## A MICROPROCESSOR BASED CONTROL

SYSTEM FOR A SOLAR

HEATED GREENHOUSE

\author{
By <br> SIMON TIMOTHY MURRAY Bachelor of Engineering (Agricultural) Darling Downs Institute of Advanced Education Toowoomba, Queensland <br> Australia <br> 1980 <br> ```
Submitted to the Faculty of the <br> Graduate College of the <br> Oklahoma State University <br> in partial fulfillment of <br> the requirements for <br> the Degree of <br> Master of Science <br> July, 1982

```
}
thesis 1982 \(m 984 m\) cop. 2


A MICROPROCESSOR BASED CONTROL SYSTEM FOR A SOLAR HEATED GREENHOUSE

Thesis Approved:


The purpose of this study was to design and build a control system for a solar heated greenhouse. Funding of this study was from the Oklahoma Experiment Station Project l 690 "Solar Heating and Energy Conservation/Greenhouses".

Gratitude is extended to the Agricultural Engineering Department for their financial assistantship throughout the term of study.

A special thanks is extended to the major advisor Dr. George W. A. Mahoney for his guidance and understanding throughout the study period. Appreciation is extended to Dr. Peter Bloome and Dr. Dave Seldom for their assistance in time of need. To Bruce Lambert and Randy Cochran of the Agricultural Engineering Laboratory staff, for their help and guidance in electronics and computer knowledge.

To the other Agricultural Engineering staff, Norvil Cole, Robert Harrington, and Clifford Riley for their help and guidance.

For her many hours spent typing this thesis, a deep appreciation is extended to Fran Holbrook.

\section*{TABLE OF CONTENTS}
Chapter Page
I. INTRODUCTION ..... 1
II. OBJECTIVES ..... 8
III. LITERATURE REVIEW ..... 9
IV. SYSTEM DESCRIPTION ..... 16
Hardware Description ..... 16
Operation Description ..... 22
V. METHODS AND MATERIALS ..... 25
Temperature Transducers ..... 26
Multiplexer ..... 27
Analog to Digital Converter ..... 29
Light Transducer ..... 32
Floor Water Set Temperature Switches ..... 36
LED's ..... 36
Controller Relays ..... 38
Memory ..... 40
VI. PROGRAMS ..... 43
SYM-1 BASIC Language Program ..... 43
SYM-1 ASSEMBLY Language Subroutines ..... 45
AIM-65 to Tektronix Commmunication Program. ..... 47
Tektronix BASIC Program ..... 48
Statistical Analysis System ..... 50
VII. RESULTS AND DISCUSSION ..... 52
VIII. CONCLUSION AND RECOMMENDATIONS ..... 56
Recommendations for Future Work ..... 57
BIBLIOGRAPHY ..... 58
APPENDIXES ..... 60
APPENDIX A - BASIC PROGRAM FLOWCHART FOR THE SYM-1 . . . . . . . . . . . . . . . 61
APPENDIX B - BASIC PROGRAM FOR THE SYM-1 ..... 65
APPENDIX C - ASSEMBLY LANGUAGE SUBROUTINES FOR THE SYM-1 ..... 72
APPENDIX D - BASIC DRIVER PROGRAM ..... 81
APPENDIX E - ZERO PAGE RELOCATOR FOR RUNNING BASIC ..... 83
APPENDIX F - AIM-65 TO TEKTRONIX DATA TRANSFER PROGRAM ..... 85
APPENDIX G - TEKTRONIX BASIC PROGRAM ..... 88
APPENDIX H - STATISTICAL ANALYSIS SYSTEM PROGRAM USED TO ANALYZE GREEN- HOUSE DATA ..... 96
APPENDIX I - GREENHOUSE DATA ..... 99
APPENDIX J - GREENHOUSE DATA ..... 103

\section*{LIST OF TABLES}
Table Page
I. Example Thermistor Temperature Resistance Response . . . . . . . . . . . . . . . . . . 28
II. Current to Frequency, Frequency Resistance Response . . . . . . . . . . . . . . . ..... 35
III. Greenhouse Data ..... 100
IV. Greenhouse Data ..... 104
Figure Page
1. Greenhouse Construction ..... 2
2. Pit Temperature Estimation Chart ..... 5
3. System Flowchart ..... 16
4. Control System ..... 17
5. Control Case Face View ..... 17
6. Control Case Rear View ..... 20
7. Control Case Side View ..... 20
8. Control Interior View ..... 21
9. Relay Case ..... 23
10. Current to Frequency Converter Circuitry ..... 30
11. Multiplexor and Current to Frequency Converter Circuit ..... 33
12. Photo Resistor Circuitry ..... 35
13. LED Circuitry ..... 37
14. Controller Relay Circuitry ..... 39
15. Memory Board Circuitry ..... 41

\section*{CHAPTER I}

\section*{INTRODUCTION}

A greenhouse design has been developed by Dr. C. Whitcomb of the Oklahoma State University's Horticultural Department which harvests excess solar heat. The excess heat in the greenhouse is collected and stored as heated water in a bed beneath the greenhouse. The Agricultural Engineering Department at Oklahoma State University has been cooperating with the Horticulture Department in experiments with this type of a greenhouse system (Paine, 1978, 1979). A slightly modified version of the greenhouse was built in 1980. A controller is required to control the harvesting of the excess solar energy and to control air temperatures within the greenhouse.

The greenhouse is a Quonset type pipe framework construction, with two layers of plastic, sealed at the edges and inflated by air pressure, as illustrated in Figure 1. Below the inner layer of roofing plastic is a third layer of plastic on a semi-circular pipe framework. An overhead spray line is installed on either side the length of the greenhouse between the middle and bottom layers of plastic. Beneath the greenhouse is a pit approximately thirty centimeters deep and filled with gravel-water combination. A


Figure 1. Greenhouse Construction.
layer of plastic serves as a floor barrier between the inside of the greenhouse and the pit. Water is pumped from the pit and sprayed into the space above the lower airspace. The water then falls on the inner plastic cover and, in running down the surface, extracts surplus heat from the greenhouse by conduction through the 6 mil plastic. The water then returns to the pit, transferring surplus heat from the greenhouse and airspace to the water/gravel mass. Harvesting of excess solar energy in this manner utilizes two important factors. Firstly, most greenhouses receive too much solar energy on sunny days and so must vent the greenhouse to prevent excessive high temperatures. By harvesting excess solar energy with spray water, requirements of venting are reduced. Secondly, stored solar energy may be used at a later time reducing the need of fossil fuels.

This type of greenhouse, which stores solar energy in a pit beneath the floor, is a warm floor greenhouse. The large surface area of the floor becomes a good radiator for the low temperature differentials characteristic of solar collectors of this type. Plants are positioned directly on the floor allowing heat from the pit to be conducted directly to plant roots. Maintenance of warm plant roots allows air temperatures surrounding the plant to fall much lower than those allowed by most greenhouses. By allowing temperature fluctuating from low temperatures at night to high temperatures during the day, energy input to the greenhouse by fossil fuels has been reduced markedly. Fall and
spring plants have produced good physical and aesthetic characteristics.

A controller for this type of greenhouse has many control decisions. The major requirement is to maintain water in the pit at such a temperature that the floor will conduct and radiate sufficient energy to the plants to maintain them at a suitable temperature. Paine (1979) was able to develop a heat flow equation for this particular type of greenhouse. He was then able to calculate the required pit temperature to maintain greenhouse temperatures above a specified minimum temperature if the expected outside minimum temperature can be predicted. From Paine's equation, a chart (Figure 2) was developed for this greenhouse, allowing estimation of minimum required pit temperature. The bottom axis is the expected low outside air temperature, the vertical axis is the pit temperature and the three sloping lines in the chart are for 3 minimum required air temperature in the greenhouse. If the expected minimum outdoor temperature were too low to maintain the desired temperature in the greenhouse, the pit temperature could be increased to the level needed, as given by the graph. Two methods are used to raise pit temperature. Excess solar energy is used to raise the pit water temperature whenever possible otherwise, a backup water heating source is required.

There are a number of circumstances which may eventuate when the warm pit has insufficient energy transfer to the


Figure 2. Pit Temperature Estimation Chart
inside of the greenhouse. This could be due to the operator not selecting the correct pit temperature, a malfunction in the backup water heater, or excess ventilation from a door being ajar. Whatever the reason, the controller must be able to accommodate the situation. An emergency auxiliary heater is installed in the greenhouse for this purpose. Should temperatures in the greenhouse still remain in a state detrimental to the plants after the auxiliary heater is activated, the controller may spray warm pit water between the middle and bottom plastic sheets, raising house temperatures and forming a heat loss source between the house and outside cold air. This would be an emergency situation, as energy would be rapidly lost from the pit. If both methods fail to raise or maintain the temperature, an alarm must be activated to indicate critical situation.

For all of these control functions, a 'smart' controller is required. In most situations, control automation in greenhouses has been achieved using solid state relays. This type of hardware system has proven to be reliable for most situations. However, they are applicable only to simple strategies of greenhouse operation.

With complex control algorithms required for the abovementioned greenhouse, microprocessors are more applicable. Their price has reduced markedly over the past few years, bringing them below the cost of an "equivalent capability" solid state relay system. Accuracy of the control operation depends upon the control strategy programmed into software
memory and the accuracy of the measurement transducers. Control strategies are easily changed since they are software programs. In addition to their control ability, microprocessors have the ability to store and/or manipulate data received. Willits (1979) explained his use of microprocessors as:
ideally suited to greenhouse research. The ability to precisely control multiple operation, while at the same time collecting and processing data, enable the research to conduct full-scale tests under near-laboratory conditions (p. 688).

Mitchell (l980) found that "the microcomputer system advantages far outweigh those of the conventional solidstate controls" (p. 9).

This research is applicable to control of the greenhouse developed by the Agricultural Engineering Department of Oklahoma State University. The following requirements were viewed as the specific objectives:
1. Define and flowchart the functional requirements of the controller.
2. Design the control system hardware for the experimental greenhouse based on a microprocessor.
3. Write the software required for the correct operation of the controller.
4. Test the controller.
5. Determine the merits of extended capabilities for the controller to acquire greenhouse and controller data.

\section*{CHAPTER III}

\section*{LITERATURE REVIEW}

When this project was initiated, it was determined that a small, cost competitive control system was required for solar heated greenhouses. We directed our efforts towards using microprocessors as the control device, believing that the majority of control applications in the future will use these devices. To be cost competitive, the final device had to be able to compete in performance and price with hardware-type controllers.

The majority of research into control of greenhouses was achieved using 8-bit microprocessors, with the memory capabilities of the machine depending on the complexity of control required. Willits (1979) used a control Logic M-Series microcomputer which had separate memory and input/output control. His system had a total program memory of 6.5 K of Erasable Programmable Read only Memory and a workspace of 3 K of Random Access Memory. Although he discussed the merits of the different programming languages which can be used, he chose a BASIC language which could interact with ASSEMBLY language. The M-series microcomputer was also chosen by Bowers (1978), utilizing BASIC as the control language and 6 K of RAM memory. McClure (1977) in
his work with tobacco curing used a M-series microcomputer, but used ASSEMBLY language rather than BASIC. For large control algorithms, he did advise the use of a higher level language.

A microprocessor enjoying increased popularity is the SYM-1 from Synertek. Mitchell (1980) chose the SYM-1 for his comparison of microprocessor control to solid state control. He decided to use the on-board 4 K of RAM for his BASIC program, rather than EPROM's or PROM's. Walker (1981) also used the SYM-1, based on the 6502 language system, for control of Alcohol fuel Fumigation. As with most researchers, he used BASIC language, which is slower to run but easier for operator programming.

Advantages of using microprocessors for control application are described in Mitchell's (1980) conclusions.
1. Microprocessor control strategy, although more complex than the strategy required for solid state systems, is implemented in considerably less time than with conventional systems.
2. Control changes are easier to make using software with microprocessors.
3. The hardware hookup for the microprocessor system is usually simpler than for the conventional system.
4. Easier temperature set points using microprocessors, rather than conventional systems.
5. If terminals are connected to the microprocessor, monitoring of the microprocessor control activities can be performed under program control.

Environmental control is basically temperature dependent, and the majority of temperature transducers used are linearized thermistors or thermocouples. Willits (1979) found that by using thermocouples with his M-series microprocessor and using one thermocouple as a reference temperature in an ice bath, he could achieve \(\pm 0.25\) degrees centigrade accuracy. This type of accuracy is obtainable, however only if the ice reference junction is maintained accurately. Bowers (1978) also used type \(T\) thermocouples with an ice bath reference, but experienced thermal drift problems in their non-temperature compensated reed relays.

A different method of using thermocouples is to use a reference junction with a floating temperature. This method requires accurate temperature measurement of the reference junction by some means other than thermocouples. It also require the microprocessor be able to calculate equivalent reference units compatible to thermocouples.

Mitchell (1980) used linearized-thermistors. Accuracy of control to \(\pm 1\) degree centigrade was maintained. His temperature measurement accuracy was limited by the resolution of the analogue to digital converter. However, measurements to \(\pm 0.5\) degrees centigrade were obtained.

Most research using controllers utilize several temperature sensors. Individual temperature transducers must be selected for temperature readings. Willits (1979) used type \(T\) thermocouples connected to an analog to digital converter through relays. Due to a thermocouple's low
voltage signals, three-wire, guarded, low thermal drift reed relays, Coto-coil model CR-3350-5, were chosen. Switching was achieved by decoding the upper four lines of the address buss to select 1 of 16 relay groups and the lower four lines of the address buss to select \(l\) of 16 relays in a particular group. Bowers (1978) also used a similar arrangement to Willits (1979), a series of latches, l out of 16 decoders and reed relays, feeding the output of the multiplexing networth to an analog to digital converter. Later research conducted by Mitchell (1980) used an analog to digital converter which had a built in 8-channel multiplexor.

In earlier research, Willits (1979) used a DVM, Newport Model 2003 converter, for advantages of stability and lack of need for amplification. This converter had a conversion rate of 4 conversions per second with a resolution of \(10 \mu \mathrm{v}\) or 0.3 degrees centigrade using type \(T\) thermocouples. Due to a thermocouple's low signal output voltage, Bowers (1978) required to amplify the analog signal to the 0-10 volt input required for an analog digital converter. McClure. (1977) also used a gain amplifier for the thermocouple analog signal, before the 8 -bit analog to digital converter, model ADC-85. This A/D unit had a resolution of \(208 / 256\) or \(\pm 0.81\) degrees centigrade.

Mitchell (1980), as mentioned before, used an analog to digital converter. He amplified analog signals before the A/D converter, which had an 8 bit resolution, allowing an accuracy of \(\pm 0.5\) degrees centigrade. For greater
accuracy, an \(A / D\) converter with l2-bit resolution could be used. The majority of \(A / D\) converters used are 8-bit. Mitchell, (1981) in the description of analog to digital converters, confirmed this view of what size of resolution should be used. Higher resolution generally increases the cost of the \(A / D\). Conversion speeds depend on the speed of data process required, and again, cost of conversion is related to the conversion speed.

In some circumstances, analog to digital converters may not be the only method of signal conversion. Walker (1981) in his work with control systems for fuel fumigation converted an analog signal to a frequency using a 9400 integrated circuit Voltage-to-Frequency Converter (VFC). With the SYM-1 microprocessor, the frequency was an input to a frequency counter on board the \(S Y M-1\). Although much slower than \(A / D\) converters, \(V / F\) converters do have one significant advantage for any microprocessor. The frequency of two converters can be measured simultaneously. Cost of the \(V / F\) converter is usually below that of the \(A / D\) converter.

All low voltage signals are susceptible to interference from outside signals, commonly known as noise. Removal of noise from a signal may be achieved using two methods. Mitchell (1981) presents a paper with several ideas to accomplish filtering for microprocessors, both hardware and software. He presented a method of hardware filtering for noise on the input signal to the analog to
digital converter, by inserting a capacitor across the feedback resistor of a gain amplifier. If no amplification was required, a simple resistance capacitance filter is useful.

Sampling rates varied according to researchers. Bowers (1978) used two rates in his solar energy drying. One rate of 15 minute scans was used for temperature and other data measurements, and the second rate was a control rate of 2 minute scans. Willits (1980) used a time scan interval of 15 seconds, which he theorized would be a trade off between a continuous sampling and control. He theorized continuous sampling is more advantageous for control, but scan intervals greater than 15 seconds are more beneficial for data acquisition. Mitchell (1980), using the SYM-l microprocessor chose a sampling rate of 10 minutes and in his later paper (1981) gave a rule of thumb approach for estimating the sampling rate.

Sample each channel at a frequency of at least five times the frequency of the signal to be measured if you want to accurately reproduce the input wave shape. For averaging, a slower rate would frequently be adequate (p. 6).

On the control side of the system, the microprocessor needs a buffer between it and the mechanism which it is controlling. Buffers are used to transfer microprocessor low DC voltage signals to a suitable signal applicable for controllers. Buffers serve a second purpose, that of isolating the microprocessor from the controller in order that no voltage spikes from the controller side can be transmitted through to the microprocessor. Bowers (1978)
transferred control commands through latches to optic couplers. Optic couplers are ideal for purely resistive loads, but for inductive loads such as electric motors, a relay is required. Bowers (1978) had the output of the optic couplers fed into relays for control of inductive loads. As he mentioned, since optic couplers allow the microprocessor complete isolation from controllers, noise and feedback loops are eliminated. Willits (1979) and Mitchell (1980) used solid state relays which provided isolation for the microprocessor as well as being able to handle inductive loads.

\section*{CHAPTER IV}

\section*{SYSTEM DESCRIPTION}

Hardware Description

The operational requirements of the microprocessor controller chosen for control of the greenhouse previously mentioned can best be described in the block flowchart shown in Figure 3.


Figure 3. System Flowchart.

Programs and subroutines for temperature sensing, operation control and data transfer is described in Chapter V.

Figure 4 is a photograph of the microprocessor in its


Figure 4. Control System


Figure 5. Control Case Face View
weather proof case, the two auxiliary connections, a relay case, and the magnetic tape recorder. Along the top of the box (Figure 5) are three on-off switches. They are labeled, power, night spray, and tape removal. There are two BCD thumb switches on the bottom left corner for setting pit water temperature in degrees \(C\). On the center right hand side is a plastic window to 6 seven segment displays on the microprocessor, for displaying measured floor temperature, wet bulb temperature and dry bulb temperature. Another display is three colored LED's on the top left corner of the case. These are colored red, amber and green. They are indicators of the state of the microprocessor program operation. If the green LED is on, the microprocessor is only displaying the three temperatures. In this state, the operator can change the state of either of the two on/off switches, or the pit water temperature setting, without fear of the microprocessor reading them incorrectly. If the red LED is on, it signifies the microprocessor is in a state of calculations, control, or outputting the data to tape. In this state if one of the switches states were changed exactly when the microprocessor was looking at it, extraneous results might occur due to switch bounce. To overcome the problem of the operator not knowing the state of program execution, the amber LED was installed. It is lit simultaneously with the green, indicating to the operator that the microprocessor program execution is less than five
minutes before the calculation mode.
To the rear of the case, Figure 6, there are phone receptacle sockets for sixteen temperature transducers. The transducers are individually numbered and must be inserted into the appropriate receptacles.

Along the left hand side of the case, Figure 7, there are two 5-pin dip sockets. The dip socket to the rear side of the case is connected to a magnetic tape recorder, while the second dip socket is connected to the relay box. This lead carries five control signals and one common ground.

Inside the microprocessor case, Figure 8, is the SYM-l microprocessor and a custom made interface for the temperature transducer and the three colored LED's. Each temperature transducer has one input to the interface, the second line being connected to a common ground. These lines are connected to the inputs of a 16 to 1 multiplexor. The multiplexor has four select lines and one inhibit line. The output of the multiplexor is connected to a voltage to frequency converter, with output in turn, connected to an input/output line of the microprocessor. Another circuit on-board the interface is for a light detection transducer interface to the microprocessor.

On the interface board, there are two different power supplies for various functions. An 8 V supply is regulated from the 12 V incoming power supply for the multiplexor, voltage to frequency converter, and the light transducer interface circuit. The 5V regulated power for the microprocessor


Figure 6. Control Case Rear View


Figure 7. Control Case Side View


Figure 8. Control Interior View
is also connected to the interface board to provide power to the BCD switches, colored LED's and frequency reference voltage.

Adjoining the microprocessor case is the box housing the switching relays. Distance from the relay case to the microprocessor case reduces noise from A.C. switching. Connection is by a five wire cable. (Figure 9). The microprocessor has five different units to control. A solenoid valve is used to circulate pit water from a pressure pump through the gas water heater. Another solenoid valve is used to direct the pumped water through sprays in the space between the two plastic skins which serve as the roof. Movement of air into the greenhouse for purposes of cooling is accomplished by the use of an electric fan. The two controlled devices remaining are an electric heater and an alarm. The controller sockets are arranged for convenience, connected the side of the control case by using standard three pin power sockets.

\section*{Operation Description}

The operator selects the starting address of the program and presses the GO button. The program enters a five minute display subroutine, displaying the digit 2 on the 6 seven segment displays. This number was selected purely arbitrarily, to display something before the first temperature measurements. After 5 minutes, a software interrupt occurs, which updates a software clock calendar. After the

first interrupt, the program jumps to temperature measurement subroutine, then to control routine to set the controllers, based on the gathered temperature data. If in the control routine the air temperature within the greenhouse is below 4 degrees centigrade, the processor checks to see if the operator has selected the spray switch reflecting the desire to spray water between the plastic sheets to prevent the interior temperatures from falling below freezing. If so, the spray solenoid is switched on and the control routine jumps to a routine to dump the gathered data to tape. If the spray switch is off, the control routine must switch on an electric heater, then jump to a routine to dump data to tape.

The data dump to tape routine is also designed for operator input. If the tape is to be removed, the operator must switch on the "tape" switch and wait for the next interrupt. The microprocessor, therefore, checks the status of the switch to see if it is set after the data is put onto tape and if so, dumps to tape some extra information indicating the end of the tape data.

After the data dump routine, the microprocessor program waits for 5 minutes before again executing the temperature measurement subroutine. While waiting for the next software interrupt, the average pit temperature, the wet bulb and dry bulb temperatures are displayed on the microprocessor.

\section*{CHAPTER V}

\section*{METHODS AND MATERIALS}

A 6502 CPU microprocessor, the SYM-l from SYNERTEK was chosen. The four major microprocessors that use the 6502 are the KIM-1, the SYM-1, the AIM-65 and the APPLE.

The SYM-1 is a 8 bit microprocessor which comes with lK RAM which was expanded to 4 K . Address and data lines have pinouts for an expansion memory of up to 64 K bytes. The processor has a 4 K monitor (SUPERMON), a 28 key dual function keyboard with a 6 digit LED display. The system has the capability to be connected to a teletype terminal via an RS232 connection, with the required software in SUPERMON. BASIC language has plug-in positions on board and/or an Editor with an Assembler. Jumper selection determines which chips are active on power up and if any are write-protected.

Connection to external devices is accomplished through 51 active Input/Output (I/O) lines which, by the addition of an extra ROM chip can be expanded to 71 I/O lines. The extra ROM chip brought the total number of timers to six, four of which are available for immediate use. Magnetic tape interface with full remote control was also available.

The large number of Input/Output lines and the availability of additional lines made the SYM-1 a more attractive
microcomputer than the AIM-65 or the KIM-1 for this application.

For BASIC programming, a terminal with full-ASCII keyboard had to be connected to the SYM-1. Programs written for the SYM-l are permanently stored in an EPROM. They can be comprised of BASIC programs, ASSEMBLY language programs, or a combination of the two. There is only one plug-in socket remaining for an EPROM if the BASIC chips are installed. SYNERTEK also produces a single board controller called the Super Jolt which incorporates the 6502 processor, a ROM, some RAM and eight Input/Output lines, plus a plug-in position for an EPROM. If programs could be designed on the SYM-l and then placed on the Super Jolt, a good controller system could be developed. Also, with the versatility of EPROM's, the programs could be customized for a particular application.

\section*{Temperature Transducers}

Thermistors, although non-linear, were chosen as the temperature transducers. The thermistors are model GA52P2 from Fenwall.

These thermistors were not interchangeable since they require individual calibration. Calibration was achieved by measuring the resistance of each thermistor at various temperatures over the range expected in reality. Water was used as the medium for calibration where temperatures were
above freezing and alcohol was substituted for water for below zero temperatures. Temperature measurements of the medium were conducted using a Hewlett Packard 85 microcomputer connected to a 3497A Data Logger unit.

Experimental resistance temperature response of the thermistors are linearized to a higher accuracy if the temperature range is reduced from the large range expected at the greenhouse. Each thermistor is chosen for a particular location in the greenhouse and calibrated for the expected temperature range in that region (Table I). For positions where a large temperature range exists, two thermistors are used. One measures a high temperature range and the other thermistor measures the low temperature range.

Log of the resistance with respect to temperature yielded better linearization than a polonynomial curve fitting routine. The equation of the algorithm is then:
\(\operatorname{Ln} \quad R=C_{1}+C_{2} * T\)
where
R = Resistance of a thermistor
\(C_{1} \& C_{2}=\) Constants of linerization
\(T=\) Temperature of a thermistor.

\section*{Multiplexor}

Selection of each of the sixteen thermistors in turn requires an efficient and reliable switch. Reed relays have been common in the past. However, selection is
simplified by the use of a multiplexor.

\section*{TABLE I}

AN EXAMPLE THERMISTOR TEMPERATURE
RESISTANCE RESPONSE
\begin{tabular}{cc}
\hline \begin{tabular}{c} 
Temperature \\
\({ }^{\circ} \mathrm{C}\)
\end{tabular} & \begin{tabular}{c} 
Resistance \\
OHMS
\end{tabular} \\
\hline 16.4 & 305080 \\
22.9 & 222480 \\
26.5 & 187450 \\
27.7 & 177580 \\
29.1 & 165710 \\
31.5 & 148600 \\
33.3 & 136820 \\
38.1 & 126090 \\
\hline
\end{tabular}

The multiplexor chosen was a 4067B from Motorola. This chip requires between plus 5 V DC and 36 V DC ground, sixteen analog inputs, four select lines, and an enable line. For thermistor selection, the four select line voltages are set to correspond to the input line desired by putting some
high, i.e. plus 5 volts and other low i.e. ground. Selection was on hexadecimal notation basis. Enabling the chip was achieved by pulling the chip enable line low and holding it low throughout the sixteen selections. After the thermistors were selected, the chip enable line was pulled high to switch it off.

\section*{Analog to Digital Converter}

The two main converters available convert either a voltage to a binary number, or convert a voltage to a frequency.

The voltage to frequency converter used in this research was an \(A D\) 537. Instead of using this chip to convert a voltage to frequency, it was adjusted to convert a current to frequency. The log resistance of the thermistors is inversely proportional to the temperature, and for a constant voltage across the thermistor, the current through the thermistor is inversely proportional to the resistance. Thus by measuring the current for a constant voltage, the current is proportional to the temperature.

The current to frequency converter used is shown in Figure lo. Input is through pin one and output is through pin nine. A pull up resistor to five volts on pin nine provides a zero to five volt frequency. The pull-up resistance is to give 5 volt frequency to the input/output pin at the microprocessor. Pin eight is the power supply to the chip. Between pins six and seven is the full scale


Figure 10. Current to Frequency Converter Circuitry
frequency adjustment. The frequency range output of the voltage to frequency converter can be adjusted using suitable equations, which select a capacitor to be positioned between pins 6 and 7. A 200 pF capacitor was chosen, giving an approximate full scale frequency of \(20,000 \mathrm{~Hz}\).

The reference voltage required for the thermistors is pin four, which is then joined to pin two of the input to the current to frequency converter ( \(C / F\) ).

With all low voltage signals noise is one of the major pitfalls. Signals of \(l\) volt or less are susceptible to noise, and suitable signal conditioning is provided. Thermistor and multiplexor grounding was isolated from the microprocessor. This was accomplished by channelling all of the grounds of the thermistors to pin five of the current to frequency converter. A heavy ground lead was provided from pin five to the ground terminal of the microprocessor. Two capacitors were bridged across the \(C / F\) converter input and ground \((0.02 \mu \mathrm{~F}\) and \(1 \mu \mathrm{~F})\).

Calibration of the current to frequency converter was achieved by using a circuit in which the thermistor was replaced by a variable resistor. At each resistor setting, resistance was measured accurately on a digital multimeter and output frequency from the \(C / F\) converter was read on a digital oscilloscope as well as a frequency counter. Resistance to frequency values measured are shown in Table II. Resistance was related to the inverse of the frequency. Constants in equation 1 were determined from a regression
analysis on the thermistor calibration data. Constants in equation 2 was determined by regression analysis from voltage to frequency converter calibration data:
\[
\begin{align*}
& \operatorname{Ln} R=C_{1}+C_{2} * T  \tag{1}\\
& R=C_{3}+\frac{C_{4}}{F} \tag{2}
\end{align*}
\]
where \(C_{1}, C_{2}, C_{3}\), and \(C_{4}\) are constants \(\mathrm{F}=\mathrm{frequency}\) from converter.

Combining equations 1 and 2.


An overall circuit of the thermistors connected to the multiplexor which in turn is connected to the voltage to frequency converter is shown in Figure ll.

\section*{Light Transducer}

Controllers often have different control algorithm for night and day. A light transducer was required for this distinction. Willets (1979) used a pyranometer as his light transducer. A device known as a photocell or photo resistor was chosen for this application. The photocell is a light variable resistor and the model used is a cadmium sulphide


Figure ll. Multiplexor and Current to Frequency Converter Circuit
photocell 276-116.
The photocell was connected in a circuit as shown in Figure l2. An LM339 inverting comparator was used to compare the two inputs. By connecting the negative input of the comparator to a voltage divider which has a fixed and variable resistor and the positive input to another voltage divider which has a fixed resistor and the photocell, the output of the LM 339 remains high until the positive input voltage rises higher than the negative input voltage. Calibration was achieved by adjustment of the variable resistor until the comparator output fell low for the required light intensity.

TABLE II

\section*{CURRENT TO FREQUENCY, FREQUENCY \\ RESISTANCE RESPONSE}
\begin{tabular}{cc} 
Frequency (Hz) & Resistance (Ohms) \\
\hline 564 & 831530 \\
684 & 690550 \\
788 & 600780 \\
958 & 497730 \\
1192 & 400270 \\
1598 & 300850 \\
2384 & 202250 \\
4694 & 103260 \\
9824 & 49280 \\
17486 & 27570 \\
27998 & 17190 \\
\hline
\end{tabular}


Figure 12. Photo Resistor Circuitry

The output of the comparator was fed directly into one of the input lines of the microprocessor where its status was monitored by the SYM-1 BASIC program.

\section*{Floor Water Set Temperature Switches}

The operator must be able to enter the pit water to the microprocessor temperature that is required to maintain inside air temperature above 4 degrees centigrade. The minimum water temperature was entered by two \(B C D\) thumb switches, each having an output range from 0-9. With two switches combined a total range of 0-99 degrees centigrade is obtainable.

The switches have four active lines, each switch being connected to half of an 8 line Input/Output port of the microprocessor. As the temperature was selected, the active low lines of the switches was monitored in the BASIC program.

\section*{LED's}

Program execution state was indicated by three LED's, red, amber and green. Figure 13 illustrates the LED's circuitry. LED's were selected due to their low current requirements and relative ease of connection. A pnp transistor was used as the switch.


Figure 13. LED Circuitry

\section*{Controller Relays}

One of the primary requirements of relays connected to microprocessors is to isolate the driven load from the microprocessor. This reduces problems of voltage spikes and of noise filtering back to the microprocessor. Relays must be correctly matched to the microprocessor. Without output buffering, an input/output line can usually drive a single TTL load of approximately 2.35 mA . Many control relays require a higher coil current than the \(I / O\) lines can produce, limiting the relays suitable to microprocessors to solid state relays or optical relays.

Optical relays were initially chosen for all control relays. The AC current to the controllers through these relays were suitable for all of the controllers except for the electric heater. To obtain the current required for the electric heater from the relay, the output from the optical relay was passed to the base of a TRIAC. A separate AC power line was used for the electric heater. All of the other relays received power from one AC power line (Figure 14).

All control lines from the microprocessor were connected directly to the relays, with all having a common ground line which was grounded at the microprocessor. AC grounds were common to all controllers except for the electric heater which had a separate ground.

The relay type chosen was the optical relay, which


Figure 14. Controller Relay Circuitry
worked well for purely resistive loads. However, when connected to an inductive load the relay burned out. A solid state Struthers-Dunn relay, was used in place of the Hamlin 7564 optical relay.

\section*{Memory}

The AIM-65 development system was used to program the EPROM for the SYM-1. The memory page B000 was found to be the only compatible 4 K block which did not interfere with either the SYM-1 or AIM-65 monitors.

To achieve the selection of memory, the memory is divided into four 1 k blocks. The top three address lines of the microprocessor address 164 K blocks of memory. Address lines \(10,11,12\) can be used to select eight lk blocks of memory. By passing the two groups of three address lines through two 3 to 8 line active low output decoders 74LSl38, the desired \(4 K\) of memory may be selected. An OR gate 74 LS 32 N was used to correctly select the lK block of memory required (Figure 15).

Address lines are buffered by 74LS24l's and the data lines are buffered by a bidirectional buffer, a 74LS245. The 74 LS 245 was only activated when the memory board was selected, preventing unwanted data from being on the data bus.

The memory board was connected directly to the expansion connector of the SYM-1. A \(4-K\) memory board had to be designed and built for the SYM-1. The memory chips used

were \(2114^{\prime} s\), which are a 4096 bit static random access memory. Memory of the 2114 is arranged as 1024 words of 4-bits, thus for an 8-bit word of 1024 words, two 2114 's are required.

\section*{CHAPTER VI}

\section*{PROGRAMS}

Programs used for this study were broken into four groups. Those associated with the SYM-l microprocessor, a program for the AIM-65, a program for a Tektronix microcomputer and a program for an IBM 370 main frame.

\section*{SYM-1 BASIC Language Program}

The SYM-1 BASIC program is structured to interact with ASSEMBLY language subroutines for information gathering to and distributed from the SYM-1. Data manipulation and control is accomplished using BASIC.

A flow chart of the program is shown in Appendix \(A\) and the program in Appendix B. Organization of the program was centered around a repetitive 5 minute software interrupt caused by the timing-out of one of the on-board timers. After the BASIC program is started, two ASSEMBLY language subroutines is accessed before control status is changed.

One is for memory initialization and starting timers. The second subroutine accessed is a routine to convert hexadecimal temperatures to decimal temperatures and display these temperatures while waiting for the software interrupt.

Hexadecimal data gathered by the ASSEMBLY language subroutine is transferred by BASIC to an array by PEEKing to a memory location. The pEEKing step automatically converts the hexadecimal number to decimal. From the data in the array, average floor temperature and the average inside air temperature were computed.

There were three control algorithms used in the BASIC program. One algorithm was used when the inside air temperature at plant level fell less than 4 degrees centigrade. Two control subalgorithms may be used. Warm floor water may be sprayed between the plastic sheets, or an auxiliary electric heater may be used to supply extra energy to prevent freezing. The second control algorithm is a night mode control of repetitively comparing the averaged pit water temperature to the operator set point temperature and adjusting by use of a gas water heater. The final algorithm for control is for daylight conditions. Solar energy harvesting is initiated if the temperature between the plastic skins is 6 degrees centigrade above the average pit temperature. A pump sprays water between the plastic sheets to collect excess energy. It is stopped whenever the return water form the sprays is less than the average pit water temperature.

After a control algorithm has been run, the tempe atures of the greenhouse and operation of the controllers is dumped to a magnetic tape recorder by use of an ASSEMBLY language subroutine. Inside high temperatures
that may cause reduced plant growth are then controlled on a 5 minute time interval by the switching of a fan. Once two of these software interrupts have occurred, the programs returns to the second ASSEMBLY language subroutine encountered when the program was first run.

\section*{SYM-1 ASSEMBLY Language Subroutines}

There are three subroutines accessed by the SYM-1 BASIC program, some containing more than one individual routine (Appendix C). The initialization subroutine brings the output lines connected to the controller and other devices to a known state and determines which input/output lines are to be for data input and which for data output. Two timers on-board are set for a 5 minute interrupt and the interrupt routine vectors are set. The last step of the Initialization routine is to switch on the green LED before returning to the SYM-1 BASIC program.

The purpose of the inter rupt routine is to reset the timers used to cause the software interrupt, update a clock calendar and switch off the green LED and switch on the red LED. The clock calendar is based on months, days ( 30 per month), hours and minutes, updated by 5 minutes every software interrupt. An interrupt flag is also set to indicate that an interrupt has occurred.

The second subroutine accessed by the SYM-1 BASIC program is comprised of three routines. Three bytes of data in three specific memory locations are converted from
hexadecimal to decimal, and stored in a new memory location (DeJong, l980). The second routine displays the three numbers just converted to decimal (DeJong, 1980). Displaying of the three temperatures is in a loop, escaped only if an interrupt has occurred. If the interrupt flag is set the third routine of this subroutine is run. This is the counting of all of the frequencies associated with the thermistor outputs. Counting is based on half-second time spans for each thermistor. Frequencies counted by this routine are stored in two data banks, one bank for the low byte of data and second bank for the high byte.

The third ASSEMBLY language subroutine accessed by the SYM-1 BASIC program, is a routine to put the various temperatures and controller operation data onto magnetic tape. Reading of the data from off the magnetic tape is achieved by use of the AIM-65 in the laboratory. The AIM-65 and the SYM-l each have two rates of sending data to the magnetic tape, of which the \(K I M-1\) speed is compatible to both. The SYM-I monitor has the actual routine for putting the data onto tape but requires the starting and ending address of the memory block, the tape dump rate (i.e. KIM-l) and the data block identification. After the data is dumped to magnetic tape, a check is made to see if the 'end of tape' switch is on. If on, a specified number is put into a memory location and the data re-dumped to indicate the end of the data block.

An ASSEMBLY language routine which is not accessed by SYM-I BASIC is the BASIC driver program (Appendix D). This is the very first program run in the EPROM. This program sets up zero page which had previously been stored in a high portion of the EPROM using the Zero Page Locator program using BASIC (Appendix E). After zero page is initialized for the SYM-I BASIC program, the BASIC program automatically starts.

\section*{AIM-65 to Tektronix Communication Program}

Communication between the AIM-65 development system and the \(T\) ektronix is achieved by use of the program in Appendix F. The program works in the following manner. Data existing in memory in the AIM-65 is sent across on an R\$S 232 calbe to the Tektronix in a hexadecimal format. The Tektronix receives the data and converts it to decimal.

Each byte of data is separated by a carriage return. On completion of sending the data the AIM-65 switches on the tape recorder and loads a new block of data.

Hexadecimal numbers can be sent from the AIM-65 to the Tektronix, however the Tektronix can only convert ASCII to decimal, not hexadecimal. To ensure problems do not occur when the Tektronix tries to convert the hexadecimal data to decimal, the decimal 33 is added to each number sent from the AIM-65. Data was put in the RS 232 port to the Tektronix using a routine in the AIM-65 monitor.

To get data from the tape by AIM-65, bytes of data had to be put into the AIM's memory locations for initialization of the tape load routine. Such data as the tape data format, input data device, and data identification had to be stored into memory. A subroutine in the monitor was accessed, setting up the data load routine based on data previously put into memory. A second subroutine is accessed to reset input/output devices which were changed in the dump subroutine.

The last step in the program is to switch off the tape recorder. When the subroutine to load data from magnetic tape is accessed, the tape recorder is switched on, but not switched off after the data is loaded.

\section*{Tektronix BASIC Program}

The purpose of the Tektronix is to provide sufficient memory and capabilities to manipulate and store the data coming from the AIM-65 development system, print the data in column form and transfer the data to the University's main computer (Appendix G).

The AIM-65 development system and the Tektronix are connected via a cable on input/output Port 40 of the Tektronix. This port has a memory buffer to hold up to 255 bytes of data plus software capabilities to clear this buffer for input.

The Tektronix has software routines to establish the communications between other computers using baud rates
accessed by a "call" statement with the various parameters included. For Tektronix controlled communication between the two computers, a baud rate of 1200 operates satisfactorily. This only requires the Tektronix program to send to the AIM-65 the Rubout character (decimal 127) before the two computers are communicating. A data file on the Tektronix has the ASSEMBLY language (Appendix F) program which is sent across the RS 232 cable to the AIM-65. Each mnemonic program instruction is broken into single characters to be sent out. A delay has to be incorporated on the Tektronix to allow the AIM-65 to accept instructions.

Thirteen columns of data will be printed out by the Tektronix only after all the data has been received from the AIM-65.

After printing the headings for the column and establishing communication between the two computers, the Tektronix begins sending instructions to the AIM-65 on where to run the ASSEMBLY language routine it has stored in memory.

As each block of data is sent from the AIM-65 to the Tektronix, the constant 33 decimal is subtracted before the data is manipulated and stored in an array. Manipulation involves updating a real time clock calendar, determining if temperatures are positive or negative and setting an indicator in the array for the operation of the controllers. If the controller was ON, a 1 is put in the array. If the controller was OFF, 0 is put in the array.

After a data tape has been processed, the operator can elect to have additional data tapes processed before the data is printed.

The relative humidity is now calculated from an algorithm, in chapter 5 of ASHRAE Handbook of Fundamentals, 1977 , which requires the wet bulb temperature, dry bulb temperature and total atmospheric pressure. Atmospheric pressure in atmospheres was chosen according to the height of Stillwater above sea level.

The method by which this algorithm operates, is that the saturation water vapor pressure over a free water is calculated using a method developed by Keenan, Keyes, Hill and Moore. The humidity ratio of moist air is then calculated knowing the saturation water vapor pressure and the total atmospheric pressure. Calculation of the humidity ratio is accomplished knowing the wet bulb temperature. The degree of saturation is then calculated knowing the two humidity ratios calculated, which then allows the calculation of the relative humidity.

After computation of the relative humidity, the Tektronix may be connected to the University's main frame by telephone and the data transferred.

\section*{Statistical Analysis System}

The program on the University's main frame computer (IBM 370) is used as an indication of the ability of
being able to manipulate and present in various ways, the data received from the Tektronix microprocessor. The data received from the Tektronix is stored in a cumulative array which can be analyzed at a later data (Appendix G).

\section*{CHAPTER VII}

\section*{RESULTS AND DISCUSSION}

Some problems arose when the controller was first operated. As each was detected it was solved, however it was difficult to obtain continuous operation of some time length with these problems. The period concided with the cold January weather and for this short time, the SYM-1 was able to perform the control functions within the greenhouse acceptably. Data was collected about the temperatures within the greenhouse and on the operation of various controllers. The ability of the SYM-1 to put the data onto magnetic tape for further evaluation by other computers allows the performance of the control systems to be monitored.

Two day's data is shown in Table III (Appendix I) and Table \(I V\) (Appendix J). The first day's data is shown in Table III (Appendix I). Operation of the gas and electric heater and the sprays are indicated as either ON or OFF. The greenhouse pit has a leak which requires water to be added. This refilling is usually done in late afternoon. Refill water is usually about 10 degrees centigrade lower in temperature than the pit water temperature. Refilling,
then, usually requires the SYM-l to switch on the gas heater to raise the water temperature to that set by the operator. Setting of the desired floor water temperature is usually done in late afternoon as well.

For the data in Table III (Appendix \(I\) ) for the first day, the expected overnight low temperature allowed the operator to set the pit water temperature at 15 degrees centigrade. The gas heater was not required to be switched on since the average pit water temperature after refill remained higher than that 15 degrees. Because the pit water temperature was so high, the inside air temperature did not fall below 4 degrees centigrade which would cause the SYM-1 BASIC to go into the critical mode. Overall, the SYM-l did no controling as none was required.

Twice the sprays were switched on during the day routine. However, for both times, they were operated for only 15 minutes. This was due to the fact that the return water temperature was being compared to the average pit water temperature. In fact it should be compared to the temperature of water entering the pump the coldest water in the reservior. A slight programming change would overcome this situation.

The wet bulb and dry bulb temperatures are tabulated as integer values and are truncated by the SYM-l when BASIC POKE's the data into memory. This situation has been rectified by breaking the wet bulb and dry bulb temperatures into integer and decimal values.

Data from the following day, is shown in Table IV (Appendix J). The set temperatures had been raised from the previous setting of 15 to 18 degrees centigrade, resulting in the gas heater being operated from 1720 hours to 1835 hours. Night spraying to warm the greenhouse was allowed. Between the hours of 2250 and 2320 the temperature within the greehouse had fallen below 4 degrees centigrade, so the sprays were activated. Use of the sprays at night not only prevented excessively low temperatures, but raised the air temperature in the greenhouse.

Three times during the day the sprays were activated to collect solar heat but on all three occasions the spraying did not last for more than 15 minutes.

There were four problem areas experienced in the initial testing of the SYM-1 controller. Firstly, there were SYM-1 software BASIC problems. One of these was when the inside air temperature thermistor near the top of the greenhouse experienced temperatures below zero. The BASIC program cannot POKE into memory a negative number, so went into an error state. The other software problem was that of the spray return water temperature being compared to the average pit water temperature. The pit water temperature may average higher then the temperature of the water going to the sprays so solar energy may have been harvested.

Secondly, a bad choice of one particular relay led to one of the optical relays burning out. This was for the
control of the fan where the inductive load had not been previously considered. The solution was to use solid state relays.

Thirdly, the AIM-65 development system used to burn and reburn EPROM's failed repeatedly. This prevented the program modification from being done.

Fourthly, data transfer from the magnetic tape to the AIM-65 development system had problems. The non-linear response of the tape recorder prevented the operator from estimating the end of the data for the particular run. Blank tapes had been used, but proved time consuming to earase the data before reuse. A switch was installed on the control box so that the operator could indicate to the SYM-1 when he was ready to remove the tape from the recorder. If the "tape" switch is on, the SYM-1 dumps an end of block indicator which the Tektronix can recognize.

\section*{CONCLUSIONS AND RECOMMENDATIONS}

The control system was designed according to the original objectives.
l. The requirements of the controller were to control the temperatures, harvest excess solar energy and collect data within the greenhouse built by the Agricultural Engineering Department at Oklahoma State University.
2. A SYM-1 microprocessor was chosen as the controller.
3. BASIC language was chosen with ASSEMBLY language subroutines, for the control software.
4. The controller performed to the design requirements for the limited time span of the test.
5. Data acquisition proved to be very helpful and efficient, allowing rapid data transfer from magnetic tape to the University's computer.

The system is relatively low in total cost and the data acquisition could be expanded easily for more data collection for research.
1. Replace the present thermistors with an interchangeable type which does not require individual calibration. Make frequent checks on the operation of the controllers.
2. For research applications, increase the number of temperature transducers to use the data acquisition capabilities and increase the variety of operations to control.
3. If recommendation 2 is to be used, reprogramming for more temperature transducers and additional control algorithms are recommended.

\section*{BIBLIOGRAPHY}

Bowers, C. G., Huang, B. K., Nassar, A. H. 1978. Solar Energy Drying and Process Control with Microcomputer. The American Society of Agricultural Engineers, Paper No. 78-3537.

De Jong, M. L., l980. Programming and Interfacing the 6502 , with Experiments. Howard W. Sams \& Co., Inc., Indianapolis, ID.

Doebelin, E. O. 1966. Measurement Systems Application and Design. McGraw-Hill Book Company, New York, NY.

Handbook of Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1977. Sec. 5.0-5.5.

McClure, W. F. 1977. Design and Development of Two Microprocessor Based Data Acquisition Systems for Tobacco Curing and Greenhouse Operation. The American Society of Agricultural Engineers, Paper No. 77-5036.

Mitchell, B. W., Drury, L. N. 1980. Microcomputer and Conventional Solid-State Controls for A Solar Heating System. The American Society of Agricultural Engineers, Paper No. 80-1561.

Mitchell, B. W. 1981. Signal Conditioning for Analog Inputs to Microcomputers. The American Society of Agricultural Engineers, Paper No. 81-1611.

Paine, M. D., Mahoney, G. W. A., Whitcomb, C. E. 1978. Self-Sufficient Solar Greenhouse. The American Society of Agricultural Engineers, Paper No. 78-489.

Paine, M. D., Mahoney, G. W. A., Whitcomb, C. E. 1979. Predicting Minimum Overnight Temperatures in Solar Greenhouses. The American Society of Agricultural Engineers, Paper No. 79-696.

Walker, J. T. 1981. Microprocessor Control System for Alcohol Fuel Fumigation. The American Society of Agricultural Engineers, Paper No. 81-1610.

Willits, D. H., Karnoski, T. K., McClure, W. F. 1980. A Microprocessor-Based Control System for Greenhouse Research: Part \(I\) Hardware. Transactions of the American Society of Agricultural Engineers, Vol. 23, No. 3, pp. 693-698.

Willits, D. H., Karnoski, T. K., Wiser, E. H. 1980. A Microprocessor-Based Control System for Greenhouse Research: Part II Software. Transactions of the American Society of Agricultural Engineers, Vol. 23, No. 3. pp. 693-698.

\section*{APPENDIXES}

APPENDIX A

BASIC PROGRAM FLOWCHART FOR THE SYM-I




\section*{APPENDIX B}

BASIC PROGRAM FOR THE SYM-1
```

!!!d
SEM***と****************************************************
FEM ZASIE FOOGRAM TO EONTFOL THE OPSRATITN DF A BREENHOISE
E:EM ********************************************************
EEM
OEM EIYTEEN THERMISTORES ARE PDSITIONED
GEM IN THE EREENHDUSE TG MONITOR TEMPEFATIJRES.
FEM THE THERMISTOFE FEEISTANCE IS RELATED
FEM TIG TEMPERNATIJRE.
EEM
FEM THE FDG!ONING THETMISTORE AFE INETALLED.
FEM T! TS THE MUTSIDE HIS4 TEMPERATIIRE 15,45 C
EEM TZ IE THE EETLUEEN EKIN TEMEEFAATIRE 10,S0 C.
EEM TS IS THE EFTGY GETIIRN TEMPERATIJRE 10,50 5.
FEM TO IS A FIDOR TEMEERATIRE 10,21 C.
SEM TF IS A FHODR TEMPEGATIJRE 10,21 C.
EEM T\& FIOGS TEMFEAATURE 10,21 C
\#M T7 FLONP TEMSERAGTURE 10,21.C.
ESM TE [GEF FLOCR TEMFERATURE 10.21 C.
FEM TG FLOMN TEMEERATHRE 10,21 C.
ESM T1O INETEE LOW TEMPEFATIJRE 1: 1,7 C.

```

```

EEM T!Z INE:TE YIGH TEMEERATIRE IE,SO C.

```

```

FEM T:4 TRPY E!HEE TEMEEF:ATURE 1S,35C.
EEM T:E EAS :EATEF FETIMEN WATER TEMEERATIJRE 10.30 E.
EEX T1\& EUTSIEE LOW TEMFERATHRE -10,20 C.
T-M
EEM MS', TEMCEFATUFES ARE IN GEGREESSC.

```

```

SEN EASI: EROMFIAM

```

```

    ッツ
    -二-IN:-\triangleL:ZE INFUIT AND GUTFUIT FOFTS.

```

```

EEN 三TAET FEOL TIME LLENKK

```

```

O \-1%S(5""00%",0)
|
EGM ERFF'TT THE ETAF:T TIME OF OPEFATIUN.
O-GE 10こ?,0
TO FOE iO40,0
O-GE :041.0

```

```

    TEM
    STM EIMES!TGN T!HEEE \triangleFRAYE FGR VARIAELEES.
    ```

```

    CTEM
    GEM =EA& FFGM NEMCQY THE FFEGUENOY CRNUEFEITNN EOFGMETEEE.
    !口 TrF:=1 T!: !
    ```


```

    =--
    F:EM INITTHLIEE FrOMESES INDICATORS.
    :x0 E=0:%-0:S=0
    =ミ!
    EEM UR-NGE TG EEEDHENOY CALIEFNTIDN EOEFEICIENTE.
    ```


```

    TEx
    FEM FOUTIME TG EIEFUAY FIGOR TEWOESATIRE,UETEMLE TEM, EFYEILE
    ```
```

SEM GO TD ASEEMELY LANGIJAGE SIJBRDIJTINE.
:70 X=1\&ER(%"ECC1",O)
EEM
FEM WAIT IN ASEEMBLY LANGUAGE SUEROUTINE FGR EOFTINARE
EEM IMTERRUPT.
EEM GET FEEGILINNIEE AND PIIT INTG ARIRAY.
FEM FONVERT FFEOUIENCIES TO TEMFERATIIRES.
1EO FER I=1 TIO 1S
:O0 A=F\congEK(1042+I):B=PESK(105B+I)
200T(I)=(I'(I)-LOG(EI/(2*(E*16*16+A)+II)))/R(I)
210 NEXT I
REM
REM GALRILATE AVERAGE FLONR TEMPERATIIRE.
\therefore=0) A=(T(4)+T(5)+T(6)+T(7)+T(3)+T(?)):6: E=A+6
E:EM
GEM DAIEILIATE MINIMIJM INEIDE TEMPERATURE.
200 r=(T(10)+T(11))/2
REM
FEM HAMVE SET THE MINIMIMM INEILE TEMPERATURE TO 4 DEG C.
=40 IF E「4 THEN 5.50
FEM
FEM EHECK TG EEE IF ALAFM ON.
SEM IF ON SWITEH DFF ALAFM GND ELECTRIL HEATER.
=EG IF NOT FEE! (44O32)AND 1\& THEN 2OO
2G }x=?
こ70 PGME 4\DeltaOE2,X:E=0
ESM
FEM GET MINIMI_M TEMRERATINE SET EY EWITCH.
ZOO=(!S ANE NDT FEEK(4ZOO%))*10+(15 GND NDT PEEK(43003))
EEM
F:EM *5*\&も*****************
GEM MTE:TT MOLE SF DPERATIDN.
EこM 4*****4゙****2*********
9EM
EEM IS THOCR TEMEERATURE GREATER THANN SET?.
OQ IF A:O TUEN 42O
ESM
CEM IE ET T!:E [AYY MODE?.
GOO IF :UT PEEK(\$0习太O) AND 3 THEN 420
SEM
FEM NO EO ENITCH DFF SFRAYE.
\because!0 x=EEE!(a4022)AND 127
ミO F-UE 440きニ, x:S=0
FEn
\#E% IS THE UESTEN CNN.
ジg こF rEE:(1qM0ミニ!AND 32 THEN 370
e.EM
EEM Mr.ES EWITEH ON.
30% x=F゙E=6(14032)DR 32

```

```

E=\
\#EM OG TO EOGTTENE TO I!MMP EATA.

```

```

FEM
FEM IE THE HESTER WCEKINR?.
ミT` :F(T:15)-T(\Omega))<3 THEN ミ%O
EEM
EEM !SENTEE WGRYINS ER SUMF EATA.
ミ=0 30 TO 700
EEM
r:EM UEATES NOT WOR!NNG EO SW!TGH OFE.

```

```

    AOO CU!E CMOE=, x:H=0
    ```
```

GEM
FEM GID TO [IMP DATA.
410 % TO 700
PEM
EEMM**************************************************
FEM DGY MDDE
ᄃ5M*\&**************************************************
SEM
FEM SWITCH OFF HEATER .
420 }X=0=E\leqslant(44032)AND 223
4こO FVト:E 44Oミ2,X:H=0
FEM
FEW ARE THE ERRAYE ON?.
440 IF NIDT EEEK(44032)AND 123 THEN 4%0
CEM
FEPA ERRAYE DN, SI IE THE RETUNN WATER TO THE
EEM F:OOOR EFEATER THAN THE FLOOR AVERARE?.
450 IF T(3)+2こA THEN }70
GEM
REM GET:'FN TEMPERATURE LEES THGN FLOOR
SEM ED EWITCH DFF SFFAYS.
4%O }x===\mathrm{ E다(440シ2)AND 127
470 =0゙T 4aOこ2, x:S=0
EEM
EEM Sig TO [HMP DATA.
4:20 10 T0 700
GEM
FEM EFFRAYS NOT ON, IS SKIN TEMFCFATURE
ESM GGEATER TUARN AVETAGE FLONR TEMPERATIJRE?.
AOO IF T!2)SE THEN S2O
FEM
EEM NO, EL IE EICNM TEMFEFATURE LESE THAN MINIMUM?.
EEX :E TO FETIGN TD NIGHT MIDE.
EN IF ACO THEN E10
ここM
E:O TOT 700
=EM
CEM EUTH TEMEEFATUME IE SFEATER THAN FLGOR

```

```

ミニ! Y=FEF! (440豸2)GR 12E
50 0-45 a|ns2,x: S=1
EEM
-EM GrC TO ["IME INTA.
E4r g! Tm 70|
F:「M

```

```

OM 次TTISGL TEMFERATILRS ORERATIDN.
C巨\&******二***********************************************
EEM
OEM ARE TLE EFROUS AELE TG EE MEED

```

```

ここ^

```

```

OEM
EEM =\becauseGTにL OE= EAS YEATER.
E\therefore:=eこEV(4AOMZリAND 123 THEN <40
=?\because x=e巨EV(4|OEこ)AND こここ

```

```

-ご

```



```

ここM

```
```

F:EM GO TG IHMF DATA.
\&10 GO TO POO
FIEM
ETM IN IAFEE SPRAYE ARE ON, SWITCH GIFF
REM SINCE SECIIFIED BY DPERATOR.
\&O X=FEEK(A AOZ二) AND 127
S30 PrرEE 44032,x:S=0
CEM
GEM IE THE EIEETRIC HEATER DN?.
S4O IF FEE!:(440こ2)AND 1S THEN SOO
E:E!A
FEM NII ER EWITEH ON.
<5% X=?5巨K(441) 22)DR 16
\leqslant<O Figk:5 4nOS=, X:E=1
SEM
FEM SID TO DIMP EATA.
\&7O GO TO 700
REM
FEM ERITILAL EONIITIONE SD SWITCH ON ALARM.
AOO X=FEEK(44032)DR 3
\&%% r-5 440z2,x
FEM
EEM !H:EN EA:SIC PIITE NIMREF:S INTO MEMORY FOR
FEM AESEMEL_? EUEONUTTINES, IT DOES SIT IN HEX
OTM EO NEGHTIUE PHMEEFS MIIET EE INIICATED.
FEM FIGE TO MEMDRY FN AFRAY OF TEMPERATIGES
OEM AE HIELL AE THE GFEFATICNAL INDICATGRE,E,H,S
FEM FUSO IS E|MSIEE TEMPETRATLRE GREATER THAN 1:3 DEGREES O.
700 IF T:\)S1E THEN 7EO
FEM GHEE: IF TLE GHTEIDE TEMFEFATUFE LESE THAN ZEFO.

```

```

EEM OUT FOGTT:UE FHITS:EE TEMFEFATIIRES INTO MEMNRY.
7:0 P0サE :045,17:0П4E 1044,T(1b)
7%0M TO 700
CUT GUTE:IE TEMEEPATIGE THAT IS SFEGGER THAN IE C INTG MEMOR
つO%!三!04こ,0:F口号 1044,T(1)
ETM GO!ECY IF INEIEE TEMPERATINEES AENNE ZERO.
TYO IT GO10 THEN :B4O
FEM GLERL IF INEISE HTGH TEMPEFATHSE THEKMISTSR IE BELOW O.
T=5% T(12)OT T!EN E40
EE*: DUT INTG MEMREY FRIEITIVE INEIDE HIGH TEMPEFATIJRES.
55-4E \&0, 0:004E104\leqslant,T(12)
EEM RUEEY IF IIET EILE TEMPEFATIIEE IE EELOW O.
TOO T! T(!2)OO THEN :20

```

```

770 O!=INT(T(!こ))
77: E:==(T(12)-R:1)*100

```

```

?7 ¢!u゙5 :CuS,E1

```

```

7-: E!=(-:{a)-A!1%:00
二二=に!ミ :94%.7:
ージロu5 !OEO,E!
O! B\ T! %ag
EEM A[EM A EROETSNT TO MGKE DIITEIEE TEMEEERTHFE FOGITIVE.
ジ口}T(!\&)=T(16)+10
\because10 5-GE :04马,!
Z0 OrwE:0^4,T(is)
\becauseO
CIM AGOIN IHEGV IE INEITE MINTMINM TEMEEFATLIES EELEW O.

```

```

EEM EMIT INTIG MEMEFY PNGITIVE IRSITIE MINIMIMM TEMFGRATLRES.
OE% DGKE IOQE,O

```
```

ZOR FOKE 104S,C
\#7) G0 TR 7ß0
GEM AID A EONETANT TO MAKE THE INEIDE MINIMIM FOIEITIVE.
530に=に+100
O0 mokE 1045,1
200 POKE 104B,E
310 00 % 7*0
FEM EINKEE WET EULE EELOW O PUJT ZERO INTD MEMDRIES.
OO POKE 1047,0
O%O POHE 104:3.0
sa1 Cut5 1043.0
Sa2 ENYE 1050,0
OEM FUIT CONTFRLLEEF DPERATIONS INTO MEMORYY.
Ga% %0E !OS1,H
950 porE !osz,s
FEO PINKE !DS3,E
30 FONE 10e4,F
FEM FIIT INTG MEMGIRY THE AVERAGE FLDOR TEMPERATIJRE.
075 FOKE 1055,A
gam
FEM EO TO [UMF TO TAPE ROUITINE.
900 x=1%R(*"50Cア",0)
FEM
FEM TE THE INSIDE TEMPERATIJRE TOD HIGH?.
%GIF T(12)N-S THEN 1030
FEM.
EEM ENTTEM GEF THE FAN IE DN
:MO Y=FEr=(420)2.AND 251
IO!G FOLE 44032,x
!ngo mo Tn :050
=ご
EM EMSTEH ON TLES FAN.
\becauseこ0 y==ここ!(440S2)OR 4
O0) E,4E 440%=, x
=cm
CEM E'MEYY FIVE MINUITES RHEOK THE TEMPERATURE
OGM TMEIEG AND THE DEGRATION GE THE FAN.
\En FOS !=1 TO 2
ごッ
"EM [!ECHAY EIONE TE!MFERATURE.

```

```

=E~ OTGEAGY DPY EILD TEMPERATIRE.

```

```

cem
EEM CALC'HATE THE INETLE HTGH TEMREFATURE.

```


```

=cm
GEM IS TUE TMEIDE HIGU TEMFEFATIRE
=En -a mygu?
:a% IE -!:こ!ここE TUEN 1180
-rom

```


```

:!!口 crwe !cose,x
:20 g% TV :!50
シ

```

```

:! r=%「E=(a3ハここ!n! +
:140-90E a40ミス:x
ヲEM NM TLE EEOMn IMTEFOM!T

```


```

REM SALRULATIONE REGIN.
:150 IF K=1 THEN !1OO
11\&O X=P互타(\DeltaOOLO) AND 24%
:170 00بE 400100,x
:1:0 MEXT K
1%OO OD TM 170
FES
FIEM RATA OF THE EALIERATIEN OF THE THERMISTGRS.
I2G0 EATA 13.SE\&O%%,0.04b31?07
i=10 EATA 1ミ.4!こ2?7,0.04\leqslant00783
!2IO I.GTA 1 S.SE\&4.31,10.04700407
12こ0 [OTA 12.567614,0.0S025123
:ニ4) EATA 13.412%4%,0.050123.32
12E0 r.ATA 13.472\Omega人%,0.04095054

```

```

1二70 пATA 13. ミ12%6\&,0.04974319
I2S0 TAT:7 13. 602K75.0.050.35.371
:\#0 [ATA 13.S33542,0.05291910
1300 [4TG 13.4024:37,0.05.332:377
:こ!0 [ATA !3.4727こ7,0.04464357

```

```

12\XiO IfTA 12. 512@\leqslant7,0.0460,527
1?40 D\triangleTG 1.\#.445こ12,0.04732З07

```

```

:こに0 Enワ

```

\section*{APPENDIX C}

ASSEMBLY LANGUAGE SUBROUTINE FOR THE SYM-1

PASE 1
P4:5: 2






HEXADECIMAL TO DECIMAL EDNVERSION

[IEDIAY FIOUTINE

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Enos & An & 0904 & ［15 & LDA & DEC1 & ：TEMPCRARY STORE DECIMAL． \\
\hline 9008 & ： 0 & 0C 04 & & STA & TLEC & \\
\hline PIGE & AD & OA 04 & & LIA & DEC \(1+1\) & \\
\hline 50：1 & 30 & OD 04 & & STA & TDEE＋1 & \\
\hline ED14 & AII & OE 04 & & LIA & DEC1＋2 & \\
\hline EDI？ & PD & DE 04 & － & STA & TDEC＋2 & \\
\hline E［ITA & 73 & & & SEI & & ：PREVENT INTERRIJFT FROM HAPFENING \\
\hline 8113 & 20 & ：3b 38 & & JSR & ALCESS & ：ACEESS R．AM． \\
\hline Eric & A：2 & 05 & & LIIX & ＋\＄05 & ：INITIALIZE \(X\) Index． \\
\hline 3ロご & AD &  & PFRR & ．LDA & TDEC & ：SET FIFIST VALUE． \\
\hline Eロこ？ & 20 & OF & & AND & \＃\＄OF & ：MAEK HIGH NIEELE． \\
\hline をサご & A： 3 & & & TAY & & \\
\hline E［9\％ & 9 & －20 & & LIA & TAB，Y & ：GET SEVEN EEGMENT DISPLAY． \\
\hline 30\％ & Pロ & 40 Ab & & STA & ［ISBI＿F，\(X\) & ：STORE IN DIEPLAY BIJFFER． \\
\hline 5ローツ & AO & 04 & & LDY & \＃\(\$ 04\) & \\
\hline ET25 & 4E & OE O4 & LGL & LSR & TDEC＋2 & ：SHIFT LAST VALUE INTI CARRY． \\
\hline －021 & \(B E\) & 0024 & & RIJR & TDEC＋1 & ：EARRY INTD SEEDND VALUE \\
\hline 듀：c & LE & OC 04 & & FiOR & TDEC & ：CARRY INTO FIRST VALIE． \\
\hline Errs & 33 & & & DEY & & ：SHIFT INMTIL ONE NIBELE SHIFTED． \\
\hline ELSE & 00 & F4 & & BNE & DGL & \\
\hline 3nこA & C．A & & & DEX & & \\
\hline \(E[S\) & 10 & E3 & & BPL & FRR & \\
\hline BLED & A2 & FF & & LDX & \＃\＄FF & ：INITIALIZE \(X\) FOR TIMING LOOP． \\
\hline S［13\％ & 34 & & ．JAT & TXA & & ：SAVE \(X\) \\
\hline E［C0 & \(\triangle 5\) & & & PHA & & \\
\hline Erial & 20 & ロ゙， & & \(\cdots\) & SCAND & ：IIMMP TO SCAN ELEREITINE EF SYM \\
\hline 두4 & な & & & FLA & & ：SET X BACK． \\
\hline Epcs & C．A & & & TAX & & \\
\hline E［96 & ER & & & IEX & & ：UECRIMENT X FOR TIMING \\
\hline E「はT & \(\square \bigcirc\) & Ft & & BNE & JAT & \\
\hline Eria\％ & E & & & CLI & & ：Clear the interriget flat． \\
\hline En1． & 78 & 9184 & & LDA & FLAS & ：BRANCH DNLY IF FLAS CLEAR． \\
\hline 듓！ & F： & 투 & & EES & nIS & \\
\hline ［：T2F & A－ & 00 & & LDA & \＃\＄00 & \\
\hline Ere： & E！ & 0104 & & STA & FLAS & ：CLEAR THE INTERRIIPT FlAM． \\
\hline & & & \multicolumn{4}{|l|}{FFEOUENCY CUHNTING EF THERMIETURS．} \\
\hline 「ren & & & \multicolumn{4}{|l|}{；EWITEH EN THE MULTIFIEXER．} \\
\hline こres & \(0 \cdot \mathrm{O}\) & IF & & －LA & \＃4！ 5 & \\
\hline をrat & En & 0200 & & ETA & FADD & \\
\hline ごご吅 & 9.7 & 20 & & LnA & ＋500 &  \\
\hline E「Eを & ET & 0094 & & ETA & MS & \\
\hline Errer & \(\therefore 2\) & 60 & & Lrix & \＃ & ：EET UF A IESAY TO CIESW THE \\
\hline ヨ¢゙イつ & CA & & OEL & DEX & & ：MILTIFIEXER TO STAPILIZE． \\
\hline EDS & ［0］ & FI & & ENE & DELAY & \\
\hline せだこ & & & \multicolumn{4}{|l|}{} \\
\hline E「ご禹 & ¢ & 90 0 & \multirow[t]{3}{*}{－\®x} & LIA & M MS & \multirow[t]{2}{*}{：SELEET THE THERMISTMRE：} \\
\hline 505 & 夛 & Oさ Aٌ & & ST．A & －FGO & \\
\hline Eris？ & & 60 & & L－re & － 4 ¢0 & －TIMER \＃！2 DECFIMENT SRGM FCF＝． \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline BDEC & A． 3 ca & & LDA & \＃\＄09 & \\
\hline 3nc2 & SE 30 Al & & STA & tapngl & ：SEt The tape gap \\
\hline Rene & A： 49 & & LDA & \＃\＄48 & \\
\hline 2007． & SD O2 A4 & & ETA & TPOUT & ：direct the data to tape \\
\hline Suric & A 9 O： & & LDA & \＃\＄01 & \\
\hline EDES &  & & STA & & ：IDENTIFICATION IE set to one \\
\hline Sunf & AS OF & & LDA & \＃＜．DATADL & －LOAD LOW bYte of data \\
\hline EDE 1 & \(\triangle D A C A B\) & & STA & SAL & ：TG EE PUT GN TAPE． \\
\hline gre & A 904 & & LDA & \＃＞LATADL & ：LEAd the high eyte df data \\
\hline Erss & \(\triangle \square \cap D A E\) & & ETA & SAH & ：ti de pijt on tape． \\
\hline Ene： & A 90 & & LDA & \＃ d．\({ }^{\text {datalih＋1 }}\) & ：LDAD BYTE DF TDP DF DATA． \\
\hline 9res & E［ 4 A AB & & STA & EAL & \\
\hline gres & A\％ 04 & & LDA &  & ：LOAD high byte of tip \\
\hline EDE？ & ELIE AE． & & STA & EAH & ：DATA TO BE DIJMEED． \\
\hline E0－3 & 20：37 8E & & JER & DIMPT & ：JIMMP TD THE DIJMP ROUTINE \\
\hline EDFS & A＝Cr & & LIA & \＃\＄CC & \\
\hline ELFS & 3 D OE AB & & Sta & PCR & ：StMp THE TAPE RECDPDER． \\
\hline graf & A［1： 1704 & & LDA & datail +3 & ：LOAD WET BLILB TEMFERATURE． \\
\hline sore & 850604 & & STA & Flofay & ：STIRE IN DIEPLAY MEMJRY． \\
\hline EES！ & AII \(1 \geqslant 04\) & & LnA & ［ATATH＋10 & ：LOAD IRTY EIJLE TEMPERATIJRE． \\
\hline EEOC & 600704 & & STA & Florav +1 & \\
\hline EEO？ & ALI 15 04 & & LIA & DATADI +15 & ：load average flogr temperature． \\
\hline PEGa & 800804 & & STA & FLORAV +2 & \\
\hline EEOL & & ；CHECK & IF T & TAFE TO BE & REMDVED． \\
\hline ごロロ & 4920 & & LDA & \＃ 520 & ：CHECK TIS SEE IF PIN ND 5. \\
\hline EESE & 2C OO AO & & EIT & PSD & ：ON PDRT E IE ACTIVE． \\
\hline 5E：2 & Fi） 00 & & EEQ & RDIJND & ：IF NIDT ERANCH GRDUND． \\
\hline ¢¢ \(\underbrace{4}\) & & ；TAFPE & TO ES & F FEMDVED S & fut indication on end de tape． \\
\hline ご！ 4 & A－11 & & LDA & \＃\＄11 & ：ldad the decimal 17. \\
\hline 55： & EL OF 04 & & ETA & datadl & ：ETORE IN ETART OF LUMP MEMORY． \\
\hline EE： & \(20: 3785\) & & JER & dimet & ：dump to tape atsain． \\
\hline 5E： & ASCO & & LIAP & \＃ \(5 C\) C & \\
\hline 를 & ED AC & & ETA & POP & ：stop tape regorder． \\
\hline EEE： & 60 & Found & Fite & & ：RETURN TS BAEIC． \\
\hline ESEC & \multicolumn{5}{|c|}{．ENa} \\
\hline & \multicolumn{2}{|l|}{Eseness 0000} & & & \\
\hline
\end{tabular}

\section*{APPENDIX D}

BASIC DRIVER PROGRAM

DASE ！
PA：S 2

BAEIG URIVER FROGFAM FOR THE EYM－1

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { generong }
\end{aligned}
\] & & ；WRITTEN & \multicolumn{2}{|l|}{；FOR THE OKLPHOMA STATE LINIVERSITY．} \\
\hline agon & & ；EYSTEM & Locations & \\
\hline groog & & MEMORY & ＝\＄EFOO & ：PDEITIDN WHERE ZEfid falje resides \\
\hline nopo & & Stide & \(=\$ 0000\) & ：STGRADE SPACE． \\
\hline ？ & & ASEEME & ＝＊repo & ：LOCATION IN EOSIS． \\
\hline 3000 & & RIMNE & \(=5 \% 460\) & ：RIJN THE BASIL PGOGRCM． \\
\hline 0 & & \multicolumn{3}{|l|}{} \\
\hline いいい & & \multicolumn{3}{|c|}{＊\(=\) E0000} \\
\hline Eoco & \(\therefore \mathrm{a}\) & & LCix \＃ 500 & ：Clear coumter． \\
\hline 2000 & Ery & next & Lea memory，\(x\) & ：LIGGD MEMIRY LDICATION． \\
\hline －ncs & \(\bigcirc 00\) & & ETA STREE，\(X\) & ：ETGRE IN ZEFID FDISE． \\
\hline 5900 & \(\bigcirc\) & & INX & －INGEEMENT GDUATEE． \\
\hline 9093 & EO Fo & & CPY \＃+ FD & ：HAS E＇GOY EEEM M－VED＇ \\
\hline 5098 & 91） 5 & & Qn：MExT & ：WAIT JPTTIL ALL MAS EET：MOVED． \\
\hline Eons： & \(0 \cdot \mathrm{E}\) & & LIA \＃こASSEME &  \\
\hline 9005 & 4 ？ & & PHA & ：PISEH DNTT ETACK． \\
\hline Ecos & 0000 & & LDA \＃SASEEME & ：SET LIM EYTE REE ASEEME． \\
\hline E0： & 48 & & PHA & ：PIGH ONTM ETACK． \\
\hline 50 &  & & ．Jme rilinc & ：START RUMIMING EAEIC． \\
\hline P19 & & & Enerser & \\
\hline
\end{tabular}

\section*{APPENDIX E}

ZERO PAGE RELOCATOR FOR RUNNING BASIC

PAES 1
FGSE 2


\section*{APPENDIX F}

AIM-65 TO TEKTRONIX DATA
TRANSFER PROGRAM



APPENDIX G

TEKTRONIX BASIC PROGRAM
```

!On FOGE
:CR! "*******************************************************************"
1:n FRIMT "__-_"
GR PRINT " PROGRAM LIRITTEN BY "
!0 FRIn!T "-_"
IEO mRI" SIMON MURFAY
!%0 OGTMT "__"

```

```

ION FRINT " GRLAHOMA STATE UNTVEFEITY"
OO nrymT " "

```

```

=O% EOL' "!AIT",4
ここの「[EM********************************************************************

```

```

こEO EGMMT Eこ2,こち:2
2<0 =agr
ZアO pq!nt ""
zor sarde "-
O erin! "-"
FO0 PC:! "NHATT WAS THE PFGOESEDR STARTING TIME IN MINUTES,HOUR,DAY,MONTH"
\#!O IMreIT M,:H,D,M1
ミニG C\&:TNT "*

```

```

\#G! TEM TTTIEE 巨GC THEE GRFAYE
\#巨% <̇\&="M!"NTL"*

```


```

    C12="MINM!TEZ"
    T\pm="!|!TミTr!吅
    ```

```

    :NO"OET ENE"
    ケ=ツ「ご シバビ
        &-"-AS HEATER"
    ```

```

*O "a="S:EこTETG HEATER"

```

```

:7ロ rex=" Gin!"

```



```

!•! N!=\#った!

```



```

FO FEM THITYOLIEE PFINTER AND FRINT GMLMMN MENDINES.
E<0 ORINT Ea!-1::!

```






```

\&% Fo!f re:="-"
\therefore20 OArE

```


```

\&? FR品"-"

```

```

\&-: =0!!T ""
TORGTMT "ERESE RESET RN TRE AIM"
OO =\OmegaST ""

```

```

アミ! にRIMT *"
TAO PEINT "AGFIN PEESE RESET ON TUE AIM"
7ED FOINMT *"
7EO FFIENTT "EREEE RET!MRN ON TEKTRUNIX WHEN EOMEIETE"
?70 EME|IT W*
7EO OCNE
TGO EGINT "TRANEFERRINS FFOGG:AM TO THE AIM TO BET THE LIATA FROM TAFE"
EON FEM IUR(12?) IS TKE SUEOMT KEY TIT ESTASLIEH BAUD FIATE.
EMG SEM GUK(IE) IS RETYRN
ZZG EEM FILE Z ON THE TEKTTRONIX HAE THE AESEMELY FRGGRAM
O=O =IN! ?

```



```

\#O FGIr!T R4O:b!5
O00 EAL' "WPIT",0.5
\XiOC「こM******************************************************************
OCO OSM ETNFTING SGISITON FOR AIM FROGRAM
כ!g M\&="0この0"
シこ゚ ERIMT O40: "*"

```

```

Fag =EF I=1 TM LEN(M5)
OC!v=SEG(Mq,I,!)
=O r.ENT AAO:Yち
O7O 「\&!! "!!A!T",0.2
G号TT
OOF EEYNT R4O:S*

```


```

    \becauseOGEM ETAET TたGMSEEFRNN TUE OCDGTSM AGRISS.
    :rage ecint eqg:"I"
    ```

```

    GEの 5ミ^ए マご:M*
    ```


```

    !rOy 65=GEO(M4,I,I)
    !as !F !=4 THEN !!!0
    :!\because-EGTMT A&O:N゙5
    \because:& EA!L "NCIT",0.A
    !:二殳 &EXT I
    ```


```

    :1TA EF : EN(M&)=% THEN :OSO
    ```

```

    :?TOFEINT EQN:E&
    ```



```

    Oこ!\because =crr!T ACO:E&
    ```





```

    ニーに =-INT "_"
    ```

```

    OOQ =OTNT ""
    ```

```

    :O\ ?Nए!.T !.lt
    !二\therefore Er!n!T geg:">"
    ```



```

ミ<0 M\&="ワ217"
シア0 こnE I=1 TD LEN(M$)
12E0 R&=EEG(M$,I,1)
120% PRINT R40:K!\$
!NO0 EA!LL "WAIT",0.2
14!D NEXT I
:C2O FRIINT E4O!S\$
14`O FALLL "WAIT",0.2
-acG EEINT E40:"g"
!4こ0 %OINT ERO,シO:
\4%O E\&L! "!NA!T",0.2
1:-? FRINT B40:S\$
!4こり [:EM\&****************4*4*4*********************************************
GAOO EEM INOTT LNTIL EINOK HG:S EEEN PUT INTO MEMBRY.
:EOTGES I=1 TG S
:EOG INPUT E4O:M\$
EOO ECINT M\&
EEO N!EXT I
5540 5:5M******4*********************************************************
ETG SEM THE FIFST BLDIK DF [ATA HAS EEEN TRGNEFEREED FRDM TAPE TO ATM
ESQ EALL "NATT",O.S
!5%O TO(1)=M
!5:の T!(!)=ب
!E%r家(!)=0
! ©00 TE!:\)=M1
!\leqig =GOE

```

```

:EFGTEM TUIE IE THE EEGINMING DF THE TRANEFERRGL AND ORDIEESINIG.

```

```

OSFFM ETEF TLE DATA TGANGEER.
1\&\thereforeO 巳た=こO%
\becauseOO ET=O

```



```

1-:g Mt="nこ!ハ"
O-N FiE: I=: TG LEN!MS!

```



```

!?ES MEST I

```


```

:7OO =\sigmatnt a40:"な"
!OO ¢-INT ECO, シO:
:E!O ON_\ "!NG!T",O.こ

```




```

On :nentT A.1r!:-5

```



```

M0% N=6゙す
\because-!\mp@code{A=天S!(M*)}
\because,O A=A-3

```



```

!に白 T=:4 T!EN ミT=O
!日G こ% !-!5 TUEM 0.7%O

```

```

1000 IT I=17 THEN 3E70
O00 !T !=1? THEN 3910
ZO!O NEXT I
このこ0 F:CM*4*********************\&*****************************************
ZOTEYY WAIT UNTTIL THE AIM HAS GDDUIIRED ANDTHER BLDCK OF DATA
Onco FRS I=1 TO 2
ZOED INPITT RQ1:MS
20\leqslantG FALL "NAIT",0.2
OTO NEXT I
-0:O FRINT E40,30:
ZロッO :EXT !!
\therefore口のC5M****************************************************************
-::9 E7=87+.5

```

```

Z:30 IMOUT 3L
I4O 1F Eに=1 THEN 2170
\because:50 E5=200
z%O GO TO 1\leqslant00
2170 N=B7

```

```

2!\sigmaG FSM ORINT OUT THE LIATA IN EOLIJMNS
=OO! FIFR ,l=1 TO N
=-0 rongeruan

```




```

    OO!.NEYT .1
    O-5 -1, 4210
    \hdashlineに e=!NT "__-"
    OOOO
    EOG EEINT "ELENSE FRESS FORM FEED IN THE FRINTER"
    ```

```

    Zここr r.irut mf
    ZG EETNT "YOH FRES NOIN AERMTT TO TFSNSFEF LATA FFOM THE TEKTRONIX"
    Z品 O=\T "TG TUS IEM"
    -GE=T:NT "THTE HILL NEAEUY AMWEYE BE REOUIEED TI SE DORE IN THE"
    OEFNT "LATE .PFTEFNDIN IUHEN THE DOMPUTEF USE IS LESS"
    二马G E.EIMT " _"
    ```

```

    ZG EGTOT "RGGTTEF EGGK, FEEES RETURN ON THE TEKTFONIX WHEN FINISHED"
    -nO』 IN!E!IT NS
    ```

```

    #ロO EGTPIT "GQEES EGTHFM ON TH!E TEKTGONIX WIEN GDMFLETE"
    ごご㣙自T W$
    \therefore分G O人GE
    "追, EcIn!T "_-_"
    Z4SG ER:TNT "!LEN! THE ERO EUSY LIGUTS ETGP FLAGHTNS, TYFE IN LONON"
    ```







```

    Enr==!nT &^!:"_-_"
    \because\because\because \becauseML'_ "ニcTE",:こ\capD,こ,こ
    ```


```

    \becauseE%O O1, "TEFMIP!"
    ```



```

2\&20 GEM FOR J\1 THEN UFDATE DEPEND:S UPON THE 15 MINMTES.
2人EO IF .IL THEIU 2010

```

```

OEO SEM MPDATE THE FIR:ST GLCIIRGNEE OF HDURS FROM DATA.
2<\leq0 E=0
2\leq70 TO(1)=M+A
ZEOO IE TO(1)<KO THEN 2O10
二ょういTO(1)=TO(1)-\&O
-700 \subseteq=1
27:O E0 TO 2010
ニ-O IF NI THEET こO:0
27FO IF c=: TUEN =730
=7<n T1(:)=\Delta+H
こつ5% BTG =O0O
こ丁园汇M4*だ二**************************************************************
ZつO SEM UFDATE THE FIFKET DIELIRGNIE DF DGY FROM DATA.
2`OO T1(1)=H+f.+E
Z700 E=0
EOOM IF T1(1)<24 THEN 2010
2:10 T1(1)=T1:1)-24
-20}E=\mathrm{ :
ニこ0 GiO TO 2010
ZNO IF N: THEN 2010
-二O IT E=! THEN 2.300
Z\&OTこ(1)=ח+\&

```


```

Z二OG TEM UCROGTE THE FIRST GODURANLE GF MONTH FGOM DGTA.

```

```

-a\ E=0
ーロO TF Tニ!1)Oこ! THEN 2O10

```

```

GaO E=:

```

```

~O% IF IO1 TLEE: E070
\because二7S IT 三=! T,4ᄃN =020
ZCOT:!)= =+M1

```

```

SMG:EM GONEEGITATIVEIY MFDATE THE EOFTWARE ELDIKK ON THE TEKTEONIX.
シロO GOTO EOAO
Oご T?!!)=4*-4+5
OS EO
OCG IF -ご!)-12 THEN 2010
シャ%0 T?(1)=Tこ(1)-12
\#0k -2 Tr =n!0
\#O-OTC(J=TO(.J-!)+!5
OEO E=0
GO! IF TOM,O<EO THEN 3120
\#!0 TO゙.!=T04.-1)-60
\because:` \subseteq=!
\#:O T: i!=-:! -: !-EE
\becauseこの \#=?

```

```

    \because!こ0 T:(:!=7:(!)-=4
    \because-\becauseE=1
    #!?! Tこ(.1)=Tこ(.1-1)+E
    \because\because0 E=t
    ```


```

    ミここう - -(.1)=Tこ(.!)-こ0
    シーロ 巨巨=!
    ```

```

    #20 [T T?,!<!? TUEN =210
    ```
```

-50 TS(.1)=TS(J)-12
2%@ 回品 2010
ミ2丁自EM*********************************************************3********
\Xi=SO FEM INGILATGR GIR DUTSILE TEMFERATURES EITHER BEING FD:ITIVE OR NIJT
ZOO FEM IF A=:17 THEN THE END OF THE DATA TAFE HAS EEEN FESACHED.
ZOO IE A=17 THEN 21:20
E`O IF A=1 THEN 3340
Oこ0 に=0
3S0 SO TO 2010.
2:40 に=0
E=5: ET TO 2010

```

```

ミこの FEM GITSTTE TEMEERGTURE
ZOO IF E=O THEN 3A10
?こツT4(J)=A-100
\because400 B0 T0 2010
za!口) T4(.j)=A
3ニ0 OOTD 2010

```

```

BMG EEM INDIMATITR FOR INSIDE TEMPERATLRES EEINIS EITMER PDSITIVE IR NDT
\#SO IF A=1 THEN 34SO
て4かり に=!
ミロG On TH 2010
<4% に=4
\#4OG TG O0:0

```

```

ミE!Q FEM IMEI[U TEMPERATIIRE
ジO TF E=0 T:HEN S5SO
ミこ` TE(.1)=100-4
\vdots=* n! T0 2010
\becauseSES TE(.1)=A

```




```

\because60 30 -9 -010

```


```

\#SO T\&!,:=T\leqslant(.1)+E/1:00
OB M TM OO!O

```

```

\because心O FEN !RV E!U3 TEMRGFATIFE
ミ8つロ Tフ!!!)=^
二人? TOTO 2010

```







```

O-\because \because-O -O!:
----n

```

```

シーツ早ごハ=人

```



```

    ミマ゚ーご い=^
    O\becauseG
    ```


```

-2-9 TS(1)=0

```
```

3%:0 50 TO 2010

```

```

3OMO FEM AVERGDE FLDOR TEMFEEATIJRE
シ%!0 TG!.-1)=A
シOM 50TTO 2010
\becauseOO TS(J)=A
\#40 I= O!(.j)=1 THEN 3970
%5011*=?5
OSO EOT TV 3%OO
8070 11G=FG
*-G Ir G二(J)=1 THEN sO20
30%N !%5=1?5
AOO GO TO AOSO

```

```

4\づ単=0゙ァ
AOこO TF E-(心)=: THEN cOEO
4040 乙士ー!!3
40EG GG TO 4070
1:)太の 2*-5!5
\#GTの ESTHFN!

```

```

HOW EEM POAN!EFSE THE IATA TO THE IEM MAINFRAME
C!\mp@code{OCRE I=: TO N}
!:G E\&IN!T @40: HETPS c!EO:TO(I),T2(I),TI(I),TO(I),T4(I),T5(I),R1(I)

```



```

CIEO OH!-"!Ni!T",O.2
4!\&゙ N!EXT Z
C1TO CRIMT "ACTEF: THIS MESEAGE FLEAEE PRESS.AETUFN TO SET EAGK TO IEM"
1!EO On!- "TEEMIN"
C!OO ミTOF

```




```

\thereforeロ: N白TT!

```





```

ッハ人 EOE .!=! TG N
ジター!=0
:=心.}n=

```



```

ニイミに!=5!+!
\:ーツ!-!

```





```

13 -% '!-4-42
A\&C!:!':)-1!:1-1:-1!s(F:/F=):410\Omega

```

```

\because人G RC!ETS TK,T?

```


\section*{APPENDIX H}

STATISTICAL ANALYSIS SYSTEM PROGRAM USED TO ANALYZE GREENHOUSE DATA

 SORT \(=4\)
```

\ATA NEwLE JOUn|lin

```


```

n00nい14%

```

```

    M,
    ```








```

|HuC MLANQ, OOOO|?IO

```



```

0n0noz4n
unonojso
j0v(10)36

```



```

2

```



```

\7 (l)

```







```

30
NHIE: FILE PEPHA!SIG, REIMMANET,DATA,

```

```

MUTE: THE VANIAHLEGUMIAN IS UHIDITIALIZEN.

```

```

41 pHILC pRPHT DATADIEW:
unun!55%

```

```

NUPL: SAS USE| 1AGM Mrm|EY:
HuTE: gas lastlitlof luce
MAS CIHCLE
Ha|x HuWII
CAPY, N.C. 87511

```

APPENDIX I

GREENHOUSE DATA

TABLE III
GREENHOUSF, DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MONIII & DAY & HOUR & MINUTES & OUTSIDE TEMP & INSIDF: TEMP & \[
\begin{aligned}
& \text { SEI } \\
& \text { TTMP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FIMOR } \\
& \text { TT:NT }
\end{aligned}
\] & WFT BUIB TTMP & [RY BUAB 7T:MP & G \(n \mathrm{~S}\) IEATER & SPRAYS & EIAXTRIC HFNTER \\
\hline 1 & 22 & 17 & 20 & 8 & 18 & 15 & 19 & 11 & 14 & OFF & OFP & OFF \\
\hline 1 & 22 & 17 & 35 & 10 & 13 & 15 & 20 & 9 & 12 & OFF & OFF & OFF \\
\hline 1 & 22 & 17 & 50 & 9 & 11 & 15 & 20 & 9 & 11 & OFF & OFF & OFF \\
\hline 1 & 22 & 18 & 5 & 10 & 10 & 15 & 20 & 8 & 11 & OFF & OFF & OFF \\
\hline 1 & 22 & 18 & 20 & 9 & 10 & 15 & 20 & 8 & 10 & OFF & OFF & OFF \\
\hline 1 & 22 & 18 & 35 & 9 & 9 & 15 & 20 & 8 & 10 & OFF & OFF & OFF \\
\hline 1 & 22 & 18 & 50 & 9 & 9 & 15 & 20 & 8 & 10 & OFF & OHF & OFF \\
\hline 1 & 22 & 19 & 5 & 9 & 9 & 1.5 & 20 & 7 & 9 & OFF & OFT & OFF \\
\hline 1 & 22 & 19 & 20 & 7 & 9 & 15 & 20 & 6 & 8 & OFF & OFF & OFF \\
\hline 1 & 22 & 19 & 35 & 7 & 9 & 15 & 20 & 6 & 8 & OFF & OFF & OFF \\
\hline 1 & 22 & 19 & 50 & 7 & 9 & 15 & 20 & 6 & 8 & OFF & OFP & OFT \\
\hline 1 & 22 & 20 & 5 & 7 & 8 & 15 & 20 & 6 & 8 & OFF & OFF & OFF \\
\hline 1 & 22 & 20 & 20 & 7 & 8 & 15 & 20 & 6 & 8 & OFF & OFF & OFF \\
\hline 1 & 22 & 20 & 35 & 7 & 9 & 15 & 19 & 6 & 8 & OFF & OFP & OFF \\
\hline 1 & 22 & 20 & 50 & 6 & 8 & 15 & 19 & 6 & 7 & OFF & OFF & OFF' \\
\hline 1 & 22 & 21 & 5 & 5 & 8 & 15 & 1.9 & 5 & 7 & OFF & OFF & OFF \\
\hline 1 & 22 & 21 & 20 & 5 & 8 & 15 & 19 & 5 & 7 & OFF & OFF & OFF \\
\hline 1 & 22 & 21. & 35 & 6 & 8 & 15 & 19 & 5 & 7 & OFF & OFF & OFF \\
\hline 1 & 22 & 21 & 50 & 5 & 7 & 15 & 19 & 4 & 5 & OfF & OFF & OFF \\
\hline 1 & 22 & 22 & 5 & 4 & 7 & 15 & 19 & 4 & 5 & OFF & OFF & OFF \\
\hline 1 & 22 & 22 & 20 & 4 & 7 & 15 & 19 & 4 & 5 & OFF & OFF & OFF \\
\hline 1 & 22 & 22 & 35 & 4 & 7 & 15 & 19 & 4 & 6 & OfF & OF'F & OFF \\
\hline 1 & 22 & 22 & 50 & 4 & 7 & 15 & 18 & 4 & 6 & OF'F & OFF & OFF \\
\hline 1 & 22 & 23 & 5 & 2 & 6 & 15 & 18 & 3 & 4 & OFF & OFF & OFF \\
\hline 1 & 22 & 23 & 20 & 3 & 6 & 15 & 18 & 3 & 5 & OFF & OFF & OFF \\
\hline 1 & 22 & 23 & 35 & 2 & 6 & 15 & 18 & 2 & 4 & OFF & OFF' & OFF \\
\hline 1 & 22 & 23 & 50 & 2 & 6 & 15 & 18 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 0 & 5 & 3 & 6 & 15 & 1.8 & 3 & 4 & OFF & OFF & OFT \\
\hline 1 & 23 & 0 & 20 & 3 & 6 & 15 & 18 & 3 & 4 & OFF & OF'F' & OFF \\
\hline 1 & 23 & 0 & 35 & 2 & 6 & 15 & 18 & 2 & 4 & OFT & OFF & OFF' \\
\hline 1 & 23 & 0 & 50 & 2 & 5 & 15 & 18 & 2 & 3 & OFF & OFF & OFF \\
\hline 1 & 23 & 1. & ; & 2 & 5 & 15 & 18 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 1 & 20 & 2 & 5 & 15 & 17 & 2 & 3 & OFF & OFT & OFF \\
\hline 1 & 23 & 1 & 35 & 2 & 5 & 15 & 17 & 2 & 3 & OFF & OrF & OFF \\
\hline 1 & 23 & 1 & 50 & 1 & 5 & 15 & 17 & 2 & 4 & OFF & OFF & OFF' \\
\hline 1 & 23 & 2 & 5 & 2 & 5 & 15 & 17 & 3 & 4 & OFF & OFF & OFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MONIH & DAY & HOUR & MINTTES & OUTSIDE
TEMP & INSILE
TEMP & \[
\begin{gathered}
\text { SET } \\
\text { TTEMP }
\end{gathered}
\] & FTOOR
TEMP & WisI RUIB TTMP & \[
\begin{aligned}
& \text { DRY BITB } \\
& \text { TTMP }
\end{aligned}
\] & \begin{tabular}{l}
G/S \\
HPAIER
\end{tabular} & SPRAYS & ELIFCTRIC HEATER \\
\hline 1 & 23 & 2 & 20 & 2 & 5 & 15 & 17 & 2 & 4 & OFF & OFF & OFF \\
\hline 1. & 23 & 2 & 35 & 1 & 5 & 15 & 17 & 2 & 3 & OFF & OFF & OFF \\
\hline 1 & 23 & 2 & 50 & 1 & 5 & 15 & 17 & 2 & 3 & OFT & OFT' & OFF \\
\hline 1 & 23 & 3 & 5 & 1 & 5 & 15 & 17 & 2 & 3 & OFF & OFF & OfF \\
\hline 1 & 23 & 3 & 20 & 0 & 5 & 15 & 17 & 2 & 4 & OFF' & OFF & OFF \\
\hline 1 & 23 & 3 & 35 & 1 & 5 & 15 & 17 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 3 & 50 & ]. & 5 & 15 & 16 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 4 & 5 & 1 & 5 & 15 & 16 & 3 & 4 & OFF & OFE & OFF' \\
\hline 1 & 23 & 4 & 20 & 1 & 5 & 15 & 16 & 3 & 5 & OFF & OFE' & OFF \\
\hline 1 & 23 & 4 & 35 & 1 & 5 & 15 & 16 & 3 & 4 & OFF & OFF' & OFF \\
\hline 1 & 23 & 4 & 50 & 1 & 4 & 15 & 16 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 5 & 5 & 1 & 4 & 15 & 16 & 2 & 3 & OFF & OrF & OFF' \\
\hline 1 & 23 & 5 & 20 & 1 & 4 & 15 & 16 & 1. & 1 & OFF & OFF & OrF \\
\hline 1 & 23 & 5 & 35 & 0 & 4 & 15 & 16 & 1 & 3 & OFF & OFT & OFF \\
\hline 1 & 23 & 5 & 50 & 0 & 4 & 15 & 16 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 6 & 5 & 0 & 4 & 15 & 16 & 1 & 3 & OFF & OFP & OFF \\
\hline 1 & 23 & 6 & 20 & 1 & 4 & 15 & 16 & 2 & 4 & OFF' & OFF & OFF \\
\hline 1 & 23 & 6 & 35 & 1 & 4 & 15 & 15 & 2 & 3 & OFF & OFF & OFF \\
\hline 1 & 23 & 6 & 50 & 1 & 4 & 15 & 15 & 2 & 3 & OFF & OFF & OF'F \\
\hline 1 & 23 & 7 & 5 & 2 & 4 & 15 & 15 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 7 & 20 & 2 & 4 & 15 & 15 & 2 & 4 & OFF & OFF & OFF \\
\hline 1. & 23 & 7 & 35 & 2 & 5 & 15 & 15 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 7 & 50 & 2 & 5 & 15 & 15 & 3 & 4 & OrF & OrF & OFF \\
\hline 1 & 23 & 8 & 5 & 2 & 6 & 15 & 15 & 3 & 4 & OFF' & OFF & OFF \\
\hline 1 & 23 & 8 & 20 & 1 & 6 & 15 & 15 & 2 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 8 & 35 & 1 & 9 & 15 & 15 & 4 & 6 & OFF & OFF & OFF \\
\hline 1 & 23 & 8 & 50 & 2 & 9 & 15 & 15 & 6 & 7 & OFF & OFF & OFF \\
\hline 1 & 23 & 9 & 5 & 3 & 11 & 15 & 15 & 7 & 10 & OFF & (F'F' & OFF \\
\hline 1 & 23 & 9 & 20 & 4 & 12 & 15 & 15 & 8 & 10 & OFF & OFE & OFF \\
\hline 1. & 23 & 9 & 35 & 4 & 14 & 15 & 15 & 9 & 13 & OFF & OFF & OFF \\
\hline 1 & 23 & 9 & 50 & 6 & 15 & 15 & 15 & 10 & 14 & OFF & OFF & OFF \\
\hline 1 & 23 & 10 & 5 & 6 & 17 & 15 & 15 & 11 & 15 & OFF & OFT & OFF \\
\hline 1 & 23 & 10 & 20 & 4 & 17 & 15 & 15 & 11 & 14 & OFF & OF'F' & OFF \\
\hline 1 & 23 & 10 & 35 & 6 & 19 & 15 & 15 & 12 & 17 & OFF & OFF & OFF \\
\hline 1 & 23 & 10 & 50 & 5 & 20 & 15 & 15 & 12 & 17 & OFF' & OFF & OFF' \\
\hline 1 & 23 & 11 & 5 & 6 & 21 & 15 & 15 & 13 & 18 & OFF & OFF & OFF \\
\hline 1 & 23 & 11 & 20 & 6 & 21 & 15 & 15 & 1.3 & 18 & OFF & OFF & OFF \\
\hline
\end{tabular}

TABLE III (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MONIII & DAY & HOUR & MINUITES & \[
\begin{aligned}
& \text { OUTSIDE } \\
& \text { TEMP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { INSIDE } \\
& \text { TFMP }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SET' } \\
& \text { TEMP }
\end{aligned}
\] & \begin{tabular}{l}
FLOOOR \\
TTMP
\end{tabular} & WE:T BUIB IERT & \[
\begin{aligned}
& \text { DRY BILB } \\
& \text { 'ITMP' }
\end{aligned}
\] & GAS HENTER & SPRAYS & \begin{tabular}{l}
EI.ECTRIC \\
HFATER
\end{tabular} \\
\hline 1 & 23 & 11 & 35 & 7 & 22 & 15 & 15 & 14 & 18 & OfF & OrT & OFF \\
\hline 1 & 23 & 11 & 50 & 8 & 22 & 15 & 15 & 15 & 19 & OFF & ON & OFF \\
\hline 1 & 23 & 12 & 5 & 9 & 20 & 15 & 15 & 15 & 20 & OFF & OHF & OFF \\
\hline 1 & 23 & 12 & 20 & 10 & 21 & 15 & 16 & 16 & 20 & OFF & OFF & OFF \\
\hline 1 & 23 & 12 & 35 & 11 & 22 & 15 & 16 & 16 & 21 & OFF & OFT & OFF \\
\hline 1 & 23 & 12 & 50 & 12 & 22 & 15 & 16 & 16 & 21 & OrF & Or'F & OFF \\
\hline 1 & 23 & 13 & 5 & 13 & 22 & 15 & 16 & 16 & 21 & OFF & OFF & OFF \\
\hline 1 & 23 & 20 & 13 & 23 & 15 & 15 & 16 & 17 & 22 & OFF & OFF & OFF \\
\hline 1 & 23 & 13 & 35 & 14 & 24 & 15 & 16 & 18 & 22 & OFF & OFF & OFF \\
\hline 1 & 23 & 13 & 50 & 12 & 24 & 15 & 16 & 18 & 23 & OFF & OFF & OFF \\
\hline 1 & 23 & 14 & 5 & 1.4 & 24 & 15 & 16 & 1.8 & 23 & OFF & ON & OFF \\
\hline 1 & 23 & 14 & 20 & 14 & 23 & 15 & 16 & 18 & 22 & OFF & OFF & OFF \\
\hline 1 & 23 & 14 & 35 & 1.2 & 24 & 15 & 16 & 17 & 23 & OFF & OFF & OFF \\
\hline 1 & 23 & 14 & 50 & 14 & 24 & 15 & 16 & 18 & 23 & OFF & OrF & OFF \\
\hline 1 & 23 & 15 & 5 & 14 & 24 & 15 & 16 & 19 & 24 & OFF & OFF & OFF \\
\hline 1 & 23 & 15 & 20 & 13 & 24 & 15 & 16 & 19 & 24 & OFF & OFF & OFF \\
\hline 1. & 23 & 15 & 35 & 15 & 24 & 15 & 16 & 19 & 23 & OFF & OFF & OFF \\
\hline 1 & 23 & 15 & 50 & 16 & 24 & 15 & 17 & 19 & 23 & OFF & OFF' & OFF \\
\hline 1 & 23 & 16 & 5 & 16 & 23 & 15 & 17 & 18 & 22 & OFF & OFF' & OfF \\
\hline 1 & 23 & 16 & 20 & 16 & 21 & 15 & 17 & 17 & 21 & OFF & OFF & OFF \\
\hline
\end{tabular}

APPENDIX J

GREENHOUSE DATA

TABLE IV
GREENHOUSE DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MCNIII & DAY & IOUR & MINJTTES & NJTSIDE TEMP & TNSIDE: TEMP & \[
\begin{gathered}
\text { SET } \\
\text { TEME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { FTOOR } \\
& \text { 'IFMP }
\end{aligned}
\] & WETM BMB TIMP & DRY BJJ.B ITFMP & \begin{tabular}{l}
CAS \\
HEATER
\end{tabular} & SIPRAYS & HAECIRIC IFFNTER \\
\hline 1 & 23 & 17 & 20 & 17 & 12 & 18 & 16 & 12 & 13 & ON & OFF' & OFT \\
\hline 1 & 23 & 17 & 35 & 16 & 12 & 18 & 16 & 12 & 12 & ON & OFF & Of'F \\
\hline 1 & 23 & 17 & 50 & 16 & 10 & 18 & 17 & 11 & 11 & ON & OFF & OFF \\
\hline 1 & 23 & 18 & 5 & 16 & 11 & 18 & 17 & \(1]\) & 11 & ON & OFF & OFF \\
\hline 1 & 23 & 18 & 20 & 15 & 10 & 18 & 17 & 10 & 10 & ON & OFF & OFF \\
\hline 1 & 23 & 18 & 35 & 14 & 9 & 18 & 18 & 10 & 9 & OFF & OFF & OFF \\
\hline 1 & 23 & 18 & 50 & 14 & 9 & 18 & 18 & 9 & 9 & OFT & OFF & OFF \\
\hline 1 & 23 & 19 & 5 & 13 & 8 & 18 & 18 & 8 & 8 & OFF & OFF' & OFF \\
\hline 1 & 23 & 19 & 20 & 13 & 7 & 18 & 18 & 8 & 8 & OFF & OFF & OFF \\
\hline 1 & 23 & 19 & 35 & 13 & 7 & 18 & 18 & 7 & 7 & OFF & OFF & OFF \\
\hline 1 & 23 & 19 & 50 & 12 & 6 & 1.8 & 1.8 & 7 & 7 & OFF & OFF & OFP \\
\hline 1 & 23 & 20 & 5 & 12 & 6 & 18 & 18 & 6 & 6 & OFF & OFF' & OFT \\
\hline 1 & 23 & 20 & 20 & 12 & 6 & 18 & 18 & 6 & 6 & OFF & OFF & OFF \\
\hline 1 & 23 & 20 & 35 & 11 & 5 & 18 & 18 & 6 & 6 & OFF & OFF & OFF \\
\hline 1 & 23 & 20 & 50 & 11 & 5 & 18 & 18 & 5 & 5 & OFF & OFF & OFF \\
\hline 1 & 23 & 21 & 5 & 10 & 5 & 18 & 18 & 5 & 5 & OFF' & OFF & OFF \\
\hline 1 & 23 & 21 & 20 & 10 & 5 & 18 & 18 & 5 & 5 & OFF & OFF & OFF \\
\hline 1 & 23 & 21 & 35 & 9 & 4 & 18 & 18 & 4 & 4 & OFF & OFF' & OFF \\
\hline 1 & 23 & 21. & 50 & 9 & 4 & 18 & 1.8 & 4 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 22 & 5 & 9 & 4 & 18 & 18 & 4 & 4 & OFF & OFT & OFF' \\
\hline 1 & 23 & 22 & 20 & 8 & 4 & 18 & 18 & 4 & 3 & OFF & OFF & OrF \\
\hline 1 & 23 & 22 & 35 & 8 & 4 & 18 & 18 & 4 & 4 & OFF & OFF & OFF \\
\hline 1 & 23 & 22 & 50 & 7 & 3 & 18 & 18 & 4 & 3 & OFF & ON & OFF \\
\hline 1 & 23 & 23 & 5 & 7 & 3 & 18 & 18 & 3 & 3 & OFF & ON & OFF \\
\hline 1 & 23 & 23 & 20 & 7 & 5 & 18 & 18 & 5 & 5 & OFF & OFF & OFF \\
\hline 1 & 23 & 23 & 35 & 7 & 5 & 18 & 18 & 5 & 5 & OFF & OFF & OrF \\
\hline 1 & 23 & 23 & 50 & 7 & 5 & 18 & 18 & 5 & 5 & OFF & OFT & OFF \\
\hline 1 & 24 & 0 & 5 & 6 & 5 & 18 & 18 & 5 & 5 & OFF & OrF & OFF \\
\hline 1 & 24 & 0 & 20 & 6 & 5 & 18 & 18 & 4 & 5 & OFF & OFF & OFF \\
\hline 1 & 24 & 0 & 35 & 6 & 5 & 18 & 18 & 4 & 5 & OFF & ORT & OFF \\
\hline 1 & 24 & 0 & 50 & 6 & 5 & 18 & 18 & 4 & 5 & OFF & OFF & OFF \\
\hline 1 & 24 & 1 & 5 & 6 & 5 & 18 & 18 & 4 & 4 & OFF & OFF & OFF \\
\hline 1. & 24 & 1 & 20 & 6 & 5 & 18 & 18 & 4 & 4 & OFF & OFF & OFF \\
\hline 1. & 24 & 1 & 35 & 6 & 5 & 18 & 18 & 4 & 4 & OFF & OFF & OFF \\
\hline 1 & 24 & 1 & 50 & 6 & 5 & 18 & 18 & 4 & 4 & OFF & OFP & OFF \\
\hline
\end{tabular}

TABLE IV (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MONIT & DAY & HOUR & MINUIES & \[
\begin{aligned}
& \text { OUTSIDE } \\
& \text { TEMP }
\end{aligned}
\] & INSIDE TEMT & \[
\begin{gathered}
\text { SEI' } \\
\text { 'TEMP }
\end{gathered}
\] & \begin{tabular}{l}
FIOOR \\
TTMP
\end{tabular} & WES BULB TEMP & \[
\begin{aligned}
& \text { DRY BULB } \\
& \text { TEMP }
\end{aligned}
\] & \begin{tabular}{l}
CAS \\
HFNIER
\end{tabular} & Sprays & ELECTRIC IIEATER \\
\hline ]. & 24 & 2 & 5 & 6 & 4 & 18 & 18 & 4 & 4 & OFF & OrP & OFF \\
\hline 1 & 24 & 2 & 20 & 6 & 4 & 18 & 18 & 4 & 4 & OFF & OFT & OFF \\
\hline 1 & 24 & 2 & 35 & 6 & 4 & 18 & 18 & 4 & 4 & OFF & OFF' & OFF \\
\hline 1 & 24 & 2 & 50 & 5 & 4 & 1.8 & 18 & 4 & 4 & OFF & OFP' & OFF \\
\hline 1 & 24 & 3 & 5 & 4 & 4 & 18 & 18 & 4 & 4 & OFF & OFF' & OFF \\
\hline 1 & 24 & 3 & 20 & 5 & 4 & 18 & 18 & 4 & 4 & OrF & OFF & OFF \\
\hline 1 & 24 & 3 & 35 & 5 & 4 & 18 & 18 & 3 & 4 & OFT & OrF & OFF \\
\hline 1 & 24 & 3 & 50 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OF' & OFF \\
\hline 1 & 24 & 4 & 5 & 5 & 4 & 18 & 18 & 3 & 3 & OrF & OFF & OFF \\
\hline 1 & 24 & 4 & 20 & 4 & 4 & 18 & 18 & 3 & 4 & OFF & OrF & OFF \\
\hline 1 & 24 & 4 & 35 & 4 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 4 & 50 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 5 & 5 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 5 & 20 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF' & OFF' \\
\hline 1 & 24 & 5 & 35 & 5 & 4 & 1.8 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 5 & 50 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 6 & 5 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 6 & 20 & 5 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 6 & 35 & 5 & 3 & 18 & 18 & 3 & 3 & OFF & ON & OFF \\
\hline 1 & 24 & 6 & 50 & 4 & 5 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 7 & 5 & 4 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 7 & 20 & 4 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 7 & 35 & 4 & 4 & 18 & 18 & 3 & 3 & OFF & OFF & OFF \\
\hline 1 & 24 & 7 & 50 & 4 & 4 & 18 & 18 & 3 & 3 & OFF & OFF' & OFF \\
\hline 1 & 24 & 8 & 5 & 5 & 4 & 18 & 18 & 4 & 4 & OFF & OFF & OFF \\
\hline 1 & 24 & 8 & 20 & 4 & 6 & 18 & 18 & 4 & 4 & OFF & OFF & OFT \\
\hline 1 & 24 & 8 & 35 & 4 & 8 & 18 & 18 & 5 & 6 & OFF & OFF & OFF \\
\hline 1 & 24 & 8 & 50 & 4 & 10 & 1.8 & 18 & 8 & 8 & OFF & OFT & OFF \\
\hline 1 & 24 & 9 & 5 & 5 & 13 & 18 & 18 & 10 & 11 & ON & OFF & OFF \\
\hline 1 & 24 & 9 & 20 & 6 & 16 & 18 & 18 & 13 & 14 & OFF & OFF & OFF \\
\hline 1 & 24 & 9 & 35 & 8 & 19 & 18 & 18 & 15 & 17 & OFF & OFF & OF'F \\
\hline 1 & 24 & 9 & 50 & 9 & 20 & 18 & 18 & 16 & 18 & OFF & OF & OFF \\
\hline 1 & 24 & 10 & 5 & 11 & 22 & 18 & 18 & 17 & 19 & OFF & OHF & OFF \\
\hline 1 & 24 & 10 & 20 & 12 & 22 & 18 & 18 & 18 & 20 & OFF & \(\mathrm{OHF}^{\text {P }}\) & OFF \\
\hline 1 & 24 & 10 & 35 & 14 & 25 & 1.8 & 18 & 19 & 22 & OFF & OFF & OFF \\
\hline
\end{tabular}

TABLE IV (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline MONI'I & DAY & Houl? & MINTIGS & \begin{tabular}{l}
(MPSIDF: \\
'IFMI'
\end{tabular} & INSTIE: 'TVIIT &  & \[
\begin{aligned}
& \text { F:r, } \\
& \text { T:IN }
\end{aligned}
\] & Нリ: ITMM: & DRY BUB THIT & \begin{tabular}{l}
GAS \\
HEATER
\end{tabular} & STRAYS & FIWCPRIC: HFAIIER \\
\hline 1 & 2.4 & 10 & 510 & 15 & 26 & 18 & 19 & 20 & 23 & OFT & OFF & OFF \\
\hline 1 & 24 & 11 & ! & 17 & 28 & 19 & 18 & 21 & 24 & OFF & ON & OFF \\
\hline 1 & 24 & \(1]\) & 20 & 17 & 26 & 18 & 18 & 21 & 24 & OFF & OFF & OHT \\
\hline 1 & 24 & 11 & 35 & 18 & 28 & 18 & 18 & 22 & 25 & OFT & OrF & OFF' \\
\hline ] & 24 & 11 & \(r .0\) & 20 & 28 & 17 & 18 & 22 & 25 & OFF & OFF & OFF \\
\hline 1 & 24 & 12 & ' & 20 & 28 & 18 & 18 & 22 & 25 & OFF & OFT & OFF \\
\hline 1 & 24 & 12 & 20 & 21 & 28 & 18 & 18 & 22 & 25 & OFF & OHF & OFF \\
\hline 1 & 24 & 12 & 35 & 22 & 29 & 18 & 18 & 23 & 25 & \(\mathrm{OHF}^{\text {F }}\) & OFF & OFF \\
\hline 1. & 24 & 12 & fill & 22 & 27 & 18 & 18 & 22 & 24 & OFT' & OFF & OFF \\
\hline 1 & 24 & 13 & \(\checkmark\) & 23 & 27 & 18 & \(!1\) & 22 & 24 & OFF & OrF & OFF \\
\hline 1 & 24 & 13 & 20 & 23 & 27 & \({ }^{1 /}\) & 18 & 22 & 24 & OFF' & (0) & OFF \\
\hline 1 & 24 & 13 & י & 23 & 25 & \(1 \%\) & 19 & 21 & 23 & OF'l' & OFF & \(\mathrm{OFF}^{\text {F }}\) \\
\hline 1. & 24 & 13 & 50 & 23 & 27 & 18 & 19 & 22 & 24 & OFF & OFF & OrF \\
\hline 1 & 24 & 14 & 4 & 23 & 26 & 18 & 17 & 21 & 24 & OFF & Or F & \(\mathrm{OFF}^{\text {Pr }}\) \\
\hline 1 & 24 & 14 & 20 & 23 & 26 & 18 & 19 & 21 & 24 & OFF & OFF' & OFF \\
\hline 1 & 24 & 14 & 35 & 22 & 27 & 18 & 19 & 22 & 24 & OFF & OFF' & OFF \\
\hline 1 & 24 & 14 & 50 & 22 & 29 & 18 & 19 & 23 & 26 & OFF & OrF & OFF \\
\hline 1 & 24 & 15 & ' & 22 & 31 & 18 & 19 & 24 & 27 & OFF & ON & OFF \\
\hline 1 & 24 & 15 & 21 & 23 & 26 & 18 & 19 & 22 & 24 & OFT & OFP & OFF \\
\hline 1 & 24 & 15 & 35 & 23 & 29 & 18 & 19 & 23 & 16 & OFF & OFF & OFF' \\
\hline 1 & 24 & 15 & r, \({ }_{5}\) & 23 & 32 & 18 & 19 & 24 & 28 & OFF & ON & OrF \\
\hline 1. & 21 & 16 & r & 23 & 24 & 18 & \(1{ }^{\prime \prime}\) & 21 & 23 & OF & OFP & OFF \\
\hline
\end{tabular}

VITA

\author{
Simon Timothy Murray \\ Candidate for the Degree of \\ Master of Science
}

Thesis: A MICROPROCESSOR BASED CONTROL SYSTEM FOR A SOLAR HEATED GREENHOUSE

Major Field: Agricultural Engineering
Biographical:
Personal Data: Born in 1957 at Hughenden, Queensland, Australia, the son of Greg and Denise Murray

Education: Graduated from high school in Brisbane, Queensland in 1974; attended college at the Darling Down Institute of Advanced Education in Toowoomba, Queensland from January, 1976 to December, 1979; received a Bachelor of Engineering (Agricultural) in May, l980; attended Oklahoma State University in Stillwater, Oklahoma, U.S.A. from August, 1980 to July, 1982 to complete the requirements for a Master of Science degree.

Professional Experience: Was Employed as an assistant to an agricultural engineer-livestock housing in Australia for two months. Served as a Graduate Research Assistant from August, 1980 to December, l981, and a Graduate Teaching Assistant from January, 1982 to May, 1982, for the Agricultural Engineering Department of Oklahoma State University.

Professional Organizations: Student member of the American Society of Agricultural Engineers; and the National Society of Professional Engineers.```

