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CHAPTER I 

THE RESEARCH PROBLEM 

Historically, reservoirs have been constructed for storing water 

for water supply, irrigation, flood control, power production, 

navigation, and .recreation. The quality of water in reservoirs has 

become increasingly important because of increased demands associated 

with growth, development, and recreation. 

Phytoplankton form the base of the food chain in reservoirs and are 

influenced by variables such as dissolved oxygen, light, nutrients, and 

temperature. Nuisance algal blooms, especially those of blue-green 

algae, interfere with the use of the reservoir by causing fish kills 

through depletion of dissolved oxygen, taste and odor problems in 

municipal and industrial water supplies, and esthetically displeasing 

shorelines. In addition, increased water treatment costs due to filter 

clogging and decreased recreational use may cause public concern. 

Algae occur throughout North America and the United States. Silvey 

and Wyatt (1971) found the predominant types of algae occurring in lakes 

of the southwest to be greens, blue-greens, flagellates, and diatoms, 

and concluded that densities and species composition vary with season, 

nutrient content of the water body, and lake morphology. Algae are 

ideal to use as a basis for describing the ecological or trophic status 

of a lake due to their widespread distribution, correlation with other 

important biological and chemical parameters, and are of concern to the 
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public. 

Several investigators have attempted to develop indices of 

reservoir water quality using responses of algae as a measure of 

pertubation of aquatic ecosystems. Carlson (1977) proposed using a 

trophic state index (TSI) to predict the status of lakes. The TSI 

correlates relationships among phosphorus, algal blooms, chlorophyll ~, 

and Secchi disc transparencies. The index has been used to classify 

waters, to predict trophic changes, and as a lake management tool. 

Lake Carl Blackwell (LCB) was built in 1936 as part of the Federal 

Government Land Utilization Project primarily for recreation and water 

supply (Wilhm and Howick 1981 ). Cultivated areas in the upper reaches 

of the watershed, unprotected shorelines, and unimproved roads around 

the lake are subject to erosion. High winds mix the lake and 

continually resuspend fine bottom sediments, increasing lake turbidity. 

Nuisance algal blooms, taste, and odor problems have also been recorded. 

Because of these problems, the lake is being examined for possible 

restoration. 

Prior to comparing the feasibility of various restoration 

techniques, it is necessary to define the trophic state. Thus, the 

objectives of the study were to measure and calculate the following in 

Lake Carl Blackwell: 

1. The spatial and temporal variation in algal densities, 

chlorophyll ~' phosphorus, and Secchi disc transparencies. 

2. The trophic state index. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Introduction 

Weber (1907) first used the term eutrophication to describe 

nutrient conditions influencing the flora of German peat bogs. Naumann 

(1919) redefined Weber's original works and related water types and 

phytoplankton of Swedish lakes in relation to transparency and color. 

Thienemann (1925) classified lakes as oligotrophic, eutrophic, and 

dystrophic. Oligotrophic lakes were characterized as deep, lacking 

nutrients, and having no phytoplankton blooms. Eutrophic lakes were 

characterized as being shallow and nutrient-rich with excessive 

phytoplankton blooms. Dystrophic lakes had humic or organic water. 

For many years limnologists have studied the ecological 

classification of lakes and devised numerous trophic-state indices. 

Relationships among parameters such as dissolved oxygen, conductivity, 

phytoplankton production, pH, alkalinity, phosphorus, nitrogen, and 

turbidity have been used to determine trophic status. These parameters 

were used to indicate trends towards eutrophication of lakes in the 

Kashmir valley of the Himalayas (Kahn and Zutski 1980). Hutchinsop 

(1973) noted that transparency and color are simple indicators of the 

nutrient condition of a lake if used with discretion. Chapra and 

Reckhow (1979) used phosphorus levels as indicators of eutrophication. 

Lakes with phosphorus levels greater than 50 µg/l were classed as 
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eutrophic. Chlorophyll has also been used as an indicator of lake 

trophic status. Lakes with chlorophyll levels > 6 µg/l were classed as 

eutrophic and lakes with values < 5 µg/l were classed as oligotrophic 

(Jones et al. 1979). Carlson (1977) predicted the trophic state using 

the relationship between algal biomass measured as chlorophyll ~, and 

phosphorus. 

Secchi Disc-Chlorophyll Relationship 

Cialdi (1886) used a white disc to estimate transparency in water. 

This work led to the development of the. Secchi disc, which when lowered 

into the water disappears at approximately the region of transmission of 

5% sunlight (Reid 1961). Beeton (1958) and Tyler (1968) report Secchi 

disc transparency can represent from 1 to 15% transmission. The theory 

and methods of use of the Secchi disc have been thoroughly discussed by 

Hutchinson (1957), Reid (1961), and Wetzel (1975). Although the Secchi 

disc is a useful instrument, problems exist that must be avoided if it 

is to yield useful information (Tyler 1968). Sources of error in Secchi 

disc measurements include passing the disc through the shadow of the 

boat, keeping the disc horizontal and the supporting cord vertical, and 

keeping the reflective surf ace of the disc at a known level of 

reflectance (Tyler 1968). Transmittance of the upper 100 m of the ocean 

water may differ greatly from that of the deeper water (Gilbert and Rue 

1967). Both Wetzel (1975) and Hutchinson (1957) recommend lowering the 

disc from the shaded side of a boat. 

Wetzel (1975) states that, "Secchi disc transparency is essentially 

a function of the reflectance of light from its surface and is therefore 

influenced by both absorption characteristics of the water and of its 
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dissolved and particulate matter." Secchi disc transparency is 

sensitive to the number of particles scattering light and the visibility 

is more affected by the number of particles scattering light than by the 

chlorophyll content of the particles (Edmondson 1980). Attenuation of 

light is more closely related to the surface area of particles than to 

their volume, as demonstrated by Haffner and Evans (1974). Bannister 

(1974) reports Secchi disc transparencies are influenced by the 

intensity of light absorption and its nonphytoplankton components and 

the concentration of phytoplankton pigments. 

Secchi disc transparency was also a parameter in Brezonik and 

Shannon's (1971) classification of lakes in north central Florida. 

Expressed as reciprocals, mean values for Secchi disc transparency 

ranged from O. 25 for oligotrophic waters to 1. 72 for eu trophic waters. 

Secchi disc transparency was used to predict hypolimnetic oxygen 

deficits (Lasenby 1975; Cornett and Rigler 1980). 

Chlorophyll concentrations greatly influenced Secchi disc depth at 

high concentrations, but depth is influenced significantly more by 

nonchlorophyll components at low concentrations (Lorenzon 1980). 

Oglesby and Schaffner (1975) noted similar effects if high 

concentrations of phytoplankton were present. Megard et al. (1980) 

contends that the Secchi disc becomes insensitive to changes of 

chlorophyll i!:. exceeding concentrations of 30 µg/l and loses resolution 

in lakes where algal populations are high. 

Concentrations of photosynthetic pigments in natural waters vary 

with time and space. These pigments, especially chlorophyll~' provide 

estimates of phytoplankton biomass. Dillon and Rigler (1974) found 

chlorophyll to be a useful and simple estimator of phytoplankton 
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standing crop and concluded that it is generally used more than cell 

number or cell volume counts for determining biomass. Relationships 

between phosphorus concentrations and chlorophyll ~ also exist and can 

be used to estimate algal biomass. Other investigators have correlated 

Secchi disc readings and chlorophyll ~values (Lorenzen 1980). 

Rodhe (1969) used annual phytoplanktonic productivity as an 

indicator of trophic status. Based on average annual rates of aquatic 

primary production using 14c-testing, lakes were considered oligotrophic 

(7-25 g C/m2/yr), naturally eutrophic (72-250 g C/m2/yr), and polluted 

(350-700 g C/m2/yr). Brezonik and Shannon (1971) used mean primary 

productivity (mg C/m3/h) to classify lakes in north-central Florida. 

Lakes were classed as oligotrophic (1.3-5.8 mg C/m3/h), mesotrophic 

(5.8-150.2 mg C/m3/h), and eutrophic (150.2 mg C/m3/h). 

Phosphorus-Chlorophyll Relationship 

Phosphorus was found to be the most important factor in lake 

eutrophication in northwestern Ontario (Shindler et al. 1971 ). A direct 

relationship exists between chlorophyll and phosphorus in many Japanese 

lakes (Sakamota 1966). Vollenweider (1968), Deevey (1972), and 

Schindler and Fee (1974) agree that phosphorus is the limiting factor in 

controlling the production and standing crops of phytoplankton. 

Chlorophyll ~ has been used as a measure of algal standing crop and 

correlated with phosphorus concentrations (Dillon and Rigler 1974). 

Total phosphorus correlates best with transparency when phosphorus is 

the major factor limiting growth (Carlson 1977). Correlations were poor 

during spring and fall overturns when algal production tended to be 

limited by temperature or light. 



Correlations have been used by several authors as a basis for 

developing predictive equations relating to trophic status. 
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Vollenweider (1969, 1976) and Kirchner and Dillon (1975) developed 

equations to predict retention of phosphorus concentrations in lakes. A 

regression equation was used by Dillon and Rigler (1974) to predict the 

average summer chlorophyll concentrations from single measurements of 

phosphorus concentrations at spring overturn. 

Trophic State Indices 

Carlson (1977) developed a trophic state index using a single 

trophic criterion. The relationship among algal biomass, measured as 

chlorophyll ~' phosphorus, and Secchi disc transparency was used because 

algal blooms are of concern to the public and Secchi disc readings are 

simple to make. The approach used by Carlson has distinct advantages 

over more traditional approaches. Instead of three categories, a large 

number exist along a continuum using the approach of Carlson. Trophic 

comparison among lakes is possible even if different variables are 

measured as long as data are available on chlorophyll a or phosphorus or 

Sec chi disc. 

Lorenzen (1980) and Megard et al. (1980) criticized the TSI 

developed by Carlson and suggested Secchi disc transparencies are 

affected by the attenuation of light by nonalgal substances present in 

the water column. Carlson (1980) explained that variation in his 

relationship was due to increases in the amount of chlorophyll per cell 

as total algal biomass increased, and cited work by Steele (1962) and 

Jorgensen (1969) as supporting evidence. He believes Secchi disc 

transparencies have limitations as estimators of algal biomass and 
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recommends taking chlorophyll measurements for estimates of algal 

biomass. 



CHAPTER III 

LAKE CARL BLACKWELL 

Lake Carl Blackwell (LCB) is located in north-central Oklahoma, 

14 km west of Stillwater on State Highway 51 in Township 19 N, Range lW, 

Payne County. The lake was formed by impounding Stillwater Creek, a 

tributary of the Cimarron River (Figure 1). Construction of the dam was 

completed in 1938 (Oklahoma Department of Wildlife Conservation 1973). 

In 1945, the spillway elevation of 388.37 m msl, was later lowered to 

elevation 287.78 m msl due to structural faults of the dam. LCB is a 

multipurpose lake providing flood control, recreation, and municipal 

water supply for the city of Stillwater and surrounding communities. 

Morphometric data for LCB at normal pool level are shown in 

Table 1. The lake has a classic dendritic pattern with a long main 

The watershed of LCB encompasses about 15,000 ha in northwestern 

Payne and south-central Noble counties, Oklahoma. The geologic struc­

ture of the area is the Wellington formation, which is reddish-brown 

in color and composed primarily of fine-grained sandstone and mudstone. 
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Figure 1. Lake Carl Blackwell and watershed. 



11 

~ I 



Table 1. Morphometric data for Lake Carl 
Blackwell.a 

Surface area 13.52 km2 

Maximum depth 15 m 

Mean depth 4 .• 9 m 

Volume 67.1 x 106 

shoreline lengthb 88.5 km 

Shoreline developmentb 6.8 

Maximum length 8.28 km 

Drainage area 193 km2 

a From Wilhm and Howick ( 1981). 

bFrom Gomez and Grinstead (1973). 
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Figure 2. Sampling sites on Lake Carl Blackwell. 
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The color is reflected in the soil and in the water itself. Five major 

soil groups are found in the watershed; however, 88.4% of the watershed 

is made up of the Zaneis-Stoneburg-Renf row and the Grainola-Lucein 

association (Payne County Conservation Dist. 1973; Wilhm and Howick 

1981). 

The watershed is located in the cross timbers region which Bailey 

(1976) describes as the Tall Grass Prairie Province. T~is region 

includes native grasslands, upland forests, and bottom-land forests. In 

grassland areas abused by· over-grazing, cedars have become established. 

The LCB watershed is rural with no major developments such as housing or 

industry. Drilling for oil and gas reserves is occurring. Changes in 

the watershed are agricultural. In 1980, the amount of bottom-land 

forest had declined from 24% ot 9.1% and grassland had increased from 

49.8% to 63% of the total land cover. Cropland had increased from 0.5% 

to 5.7% of the watershed (Wilhm and Howick 1981). 

The area has long summers and short winters. Temperature ranges 

from -20.8°C to 47.5°C and mean annual rainfall is 83 cm and snowfall 

averages 17 cm (Oklahoma Water Resources Board 1972). Most of the 

precipitation falls in the spring and early summer as a result of 

thunderstorms of short duration. Long periods of drought occur and are 

often followed by excessive wet periods. 



CHAPTER IV 

METHODS AND MATERIALS 

Field Procedures 

All stations (Figure 2) were sampled monthly from late September 

1980 to April 1982 and twice each month from May 1981 through September 

1981. The sampling program was then extended to mid-November to obtain 

fall phytoplankton collections. Samples were collected on the following 

dates: 

Fall 80 Winter 80-81 Spring 81 Summer 81 Fall 81 

28 Sep 6 Dec 8 Mar 8 Jun 13 Sep 
5 Oct 5 Jan 5 Apr 22 Jun 27 Sep 
2 Nov 4 Feb 26 Apr 7 Jul 18 Oct 

11 May 20 Jul 15 Nov 
25 May 3 Aug 

17 Aug 
30 Aug 

Samples were collected at Station 1 from 0.5, 2, 5, 8, 11, and 14 m. 

Collections from 0.5 m were made at stations 2-9 and represented the 

upper mixing zone. All collections were made between 0855 and 1520 h 

CST. Weather conditions, percent cloud cover, and wind speed and· 

direction were recorded at the beginning of each sample. 

Temperature, pH, dissolved oxygen (DO) concentrations, and 

conductivity were measured with a Hydrolab model 4041 water quality 

monitoring system. Secchi disc transparencies were measured at each 

station in duplicate as described by Wetzel (1975). Water samples were 

collected using an acrylic plastic 8.3 liter capacity Van Dorn water 

16 
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sampler. Samples were preserved on ice and transported to Oklahoma 

State University for analysis of turbidity, suspended solids, and 

phosphorus (soluble reactive and total). Phytoplankton for determining 

algal densities and biomass were collected with a 28 µm mesh, 11.5 cm 

diameter Wisconsin plankton net drawn from the bottom to the top of the 

water column. 

Laboratory Analysis 

A Hach Model 16800 nephelometer was used to measure turbidity in 

NTU. The nephelometer was calibrated (Amco Standards International, 

Inc.) and the sample cuvette was oriented at the same position while 

calibrating and analyzing samples. All samples were well mixed and 

bubbles dispersed before readings were taken. Excessively turbid 

samples were diluted with distilled water, read, and the results 

multiplied by a dilution factor. Suspended solids were determined by a 

modification of procedures outlined in Standard Methods (1980). A 250 

ml sample was filtered through a 0.22 m pore size, 47 mm diameter 

membrane filter and weighed on a Mettler balance to the nearest 0.0001 g. 

The filter was then oven dried at 60°C for at least 3 h, allowed to 

cool, and reweighed. 

Total and soluble .reactive phosphorus concentrations were 

determined by the molybdate blue procedure (EPA 1974). All analyses 

were performed by Dr. Dale Toetz's staff in conjunction with the Lake 

Carl Blackwell Clean Lakes Program. Total phosphorus was measured by 

adding 1 ml of H2S04 solution and 0.4 g of ammonium persulfate to a 50 ml 

sample in a 125 ml Erlenmeyer flask. The sample was then boiled on 

a preheated hotplate for about 30 to 40 min and adjusted to a pH of 
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7+-0.2 with NaOH. The sample was then allowed to cool and readjusted to 

50 ml. Combined reagents described by EPA (1974) were then added and 

the sample thoroughly mixed. It was allowed to stand from 10-30 min and 

the color absorbance of each sample at 650 and 880 nm read on a 

spectrophotometer using a reagenc. blank as the reference solution. 

Soluble reactive phosphorus was measured in the same manner except the 

50 ml sample was filtered through a phosphorus-free 0.45 µm pore size 

filter and the ammonium persulfate and heat omitted. Results were 

calculated by plotting a standard curve of the absorbance values of 

standards versus corresponding concentrations and sample values obtained 

directly from the standard curve. 

Water samples were collected in the field and transported to the 

laboratory for immediate analysis of chlorophyll !!:_ in the manner 

described by Weber (1968) and Slack et al. (1973). The 1 liter sample 

was filtered through a 0.45 µm, 47 mm diameter membrane filter, at a 

vacuum less than 380 mm of mercury, about 15 psi, using an electric 

vacuum pump. The filter was rolled with the sample on the inside and 

placed in a ground-glass grinder tissue homogenizer. The filter was 

then covered with 2 to 5 ml of 90% aqueous acetone and 0.2 ml of 

saturated aqueous solution of magnesium carbonate and then macerated for 

about 1 min at 500 rpm. The sample was transferred to a 15 ml screw 

capped graduated centrifuge tube. The pestle and homogenizer were washed 

several times with 90% acetone and the total volume adjusted to 10 ml + 

0.1. The sample was allowed to steep approximately 12 h in the dark at 

4°C and centrifuged for 10 min at 3,000 to 4,000 rpm. A set of five 

serial dilutions ranging in concentrations from 10 to 300 µg/l were 

prepared using a known concentration of chlorophyll a extract and the 



19 

relative intensity values determined using a spectrophotofluorometer 

calibrated against a 90% acetone blank. Each sample was analyzed on an 

Aminco-Bowman Spectrophotofluorometer calibrated against the 90% acetone 

blank and relative intensity values determined at excitation and 

emission wavelengths of 430 and 663 nm. Chlorophyll ~ concentrations of 

the sample were determined as described by EPA (1973) in the following 

manner: 

mg chlorophyll ~/m3 = Ca x volume of extract (liters) 
volume of grab sample (m3) 

where Ca the concentrations in milligrams per liter of 
chlorophyll ~ in the extract. 

A 10 ml sample for chlorophyll ~ determination was filtered through 

a 0.45 m pore size, 24 mm diameter membrane filter. During filtration 

a vacuum was less than 0.5 atmosphers to minimize cell damage. The 

filter was placed on a labeled microscope slide, allowed to dry, and 

cleared by adding a few drops of immersion oil. Slides were examined 

for algal identification and enumeration. Cell densities were 

determined by the method described by Slack et al. (1973) as follows: 

Phytoplankton = total cell count X effective filter area (mm2) 
number of random volume of filtered sample 
grids x area of (ml) 
grid (mm2) 

Volumes were determined from Wetzel (1975) or by making optical 

measurements of 20 representative individuals of each major species or 

genera. The average volume (µm3) was calculated and multiplied by the 

number of organisms per milliliter to determine the biomass of each 

major genera. 

The slides were examined using the lOOX (oil immersion) objective 

lens with lOX ocular. All cells appearing within 20 random grids on the 

filter were enumerated. Empty diatom frustules were not counted. 
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Statistical Methods 

Data comparison was accomplished using the Statistical Analysis 

Systems (SAS) program (Barr et al. 1979). Since the data was not of a 

balanced design and without replication, a one-way analysis of variance 

(ANOVA) was performed for each parameter using the general linear models 

procedure. Sources of variation included the date, station, and depth. 

When the ANOVA indicated significance difference at the 95% confidence 

level, a Duncan's multiple range test was used to delineate the source 

of variation. As a ~easure of laboratory precision replicate samples 

from at least one station during each sampling period were analyzed. 



CHAPTER V 

RESULTS 

Temperature 

Water temperature in Lake Carl Blackwell varied with time, but not 

with station or depth. Temperature ranged from 2.9 to 29.2°C (Table 2). 

Surface temperatures (0.5 m) at Station 5 were slightly higher than 

those at other stations. The lake was thermally stratified from 8 June 

to 30 August 1981 with the thermocline forming between 8 and 11 m. 

Surface temperatures at Station 1 were slightly higher than those at 

lower depths (Table 3). 

Oxygen 

Dissolved oxygen (DO) concentrations varied significantly with date 

and depth. Surface DO concentrations ranged from 6.2 to 15.1 mg/l 

(Table 2). DO was considerably higher in winter than during other 

seasons. During thermal stratification DO was low in the hypolimnion 

from 11 to 14 m (Table 3). 

pH 

The pH in LCB varied with date and depth. Hean seasonal surface 

values ranged from 7.6 in fall to 8.4 in summer (Table 2). Values of pH 

were lower in the fall than in other seasons. In summer, values between 

0 and 5 m varied from those at 8 and 11 m, and these values were 

21 



Table 2. Mean surface physicochemical concentrations in Lake Carl Blackwell. 

SamEling Eeriods 
Fall 1980 Winter 1980-81 Spring 1981 Summer 1981 

Parameters Range x Range x Range x Range x 

Temperature (°C) 12. 8-21. 7 19.1 2.9-4.2 5.6 9.1-21.1 16.8 23.1-29.2 26.9 

Dissolved oxygen 
(mg/1) 7.9-10.8 8.8 12.4-15.1 13.2 7.7-10.1 9.2 6.2-9.5 7.5 

pH 7.5-7.7 7.6 8.0-8.5 8.0 8.0-8.6 8.3 8.0-8.6 8.4 

Turbidity 
(NTU) 21-32 27 6.5-20 14.S 24-27 41 21-81 43 

suspended solids 
(mg/l) 8.44-17.92 14.08 4.64-14.20 9.96 3.48-35.32 16.08 3.2-42.2 15.5 

Conductivity 
(J1mhos) 406-4 77 452 409-437 419 409-474 453 434-615 509 

Fall 1981 
Range x 

11.6-25. 7 19.7 

8.1-10.6 9.2 

7.7-8.2 8.1 

29-57 37 

2.5-22 15 

415-439 430 

N 
N 
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Table 3. Mean vertical physicochemical concentrations in Lake Carl 
Blackwell. 

Parameter Season 0.5 m 2 m 5 m 8 m 11 m 14 m 

Temperature F (1980) 18.7 17 .1 16.7 16.5 16.4 18.1 
( OC) w (1981) 5.6 5.6 5.5 5.5 5.5 5.4 

s (1981) 16.8 16.5 16.3 16.2 16.0 ' 15.8 
s (1981) 26.7 26.7 26.2 25.2 22.2 20.3 
F (1981) 19.6 19.6 19.4 19.3 19.3 19.2 

Dissolved F (1980) 8.9 9.3 9.2 9.1 9.1 8.5 
oxygen (mg/l) w (1981) 13.2 13.1 13.1 13.1 13.1 13.0 

s (1981) 8.9 8.8 8.8 8.7 8.4 8.0 
s (1981) 7.8 8.1 7.8 6.5 1.9 0.5 
F (1981) 9.0 9.2 9.0 8.9 8.2 7.3 

pH F (1980) 7.7 7.9 7.9 7.9 7.9 7.9 
w (1981) 8.3 8.3 8.3 8.3 8.3 8.3 
s (1981) 8.4 8.3 8.3 8.3 8.2 8.1 
s (1981) 8.3 8.3 8.2 7.9 7.5 7.4 
F (1981) 8.0 8.0 8.1 8.1 7.9 7.9 

Turbidity F (1980) 25 25 24 22 28 33 
(NTU) w (1981) 18 17 17 18 19 20 

s (1981) 40 40 43 46 54 62 
s (1981) 27 29 32 64 98 123 
F (1981) 33 32 33 38 57 69 

Suspended F (1980) 13.44 13.32 14.62 14.52 15.66 29.98 
solids (mg/1) w (1981) 10.68 12.35 12.35 12.21 11.80 13.64 

s (1981) 14.97 16.14 14.45 16.78 21.21 23.85 
s (1981) 6.90 6.30 14.70 20.70 31.00 46.20 
F (1981) 11.30 12.00 10.00 12.70 20.80 31.90 

Conductivity F (1980) 433 416 418 417 417 429 
(µmhos) w (1981) 419 420 420 420 420 419 

s (1981) 455 456 456 456 455 455 
s (1981) 506 506 507 492 506 513 
F (1981) 431 431 432 431 431 431 

Total F (1980) 32.8 33.8 32.5 32.5 33.3 28.3 
phosphorus w (1981) 40.0 45.0 46.5 50.0 37.8 46.7 
(µg/1) s (1981) 28.0 19.3 24.5 33.3 28.4 29.2 

s (1981) 36.7 38.4 39.7 58.4 60.3 73.7 
F (1981) 46.0 40.0 41.0 68.0 80.0 94.0 
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Table 3. Continued. 

Parameter Season 0.5 m 2 m 5 m 8 m 11 m 14 m 

Soluble F (1980) 23.0 21.0 21.0 23.0 26.0 25.5 
reactive w (1981) 25.3 26.0 29.3 29.0 31.0 34.0 
phosphorus s (1981) 14.2 45.5 18.0 15.0 21.0 23.7 
(µg/l) s (1981) 13.1 10.9 13.1 15.8 30.8 38.6 

F (1981) 11.0 10.6 8.0 6.4 62.0 32.6 

Chlorophyll ~ F (1980) 5.23 4.63 2.87 3.37 2. 72 3.73 
(µg/l) w (1981) 4.18 3.18 3.02 3.54 4.17 3.61 

s (1981) 5.21 4.31 3.87 4.08 3.67 4.09 
s (1981) 7.74 6.67 5.62 3.45 3.73 3.85 
F (1981) 6.63 5.52 4.44 4.51 5.07 5.52 
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different from those at 14 m (Table 3). 

Turbidity 

Secchi disc, turbidity (NTU), and suspended solids were measured to 

provide estimates of water clarity. Secchi disc transparency varied 

with time and station. Transparencies ranged from 23 to 130 cm. Secchi 

disc values were higher in winter than in summer (Figure 3). Sum.mer 

values were higher than spring and fall values. Stations 4, 5, and 8 

had lower Secchi disc values than other stations. 

Turbidity and suspended solids are inversely related to Secchi disc 

transparency. Surface turbidity values ranged from 7 to 81 NTU 

(Table 2). No difference existed among stations. Turbidity varied with 

season, with the highest readin~ in summer and the lowest in winter. 

Turbidity was higher at 11 and 14 m than at other depths (Table 3). 

Surface values for suspended solids ranged from 3.2 to 42.2 mg/l 

(Table 2) and varied with time and depth. Values for summer, fall, and 

spring were lower than values obtained in the winter. Values at 14 m 

were higher than those at 11 and 8 m and these values were higher than 

those at 5, 2, and 0.5 m (Table 3). 

Conductivity 

Mean surface conductivity values ranged from 406 to 615 µmhos/cm 

(Table 2). Hean surface reading'" varied over time but not by station. 

Higher values were recorded during the summer, while lower 

conductivities were found in the winter. Little variation existed among 

depths (Table 3). 



Figure 3. Temporal variation in Secchi disc, chlorophyll ~, 
and total phosphorus in Lake Carl Blackwell. 
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Phosphorus 

Mean total phosphorus (TP) surface concentrations ranged from 3.8 

to 59 µg/l. Little differences existed among stations. Concentrations 

were higher in winter and summer than in spring (Figure 3). Values from 

0.5 to 5 m were similar, while concentrations at 8, 11, and 14 m 

were higher. Mean soluble reactive phosphorus (SRP) values for 0.5 m 

ranged from nondetectible to 36 µg/l. Mean SRP concentrations were 

highest at Station 7 and lowest at Station 4. Soluble reactive 

phosphorus concentrations were generally higher in early winter and 

lower in later summer and spring (Figure 4). 

Chlorophyll a 

Chlorophyll~ varied among dates and stations. Chlorophyll 

concentrations at 0.5 m ranged from 20.2 to 0.9 g/l. Stations 4, 5, 

and 8 were higher in chlorophyll a content than other stations 

(Figure 5). Higher concentrations occurred during the summer and fall 

(Figure 4). Surface concentrations were greater than other depths. 

Phytoplankton 

Twenty-two taxa were observed in 187 samples during the study 

(Table 4). All 22 taxa occurred in the summer, while 20 were collected 

in fall, 19 in spring, and 16 in winter. Two blue-green algae, 

Aphanizomenon and Anabaena, and one diatom, Melosira, comprised 99.6% of 

the total phytoplankton sample in the winter, 97% in the spring, 86% in 

summer, and 97.8% in the fall. Aphanizomenon was the dominant taxa in 

all seasons. Anabaena was the second most abundant species in the 

winter and summer, while Melosira was the second most abundant species 



Figure 4. Temporal variation in algal density, biomass, and 
soluble reactive phosphorus in Lake Carl Blackwell. 
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Figure 5. Spatial variations in chlorophyll ~ and biomass in 
Lake Carl Blackwell. 
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Table 4. Taxa collected in Lake Carl Blackwell. 

Chlorophyta 

Eudorina 

Pandorina 

Oocystis 

Botryococcus 

Pediastrum 

Closterium 

Staurastrum 

Ankistrodesmus 

Kirchnerella 

Euglenophyta Pyrrhophyta Chrysophyta 

Euglena Glenodenium Melosira 

Ceratium Fragilaria 

Synedra 

Gyrosigma 

Navicula 

Cosinodiscus 

33 

Cyanophyta 

Anabaena 

Aphanizomenon 

Microcystis 



34 

in spring and fall (Figure 6). 

Phytoplankton densit·ies varied with time and station. Higher 

densities occurred in early spring and summer, while lower densities 

existed in late spring and fall (Figure 4). Mean algal densities ranged 

from 25.2 cells/ml at Station 1 to 52.5 cells/ml at Station 9. Higher 

densities were found at stations in protected arms of the lake, while 

lower densities were found in the main pool stations. 

Biomass 

Biomass estimates ranged from a mean of 5.8 to 10.5x104 µm3/ml. 

Biomass remained relatively low from December through May then increased 

abruptly, reaching the maximum value on 7 July 1981 (Figure 5). Minimum 

biomass occurred at Station 1 and maximum at Station 4. Generally, 

stations in the arms had greater biomass than stations in the main 

pool. 



----- --- ---

Figure 6. Mean seasonal occurrence of major phytoplankton 
in Lake Carl Blackwell. 
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CHAPTER VI 

DISCUSSION 

Algal Density and Community Structure 

The number of dominant algal genera in LCB appears to be 

decreasing. Eight genera were common in 1940-41 (Leonard 1950), four in 

1949-50 (Leonard 1950), four in 1971-72 (Faust 1973), and only three 

genera in the present investigation. There has been an increase in 

dominance by blue-green algal species, which may indicate 

eutrophication. Seasonal variation was also reported in the various 

studies. Leonard (1950) reported peak algal abundance in November and 

April of 1940-41 and in February 1949-50. Peak algal production 

occurred in June and September of 1971 and in May of 1972 (Faust 1973). 

In the present study, the major peak in algal production occurred in 

March, with smaller peaks occurring in July and November (Figure 6). 

Between 1972 and 1975, 815 lakes were sampled as part of EPA's 

National Eutrophication Survey (EPA 1975). Aphanizomenon was the most 

abundant in the fall, while Anabaena was dominant in the summer and 

Melosira in the spring. In the present investigation, Aphanizonmenon 

was the most common in all seasons. 

Algal Density vs Biomass 

Increases in algal densities were accompanied by increases in 

biomass. Seasonal variation in algal density and biomass were similar 

37 
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in Hay, but biomass was disproportionally high in July, August, and 

September. The higher biomass during the summer resulted from the 

appearance of Microcystis, a blue-green algae that comprised only 1% of 

the samples but had an extremely large cell volume. By October, 

Microcystis had disappeared and biomass declined. 

Secchi Disc, Total Phosphorus, and Chlorophyll a 

Phosphorus (TP) is frequently cited as the limiting factor to 

production of phytoplankton in lakes (Edmondson 1970; Bachman and Jones 

1974; Schindler 1974). Phosphorus may not be the primary factor 

limiting algal production in LCB (Faust 1973). In the present study, no 

significant difference (p > .05) existed among seasons in total 

phosphorus concentrations despite large differences in algal densities 

and biomass. 

Soluble reactive phosphorus (SRP) is more readily available than TP 

for algal use. Seasonal increases and decreases in algal densities were 

accompanied by corresponding decreases and increases in SRP 

concentrations. While the relationship between phosphorus and algal 

density is more apparent using SRP than TP, no significant difference 

(p > .05) existed among seasons in SRP concentrations despite large 

differences in algal densities and biomass. Soluble reactive phosphorus 

was lowest in Harch, which also coincided with the period of highest 

algal densities. While March values for SRP were low, the fact that 

concentrations remained available for algal uptake indicate that 

phosphorus is not limiting in LCB. 

A strong relationship between chlorophyll ~ and total phosphorus 

has been described by Sakamoto (1966), Dillon and Rigler (1974), Jones 



and Bachman (1976), and Carlson (1977). Carlson's equation is as 

follows: 

ln chl a = -1.06 + 1.45 ln TP (n 

A regression developed for LCB resulted in: 

ln Chl a = 1.83 - .031 ln TP (n 

43, r = 0.85) 

12, r = 0.14) 
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The positive slope of Carlson's regression line indicates increases in 

chlorophyll 2:. occur at a faster rat~ than increases in TP 

concentrations. The slope of the regression line for the LCB equation 

indicates that increases in chlorophyll 2:. are not occurring at a faster 

rate than increases in TP and suggests TP is not a factor limiting 

chlorophyll concentrations. 

The relationship between light and chlorophyll 2:. have been examined 

at LCB. A previous investigation reported chlorophyll 2:_ concentrations 

to begin increasing from winter levels in June, peak in July, decline, 

and increase again in mid September (Toetz et al. 1977). Similar 

temporal trends were noted during the present study (Figure 3). 

Chlorophyll 2:. content was found to be greater at 0.5 m than at other 

depths, which is indicative of light limiting conditions. Generally, 

the more turbid stations also had the highest mean annual chlorophyll a 

content and algal biomass. This contrast could be the result of 

phytoplankton adapting to turbid conditions and producing more 

chlorophyll. Chlorophyll 2:_ per cell has been found to increase in 

certain species as light decreased (Steele 1962; Jorgensen 1969). 

Jewson and Taylor (1978) found similar conditions in Irish lakes and 

attributed it to differences in lake mixing. Stations in Lake Erne were 

found to have similar chlorophyll ~ content despite differences in 

euphotic zone depth and algal concentrations. 
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The relationship between Secchi disc transparency and chlorophyll ~ 

has been described by a number of investigators (Edmondson 1970; Bachman 

and Jones 1974; Carlson 1977). Ca~lson's equation for Secchi disc and 

chlorophyll~ is as follows: 

ln (Secchi disc)= 2.04 - 0.68 ln (Chl a) (n = 147, r = 0.93). 

A regression equation expressing this relationship for LCB is: 

ln (Secchi disc) = -0.06 - 0.29 ln (Chl a) (n = 13, r = 0.41). 

Correlation between these parameters for LCB are low (r = 0.41) compared 

to Carlson's (r = 0.93). Light attenuation in LCB is mostly due to 

non-chlorophyll containing particles. Low correlations between 

chlorophyll ~ and Secchi disc due to these particles have been noted by 

others (Bannister 1974; Lorenzen 1980). In turbid conditions 

relationships between Secchi disc and chlorophyll ~must be examined 

closely since light attenuation may be caused by substances other than 

algae. 

Trophic State Index 

Carlson (1977) developed a Trophic State Index (TSI) based on the 

relationship among phosphorus, chlorophyll ~' and Secchi disc. The TSI 

can be computed from any of the three parameters and should be 

approximately the same regardless of the parameter chosen. Carlson 

generated a single number to fit into a numerical scale ranging from 0 

to 100 with major trophic divisions at 10 unit increments. Mean annual 

TSI values computed for LCB were 68 for Secchi disc, 49 for chlorophyll 

~' and 56 for total phosphorus. Seasonal TSI values calculated for LCB 

are shown in Figure 7. Values generated from the different methods of 

calculation were all significantly different from each other (p > .05). 



Figure 7. Temporal variation in Carlson's TSI for Lake 
Carl Blackwell. 
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Consequently, the trophic state for LCB on any given season may vary by 

as much as two trophic divisions, depending upon which parameter is used 

to calculate the TSI. Carlson recommended calculation of ·the index for 

more than one parameter to serve as a check on methodology and 

assumptions regarding relationship among parameters. Clearly, LCB 

violates some of the assumptions. 

Carlson conducted his work on natural lakes where relationships 

among Secchi disc, chlorophyll~' and total phosphorus relate well 

because turbidity was chiefly due to algae and phosphorus limited algal 

abundance. However, his assumptions underlying the relationship between 

these parameters has been critized (Edmondson 1980; Lorenzen 1980; 

Megard et al. 1980). These relationships do not hold for impoundments 

or reservoirs such as LCB where transparency depth is limited by 

interference from non-algal particles. Carlson recognized that Secchi 

disc transparency could give false values in highly colored lakes but 

concluded that its advantages outweighed its disadvantages. 

Use of the total phosphorus TSI developed by Carlson is based on 

the assumption that phosphorus is the major limiting factor. In LCB, 

phosphorus is probably not the major limiting factor and its use as an 

indicator of trophic state is unwise. Carlson found that trophic state 

indices calculated from Secchi disc transparencies usually approximated 

those calculated from chlorophyll a. This was not the case in LCB where 

the derived Secchi disc value more nearly equated the diurnal value for 

TP. The TSI value calculated from chlorophyll~ probably provides a 

more accurate index of the trophic state of LCB than either phosphorus 

of Secchi disc. While it is neither simple nor inexpensive to derive 

TSI values from chlorophyll~ estimates, it appears to provide a 
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more reasonable index for calculating trophic state in a highly colored 

or turbid lake. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

1. Limnological data were collected from Lake Carl Blackwell, 

Oklahoma to measure the spatial and temporal variation in algal 

densities, chlorophyll!!_, phosphorus, Secchi disc transparencies, and to 

calculate trophic state. 

2. A total of 22 algal taxa was observed during the study. 

Aphanizomenon, Anabaena, and Melosira were the most abundant genera in 

all seasons. 

3. In LCB turbidity from non-algal particles, not phosphorus, was 

probably the primary limiting factor for algal production. 

4. It is not possible to predict adequately chlorophyll a from 

Secchi disc measurements due to light attenuation from non-chlorophyll a 

particles. 

S. The trophic state index developed by Carlson was of limited 

usefulness at LCB. Seasonal TSI values computed for Secchi disc, 

chlorophyll !!_, and total phosphorus were found to be significantly 

different and could vary by as much as two trophic divisions. The basic 

assumptions formulated by Carlson correlating the relationship of these 

parameters do not hold true in LCB because of interference from 

nonchlorophyll particles. 
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