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CHAPTER I 

INTRODUCTION 

In Costa Rica, snakebite is a relatively common although not 

always fatal event. Of the 12 known species of toxic snakes found 

there, 9 belong to the genus Bothrops while Lachesis is represented 

by only one specie, L. muta, the "bushmaster". This snake occupies 

the low-lying coastal regions in Costa Rica, but its geographical 

distributio~l extends from the south of Nicaragua to the southern 

border of Brazil. According to Hoge and Romano (1), there are three 

subspecies of the bushmaster; h· muta stenophrys being the snake 

found in Costa Rica and Panama. 

It is the largest venomous snake in Central and South America, 

reportedly reaching 12 feet in length with hollow fangs measuring up 

to 1~ inches in length. The bushmaster is confined to the moist 

tropics due to thermal requirements demanded by its large size and 

oviparous method of reproduction. This egg laying feature of L. muta 

is unique among New World pit vipers and may be a factor in its 

limited distribution. 

Despite the extreme size and the large quantity of venom that 

can be extracted from the bushmaster, it is thought to be responsible 

for few incidents of snakebite fatality. As a result, the most studied 

veno1Ils of Costa Rican fauna belong to the more deadly Bothrops genus. 

The purpose of this study was to isolate the toxic components of L. 
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muta venom, and then assay these compounds for certain biological 

activities. This information will serve as a background for better 

understanding of bushmaster venom as well as its relation to other 

Costa Rican venoms (Figure 1). 
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Figure 1. Bushmaster, Lachesis muta. (Picture from the files of 
the Instituto Clodomiro Picado.) 
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CHAPTER II 

LITERATURE REVIEW-

Since prehistoric times, humans have had contact with venomous 

snakes and as a result have also suffered from the problems of snake

bite. Today, there still is a high incidence of snakebite in many 

parts of the world. According to Swaroop and Grab (2), 30,000 to 

40,000 deaths occur annually worldwide due to snakebite from venomous 

snakes. Th<~se figures may be less than the actual total since some 

cases of snakebite go unrecorded in underdeveloped countries. 

Table I shows the mortality rate due to various venomous species 

found in Central and South America as compiled by da Fonseca (3). 

In an investigation by Rosenfeld (4, 5) of 730 cases of snakebite 

in Brazil, Bothrops jararaca was responsible for 87% of the bites, 

followed by Crotalus durissus terrificus with 10%. The remainder was 

due to various other Bothrops species. However, in Costa Rica Bothrops 

atrox (asper) causes 80 to 90% of the cases of snakebite with the 

remaining percent divided among the other 11 venomous snakes. 

In these Latin American countries, there is a great need for a 

simple clinical means that will allow for diagnosis and treatment of 

the bite without identification of the species. At present, this 

problem is being combatted by two different methods. The first and 

most direct is the production of polyvalent antivenins. The second 

method is the scientific investigation into the composition of the 
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veno~s. The long range goals of this type of research are to under-

stand the biochemical nature of the venom components, how they function 

and the interrelationships between components. 

TABLE I 

VENOMOUS SNAKE SPECIES AriD FREQUENCY OF BITES* 

Number Deaths 
Species of cases 

Percent 
Number Percent 

Crotalus sp. 738 .11.18 90 55.9 
Bothrops alternatus 384 5.82 8 4.9 
Bothrops atrox 83 1.26 1 0.6 
Bothrops co tiara 96 1.45 1 0.6 
Bothrops jararaca 3446 52.20 25 15.5 
Bothrops jararacussu 657 9.95 11 6.8 
Bothrops lansbergii 1 0.02 0 0 
Bothrops neuwiedi 236 3.58 1 0.6 
Bothrops schlegelli 3 0.05 1 0.6 
Lachesis muta 16 0.24 1 0.6 
Micrurus sp. 15 0.23 0 0 
Not specified 926 14.03 22 13.7 

*compiled by da Fonseca (3) for Central and South America. 

Snake venoms are viscous secretions, usually yellow or orange 

in color, and have 25 to 40% dry residue after desiccation (5). 

Proteins account for up to 90% of the residue, while lipids, peptides, 

salts, free amino acids and inorganic matter account for the rest (6). 

The lethal properties of venoms are due to enzymatic as well as non-

enzymatic proteins. This lethality can he seen as a 1) neurotoxic 

response, in which neural transmission is blocked, 2) hemotoxic 



response, in which the normal functioning of the circulatory system is 

disrupted, or 3) myotoxic response, in which necrosis of muscle cells 

occurs. 

Venoms of the Crotalidae f,:~.mily are characterized by the pro

duction of hemorrhage, myonecrosis, hypotension and incoagulability 

of the blood in their victims (6). This can be attributed to a 

variety of protein components rather than to a single major toxin. 

As an example of the complexity of Crotalid venoms, Kaiser and Michl 

(7) report the fractionation of 5 Bothrops species into as many as 14 

bands per venom by starch gel electrophoresis. They also report the 

location of certain enzymatic activities such as phospholipase A, 

L-amino acid oxidase, phosphoesterases ar:.d proteases within these 

bands. Deutsch and Diniz (8), looking at the proteolytic activities 

of 15 species of Crotalus, Botbrops and Lachesis venoms, found that 

all had kinin releasing ability. They also report varying levels of 

proteolytic digestion of Hb and BAEE, yet found no direct relationship 

between the two activities. This suggests the presence of several 

proteases in these venoms. 

While there has been no reported isolation of toxic components 

from bushmaster venom, some of its enzymatic properties have been 

investigated. Birdsey et al. (9) have shown the ability of ~· muta 

venom to coAsume hemolytic C' in fresh guinea pig serum. The venom 

appears to form a stable intermediate with serum factors which is 

capable of depleting complement components C3-C9 in the presence of 

EDTA. They also show the isolation of the C' consuming principle of 

the venom by DEAE cellulose. This factor corresponded to a MW of 

17,000 daltons when passed through a Sephadex G-75 column, but it was 
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unable to induce C' depression upon in vivo injection. 

Yarleque and Campos (10, 11) have shown the presence of a 

phosphodiesterase in whole bushmaster venom that has an optimum pH of 

+2 +2 
9.0, and is activated by rnM concentrations of Mg and Ca . In a 

second paper, they found 5 1 -nucleotidase activity in whole venom with 

peak activity at pH 7.8 and 9.8. Mg+2 was found to activate the 

nucleotidase while Ca+2 was inhibitory. 

The work of Magalhaes et al. (12) shows the separation and 

purification of 3 proteases from 1. muta venom that are active on 

casein, fibrinogen and bradykinin. Interestingly, bushmaster venom 

is also known for its strong bradykinin releasing activity (13). Once 

released from plasma, bradykinin produces strong dilation of the blood 

vessels, hypotension and smooth muscle contraction. Although it does 

not have much lethal activity, bradykinin may contribute to rapid 

immobilization of prey by inducing muscle paralysis. 

In their study on 10 venomous snakes from Costa Rica, Guiterrez 

and Chaves (14) found that the hemorrhagic activity of ~· muta venom 

in white mice to be extensive, surpassed only by ~· picadoi and ~· 

godmani. They also report slight myonecrotic activity as well as 

moderate proteolytic activity for busP~aster venom. 

Because of its ability to convert fibrinogen to fibrin, L. muta 

venom is considered to show thrombin-likE~ activity (15). While it has 

been shown that heparin prolongs the clotting time induced by viperid 

venoms, Nahas et al. found that thrombin-like venoms such as L. muta 

were not influenced by the anticoagulant effect of heparin. Hence, 

there is little support for the therapeutic use of this compound in 

the defibrination syndrome induced by these venoms. Furthermore, the 
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hemorrhage produced by envenomation appears to be due to other toxic 

effects of the venom rather than to the incoagulability (16). 

Early reports on antivenins expressed the belief that their 

ability to neutralize the toxic properties of venoms could also be 

the same as the ability to neutralize the coagulant properties of 

venoms. However, as early as 1937 investigators have indicated a 

lack of correlation between the anti-lethal action and neutralization 

of venom coagulant activity (17). Neutralization by antivenins was 

also once considered specific for the venoms used in their preparation. 

Cesari and Boquet (18) state that almost all venoms could be neutral-

ized by heterologous antivenins. 

This view was partially confirmed by Klobusitzky and Konig (19) 

when they observed that Both!'ops jararaca and Lachesis muta antivenins 

neutralized the coagulant fraction of Bothrops jararaca venom. In 

their study on the cross neutralization of coagulant activity of 27 

Crotalid venoms, Rosenfeld and Kelen (20) found a high index of 

neutralization within venoms of the same genus but no strict specifi-

city between venom and antivenins. 1. muta venom was most effectively 

neutralized by~· durissus terrificus and L. muta antivenins, followed 

by ~· jararaca and then a Bothropic polyvalent antivenin. The L. muta 

antivenin was most effective against~· durissus terrificus, ~· atrox 

(asper) and~· durissus durissus venoms, and moderately neutralized 

B. jararaca venom. 

Thus, it is apparent that the antigenic composition of the 

coagulant factors in these venoms have several features in common. 

This is important not only i.n combatting the effects of envenomation, 

but also in establishing the phylogenetic relationships between species. 



The toxicity of bushmaster venom has been established by a number 

of authors, and is usually reported as the amount that kills 50% of 

the animals inoculated with the venom (21, 22). The LD50 for L. muta 

venom in white mice ranges from 4.51 to 5.59 ~g/g mouse by intravenous 

injection, and from 6.41 to 6.47 ~g/g mouse by intraperitoneal route. 

Another designation of lethality is the Minimum Lethal Dose or the 

smallest amount of venom just sufficient to cause death. Schottler 

(23) reports the subcutaneous MLD for L. muta venom to be 6.0 ~g/g 

mouse, while Kaiser and Michl (7) give a subcutaneous value of 4.0 

~g/g rabbit. In discussing lethal doses of snake venoms, Klobusitzky 

(24) presents a table of MLD values of h· muta venom for the dog, 

rabbit, guinea pig and pigeon by either iv or im injection. These 

values range from 0.07 mg/kg in the pigeon (iv) to 13-16.5 mg/kg in 

the guinea pig (im). 

This toxicity data will be used to isolate the lethal factors in 

bushmaster venom so that the biochemical properties of the toxins can 

be determined. 
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CHAPTER III 

MATERIALS AND METHODS 

Venom 

One gram of free:~e dried L. muta stenophrys (Atlantico) venom and 

one vial of Bothrops, Crotalus and Lachesis polyvalent antivenin were 

received as a gift from Dr. Roger Bolanos, Director, Institute 

Clodomiro Picado, San Jose, Costa Rica. 

Chromatographic Supplies and Animals 

Sephadex G-100 and CM Sephadex were purchased from Pharmacia Co. 

SDS, acrylamide, N,N,N',N'-tetramethylethylenediamine (TEMED) and 

N,N'-methylenebisacrylamide (Bis) were from the Sigma Chemical Co. 

2-Amino-2-hydroxymethyl-1,3-propanediol (Tris) and bromophenol bluewere 

purchased from Canalco. Ammonium persulfate an~ glycine were from 

Eastman Kodak. Aniline blue black and coomassie blue were from 

Polysciences Inc. Agar was from Difco Laboratories, CDl line white 

mice were purchased from Holtzman Co. 

Gel Filtration 

Dry Sephadex G-100 was allowed to swell in 2 to 3 times the final 

bed volume of water and stored at 4 C for 72 hours. The excess water 

was decanted and the gel was packed into a 2.5 x 90 em glass column 
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over a period of 3 hours. The column was equilibrated by washing 

with at least twice the column volume of distilled water. The 

Sephadex column was calibrated using 0.1 ml of a standards solution 

containing milligram quantities of proteins with known molecular 

weights. The flow rate was kept at 0.6 rnl/rnin and 3 rnl fractions were 

collected to give at least 85 fractions. Absorbance of the samples 

was measured with a Coleman 101 spectrophotometer at 280 nm. 

For venom fractionation, 0.1 g samples of whole venom were 

dissolved in 1 rnl of distilled water and mixed by vortex before appli-

cation to the column. Gel filtration and the absorbance measurements 

were kept at the same conditions for the protein standards. Absorbance 

peaks were pooled and then lyophilized on a Virtis lyophilizer. These. 

fractions were stored at 0°C until further use. 

Dry CM Sephadex was allowed to swell in 5 times the final bed 

0 
volume of water and stored at 4 C for 24 hours. Excess water was 

decanted and the gel was packed in a 2.5 x 90 ern glass column. The 

gel was equilibrated by washing with two times the column volume of 

0.1 M KCl, 0.05 M Tris buffer, pH 9.0. Venom fractions were eluted 

with 50 rnl of 0.1 M KCl, 0.05 M Tris buffer pH 9.0, then 50 rnl of 0.5 

M KCl, 0.05 M Tris buffer pH 10.0, and finally with 200 rnl of 0.75 M 

KCl, 0.05 M Tris buffer pH 10.4. Absorbance measurements were deter-

mined as with the Sephadex G-100 column. 

Polyacrylamide Gel Electrophoresis 

Disc gel electrophoresis was performed on the venom fractions 

using the · pH 8. 9 sys tern of Davis ( 25) • This procedure was 

modified by diluting the acrylamide to 7.5%. Milligram quantities of 



the venom fractions were added to the stacking gel, and a current of 

2 mamps per gel was supplied until the tracking dye (bromophenol blue) 

passed into the separating gel. The running current was increased to 

13 

4 mamps per gel until the dye was 1 em from the end of the gels. The 

gels were stained in aniline blue black and destained in 7% acetic acid. 

SDS acrylamide gels were used for MW determinations according to 

the method of Weber and Osborn (26). The gels contained 1% SDS with 

a buffer 7.2. Protein standards and venom fractions were loaded onto 

the gels in mg/ml solutions and electrophoresis was set at 8 mamps 

per gel. The gels were stained in Coomassie blue and destained with 

a 25:10:65 solution of 2-propanol-acetic acid-water. The relative 

mobility for each band was calculated and compared with that of the 

known proteins. 

Toxicity Assays 

Vanom components were tested for their lethality in white mice by 

intraperitoneal injections. The sample solutions were made up at 2 to 

5 times the LDso value of whole venom ln mice, and 0.15 ml of these 

solutions was used for injection. Two mice were used for each venom 

fraction. The mice were checked for vital signs for 24 hours after 

injection. If still alive after 24 hours, the mice were sacrificed 

using ethyl ether and the peritoneal cavity was examined for signs of 

tissue damage. 

Amino Acid Determination 

Venom toxic factors were analyzed for amino acid composition at 

the nanomole level using a narrow bore column (27). One hundred 
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m~crogram samples were hydrolyzed in 200 ].11 of 6 N HCl within evacuated 

sealed test tubes and heated at 110°C for 24, 48 and 72 hours inter

vals. The dried samples were resuspended to a volume of 2.5 ml and 0.1 

aliquots were used for analysis. 

Hemorrhagic Activity 

The ability of whole and fractionated venom to induce hemorrhage 

in mice was tested using the method of Ownby et al. (28). Samples 

were prepared to a concentration of 0.6 mg/ml and 0.1 ml were injected 

intramuscularly into the thigh of the mice. After 24 hours, the mice 

were killed and muscle tissue excised. Primary fixation of the tissue 

was done in 2% gluteraldehyde in 0.27 M eacodylate buffer, pH 7.4 for 

1 hour at 4°C. The tissue was then washed in cacodylate buffer con

taining sucrose. Secondary fixation was done in 1% Os04 in cacodylate 

buffer pH 7.4 for 1 hour at 4°C. The tissue was dehydrated in increas

ing concentrations of ethanol, and then placed in propylene oxide for 

two 15 minute changes. This was followed by a 1:1 solution of propylene 

oxide and polybed 812. Next, the tissue was embedded in polybed 812 

using BEEM capsules. Blocks were sectioned on an LKB ultratome L and 

stained with toluidine blue. Evidence of tissue damage was seen using 

a light microscope. 

Precipitin Tests 

Whole venom and fractions were tested for immunologic precipitation 

with polyvalent antivenin using the method of Oudin (29). Agar concen

tration was prepared to 0.75% with 0.85 g of NaCl in 100 ml of water for 

ionic mobility. Venom concentration was kept at 0.6 mg/ml while the 



antivenin was prepared according to the directions of the Institute 

Clodomiro Picado. Two drops of the solutions were added to the agar 

wells, the plates were sealed with tape and then stored at 37°C in a 

humid incubator for 24 hours. Precipitin bands between the gels were 

recorded by hand on notebook paper. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Venom Fractionation 

In preliminary work from this laboratory, it was found that the 

use of buffers in the Sephadex gel filtration of L. muta venom with the 

subsequent 1~equired dialysis and lyophilization steps resulted in the 

loss of toxic activity. If the dialysis step is eliminated by the use 

of deionized water as eluent, the toxicity of the fractions is retained. 

This procedure was used to separate the components of L. muta venom 

into 5 protein fractions (G-100) as shown in Figure 2. 

Each of these venom fractions was concentrated by lyophilization 

and passed separately through the Sephadex G-100 column again, but 

there was no further resolution of components. An estimate of the 

molecular weight range for each fraction was made by comparison with 

the elution of known protein markers. The calculations were performed 

on a hand held calculator fitted with linear regression, and are shown 

in Table II. 

In each of the Sephadex profiles, ftaction I eluted with the void 

volume and is assumed to be equal to or in excess of 100,000 daltons. 

This result is in agreement with Yangs fractionation of snake venoms 

by Sephadex gel (30). He found that the Crotalidae venoms had elution 

patterns located closer to the void volume than the venoms of other 

16 



Figure 2. Sephadex G-100 Elution Profiles of L. muta Venom. (Eluent: 
deionized water, 3 ml/tube) Colu;~ size: 2.5 x 90 em. 
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families (30). The remaining L. muta fractions were in the molecular 

weight range of 100,000 to 3,000 daltons. 

TABLE II 

ESTIMATED MOLECULAR WEIGHTS OF VENOM COMPONENTS* 

G-100-10-12 G-100-10-23 G-100-11-27 

I > 100,000 > 100,000 > 100,000 
II 120,000 100,000 104,000 

III 74,500 58,500 54,500 
IV 34,000 26,000 24,600 
v 4,600 3,600 2,800 

*Estimates were made using gel filtration data and are expressed in 
daltons. Venom used for each column came from the same source. 

The toxicity of the venom fractions to mice was tested by intra-

peritoneal injection at concentrations estimated to be greater than 

the lethal dose of whole venom. In each test, 2 mice per fraction 

were marked and observed for 24 hours after injection. The results 

for 3 gel fractionations can be seen in Table III. Fractions I, II 

and III were all toxic to the mice but at different rates. 

Fraction I caused the most rapid deaths, which occurred within 

60 minutes after injection. This was followed by fraction III, which 

caused death within 2 hours, and then fraction II, fatal in 3 to·6 

hours. In each case of fatality, the mice would exhibit uncontrolled 
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muscular spasms, arched spinal columns, difficulty in walking, labored 
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breathing and would retreat to one corner of their cage. Examinations 

of the peritoneal cavity after death revealed the presence of blood in 

the cavity as well as signs of hemorrhage in the inter~al organs. 

TABLE III 

OBSERVATIONS OF FATALITY IN MICE DUE TO VENOM FRACTIONS 

30 min 1 hr 2 hr 3 hr 6 hr 24 hr 

Whole Venom 1/2 2/2 

G-100-10-12 I 0/2 0/2 0/2 0/2 0/2 0/2 
II 0/2 0/2 0/2 0/2 0/2 0/2 
III 1/2 1/2 1/2 2/2 
IV 0/2 0/2 0/2 0/2 0/2 0/2 
v 0/2 0/2 0/2 0/2 0/2 0/2 

G-100-11-23 I 1/2 2/2 
II 0/2 0/2 0/2 l/2 2/2 
III 0/2 1/2 2/2 
IV 0/2 0/2 0/2 0/2 0/2 0/2 
v 0/2 0/2 0/2 0/2 0/2 0/2 

G-100-11-27 I 0/2 2/2 
II 0/2 0/2 1/2 2/2 
III 0/2 1/2 2/2 
IV 0/2 0/2 0/2 0/2 0/2 0/2 
v 0/2 0/2 0/2 0/2 0/2 0/2 

Numbers indicate number of dead mice/number of mice injected. 

The number of components in each of the 3 toxic fractions I, II 

and III was examined by polyacrylamide gE'l electrophoresis. Figure 3 

shows the variation of protein bands detected by this method. Fraction 



Figure 3. Polyacrylamide Gel Electrophoresis of Sephadex G-100 Venom 
Fractions 

A. G-100-10-12 whole venom, I, II, III, IV, V 
B. G-100-11-23 whole venom, I, II, III, IV, V 
C. G-100-11-27 V, IV, III, II, I, whole venom 
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I contained only one major hand. This suggests that a relatively high 

molecular weight toxin was isolated from 1. muta venom as fraction I. 

23 

Fractions II and III contain a number of bands that are also 

present in whole venom. Since both of these fractions exhibit toxicity 

in mice, and since fraction II appears to contain the 2 electrophoretic 

bands found in fraction III, the difference in toxicity may be due to 

the difference in quantity of a single toxin found in both fractions. 

Fraction III from the G-100-10-12 column was resuspended in 0.05 M Tris 

buffer and added to a 2.5 x 90 em CM Sephadex column. The components 

were eluted with increasing concentrations of KCl to form 2 distinct 

peaks as shown in Figure 4. These peaks were concentrated by lyophili

zation without dialysis, and the residue was resuspended in deionized 

water to approximate the LD50 for whole venom. However upon ip injec

tion, neither of these CMS peaks were toxic to mice. This loss of 

toxicity may have been due to the separation of toxic factors in 

fraction III, but could also result from the accumulation of salt in 

the residue due to the use of Tris buffers as eluent. This separation 

was attempted with another fraction III sample, but was unsuccessful. 

Since fraction III contains only 2 electrophoretic bands that 

appear to be inseparable without loss of toxicity, this fraction was 

used as a possible toxin for characterization studies. Because of the 

inexact reproducibility of the Sephadex profiles, a better method would 

have been to pool all the fraction III samples from many columns and 

then attempt better resolution. 

Molecular Weight Detf:rmination 

The molecular weights for fractions G-100-11-23 I and G-100-11-27 



Figure 4. CM Sephadex Elution Profile for G-100-10-12 III 

Eluent: 50 ml 0.05 M Tris, 0.1 M KCl pH 9.0 
50 ml 0.05 M Tris, 0.5 M KCl pH 10.0 

200 ml 0.05 M Tris, 0.75 M KCl pH 10.4 
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*Measured in milliMho 
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III were derived by SDS polyacrylamide gel electrophoresis. The 

relative mobility of these fractions can be seen in Figure 5 compared 

to that for proteins of known molecular weight. Calculations showed 

that fraction I corresponded· to a weight of 139,600 daltons, while 

fraction III had 2 SDS bands with weights of 62,400 and 20,300 daltons. 

These MW values are similar to those obtained from hemorrhagic 

toxins isolated from other Crotalidae venoms. Ohsaka et al. (31) 

found 2 hemorrhagic factors in Trimeresurus flavoviridis (Habu) venom. 

HRl was an acidic protein with a molecular weight of 104,000 and a pi 

of 4.3, while HR2 was further resolved into components HR2a and HR2b. 

All 3 toxins, HRl, HR2a and HR2b, are thought to be specific proteoly

tic enzymes with unidentified specificity (32). The venom of Agkistro

don halys blomhoffi (Mamushi) also contains 2 hemorrhagic factors. The 

HR-1 factor was isolated as an acidic glycoprotein with a weight of 

80,000 to 90,000 daltons (33). Bjarnason and Tu (34) found 5 hemorr

hagic toxins in the venom of Crotalus atrox. The largest of these 

toxins, designated HT-a, has a weight of 68,000 while the other 4 

toxins all have weights of 24,000 to 26,000 daltons. 

Amino Acid Analysis 

Analyses were obtained for the 24, 48 and 72 hour hydrolysis 

products of the Sephadex fractions I and III. The averaged results 

shown in Table IV are expressed in number of residues based on the 

molecular weights derived by SDS gel electrophoresis. For fraction 

III, this was assumed to be 59,800 daltons. Also shown is the percent 

amino acid based on the total amount detected. These values do not 

account for cysteine or tryptophan which may be present. 



Figure 5. SDS Polyacrylamide Gel Electrophoresis of L. muta Toxic 
Fractions 

Protein Markers MW Mobilit:y: 

I) Cytochrome C 1.24 X 104 0.698 
2) Chymotrypsinogen A 2.5 X 104 0.492 
3) Bovine Serum Albumin 6.7 X 104 0.357 
4) Lactate Dehydrogenase 1.4 X 105 0.197 
5) G-100-11-23 I 0.201 
6) G-100-11-27 III 0.439, 0.533 
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TABLE IV 

AMINO ACID COMPOSITION OF L. MUTA TOXIC FRACTIONS 

G-100-11..;.23 I G-100-11-27 III 

Residues % Residues % 

Asp 172.8 13.1 72.1 14.1 
Thr 73.2 5.6 26.2 5.1 
Ser 94.3 7.2 27.4 5.3 
Glu 132.9 10.1 68.9 13.4 
Pro 64.7 4.9 43.6 8.5 
Gly 119.7 9.1 43.7 8.5 
Ala 80.5 6.1 37.2 7.3 
Val 74.6 5.7 22.1 4.3 
Met 22.7 1.7 9.0 1.8 
Ile 68.8 5.2 27.6 5.4 
Leu 92.9 7.0 36.4 7.1 
Tyr 49.1 3.7 8.9 L7 
Phe 49.2 3.7 14.8 2.9 
His 35.0 2.7 21.9 4.3 
Lys 74.4 5.7 26.9 5.2 
Arg 66.4 5.1 26.4 5.1 

Number of residues are based on molecular weight derived from SDS data. 
Percent is calculated from (27). 

The L. muta fractions appear to be acidic proteins since aspartic 

and glutamic acids comprise nearly 25% of the amino acid content. 

Fraction I also shows a moderate content of serine, glycine, and 

leucine. Fraction III, although known to contain at least 2 components, 

has a moderate content of proline, glycine, alanine and leucine. A 

more complete fractionation of this gel filtration fraction would give 

a better representation of the amino acid content of L. muta toxins. 

Interestingly, the amino acid values presented here are similar 

to the amino acid compositions for several Crotalid venoms. The HR-1 



factor from A. halys blomhoffi venom has a pi of 4.18 and shows a 

large content of aspartic and glutamic acids, leucine, tyrosine and 

arginine (33). Hemorrhagic toxins a, c, d and e from~- atrox venom 

are all slightly acidic with 22 to 26% oi the total represented by 

acidic residues and their amidated c9unter.parts (34). 

Hemorrhage 

Since the ~· mut~ fractions showed signs of hemorrhage when 

injected intraperitoneally in mice, the 2 isolated fractions, 

G-100-11-23 I and G-100-11-27 III, were tested for their hemorrhagic 

activity by an intramuscular injection into the thigh of the mice. 

Muscle tissue was excised 24 hours after injection, fixed, embedded, 

sectioned, stained and then viewed by light microscope. Photomicro

graphs of the tissue damage appear in Figure 6. 

The first picture shows normal muscle tissue taken from the 

control mice. The muscle cells appear as whole cells and the blood 

vessels are intact. This is in contrast to the muscle tissue injected 

with the G-100-11-23 I fraction. Once again the muscle cells look 

normal, but the presence of numerous erytnrocytes indicates the large 

amount of hemorrhage that has occurred. Also present is what appears 

to be a smaller number of macrophages in the process of phagocytizing 

the red blood cells. 

The tissue injected with the G-100-11-27 III fraction also shows 

hemorrhage but the number of erythrocytes present is less than that 

found in the first fraction. This implies a stronger hemorrhagic 

ability in fraction G-100-11-23 I, but without a quantitative measure 

of the hemorrhage this is only a causal observation. Fraction III 

30 



Figure 6. Photomicrographs of Tissue Damage Induced by 1· muta Toxic 
Fractions 

A. 0.1 ml PSS, 800x 
B. 0.1 ml G-100-11-23 I (0.6 mg/ml), 800x 
C. 0.1 ml G-100-11-27 III (0.6 mg/ml), 300x 
D. 0.1 ml whole venom (0.6 mg/ml), 300x 

M: muscle cell 
CT: connective tissue 
BV: blood vessel 

E: erythrocyte 
V: vacuole 
N: nerve 
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III also exhibits slight myonecrotic activity. This is seen in the 

photomicrographs as the deterioration of some of the muscle cells and 

the formation of cellular vacuoles. 
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Finally, the muscle tissue injected with~· muta venom shows both 

hemorrhage and myonecrosis. Numerous erythrocytes can be seen within 

the connective tissue as well as within the vacuoles of damaged cells. 

It appears then, that a major hemorrhagin in the whole venom was 

isolated as fraction I while fraction III contains a myonecrotic as 

well as hemorrhagic factor. 

Immunodiffusion 

The immunological identity of the toxic fractions of h· muta 

venom was tested against that of the whole venom. Polyvalent antivenin 

was placed in the center wells while venom and venom fractions were 

added to the outer wells. The placement of the toxic fractions was 

such to allow for lines of precipitation not only between the fractions 

and antivenin, but also between the fractions and venom. Three 

Ouchterlony plates with typical results are shown in Figure 7. 

The first plate shows 2 precipitin bands between the venom and 

antivenin, one band between fraction III and antivenin and none between 

fraction I .and antivenin. This pattern is repeated in the other 2 

plates and establishes the identity of fraction III with whole venom. 

The absence of any immunological preci~itation between fraction I and 

antivenin is most likely due to physical factors such as concentration 

of components and distance between the we:lls. Yet, even with a 3 to 1 

concentration of fraction I to antivenin,. no precipitation was seen. 

Although Bolanos et al. (35) found r~.o less than 13 immunoelectro-



Figure 7. Ouchterlony Plate of L. muta Toxic Fractions 

WV: whole venom 
I: G-100-11-23 I 

III: G-100-11-27 III 
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phoretic bands between L. mut.§: stenophrys venom and anti-Lachesis 

serum, the maximum achieved in this study was only 2 bands. Again, 

physical factors could limit the number of precipitin bands in an 

.Ouchterlony plate, but not to the extent in these results. Additional 

tests were done increasing the retia of venom to antivenin to 3:1, 

but the results were the sarne. 



CHAPTER V 

SUMMARY 

The fractionation of bushmaster venom raised as many questions as 

it had hoped to answer. Although this work was preliminary in nature, 

it still revealed the complexity of biological systems. A schematic 

diagram illustrating the results of this research is sho~vn in Figure 8. 

Gel filtration of the venom produced five distinguishable elution 

peaks, three of which showed toxic activity. This is the first reported 

isolation of a toxic fraction from h· muta venom. Fraction I, which 

eluted with the void volume of the Sephadex column, is a high molecular 

weight toxin easily separated from the venom. Amino acid composition 

of this fraction shows an acidic protein of 140,000 daltons which 

induces hemorrhag.e in mice. Fraction III contains two electrophoretic 

bands which appear to be found in fraction II as well. Attempts to 

separate these bands apparently resulted in loss of toxicity. When 

subjected to characterization studies, fraction III also showed a large 

content of acidic residues but induced myonecrosis as well as hemorrhage 

in mice. The molecular weights for the two fraction III bands were 

estimated at 60,000 and 20,000 daltons. 

With this information in hand, greater investigation of the 

hemorrhagic factors of L. muta venom can be performed. The role of 

metallic ions in venom action can be defined and quantitated. Fractions 

II and III should be subjected to greater analysis so that all toxic 
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Figure 8. Fractionation Scheme for L. muta Venom 
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components can be isolated and recognized. A quantitative measure of 

the tissue damage induced by the toxic factors can then be made. 
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