MICROCOMPUTER BASED DATA ACQUISITION FOR A TRACTOR-MOUNTED PENETROMETER

Ву

GLEN PHILIP RIETHMULLER Bachelor of Engineering (Agricultural) Darling Downs Institute of Advanced Education Toowoomba, Queensland Australia

1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1982

MICROCOMPUTER BASED DATA ACQUISITION

FOR A TRACTOR-MOUNTED PENETROMETER

Thesis Approved:

Thesis ser

Dean of the Graduate College

ACKNOWLEDGMENTS

The author wishes to express gratitude and appreciation to his major adviser Professor David G. Batchelder for his guidance and encouragement throughout this work as well as appreciation to all of the faculty and staff of the Agricultural Engineering Department.

A special thanks is expressed to Mr. Doug DeVoe and Mr. Randy L. Cochran for their constant help and interest during programming, to Bruce Lambert for his electronic expertise and to Dr. Peter D. Bloome and Dr. Ahmad Khalilian for their organization and assistance in the field.

Thanks also are due to Mrs. Laura Johnson for her endurance in typing this thesis.

TABLE OF CONTENTS

Chapter	1	Page
I.	INTRODUCTION	1
II.	OBJECTIVES	4
III.	LITERATURE REVIEW	5
IV.	INSTRUMENTATION SYSTEM	15
	Penetrometer Lateral Position Transducer	19 21 23 26 29
۷.	CALIBRATION PROCEDURES	31
	Lateral Position Calibration Depth Calibration	31 32 32
VI.	PROGRAM SOFTWARE	37
VII.	RESULTS AND DISCUSSION	42
VIII.	SUMMARY AND CONCLUSIONS	48
REFEREN	NCES	50
APPEND	IXES	54
	APPENDIX A - BASIC AND MACHINE LANGUAGE PROGRAMS	55
	APPENDIX B - AIM 65 TO TEKTRONIX DATA TRANSFER PROGRAM	66
	APPENDIX C - TEKTRONIX TO SAS DATA TRANSFER PROGRAM	72
	APPENDIX D - LOAD CELL SPECIFICATIONS	74

LIST OF TABLES

Table		Page
I.	Cone Index Model Constants for Each Soil Type	12
II.	Load Cell Calibration	33
III.	Pressure Gauge Calibration	35

LIST OF FIGURES

Figu	re	Page
1.	Overall Instrumentation System	16
2.	Signal Conditioning Circuitry	17
3.	Power Supplies	18
4.	Penetrometer Lateral Position Transducer	20
5.	Penetrometer Depth Transducer	20
6.	Uncovered AIM 65 Microcomputer with Tape Recorder and Signal Conditioning Box	22
7.	AIM 65 Microcomputer with Tape Recorder and Signal Conditioning Box	22
8.	Soil Surface Circuitry	24
9.	Cone Penetrometer	25
10.	Penetrometer Load Cell	25
11.	AIM 65 Complete Memory Map	30
12.	Penetrometer Operation In Field	36
13.	Oil Flow Control and Pressure Reducing Valve.	36
14.	Data Recording Subroutine Flowchart	39
15.	Data Recording And Processing Flowchart	41
16.	Soil Strength Profile	43
17.	Soil Strength Profile	44
18.	Average Cone Index with Depth at Blackwell, 10th Sept. 81	45
19.	AIM 65 Printer Output	46

CHAPTER I

INTRODUCTION

High soil strength and high bulk density have been shown to be the most significant soil physical properties that reduce crop yields. Thus a fast accurate method of determining whether a problem exists in a particular soil type is needed for tillage research and research involving yield trials. A cone penetrometer measures soil strength and its use has been shown to exhibit relatively fast and reproducible tests in the field. Cone index is an index of soil strength which is defined as the force, per unit base area of a 30° circular cone, required to force the cone through a small increment of soil and is expressed in kilopascals (kPa).

A study conducted by Carter et al., (1968) showed that cotton yield was significantly reduced by increasing soil strength and bulk density. Yield decreased linearly with increases in bulk density. A 50 percent reduction in yield was found from an increase in bulk density from 1.48 to 1.58 grams per cubic centimeter, corresponding to a change in soil strength at field capacity moisture content from 923 kPa to 2240 kPa. The state of the soil can be

measured most quickly by using a cone penetrometer. However, soil strength is affected by a number of parameters including soil moisture and bulk density. Thus one single penetration may not be completely descriptive of soil strength and state.

Taylor and Gardner (1963) found cotton root growth was severely limited when the porosity or air content dropped to 10 percent and cone penetration resistance increased to 2140 kPa. A root tip can develop pressures exceeding 1000 kPa by the root growth mechanism, but nutrient supply, oxygen content, and water limit growth in highly compacted soils.

There are many limitations to be recognized with the use of a cone penetrometer to indicate soil bulk density. Soil bodies can develop ahead of the cone which changes the geometry and therefore resistance to penetration. The shaft of the penetrometer can interact with the soil for very high and low moisture contents, thus increasing the resistance to penetration. Until more is known, penetrometers are useful for comparative measurements on the same soil at the same moisture content with the same rate of penetration. The best time for measurement is at field capacity moisture content.

In the past many recording penetrometers used X-Y plotters. Plotter use was slow and calibration was a problem. Processing data from X-Y plots was a very timeconsuming task. To greatly reduce this processing time, a

microcomputer was used to record penetrometer lateral position, depth, and cone index on a 20 character printer and on magnetic tape. The soil strength profile was then plotted using the Statistical Analysis System (SAS)¹ procedure GCONTOUR.

¹SAS Institute Inc. Box 8000, Cary, North Carolina.

CHAPTER II

OBJECTIVES

1. Develop a system of measuring, recording, and plotting soil strength, as measured by a cone penetrometer, in the form of a contour map of soil strength.

2. Verify the system on a specific soil to examine a soil strength profile, and statistically plot the strength versus depth.

CHAPTER III

LITERATURE REVIEW

The cone penetrometer appears to be the most widely used instrument for determining soil strength in situ, despite the theoretical shortcomings of cone resistance measurements. Anderson (1980) believes cone penetrometers will continue to be widely used for many years. Increased emphasis has been recently received for the importance of soil mechanical properties in tillage research (Reece, 1977; Pidgeon, 1978).

The disadvantages of cone resistance measurements have been widely acknowledged (Mulqueen, 1977) and the empirical nature of the data obtained is one of the major drawbacks. However, useful empirical correlations have often been obtained between cone resistance and crop root growth (Taylor and Ratliff, 1969; Taylor, 1971; Gooderham, 1973; Houben, 1974; Bowen, 1976), vehicle performance and mobility (Wismer and Luth, 1973; Turnage, 1972; Wells and Treesuwan, 1977) and the compactive or loosening effects of wheels or tillage implements (Dumas et al., 1975; Soane et al., 1976; Voorhees et al., 1978; Cassel et al., 1978).

There are many different types of penetrometers ranging from simple, inexpensive hand-held devices (Soane et al., 1971; Howson, 1977) through electronic hand-held penetrometers (Prather et al., 1970) to complex vehiclemounted systems (Brown and Anderson, 1975; Smith and Dumas, 1978). All these types have disadvantages in field Vehicle-mounted types are usually expensive, heavy use. and limited to taking measurements in bare soil or in small growing crops. When using hand-held devices, one may have problems controlling penetration rate, accuracy of measuring force and depth, recording of raw data and access to recorded data. Anderson et al., (1980) reported few hand-held penetrometers were commercially available and there was a lack of comparative studies of different penetrometers. They developed a new hand-held recording penetrometer and compared it to three existing types; a Farnell hand-held penetrometer (Soane et al., 1971), an electrically-driven constant-velocity recording penetrometer (Brown and Anderson, 1975) and a cassette recording hand-held variable velocity penetrometer described by Spencer et al., (1977). The Farnell penetrometer was probably the most widely used field penetrometer in Britain in 1980, but is described as non-recording since it requires the operator to read dials during penetration.

The Anderson et al., (1980) penetrometer was composed of a force sensing load transducer and a double window optical system for depth measurement. The force sensing

transducer was essentially a flexure parallelogram with a strain-gauged center beam which had the advantages of being sturdy and insensitive to side loads while having good resolution for vertical loads, a high spring rate, and a rapid response time. The transducer was a four-arm active element temperature-compensated strain-gauge bridge and the analog signal was amplified and digitized by the combination of a voltage-to-frequency converter and a gated counter. The gate timing was 100 milli-seconds so the readings were effectively averaged over a small range of depth. After counting, the number representing cone resistance (resolution 1% of full scale) was stored in an exclusive location prior to processing.

The maximum force had to be within the limits of the operator to avoid the influence of the operator physical strength and was taken as 500 Newtons. If the limit were exceeded, an audible alarm warned the operator to stop the stroke.

Defining a datum level for depth measurements was a problem, particularly on rough soil surfaces, so a 15 cm diameter base plate rested on the soil surface. Depth was measured to an accuracy of ±1 mm using a double window optical system. An infrared source and detector unit was mounted on the penetrometer top which passed by accurately placed holes in an angle section metal rod that was attached to the base plate. The metal rod could be

inter-changed for different hole spacings for specific operator requirements. The double window arrangement allowed the instrument to distinguish between upward and downward movement, to avoid spurious readings when the cone was withdrawn before reaching full depth.

The penetrometer could be operated in a single stroke mode, without the programmable calculator, and the operator would record each force and depth by a push button after each stroke. With the programmable calculator, data from each stroke could be accumulated. The calculator could then display or print for each depth the mean cone resistance, standard deviation, and the number of strokes recorded at that depth. In stony or hard soils, the number of strokes recorded at each depth would vary and thus the cone resistance at each depth may have had non-normal probability distributions.

Small rechargeable batteries powered the CMOS solidstate electronic components and the low power liquidcrystal display was readable under all ambient lighting conditions.

A 12.83 mm diameter cone was used and calibration was achieved by placing weights, one at a time, and recording the load readings. Slight adjustment for zero was required in the field and sensitivity was sufficiently stable in the field to not require recalibration.

To compare the four penetrometers, two trials were carried out in a 25m x 2m x 0.5m soil tank using two different soil compaction profiles of homogenized loam topsoil. One hundred strokes were made with each penetrometer and each penetration of the four instruments was essentially at the same time. Eight strokes (two for each penetrometer) were made in a straight line across the soil tank starting 25 cm from the edge to eliminate edge ef-This arrangement was then replicated 50 times with fects. intervals of 40 cm between lines of strokes. The positions of the penetrometers in the lines were randomized to minimize errors due to uneven packing and care was taken to avoid footprints on the soil. The means and standard deviations of the 100 readings of each penetrometer were calculated at depth intervals of 3 cm for the recording penetrometers and 6 cm for the non-recording penetrometer.

The results showed the standard error of the means to be small, with individual values in the range 60 to 100 kPa, and the recording penetrometers were superior in detecting abrupt changes in cone resistance. The analysis of variance showed large F ratios for between sites and between depths, as expected, but also there was significant variation between penetrometers. The recording penetrometers all produced similar soil profiles, with a few unexplained discrepancies, but the non-recording penetrometer method smoothed out the abrupt changes in cone resistance. Also measurements on direct drill, deep-plow, and

shallow plowed soil indicated variations in cone resistance existed only in the plow zone, which was 25 cm deep, when using the recording penetrometers. The variations in this 25 cm zone was not picked up by the non-recording penetrometer which stressed the need for accurate penetrometers for meaningful cone resistance profiles.

When the penetrometers were used in high stone content soil, major problems of interpretation resulted. Some profiles departed quite markedly from the general trend. Stones produce a single-sided distribution error since stones always increase the readings. Stone distribution could be related to tillage treatment so there may be little gain in conducting more replications in stony soils to reduce the variations between tillage treatments. Stone friction on the side of the rod, after a stone was pushed aside, would effect further readings. This effect could be eliminated by placing the force transducer at the base of the cone.

Ayers (1980) investigated the effects of moisture and dry density on cone index for soil mixtures of Zircon sand and Fire clay in proportions 100% clay, 75% clay-25% sand, 50% clay-50% sand, 25% clay-75% sand, and 100% sand. Results showed the moisture content for maximum cone index to be lower than the moisture content for maximum dry density. For the 50% clay-50% sand mixture a maximum cone index of 3300 kPa occurred at 5% moisture (dry basis) for a compactive effort of 12 blows of a 4.3 kg drop hammer from a height of 30.5 cm. The maximum dry density occurred at 10% moisture when the cone index was only 1200 kPa.

For a given compactive effort, Ayers (1980) found an increase in the percentage of clay increases the moisture content at which the maximum cone index occurred. Also for a given soil type, an increase in compactive effort produced an increase in the maximum cone index. With increasing moisture content, a logarithmic decline in cone index was observed. For all soil types, except for 100% sand, cone index increased with increasing dry density. At low moisture contents (2.6 - 6.7) the cone index seemed to increase exponentially with dry density giving a large increase in cone index for a small increase in dry density. At higher moisture contents, the relationship was more nearly linear and at high moisture contents (11.8%) the rate of increase of cone index with dry density decreased considerably. Thus at higher moisture contents, cone index was less dependent on dry density.

Ayers (1980) developed the following prediction equation model to represent the cone index - density moisture content relationship.

 $CI = (C1 \times DD^{C4})/[C2 + (MC - C3)^{2}]$ where:

> CI = cone index, kPa DD = dry density, gm/cc

MC = moisture content, % dry weight

Cl, C2, C3, C4 = constants to be estimated depending
on soil type. The values Ayers found are shown
in Table I.

TABLE I

CONE INDEX MODEL CONSTANTS FOR EACH SOIL TYPE

Soil Type	Cl	C2	C3	C4	R-Square
100% clay	4540.9	31.94	9.21	6.37	0.985
75% clay-25% sand	928.1	20.22	7.41	6.60	0.983
50% clay-50% sand	82.39	9.47	4.77	7.50	0.978
25% clay-75% sand	1.10	2.19	3.29	9.34	0.982
100% sand	1.58	17.72	5.54	8.92	0.940

These equations predict cone index for an average of the top 15 cm with dry density in the range 1.88-2.35 gm/cc and moisture content in the range 2.6-11.8% (dry basis). For natural soils, new constants would have to be estimated. Threadgill (1981) studied the effects of controlled traffic on soil strength measured by a cone penetrometer of base area 1.3 sq. cm, cone angle 30 degrees, and operated according to the ASAE Standard S313.1 (ASAE, 1980). Three tillage practices were used over a period of four years (1977-1980) - moldboard plow, in-row subsoil and plant, and slot plant.

A tractor mounted, hydraulically operated, recording soil cone penetrometer was used to collect data from the center bed of each plot. All penetrometer data were collected when soil moisture was as near as possible to field capacity. Profiles of cone index versus depth were obtained to a depth of about 51 cm below the nominal soil surface elevation at 15 cm lateral intervals across the 182 cm wide bed. A single curve was obtained by averaging four replications which was then digitized at two centimeter depth increments. Contour lines of cone index were drawn on the profile using a shading format of the Statistical Analysis System (SAS) (neglecting spurious readings caused by rocks) and then the contour lines were again digitized for plotting (Threadgill, Personal Communication, 1981).

Threadgill (1981) concluded that the residual effectiveness of an initial tillage practice such as in-row subsoiling in a controlled-traffic production system with

conventional wheel spacings was evident after moldboard plowing the second year but was eliminated by moldboard plowing a third year with a resulting reestablishment of a compacted layer. The generally accepted criteria of a compacted layer is 2000 kPa cone index or greater which frequently reduces crop yields and values above 1500 kPa frequently reduce root growth (Carter and Tavernetti, 1968; Chancellor, 1977; Taylor and Gardner, 1963; and Smittle and Threadgill, 1977). In contrast, when only a slot plant was used, in-row subsoiling effects were eliminated after the second year and a very severe compacted layer had reestablished by the third year. Compacted layers under the moldboard plowed conditions could have been due to implement traffic or natural cementation, but compact layers under the slot planter appeared to be only attributable to a natural cementation process. This indicated the usefulness of the controlled traffic concept may be limited since benefits of in-row subsoiling may extend for one year under certain tillage systems but may be entirely lost by the second year under other systems. Some soils recompact in one year under very limited traffic conditions. Treadgill (1981) proposed that a tillage rotation such as in-row subsoiling in alternate years would be desirable for certain soils, even when controlledtraffic systems are used, in order to allow the reduced energy benefits of "no-till" planters to be realized.

CHAPTER IV

INSTRUMENTATION SYSTEM

A microcomputer based system was chosen for versatility in programming, low cost, high speed of data manipulation and ease of interfacing with data inputs. The system was based on a ROCKWELL AIM 65 microcomputer which uses a 6502 processor. The AIM 65 was selected for its keyboard, 20 character heat sensitive line printer, input/output tape control, and AIM 65 BASIC (BASIC: Beginner's All-Purpose Symbolic Instruction Code originally developed at Dartmouth College, Hanover, NH) language option. With this microcomputer, collected data could be manipulated, saved on magnetic tape, and routed to the line printer for immediate observation. The tape recorder was a General Electric audio cassette player Model No. 3-5145B. The overall instrumentation system is illustrated in Figure 1 which shows the three input variables - penetrometer force, depth and lateral position; and in addition, it shows signal conditioning circuitry and data acquisition The signal condition circuitry is shown in Figure system. 2 with the power supplies shown in Figure 3.

Figure 1. Overall Instrumentation System

Figure 2. Signal Conditioning Circuitry

5 VOLT 3 AMP REGULATOR

Figure 3. Power Supplies

Penetrometer Lateral Position

Transducer

The penetrometer was forced into the soil using a hydraulic cylinder powered by the tractor hydraulic remote lines and controlled by a flow control valve, pressure reducing valve, and a three position, center detent, direction control valve. The hydraulic cylinder and direction control valve were mounted on a carriage that could be moved along the main frame and locked in position by two friction holding devices. A 10-turn 10K ohm rotary potentiometer was attached to the carriage so that the pulley on the potentiometer shaft was horizontal and close to the main stationary frame. A cord, held in tension by a spring, was attached to the main frame at one end passed around the pulley once and onto the other end of the main frame (Figure 4). In this way, as the carriage was moved across the profile, the potentiometer turned giving an output voltage proportional to the lateral distance along the main frame. The potentiometer input voltage was regulated to 1.0V by a feedback amplifier with a 1.0V reference voltage input (Figure 2).

The potentiometer output voltage was then converted to a 0 to 5 volt square wave signal of frequency controlled by an AD 537 JH voltage-to-frequency converter which had a temperature stable 1500 picofarad polystyrene timing capacitor. The output frequency was then proportional to

Figure 4. Penetrometer Lateral Position Transducer

the input voltage. This square wave signal was connected to the microcomputer input port PA6 which counted the pulses in a fixed time to give a number proportional to carriage lateral position.

Penetrometer Depth Transducer

A 61 cm stroke hydraulic cylinder forced the penetrometer into the soil. On the end of cylinder rod was a pointer to which a cord was attached. The cord travelled up beside the cylinder body and 1.5 times around a pulley on a 10-turn 10K ohm potentiometer at the top and down to a counter balance weight inside a guide pipe (Figure 5). The voltage applied to the potentiometer was regulated to one volt. The output voltage was proportional to the movement of the cylinder rod. This voltage was similarly converted to a 0 to 5 volt square wave signal by another AD 537 JH voltage-to-frequency converter and connected to the microcomputer input port PA7 (Figure 2). All wires carrying frequency signals were made as short as possible and a 20 Hz low pass filter was placed close on the input to the frequency converter to reduce signal noise from the atmosphere. Shielding was used on signal lines to the tape recorder.

The soil surface depth from the top was recorded by stopping at the soil surface to press the "soil surface light" button on the signal conditioning box (Figures 6 and 7). The soil surface was considered the point when

Figure 6. Uncovered AIM 65 Microcomputer with Tape Recorder and Signal Conditioning Box

Figure 7. AIM 65 Microcomputer with Tape Recorder and Signal Conditioning Box the cone base was flush with the soil surface. This button placed a pulse on the microcomputer port PA4 (Figure 8) which recorded the depth. A resistor was placed in parallel with the light bulb to keep PA4 grounded while not in use in case the bulb in the socket did not contact properly.

Penetrometer Force Transducer

The force on the penetrometer (Figure 9) was measured using a four arm temperature compensated strain gauge bridge load cell (BLH ELECTRONICS, INC. TYPE U3G1) (Figure 10 and Appendix D). The maximum load was 2224 Newtons with a 50% peak safe overload of 3337 Newtons. The hydraulic cylinder oil pressure was regulated to 716 kPa (read on a calibrated pressure gauge) so as to not allow the force to be greater than 2224 Newtons on the penetrometer. If this force were not enough, as with hard, dry, soil a smaller penetrometer could be used.

The voltage to the load cell was regulated to 10V by an LM317 voltage regulator. Amplifying the load cell output differential voltage posed a slight problem since an instrumentation amplifier requires a negative as well as a positive power supply. Also without a negative power supply an operational amplifier will not be accurate at less than 0.3 V output. A gain of 10 was chosen to keep the

Figure 9. Cone Penetrometer

Figure 10. Penetrometer Load Cell

input impedance high so as not to affect the strain gauge bridge. The output voltage then ranged from 0.0-0.5V which is in the non-linear range of the operational amplifier. To overcome this, a differential amplifier was used and a one volt input added at a gain of one so the output range was 1.0-1.5 volts (Figure 2). This gave a linear output response since the parallel resistance of R1 and R2 was the same as the parallel resistance of R3 and R4.

To compensate for this additional one volt input, the negative input to the voltage-to-frequency converter was raised to one volt by a direct feedback operational amplifier thus giving a differential voltage range of 0-0.5V at the frequency converter. The compensating operational amplifier was loaded heavily to allow enough current to pass for the V to F converter as the output frequency depends on the current flowing between the positive and negative inputs which has a maximum of lmA.

A 20 Hz low pass filter was added close to the V to F converter to reduce noise in the positive input line.

The Microcomputer

The Rockwell R6500 Advanced Interactive Microcomputer AIM 65 is a complete general purpose microcomputer having advanced hardware and software which can serve as a low cost central processor or controller/monitor. The AIM 65 has two modules -- the master module and the keyboard module -- connected by a plug-in ribbon cable. The master module has a 120 line per minute, 20 column dot matrix thermal printer, a 20 character 16-segment alphanumeric LED display, and microcomputer components.

The Central Processing Unit (CPU) is the R6502 8-bit microprocessor which operates at 1MHz giving a minimum instruction execution time of two microseconds. The R6502 can address 4K bytes of Random Access Memory (RAM) and 20K bytes of Read Only Memory (ROM) on the Master module plus an additional 40K bytes of user provided external RAM, ROM or I/O. Other R6500 devices on the AIM 65 include the R6522 Versatile Interface Adapter (VIA), the R6532 RAM-Input/Output Timer (RIOT), the R2332 ROM, and the R2114 Read/Write RAM.

The keyboard has 70 functions (26 alphabetic, 10 numeric, 22 special, 9 control and 3 user-defined used by the AIM 65.

A ROM-resident 8K monitor controls AIM 65 operations which simplifies use of the CPU, memory, and I/O devices. The monitor translates functional commands into machine code with makes development faster. The AIM 65 Monitor includes commands to:

a. Enter R6502 instructions in mnemonic form for direct translation to object code.

b. Disassemble R6502 instructions from object code to mnemonic form

c. Execute user written programs with debugging aids such as instruction trace, register trace, and breakpoints.

d. Display and alter memory and registers.

e. Transfer object code to and from one or two audio cassette recorders or a teletype.

f. Allow user defined functions to interface with user provided peripherals.

An Editor allows entry, editing, and listing of R6502 source instructions, data, and general text. The Editor has commands to:

a. Transfer text, enter programs or data into memory, or transfer source code to and from one of two audio cassette recorders or a teletypewriter.

b. Locate and change character strings.

c. Move the text line pointer.

d. List selectable lines on output devices.

The Master Module has three ROM sockets for optional AIM programs. A R6502 Assembler, resident in a 4K R2332 ROM was installed for converting R6502 source instructions into object code using symbolic labels and operands. This two-pass assembler checks for errors in mnemonics but is slow when source code is read from a cassette recorder. The remaining ROM sockets were used for the optional AIM 65 8K BASIC Interpreter. The AIM 65 can be interfaced to external equipment through the application connector and the user dedicated R6522 VIA which has 16 bi-directional input/output lines, four control lines, and two timers. Using remote control lines the user can input source code from one cassette recorder and output object code to another cassette recorder when using the AIM 65 assembler.

Programming the Microcomputer

The main program was written in AIM 65 BASIC language with machine language subroutines. The machine language subroutines were written in source code and assembled, using the AIM 65 Assembler, to machine language. In this way the subroutines could be relocated in memory easily. The BASIC program and machine language subroutines were "burned" into an Erasable Programmable Read Only Memory (EPROM) 4K 2532 chip using a DRAM PLUS² Board. This chip was thus placed in the AIM 65 Assembler socket (at hex D000), since it was then spare, and could be addressed by keyboard key "5" which causes a jump to D000. The BASIC variables had to be located in RAM however so a program was used (called BASIC DRIVER) at D000 to tell BASIC where the variables were located. The complete memory map is shown in Figure 11.

²Sold by The Computerist, 34 Chelmsford St., Chelmsford, MA.

Figure 11. AIM 65 Complete Memory Map

CHAPTER V

CALIBRATION PROCEDURES

Lateral Position Calibration

To avoid having to calibrate the lateral position of the penetrometer carriage in the field, it was calibrated in the laboratory. It was found to not vary by more than five percent of the full scale in the field.

With the carriage to the far left on the main frame, a program (DeJong, 1980) was run to count pulses on the frequency wave output from the signal conditioning circuitry in the same time the normal program counted pulses (one second) and continuously output the count to the LED display. The carriage was then moved to the extreme right a distance of 3300 mm. The frequency of the output signal was adjusted (by a variable resistor) so that the difference in counts from one end of the main frame to the other was 6600 counts which gave one pulse for each 0.5 mm. The BASIC program then subtracted the initial left hand count (611) from each position along the main frame and divided the result by two to give the position in millimeters starting at zero from the left.

Depth Calibration

The depth was also calibrated in the laboratory in a similar manner to the lateral position except pulses were counted for one-tenth of a second. With the hydraulic cylinder fully raised the number of pulses was recorded and then with the cylinder fully lowered. The difference was adjusted to give 600 pulses which corresponded to a depth of 600 mm. There was little electrical drift during several months of operation so the depth did not require recalibrating.

Load Cell Calibration

The load cell on the hydraulic cylinder was positioned over a 320 kg balance scale. A hydraulic lift jack was then placed on the scale to force up on the load cell. The main frame did not lift and oil could not escape the hydraulic cylinder. The 4.08 kg jack weight was subtracted from the scale readings. At 2224 Newtons force (maximum continuous for load cell) the output frequency was set to 10,000 Hertz. The results of the calibration is shown in Table II.

The BASIC program thus converted the one tenth second pulse count to kPa by dividing by the area of the cone base. The conversion constant is shown below:

TABLE II

LOAD CELL CALIBRATION

Load (kg)	Force (N)	Output (mV)	Pulses (1/10) sec.
0	0	1.16	32
41.3	405	6.57	168
86.6	850	12.52	370
132.0	1295	18.46	570
177.3	1740	24.43	774
222.7	2184	30.39	980
268.0	2629	36.22	1180
313.4	3074	41.91	1376

R-square = 0.99957

Cone area = $\pi D^2/4$

$$= 0.7854 \text{ D}^2 (\text{mm}^2)$$

where:

The initial force was subtracted from subsequent measurements to give zero pressure before the penetrometer entered the soil.

D = diameter of cone base (mm)

The load cell calibration was checked in the field by forcing the penetrometer onto a rigid board which stopped the penetrometer, allowing the oil pressure relief valve to hold the pressure constant, and the depth potentiometer was turned by hand to simulate the penetrometer entering the soil. With the oil pressure relief set at 716 kPa the force on the cylinder was 2224 Newtons. With a cone diameter of 20.16 mm this gave a cone index of 6970 kPa. The oil pressure gauge was calibrated with a dead weight tester (type - Hanson Chemical Equipment Co., Beloit, Wisconsin, USA) with the results shown in Table III.

The load cell calibration was found to not vary more than four percent of full scale when used in the field (Figure 12). Penetration speed was set at the ASAE standard of 1829 mm per minute using an oil flow control valve (Figure 13).

TABLE III

PRESSURE GAUGE CALIBRATION

Dead Weight Tester (kPa)	Gauge Reading (kPa)
0	0
345	358
689	689
1030	1020
1380	1360
1720	1700
2070	2050
2410	2390
2760	2740
2410	2400
2070	2050
1720	1710
1380	1360
1030	1030
689	689
345	351
0	0

Figure 12. Penetrometer Operation in Field

Figure 13. Oil Flow Control and Pressure Reducing Valve

CHAPTER VI

PROGRAM SOFTWARE

The AIM 65 BASIC and disassembled machine language subroutines are listed in Appendix A and are stored in an erasable programmable read only memory (EPROM) chip located at hexadecimal D000. The BASIC program was entered by the 5 key on the AIM 65 keyboard which executed a jump to D000. The location and date was then entered on the keyboard followed by a "return." The penetrometer cone diameter was required in millimeters and if changed during a test, the BASIC program had to be restarted. At the end of each penetration a question was asked for another test. If the answer was no, the program stored a block of zeros on the magnetic tape to identify the end of the profile. The hydraulic cylinder fully raised position was chosen as a reference depth, so the cylinder had to be raised fully before each penetration.

The penetrometer depth and force were recorded by starting both R6522 timers simultaneously. Timer Tl counted the pulses from the depth signal and timer T2 was loaded with hexadecimal FFFF and decremented by one for each pulse from the force signal. At the end of one-tenth

of a second time period an interrupt occurred and timer Tl was read and timer T2 was read, and exclusive-ored (EOR) with FFFF, giving the number of pulses in the time period. The interrupt program decided whether to record the depth and force or return and restart the timers (Figure 14).

The initial depth was saved in a temporary location for a reference which was increased by an increment corresponding to a depth increase of 20 mm each time a sample was taken. A sample was taken only when successive depth readings exceeded the comparing depth thus giving depth and force readings each 20 mm of depth.

The soil surface was recorded by stopping at the surface to press the "soil surface" button which put a momentary high pulse on port PA4. This port was being read in each time period but only stored in memory when PA4 was high. If a mistake were made of not pressing the button before reaching the full depth, the penetrometer could be raised to the surface and the button pressed again to record the depth. A check was made of the last depth memory location which if not zero at a depth of 600 mm the machine language subroutine returned to the BASIC program.

When the BASIC program read the data memory, it automatically converted hexadecimal numbers to decimal. However since memory data was stored in high byte-low byte manner the high byte had to be multiplied by 256 and added to the low byte to give the correct decimal number. Depth

Figure 14. I

Data Recording Subroutine Flowchart

and cone index were then printed on the AIM 65 thermal printer and the hexadecimal data array was stored on magnetic tape by remote control of the tape recorder. If another penetration were required with the same cone penetrometer size, the BASIC program allowed this decision. If no more data were required, the program stored an array of zeros on the magnetic tape to indicate the end of a profile.

A flowchart of the data recording and processing system is shown in Figure 15. The hexadecimal data on magnetic tape was converted to decimal and transferred to a magnetic tape file on a Tektronix 4052 computer by the program in Appendix B using an RS-232 connector cable interfaced to the Tektronix. The data arrays were then input to a Statistical Analysis System (SAS) data set via a 1200 baud telephone modem. A SAS data set was first initialized for input of data then control was passed to the Tektronix by the "Return to Basic" key. A Tektronix BASIC (called Graphic System BASIC which has two levels: basic BASIC which is the vocabulary used in all applications; and extended BASIC for the graphic system capabilities) program (Appendix C) was then run which output the data arrays via the modem to the SAS data set.

A SAS program using procedure GCONTOUR was used to plot a profile of soil strength contour lines. The values of the contour lines may be manually written on the plot as this procedure provides a legend.

Figure 15. Data Recording and Processing Flowchart

CHAPTER VII

RESULTS AND DISCUSSION

The penetrometer was tested in a Tabler silt loam at Blackwell, Oklahoma. The results of two profiles are shown as examples of the output (Figures 16 & 17). Different colored pens could be used if desired for contour lines. The average cone index was also plotted with 95 percent confidence limits (Figure 18). A slight hard pan was shown at a depth of 240 mm. The confidence limits were wider close to the soil surface which could be expected due to previous tire tracks or uneven tillage.

An example of the AIM 65 printer output, taken in a sand in the laboratory, is shown in Figure 19 which shows the date and location of a three hole profile. At Chickasha, Oklahoma a different tractor was used, and a problem arose of the computer memory being randomly altered. This could have been caused by noise from the tractor alternator or from the frame of the penetrometer. When a filter was placed on the power supply and a ground rod was used on the penetrometer carriage frame the problem was solved. Whether the ground rod was necessary was unclear since occasionally the ground rod was not used and

SOIL STRENGTH PROFILE (KILOPASCALS)

TABLER SILT LOAM, BLACKWELL, 10TH SEPT 81

Figure 16. Soil Strength Profile

SOIL STRENGTH PROFILE (KILOPASCALS)

TABLER SILT LOAM, BLACKWELL, 10TH SEPT 81

Figure 17. Soil Strength Profile

Figure 18. Average Cone Index with Depth at Blackwell, 10th Sept. 81

CBRR1AGE 748.5 M Z NDEX € \mathbf{z} Э-5 S START PENETRATION Soil Surface Defth= 245 MM LL. ÷ Эù. 2 CONE CYLINDER \mathbf{f}_{i} 7E51? ENTER ENTER 1991 POSITION OF PROM LEFT = ANOTHER ? Y RRISE CY e utili FIND DHE ゆのゆのゆのすりりす READY) SEADY) ත ක ක ක ПЕСИ440044 ГЕ СССССИ Г С СССССО Г С СССССС ᲝᲙᲐᲝᲠᲙᲐᲠᲐᲝᲐᲝᲐᲝᲝᲝᲡᲡᲡᲡᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝᲝ ᲓᲦᲝᲦᲝᲐᲠᲝᲐᲝᲝᲝᲝᲓᲝᲙᲐᲠᲝᲓᲝᲥᲑᲝᲓᲓᲝᲜᲝᲜ ᲓᲝᲓᲝᲑᲝᲑᲝᲓᲝᲑᲝᲓᲝᲓᲝᲓᲝᲓᲝᲓᲝᲜᲝᲜᲝᲝᲝᲝᲝᲝ ហហភ ii. II. E. A E INDEX CHRRIAGE 581.5 R Z 3-101 e O NOILE Эŀ 1 E SOS ANDTHER TEST? ' ? Y RAISE CYLINDER START PENETRAT SOIL SURFACE DEPTH= 253 MM CYLINDER ENTER 5 POSITION O FROM LEFT M କର୍ଦ୍ଦର୍ଦ୍ର କାଳ READY? 0000 C THENT START PENETRATION WITH CYLINDER FULLY RAISED. AND STOP AT THE SOLL SURFACE TO PRESS THE SOLL SURFACE BUTTON THEN CONTINUE TO THE CYLINDER FULL EXTENT CARRIAGE 412 MM CN) THIS PROGRAM READS AND DISFLAYS PROBE DEPTH (MM) AND CONE INDEX (KPA) AT THE END OF EACH STROKE < MM > NDE NDE ž START PENETRATION SOIL SURFACE DEPTH= 239 MM မှု ဖ e H Ü. Ela CONE DIAMETER 16 DIA = 20. LOCATION? ?'SOIL·LAB, DATE? ? 2-23-1982 POSITION OF FROM LEFT = មហេតុ សំណាង សំ សំណាង សំណ ROCKWELL 6666 Ø. 0.0

igure 19. AIM 65 Printer Output

Ē

everything functioned normally. The cord turning the depth potentiometer gave some slippage which had to be checked so as not to exceed the limit of potentiometer before the penetrometer was fully in the soil. A link chain and sprocket drive, instead of a cord drive, on the depth potentiometer would have solved this problem.

CHAPTER VIII

SUMMARY AND CONCLUSIONS

A Rockwell AIM 65 microcomputer was used to record and display lateral position, depth, and cone index of a tractor mounted hydraulically operated cone penetrometer. Analog data inputs were converted to a square wave signal of frequency proportional to the input and interfaced to the microcomputer which counted the square wave pulses in a time period. The microcomputer was programmed in BASIC with machine language subroutines to count pulses. The program was "burned" into an erasable programmable read only memory (EPROM) chip so the program could be accessed simply by turning on the microcomputer and pressing key N. The depth and cone index was stored on magnetic tape as well as printed on the 20 character AIM 65 thermal printer. Data on magnetic tape was transferred to a Statistical Analysis System (SAS) data set via a Tektronix 4052 computer. A SAS contour plot of soil strength was used to display the soil strength profile.

The system was tested in the field and after solving power supply and grounding problems the system was found to work well.

For further research in soil strength, as measured by cone index, the penetrometer system may benefit from a device to quickly measure the two other main parameters, soil moisture and bulk density, to more completely describe the soil physical conditions. Placing strain gauges at the base of the cone would avoid shaft dragging forces. It may be possible to develop a soil moisture and bulk density instrument incorporated in the penetrometer shaft or perhaps used in the hole left by the penetrometer.

REFERENCES

- Anderson G., J. D. Pidgeon, H. B. Spencer and R. Parks. 1980. A new hand-held recording penetrometer for soil studies. Journal of Soil Science, 31(2):279-296.
- ASAE Standard S313.1. 1980. Soil cone penetrometer. Agricultural Engineer's Yearbook, Am. Soc. Agr. Engr., St. Joseph, MI. pp. 265.
- Ayers, P. D. 1980. Effects of density, moisture content and soil type on cone index. Unpublished Master's Thesis. Virginia Polytechnic Institute and State University.
- Ayers, P. D. and J. V. Perumpral. 1981. Moisture and density effect on cone index. ASAE Paper No. 81-1047. St. Joseph, MI.
- Bowen, H. D. 1976. Correlation of penetrometer cone index with root impedence. ASAE Paper No. 76-1516. St. Joseph, MI.
- Brown, K. T., and G. Anderson. 1975. Control and recording equipment for a soil penetrometer. Scottish Institute of Agricultural Engineering, Departmental Note SSN/185.
- Carter, L. M. and J. R. Tavernetti. 1968. Influence of precision tillage and soil compaction on cotton yields. Transactions of the ASAE, 11(1):65-67, 73.
- Cassel, D. K., H. D. Bowen and L. A. Nelson. 1978. An evaluation of mechanical impedence of three tillage treatments on Norfolk sandy loam. Soil Science Society of America Journal 42:334-349.
- Chancellor, W. J. 1977. Compaction of soil by agricultural equipment. Univ. of California, Bul. 1881, pp. 53.

- DeJong, M. L. 1980. Programming and Interfacing the 6502, with experiments. First Edition Howard W. Sams and Co., Inc., Indianapolis, Indiana. pp. 233-234.
- Dumas, W. T., A. C. Trouse, L. A. Smith, F. A. Kummer and W. R. Gill. 1975. Traffic control as a means of increasing cotton yields by reducing soil compaction. ASAE Paper No. 75-1050. St. Joseph, Michigan 49085.
- Gooderham, P. T. 1973. Soil physical conditions and root growth. Ph.D. Thesis, University of Reading, Earley Gate, Reading, United Kingdon.
- Houben, J. M. 1974. Root development and soil conditions. Bedrijfsontwikkeling 5:141-148.
- Howson, D. F. 1977. A recording cone penetrometer for measuring soil resistance. Journal of Agricultural Engineering Research 22:209-212.
- Mitchell, B. W. 1981. Signal conditioning for analog inputs to microcomputers. ASAE Paper No. 81-1611. St. Joseph, MI.
- Mulqueen, J., J. V. Stafford, and D. W. Tanner. 1977. Evaluation of penetrometers for measuring soil strength. Journal of Terramechanics 14:137-152.
- Pidgeon, J. D. 1978. The effect of soil type on soil responses to cultivation and drilling for cereals in Scotland. Proceedings of the 11th International Society of Soil Science Congress 1:124.
- Pranther, O. C., J. G. Hendrick, and R. L. Schafer. 1970. An electronic hand-operated recording penetrometer. Transactions of the ASAE 13:385-386, 390.
- Reece, A. R. 1977. Soil mechanics of agricultural soils. Soil Science. 123:332-337.
- Rockwell International. 1979. AIM 65 Microcomputer users guide. Rockwell International Corp., Microelectronic Devices, Anaheim, CA 92803.
- Rockwell International. 1979. AIM 65 Microcomputer basic language reference manual. Rockwell International Corp., Microelectronic Devices, Anaheim, CA 92803.

SAS User's Guide. 1979 Edition. SAS Institute Inc., Box 8000, Cary, North Carolina.

- Soane, B. D., D. J. Campbell and S. M. Herkes. 1971. The use of a simple penetrometer in field tillage studies. Scottish Institute of Agricultural Engineering, Departmental Note SSN/67.
- Soane, B. D., G. Kenworthy and J. D. Pidgeon. 1976. Soil tank and field studies of compaction under wheels. Proceedings of the 7th Conference International Tillage Research Organization, Agricultural College of Sweden 45: Paper 48, 1-6.
- Spencer, H. B., R. K. Hendrie, and G. Gilfillan. 1977. A hand operated recording penetrometer. Scottish Institute of Agricultural Engineering, Departmental Note, SSN/221.
- Smith, L. A., and W. T. Dumas. 1978. A recording soil penetrometer. Transactions of the ASAE 21:12-14, 19.
- Smittle, D. A. and E. D. Threadgill. 1977. Response of southern pea (Vigna unguiculata (L.) Walp.) to tillage methods. Hort. Science 12(6):556-558.
- Taylor, H. M. 1971. Effects of soil strength on seedling emergence, root growth, and crop yield. In Compaction of Agricultural Soils (Editors W. M. Carleton et al.) ASAE, Monograph, St. Joseph, MI.
- Taylor, H. M. and H. R. Gardner. 1963. Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 96(3):153-156.
- Taylor, H. M. and L. F. Ratliff. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and water content. Soil Science 108:113-119.
- Threadgill, E. D. 1981. Residual tillage effects as determined by cone index. ASAE Paper No. 81-1039. St. Joseph, MI.
- Turnage, G. W. 1972. Tyre selection and performance prediction of off-road wheeled-vehicle operations. Proceedings of the 4th International Conference, International Society for Terrain Vehicle Systems, Stockholm.

- Voorhees, W. B., C. G. Censt, and W. W. Nelson. 1978. Compaction and soil structure modification by wheel traffic in the Northern Corn belt. Soil Science Society of America Journal 42:344-349.
- Wells, L. G. and O. Treesuwan. 1977. The response of various soil strength indices to changing water content. ASAE Paper No. 77-1055. St. Joseph, Michigan 49085.
- Wismer, R. D. and H. J. Luth. 1973. Off road traction prediction for wheeled vehicles. Journal of Terramechanics. 10:49.

APPENDIXES

APPENDIX A

BASIC AND MACHINE LANGUAGE

PROGRAMS

2 DIMH(130),D(34),F(34),L\$(20),T\$(20) 2 PRINT" " 4 PRINT"THIS PROGRAM READS" 6 PRINT"AND DISPLAYS PROBE" 8 PRINT"DEPTH (MM) AND CONE" 10 PRINT"INDEX (KPA) AT THE" 12 PRINT"END OF EACH STROKE" 14 PRINT" " 15 PRINT"START PENETRATION" 16 PRINT WITH CYLINDER FULLY" 17 PRINT"RAISED, AND STOP" 18 PRINT"AT THE SOIL SURFACE" 19 PRINT"TO PRESS THE SOIL" 20 PRINT"SURFACE BUTTON:" 21 PRINT"THEN CONTINUE TO THE" 22 PRINT"CYLINDER FULL EXTENT" 23 REM ****** INPUT LOCATION, DATE, & CONE DIAMETER ***** 24 PRINT" " 25 PRINT"LOCATION?" 26 INPUT L\$ 27 FRINT"DATE?" 29 INPUT T\$ 30 PRINT" " 32 PRINT" " 35 PRINT"CONE DIAMETER (MM)?" 33 INPUT C1 40 PRINT"CONE DIA. ="; C1; "MM" 42 REM A = AREA OF CONE BASE 45 A=C1*C1*0.7854 48 REM ****** CARRIAGE POSITION SUBROUTINE ***************** 50 POKE4,64 52 POKE5, 221 60 I=1 70 X=USR(1) 80 P4=611 90 P1=PEEK(4093) 100 P2=PEEK(4094) 110 P3=(P1*256+P2-P4)/2 118 PRINT" " 120 PRINT"POSITION OF CARRIAGE" 122 PRINT"FROM LEFT = ";P3;"MM" 190 REM ***************** FORCE AND DEPTH SUBROUTINE ********* 199 PRINT" " 200 PRINT"START PENETRATION" 203 POKE4.0 205 PCKE5, 220 210 YHUSR(I) 210 YHUSR(I) 220 REM GET HEX ARRAY AT DECO TO DETC 240 FOR I=1 TO 124 270 H(İ)=PEER(3583+I) 272 NEXT I 275 J=0 280 REM GET INITIAL FORCE AND DEPTH IN DECIMAL 291 D1=H(1)*256+H(2) 232 F1=H(3)*256+H(4) 293 REM SOIL SURFACE DERTH AT OFFO 284 E=PEEK(4080)

1 REM **************** PENETROMETER BASIC PROGRAM ********

```
285 G=PEEK(4081)
286 B=G*256+E
287 PRINT"SOIL SURFACE"
288 PRINT"DEPTH="; B; "MM"
290 PRINT" "
291 PRINT"DEPTH", "CONE INDEX"
292 PRINT" MM"," KPA"
223 FOR I=1 TO 124 STEP 4
295 J=J+1
298 REM SUBTRACT INITIAL FORCE & DEPTH & ROUND
300 D(J)=10*INT((H(I)*256+H(I+1)-D1)/10)
210 F(J)=H(I+2)*256+H(I+3)-F1
312 REM CONVERT FORCE TO PRESSURE IN KPA
315 F(J)=INT(F(J)*2224/A)
316 REM NEGLECT SMALL FORCES ( < 2 SIGNAL PULSES )
317 IF F(J)<15 THEN F(J)=0
320 PRINT D(J);F(J)
330 NEXT I
340 PRINT" "
341 PRINT" "
342 PRINT" "
350 POKE4,0
352 POKE5,223
360 X=USR(I)
263 REM RETURN FOR NEXT TEST IF REQUIRED 365 PRINT ANOTHER TEST? Y OR N"
370 INPUT Q$
380 JF ASC(Q$)=78 THEN 400
385 PRINT"RAISE CYLINDER FULLY"
386 PRINT" "
387 PRINT" "
390 PRINT"READY? ENTER Y"
392 INPUT R$
395 GO TO 50
399 REM
       ************** FILL 0E00 WITH ZEROS ************
400 POKE4,160
401 POKE5, 223
410 X=USR(I)
415 REM ********* OUTPUT ZEROS TO TAPE RECORDER *********
420 POKE4,0
421 POKE5,223
430 X=USR(I)
440 PRINT"FINISHED"
450 PRINT" "
460 PRINT" "
470 PRINT" "
480 END
```

0000		THIS PROG	RAM INITIALIZ	LES BASIC POINTERS TO THE				
0000		START AND	END OF THE F	RAM WORK AREA				
0000 .		AND TO THE FIRST INSTRUCTION IN EPROM						
0000		THEN IT S	THEN IT STARTS THE BASIC PROGRAM					
0000		REMEMBER	REMEMBER THAT THERE MUST BE A OO AT THE START OF					
0000		; THE BASIC	PROGRAM. THE	POINTER AT 73,74 POINTS				
0000		TO THE FI	RST BYTE AFTS	F THE OO				
0000		CHANGE TH	E NEXT THREE	SYMBOLS FOR YOUR APPLICATION				
0000		PGMST =\$D	071	BASIC PROGRAM START ADDRESS + :				
0000		RAMBOT =\$2	12					
0000		RAMTOP =50	CFF					
0000		THIS NORM	ALLY STARTS A	AT \$DOOD FOR THE ASSEMBLER SOCKET	•			
0000		*==	DOOO					
0000			0.000					
DOOO	00 E1	GTART LRA	4+FT+	INITIALITE BASTO BOINTERS				
0000	H7 E1	START LDA	初本11 オのつ	FINITIALIZE PASIC PUINTERS				
DOOL		514	702 ##FF	CURREN! LINE NUMBER HIGH				
DOOM	HZ FE	LDX	74875					
0006	74	1.05		INITIALIZE THE STACK				
D007	D8	CLD						
0003	A 41	LDA	#\$40	CP CODE FOR JUMP				
0004	85 00	STA	\$00	NEW LINE JUMP				
0000	85 03	STA	\$03	USR JUMP				
DOOF	85 9C	STA	\$9C	FUNCTION JUMP				
DOIO -	35 88	STA	\$BB	ERROR JUMP				
2012	A2 87	LDX	#\$87					
D014	49 BF	LDA	#\$BF					
D016	86 BC	STX	\$BC	ERROR ADDRESS				
DC18	85 BD	STA	\$BD					
D014	86 04	STX	\$04	:USR ADDRESS				
D010	85 05 .	STA	\$05					
DO1E	A9 14	LDA	#\$14	SETUP FOR 20 COLUMN WIDTH				
0020	85 12	STA	\$12					
D022	A9 0A	LDA	#\$OA	SETUP FOR 10 COLUMN INFUT WIDTH	£,			
9024	.85 13	STA	\$13					
D026	A2 10	LDX	##1C	LOAP INITIALIZATION CONSTANTS				
D028	9D 83 CE	L1 LDA	\$CE93,X	: OUT OF BASIC ROM				
TOTE	95 BE	374	\$BE,Χ					
D02D	04	DEX						
DOJE	DO ES	ENE	L1 .					
0030	42.03	LDA	#3					
D0.32	85 9B	STA	¢.ΦE	:WORK AREA				
D024	09 00	LDA	40					
D036	85 01	STA	501	NEW LINE ADDRESS HIGH				
0028	85 80	STA	5B0	ACC #1 OVERFLOW WORD				
DOBA	4 =:	PHA		and the second				
0028	85 60	974	\$60	STRING PTR HIGH				
DOSD	95 10	STA	*10	INPUT FLAG				
	-			and the second from the second s				

BASIC DRIVER PROGRAM

2423 2

ert wie eine fan fan te werten in de see en te

PASS 1

DOGE	AP 41		LDA	555 <u>1</u>	
D041	95 5E		STA	\$55	STRING STACK POINTER
D043	A2 82		LDA	#\$29	
D045	85 02		STA	\$02	:NEW LINE ADDRESS HIGH
D047	A2 71		LDX	# <pgmst< td=""><td>BASIC PROG START ADR</td></pgmst<>	BASIC PROG START ADR
D049	AP DO		LEA	#>PGMST	CHG WHEN RELOCATED
D04B	36 73 -		STX	\$73	START OF BASIC PROGRAM
DOAD	25 74		STA	\$74	
DO4F	A2 12		LDX	#CRAMBOT	BASIC VARIABLE START ADD
D051	A9 02		LDA	#>RAMBOT	
D053	86 75		STX	\$75	START OF VARIABLES
D055	85 76		STA	\$74	
0057	A2 FF		LTIX	#CRAMTOP	BASTO VARIARIE END ADDR
DOTO	A9 00		LDA	#>RAMTOP	
DOSB	26 7F		STX	\$7F	SEND OF MEMORY
DOED	85 80		STA	\$80	
DOSE	20 70 B4	•	JSR	\$8470	CALL RUN
D062	40 CS 85	5 - A - A	JMP	\$B5C8	JUMP TO FIRST STATEMENT
D065			. EN	D	
	EDDODC-	0000			

 ine alata ayon akan ayon algat ay	n ann ann fha nan ann ann ann ann ann ann ann ann a	PENETRO	METER PROGRAM	FOR SOIL STRENGTH PROFILE
 0000		BY GLE	EN RIETHMULLER	
0000		INTER	=\$\$404	INTERBURT VECTOR LOW
0000		INTERH	=\$4405	INTERRIPT VECTOR HIGH
0000		TAPGAP	= \$ \$ \$ \$	TAPE GAR
0000		PORTA	=\$A001	PORT A. PAR
0000		INEL AG	=\$4404	INTERRIPT EL AG
0000		TILH	=\$4005	TI LATCH HIGH
0000		TILL	=\$A006	T1 LATCH LOW
0000		T2LL	=\$A008	T2 LATCH LOW
0000		T2LH	=\$A009	:T2 LATCH HIGH
0000		ACR	=\$A00B	:AUXILIARY CONTROL REGISTER (ACP
0000		IER	=\$A00E	INTERRUPT ENABLE REGISTER (IEP)
0000			*=\$0FF0	
OFFO		SURLO	*=*+1	SOIL SURFACE LOW
OFF1		SURHI	*=*+5	SOIL SURFACE HIGH BYTE
OFF6		DINCHI	*=*+1	DEPTH INCREMENT HIGH BYTE
0557		DINCLO	*=*+1	DEPTH INCREMENT LOW
OFER		DCOMPH	*=*+1	DEPTH COMPARSION HIGH
OFFD		DEDMAL	*=*+4	DEPTH COMPARSION LOW
OFFE.		DEPIHH	*=*+1	DEPTH MEMORY HIGH
OFFF		COUNT	*=*+1	FREQUENCY COUNTER INTERVAL
1000			*-*0500	
0500		DHIGH	*=**CC00	FORCE AND DEPTH
0501		DI DU	*=*-1	STORED ON PAGE OFOO
OEO2		FORCEH	*=*+1	· OTORED ON PAGE DEDU
OEOG		FORCEL	*=*+1	
0504			*=\$0E7B	
OE7B		DEND	*=*-1	SIND OF DATA ON
0E70		FEND	*=*+1	PAGE DECO
0570	and a second	DRB	=\$4800	DATA REGISTER B
0570		TAPOUT	=\$A435	FOUT FLG (TAPE 1 OR 2)
0270		OUTFLO	=\$4413	CUTPUT DEVICE
057D		TAOSET	=4.F211	SET JAPE FOR OUTBUT
0570		FILE	-\$4423	INAME OF DATA FILE ON TARE
0570		DUMETO	= \$E54F	OPENS FILE FOR OUTPUT BY BLOCKS
0270		TOBYTE	=\$F12B	COUTPUT ACC. TO TAPE BUFFER
OE7D		DU12	=\$E511	TAPE OUTPUT BUFFER
0570			**DC00	

PASS 2

0000 1

	r	PENETROMETER	SUBROUTINE	FOR FINDING SOIL SURFACE
DC00 08 DC01 A2 DC03 A9 DC05 9D DC05 50 DC03 50 DC0A F0 DC0A F0 DC0C CA DC0D 4C	FF. 00 0E 00 0E 04 03 DC	BEGIN PHP LDX # JP LDA # STA D CPX # BEO I DEX JMP U	*FF \$00 : HIGH,X : \$00 NITAL : P	SAVE P REGISTER INITIALIZE PAGE OE00 TO ZERO JUMP TO INITAL WHEN FINISHED
DC10 A9 DC12 8D DC15 8D DC18 8D DC18 8D DC18 8D	00 F0 OF F1 OF F3 OF F9 OF	INITAL LDA # STA S STA S STA D STA D STA D	\$00 URL0 URHI COMPH COMPL	INITIALIZE SOIL SURFACE MEMORIES ZERO DEPTH COMPARSION VECTORS
DC1E 8D DC21 A9 DC23 8D DC24 A9 DC28 8D DC28 8D DC28 4C	F6 OF 14 F7 OF 30 O9 A4 31 DC	STA D LDA # STA D LDA # STA T JMP S	INCHI \$14 INCLO \$30 APGAP TART	DEPTH INCREMENT HIGH AND LOW INCREMENT BY 20 SET TAPE GAP TO HEX 30
		FORCE AND DE	PTH SUBROUT	INE
DC2E 4C	07 00	OUT JMP P	ULL	TAKE IRQ VECTORS OFF STACK
DC31 78 DC32 A9 DC34 8D DC37 A9 DC39 8D	88 04 A4 DC 05 A4	START SEI LDA # STA I LDA # STA I	CIRO NTERL DIRO NTERH	DISABLE INTERRUPTS LOW BYTE OF INTERRUPT VECTOR HIGH BYTE OF INTERRUPT VECTOR
DC3C A9 DC3E 8D DC41 A9 DC43 8D DC44 A2	60 08 A0 C0 0E A0 00	LDA # STA A LDA # STA I LDX #	\$60 : CR \$C0 : ER \$00 :	ACR TO FREE RUNNING MODE IER TO ENABLE INTERRUPTS INITIALIZE X REGISTER
DC48 A9 DC4A 8D DC4D A9 DC4F 8D DC52 A9 DC52 8D DC57 8D DC57 9D DC57 9D DC52 9D DC52 9D DC52 9D DC52 9D DC52 9D	02 FF 0F 71 06 A0 FF 09 A0 C3 07 A0 FF 09 A0 00 FD 0F	RETURN LDA # STA C LDA # STA T LDA # STA T LDA # STA T LDA # STA T LDA #	\$02 0UNT \$71 1LL \$FF 2LL \$C3 1LH \$FF 2LH \$00 EPTHH	ONE TENTH SECOND INTERVAL COUNTER SET TIMER T1 FOR 50,000 CYCLES INITIALIZE TIMER T2 LATOH-LOW START TIMER T1 T2 DECREMENTS FROM FFFF ON POST START TIMER T2 INITIALIZE DEPTH MEMORIES TO USE UP TIME
DC49 58 DC49 58 DC4A 20 DC4D 10 DC4F 20	01 A0 FB 01 A0	STA D CLI WAIT BIT P BPL W LOAF BIT P	ORTA AIT ORTA	CLEAR INTERPORT IS BIT 7 HIGH? NO. GO TO WAIT YES. WAIT FOR IT TO GO LOW

DC72	30 FB	E	BMI LOAF	
DC74 DC75 DC78 DC7A DC7A DC7D DC80 DC82	18 AD FE OF 69 01 8D FE OF AD FD OF 69 00 8D FD OF	0 4 5 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	CLC _DA DEPTHL ADC #\$01 STA DEPTHL LDA DEPTHH ADC #\$00 STA DEPTHH	CLEAR CARRY FLAG INCREMENT DEPTH BY 1 FOR EACH PULSE ON PA7
DCS5	4C 6A DC		JMP WAIT	WAIT TILL TI TIMES OUT
DC38 DC89 DC80 DC80 DC91 DC91 DC92	43 CE FF OF FO AO AD 04 A4 63 40	IRQ I I I I I I I I I I I I I I I I I I I	PHA DEC COUNT BEQ OUT LDA INFLAG PLA RTI	SAVE ACCUMULATOR HAS ONE TENTH SEC. PASSED? CLEAR 4522 INTERRUPT FLAG RESTORE ACCUMULATOR RETURN TO COUNT PULSES AGAIN
		SAVING	FORCE AND DEPTH	ROUTINE
DC93 DC96 DC98 DC98 DC90 DC90 DCA0 DCA3	AD 01 A0 29 10 F0 0C AD FE 0F 3D F0 0F AD FD 0F 3D F1 0F	STORE	LDA PORTA AND #\$10 BEQ HERE LDA DEPTHL STA SURLO LDA DEPTHH STA SURHI	READ PORT A IS PA4=1? NO. THEN BRANCH TO HERE GET SOIL DEPTH LOW SAVE SOIL SURFACE DEPTH GET SOIL DEPTH HIGH SAVE SOIL SURFACE HIGH
DCA5 DCA7 DCAA DCAD DCB0 DCB0 DCB0 DCB0 DCB0 DCB0 DCB0 DCB	30 AD FE OF ED F9 OF AD FD OF ED F3 OF 90 93 AD FE OF 9D 01 OE AD FD OF 9D 00 OE	HERE	SEC LDA DEPTHL SBC DCOMPL LDA DEPTHH SBC DCOMPH BCC RETURN LDA DEPTHL STA DLOW, X LDA DEPTHH STA DHIGH, X	HAS DEPTH ADVANCED BY THE DEPTH INCREMENT? NO. THEN CHECK DEPTH AGAIN YES. THEN RECORD DEPTH AND FORCE SAVE DEPTH ON PAGE GEOG WHICH IS INCREMENTED BY X
DCC1 DCC2 DCC4 DCC7 DCCA DCCD	8A DO OC AD 01 OE 8D F9 OF AD 00 OS 8D F8 OF		TXA BNE THERE LDA DLOW STA DCOMPL LDA DHIGH STA DCOMPH	IS X=ZERO? NO. BRANCH TO THERE YES. ADD THE DEPTH TO THE COMPARING DEPTH
DCD0 DCD1 DCD4 DCD7 DCD7 DCD7 DCD7 DCD7 DCD7 DCD9 DCD9	13 AD F9 OF 3D F7 OF 3D F9 OF AD F3 OF 3D F3 OF 3D F3 OF AD 05 A0 49 FF 9D 09 A0 49 FF	THERE	CLC LDA DCOMPL ADC DINCLO STA DCOMPL LDA DCOMPH ADC DINCHI STA DCOMPH LDA T2LL SCR #\$FF STA FORCEL,X LDA T2LH EOR #\$FF	:INCREMENT THE DEPTH (VALUE (DCOMP) BY (DINC) (WHICH IS THEN USED TO COMPARE THE ACTUAL WITH READ TIMEP TOL-L (FIND NO. OF DECREMENTS (SAVE LOW FORCE BYTE (READ TIMER TOL-H (FIND NO. OF DECREMENTS)

DCFO	9D 02 05	STA FORCEH, X	SAVE HIGH FORCE BYTE
DCF3 DCF4 DCF5 DCF5 DCF6	E8 53 58 58	INX INX INX INX	INCREMENT THE X REGISTER FOR THE NEXT FORCE AND DEPTH RECORD
DCF7 DCFA DCFC DCFF DD01	AD 78 0E D0 08 AD 70 0E D0 03 40 48 D0	LDA DEND BNE DOWN LDA FEND BNE DOWN JMP RETURN	:HAS THE PROBE :COMPLETED ITS STROKE :YES. RETURN TO BASIC PROGRAM :NO. GET NEXT DEPTH AND FORCE
DD04	4C OE DD DOWN	JMP BASIC	
DD07 DD09 DD09 DD0A DD0B	68 PULL 68 68 68 40 93 DC	PLA PLA PLA JMP STORE	THREE IRQ VECTORS FROM THE STACK SO THE BASIC VECTORS ARE LEFT RESTORE P REGIETER RETURN TO STORE DATA
DDOE DD10 DD13 DD14	A9 40 BASIC 3D 05 A0 28 60	LDA #\$40 STA IER PLP RTS	DISABLE TIMER T1
DD15		*=\$DD40	

DD40 DD41 DD42 DD44 DD47 DD47 DD40 DD40 DD46 DD46 DD46 DD51 DD53	03 78 8D 04 A4 A9 DD 8D 05 A4 A9 60 8D 05 A0 A9 60 8D 08 A0 A9 C0 8D 0E A0		PHP SEI LDA # <ir02 STA INTERL LDA #>IR02 STA INTERH LDA #\$60 STA ACR LDA #\$C0 STA IER</ir02 	SAVE P REGISTER DISABLE INTERRUPTS GET THE BYTES OF IRQ2 AND STORE THESE IRO INTERRUPT VECTORS ACR TO FREE RUNNING MODE ENABLE INTERRUPTS
DD56 DD58 DD50 DD50 DD60 DD62 DD65 DD65 DD67 DD67 DD6A DD60	A9 71 SD 06 A0 A9 14 SD FF 0F A9 C3 SD 05 A0 A9 00 SD FE 0F SD FD 0F 58		LDA #\$71 STA T1LL LDA #\$14 STA COUNT LDA #\$C3 STA T1LH LDA #\$00 STA DEPTHL STA DEPTHH CLI	:SET T1 FOR 50,033 CYCLES :ONE SECOND INTERVAL :COUNTER FOR PULSES :START TIMER T1 :INITIALIZE DEPTH MEMORIES :TO USE UP TIME :CLEAR INTERRUPT FLAG
DD6E DD71 DD73 DD76	2C 01 A0 50 FB 2C 01 A0 70 FB	STAY	BIT PORTA BVC STAY BIT PORTA BVS STOP	:WAIT FOR PB6 TO :GO HIGH :WAIT FOR IT TO GO LOW
0078 0079 0070 0070 0081 0084 0084 0086 0089	18 AD FE OF 69 01 8D FE OF AD FD OF 69 00 3D FD OF 4C 6E DD		CLC LDA DEPTHL ADC #\$01 STA DEPTHL LDA DEPTHH ADC #\$00 STA DEPTHH JMP STAY	CLEAR CARRY FLAG INCREMENT CARRIAGE POSITION COUNTER (DEPTHL AND DEPTHH) FOR EACH PULSE ON PAG GO AND WAIT FOR NEXT PULSE
DD90 DD90 DD90 DD92 DD93 DD93 DD96	48 CE FF OF F0 05 AD 04 A4 68 40	IRQ2	PHA DEC COUNT BEQ POINT LDA INFLAG PLA RTI	SAVE P REGISTER DECREMENT COUNTER BRANCH IF TIME OUT CLEAR 6522 INTERRUPT FLOG RETURN FROM INTERRUPT
DD97 DD99 DD99 DD99 DD98 DD98 DD90 DD90 DD90	49 68 69 29 29 69 40 80 05 A0 60	POINT	PLA PLA PLA PLF LDA #\$40 STA IER RTS	REMOVE ACC. AND IRQ VECTORS FROM THE STACK RESTORE P REGISTER DISABLE T1. A JERO IN IER7 CLEARS 1 BITS RETURN TO BASIC PROGRAM
DDAD			*-*DC00	

CARRIAGE POSITION SUBROUTINE

DF00 DF02 DF05 DF07 DF04 DF04 DF04 DF04 DF04 DF11 DF14 DF14 DF14	A9 40 SD 0E A0 A9 BC SD 00 A8 A9 00 SD 35 A4 A9 54 SD 13 A4 20 1D F2 A9 47 A2 04		LDA #\$40 STA IER LDA #\$PC STA DRB LDA #\$00 STA TAPOUT LDA #\$54 STA OUTFLG JSR TAOSET LDA #\$47	DISABLE INTERPUPTS CONTROLS TAPE ASCII CODE FOR "T" SETS UP AUDIO TAPE OUTPUT ASCII FOR "G"
DF19 DF18 DF16 DF16 DF21 DF24	42 04 9D 2E A4 CA 10 FA 20 6F E5 A2 00	LOOP1	LDX #\$04 STA FILE,X DEX BPL LOOP1 JSR DUMPTA LDX #\$00	FILE NAME GGGGG FIVE G'S OPENS FILE FOR OUTPUT
DF26 DF29 DF2C DF2D DF2F DF31 DF34 DF34 DF37 DF3A	BD 00 0E 20 8B F1 E8 E0 90 D0 F5 AD F1 0F 20 8B F1 AD F0 0F 20 8B F1	L00P2	LDA DHIGH,X JSR TOBYTE INX CPX #\$80 BNE LOOP2 LDA SURHI JSR TOBYTE LDA SURLO JSR TOBYTE	:LOAD HEX DATA FROM :PAGE:GEOO :TOBYTE DUMPS ACCUMULATOR ON TAF :HAS ALL DATA BEEN STORED? :NO. GO BACK THEN :YES, OUTPUT SOIL SURFACE :HIGH AND LOW BYTES TO TAPE
DF3D DF40 DF43 DF46	AD FD OF 20 38 F1 AD FE OF 20 38 F1		LDA DEPTHH JSR TOBYTE LDA DEPTHL JSR TOBYTE	<pre>HIGH BYTE OF CARRIAGE POSITIOM TO TAPE LOW BYTE OF CARRIAGE POSITIOM TO TAPE</pre>
DF49	20 11 E5		JSR: DU12	FILLS REST OF PLOCKS WITH ZERO
DF4C DF4E DF51	A9 AC 80 00 A8 60		LDA #\$AC STA DRB RTS	STOPS TAPE RECORDER
DF52			*=\$DFA0	
		BLOCK	DF ZEROS TO TAPE	RECORDER AT END OF TEST
DFAQ DFA2 DFA4 DFA7 DFA9 DFA8 DFA8 DFA0 DFA0 DFB0	A2 55 A9 00 90 00 05 E0 00 F0 04 CA 4C A2 DF 40 ERRORS= 0000	BACK LOW	LDX ##FF LDA ##00 STA DHIGH,X CPX #\$00 BEQ LOW DEX JMP BACK RTS .END	PAGE 0500 TO ZEROS

DUMPING TO TAPE SUBROUTINE

65
APPENDIX B

AIM 65 TO TEKTRONIX DATA

TRANSFER PROGRAM

110 REM THIS PROGRAM TRANSFERS A PROGRAM TO AN AIM 45 VIA PORT 40 120 REM AND THEN "TELLS" THE AIM TO EXECUTE THIS PROGRAM. THE 130 REM AIM 65 THEN TURNS ON A CASSETTE TARE DECK AND READS A PLOCK 140 REM OF DATA, WHEN THE BLOCK IS TRANSFERED, THE TEKTRONICS "TELLS" 150 REM THE AIM TO SEND THE DATA. 190 REM ****** SET UP LINE PRINTER 191 REM 192 PRINT 641,11:1 193 3EM 220 FEM T1 COUNTS HOW MANY TIMES THROUGH 230 REM #****************** 240 T1=0 420 REM FILE 2 HAS THE MACHINE ASSEMBLY LANGUAGE PROGRAM 440 FIND 2 460 REM CHR(127) IS RUBOUT. THIS SEQUENCE SETS BAUD RATE 500 CALL "RATE", 1200, 2, 2 550 PRINT " " 600 PRINT " HIT TRESETT ON AIM AND THEN TRETURNT ON TEKTRONICS" SOO INPUT W\$ 900 W\$=CHR(127) 1000 PRINT @40:W\$ 1020 REM THE FOLLOWING SECTION SETS UP THE AIM FOR INPUT AT 0200 1040 REM 1100 CALL "WAIT",0.5 1200 PRINT @40: "*" 1300 CALL "WAIT",0.2 1400 READ @33:W\$ 1500 FOR I=1 TO LEN(W\$) 1600 B\$=SEG(W\$, I, 1) 1700 PRINT @40:B\$ 1800 CALL "WAIT",0.2 1900 NEXT I 2000 K\$=CHR(13) 2100 PRINT @40:K\$ 2200 CALL "WAIT",0.5 2300 PRINT @40: "I" 2400 CALL "WAIT",0.5 2420 SEM NOW READ A LINE AT A TIME FROM THE TEKTRONICS TAPE AND TRANSFER IT TO THE AIM 65. KEEP IN MIND A SINGLE INSTRUCTION 2420 REM 2440 REM LIKE, SEC, DOES NOT MEED A CARRIAGE RETURN(K\$). 2500 READ @33:W\$ 2600 ON EOF (0) THEN 3700 2700 FOR I=1 TO LEN(W\$) 2900 B\$=9E0(W\$-I,1) 2900 IF I=4 THEN 3100 3000 PFINT @40:95 3100 CALL "WAIT",0.2 2200 NEXT I 2200 K\$=CHR(13) 3400 IF LEN(W\$)=3 THEN 2400 3500 PRINT @40:15 3600 GO TO 2400 2700 M#=CHR(27)

3800 PPINT @40:MS 3900 PRINT "___ DOWNLOADING COMPLETE" 3920 REM SP30 BEX 我们在我们们我们在我们的这些我们的,我们都是我们的我们的这些我们的这些我们的,我们们们 3940 REM NOW TELL THE AIM TO EXECUTE THE PROGRAM JUST TRANSFERED 3960 REM 3965 DIM D1(33,14),F(33,14) 3949 K=0 3970 FOR N=1 TO 13 4000 CALL "WAIT",0.3 4100 FRINT @40; "*" 4200 CALL "WAIT",0.4 4300 FOR I=1 TO 4 4400 K\$="0200" 4500 M#=SEG(K#, I, 1) 4600 PRINT @40:M\$ 4700 CALL "WAIT",0.2 4800 NEXT I 4900 K\$=CHR(13) 5000 PRINT @40:K\$ 5100 CALL "WAIT",0.4 5200 PRINT @40: "G" 5300 CALL "WAIT",0.4 5400 IF T120 THEN 5300 5500 PRINT "___ REWIND THE TAPE AND DEPRESS THE PLAY BUTTON." 5600 PRINT "___ HIT TRETURNT TO CONTINUE." 5610 REM 5630 REM WAIT FOR SIGNAL FROM AIM INDICATING BLOCK HAS BEEN LOADED 5640 REM ***************** 3700 INPUT J\$ 5800 PRINT @40:K\$ 5900 Is=CHR(10) 6000 P\$=CHR(127) 6100 Is=Is&Ps 6200 INPUT @40:Y\$ 6300 IF Y#=I\$ THEN 6500 6400 GO TO 6200 6500 REM 6520 REM USE THE 'M' COMMAND ON THE AIM TO TRANSFER CONTENTS OF 6530 REM MEMORY. AFTER PRINTING ONE 'M', THEN PRINT SPACES(S\$). 6540 REM D\$ IS THE CHARACTER STRING THAT HOLDS THE CHARACTER 4550 REM SENT UPON A 1M1 COMMAND. H€ AND Q\$ ARE SEGMENTS OF THIS 6560 REM CHARACTER STRING WHICH CONTAIN THE HEX DATA. SINCE THE STRING 6570 REM SENT BY THE AIM IMMEDIATELY AFTER THE 'M' COMMAND IS UNIQUE, 6580 REM SPECIAL PROVISION HAS BEEN MADE. 6630 REM 6640 REM 6630 REM 6700 REM 6900 T1=T1+1 7100 S#=CHR(32) 7300 CALL "WAIT",0.4 7400 PRINT 240: "M" 7500 CALL "WAIT",0.2 7600 PRINT 640: "0" 7700 CALL "WAIT",0.2 7900 M&=CHP(10) TOOD PRINT 840:MS SCOO INPUT 240:D#

```
3300 H$=SEG(D$,7,2)
2400 Q$=SEG(D$,4,2)
3500 H$=0$&H$
8600 GOSUE 34600
8700 D1(1,N)=D
8900 H$=SEG(D$,13,2)
3900 Q$=SEG(D$,10,2)
2000 H#=0$&H#
9100 COSUB 34500
9200 F(1,N)=D
9300 REM******FINISH DEPTH AND FORCE **************************
9400 FOR J=2 TO 32
9500 CALL "wait",0.3
9600 PRINT @40:5$
9700 INPUT @40:D$
9800 H$=SEG(D$,14,2)
9900 @$=SEG(D$,11,2)
10000 H$=Q$&H$
10100 GOSUB 34600
10200 D1(J,N)=D
10300 H$=SEG(D$,20,2)
10400 Q$=SEG(D$,17,2)
10500 H$=Q$&H$
10600 GOSUB 34600
10700 F(J,N)=D
10300 NEXT J
10900 CALL "WAIT",0.3
10910 PRINT @40:5$
10920 INPUT @40:D$
10930 H$=SEG(D$,14,2)
10940 Q$=SEG(D$,11,2)
10945 H$=H$&Q$
10950 GOSUB 34600
10960 D1(33,N)=D
10970 H#=SEG(D#-20,2)
10980. @$=SEG(D$,17,2)
10990 H5=H$&Q$
11000 GOSUB 34600
11010 F(33,N)=D
30900 CALL "RATE",1200,2,2
30910 NEXT N
30982 K=K+1
30983 IF K>1 THEN 30988
20985 FIND 6
30988 DIM 3(33,14)
30990 M=0
31000 FOR J=1 TO 33
31010 FOR 1=1 TO 13
31020 B(J,1)=M
21040 B(U, I+1)=(F(U, I)-F(1, I))*6.967
31050 NEXT 1
31060 M=M+20
21070 NEXT J
21080 PRINT @33:P
21032 IF K=2 THEN 31090
21085 60 TO 3970
31090 STOP
24100 REM SUBROUTINE TWO CONVERT CHARACTER STRING WHICH REPRESENTS
C4COO REM A:4 DIGIT HEX NUMBER(H#) TO A VARIABLE CALLED D.
34200 REM NOTE LEN(H#) CANNOT > 4 ; D CANNOT > 45535
```

34600 C\$="" 34700 IF LEN(H\$)>4 THEN 36800 34800 D=0 34900 D=0 35000 FOR I=4 TO 1 STEP -1 35100 I\$=3EG(H\$,I,1) 35200 C\$=C\$%I\$ 35300 NEXT I 35400 FOR I=1 TO 4 35500 B#=SEG(C#,I,1) 35600 X=98C(B\$) 25700 IF X=>48 AND X<=57 THEN 36300 35800 IF X=>65 AND X<=70 THEN 36100 35900 PRINT "ERROR-ENCOUNTERED ILLEGAL HEXIDECIMAL DIGIT" 36000 RETURN 36100 X=X-55 36200 GO TO 36400 36300 X=X-48 36400 M=X*16^(I-1) 36500 D=D+M 36600 NEXT I 36700 RETURN 36800 PRINT "ERROR-EXCEEDED NUMERICAL LIMIT" 36900 RETURN

FILE 2 CONTENTS

0200 LDA #BC STA A800 LDA #00 STA A430 STA A434 LDA #47 STA A412 USR EDEA LDA #47 STA A42E STA A42E STA A42E STA A430 STA A431 STA A432 JSR E32F LDX #00 JSR ED3B STA 00, X INX CPX #8C BNE 0228 JSR E8FE LDA #AC STA A800 JMP E132

APPENDIX C

TEKTRONIX TO SAS DATA

8

TRANSFER PROGRAM

90 REM ***** THIS PROGRAM SENDS DATA FROM A FILE TO A SAS DATA SET**** 92 REM 95 REM GET THE FILE 100 FIND 5 110 DIM C(33,14) 120 DIM B(33,14) 130 INPUT 033:B 140 INPUT 033:C 150 FOR I=1 TO 31 160 FOR J=1 TO 14 170 CALL "WAIT", 2.5 180 PRINT @40:B(I,J) 190 NEXT J 200 NEXT I 210 FOR I=1 TO 31 220 CALL "WAIT",2 230 PRINT @40:C(I,1) 240 FOR J=14 TO 2 STEP -1 250 CALL "WAIT", 2.5 260 PRINT @40:C(1,J) 270 NEXT J 280 NEXT I 290 REM 300 REM ***** SAVE THE DATA-SET ****** 310 REM 320 A\$=CHR(13) 330 S#=CHR(83) 340 CALL "WAIT",2 350 PRINT @40:A5 360 CALL "WAIT",1 370 PRINT @40:5\$ 380 PRINT @40:A\$ 370 CALL "WAIT",P 400 END

APPENDIX D

LOAD CELL SPECIFICATIONS

SPECIFICATIONS

	PRECISION T3P1, C3P1	GENERAL PURPOSE U3G1
PERFORMANCE		
Bated Output (B.O.) - millivolts per volt	3	3
Calibration Accuracy—% R.O.	0.10	0.25
Nonlineärity—% R.O.	0.05	0.10
Hysteresis-% R.O.	0.02	0.02
Repeatability – % R.O.	0.02	0.02
Creen-% R.O.	0.03	0.03
ELECTRICAL		
Excitation, recommended.	12 volts, AC or DC	12 voits, AC or DC
maximum	20 volts, AC or DC	20 voits, AC or DC
Zero balance—% R.O	±1%	=1%
Terminal resistance, input-ohms	350 ± 3.5	350 = 3.5
output-ohms	350 = 5.0	350 = 5.0
Electrical connection	10 ft. cable	10 ft. cabie
Number of bridges	one	one
Insulation resistance—bridge to ground	5000 megohms	5000 megohms
shield to ground	2000 megohms	2000 megonms
TEMPERATURE	•	
Temperature range, compensated	+15°F to +115°F	+15*F to +175*F
sate	-30°F to +175°F	-30°F to -175°F
Temperature effect on rated output	0.0008% load/*F	0.005% load/*F
Temperature effect on zero balance	0.0015% R.O./*F	0.0025% R.O. *F
ADVERSE LOAD RATING		
Sale overload - "> rated capacity	150	150
Ultimate overload—' :ated capacity	300	300
Maximum side load without damage-% rated capacity	10	10
Maximum bending moment without damage-% in inch-pounds.	25	25
Maximum torque load without damage-% rated capacity		
in inch-pounds		10
DOUBLE-BRIDGE SPECIFICATIONS	T3P2B, C3P2B	U362
Same as for above types except:		
Electrical connection	Bendix connectors	10 ft cables
Number of bridges	two	two

This model ordered

PLAN A MILE CATALOG NUMBERS AND MECHANICAL DATA

Capacity Lbs.	U3G1 Cat. No.	T3P1 Cat. No.	C3P1 Cat. No.	U3G2 Cat. No	T3P2B Cal. No.	C3P2B Cat. No.	Wt. Lbc.	Deflec.	Nat. Freq. CPS	Eli. Wt. Lbs.
500	(206159)	206166	206173	207797	206306	206313	Ċ	0C 7	1250	45
1,000	206160	206167	206174	207798	206307	206314	ά	.006	1800	.50
2,000	206161	206168	206175	207799	206308	206315	ô	.005	2600	56
3,000	206162	206169	206176	207800	206309	206316	6	.005	2600	.56
5,000	206194	202201	206208	207803	206362	206369	10	007	2200	1.50
10,000	206195	206202	206209	207804	206363	206370	, 10	005	3400	1 70

BENDIX	PC02C-12-10P
0000	1 0020-12-101

input—BK—
DH
Output-EJ-
A F
C. G No Connectio
NOTE: Mating half and dust cap sup
CINED WITH BOOVE EXECTRICAL CONNECTOR

	ELECTRICAL TERMINATION				
	CABLE COLOR CODE				
	INPUT	OUTPUT	SHIELD		
•	Black (-) Green (+)	Red (-) White (+)	Yellow		

NOTE

 SYMMETRICAL CIRCUIT. The input circuit resistance is split such that the resistance between either input leac and either output leac is within 1.75 ohms at 77*F

2. For Tension or Compression types (T or C), Calibration Accuracy applies in direction of stundard zation only.

VITA

Ì

Glen Philip Riethmuller

Candidate for the Degree of

Master of Science

Thesis: MICROCOMPUTER BASED DATA ACQUISITION FOR A TRACTOR-MOUNTED PENETROMETER

Major Field: Agricultural Engineering

Biographical:

- Personal Data: Born in Toowoomba, Queensland, Australia, February 7, 1958, the son of Mr. and Mrs. Percy R. Riethmuller.
- Education: Matriculated from Harristown State High School, Toowoomba, in December, 1974; received Bachelor of Engineering (Agricultural) degree from the Darling Downs Institute of Advanced Education, Toowoomba, in May, 1979; enrolled in Master's program in August, 1980 at Oklahoma State University; completed requirements for the Master of Science degree at Oklahoma State University in May, 1982.
- Professional Experience: Student Member of The American Society of Agricultural Engineers; graduate research assistant, Oklahoma State University. Agricultural Engineering Department, 1980-1982. Member of the Honor Society for Agricultural Engineering, Alpha Epsilon (in United States). Student Member of the Institution of Engineers Australia. Member of the Agricultural Engineering Society of Australia.