amor

phous), ice Ic (cubic), and ice Ih (Hexagonal}. Ice Ia changes irre

versibly to ice Ic at about 140°K and ice Ic changes irreversibly to ice 

Ih at about 190°K. Thiel, Becker, and Pimental (20}, Harvey and 

Shurvell (21}, and Tursi and Nixon (22} have examined and assigned the 

frequencies of H20, D20, and HOD monomers, dimers, and higher polymers 

isolated in nitrogen matrices. Haas and Hornig (23} explained the 

spectra of dilute solutions of HOD frozen together with either HzO or 

DzO. They first ~reposed that the width of the OH or 00 stretch in ice 

was due to intermolecular coupling of the 0-H motion rather than hydro

gen bonding. Hardin and Harvey (24} studied the infrared spectral 

changes in the amorphous ice Ia to cubic ice Ic phase change. 

The Raman spectra of thin layer Ia ice was reported by Li and 

Devlin (25} using a beam trapping technique allowing improved polariza

tion measurements. More recently other Rama measurements have been 

12 



reported for amorphous and polycrystalline ice I and ice Ih by Rice 

et al. (26) and on single crystal ice Ih by Scherer and Snyder (27). 

13 

The infrared spectra of D20 vibrationally decoupled in glassy H20 

and H20 ice Ic was published by Devlin et al. (28,29) and the infrared 

sp~ctra of amorphous and polycrystalline ice by Rice et al. (30). Since 

the OH stretchfng region of H20 is highly coupled considerable effort 

has been devoted to finding the decoupled H20 stretching and bending 

frequencies in ice Ia, Ic, and Ih by theoretical or matrix isolation 

techniques. Rice et al. (3I,32,33) used theoretical methods to predict 

the decoupled frequencies and Devlin et al. (I6) used molecular thin 

layer techniques. 

From the results of their calculations Sceats and Rice suggested 

that the v3 and VI stretching modes (v3 antisymmetric stretch, vi sym

metric stretch) for isolated H20 in D20 are weakly split about the voH 

stretching ·mode frequency of HOD in ice Ic. Thus Fermi resonance of 2v2 

with VI pushes v1 into v3 yielding a single stretching band nearly con

cident with voH· From the examination of spectra and spectral changes 

durin~ proton exchange of H20 isolated in a D20 matrix of ice Ic Devlin 

et al. disagreed.. The spectra was interpreted in terms of a higher v2 

bending frequency such that Fermi resonance of v1 with 2v2 enhanced the 

spacing between VI and v2· This problem prompted a normal mode analysis 

of the D20, H20, and HOD thin layer systems to determine which assign

ment is more reasonable. 

Normal Mode Analysis 

The bond lengths, angles, and masses used for H20, D20 and HOD are 

shown in Table I. Figure I shows the internal coordinate system used 



Molecule 

TABLE I 

PARAMETERS-USED FOR CREATING 
WATER G MATRIX 

0 
Bond length iOH) A 

0.96 

0.96 

0.96 

Bond angle (HOH} deg 

104.5 

104.5 

104.5 

Figure 1. Internal Coordinates of Water Isotopes 

14 

At. mass 

H 1.00797 

D 2.01400 

0 15.9994 
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for H20, 020, and HOD. Note that the bending coordinate fla.3 has been 

scaled by r1 to make the bending and stretching force constant units 

consistent. Both H20 and D20 possess a C2v point group symmetry while 

HOD possesses a planar symmetry. Under a C2v symmetry 020 and H20 have 

two vibrations belonging to the A1 irreducible representation (symmetric 

stretch and bend) and one vibration belonging to the B1 irreducible 

representation (antisymmetric stretch). Since it would be necessary to 

perform overlay calculations on H20, D20, and HOD trial calculations 

were carried out on H20 and 020 using a C2v symmetry and no symmetry. 

Both sets of symmetries gave the same results with like force constants 

for H20 and D20. Since WMAT requires a U matrix containing the trans

formation between internal and symmetry coordinates U was set equal to 

I the identity matrix for HOD and the non-symmetrized H20 and D20 cal

culations. The symmetry coordinates used for C2v H20 and D20 are shown 

in Table I!. 

TABLE II 

SYMMETRY COORDINATES FOR WATER MOLECULE 

Symmetry Specie Symmetry Coordinate 

sl = (1/12)(llrl + flr2) 

S2 = r1fla.3 

S3 = (lj./2)(llrl 

no redundancies 
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Several different force constant refinements and force fields were 

tried but only those yielding tenable results will be discussed. Three 

different types of force field refinements hereafter called set I, II, 

and III gave the best clues to unraveling the spectra. Since the calcu-

lations of Rice (33) on 020 decoupled in H20 ice Ic agreed with the con

clusions of Devlin (16) the force constants from set I were calculated 

using only the Fermi resonance corrected 020 observed frequencies (see 

reference 33). A valence force field was used 

(2-1) 

where Frr was the 00 stretching coordinate force constant and Faa the 

DOD bending coordinate force constant. ·These force constants were then 

transferred to H20 without change and used to calculate the H20 frequen

cies for H20 decoupled (and isolated) in 020 ice Ic. The results are 

shown in Table III. Set II force constants were likewise calculated 

by the modified valance potential function. 

2 
2V = ~ Frrri2 + Faaak2 + Frr'rirj 

i=l 
(2-2) 

where Frr' was the stretch-stretch interaction force constant set equal 

to 0.06 millidynes/angstroms and not allowed to vary in the force field 

refinement. The value of Frr' was taken from Figure 3 of reference 33. 

The 020 and H20 frequencies calculated from the set II force constants 

are shown in Table IV. 

For set III the potential function was the same as set II but Frr 

and Faa were varied and Frr' constrained to 0.06 to fit the uncorrected 



TABLE III 

FORCE CONSTANTS AND CALCULATED FREQUENCIES 
FOR SET I REFINEMENT 

17 

Symmetry Obs. Freq.a (cm-1) Calc. Freq. (cm-1) 

2392.0b (2367.0) 
1230.0 
2444.0 

Frr = 6.14 mdyne/ang Faa= 0.788 mdyne/ang 

aReference 16 

2386.8 
1230.1 
2449.3 

3295.2 
1688.5 
3342.5 

bcorrected for Fermi resonance with 2v2 on basis of calculations of 
reference 33, value in parenthesis is actual observed frequency. 



TABLE IV 

FORCE CONSTANTS AND CALCULATED FREQUENCIES 
SET II REFINEMENT 

18 

Symmetry Obs. Freq.a (cm-1) Calc. Freq. (cm-1) 

2392.ob (2367.0) 
1230.0 
2444.0 

Frr = 6.161 mdyne/ang Faa= 0.785 mdyne/ang 
Frr• = 0.06 mdyne/ang 

aReference 16 

2383.2 
1230 .• 2 
2452.2 

3294.8 
1686.3 
3346.4 

bcorrected for Fermi resonance with 2v2 on basis of calculations of 
reference 33, value in parenthesis is actual observed frequency. 
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(for any possible Fermi resonance) observed frequencies of decoupled D20 

·and H20 in an overlay calculation. The force constants calculated were 

transferred without change to HOD to calculate the decoupled HOD fre

quencies. The results are shown in Table V. Attempts to try an over·lay 

calculation on H20, D20, and HOD failed due to a singularity encountered 

in inverting the JZ matrix for solving the no~al linear least square 

equation (eq •. 1-12). This usually results from an ill-conditioned JZ 

matrix that is difficult if not impossible to correct or improve. 

Discussion 

From the calculated frequencies of Tables III and IV several con

clusions can be made concerning the decoupled H20 observed frequencies. 

First using two very simple force fields an excellent fit of v2 and a 

reasonable fit of the stretching modes of D20 are obtained. When these 

fields are transferred to decoupled H20 an average 1687 cm-1 ·V2 bending 

mode and a sizable v1-v3 splitting (about 50 cm~1) is predicted. This 

splitting is not in disagreement with the Sceats and Rice (33) predic

tion of concidence of v1 and v3 if Fermi resonance of v1 with 2v2 is 

included. But if the 1687 cm-1 v2 value is accepted the 2v2 value of 

3374 cm-1 (ignoring anharmonicity), would be too high to have much Fermi 

resonance with v1, particularly to push v1 to a higher frequency, unless 

v1 is significantly higher than v3. This is in disagreement with the 

gas and crystal v1 values for D20. If Fermi resonance is present the 

tendency would apparently be to increase the v1-v3 splitting rather than 

decrease it. 

Support for this conclusion can be drawn from the calculations of 

Table V. By taking the D20 and H20 overlay force constants, ignoring 



Symmetry 

020 

AI VI 
V2 

BI V3 

H20 

AI VI 
v 2. 

BI V3 

HOD 

VOH 
.. voo 

V2 

Frr 
Faa. 
F rr• 

TABLE V 

FORCE CONSTANTS AND CALCULATED FREQUENCIES 
SET III REFINEMENT 

Obs. Freq. (cm-1) Cal c. Freq. 

236}. 0 2338.8 
I230.0 I25l.I 
2444.0 2406.4 

Average Error = 1. 50% 

3200.0 3233.3 
I732.0 I715.8 
3270.0 3284.0 

Average Error = 0.80% 

3270.0 {D20) 3260.0 
24I8.0 {H20) 2372.0 
I48a.oa I501. 7 

Average Error = l.IO% 

= 5.934 mdyne/ang Dispersion= 0.0677 
= 0.8I3 mdyne/ang Dispersion = 0.4990 
= 0.06 mdynejang Constrained in refinement 

20 

(cm-1) 

aAverage of observed HOD bending frequency for H20 and D20 matrices of 
I5IO.O (D20) and I465.0 (H20). 



ariy possible Fermi resonance in H20 and D20, and transferring them to 

HOD we predict its frequencies to within the same average error as H20 

and D20• The.one stipulation is that the average of the D20 and H20 

matrix HOD v2 bending frequencies be compared to the calculated HOD v2 

bending mode. This is not an unreasonable assumption since the HOD v2 

bending mode can.be expected and is observed to couple with an H20 and 

D20 matrix in some manner. The Table V cal~ulation then gives reason

able reSUltS USing a Very Simple fOrCe field and a V2 frequency Of 

1715.8 cm-1, well above the value needed to rule out a Fermi resonance 

between v1 and 2v2 that would push v1 and v3 into an accidental degen

eracy in the decoupled H20 ice Ic spectra. 
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CHAPTER I I I 

NORMAL MODE ANALYSIS OF MATRIX-ISOLATED 

BENZENE RADICAL ANION 

Introduction 

The benzene negative anion has been studied by a variety of meth

ods. Gardner (34) studied the UV spectra of benzene reduced with potas

sium in dimethoxyethane at -80°C. He found three major bands, one of 

which was attributed to solvated potassium. Graham and Duly (35) exam

ined the absorption spectra of sodium isolated in solid benzene .and 

claimed that the Na-C6H6 complex could not have higher than a C6v sym

metry on the basis of the active vibrational frequencies. In a follow

up paper McCoulough and Duley (36) extended their study of Na-C6H6 

complexes to Na-C6D6 and mixed Na-C6H6 and Na-C6D6. They further con

cluded that Na atoms interact predominantly with one nearby benzene 

molecule. 

Shida and Iwata (37) published the electronic spectra of the ben

zene anion radical produced by gamma ray irradiation induced reactions 

in a glassy solid solution of 2-methyl-tetrahydrofuran and benzene at 

77°K. Their UV spectrum was similar to Gardner's (34) but as expected 

lacked the band attributed to solvated potassium. 

The ESR spectra of the benzene-potassium, rubidium, and cesium ion 

pair was examined by Jones and Kuechler (38). They suggested an ion 

pair in which the metal anion is placed on the sixfold axis of benzene 

22 
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anion but allowed to oscillate relative to and parallel to the benzene 

plane. Several calculational studies of the benzene radical anion have 

been done. Of the most recent is the work of Radom et al. (39) who 

used an ab initio molecular orbital calculation using the ST0-3G and 

4-31G basis sets and limited configuration interaction with ST0-3G opti-

mized structures~ They found that the most stable structures for the 

benzene radical anion were two unique D2h Jahn-Teller distortions from 

the D6h neutral· benzene symmetry. Figure 2 gives the parameters for 

these structures. The difference in calculated total energies for the 

two structures was negligible •. Therefore Radom et al. suggested, 

especially in light of ESR results that all hydrogens are equivalent on 

the ESR time scale, that the benzene radical anion rapidly interconverts 

between the two D2h structures shown in Figure 2. 

From laser excitation spectra of symmetrically substituted chloro 

and fluorobenzene cations Sears, Miller, and Bondybey (40) supported the 

expected Jahn-Teller distortion of the benzene ~ing giving a splitting 

of approximately 250 cm-1 for the e' ring deformation mode. 

Devlin et al. (17) have examined the Raman and infrared spectra of 

thin layer benzene codeposited with the alkali metals. From an examina-

tion of the Raman spectra of thin lay~r samples before and after bleach
a 

ing w~th one watt of 4880 A laser radiation they concluded that three 

species were present, neutral benzene, ion-paired benzene, and iso-

lated benzene anion. The UV spectra of their samples were similar to 

Gardner's (34). By monitoring which Raman bands were resonantly enhanced 

with changing laser wavelength they were able to separate the isolated 

benzene anion frequencies from the ion-paired benzene anion frequencies. 

The resulting Raman spectrum for the isolated benzene anion was then 
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carrel a ted to a di started benzene structure with a D2h symmetry. From 

depolarizaiton measurements of three Ag and B3g Raman bands of isolated 

benzene anions Devlin et al. suggested that the isolated benzene anion 

rapidly interconverts between two energy equivalent structures as first 

proposed by Hinde, Poppinger, and Radom {39). A closer examination 

of the isolated benzene anion Raman and infrared spectra revealed a 

benzene-like spectra with TCNQ-like splittings of the D6h benzene Eg 

ring modes. This suggestion prompted a normal mode analysis of the D2h 

isolated benzene anion system to test the validity of this idea. 

Normal Mode Analysis 

Since only eight C5H5 and six C5D5 isolated benzene anion frequen

cies could be assigned with some confidence a full force field determi

nat"ion would be unreasonable and underdetermined. Most of the observed 

frequencies were assiqned to various ring stretching and C-H bending 

modes. Thus only calculations based on previously determined force con

stants, left unrefined, could be used to justify the assignments and the 

conclusions that the D2h benzene anion distortions give rise to a TCNQ

like ring structure in the benzene ring. The calculational method was 

to find a suitable benzene force field, to modify it to include the two 

TCNQ-ring force constants for single and double carbon bonds, and to 

determine if the ca 1 cul a ted frequencies correspond to the observed fre

quencies for the isolated benzene anion. The benzene force field chosen 

was a modified valence force field used by Scherer (41} in his analysis 

of the chlorinated benzenes. Scherer attempted to find how simple a 

potential function could adequately predict the frequencies of benzene 

and its deutero-isotope to within 10 - 15 cm-1. The simplicity without 
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a significant loss in accuracy of this function made it ideal as a ben-

. zene field. Since this force field contained only one value for the 

ring carbon-carbon bond it had to be modified to separate the six equal 

carbon-carbon stretching force constants into two sets of carbon-carbon 

stretching force constants to provide for the double and single bond 

character of the TCNQ-like ring structure. Next the two TCNQ carbon

carbon ring stretching force constant values of Girlando and Pecile {19) 

were transferred to the modified Scherer benzene force field and the 

resulting frequencies calculated. 

The first step of the normal mode analysis was to reproduce the 

frequencies of benzene using Scherer's {41) nine parameter potential 

function with his Table 4ii force constants values under a D2h molecular 

symmetry. The frequency fit and ~egeneracies produced from the correla

tion of the D6h E2g and E1u modes with the D2h Ag, B3g, B1u' and B2u 

modes would provide a convenient check for errors as well as provide the 

necessary D2h symmetry needed for the i so 1 a ted ·benzene ani on cal cul a-

t ion. 

Figure 3 gives the internal coordinate system used for the D2h 

benzene calculations. The parameters and symmetry coordinates used 

throughout the benzene and isolated benzene anion calculations are shown 

respectively in Tables VI and VII. Table VIII gives the modified val

ence force field definitions and values used for the D2h benzene and 

isolated benzene anion calculations. Since check calcul~tio~s were run 

on Scherer's benzene force field using D6h and D2h symmetries the 

results are compared and displayed in Table IX. 

After checking symmetrie~ the next step involved taking Scherer's 

benzene force field and adding another carbon-carbon double bond 



Figure 3. Internal Coordinates of D2h Benzene 

TABLE VI 

PARAMETERS FOR CREATING BENZENE AND 
ISOLATED BENZENE ANION G MATRIX 

Definition Value 

0 
C - C bond 1.397 A 

0 c - H bond 1.08412 A 

c - c - C angle 120° 

C - C - H(D) angle 120° 

c atomic mass 12.01115 

H atomic mass 1.007825 

0 atomic mass 2.0140 
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TABLE VII 

SYMMETRY COORDINATES FOR D2h BENZENE AND 
ISOLATED BENZENE RADICAL ANION 

Symmetry. Symmetry Coordinate 

. Ag 

B3g 

B1u 

sl = (lfv4) (~rl + ~r2 + ~r3 + ~r4) 
s2 = (1/11'4) (~r5 + ~r6 + ~r7 + ~ra) 
s3 = .(1/11'2) (~ rg + ~qo) 

= ( 1/-12) (~ru + ~r12) ·S4 
s5 =,(l/14) (~a13 + ~a14 + ~a15 + ~al6) 

= (1/v'4) s6 (~ala + ~a19 + ~a22 + ~a23) 
s7 = (1/11'4) (~a17 + ~a20 + ~a21 + ~a24) 
sa = ( 1/.14) (~a27 + ~a2a + ~a29 + ~a3o) 
Sg = (l/v4) (~a25 + ~a25) 

S1Q = ( l/14) (~q - ~r2 + ~r3 - ~r4) 
su = {l/v'4) (~r5 - ~r6 + ~r7 ·- ~ra) 
sl2 = (1/11'4) (~a13 - ~a14 + ~a15 - ~al6) 
s13 = ( 1/11'4) (~ala - ~a19 + ~a22 - ~a23) 
s14 = (l/v4) (Aal7 - ~a20 + ~a21 - ~a24) 
sl5 = (1/v4) (~a27 - ~a2a + ~a29 - ~a3o) 

s16 = (1/14) (~rl + ~r2 - ~r3 - ~r4) 
su = (1/14) (~r5 + ~r6 - ~r7 - ~ra) 
S1a = (1/12) (~ru - ~r12) · 
Slg = (1/14) (~a13 + ~a14 - ~a15 - ~al6) 
s2o = {l/14) (~ala + ~a19 - ~a22 - ~a23) 
s21 = (1/14) (~al7 + ~a2o - ~a21 - ~a24) 
s22 = (1/14) (~a27 + ~a2a - ~a29 - ~a3o) 
s23 = {1/-12 ). {~a25 - ~a26) 

S24 = (1/14) (~rl - ~r2 - ~r3 + ~r4) 
S25 = (1/14) (~r5 - ~r6 - ~r7 + ~ra) 
S26 = (1/12) (~rg - ~riO) 
S27 = (1/14) (~a13 - ~a14 ~ ~a15 + ~al6) 
S2a = (1/14) (~ala - ~a19 - ~a22 + ~a23) 
S29 = (1/J4) (~a17 - ~a20 - ~a21 + ~a24) 
S3o = (1/14) (~a27 - ~a2a - ~a29 + ~a3o) 
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Symbol 

Kl 
K2 
H3 
H4 
F5 
F5 
F6 
F7 
Fa 
Fg 

K2 

K1Q .. 

K2. 

K1o 

a: units: 

b: 

TABLE VII I 

MODIFIED VALENCE FORCE FIELD FOR D2h 
BENZENE AND ISOLATED BENZENE 

ANION 

Coordinate Type Bond 

' Dah Benzene 

qrl C-H 
rsr5 C-C 
Cl130.l3 C-C-C 
a.l7a.17 C-C-H 
rga.17 G-C,C-C-H 
rgais C-C,C-C-H 
rgr13 C-C,C-C-C 
r5r9 C-C,C-C (ortho) 
r5rs C-C,C-C (meta) 
r5r7 C-C,C-C (para) 

Structure I (same but) 

r5r5,r6r6 C-C 
r7r7, rsrs 
rgrg' q arlo C-C 

Structure II (same but) 

rsr5, r6r6 C-C 
r7r7,rsrs 
rgrg,qorJo C-C 

0 0 
K in mdyne/A: H in mdyne-A/(radian)2 
F in mdyne/radian for stretch-bending 
Z-matrix elements set equal to -1.00 
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Val uea 

5.06 
6.676 
1.05 
0.494 
0.173 

-0.173b 
-0.067 
0.684 

-0.345 
0.293 

5.50 

7.50 

7.00 

5.50 



Symmetry 

TABLE IX 

CALCULATED PLANAR FREQUENCIES OF BENZENE 
USING SCHERER'S MVFF D2h SYMMETRY 

Obs. F req. ( cm-1) a Calc. 

3062.0 
3047. ob 
1595.0b 
1177. ob 
992.0 
607.ob 

3047.ob 
1595.ob 
1346.0 
1177. ob 
607.0b 

3057.ob 
3 048.0 
1479.0b 
1035.ob 
1010.0b 

3057.ob 
1479.ob 
1309.0 
1146.0 
1035. ob 

Average Error = 0. 91% 
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Freq. (cm-1) 

3055.4 
3054.1 
1590.3 
1185.8 
993.7 
603.0 

3054.1 
1590.3 
1338.5 
1185 .• 8 
603.0 

3.053. 6 
3056.1 
1448.2 
1073.9 
1014.6 

3053.6 
1448.2 
1303.7 
1165.2 
1073. 8 

ascherer, J. R., Spectrochimia Acta, 20, 348, 1964, Table 1. 
boegenerate modes from 06h symmetry sPfit and assigned to D2h according 

to correlation tables. 



stretching force constant and using Girlando and Pecile's (19) ring 

force constant of 5.5 millidynes/angstrom for the carbon-carbon single 
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bond and 7.5 millidyne/angstrom for the added carbon-carbon double bond 

force constants. Or using Figure 3, bonds rg and r1o were assigned the 

7.5 value and. bonds r5, r5, r7, and ra the 5.5 value instead of the 

6.676 value used by Scherer {41). As a test of structure II an identi

cal calculation was run except that the carbon-carbon stretching bond 

values were reversed so that rg and r1o were assigned 5.5 and r5, r6, 

r7 and rs assigned 7.0 millidyne/angstrom. The 7.5 double bond force 

constant was dropped to 7.0 to partially account for the double bond 

value being assigned to four bonds instead of two. This helped keep the 

total bond energy of structure II more consistent with the structure 

I total bond energy. In both structural test calculations all other 

stretching, bending, and interaction force constants were left to their 

original Scherer benzene value. Table X gives the calculated frequen

cies for the structure I calculation with the suggested assignments of 

Devlin et al. (17). Table XI gives the calculated frequencies for the 

structure II calculations. 

Discussion 

Scherer (41) using the Table 4ii force constants was able to calcu

late the frequencies of benzene under a D6h symmetry to within a one 

percent error. The check calculation on benzene under a D2h symmetry 

shown in Table IX also reproduces the benzene frequencies to within a 

one percent error. Notably all degenerate frequencies under D6h sym

metry still are degenerate under a D2h symmetry to at least five signif

icant digits in the check calculations. The calculated D2h frequencies 



TABLE X 

CALCULATED PLANAR FREQUENCIES OF BENZENE 
RADICAL ANION: STRUCTURE I 

32 

Symmetry Obs. Freq. (cm-1)a Calc. Freq. (cm-1) Assig. 

C6H6- c6o6- C6H6- c6o6-

Ag 3055.8 2281.7 
3052.9 2268.0 

1586 1563 1613.6 1578.4 ring str. 
1152 1186.5 904.3 C-H bend b 
957 822 948.9 841.1 ring str.b 
616 587 602.7 582.0 ring def. 

B3g 3052.9 2271.2 
1475 1428 1463 •. 2 1431.6 ring str. 
1358 1190 1338.5 1041.1 C-H bend 
1303 1182.4 840.5 . C-H bend 

648 615 592.6 573.1 ring de f. 

B1u 3056.1 2276.2 
3051.3 2265.5 
1398.7 1259.9 
1029.0 963.6 
1014.6 799.1 

B2u 3054.1 2275.4 
1479.5 1387.8 
1240.5 1147.9 
1151.6 836.1 
1033.8 809.0 

aTaken from reference 17 
bpotential energy distribution shows these two assignments reversing 

for C5D5 



TABLE XI 

CALCULATED PLANAR FREQUENCIES OF BENZENE 
RADICAL ANION: STRUCTURE II 

33 

Symmetry Obs. Freq. (cm-1)a Calc. Freq. (cm-1) Assig. 

C6H6- c6D6- . C6H6- c6D6-

Ag 3055.8 2277. 5 
3052.9 2269.4 

1475 1428 1523.1 1490.4 ring str. 
1152 1184.6 927.6 C-H bend b 
957 822 974.5 840.7 ring st r .b 
616 587 596.6 576.6 ring de f. 

B3g 3054.4 2279.3 
1586 1563 1624.0 1590.0 ring str. 
1358 1190 1338.5 1041.1 C-H bend 
1303 1186.4 841.8 . C-H bend 
648 615 605.2 584.2 ~ing de f. 

B1u 3056.1 2276.2 
3054.3 2275.9 
1463.2 1352.4 
1083.6 963.7 
1014.6 817.2 

B2u 3052.4 2269.2 
1437.9 1345.9 
1272.2 1197.9 
1161.7 836.6 
1030.6 802.6 

aTaken from reference 17 
bpotential energy distribution shows these two assignments reversing 

for C5D5 
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were not the same as Scherer's D6h calculated frequencies but as men

tioned before still within the same error as Sherer's. These minor dif

ferences can be traced to the different U matrices used by the Fortran 

program WMAT to introduce symmetry into the normal coordinate cal cul a-

t ion and will be more fully discussed in Chapter 4~ The good fit of 

Scherer's force field under a D2h symmetry and resulting U matrix helps 

justify the use of this field for the benzene radical anion calculation. 

Tables X and XI show that the structure I calculation matches the 

observed frequencies better, however structure II cannot be ruled out. 

This is especially true in light of the small number of observed fre

quencies available. Since the benzene Ag and B3g Raman active-modes 

usually involve considerable carb6n ring distortion an examination of 

the deuteration shifts of these modes may show a preference for either 

of the two structures. Both structures give comparable deuteration 

shifts. Structure I gives 35, 108, and 21 cm-1 for the three Ag ring 

vibrations and 32 and 20 cm-1 for the two B3g ~ing vibrations. Likewise 

structure II gives 33, 134, and 20 cm-1 for the Ag modes and 34 and 21 

cm-1 for the B3g modes. From the observed frequencies the shifts are 

23, 135, and 29 ~m-1 for the Ag modes and 47 and 33 cm-1 for the B3g 

modes. So even though structure I giYes a better overall fit structure 

II gives a slightly better deuteration shift prediction. The useful 

aspect of the calculation is that force constants from two different 

molecules can be combined without refinement to predict the ring and 

C-C-H bending modes of a third highly perturbed molecule with a reason

able amou~t of accuracy. This provides additional evidence that the 

benzene radical anion resembles benzene with a TCNQ-like ring distortion 

imposed upon it. 
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CHAPTER IV 

NORMAL MODE ANALYSIS OF THIN LAYER TCNQ 

Introduction 

Conjugated ring systems have a roused much interest for many years. 

In particular 7,7,8,8 tetracyanoquinodimethane (TCNQ) is known for its 

role as a strong electron acceptor in charge-transfer complexes. 

Takenaka (42) first interpreted the infrared, and laser Rama spec

tra of neutral crystalline TCNQ and TCNQ-d4. After making the vibra

tional assignments he attempted a normal mode analysis .utilizing a basic 

Urey-Bradley force field, but found that it had to be modified by select 

cross terms before a good fit of calculated and observed frequencies 

could be obtained. 

Girlando and Pecile (19) also interpreted the TCNQ spectra but uti

lized ·polarized infrared and Rama data with particular attention to 

Raman scattering'geometries. Their interpretation postulated some 

signi.ficant changes in the symmetry of several modes. This prompted 

another normal mode analysis utilizing a modified valence force field. 

From the neutral TCNQ analysis they extended their study to include a 

spectra and normal mode analysis of the TCNQ radical ani on ( 43 ) .• 

Khatkale (18) used a standard vapor codeposition method to prepare 

alkali metal salts of TCNQ. With this technique he formed the thin 

layer mono, di, and trianion salts. A planar normal mode analysis was 

made for neutral TCNQ, using a modified valence force field. The 

35 
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re~ultant force field was then transferred to each anion and a new 

field calculated allowing only the stretching force constants to vary. 

Accordingly a comparison was made between the stretching force constants 

of each anion specie to determine the bonding changes occurring with 

each addition of an electron to neutral TCNQ. 

Khatkale {18) was unable to reproduce the Girlando and Pecile {19) 

neutral TCNQ calculated frequencies using their modified valence force 

field.and ·force constants. Thus he recalculated the neutral TCNQ val

ence force field using the same field definitions and diagonal stretch

ing force constants as Girlando and Pecile, but resolved the differences 

by allowing select bending and interaction force constants to vary. 

Since publication of these two works it was found that Khatkale neglec

ted an interaction term used by Girlando and Pecile. Therefore the MSK 

and GP neutral TCNQ force fields cannot be safely compared. Girlando 

and Pecile nave also acknowledged that a minor mistake was made in tran

scribing for the computer the transformation matrix U between internal 

and symmetry coordinates {43,44). In addition, the value of an inter

action force constant was misprinted in reference 19. 

In view of these difficulties in arriving at a common set of neu

tral TCNQ force constants for a common modified valence force field, a 

new normal mode analysis was attempted using the modified valence force 

field definitions and observed frequencies of Girlando and Pecile (19). 

Normal Mode Analysis 

TCNQ belongs to the D2h point group and all references cited used 

this symmetry. The first approach of the analysis was to reproduce the 

published values of Khatkale (18), change the Khatkale force field to 
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agree with the published force field of Girlando and Pecile (19), and 

·then compare the calculated frequencies. Thus it was convenient to use 

the same internal coordinate system and G matrix parameters as used by 

Khatkale. Figure 4 and Table XII show the coordinates and parameters 

respectively. The coordinates and parameters used were checked against 

those used by Girl ando and Pee i1 e to the extent possi b 1 e from the 1 iter

ature and found to be consistent. The symmetry coordinates used were 

taken fromthe Khatkale calculations and are identical to those used by 

Takenaka (42). These coordinates are reproduced in Table XIII. The 

symmetry coordinates .have the feature that all but three of the eleven 

planar mode redundancies have been eliminated by the. proper linear com

bination of symmetry coordinates. The three remaining are left for the 

program WMAT to eliminate. To check Khatkale's symmetry (MSK U matrix) 

coordinates a new U matrix was constructed which contained eleven planar 

redundancies. This matrix, hereafter called the WBC U matrix was used 

to calculate a new symmetrized G matrix and used in subsequent ·select 

calculations. The symmetry coordinates used in this U matrix are shown· 

in Table IV. The idea of repeating calculations with different U 

matrices that should give similar symmetrized G matrices and identical 

frequency predictions has also been advanced by Bertie, Andersen, and 

Wright (45). The modified valence force field used in this calculation 

and published by Girlando and Pecile (19) is shown in Table XV. The 

starred force constant definitions were thos~ that Khatkale (18) omitted 

in his calculations. 

The next step in the normal mode calculation was to take the Table 

XV force field (\'lith starred definitions) and use the force constants of 

Girlando and Pecile (19) along with theW matrix formed from the MSK U 
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Figure 4. Internal Coordinates of D2h TCNQ 



TABLE XII 

PARAMETERS USED FOR CREATING TCNQ 
G MATRIX 

Definition 

C-C ring bond ( r5) 

C-C wing bond ( r13) 

C=C ring bond ( rg) 

C=C wing bond ( rt1) 

C-N bond ( rt7) 

C-H bond ( r1) 

C=C-C angle (a21,a35,a41) 

C~C-C angle (a33,a3g) 

C-C-H, C=C-H angle (a25,a26) 

C-C-N ,angle 

C atomic mass 

H atomic mass· 

N atomic mass 

aReference 18 

Valuea 

0 
1.448 A 

0 
1.441 A 

0 
1.346 A 

0 
1.374 A 

0 
1.140 A 

0 
1. 08 A 

12.011 

1.008 

14.007 

jg 



Symmetry 

Ag 

B3g. 

B1u 
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TABLE XIII 

SYMMETRY COORDINATES USED BY KHATKALEa 
(MSK) FOR D2h TCNQ 

Symmetry Coordinate 

s1 = {1/14) (~r1 + ~r2 + ~r3 + 6r4) 
s2 = {11/4) (~r17 + 6 r1~ + ~r19 + 6r2o) 
s3 = (1/12) (~rg + Ar1o 
s4 = (11v'2) (Mll + M12) 
ss = (11/4) (Ar5 + Ar6 + Ar7 + 6r8) 
s6 = {11v'4) (~r13 + ~r14 + Ar15 + 6r16) 
Sl = (1113) (Aa39 + Aa40 ) + (11v12} 

(- l\a41 - l\a42 - t;a43 - lla44) 
sa = (11.13) (Aa33 + ~a34) + {11.112) 

(- ~a35 - lla36 - ~a37 - lla33) 
Sg = (11/8) (~a25 - l\a26 - l\a27 + l\a23 

+ lla29 - ·l\a30 - ~a31 - ~a3~) 
S1o = (1114) (6a45 + 6a46 + ~a47 + lla43 
su = (1116) (~a21 + l\a22 + ~a23 + lla24) 

+ (11124) (- ~a25 - Aa26 - ~a27 - l\a2~ 
- 4~29 - 6a3o + 6a31 - Aa32 

s12 = (1114) (llr1 - ar2 + Ar3 - u4) 
s13 = ( 11/4) (~r17 - Ar18 + ar19 - ar2o) 
s14 = (1114) (ars - 4r6 + 6r] - 6r8) 
S15 = (1114) (Ar13 - l\r14 + 6r15 - 4r16) 
s16 = (1/14) (4a41 - ~a42 + Aa43 - 6a44 
s17 = (1/14) (4ct35- llct36 + 6ct37- 6ct38) 
$18 = (1116) (Act21 - 6a22 + lla23 - lla24) 

+ (11J24) (- Act25 - 6ct26 + 6a27 + Aa2~ 
- Aa29 - l\a30 + Aa31 + 6a32 

S19 = (1118) (Act25 - 6ct26 + Aa27 - Act28 
+ 6a29 - 6a30 + 6a31 - 6aJ2) 

S2o = {1/14) (4ct45 - ~ct46 + 6ct47 - 6ct48 . 

$21 = (1/14) (ar1 + ar2 - ar3 - ar4) 
$22 = {ljv'4) (Ar17 + ar1s - Ar19 - Ar2o) 
s23 = (1112) (aru - llq2) 
S24 = ( 1 I 14) (Ars + Ar6 - Ar7 - Ar3} 
s2s = (1114) (llr13 + ~r14 - Ar15 - 4r16) 
s26 = ( 1 I v3) (aa39 - Aa4o) (11v12) 

{- Aa41 - 6a42 + lla43 + 6a44) 
s27 = ( 1113) (lla33 - lla34) (11/12} 

(- lla35 - 6a36 + lla37 + llaJ8) 
s2a = (11/6) (lla21 + lla22 - Aa23 - 6a24 

+ (1/124) (- lla25 - lla26 - lla27 - 6a28 
+ 6a29 + 6a30 + 6a31 + Aa32) 
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TABLE XIII {Continued) 

Symmetry Symmetry Coordinate 

s29 = (1/03) (~a25 - ~a26 - ~a27 + ~U28 
- ~azg + ~a3Q + ~a31 - ~aJ2) 

S3o = {l/v'4) (~a45 + ~a45 - ~a47 - ~a43 · 

B2u s31 = (1/11'4) (~r1 - ilr2 - ~r3 + ~r4) 
s32 = ( 1/.14) (~r17 - ~r1s - ~r19 + ~r2o) 
S33 = {1//2) (~rg - ~r1o} . 
S34 = (1/.14) (~rs - ~r6 - ~r7 + ~rs) 
s35 = ( 1/14) (~r13 - ~r14 - ~r15 + ~rl6) 
s36 = (1/14) (~a41 - ~a42 - ~a43 + fia44) 
S37 = ( 1//4) (- ~a35 - ~a3~ ~ ~a37 + ~a33) 
S3s "" (1//6) (La21 - Aa22 - ~a23 + Aa24) 

+ (1/124) (- ~a25 - ~a26 + ~a27 + ~a2~ 
+ ~a29 + ~a30 - ~a31 - ~a32 

S39 = (1/J8) {~a25 ~ ~a26 + ~a27 - Aa28 
- Aa29 + ~a3Q - Aa31 + Aa~2) 

540 = {1/14) (~a45 - Aa46 - ~a47 + ~a48 

Redundancies: 1 A9, 1 B1u• 2 B2u 
aRefe renee 18 

., 



Symmetry 

Ag 

B3g 

s1u 

TABLE XIV 

WBC SYMMETRY COORDINATES USED FOR 
D2h TCNQ 

Symmetry Coordinate 

s1 = ( 1/v'4) (t.q + M2 + M3 + M4) 
s2 = (1/v4) (t.rs + ~r6 + M7 + Mg) 
s3 = ( 1/.12) (Mg + M10) 
s4 = (1/V2) (un + ~r12) 
ss = (1/v"4) (t.r13 + ~r14 + ~r15 + t.r16) 
s6 = (1/.14) (t.r17 + t.r1s + ~r19 + t.r2o) 
s7 = (1/14) (t.a21 + ~a22 + ~a23 + ~a24) 
Sg = (1/14) (t.a25 + ~a28 + ~a29 + 6a32) 

. Sg = (1/.14) (t.a26 + t.a27 + ~a30 + ~a31) 
S1o = (.1 /v'2) (lia33 + ~a34) 
sn = (1//4) (t1a35 + ~a36 + t:;a37 + t.a33) 
s12 = (1/.12) (lla39 + ~CX4Q) 
s13 = {1/v'4) (6a41 + t.a42 + ~a43 + t.a44) 
s14 = (1/.14) (t.a45 + ~a46 + ~a47 + t.a43) 

S1s = { 1 I v'4) (t.r1 - t.r2 +. t.r3 - ~r4) 
S16 = (1/v4) (t.rs - ~r6 + ~r7 - ~rs) 
su = (1//4) (tir13 - t.r14 + lir15 - lir16) 
518 = (1/v'4) (lir17 - lir18 + lir19 - lir2o) 
S19 = (1/v4) (lia21 - lia22 + lia23 - t.a24) 
s2o = {1/v'4) (lia25 - lia28 + liazg - lia32) 
$21 = (1/v-4) (lia26- lia27 + licx30- lic:t31) 
$22 = {1/.14) (aa35 - lia36 + lia37 - lia33) 
S23 = (1/.!4) (lia41 - ~a42 + ~a43 - lia44) 
524 = (1/14) (lia45 - lia46 + lia47 - ~cx43) 

S25 = {1/.14) (lir1 + t.r2 - lir3 - lir4) 
s26 = {1/11'4) (!irs + lir6 - lir7 - lirg) 
S27 = 0!12) (liarll - liaq2) 
s2s = ( 1/.14) (lir13 + lir14 - lir15 - liri6) 
S29 = (1/14) (L1r17 + lir18- lir1g·- t.r2o) 
S3o = ( 1/(4) (liaz1 + 4a22 - ~a23 - lia24) 
$31 = ( 1/11"4) (lia25 + lia28 - lia29 - ~CX32) 
532 = (1/114) (lia26 + lia27 - lia3o - lia31) 
S33 = (1/.12) (lia33 - ~a34) 
S34 = (1/11'4) (L1a35 + lia36 - lia3 7 ,. L\a3 s) 
S3s = (1 /11'2) ( t.a3 9 - li.a4o) 
$36 = {1/.14) ( lia41 + lia42 - lia43 - L\a44) 
S37 = (1/.14) ( lia45 + Aa4.6 - lia4 7 - lia48) 
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Symmetry 

TABLE XIV (Continued) 

Symmetry Coordinate 

S33 = (1/v4) (~rl - ~r2 - H3 + ~r4) 
S39 = (l/v4) (~rs - Ar6 - ~r7 + ~rs) 
S4o = (1//2) (~rg - ~rio) 
S41 = (1/v4) (H13 - ~r14- ~r15 + MI6) 
s42 = (1/14) (~r17 - ~r18 - ~rlg + ~r2o) 
s43 = (1//4) (~a21 - ~<l22- ~Cl23 + i.\a24) 
S44 = (1/{4) (~a25 - i.\a28 - ~CX29 + ~a32) 
$45 = (1//4) (i.\a26- i.\a2]- ~CX3Q + ~a31) 
S46 = (1//4) (~a35- i.\cX36- i.\a37 + ~a33) 
s47 = (1/11'4) (t.a41- ~0.42- ~a43 + i.\a44) 
s48 = (1/-"'4) (~a45 - ~ll46- ~0.47 + ~a4a) 
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Symbol a 

K1 
K2 
K3 
K4 
K5 
K6 
H7 
Hg 
H9. 
H1Q 
Hn 
H12 
HlJ 
F14 
F15 
F16 
F17 

F18 
F13* 
F19 
F19* 
F2o 
F21 
F21*· 
F22 
F 23 

F24 
F25 
F26 

a: units: 

b: 
c: 
d: : 
*. 
R: . 
W: 

TABLE XV 

MODIFIED VALENCE FORCE FIELD AND 
CONSTANTS FOR o2h TCNQ 

Coordinate Type Bond GP Valueb 

q r1 C-H 5.05 
r5 r5 C-CR 5.46 
rg rg C=CR 7.50 

ru ru C=CW 6.90 
r13 r13 C-CW 5. 35 
r17 r17 C::N 16.90 
Ct21 Ct21 C-C=CR .888 

025°25 = CX26Ct26 !C-C-H)=(C=C-H) .524 
033 a33 c-c-cR • 913 
<l35 Ci3 5 C-C=cR,W 1. 034 
039 Ct39 c-c-cw .728 
041 <l41 C-C=CW • 33 7 
045 °45 C-C::N • 523 

r5 r6 c-cR,c-cR .157 
r5 rg c-cR,c=cR • 473 ' 
r5 r11 C-CR C=C~J .646 ' r5a21 = r5a33 (C-CR C-C=CR~ .098 

=(c-cR,c-c-c ~ 
r5 a35 C-cR,C-C=cR, .278 
r5 a36 C-CR C-C=cR,W -.278 R' r5 cx26 C-C ,C-C-H .108 
r5 a25 C-CR,C=C-H -.108 
rg a21 C=CR,C-C=CR .090 
r9 a25 C=CR, C=C -HR .145d 
rg a26 C=CR,C-C-HR -.145d 

~11 r13 C=CW;c-cW .161 
rua35 = rua41 (C=CW,C-C=CR,W) .242 

=(C=cVJ,c-c=cw) 
r13 r14 c-c~~ ,e-el~ .517 
r13 a41 C-CW,C-C=CW .197 

a41a42 = a39a41 (C-C=CR C-C=CR~ -. 045 
= (C-c-cR ,C-C=C ) 

0 0 
K in mydne/A, H in mdyne~A/(radian)2 
F in mdynejradian for stretch-bending 
Reference 18 
Refernce 19 
Misprinted in ref. 19, correct value shown 
Force constant definition omitted by Khatkale 
ring 
wing 
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MSK ValueC 

5.05 
5.46 
7.50 
6.90 
5.35 

16.90 
.966 
• 335 

1. 034 
.564 
.866 
• 924 
.758 
.157 
.608 

1. 29 
.098 

.647 

.126 

.090 

.317 

.161 

.242 

• 517 
.197 

-. 045 

reference 18 
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matrix symmetrized G matrix and attempt to reproduce Girlando and 

Pecile•s results. This was again repeated with theW matrix formed from 

the WBC U matrix symmetrized G matrix. Using theW matrix fanned from 

the MSK symmetrized G matrix and the corrected force field of Table XV 

with Girlando and Pecile•s force constants large discrepancies were 

still found in the calculated frequencies and published values of 

Girlando and Pecile. Therefore it is suggested that there is still some 

error larger than their U matrix error, or that some facet of their 

force field is neglected in their published values (19). 

When the ca·l cul ati on was repeated using the W matrix formed from 

the WBC symmetrized G matrix the results were again quite different from 

the Girlando and Pecile calculations. However while quite close to the 

MSK symmetrized W matrix calculations there were still some significant 

deviations between the MSK symmetrized and WBC symmetrized calculations. 

Because of the WBC and MSK calculation discrepancy a series of test 

calculations was performed using the program WMAT since the source of 

the discrepancy should be found in the calculation of W from the sym

metrized G matrix (see equations 1-14 through 1-18). The first test 

calculation involved the computational precision. The IBM 370-168 com

puter used has two Fortran compilers available. The G1, or "FORTGCG", 

compiler will allow the program to be run in double precision only if 

the program was originally written so. The other compiler, the H opti

mization, or "FORTHCLG", compiler will allow the Fortran·program to be 

run as the G1 compiler, or with the extended precision features of the 

compiler, AUTODBL(DBLPAD4). This feature, hereafter called FORTHCLG

(DBLPAD4), allows a single precision written program to be compiled 

and run as a double precision program without modifying the Fortran 
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statements. For the IBM 370-168 computer system single precision calcu

lates with binary word lengths such that each number can be represented 

accurately to seven digits in scientific notation. Double precision is 

likewise accurate to eighteen digits. Check calculations were run under 

both compilers with and without the extended precision feature and no 

significant deviations were observed. 

The program WMAT finds theW matrix by calculating. the G matrix, 

symmetrizing the G matrix with the ·inputted normalized U matrix, diag

onalizing G to find the eigenvalues of G, and from the eigenvalues find

ing the eigenvectors of G. Finalll the eigenvalues and eigenvectors are 

used to create W (see equation 1-18). Since the diagonalizing routine 

does not preserve the order of the eigenvalues along the diagonal they 

are rank ordered down the diagonal eigenvalue matrix. This order is 

then preserved throughout the rest of the calculational procedure and 

used to match the observed with the calculated frequencies in a least 

squares refinement of force constants. If the G matrix is block fac

tored by symmetry then each symmetry block is likewise rank ordered 

independently of the other symmetry blocks. While calculating theW 

matrix with the WBC eleven redundancy symmetrized G matrix it was found 

that the diagonalizing routine, a Jacobi method, interchanged the order 

of eigenvalues and eigenvectors nine and ten of the Ag symmetry block. 

A check calculation on the same symmetrized G matrix using a different 

diagonalizing technique, the Householder tridiagonalization method (46), 

yielded the same eigenvalues. It was concluded that the interchanging 

was due to very small residual values left in the off-diagonal elements 

that, though large enough to cause extra Jacobi rotations and row 

element eliminations, were too small to affect the eigenvalues and 
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eigenvectors obtained. The fault was corrected by interchanging eigen

values and eigenvectors nine and ten back into their proper sequence 

and continuing with the calculation. The interchanging fault was not 

observed when the W matrix was calculated with the MSK three redundancy 

symmetrized G matrix. 

Since both· the WBC symmetrized and MSK symmetrized W matrices were 

formed from the same unsymmetrized G matrix it was suspected that the 

discrepancy between the two lay in how the program reacted to the dif

ferent U matrices used to symmetrize G. 

Accordingly a series of cqlculations were made using the MSK and 

WBC U matrices for symmetrizing under different precisions and .com

pilers. Khatkale's (18) force constants and force field definitions 

were used for this series. Table XVI shows the results of these calcu

lations. Six W matrices were constructed; three with the MSK three 

redundancy U matrix and three with the WBC eleven redundancy U matrix. 

Of the three constructed with the MSK U matrix, one was computed with 

the Gl compiler in single precision (FORTGCG), another with the H opti

mization compiler in single precision (FORTHCG), and the last with the 

H compiler in double precision (FORTHCLG(DBLPAD4)). Likewise of the 

three constructed with the WBC U matrix, one was computed with the Gl 

compiler in single precision (FORTGCG), another with the H optimization 

compiler in double precision (FORTHCLG(DBLPAD4)), and the last with the 

H optimization compiler in double precision with symmetry coordinates 

S1, Sg, SlQ, S11, of the Ag symmetry block of the WBC U matrix inter

changed with each other. For the latter case it should be noted that 

since the order of the frequencies calculated is determined from 

the order of the G matrix eigenvalues which are each related to a 



FORTGCG · 

Ag 

3051.87 
2229.49 
1614.18 
1457.40 
1208.61 
944.38 
703.26 
598. 77 
322.07 
144.63 

B3q 

3051.87 
2226.42 
1446.01 
1352.95 
1197.96 
615.50 
490.71 
3 53 .·99 
125. 72 

B1u 

3054.46 
2229.49 
154 7. 39 
1392.22 
1001.61 

949.28 
599.67 
529.90 

173.35 

TABLE XVI 

CALCULATED PLANAR FREQUENCIESb OF D2h 
TCNQ WITH DIFFERENT COMPILERS 

AND U MATRICES 

MSK U Matrix WBC U Matrix 
FORTHCG FORTHCLG FORTGCG FORTHCLG FORTHCLGa 

{DBLPAD4) {DBLPAD4) (DBLPAD4,S) 

3051.87 . 3051.90 3051.78 3051.81 3051. 81 
2229.49 2229.18 2229.47 2229.48 2229.50 
1614.18 1614.18 1627.18 1627.19 1628.57 
1457.40 1457.40, 1456.29 1456.29 1455.70 
1208.61 1208.61 1190.40 1190.41 1187.92 

944.38 944.38 947.06 94 7. 07 948.37 
703.26 703.26 703.32. 703.32 703.22 
598. 77 598.78 598~94 598.95 599.43 
322.07 322.07 321. 92 321.92 322.16 
144.63 144.64 144.64 144.64 144.69 

. 3051.86 3063.59 3071.94 3071. 96 3071. 96 
2226.42 2226.83 2226.40 2226.41 2226.41 
1446.01 1518.35 1466.78 1466.78 1466.78 
1352.95 1262.97 1298.16 1298.16 1298.16 
1197.96 1174.07 1182.32 1182.33 1182.33 
615.50 615.97 614.96 614.96 614.96 
490.71 492.43 490.56 490.56 490.56 
353.99 356.55 353. 78 353. 78 353. 78 
125.72 125.79 125.69 125.70 125.70 

3054.46 3054.47 3072.47 3072.49 3072.49 
2229.49 2229.49 2229.58 2229.59 2229.59 
1547.39 1547.39 1511.33 1511.33 1511.33 
1392.22 1392.22 1404.25 1404.25 1404.25 
1001.61 1001.61 1008.01 1008.01 1008.01 

949.28 949.28 924.73 924.73 92.4. 73 
599.67 599.67 598.78 598.78 598.78 
529.90 529.90 529.98 529.98 529.98 
173.35 173. 3 5 173.28 173.28 173.28 
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FORTGCG 

B2u 

3049. 92 
2226.28 
1535.31 
1339.67 
1228.88 
1135.77 
489.28 
296.14 
62.99 

TABLE XVI (Continued) 

MSK U Matrix 
FORTHCG FORTHCLG 

3049.92 
2226.28 
153 5. 31 
1339.67 
1228.88 
1135.77 
489.28 
296.14 
62.99 

(DBLPAD4) 

3049.92 
2226.28 
1535.32 
1339.67 
1228.88 
1135. 77 
489.28 
296.14 
62.99 

WBC U Matrix 
FORTGCG FORTHCLG FORTHCLG 

3049.93 
2226.61 
1538.12 
1337.73 
1226.57 
1136.24 
489. 11 
296.08 
63.04 

(DBLPAD4) (DBLPAD4,S) 

3049.95 
2226.60 
1538.12 
1337.74 
1226.57 
1136.24 
489.11 
296.08 

63.04 

3049.95 
2226.60 
1538.12 
1337.74 
1226.57 
1136.24 
489.11 
296.08 
63.04 
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asymmetry coordinates S1, Sg, S10• and S11 interchanqed 
bforce field definitions and force constant values taken from reference 
18. Therefore FORTGCG frequencies agreed exactly with reference 18. 
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co'rrespondi ng symmetry coordinate; then changing symmetry coordinate 

order within a symmetry block should make no difference on the vibra

tional frequericies calculated. This is valid as long as the same sym

metry coordinate order is preserved throughout the calculation. WMAT 

forces this continuity by the rank ordering or the symmetrized G eigen

values and eigenvectors in creating the W matrix. 

It has been suggested by Bertie, Andersen, and Wright (45) that 

unles~ the U matrix is orthogonal by the definition of u+ U = I, where 

I is the identity matrix, that programs using the formalism of 

Schachtschneider (47) will yield incorrect results. Since 

Schachtschneider•s programs, and WMAT and OVEREND both use the method 

of Miyazawa (14) it was though worthwhile to construct a Fortran program 

ORTHOG to check the orthogonality of U matrices inputted in the manner 

used by WMAT. The orthogonality was checked using the definitions given 

previously to compute I and then examining the resulting identity matrix 

I to see if it was identity to the precision of the inputted data. Both 

the WBC and MSK U matrices proved orthogonal. However it was noted that 

the MSK U matrix had significantly more off-diagonal precision induced 

terms in the ide~tity matrix than the WBC U matrix. Precision induced 

is defined to.be less than 10-6 for ISM single precision and 1o-17 for 

IBM double precision. 

From the results of Table XVI it was concluded that the WBC U 

matrix symmetrized FORTHCLG(DBLPAD4) W matrix yielded the most reliable 

and consistent results. Since a more consistent W matrix, and improved 

force field definition was available, a new linear least square refine

ment of the TCNQ force field was undertaken. The force field defini

tions of Girlando and Pecile (Table XV) and the WBC symmetrized 
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FORTHCLG(DBLPAD4) compiled with W matrix were utilized in this refine

ment. Several different strategies in refining the force constants were 

tried but the following gave the most tenable result. The initial set 

of force constants used were those found by Khatkale (18) listed in 

Table XV. All diagonal stretching and bending force constants were con

strained to their initial values and all interaction force constants 

were allowed to vary. The observed frequencies of Khatkale (18) were 

used and since no thin layer deuterated TCNQ frequencies were available, 

the calculation was restricted to the h isotope. Table XVII and Table 

XVIII lists the final converged set of force constants from the refine

ment and the resulting calculated vibrational frequencies. For compari

son purposes the frequencies calculated using the WBC U matrix sym

metrized FORTHCLG(DBLPAD4) W matrix and the Girlando and Pecile (19) 

force constant set are also shown in Table XVIII. 

Discussion 

When the WMAT and OVEREND programs were originally written in-core 

memory space in computers was at a premium. Hence the logic and preci

sion used reflect this limitation. Much effort was directed in writing 

the program toward using tapes as intermediate storage memories and 

otherwise reducing the size of matrices to be handled. With newer com

puters and virtual memory storage, matrix size ceased to be the liabil

ity that it once was. Therefore it is not unexpected that problems in 

the diagonalization routines used in WMAT and OVEREND that could show up 

with large matrices would not be prevalent until recent years. The 

swapping of eigenvalues and eiqenvectors nine and ten in the WBC U 

matrix could be one such problem. TCNQ has 48 internal planar 



TABLE XVII 

FORCE CONSTANTS FROM WBC LEAST SQUARE 
REFINEMENT OF Dzh TCNQ 

Force Constantb Valuea Force Constant Valuec 

K1 5.05 F14 .313 
K2 5.46 F15 .290 
K3 7.50 F16 0 920 
K4 6.90 F17 -.0465 
K5 5.35 F18 .289 
K6 16.90 F19 .0827 
H7 .966 F2o .148 
H8 .335 F21 .208 
H9 1.034 F22 .165 
H1o .564 F23 .247 
Hu .866 F24 .435 
H12 .924 F25 .160 
H13 .758 F26 -.0427 

aHeld invariant in refinement 
bsee Table XVI for force constant definitions and units 
CA 11 owed to vary in 1 i near square refinement 
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Dispersion 

.28 

.16 

.25 

.09 

.09 

.027 

.17 

.041 

.58 

.34 

.19 

.09 
1.4 



Symmetry 

Ag 

B3g 

B1u 

TABLE XVIII 

CALCULATED PLANAR FREQUENCIES FROM LEAST 
SQUARE REFINEMENT OF D2h TCNQ 

Obs. Freq. {cm-1)a Calc. Freq. (cm-1) 
GP WBC 

3048.0 3052.0 3050.8 
2229.0 2229.2 2227.0 
1602.0 1676.1 1612.3 
1454.0 1450.0 1457.0 
1207.0 1294.1 1206.4 
948.0 922.5 940.3 
711.0 720.1 725.4 . 
602.0 531.0 594.1 
334.0 315.6 325.9 
144.0 121.3 144.8 

3060.0 3064. 7 3072.3 
2223.0 2225.4 2229.1 
1451.0 1541.5 1462.3 
1323.0 1371.2 1309.0 
1187.0 1182.1 1190.9 
609.0 603. 7 607.2 
519.0 448.0 489.3 

358.2 354.3 
101.6 126.2 

3065.0 3066.2 3073.4 
2228.0 2229.3 2228.0 
1545.0 1601.8 1533.4 
1405.0 1454.5 1390.2 
998.0 986.7 999.3 
962.0 959.3 959.3 
600.0 559.5 593.7 
549.0 4 75.3 523.1 
146.0 143.5 173.2 
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Dispersionb 

0.8 
5. 7 

12.0 
11.3 
11.1 

9.6 
10.1 
8.3 
3.8 
1.3 

0.5 
6.2 

12.4 
9.0 

11.4 
7. 8 
2.9 
0.9 
2.1 

0.6 
5.7 

12.6 
11.2 
12.3 
11.0 
8.7 
5.8 
0.5 
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TABLE XVIII (Continued) 

Symmetry Obs. Freq. (cm-1) Calc. Freq. (cm-1) Dispersion 
GP 

B2u 3053.0 3049.8 
2228.0 2225.5 
1540.0 1598.1 
1354.0 1404.9 

1246.7 
1125.0 1131.4 

498.0 386.1 
285.9 
58.6 

Average Error,= 4. 70% GP and 

aReference 18 
boisperson applicable to WBC calc. only 

WBC 

3048.5 
2229.3 
1525.8 
1352.2 
1234.1 
1114.3 
489.1 
295.2 
63.6 

1. 43% WBC 

0.8 
6.3 

11.5 
11.9 
8.2 

12.2 
1.4 
1.9 
0.9 

The GP calc. freg. are the results of using the best WBC W matrix 
using the WBC sym. coord. in a zero order (no refinement) calc. with 
the force constants of reference 19 (latter corrections included). 
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coordinates which would yield a 48 by 48 G matrix with redundancies 

included. Simply multiplying two such matrices together would provide 

enough computer operations for two well known computational errors to 

occur, truncation and catastrophic cancellation. The first type of 

error results from the inability of a finite computer representation to 

fully represent a long or irrational base two number. This type of 

error can often be improved by increasing the computer word 1 ength, i e. 

use of double precision. The second type of error occurs when the very 

small difference between two numbers which correspondingly loses- signi

ficant digits in multiplied or scaled so that all of its digits whether 

significant or not are forced to be meaningful. Increasing computer 

precision does not necessarily improve this type of error. Changing 

the algorithm is usually the best solution if the defective part of the 

algorithm can be found or changed. The problem with this type of error 

is that it can often be very dependent on the input data. One set of 

data may yield excellent results and another terrible. Numerical anal

ysis books are numerous with examples of these errors and how to spot 

them ( 48). 

By using the extended precision feature of the IBM Fortran H opti

mization compiler it was found that the calculated frequencies of WMAT 

and OVEREND can be trusted to at least four to five significant figures 

in single precision. This does not preclude the possibility of anhar

monic vibrations, mixing of symmetries, castrophic cancellation, or 

other theoretical problems affecting the frequency predictions. 

The Jacobi method of diagonalization seeks to search each row of 

the matrix to be diagonalized for the maximum sized element, eliminate 

it with a trigometric transformation and then eliminate the next largest 
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sized element and so on until all off-diagonal elements are zero and the 

eigenvalues lie on the diagonal. If during the trigometric transforma

tion truncation errors are produced, these small valued elements could 

cause extra row element eliminations and a corresponding eigenvalue and 

eigenvector order scrambling. Thus it is not unlikely that with this 

sort of diagonalization routine the larger the matrix to be diagonal-

; zed, the greater the chance of this prob 1 em. This possibility was 

given further credence when attempts to find TCNQ W matrices with no 

symmetry (U = I identity matrix) yielded a horribly scrambled eigenvalue 

order even though their numerical value was correct. However if the 

order of the eigenvalues along the diagonal is restored, by using added 

Fortran code, the calculation may proceed as normal. This was done for 

the WBC U matrix symmetrized calculations. 

Table XVI shows the results of the series of calculations designed 

to ascertain the discrepancy between the WBC and MSK U matrix. sym

metrized W matrices. The G and F matrices were kept constant throughout 

the calculation and were identical to those used by Khatkale (18) in his 

calculation. Hence the frequencies predicted under the MSK U matrix and 

FORTGCG compiler with single precision are identical with his. 

If the MSK U matrix symmetrized W matrix calculated frequencies in· 

Table XVI are examined it can be seen that the H and G IBM Fortran com

pilers give identical results. But if the calculation is done in double 

precision (FORTHCLG(DBLPAD4)) significant deviations occu-r in the 83 9 

symmetry block. However in the WBC U matrix symmetrized W matrix calcu

lations no such significant deviations are seen between the FORTGCG sin

gle precision calculation and the FORTHCLG(DBLPAD4) double precision 

calculation. This suggested that possibly the MSK U matrix is sensitive, 
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or that the predicted frequencies of the W matrix so symmetrized may be 

highly correlated or sensitive to small errors encountered in theW 

matrix. This could be caused by catastrophic cancellation or some other 

unknown factor. However it should be noted that for the WBC U matrix 

symmetrized t.J matrix there is a small change in some frequencies in the 

Ag block when symmetry coordinate order is changed within a symmetry 

block. For example the FORTHCLG(DBLPAD4) A9 1190.41 cm-1 frequency is 

changed to 1187.92 cm-1 with FORTHCLG(DBLPAD4 ,S) and symmetry c oordi-

nates S1, S9, S10' and S11 interchanged. But this frequency showed the 

maximum amount of change (2.5 cm-1). This is in stark contrast to 90, 

72, and 23 cm-1 changes seen in the MSK symmetrized W matrix calcula

tions when double precision FORTHCLG(DBLPAD4) is used instead of single 

precision FORTGCG. Interestingly in the 83 9 symmetry the major U matrix 

induced differences between the FORTHCLG(DBLPAD4) MSK U matrix and 

FORTGCG WBC U matrix calculations also correspond with the precision 

induced differences in the MSK symmetrized calculations. On the basis 

of these observations it was decided that the MSK symmetrized calcula

tions were definitely unreliable in the B3 9 symmetry block and probably 

so everywhere they differ from the \.JBC symmetrized calculations as can 

be seen in Table XVI between the MSK FORTHCLG(DBLPAD4) frequencies and 

the WBC FORTGCG frequencies. Therefore the WBC symmetrized, FORTHCLG

(DBLPAD4) compiled W matrix was chosen as the most reliable, and used in 

the subsequent least square refinement of the Girlando and Pecile (19) 

force field definitions. 

Fortran program ORTHOG was written to check the orthogonality of 

the MSK and WBC U matrices. It was hoped that such a check would reveal 

any sensitivity of the U matrices by examination of the identity matrix 
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p~oduced. Both matrices proved orthogonal, but the MSK U matrix pro

duced significantly more precision induced off-diagonal errors than the 

WBC U matrix.· Since the U matrix elements can be inputted up to six 

significant figures in WMAT, the U matrix can at best be orthogonal to 

six significant figures. Thus it is conceivable that several multipli

cations of U could induce errors of more than 10-6, if the slight non

orthogonality errors overlapped. The MSK U matrix was more numerically 

complex due to the linear combinations used to eliminate redundancies. 

This may explain why the slightly larger WBC U matrix had fewer off

diagonal errors when checked with ORTHOG. 

As with all large linear least square refinements of force fields 

the converged results may not represent the true solution since the 

normal mode force constant problem can have multiple solutions (3). The 

resulting force constants should have reasonable error limits or disper

sions, be chemically reasonable, and correspond with other similar force 

constant calculations. Since the stretching and bending force constants 

are identical to Khatkale's (18), discussion on these is left to refer

ence (18}. Accordingly attention will be focused on the interaction 

force constants ~14-F26 of Table XVII. F14 and F15 the C-C,C-C ring and 

C-C,C=C ring interaction force constants have values of .313 and .290 

respectively. Scherer (41), Zerbi and Sandroni (49), and Di Lauro, 

Neto, and Califano (50) in their respective calculations on benzene, 

biphenyl, and 1,3 cyclohexadiene obtained values ranging from .684 to 

.7716 for aromatic ortho ring stretching interactions with ring C=C,C-C 

ortho interactions. Girlando and Pecile's and Khatkale's values range 

from .157 to .608. Since TCNQ is non-aromatic the highly coupled 



nature of aromatic ring interactions can be expected to be higher than 

for TCNQ as the present calculations show. 

Examining the ring stretch-bend interaction force constants F17 
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(-.0465) and F2o (.148) it can be seen that they lie in the same range 

for aromatic carbon bond stretch-bend interactions as do aromatic ring 

stretch-bends do. Scherer {41) gives .056 for benzene in his Table 4i. 

But interesti~gly if all the stretch-bend interactions around the ben

zene carbon atom are included using the method of Scherer (41) then the 

carbon stretch-bend interaction force constant becooes -.067 (see 

Scherer {41) Table 4ii). This is analogus to the Khatkale (19) calcu

lations where when the F18* definition is omitted Kh.atkale finds .098 

for the (c-cR,c=C-cR) = (c-cR,c-c-cR) interaction. In the present cal

culations when the F18* definitio~ is included the interaction becomes 

negative as did Scherer's. However it should be noted that for both 

F17 and F2o the .dispersions are quite high. Zerbi and Sandroni (49) 

found .226 for the biphenyl ring stretch-bend interaction. 

F19 and F21 show the interaction between the C-H in plane bend and 

the C-C and C=C bond stretch by which the C-C-H bend is defined. For 

F21 the carbon bond is a single bond or a low bond order in neutral 

TCNQ. For F19 the carbon bond is double. So it should not be unexpec~ 

ted that an aromatic C-H stretch-bend interaction should fall between 

the F19 and F21 interaction constants value. F19 is .0827 and F21 .208 

for TCNO from Table XVII. For the aromatic values Scherer (41) gives 

.173, Zerbi and Sandroni (49) .088, and Di Lauro, Neto, and Califano 

(50) found .0918 for 1.3 cyciohexadiene. All are within the F19 and F21 

values. But in a later benzene calculation using a considerably more 

complex force field Painter and Koenig (51) found .0723 for the benzene 
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C-H stretch-bend interaction thougn the reported dispersion (.0615) was 

rather larqe. 

F26 the ortho carbon ring bend-bend interaction constant has main

tained a small negative value throughout the Girlando and Pecile, 

Khatkale, and present TCNQ calculations. A quick check of Scherer's 

(41), and Painter and Koenig's (51) benzene calcuations show -.022 

(averaged valence force field from Urey-Bradley field, figure 2, ref

erence 41) and -.1459 respectively. The negative value of F26 is also 

consistent in spite of its very large dispersion in the great TCNQ cal

culations. 

In concluding it should be said that, the TCNQ valence force con

stants presented in Table XVII are, (1) consistent with some previous 

conjugated and aromatic ring system force field calculations, (2) do not 

have unreasonable dispersions throughout the force constants, and {3) 

result from a more reliable W matrix and consistent force field defini

tion. Regardless, the calculation was not an overlay calculation using 

deuterated TCNQ frequencies, and still contains some large dispersions 

on some interaction constants. Also it is known that force constant 

values and, particularly, interaction force constants are often depen

dent upon the number and type of force field definitions used in con

structing the F matrix. Because of the errors and W matrix problems 

present in the presently published neutral TCNQ force field refinements, 

Table XVII is presented as an improved, rather than definitive, force 

field refinement of the neutral TCNQ. problem. 
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INPUT INSTRUCTIONS FOR FORTRAN PROGRAM 

WMAT 

1. Problem Control Cards 

Card A 

IND ~ -09, indicating the start of a problem,, 
in columns 1-3 
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Card B columns 

1) NOPROB 
2) N ISQ 
3) NOAT 
4) NSYM 

5) NIC 
6) NRC 

7) NRED 

8) NICV 

9) IFW 

10) IFDU 

11) IFB 

12) IFPB 

~ the problem number, not equal to 7777 
~ the number of isotopes 
~ the number of atoms in the molecule 
=the number of symmetry blocks in the 

molecule 
= the number of internal coordinates 
= the number of symmetry coordinates 

including redundancies 
= the number of redundancies 

NSC=NRC-NRED 
= the number of internal coordinates 

vectors, NICV-NIC if no linear 
bending coordinates are included 
(add one internal coordinate vector 
for each linear bending coordinate 
if analysis is nonplanar, however 
for planar analysis NICV=NIC) 

= 1 if W matrix is required 
= 0 if not 
= 1 if the eigenvalues of G are 

required in full 
= 0 if not 
= 1 if B is to be printed 
= 0 if not 
= 1 if B is to be punched on cards 
= 0 if not 

1-6 
7-9 

10-12 
13-15 

16-18 
19-21 

22-24 

25-27 

29 

31 

33 

35 

2. Dimension of the symmetry blocks are given in pairs of inte
gers, in the order of the block within the U matrix. Each pair speci
fies the number of symmetry coordinates and then (second integer in 
pair) the number of redundancies included in that block. This informa
tion is used in modifying the G matrix, so that each block shou.ld be 
separately defined even if it will contain no zero eigenvalue in the 



diagonalized G ~atrix. If there is only one symmetry block skip this 
card. FORMAT (12(213)) 

3. Record card. 
card must be i·ncluded. 

May include name of molecule, date, etc. 
FOf~MAT (24A3) 

One 
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4. The X matrix is punched in 18 column fields, 4 per card. First 
three columns give the row number identifying the cartesian axes, X=l, 
Y=2, Z=3. Columns 4-6 give the column number of the X matrix, the atom 
number (as defined in setting up coordinate system), and columns 7-18 
give the X, Y, or Z elements with the decimal point between columns 
12-13 or punched. The row number following the last element is set 
equal to -1. FORMAT (4(2I3,F12.6)) 

~. Vector of 8 numbers - NI, NCOD, N1, N2, N3, N4, N5, and N6 
where NI gives the n~mber assigned to the internal coordinate, NCOD, the 
code identifying the type of coord, and N1-N6 the numbers of the atoms 
(as defined in 4.) definifig the coordinate. 

Type Code N1 N2 N3 N4 N5 N6 
Stretching 1 I J 
Bending 2 I J K IX JX 
Out of Plane Wag 3 I J K L IX JX 
Torsion 4 I J K L IX JX 
Linear Bend 5 N02 I J K IX JX 
In Plane Wag 6 I K K L IX JX 

IX and JX give the bond distance by which the coordinate is to be 
weighted. If IX=JX, not equal to zero, the weighting factor is set 
equal to 1.0. Note that for the linear bending type N1=N02, the number 
of the bending coordinate perpendicular to N1. If doing a planar analy
sis set N02 equal to a dummy (ie. if NIC=12 then N02 > NIC would work) 
internal coordinate number without further defining it. I, J, K, L are 
defined as follows for the following internal coordinate vectors. 

Stretching ~ I and J equal end atom numbers 
Bending - I and K equal end atom.numbers, and J equals middle 
. atom number 
Out of Plane Wag - I equals end atom number, J equals apex 

atom number, and K and L equal anchor atom 
numbers 

Torsion - I and L equal end atom numbers where. I is nearest 
the observer, and J and K equal the central atom 
numbers where J is nearest the observer 

Linear Bend - N1=N02 the number of the second coordinate, 
I and K equal the end atom numbers, and J 
the central atom number 

In Plane Wag- I equals the end atom number, J the apex atom 
number, and K and L the anchor atom numbers 



The internal coordinate vector is punched in 24 column fields 3 
columns for each of the 8 elements in the order NI, NCOD, N1, N2, N3, 
N4, N5, N6. There are three vectors per card. FORMAT (3(813)) 
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6. A, the cartesian coordinates of a point giving the orientation 
of the linear bending coordinate, one for each linear bendinq pairs. 
The thfee coordinates are punched in order (X,Y,Z). For planar analysis 
the points should lie in the molecular plane. Write elements of A in 12 
column fields, one point per card. The format pertaining to this card 
is FORMAT (3F12.6). 

7. The U matrix in 18 column fields, 4 per card, similar to the 
X matrix, the row number first, column number second, followed by the 
appropriate matrix element. The row number following the last element 
is set equal to -3. Zero elements need not be entered in X or U. 
FORMAT (4(2I3,F12.6)) 

B. The atonic masses are punched in 12 column fields, 6 per card, 
decimal between columns 6 and 7 or punched. The masses are punched in 
order 1 to NOAT. FORMAT (6F12.6) 

Instruction 8. is repeated for each isotope of a molecule. Prob
lems may be stacked but following the last problem insert two cards, the 
first with -09 in columns 1-3 and the second with 7777 in columns 3-6 
(16 field). These control cards will stop the entire program. 

These data are transferred from card to tape 3 for input, or where 
card input is preferred, assign INPUT, 3, 03. {Note: Program is pres
ently set up to use cards and uses standard unit numbers 5, 6, and 7 for 
reading, writing, and punching.) 

Notes: During compilation of the G matrix, the elements which are out
side of the factored blocks are tested against 0.00001 and are replaced 
by zero in the upper triangular section only, unless one element is 
found to equal or exceed the limit, where then the check is abandoned 
and the element and its position indices are written on the output, 
followed by the partly modified G matrix. The program then continues 
with the next isotope or molecule. 
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INPUT INSTRUCTIONS FOR FORTRAM PROGRAM 

OVER END 

Operation 

Calculation of 
Normal Coordinates 

Zero-order Cal c. 

Refinement: 

a) Incomplete 

b) Divergence 

c) Convergence 

Overend Output Summary 

Calling Parameters 

IFP=O 
. IF SEL==O 

IFP=l 
IFSEL=O 

IFP=l 
IF SEL=l 

Out put Codes 

A 

A,B,C 

G (each cycle) 
A, B, C, D, E 

(last cycle) 

G (each cycle) 
A, B, C 

(last cycle) 

G (each cycle) 
A, B; C, D, E, F 

(last cycle) 
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Remarks 

On diverg. 
orig. F.C. 
reca 11 ed and 
zero-order 
calc. done 



Table of Output Codes 

A- F matrix (each molecule): a calc. and L (each isotope) 
B - Potential energy distribution (each isotope) 
C - Intrisic force constants, their uncorrected and relative 

dispersions in internal force constant space and their 
transformation to Urey-Brad 1 ey force constant space 

D- Final Urey-Bradley force constants and their dispersions 
E - Urey-Bradley force constant co-error matrix 
F -Frequency parameters co-error matrix (each isotope) 

71 

G- SUMMD, Urey-Bradley force constants and their corrections 

In the OVEREND program used in the present thesis the WRITE state
ments to D, E, G, and part of C have been eliminated to save needless 
Urey-Bradley output since all calculations were done in internal coordi
nate space with modified valence force fields. 

Overend Input 

1. Problem Control Card 

1) NOPROB 
· 2) NM 
3) NC 
4) NA 
5) NL 
6) NPMAX 

7) IFDU 

8) IFP 

9) IFSEL 

10) FIW 

11) IFCON 

12) CON 

13) osc 

14) IFCH 

number of the problem set equal to 7777 
= number of ~olecules (excluding isotopes) 
=total number of force constants supplied 
= number of force constants to be adjusted 
= the total number observed frequencies . 
= the maximum number of perturbations to 

be executed. If IFP=O set NPMAX=1 
= 1 if intermediate results are to be 

dumped in full 
= 0 if not 
= 1 if a perturbation is desired 
= 0 if not 
= 1 if force constants are to be adjusted 
= 0 if not {when IFP=O then IFSEL=O) 
= 1 if weighting elements are input 
= 0 if not (elements of the weight matrix 

are then set equal to 1.0) 
= 1 if convergence constants are input 
= 0 if not 
=convergence scaling factor 

(decimal between 35 and 36 or punched) 
=oscillation scaling factor 

(decimal in 41 and 42 or punched) 
= 1 if the matrix FB is to be written on 

tape (first perturbation) 
= 0 if not 

Columns 

1-6 
7-9 

10-12 
13-15 
16-18 
19-21 

22-23 

24-25 

26-27 

28-29· 

30-31 

32-3 7 

38-43 

44-45 

Note: Leave 12) and 13) blank when IFCON=O, program then assigns 0.75 
to CON and 0.4 to OSC. 
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2. Record of molecules, isotopes, etc. to be punched on one card. 
FORMAT {24A3) 

3. List of equivalent force constants. This lists the force con
stants in ascending order, each number referring to the force constant 
whose value is to replace the original value given in the following 
array. If any constant is made equivalent to another, only the constant 
named in the list may appear in NFSEL. Punched in integers in 3 column 
fields. FORMAT (2413) 

4. Initial force constants punched in order 1 to NC, 6 fields per 
card of 12 columns, the decimal between columns 6 and 7 or punched. 
FORMAT (6F12.6) 

5. NFSEL. Integers in ascending order denoting the force con
stants to be adjusted, punched in 3 column fields. If no force con
stants are to be adjusted (IFSEL=O), no blank card should be included. 
FORMAT (2413) 

6. Parameters for the Molecule 

1) NISQ 
2) N I 
3) NS 

4) NF 
5) NSYM 

FORMAT (5I3) 

=the number of isotopes inciuded 
= the number of internal coordinates 
= the number of symmetry coordinates 

without redundancies 
the number of force constants 

=the number of symmetry blocks 
If NSYM>1, a second parameter 
card follows, with the dimension 
of each symmetry block in order 
corresponding to U matrix and to 
frequencies, punched as integers 
in 3 column fields. FORMAT (24I3) 

Columns 

1-3 
4-6 
7-9 

10-12 
. 13-15 

7. NFMOL. Integer in ascending order 1 to NC denoting the force 
constants of the molecule, punched in 3 column fields. FORMAT (2413) 

8. Observed frequencies. Entered in decreasing order in each 
factored block, in order 1 to NS. If a frequency is unknown or uncer
tain, enter a zero. Punched in 6 fields per card of 12 columns each. 
The decimal is between column 6 and 7 or punched. For overlay calcula
tions repeat 8 aqain with the new frequencies for the new isotope. 
FORMAT (6F12.6) 

9. Weighting elements. Only needed for least square refinement 
when IFW=l. Entered in order 1 to NS corresponding to the observed fre
quencies. Use same format as observed frequencies. If IFW=O program 
assigns 1.0 to each weight element, and no blank cards should be sup
plied. For overlay calculations with IFW=1 include weight elements 
after each set of corresponding isotope frequencies, ie. not stacked 
after the previous isotope weight element set but in this order: 
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frequencies isotope 1, weight elements isotope 1, frequencies isotope 2, 
weight elements isotope 2, etc. FORMAT (6F12.6) 

10. Z matrix. Non-zero elements, are entered with three indices, 
NCl given the F matrix row number, NC2 the F matrix column number, NFOR 
the number of the force constant. Only the upper right half of the 
symmetric matrix is entered so NC2 must always be greater than or equal 
to NCl. The Z elements are punched in 4 fields per card of 18 columns, 
NCl in columns 1-3, NC2 in columns 4-6, and NFOR in columns 7-9 and the 
appropriate Z element in columns 10-18 with the decimal between columns 
12 and 13 or punched. The row number after the last element is set to 
-4. Do not repeat Z for extra isotopes or overlay calculations. 
FORMAT (4(3I3f9.6)) 

11. W matrix. four elements per card in 18 column fields. Row 
number in columns 1-3, column number in columns -4-6, elements in columns 
7-18 with the decimal between columns 12 and 13 or punched. Only non
zero elements are entered. For extra isotopes and no overlay repeat 11 
for that isotope. For overlays likewise repeat Win the same order as 
was used in 8. The row number after the last element for each W matrix 
set equal to -2. 

12. Include a card with -09 in columns 73-75. This stops the 
reading of card sections 6-11 onto device with unit number set equal 
to 3. (Disk in this thesis• prog~am) 

13. The program may be continued with a new problem starting at 
1 again or stopped by including a card with 7777 in columns 3-6. 

Notes: 11 is repeated for each isotope of the molecule unless a overlay 
calculation is being performed, then 8, 9, and 11 are repeated as 
described in each section. 1-5 are read into the computer but 6-11 are 
copied onto unit number 3 which may be defined to be a tape drive or 
disk drive by the appropriate job control language. This is done 
because 6-11 are read repetitively by the program. 
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