
AN EXPRESSION VERIFIER FOR AN INTERACTIVE

PROGRAM GENERATOR

By

JOHN FREDERIC LUCAS
I;

Bachelor of Arts
Claremont McKenna College

Claremont, California
1975

Master of Arts
Claremont Graduate School

Claremont, California
1980

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

December, 1982

M~s,5 . 19 2:>..··

LCf3~e

. C..Cp.~

AN EXPRESSION VERIFIER FOR AN INTERACTIVE, ___ __...___

PROGRAM GENERATOR

'.

Thesis Approved:

Dean of Graduate College

ii

114:-iz53 I

PREFACE

The aim of this study is to uncover and to resolve the fundamental
. '

issues facing the designer of an expression verifier system for an

interactive program generator. The work presented here is intended to

serve as the basis for an implementation of a verifier. It investigates

such major questions as the division of the system into modules and the

nature of the data structures used throughout the system. It also takes

up, on occasion, the choice of algorithms to be used to accomplish

certain system functions and the way in which these may be tailored to

meet the special demands of this application. But it does not seek to

provide a detailed description of the workings of each module in the

system. In short, this study represents my conception of the design

work needed to set the stage for an implementation.

I wish to thank my thesis adviser, Dr. G. E. Hedrick, for his

guidance during this project and throughout my work at Oklahoma State

Univerisity. I also thank Dr. D. D. Fisher and Dr. M. J. Folk for

serving on the thesis committee.

Special thanks go to my friends John Warren and Arlen Long. Their

concern and encouragement helped me through the frustrations and disap-

pointments I faced from time to time as I worked on this project.

iii

TABLE OF CONTENTS

Chapter Page

I •. BACKGROUND, MOTIVATION, AND METHOD 1

1
2
9

Introduction. • • • • . • • . . • • • . . . • . .•••.
Program Generators: A Survey of Recent Research ••
Expression Verification in Program Generators •
Aim and Method of this Study •••••

II. REQUIREMENTS FOR AN EXPRESSION VERIFIER ••

. . 11

15

Introduction. • 15
The Hardware Environment. • • • • • • • • • • • • • • 16
The Expression Language • • • • • • • • • • 18
The Interface with Other Components of the

Program Generator • • • • . • • • • • • • 22
The User Interface. • . • • • • • • • • • • • • • • • • • 23

The Nature of the User Interface • • • 23
The Nature of the Diagnostic Messages. • • • • • • • 25
Error Repair • • • • • • • • • • • • • • • • • • 27
Multiple Errors. • • • • • • • • • • • • • • • • 28
Practical Guidelines for Error Handling. • • • 33

III. A DESIGN FOR AN EXPRESSION VERIFIER. 44

Introduction. • 44
The Structure of the Expression Verifier. 45

Functional Anatomy of the Verifier • • • • • • • • • 45
Organizational Constraints Imposed by the

Hardware Environment ••••••••••
Organizational Constraints Imposed by

Other Program Generator Modules •••••
The Structure of the Expression Verifier:

A Summary. • • • . • • . . • . . . • . •
The Syntax Analyzer. • • • • • .

Overview of Design Issues •••••••••••
Syntax and Semantics •••
Parsing Methods: A Survey
The Semantic Actions ••••
Summary of Design Decisions.

The Lexical Analyzer ••••••••.••••••••
Other Expresion Verifier Routines

iv

48

53

56
56
56
59
69
82
88
89
94

Chapter

IV. SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY ••

Summary • • • • • • • • • • • • •
Recommendations for Further Study •

REFERENCES CITED. •

APPENDIXES •••••

. . . .

Page

• 102

• 102
• 104

•• 106

• • • • 108

APPENDIX A - A CONTEXT-FREE GRAMMAR FOR
CBASIC EXPRESSIONS •• 108

APPENDIX B - AN LL(l) GRAMMAR FOR
CBASIC EXPRESSIONS. •

APPENDIX C - AN AMBIGUOUS GRAMMAR FOR
CBASIC EXPRESSIONS. • • •

.

.
APPENDIX D - A SYNTAX-DIRECTED TRANSLATION

SCHEME FOR VERIFYING CBASIC EXPRESSIONS

v

110

112

114

LIST OF FIGURES

Figure

1.

2.

3.

4.

5.

6.

Structure of the Verifier System •
Syntax-Directed Translation Scheme for

the Mode 1 Language • • • • • • •

Two Parse Trees Illustrating the Ambiguity
in a Simple Extension of Grammar 3.1

Simple Expression Grammar, Modified to
Include Undeclared Identifiers ••••

Nodes for the Token List Emitted by the
Lexical Analyzer •••••••••

The Expression Verifier Driver Logic ••

vi

.

Page

57

62

65

67

91

98

CHAPTER I

BACKGROUND, MOTIVATION, AND METHOD

Introduction

An expression verifier is a set of routines which work together to

determine whether a given text string constitutes a valid arithmetic,

logical, or string-valued expression in some specified high-level program

ming language. The work presented here focuses on the challenges con

fronting the designer of an expression verifier which functions as a

part of a program generator and which inspects candidate expressions

supplied by the user of the generator. The processing of expressions to

establish that they confonn to the syntactic and semantic rules of a

high-level programming language has been studied extensively in conjunc

tion with the development of compilers for such languages. Program

generators impose new and different requirements on expression verifying

systems, and the techniques employed in compilers must be adapted to the

new environment.

Later chapters describe the design problems posed by a specific

expression verifier system and suggest solutions to them. The present

chapter explores program generators and the contexts in which they

require verification of expressions. It describes the hypothetical

generator of the which the expression verifier discussed in the work is

to be a part. It concludes by outlining the method to be used in raising

1

and resolving the design issues associated with the development of an

expression verifier.

Program Generators: A Survey of Recent Research

2

A program generator is a computer program which writes other pro

grams. ~ore precisely, a program generator accepts as input a specifica

tion for a program and produces as output a program (typically a program

in a high-level language} which meets that specification. The program

generators currently in use or under development vary widely in the

types of specifications they accept, but they are distinguished from

other language processing systems by one common feature: they do not

require the user to provide the program specification in the fonn of

source text in some high-level procedural programming language.

Two related but distinct goals motivate the development of program

generators. One is to make the power of the computer more widely avail

able to users who are not trained in conventional programming techniques

by allowing such users to specify their programs in a more natural

way--that is, in terms more closely related to the way in which they

conceive of the problem at hand and its solution--than is possible with

an ordinary high-level programming language. The other goal is to make

the process of software development less time-consuming and the end

product more reliable by freeing programmers from some of the routine

(yet highly detailed) work involved in constructing programs. The two

goals are related in that to advance towards one is almost invariably to

draw closer to the other. Yet they suggest somewhat different emphases

in research. Attempts to achieve the first goal rely on techniques

closely connected with the discipline of artificial intelligence,l

3

including methods for natural language processing and for automated

problem solving. The second goal can be pursued through the adaptation

and the extension of techniques originally devised in the development of

compilers and other programming language processors.

Researchers who have in mind the first and more ambitious goal face

two fundpmental problems. They must devise a method for translating a

user's 11 natural 11 specification for a program into some complete and

consistent internal representation of this specification. They must

then discover how to transfonn this internal specification into a pro

gram in the target language which meets the specification.

Heidorn [11] surveys four projects in which programs are generated

based upon specifications obtained from the users through natural lan

guage dialogues. None of the projects reached definitive results, but

each had some measure of success. The generators produced by each

project worked within a rather restricted range of applications.

Heidorn 1 s own work, for example, involved generating programs for simple

queuing simulations in a target language designed for simulation pro

grams. Limiting the generator to a particular class of programs simpli

fies the processing of the natural language input since both the vocabu

lary of the specification and its range of possible interpretations are

circumscribed.

The PSI project began at Stanford University and continuing at the

Kestrel Institute, also aims at allowing the user to specify a program

in a natural way [9, 10, 14]. In addition to natural language descrip

tions of the desired program, the user may supply example calculations

and traces of the program's behavior. The system consists of a group of

interacting modules (called 11 experts 11 in the jargon of artificial intel

ligence research2), each of which is responsible for some aspect of the

system's work. One carries on the dialogue with the user and helps to

construct an internal representation of the program specification;

another, the 11 coding expert", has responsibility for producing the

4

target 1 anguage program; sti 11 another, the "efficiency expert", attempts

to perfonn optimization of the generated program. These experts are so

called because, according to those who work in this field, they can be
'.

said in some sense to possess knowledge about some domain. It is appeal

ing, but philosophically naive, to characterize PSI as a model of the

human programmer who elicits a program specification from the end user

and who then applies his or her knowledge of the problem domain, the

fundamental techniques of programming, and the characteristics of the

target language, to produce a suitable program.

Some researchers have chosen to set aside the problems associated

with processing "natural" program specifications and have concentrated

on the problem of transfonning fonnal specifications into programs.

Such formal specifications are cast in a form much less flexible than

natural English. Yet they represent significant progress towards the

goal of providing wider access to the power of computers in that they

typically relieve the program specifier of the burden of choosing data

representations and computational methods.

The task of transforming specifications into programs may be auto

mated if two problems are solved. First, a set of mechanical transforma-

tions must be devised which, when applied in an appropriate sequence,

will lead from the specification to a program. Second, a mechanical

procedure must be developed to select a series of transfonnations which

will produce the required program from a given specification.

5

Balzer [5] describes a system which ignores the second problem by

requiring a human to select the appropriate transformation at each stage

in the development of a program. The system's specification language

provides for the description of a "world 11 (that is, a problem domain).

The "world" includes the objects which populate it, the relationship

which obtain among these objects, the constraints that objects must
' .

satisfy,' the actions which apply to objects, and the rules of inference

appropriate within the "world. 11 The specification for an individual

program within the problem domain includes a statement of the initial

configuration of objects and a description either of the required final

configuration or of the desired behavior of the system. The transfonna

tion of the specification aims at producing code which efficiently

simulates the essentially nondetenninistic process of discovering a

sequence of actions which lead from the initial to the final state.

Thus one important transfonnation 11 unfolds 11 the specified constraints on

objects by introducing code which tests for violations of the constraints

and enables the program to backtrack to a configuration at which an

alternative series of actions may be attempted. The implementation of

this system does not appear to be far advanced. Many of the transfonna

tions are left for the user to apply manually.

The work of Manna and Waldinger [15, 16, 17] has attempted to solve

the problem of automatically selecting the transformation to be applied

by adapting techniques from automated theorem-proving systems and program

verifiers (that is, systems which determine whether a program is correct).

Manna and Waldinger have implemented a system which produces programs

for a restricted range of problems, those dealing with simple arithmetic

and with list processing. Their approach is impressive in its theoreti

cal rigor, and despite the relatively limited results to date, it seems

6

possible that their techniques may provide the basis for far more sophis

ticated systems.

Prywes [18] and others [14, 19] at the University of Pennsylvania

have developed a program generator system which attempts to simplify the

process of developing practical software (business file processing

applications, for example) by permitting the user to specify a program

by descr.ibing its data objects and the relations which obtain among

them. Unlike the projects previously discussed, the University of

Pennsylvania project (called MODEL II, for MOdule DEscription !:_anguage

II) does not rely on artificial intelligence techniques; and while it

produces genuinely useful programs, it requires a specification much

more detailed--and much similar in appearance to an ordinary high-level

language program--than the other systems. The generator works by organiz

ing the user's specification into a directed graph describing the depen

dencies among the various data objects. By perfonning a topological

sort on the graph, constructing input and assignment statements where

these are implied by the specification, and constructing loops where the

specification calls (implicitly) for iteration over a data aggregate

(over all the records in a file, for example), the generator can produce

code in a high-level procedural language (PL/I or COBOL). The designers

of the system believe that a nonprocedural description of data objects

and their relationships represents a more natural approach to instruct

ing the computer for data processing applications than ordinary high

level languages. The user need not be concerned with constructing

input/output statements, nor about the ordering of program operations,

nor even about the program's control structures. The program specifica

tion in the MODEL system is typically only about one-fourth as long as

the generated program; this suggests that development, debugging, and

maintenance times will all be reduced substantially through the use of

the program generator.

7

The Cornell Program Synthesizer developed for instructional use,

makes no attempt to move beyond the high-level programming language as

the mech?nism for conveying instructions to a computer [24, 25]. The

Synthesizer's user, in fact, still works directly with source text in a

high-level language (PL/CS or PASCAL). Denning [8] describes the synthe

sizer as a "smart editor," that is, a system for entering or modifying

programs which can make use of the syntax rules for the language to aid

the user in manipulating the source code. The Synthesizer is designed

for use in conjunction with a CRT terminal in an interactive environment.

The user enters a program not by typing its text directly but by select

ing templates for constructs in the language (procedures, blocks, loops,

selection groups, and various classes of statements representing basic

operations in the language) and filling in those details specific to his

or her program. Each template is associated with a nonterminal symbol

in the grammar defining the language and consists of text corresponding

to sequences of terminal symbols and placeholders representing nontermi

nals. Constructing a program with the Synthesizer corresponds to deriv

ing the program using the production rules for the grammar which defines

the language. The system can thus ensure that at any stage in the entry

of the progtam, the user's specification corresponds to a sentential

form of the grammar. When the user has completely filled in all of the

placeholders for all of the templates selected for the program, the

program is assuredly syntactically correct. Certain very elementary

entities in the language--identifiers, constants, and expressions--have

8

no templates. The user enters these directly. Whenever such an entry

is made, it is inspected immediately to determine whether it is syntac

tically well-formed and appropriate for insertion at the point in the

program where the user has typed it. The Synthesizer defends very

thoroughly against the introduction of syntax errors into a program.

The Cornell approach admits of two variations. First, the templates '.
for various target language constructs can be hidden from the user. The

user of the Synthesizer places a template into the program using a

special key sequence, then types additional text into the material

displayed by the Synthesizer. In the variation suggested here, the user

would select a construct from the menu and subsequently would be prompted

for the information required to complete the construct. The user would

not see the target language code. A second variation is to add 11 very

high level 11 constructs, tailored to the range of applications for which

the generator is intended, in addition to the primitive elements which

have direct counterparts in the language. Roth [22] suggests, for

example, that 50 to 90 percent of all business-oriented applications

involve the relatively routine operations of formatted data entry,

formatted data output, sorting, and simple file updates. Although the

underlying code for any of these operations may be fairly complicated, a

program generator system designed for business use could treat them as

primitives. When the user elects to include one of them in a program,

the generator responds by prompting for the information needed to tailor

the operation to the specific application. Johnson [12] surveys a broad

range of program generators currently on the market, many of which

incorporate one or both of these variations.

9

The tenn 11 program generator" has been applied to a wide range of

systems. The feature common to all of the systems described here is

that they dispense with standard high-level language source text as the

medium through which the user conveys instructions to the computer.

Even in the Cornell Synthesizer, where the user manipulates the synthe

sized code directly, the fact that program entry is guided by the syntax

rules of the target language represents a significant transformation in

the way in which an ordinary high-level language is used to specify a

program: the specification lies no longer in the source text as such

but in the sequence of template selections through which the program is

derived.

Expression Verification in Program Generators

Expressions--arithmetic expressions in particular-~constitute a

formal and artificial language for describing computations of various

kinds. The notation is so convenient and so widely used, however, that

it can be taken as a rather natural means of conveying some aspects of a

program specification to a computer. No matter how sophisticated program

generators become in their ability to process subsets of natural lan

guages, it seems unlikely that they will dispense with standard infix

notation as at least one alternative method for describing calculations.

Thus some mechanism for establishing that an expression supplied by the

user is syntactically well-formed and free of semantic defects is likely

to be a part of any program generator system.

In systems employing sophisticated natural language processing

techniques, however, verification of expressions will seem a trivial

matter in comparison with the effort required to decipher the user's

10

less fonnal specifications. The problem is more interesting in the less

complicated systems which can be fully implemented today. In generators

such as the Cornell synthesizer and the commercially available, menu

driven systems, expressions represent the most complex input supplied by

the user.

In these simpler program generators, expressions have a variety of

uses. The most obvious, perhaps, is in describing the computation of a

value to be assigned to some data object. Logical-valued expressions

are an important component in control structures such as loops and

selection groups. Indexed loops make direct use of numeric-valued

expressions to specify the range of values to be assumed by the index

variable. Expressions of any type are generally valid as items to be

written in an output operation. Integer expressions are used to specify

a record of a direct-access file in systems where a relative record

address is permitted as a key. String expressions may play the role of

keys in systems which support indexed files. In short, the user of a

program generator like the Cornell Synthesizer or some menu-driven

system will be required to supply expressions quite frequently.

The principal role of an expression verifier in such a generator is

to detennine whether a user-supplied candidate expression conforms to

the rules for forming expressions imposed by the generator. In an

interactive system, the expression must be examined immediately after

the user enters it. If the expression is not valid, the generator must

issue a diagnostic message and request a new entry. Among the more

fundamental design issues is the question of how precise the diagnostic

messages must be; the decision should reflect the designer's view of the

needs of the intended user audience.

11

Aim and Method of this Study

The work presented here describes the requirements and proposes a

design for an expression verifier for an interactive menu-driven program

generator system. The objective is to provide a sound basis for the

implementation of a verifier.

Ord~narily an effort such as this would take place in the context

of a design project for a complete program generator. Such is not the

case here. Although many elements of an expression verifier's operation

depend upon the details of the organization and function of the system

into which it is embedded, it is not essential to have in hand a detailed

description of that system in order to take up the central issues in the

design of the verifier. This study relies on a high-level description

of the program generator of which the verifier is to be a part and

leaves to the implementor the decisions which will depend upon the

details of the program generator's design.

The hypothetical program generator in which the expression verifier

described in the following chapters is to operate is a menu-driven

system like those available commercially. It is to be used, typically,

by persons in a small business environment to develop modest data process-

ing and computational applications not supported by off-the-shelf pack

ages. The user is not likely to be a professional programmer. The

program generator, therefore, must be somewhat tutorial in character.

The computer on which the generator executes is likely to be small,

given that it is operating in a small business. Thus the designer of an

expression verifier for this program generator faces two challenges:

1. In keeping with the orientation of the generator to the
non-professional user, the verifier must provide clear,
precise diagnostic messages when it is presented with an
invalid expression.

2. In order to al 1 ow the program generator to run on a
system with limited primary storage capacity, the verifier
must be compact.

The major burden of the work presented here is to devise a verifier

system which meets both of these requirements.

12

Chapter II presents the requirements which the verifier system must

meet. Certain of these--those related to the hardware environment, for
' '

example--can be stated briefly and straightforwardly. Where the system 1 s

interaction with the user through its error-handling facilities is

concerned, however, more detail is needed. The requirements must specify

how the verifier is to respond to the wide range of potential errors.

Thus much of Chapter II is devoted to an exploration of what it means to

provide clear, precise diagnostic messages in this setting.

Chapter III addresses itself to the question of how the require

ments imposed upon the verifier can be met. The goal is to produce a

high-level system design. Such a design must specify the basic organi

zation of the system--its division into modules and the apportionment of

tasks among them. Further, the design must describe the paths of com-

munication among the modules, including globally accessed data struc-

tures. Moreover, although the selection of algorithms to carry out

system functions is often a detail best left to the designers or coders

of the system's component modules, certain of these choices may be of

such fundamental significance to the entire system that they are appropri

ately made as part of the system design. Such is the case here with the

selection of a technique for parsing expressions, and considerable

attention is given to this problem.

In an industrial setting, the results of a project such as this one

would be communicated as tersely as possible. A simple enumeration of

13

the design decisions would be sufficient to permit module designers and

coders to implement the system. Academics, by contrast, have the obliga

tion--or are permitted the luxury-.,of providing a rationale for their

design decisions. The present paper takes the academic attitude; accord-

ingly, much of it represents an exploration and evaluation of alternative

solutions to design problems.
' .

ENDNOTES

lRaphael [21] offers a clear (if somewhat nontechnical} introduc
tion to, the major field of research in artificial intelligence. Weizen
baum [26J is a sharp critic of this research and argues that its accom
plishments are frequently overstated.

2The term "expert, 11 as it is used here, reflects the notion that
the module embodies 11 knowledge 11 related to the task at hand. Thus PSI's
codin~ module is an 11 expert 11 because it 11 knows 11 about fundamental pro
gramming techniques. The present study takes the terms 11 expert 11 and
11 knowledge 11 in a purely technical sense, with no implicit suggestion
that the PSI system models human cognitive processes.

14

CHAPTER II

REQUIREMENTS FOR AN EXPRESSION VERIFIER

Introduction

The basic goals and assumptions which undergird this design project

and which were described in the first chapter have important implications

for the organization and operation of the expression verifier. The

present chapter lays out--in detail--the standards of performance which

the verifier must meet and the constraints within which it must operate.

These fundamental requirements for the verifier fall into four

categories. First, the hardware environment within which the verifier

will operate must be specified. Second, the nature of the expressions to

be verified must be defined precisely. Third, the relationship between

the verifier and other modules in the program generator system must be

described: specifically, it is essential to take note of the nature of

the information the verifier must supply to the routines which call it

as well of the support which other components of the generator may

provide for the verifier 1 s operation. Finally, it is vital to specify

in some detail how the verifier is to appear to the user of the program

generator, particularly in the event that it detects an error in a

user-supplied expression.

The focus of the present chapter is on the performance expected of

the verifier and on the limitations within which it must operate. The

question of how the verifier is to meet the goals established for it is

15

16

deferred until chapter three. The selection of the methods of implementa

tion--the choice of algorithms and data structures to be used in the

verifier--must wait until the design requirements for the system have

been specified clearly.

The Hardware Environment

''

The hypothetical program generator of which the expression verifier

is to be a part would operate on a microcomputer designed for use in a

small business environment. These systems typically have somewhat more

memory capacity than the less expensive "personal 11 microcomputers. They

are disk-based systems--that is, one or more flexible disk drives are

included as part of the minimum system configuration and the basic

operating system provides for disk input/output operations and for

maintenance of disk files. In contrast to the smaller "personal" machines,

the basic system software is stored on disk and loaded into primary

storage as needed rather than residing permanently in non-volatile

read-only storage.

These microcomputer systems do not have a virtual memory facility.

The microprocessors typically used as the central processing units in

these machines have the capability of addressing only 64K bytes of

storage, and the entire addressing space is generally occupied by physical

memory. Substantial business application packages often cannot be fit

into the available primary storage, so that some mechanism for loading

program modules from disk during program execution is essential. Two

such strategies have been developed. The more primitive, chaining,

requires that the programmer include, at the end of a program segment, a

statement specifying the disk file from which the next segment to be

executed is to be loaded. Upon execution of such a statement, the

present segment is expelled from primary storage and the new segment

17

takes its place. Conceptually, a "chain" operation is identical to an

unconditional branch. A more sophisticated technique--one borrowed from

early mainframe computers which had limited primary storage--involves

the use of overlays [13]. In this scheme, the basic units transferred
''

from disk to primary storage are the independently-compiled subprograms

(external procedures) which make up the program. No special statements

are required within the program to initiate a disk-to-primary storage

transfer; any attempt to invoke a subprogram not in storage activates

the overlay manager and causes the subprogram to be loaded. The burden

for the programmer comes at the time the object modules are to be linked

into an executable package. The programmer must assign each module a

load address and must take care that no module is assigned to the same

storage space as any of the modules it may call, directly or indirectly,

lest it be overwritten by one of them. Neither chaining nor overlaying

represents an ideal system for managing the memory hierarchy, but of the

two the overlay mechanism is clearly preferable since it supports the

division of a large program into callable subprograms. The chaining

technique allows--in fact forces--a larger program to be broken into

modules, but supports only the unconditional branch as a means for

transferring control between modules.

An interactive program generator clearly will be a large program.

The interactive "front end", which acquires the program specification

from the user, will be large because it must support an extensive hier

archy of menus and provide for highly defensive error checking whenever

it accepts user input. The expression verifier itself--which, as the

18

detailed design study will show, is a truncated compiler for expressions-

will also be a sizeable module. It is reasonable to assume, for design

purposes, that the entire program generator cannot be made to fit in the

available primary storage. Moreover, since the expression verifier is a

utility routine likely to be invoked by a large module already in storage,

it is safest to suppose that the verifier itself may not be permitted to
''

reside in storage as a single unit. It must be designed so that it may

be loaded in several independent segments. The present design assumes

that an overlay mechanism is available to support this division int0

modules.

The foregoing description of the hardware environment and of its

implications for the organization of the verifier is probably sufficient

to guide most of the design decisions. A more specific description is

needed, however, to provide a standard against which the final product

may be measured. For the purposes of this study, the target machine for

the program generator of which the verifier is a part is a microcomputer

with 64K bytes of primary storage and 500K bytes to lOOOK bytes of

secondary storage in the form of flexible disk drives. The system runs

the somewhat dated but widely available operating system CP/Ml.

The Expression Language

The designer of an interactive program generator must choose between

two distinct methods for providing the user with a language in which to

express computations, string manipulations, and logical operations. One

is to require the user to use the expression sublanguage of the program-

ming language for which the generator produces its code. In this scheme,

the expression supplied by the user in response to a request from the

19

generator is incorporated without modification into the generated code.

The alternative is to make the generator's expression language essentially

independent of the language to be generated and to require the verifier,

as it is checking the validity of the user-supplied expression, to

translate it into a fonn acceptable to the target language processor.

For even.greater flexibility, the verifier could translate a user expres

sion into some intennediate fonn (a prefix or postfix notation, perhaps)

which could later be translated into one of a variety of programming

languages.

The second alternative is clearly the more complex, since it requires

that the expression verifier include the code needed to effect a transla

tion of the candidate expression. The approach has two potential benefits:

first, it might provide the user with a more natural expression syntax,

particularly if there are flaws in the design of the target language;

and second, it supports the potential use of a single program specification

in producing functionally equivalent programs in several different

languages. A verifier which did not incorporate a translation mechanism

would not contribute to producing such versatile program specifications.

The decision between the two approaches is relatively easy to make.

Given that the typical user is a relatively unsophisticated programmer

whose goal is to produce custom business applications, there is no real

need for the program generator to be capable of producing programs in

several different languages. If, moreover, the one language which is

produced by the generator has a reasonably natural expression sublanguage,

then there is little point in providing the generator with its own such

language. Hence for this project, the simpler approach--that of using

the target programming language's expression syntax--is taken.

20

The choice of the target language is a design decision which cannot

be made within the confines of a discussion of the expression verifier.

Many factors quite unrelated to the problem of verifying expressions--the

suitability of the language for the applications likely to be required

by the generator's users, for example, or the ease with which code can

be gener~ted--enter into the selection. Here the target language is

accepted as a given for the design process. That language is CBASIC2, a

dialect of BASIC aimed at business applications. The commercial orientation

of the language, with its relatively extensive file-handling capabilities,

its PICTURE-like output formatting, and its 14-digit binary-coded floating

point decimal arithmetic, is compatible with the applications likely to

be developed by the typical user of the program generator.

CBASIC supports three data types: integers, real numbers, and

variable-length character strings. Objects of type integer are completely

interchangeable with those of type real; that is, the one may appear

within an expression anywhere the other is syntactically valid. Expressions

involving mixed numeric modes are valid. All of the familiar arithmetic

operations--exponentiation, multiplication, division, addition, and

subtraction--are included in the language. Logical operations are

provided as well, but there is no special logical data type. Instead,

the logical operations apply to numeric operands; the integer value -1

represents a logical "true", while all other values are taken to be

logical "false". The concatenation operation is provided for character

string data. Numerous built-in functions--including some for string

manipulation--are provided.

CBASIC has no statement for declaring the type of an identifier.

Instead, identifiers of type integer must be given names ending with the

21

type character 11 311 and those of type string must have names ending in

11 $11 • An identifier ending neither in 11 311 nor in 11 $11 is taken to be of

type real.

The language supports only one form of data aggregate, namely, the

array, which may have up to three dimensions. Array space is allocated

dynamically upon execution of DIM statements, which specify the extents

of arrays.

No formal specification of the syntax of CBASIC expressions is

provided in the documentation for the compiler, but the informal state

ment of rules for forming expressions is sufficiently precise that one

may readily find a context-free grammar which describes the expression

sublanguage [6]. One such grammar is listed in Appendix A.

The type declaration mechanism in CBASIC is awkward. The type

characters appended to the ends of identifier are easily forgotten.

Moreover, a misspelled identifier cannot be detected before execution of

the program, and even then the exact nature of the error may be obscured.

If the program generator were to deviate from the CBASIC conventions and

introduce an explicit declaration mechanism for variables, this source

of potential errors could be eliminated. For the purposes of this

project, such a mechanism is assumed. Most probably a declaration

module will be among the routines through which the user provides a

program specification to the generator; in addition, the expression

verifier may permit the user to make a declaration whenever it encounters

an undeclared identifier within an expression. For consistency, the

declaration of an array will include the specification of its extent;

thus only one DIM statement will be generated for an array in a given

program.

The Interface with other Components

of the Program Generator

22

The expression verifer is a utility routine called by other compo

nents of the program generator system. All of the verifier's potential

callers require at a minimum that the verifier indicate whether the

string of text passed to it constitutes a valid CBASIC expression. Some

callers, however, require additional infonnation about the expression.

The design of the verifier must take these demands into account.

Often the calling routine requires infonnation about the type of an

expression found by the verifier to be valid. Since objects of type

integer and those of type real can be interchanged at will in CBASIC, it

is not important that the verifier distinguish between integer expres

sions and real expressions. It must, however, have the ability to

report to its caller whether the expression passed to it is a string

expression or a numeric (integer or real) expression. In some instances,

the calling routine will accept an expression of one of these types

only. This means that the expression verifier should refrain from

issuing an error message or permitting error correction when a candidate

expression, though defective, is clearly of the wrong type. This in

turn implies that the calling routine must specify for the verifier

which of the two classes of expressions it will accept. Thus type

information flows in two directions: the caller indicates which types

are acceptable in the context in which the call to the verifier occurs,

and the verifier reports which type of expression it has found.

In still other circumstances, the calling routine may impose even

more stringent restrictions on the class of expression it will accept.

Where the user is asked to supply a target for an assignment or input

operation, for example, only those expressions which can be associated

23

with a specific storage location (that is, only scalar variables or

elements of arrays) are appropriate. Occasionally only a constant or

only an identifier constitute acceptable input to the program generator.

The expression verifier must be so organized that callers which accept

only a subset of valid CBASIC expressions can somehow specify this

restriction. The alternatives for implementing this feature will be

considered as part of the description of the design of the verifier in

Chapter III.

The User Interface

The Nature of the User Interface

The expression verifier in an interactive program generator is

invisible from the generator's user much of the time. The verifier is

called by other components of the generator system--by the module which

constructs arithmetic assignment statements, for instance--whenever the

correctness of the user's response to a prompt for an expression must be

confirmed. As long as no error is detected, the user is aware of the

verifier's operation only insofar as it introduces a delay in the sys

tem's response. Only when an invalid construct is encountered does the

potential for interaction with the user arise. Specifying the user

interface thus amounts to describing how--from the user's point of

view--the verifier is to respond to errors in expressions.

If the expression verifier's task were merely to discriminate

between valid and illegal expressions, the user interface would be

insubstantial. The verifier, on detecting any error, would abort its

processing of the user's input and issue (or signal its caller to issue)

a message indicating that the input did not constitute a legal

24

expression. The user would be required to detennine the exact cause of

the problem and to retype the entire expression in its corrected form in

order to proceed with the construction of a program.

Such a simple user interface may be appropriate in a program gener

ator designed for use by a professional programmer who is unlikely to

make many errors and who is skilled at locating errors when he or she
'.

does make them. Even the professional, however, might have some diffi

culty in locating certain kinds of semantic errors (e.g., the use of an

identifier previously declared to be an array as a scalar) and could

benefit from more precise diagnostics.

In a program generator aimed at the relatively naive user, the

simple user interface is clearly unacceptable. A message indicating

only that the input did not constitute a valid expression is likely to

frustrate the user and could lead to a series of unsuccessful attempts

to correct the problem. This is a special danger with expressions where

many errors (especially those of a semantic character) are not readily

apparent, especially to the inexperienced eye.

Given its intended user audience, the program generator under

consideration here requires an expression verifier whose response to

errors is considerably more sophisticated than a simple indication that

an error of indetenninate nature has .been detected. It is reasonable,

given the tutorial character of the program generator as a whole, to

expect the expression verifier to provide relatively detailed diagnostic

messages. Moreover, since one of the objectives of the program gener-

ator is to reduce the amount of effort expended in keying in text, some

provision for error correction (other than retyping an entire expression)

is desirable.

25

It is tempting to let the preceding paragraph stand as the state

ment of requirements for the expression verifier's user interface. But

it is simply too imprecise. There are a number of major issues con-

cealed in it--issues which ought to be addressed directly, before funda

mental decisions are made about the structure of the verifier and about

the techniques to be used in its implementation.
''

The remainder of this section is devoted to making the requirements

for the user interface more specific. The discussion begins with a

consideration of what constitutes a "relatively detailed diagnostic

message" and a sketch of some of the implications of the requirement for

precise errors messages for the design of the verifier. It then takes

up the matters of providing facilities for repairing errors and handling

multiple errors. The section concludes by developing guidelines for

handling the various classes of errors which the verifier is likely to

encounter.

The Nature of the Diagnostic Messages

The goal of error processing in the expression verifier is to

enable the user to make a valid entry quickly and with a minimum of

frustration. Given this aim, it is clear that any diagnostic message

issued by the verifier should provide all the information necessary to

understand the error and to effect a successful correction.

Much can be accomplished towards this end by careful wording of the

messages. But this alone is not sufficient. The verifier's logic and

data structures must be fashioned so that the appropriate information is

gathered and preserved as the user's input is scanned. In particular,

the verifier must be able to pinpoint the defective portion of the

26

expression and must classify the error in a way which is meaningful to

the user. These requirements have ve~ definite implications for the

system design: they rule out, for example, the use of top-down parsing

with backtracking and operator precedence parsing with precedence func

tions in the syntax analysis phase of the verifier. These methods,

while they adequately discriminate between valid and invalid expressions,
' '

do not return enough information to produce adequate messages.

It is not enough, however, that the expression verifier collect

detailed information related to an error. The diagnostic message, to be

useful, must precisely describe the nature of the error .i!l terms meaning

ful to the user. There is a problem, at least occasionally, of mapping

from the error information obtained by the verifier (usually encoded in

the configuration of a recognizer for a regular or context-free lan

guage) into an error classification which seems natural to the user.

Although this mapping may often be accomplished through a careful phras-

ing of the error message, it is sometimes necessary to tailor the veri

fier--for example, by writing the expression grammar in a way which

permits the syntax analyzer to discriminate more finely between classes

of errors--in order to obtain reasonable diagnostics.

In some cases it may be impossible or impractical to issue an

accurate and precise message, perhaps because of some quirk in the

syntactic features of the expression sublanguage or (more likely) because

of some implementation constraint. Here it is probably best for the

designer to be honest and to specify a message which states simply that

an invalid expression has been encountered. Such a diagnostic is probably

more helpful than a bewildering or potentially misleading one. The user

27

of an interactive system is conditioned to respond quickly and without a

great deal of thought to messages from the system, and a diagnostic

which admits of a misinterpretation is likely to lead the user astray.

Error Repair

Certain compilers--the Cornell PL/C compiler, for example--attempt
''

to correct errors in a source program automatically, so that the program

can proceed as far as possible towards successful compilation and execu

tion [7]. The techniques which make this possible could be applied in

the expression verifier, but this is not desirable. To do so would

increase the complexity and size of the verifier. More importantly,

automatic error correction is inappropriate in this environment, since

any method which can accomplish it relies on some sort of assumption

about the user's intent. Such assumptions easily can be incorrect.

Since the user of an interactive program generator is available to make

his or her intent clear, there is scarcely any point in guessing at it.

A more intriguing approach to handling errors in the expression

verifier is to allow the user to correct a defective expression without

requiring him or her to retype the entire expression. If, for example,

the expression is missing a parenthesis, the user might be permitted to

insert one at any position in the expression where it is appropriate.

There are two advantages to this approach. First, it pinpoints the

error and provides detailed information about how it may be corrected.

Second, it eliminates the need for retyping the expression, a process

which can be time consuming and may introduce new errors.

Unfortunately, this approach has a serious drawback. It is likely

to add considerable complexity to the verifier. In analyzing an

28

expression, the verifier must isolate the token or tokens which give

rise to the error and determine what might be put in their place in

order to correct the expression. Often there will be several alterna

tives, some of which may be eliminated as more of the expression is

scanned. With suitably sophisticated data structures and perhaps some

clever augmentation of the expression grammar's production rules--not to

mention a computer with ample primary storage--the task is feasible.3

One class of errors can be handled with a repair scheme, even in a

microcomputer-based system. These are errors caused by the occurrence

of undeclared identifiers in an expression. It seems eminently reason

able for the verifer to prompt for the needed attributes (type and, for

arrays, bounds) on encountering an undeclared variable. Ideally the

verifier would make use of the information it develops during the anal

ysis of the candidate expression so that is can present the user with

only those options for attribute values which are valid given the con

text in which the identifier appears. 1 If an undeclared identifier is

used in a context where only a scalar variable of numeric type is valid,

for example, the verifier should allow the user to choose to make the

variable of type integer or to make it of type real. The string type

ought not to appear as an option on the variable declaration menu which

the verifier presents to the user.

Multiple Errors

A candidate expression supplied by the user might contain several

errors. The expression verifier can embody one of three distinct ap

proaches to handling multiple errors:

1. It might signal the first error it encounters and halt.

29

2. It might incorporate error recovery (not correction) routines
which permit it to continue analyzing the candidate expression
after detecting an error. The verifier would save the infonna
tion relevant to each error it found. Following a complete
scan of the expression, the verifier would issue a diagnostic
message describing all of the errors in the candidate expres
sion.

3. It might attempt to detect and signal the error which--on some
criterion or another--is most worthy of being brought to the
user's attention. The verifier would incorporate error recov

. ~ery routines so that it could scan beyond the first error.

The first alternative has the distinct advantages of being rela

tively easier to implement and of requiring less code (and hence less

memory space). It relies on the assumption either that the order in

which errors are signalled to the user is unimportant or that the order

in which the verifier detects errors corresponds exactly to the most

helpful order in which errors can be announced. This assumption is

difficult to justify. Still, space constraints may dictate that this

approach be taken. In such a case, it may be possible to organize the

verifier so that it detects errors in an order which will make sense to

the user; the goal would be to mimic, insofar as it is possible, the

behavior of a verifier based on the third approach.

The second approach is considerably more attractive from the user's

point of view than the first. Most importantly, the user has all of the

information necessary to effect a complete correction when he or she

re-enters an expression. There are two drawbacks, however: first, the

user may be overwhelmed by a list of several errors; and second, this

scheme makes it awkward to allow for user repair of a defective expres

sion short of re-entering it.4 One can argue, with some justification,

that this sort of approach is not sufficiently interactive: it requires

the user to respond to several not necessarily related pieces of error

infonnation all at once. In this respect, it has something of the

30

flavor of a batch-mode compiler. Still, this approach might be entirely

appropriate in a program generator whose typical user is to be an experi-

enced programmer.

The third approach focuses the user's attention on a single prob

lem, thus avoiding the danger of discouraging him or her by presenting a

long list of errors. The major disadvantage here, of course, is that
. .

error correction becomes an iterative process. Correcting an expression

may require several attempts even if the user carefully follows the

guidance given by the diagnostic messages. This could be extremely

frustrating, although it is not clear that the relatively naive user

would find this more discouraging than a scheme which lists all of the

errors at once. The idea of leading the user step-by-step from an

invalid expression to a valid one is consistent with the tutorial charac

ter of the program generator.

The present system will adopt the third approach, recognizing that

it is not the only choice nor even the obvious one. An empirical compar

ison of the three strategies--testing user perfonnance and user prefer

ence--might be in order here.

Selection of the third scheme for handling multiple errors brings

with it the added burden of determining the order in which error mes-

sages are to be issued. Two ordering principles seem plausible:

1. The most discouraging error--that is, the one most likely to
cause the user to abandon the candidate expression entirely
instead of attempting to correct it--should be signalled first.
The idea here is to reduce the wasted effort associated with
making minor corrections only to be forced to give up entirely
when a more serious problem is revealed.

2. The most subtle error--the one least likely to catch the user's
eye--should be signalled first. The aim, once again, is to
reduce wasted effort, but the view here is that the obscurity,
rather than the severity, of an error should determine its
position in the ordering.

31

The principles may often give the same result, but they need not do so.

Thus the expression verifier's multiple error handling must reflect a

choice between these.

Consider the expression

AZ(5) */ V,

where AZ and V both have been declared as scalar numeric variables. The ..
sequence· "*!" is a gross violation of the syntax rules of the language.

The use of the subscript list following AZ is not so blatant an error:

it could be correct, if only AZ were declared to be a one-dimensional

array. Rule 1 gives little guidance here: both errors are relatively

"discouraging". The user will have to replace AZ with a different

identifier (or omit the subscript list) and choose a single operator in

place of "*/". Rule 2 is considerably more helpful. The operator

sequence "*/" is by its nature more likely to be noticed by someone who

has any idea at all about how to fonn a valid expression than the extrane-

ous subscript list on AZ. Thus rule 2 requires that the latter error be

si gna 11 ed.

The foregoing example illustrates the major difficulty with rule 1:

it is very difficult to decide which errors are 11 discouraging 11 and which

are not. Thus while the rule has a certain intuitive appeal, it is not

especially attractive as a concrete guideline for ordering error messages.

Rule 2 is more useful in practice. This is largely because the

various sorts of errors break fairly naturally into classes based upon

their visibility. The simplest and most fonnal division is bipartite:

there are errors which are purely syntactic (that is, they can be seen

to be errors without regard to the attributes of the identifiers used in

the expression), such as the operator sequence "*/ 11 ; and there are those

32

which have a semantic component, such as the problem with 11 AZ(5) 11 in the

example just given;

This formal division is not quite adequate in practice. Not all

purely syntactic errors are readily visible: the operator sequence 11+- 11

(as in "I + -5 11) is formally the same sort of error as "*/", but because

in ordinary arithmetic and algebra this sequence is meaningful, the
''

error in "I + -5 11 is likely to be more obscure to the typical user. For

practical purposes, errors may be classified into those which are not

obscure (gross violations of syntax rules), such as the operator se

quence 11*/ 11 , those which are somewhat obscure (typically less obvious

violations of syntax rules), and those which are obscure (typically

errors with a semantic component). No strict formal criterion can be

given for assigning a specific error into one of these classes; once

again, an empirical test with members of the intended user community

might provide the soundest basis for making the categorization. A

serviceable classification based upon common sense is possible, however,

and such will be the approach taken here.

In a system where the user is permitted to repair certain types of

errors without re-entering the entire expression, rule 2 requires some

modification. If repair of an error will have permanent consequences

for the program--as, for example, the declaration of a previously unde

clared identifier would--the error should not be signalled until the

expression is correct in all other respects. Thus in the candidate

expression

A - {X + S,

where X is a numeric scalar variable, S is a string variable, and A is

not declared, it might be best to defer signalling that A is not declared

33

and accepting a declaration for it until after the missing parenthesis

and type mismatch problems are resolved. If the user abandons the

expression entirely because of one of these latter errors, there will be

no spurious declaration of A because the user will not have been pre

sented with the opportunity to make it. This is admittedly a conserva

tive strategy: it is not all that likely that a user will declare a
. .

variable in an expression which he or she ultimately will discard. But

there is little, if anything, to be gained by not providing this extra

measure of protection for the user.

Practical Guidelines for Error Handling

The discussion of the requirements for the expression verifier's

user interface has thus far proceeded at a general level. The present

section considers how specific classes of errors are to be processed by

the verifier.

The task of classifying the various potential errors in expressions

is a difficult one. For the purpose of specifying the operation of the

expression verifier as the user will see it, one needs a classification

which corresponds to the user's own taxonomy of errors. The goal is to

treat alike those errors which the user perceives as being alike.

Unfortunately, there is no precise, formal classification of the ways in

which humans perceive errors in expressions; hence a completely rigorous

specification of the expression verifier's response to errors written

from the point of view of the user is impossible.

An alternative approach to classifying errors ignores the user's

perspective entirely. Instead, it considers the various ways in which

the expression verifier might detect an error. To each such possibility

there corresponds a class of potential errors. This approach has the

advantage of completeness: if the verifier accepts all and only valid

expressions, and if one takes account of all the mechanisms by which a

candidate expression may be rejected, then one can obtain a classifica

tion which encompasses every possible error. Establishing a taxonomy of

errors in this way, however, requires that the expression verifier
. .

already exist, or at least that there be a very detailed design for it.

If such were the case, there would scarcely be any point in specifying

requirements for it! Moreover, to ignore the user's point of view in

designing the user interface and to allow the characteristics of this

interface to be dictated by the details of the implementation run counter

to the understanding of interactive system design which informs this

project.

The foregoing conclusions, as negative as they are, do not rule out

the possibility of developing specifications for error handling which

are sensitive to the user's viewpoint and relatively independent of

implementation details. So long as one is willing to accept a tentative

and perhaps incomplete categorization of errors, one can make consider-

able headway towards defining the expression verifier's responses.

Given such an informal classification, one can consider each group in

turn, determining exactly what information the expression verifier

should report to the user and what priority errors of the group in

question should be assigned in the scheme for handling multiple errors.

The scheme employed here divides potential errors into four classes.

First, there are those which involve a missing or extra element (operator,

operand, parenthesis, or comma) in the candidate expression. Second,

there are defects within the individual elements of the expression--an

35

identifier containing an illegal character, for example, or perhaps a

numeric constant which lies beyond the allowed range of values. Third,

there are problems associated with the attributes of identifiers. These

include errors such as mixed string and numeric modes, incorrect number

or types of arguments for a built-in function, and defective or missing

subscript lists for arrays. Finally, there are errors raised by unde-
'.

clared identifiers, often the result of a misspelled name.

This classification is admittedly informal. Moreover, it is some

what fluid: a given error may fit more than one category. Consider,

for example, the candidate expression

X LR Y

If the user intended to type 11 X LE Y11 , then the problem with this

expression is of the second class; the expression contains a defective

relational operator. A less likely possibility is that LR is to be an

identifier. In this case, the expression is missing two operators.

Given some knowledge about the kinds of errors humans are likely to

make, one can usually make an adequate guess at the correct classifica

tion of any given defect. Unfortunately it is often impractical to

incorporate this ability into a computer program which is compact and

rapid. Thus it is often the case that a program such as an expression

verifier will make the incorrect classification when confronted with a

defect that may be interpreted in more than one way. Without large and

sophisticated algorithms for determining the 11 nearest 11 valid expression,

for instance, an expression verifier will treat 11 X LR Y11 exactly as it

would treat 11 X AB Y11 , namely, as an expression with missing operators.

Still, the classification suggested here is not so vague as to be use

less.

For the first class of errors--those involving missing or extra

elements--the expression verifier should record the exact position

36

within the candidate expression at which the problem occurs. Where

there is an extra element, it should be displayed for the user; where an

element is missing, the verifier should supply a list of those elements

which may legally appear at the point of the error. Errors involving
'.

missing elements are typically among the most obvious defects in an

expression; hence such errors are of lowest priority when there are

several to be announced to the user.

There are two exceptional cases within the class. First, an expres

sion may contain an unequal number of opening and closing parentheses.

In general it is impossible to determine whether the imbalance is due to

a missing parenthesis or to a superfluous one. Moreover, it usually is

not possible to state precisely where a parenthesis should be inserted

(or which parenthesis should be deleted). Thus the expression verifier

can do no more than to announce that a candidate expression is incor

rectly parenthesized. Since this type of error can be rather subtle

when the candidate expression is heavily parenthesized, it seems appro-

priate to assign it an intermediate position in the hierarchy of priori

ties for handling multiple errors. The foregoing considerations, it

should be noted, apply to parentheses which enclose an expression or

subexpression and not to those which set off a subscript or argument

list. Problems involving such parentheses are to be treated according

to the standard pattern for errors of the first class.

The second exceptional case among the first class of errors is

related to CBASIC 1 s treatment of the unary operators +and -. As in

Fortran, these unary operators are equal in precedence to the binary

37

operators denoted by the same symbols. Thus the expression A + -5,

although it is meaningful in ordinary algebra, is illegal in Fortran and

in CBASIC. One can argue that this is a flaw in the design of these

languages, and one can reasonably suppose that errors of this sort are

likely to be more common and less obvious to the user than other cases

involving extra operators or missing operands. Therefore, the expres

sion verifier shoul¢ give special treatment to errors caused by follow

ing a binary arithmetic operator by a sign. The diagnostic message

should note the location of the illegal sequence and remind the user of

the language's restrictions. In case of multiple errors, this type of

defect should have intermediate priority for its announcement.

Defects within the individual elements of an expression--lexical

errors, in the jargon of compiler writers--constitute the second major

class of errors. These errors take on two principal forms: first,

there are those involving an illegal character within an element (e.g.,

the use of an underbar (_) in a variable name), and second, there are

those where a sequence of valid characters fails to constitute a valid

element on other grounds (a numeric constant which is out of range, for

example). In the former case, the expression verifier should isolate

the problem by noting both the invalid character and the context in

which it appears. Thus where the user places an underbar in what would

otherwise be a valid variable name, the verifier should not merely bring

the underbar to the user's attention but indicate that it is invalid as

part of a variable name.5 Errors involving illegal characters are

difficult to place in the hierarchy for handling multiple errors. They

would seem to constitute gross violations of the rules for forming

expressions and thus to be relatively obvious. On this basis they

38

should be assigned a low priority. The example cited here, however,

indicates that under some circumstances an error caused by an illegal

character could be rather subtle. On the whole, however, such errors

merit a low priority in the hierarchy for announcing multiple errors.

The second group of lexical errors--those which do not involve an illegal

character--are clearly somewhat more obscure and should be given an

intermediate priority. In case of such an error, the verifier should

bring the entire invalid element to the user's attention and provide a

precise statement of the problem (e.g., 11 32768 is too large to be a

valid integer contant").

The third class of errors--those associated with the attributes of

identifiers (semantic errors, in the technical jargon)--is perhaps the

broadest of the four. The feature common to all such errors is that

they are not at all apparent unless one is aware of the attributes of

the variables in the defective expression. Hence these errors have the

highest priority for announcement when a candidate expression contains

more than one error. The verifier should isolate the entire defect in

the case of such an error. In the following example, let string.variable

be a scalar of type string and x a scalar of type real:

string.variable + "five" ge x + 5 or x le 0

The expression is defective because the comparison is between subexpres

sions of different types. The diagnostic message issued by the verifier

should be couched in terms of the subexpressions and not individual

variables. A message which complained that x was of inappropriate type,

for example, would not isolate the entire defect.6

Errors caused by the appearance within a candidate expression of an

undeclared identifier--errors of the fourth class--represent the only

39

defects which the user may repair without re-entering the entire expres

sion. Typically this kind of error comes about either because the user

has misspelled the name of a variable previously declared or because the

user failed to declare the variable in advance. This suggests that,

ideally, the verifier should allow the user either to replace the name

with that of a variable which has already been declared or to provide a

declaration--on the fly--for the name. The options to abandon the

entire expression or to obtain a listing of all variables declared so

far should also be provided.

This approach to handling undeclared identifiers, though it is

ideal in the flexibility it affords, may be too complex to be comfort

able for the user. The user enters an expression in the context of

specifying some aspect of a program to be produced by the program genera

tor and his or her attention is likely to be focussed on this task

rather than on the more narrow problem of supplying an expression.

Under the ideal scheme, the appearance of an undeclared identifier in an

otherwise acceptable expression sets into motion a lengthy and perhaps

overly distracting sequence: (1) the verifier issues a diagnostic

message and presents the options (abandon this candidate expression and

make a new entry, replace the name, provide a declaration for the name,

or defer the decision and examine a list of already declared variables);

(2) the user makes a selection; and (3) if the user has not abandoned

the candidate expression, the verifier initiates the processing for the

selected option. The repair leads the user away from the real task of

providing information from which a program will be constructed and is

potentially confusing. The repair effort delays closure--the completion

of the pending task--and such delays have been observed to impair the

usability of interactive systems [23].

40

One way to reduce the complexity of the repair scheme is by elimi

nating some of the options. If the user is allowed to repair the expres

sion only by replacing the undeclared name or only by providing a declar

ation of the identifier which appears in the expression, then one layer

of choices may be removed from the system.7 The option of replacing the

name is clearly the one to be given up. If the user has simply mis

spelled the name, he or she may correct the problem by re-entering the

entire expression with the proper spelling. If, on the other hand, the

user forgot the declaration, his or her only recourse--in the absence of

the repair mechanism--is to abandon the present task completely, move to

the variable declaration module in the program generator, provide a

declaration, and then return to the point at which the error occurred to

re-enter the expression. Thus while the replacement option is a conveni

ence, the declaration option is virtually a necessity.

The decision about restricting the repair options would best be

made on the basis of an empirical test aimed at determining whether the

flexibility of the ideal scheme make up for its complexity. Such a

test, however, is a luxury which requires that both approaches be imple

mented. For the purposes of the present project, the single repair

option--declaration of an identifier previously undeclared--is adopted,

not only because it reduces the complexity of the user interface but

also because it make less demand on storage space than the ideal scheme.

Errors involving undeclared identifiers require a special position

in the hierarchy for announcing errors when a candidate expression

contains more than one. As the discussion of multiple error handling

has already noted, the repair process allows for the declaration of a

new identifier. If such a declaration is made while there are other

41

errors in the expression, there is the risk that the user will later

abandon the expression. In such an event, the disposition of the newly-

declared identifier poses something of a problem: should the declara

tion by undone or left intact? The problem is best solved by not announc

ing an undeclared identifier until all other errors have been resolved.8

The foregoing guidelines for error processing are largely indepen-. .
dent of the details of the implementation. They leave the designer or

implementor of an expression verifier with the task of organizing the

system so that it can support the error handling specified here. This

effort has two distinct aspects. First, the detailed design of the

system must be undertaken with the requirements stated here firmly in

mind. The selection of data structures and algorithms will be influ-

enced, at least to some degree, by the demands which are implicit in the

specifications for error handling. Second, once the fundamental design

choices have been made, the designer or implementor must map each error

state of the verifier--each point at which an error may be detected--into

one of the four classes described here. This mapping permits the designer

or implementor to determine exactly what processing is needed to support

the error handling called for by the requirements.

ENDNOTES

lCP/M is a trademark of Digital Research, Inc.

2CBASIC is a trademark of Compiler Systems, Inc.

3The notion of allowing the user to repair a defective candidate
expression by modifying some isolated portion of it has a straight
forward conceptual basis, even if the implementation is complicated. If
the syntax analyzer constructs a representation for the parse tree for
the candidate expression and supplies nodes with special "placeholder"
symbols at those points where the user's input cannot be parsed, the
user can then repair the expression by editing the parse tree. The
placeholder symbols could indicate exactly what the user could put into
the corresponding segment of the candidate expression in order to obtain
a valid expression. The information encoded by the placeholders could
be used to guide the user in making the necessary corrections.

4The problem lies in presenting the user with the opportunity to
make such a repair. If only one error is reported at a time, a user
repairable error is signalled with a diagnostic message and a repair
menu. If the verifier reports all errors in a candidate expression at
once, it must provide for the case where there are several repairable
errors. This is it can do either by presenting the user with a menu
from which to select the error to be repaired next or by leading the
user through the repairable errors in some predetermined sequence. Both
alternatives are awkward.

5Qn a system in which the user/machine interaction makes use of the
full screen of a CRT display, the verifier might, on encountering the
defective identifier "customer name'', highlight the underbar character
(_) and issue the message "'_'-not permitted in a variable name. 11 Where
full-screen interaction is not supported (so that the verifier does not
have access to the portion of the screen in which the user typed the
candidate expression), the verifier's response might be 111 customer_name 1

is not a valid variable name because it contains 1 '." In both cases
the diagnostic message might also include a positive statement of the
rule for forming variable names.

6The ideal message for this example would indicate that the subex
pression string.variable+ 11 five 11 ge x + 5 illegally compares a string
expression with a numeric expression. To support the production of such
a message, the verifier would need to isolate this entire subexpression
and determine that it was invalid.

7If the only repair option were replacement, for example, then the
verifier could issue the diagnostic and ask immediately for the new

42

43

name. The user could signal that he or she wished to abandon a candi
date expression by responding with a null entry. A similar scheme would
work if the only option were to provide a declaration.

8This is not a full solution of the problem, since a candidate
expression may contain more than one undeclared identifier. The user
may provide a declaration for the first but abandon the expression when
a subsequent undeclared identifier is announced. The policy adopted
here is that any declaration once made is permanent.

. .

CHAPTER I I I

A DESIGN FOR AN EXPRESSION VERIFIER

Introduction

The statement of requirements in Chapter II does not provide an

adequate basis for implementing an expression verifier for an inter

active program generator. While it describes in detail the performance

expected of the verifier, it does not suggest how this performance may

be achieved. The present chapter fills this gap.

A system such as an expression verifier poses two kinds of design

issues. First, there are structural questions. These have to do with

the division of the system into modules. Second, there are questions

regarding the techniques to be used within the individual modules to

achieve the required results.

The chapter begins with a consideration of structural issues. The

major tasks which must be performed by the verifier system are identi

fied. Then these tasks are apportioned among modules and a scheme for

placing them in primary storage is developed. The discussion of struc

tural questions ends by considering how the organization of the verifier

and its interface with other program generator modules is influenced by

the information requirements of its callers.

The exploration of techniques which might be used in the verifier

dominates the remaining pages of the chapter. The syntax analysis

module--the central component of the verifier system--poses the most

44

45

challenging questions for the designer and receives the most careful

attention. The aim of the discussion of the syntax analyzer and the

other modules is not to provide a minutely detailed description of their

inner workings. Rather, the goal is to uncover and to resolve in a

consistent and considered manner the fundamental problems likely to be

encountered in developing a verifier system which meets the requirements '.
established in Chapter II.

The Structure of the Expression Verifier

Functional Anatomy of the Verifier

The expression verifier can be viewed as kind of truncated compiler.

It analyzes expressions for correctness without generating code to carry

out the operations specified in them. Thus the verifier will bear

considerable resemblance in structure to a compiler.

A typical approach to analyzing source code in a compiler divides

the processing into a lexical phase and a syntactic phase. Although the

division of labor between the lexical analyzer and the syntax analyzer

varies from one system to another, the usual pattern is to make the

lexical analysis routine responsible for grouping the individual charac

ters of the source text into the basic entities of the language: key-

words, operator symbols, constants, identifiers, and the like. These

entities (or "tokens") typically can be described formally using regular

grammars and therefore can be recognized by finite-state automata.

Syntax analysis proceeds on a token-by-token basis; its goal is to

reconstruct a derivation of the token string representing the source

code based upon the grammar specifying the source language. The division

between lexical and syntax analysis is largely a practical one; it is

46

more efficient (in terms of execution time and perhaps also of space) to

employ a separate recognizer for the basic entities of the language than

it is to require the syntax analyzer to work at the character level and

to include descriptions of the tokens in the grammar which guides syntax

analysis [1].

This division of labor is entirely appropriate in an expression
'.

verifier. The verifier's lexical analyzer must recognize the basic

entities of expressions, namely, identifiers, constants, and operators.

These all can be described formally with regular grammars; the lexical

analyzer thus may consist of a module which simulates the actions of a

finite state automaton (or of a group of such modules). The verifier's

syntax analyzer must recognize the context-free language consisting of

all valid CBASIC expressions. It will be based upon some well-known

parsing method.

Compilers typically record information about identifiers used in

the source code into a symbol table. The program generator of which the

expression verifier under consideration here is a part maintains such a

table. It stores CBASIC reserved words, the names of CBASIC built-in

functions and a coded representation of the number and types of arguments

taken by each, logical file names, labels associated with program seg-

ments, and the names and attributes of user-declared variables. The

expression verifier will have occasion to look up information in the

symbol table and to insert information. The design of the verifier

presented here assumes the existence of routines which support both

kinds of access to the symbol table. Since the table is used by the

program generator in a number of contexts unrelated to the processing of

expressions, and since its organization is strongly influenced by these

47

other uses, a detailed description of the data structures and the manip

ulation routines involved is not appropriate here. It suffices to

insist that the verifier have ready access to information about any

identifier it may encounter in an expression.

The lexical and syntax analyzers, in conjunction with the symbol

table access routines, perform the fundamental tasks associated with . .
verifying the correctness of expressions. There are other tasks to be

performed, however, particularly with respect to error handling. The

requirements described in Chapter II make it clear that no verifier

routine may simply issue a message and halt upon encountering an error.

In order to support the error handling specified by the requirements,

the verifier must maintain a record storing the essential information

about the error with the highest priority for announcement which it has

encountered at the current stage of its processing. When an error is

encountered, the routine which detects it must update this record if the

new error has a higher priority for announcement. At the conclusion of

all processing by the lexical and syntax analyzers, an error message

display routine issues a message based upon the contents of the error

record.

In addition to producing error messages, the verifier must provide

for convenient error recovery in the event that the candidate expression

contains an undeclared identifier. Thus a variable declaration module

will be part of the verifier system.

The foregoing represents a division of the expression verifier into

subcomponents based upon the tasks which the verifier must perform to

achieve its goal. This division is largely independent of any particular

implementation. It does not give a detailed description of the system

48

organization needed to fulfill all of the requirements set out in Chapter

II. Producing such a description involves a more careful scrutiny of

those requirements and their implications.

Organizational Constraints Imposed by the

Hardware Environment
. .

The requirements which most profoundly affect the organization of

the verifier are those related to the hardware on which the program

generator is to run. The target machine is relatively small; it has

only 64K bytes of primary storage. The expression verifier system,

being a utility routine called by other components of the program gener

ator system, may occupy only a fraction of this space. In fact the

entire verifier cannot be resident in primary storage all at once, even

if it relinquishes its space when it is no longer needed. The verifier

must be structured so that it may be brought into storage by parts.

If the target machine supported a virtual storage scheme, the task

of breaking the verifier into pieces could be left to the hardware and

the system software. In fact, only a static overlay mechanism is avail

able. This system requires that the programmer determine in advance how

primary storage is to be allocated at run-time. The principal method

for using the overlay scheme effectively involves breaking a system into

modules-~callable procedures--which do not call each other and which

require approximately the same amount of storage at run-time. Such a

group of modules can be assigned to the same region of primary storage;

the overlay manager--part of the system software--has the responsibility

for loading individual modules from secondary storage as each is needed.

One approach to organizing a large utility program in order to

exploit the overlay scheme to advantage involves dividing the necessary

processing into a sequence of consecutive steps and constructing the

major modules of the utility so that they correspond to these steps.

These modules all share the same space in primary storage. A small

controlling module, permanently resident in primary storage and respon

sible for the interface with routines which call the utility, calls each

of the major modules of the utility in turn. Each call from the control

ling routine starts a new phase of processing and brings a new module

into the region of primary storage set aside for the utility.

The principal advantage of such a scheme is that it permits large

utility routines to be included in a system without demanding a corre

spondingly large portion of primary storage. Moreover, it is somewhat

flexible. Typically there are several alternatives for dividing a

utility's operation into phases; one can often trade an increased number

of modules (which implies some increase in the size of the controlling

module) for a smaller region of reserved space in primary storage.

Further savings of primary storage are achieved when several independent

large utilities are broken up in this way: one can assign all of the

major components for all such utilities to the same storage space.

The scheme has its price, however. Moving code from secondary

storage to main storage takes time; when the secondary storage device is

a flexible disk drive, the time is not insubstantial. In an interactive

system such as a program generator, response time is at a premium and

delays introduced as pieces of a utility routine are loaded can be

annoying to the user. Unfortunately, there is little choice but to pay

the price. A useful program generator is a sophisticated system and is

necessarily large; if it is to execute on a small system, it must rely

heavily on the use of overlays. Response time will suffer.I In order

50

to minimize this ill effect where large utility routines are concerned,

the number of modules which share storage space--and consequently the

number of loads from disk required to complete the processing--should be

kept small.

Desptte the response time problem, this scheme is the method of

choice--rather, of necessity--for the expression verifier. The principal
'.

question is that of how to divide the system into modules which can be

called into primary storage in succession.

Perhaps the most obvious division is along the lines of the basic

functions outlined earlier: lexical analysis would come first, followed

by syntax analysis, followed, if necessary, by error message production

and error repair. This represents a natural separation of the expression

verifier's processing; by contrast, for example, one would not wish to

split syntax analysis into several parts because of the large amount of

information which would have to be passed from one part to the next.

Indeed it is difficult to see how any other division could work.

Adopting this division has some significant--and not altogether

benign--consequences for the workings of the verifier system. In particu-

lar, it calls for the complete independence of the lexical and the

syntax analyzers. The candidate expression is processed by the lexical

analyzer and reduced to a string of tokens. The syntax analyzer then

takes the place of the lexical analyzer in primary storage and processes

the token string. An alternative approach employed in many compilers

makes the syntax and lexical analyzers co-resident in primary storage.

Lexical analysis is performed on a token-by-token basis at the request

of the syntax analyzer; that is, the syntax analyzer calls the lexical

analyzer whenever it needs the next token in the input stream.2

51

The difference in organization is inconsequential so long as the

only goal of the processing is to determine whether the input string

belongs to the language recognized by the system. When precise diagnos-

tics are required in the event of an error, however, the scheme which

makes lexical analysis subordinate to syntax analysis has some advantages-

advantages which the expression verifier under consideration may be
. .

forced to forego because of space constraints.

First, the method which has the lexical analyzer reduce the input

string to a string of tokens all at once puts some distance between the

user's input and the syntax analyzer. Syntax analysis in this case

works with the token string; the input string is not relevant to the

processing which is taking place. Any error detected in syntax analysis

is a defect in the token string. Error messages must make reference not

to the token string, however, but to the text supplied by the user.

Where lexical analysis is subordinate to syntax analysis, the syntax

analyzer is working with the input string, albeit somewhat indirectly.

In a system so organized, a syntax error is detected initially as the

appearance of an inappropriate token, but since the input string is

still present and has not been processed beyond the point at which the

error occurred, it is relatively easy to issue a diagnostic which refers

to the text supplied by the user.

Second, the relationship between the lexical analyzer and the

syntax analyzer influences the way in which lexical errors may be handled.

Where the lexical analyzer must pass through the entire input string and

reduce it to a string of tokens all at once, its processing is guided

purely by the text; it has no information about the syntactic structure

of the string. By contrast, where the lexical analyzer is called on a

52

token-by-token basis by the syntax analyzer, it has access--at least

potentially--to information about what kind of entity legally may appear

next in the input string. This infonnation is not particularly important

in the lexical analyzer's initial processing of the input string, but it

can be quite useful if a diagnostic message must be issued.

Consider the following attempt at entering a CBASIC expression in
. .

response· to a prompt from the program generator:

x 102Q

A stand-alone lexical analyzer would identify X as a variable name and

then, on detecting the sequence of digits, would be expecting to find a

numeric constant. On detecting the letter "Q", it would note an error.

As long as it is possible to defer issuing a complaint about the invalid

constant until after syntax analysis has been perfonned, and as long as

priority is given to announcing the missing operator, a sensible error

message will result. But making these arrangements may be a complex

task. By contrast, if the lexical analyzer is called by the syntax

analyzer and reports that it has found a defective constant, the syntax

analyzer is in a position to disregard the lexical analyzer's view of

the problem. The grammar which drives syntax analysis clearly does not

permit even a valid constant here.

The real disadvantage in adopting the stand-alone lexical analysis

scheme is not that it cannot match the performance of a system where

lexical analysis is subordinate to syntax analysis. Rather, the problem

is that the verifier system will be more complex and more awkward because

it must work around the natural deficiencies of this organization. The

implications of the decision to employ the stand-alone strategy for the

lexical and syntax analysis routines will be considered in more detail

later in this chapter.

Organizational Constraints Imposed by Other

Program Generator Modules

The organization of the verifier system is shaped to a degree by

53

the specialized requirements of some of its callers. In particular,

certain program generator modules prompt the user for input which must

fall into some subset of valid CBASIC expressions, namely, constants, or

identifiers, or expressions which may be used as targets of input or

assignments operations. If the expression verifier could identify the

members of these three subclasses, the processing perfonned locally by

modules with these specialized requirements could be simplified consider

ably.

The expression verifier is unquestionably capable of distinguishing

among various subclasses of valid expressions. The verifier must analyze

the syntactic structure of a candidate expression, and the grammar which

guides this analysis could be written so that the subsets of interest to

other modules would be identified by their distinctive syntactic features.

The cost for this would be a more complex grammar for expressions and

hence a larger syntax analyzer. Since storage space is at a premium, it

is worth examining alternatives to this approach.

It is possible to determine whether some user-supplied string

consists of a single valid identifier or a single valid constant without

even invoking the syntax analyzer. The lexical analyzer's function is

to recognize exactly these kinds of entities. If any module which must

check whether the user's input is an identifier or a constant is pennit

ted to called the lexical analyzer directly, such a module can verify

the correctness of the input by examining the token string returned by

the analyzer. If the string consists of a single token of the appro-

54

priate type, then the input is acceptable. This method requires only

that the lexical analyzer be accessible directly to routines outside the

expression verifier. It requires some additional code in the calling

modules to examine the token string; if there are many such modules in

the system, it would be space-efficient to have all of them call a

single module which in turned called the lexical analyzer and interpreted
' '

the result.

The problem of determining whether an expression is valid as the

target of an assignment or read operation does not admit of so straight

forward a solution. A target is either an isolated scalar variable or a

reference to an element of an array. It is easy enough to detect the

former, but the latter may include within its subscript list arbitrary

numeric expressions. Thus the full expression verifier must be called

to check for a valid target. There are three methods which might be

used to perform this test:

1. A special target checking module could call the lexical
analyzer. If the first token represented an array name,
the target checker could then proceed to verify--through
local processing and calls to the expression verifier-
the correctness of the subscript list.

2. The expression grammar which guides syntax analysis could
be written so that targets constitute a recognizable
subcategory of the valid expressions. The syntax analyzer
could signal whether or not it finds a target.

3. Certain semantic actions might be associated with the
syntax analyzer's processing of the candidate expression.
These would enable the syntax analyzer to detect a valid
target without requiring it to have a special grammar.

The first alternative is too cumbersome and likely to require a

substantial amount of additional code. The choice between the second

and third options seems clear: the third is likely to make smaller

demands for storage. The feasibility of this approach, however, must be

55

examined more carefully when the design of the syntax analyzer is taken

up in a detailed way.

When a program generator module requires that a string supplied by

the user fall into a restricted subclass of valid expressions, the

handling of errors in the input must be modified somewhat. If the input

has a defect but clearly could not fit into the appropriate subclass

even if the defect were corrected, the usual error message should not be

printed. Rather, a message indicating that the user has not supplied a

valid representative of the appropriate subclass is in order. If, for

example, the user were asked to supply a target to receive the result of

a calculation and entered

A + 35000,

the expression verifier's normal response would be to indicate that

35000 is too large to be a valid integer constant. Under the circum

stances, however, such a message is misleading. Instead the system

should issue a message indicating that only scalar variables and refer

ences to elements of arrays may receive the result of a calculation.

The verifier must therefore suppress its normal error response when the

caller can accept only a subset of the valid CBASIC expression and the

candidate expression clearly does not belong to this subset. This means

that the caller must indicate to the verifier, by means of a flag, what

restrictions it is imposing upon the valid expressions it will accept.

A flag indicating that only a target is acceptable is clearly needed.

Moreover, since in some cases a calling module will accept an arbitrary

expression of one type only, flags indicating that the candidate expres

sion must be numeric or must be string-valued should also be provided.

56

The Structure of the Expression Verifier:

A Summary

The discussion thus far has established the basic structure of the

expression verifier. The design decisions have been guided primarily by

the requirement that the system make relatively small demands for primary

storage' space and, to a lesser degree, by the need to provide certain

specialized information to some potential calling modules.

The driver routine, which guides the verifier's processing by

calling the major components of the system into primary storage as they

are needed, resides permanently in primary storage. This is the routine

called by program generator modules which require the expression verifier's

services. Thus, in addition to controlling the work of the verifier, it

serves as the interface with the rest of the program generator system.

The remaining components of the verifier--those which perform the

bulk of the processing--are overlays which are assigned to a single

region of primary storage space. They include the lexical analyzer, the

syntax analyzer, the error message routine, and the variable declaration

module, which is the only error repair facility in the system. Figure 1

depicts the relationship between the verifier's components in a schematic

way.

The Syntax Analyzer

Overview of Design Issues

The syntax analyzer is the heart of the expression verifier. It

has the task of determining whether a candidate expression--reduced by

the lexical analyzer to a stream of tokens--conforms to the rules for

Candidate expression

.
Candidate expression

I
I

'I

Lexical
analyzer

Token string ...

Error information

' ,/

Error
message display
module

'I

Error message

" J\

Driver

~ II

Expression type

I
Expression type

I

,

~ Token string

; \

Syntax
analyzer

Token string
,; ' ' ,

Declaration prompt

Variable
declaration
module

J Wser ! Declaration selection ·~

Figure 1. Structure of the Verifier System

57

fanning a CBASIC expression. It must also ascertain whether a valid

expression is one which may be used legitimately as the target of an

assignment or read operation. In the event that it detects an error,

the syntax analyzer must set up a message to be issued by the message

display routine.

The syntax analyzer for an expression verifier, like that for a '.

58

typical compiler for a programming language, is based upon some parsing

algorithm. A parser--in the broadest sense of the tenn--is a recognizer

for some language which can be described formally by a grammar. Practical

parsing methods are not completely general; each such technique works

with some restricted class of grammars. Thus the major design tasks in

developing any syntax analyzer are the fonnal specification of the

language which the analyzer is to recognize and the selection of a

suitable parsing technique.

The language consisting of well-fonned CBASIC expressions may be

described by a context-free grammar. An important question arises when

one attempts to construct such a grammar, namely, which of the rules for

forming expressions are to be encoded into it? Some of these rules are

clearly syntactic; the rule which prohibits the sequence of operators

"*!" is one example. Such rules are naturally incorporated into the

expression grammar. Other rules have a semantic component: for example,

an identifier declared to be a one-dimensional array must be followed by

a subscript list containing exactly one subscript. This rule and others

like it may be encoded into the expression grammar, but they may also be

embedded into semantic routines called by the syntax analyzer. The

decision between these alternaive approaches is a decision about how one

will distinguish between the syntax of the expression language and its

semantics. This choice poses one of the fundamental issues in the

design of the syntax analyzer.

59

Another significant design decision is the selection of the parsing

method to be used as the basis for the syntax analyzer. Three criteria

are important in choosing from among the variety of techniques available.

First, the method must be fast, since the expression verifier will be . .
used in an interactive setting. Second, the method must be modest in

its space requirements, since the expression verifier as a whole must be

compact. Third, the method must support the production of precise and

meaningful diagnostic messages when errors are encountered. Unfortu

nately, no one parsing technique is clearly superior on all three counts.

The design process inevitably involves compromises.

The remainder of this section explores these design issues in more

detail and culminates in a specific design proposal. The approach taken

here is neither purely empirical nor rigorously theoretical. Rather,

the various possibilities for organizing the syntax analyzer are evalu

ated abstractly insofar as this is fruitful; at critical points, however,

the alternatives are compared at a more concrete level.

Syntax and Semantics

The problem of distinguishing between syntax and semantics in an

expression language may be illustrated with a language considerably less

complex than that for CBASIC expressions. The model language includes

string expressions and numeric expressions. The basic elements of the

language are identifiers, which may refer to data objects either of type

string or of type numeric, the arithmetic operators + and *, and the

string concatenation operator +. The type of an identifier must be

60

declared in advance. Mixed mode expressions are forbidden. The follow

ing grammar describes the syntax of this language:

<expression>::=< string expression>
I< numeric expression >

<numeric expression> : :=<numeric expression>+ <term>
I< term>

< term > : : = <term > ;* <factor >
I< factor>

<factor> : := idnum
· · I (<numeric express ion>)

<string expression>::= <string expression>+< string term>
< string term >

<string term · ·= idstring
{<string express ion>)

(3.1)

Each nonterminal symbol in the grammar is enclosed in brackets (<, >).

The terminal symbols idnum and idstring represent identifiers declared

to be of type numeric and identifiers declared to be of type string,

respectively. In an expression verifier for this language, the lexical

analyzer would return one or the other of these tokens upon encountering

an identifier.

A parser based upon grammer 3.1 would reject a mixed mode expression

such as idstring + idnum because there is no derivation of this string

from the start symbol <expression>. The rules related to the types of

identifiers are embedded in the formal specification of the syntax of

the expression language.

The alternative is to treat identifiers of both types as syntacti

cally indistinguishable. The following grammar does so, but in all

other respects it is equivalent to grammar 3.1.

<expression >: := <expression>+ <term>
term

<term>::= <term> *<factor>
<factor>

<factor>::= id
l<expression>)

(3.2)

61

Here the tenninal symbol iQ. represents an identifier of either type.

Grammar 3.2 alone is not sufficient to guide syntax analysis in an

expression verifier for the model language. It is possible, however, to

transform the grammar into a generalized syntax-directed translation

scheme which incorporates the necessary type checking. To do so, each

of the nonterminals in the grammar is associated with a field (called a
. .

translation) storing the type (numeric or string) of the substring which

the nonterminal derives. For each production rule of the grammar, a

small program segment is supplied which perfonns the bookkeeping neces-

sary to keep the type fields current and, where appropriate, checks for

mixing of modes or misuse of arithmetic operators. The actions secified

by this program segment are performed whenever the corresponding produc

tion is used in the parse of a candidate expression [3]. Figure 2

presents a syntax-directed translation scheme for the model expression

language, with the program segments--also called semantic actions-

expressed in a high-level algorithm language.3

Clearly one gains a more compact grammar--one with fewer symbols

and fewer productions--at the cost of adding code (in the fonn of rou

tines which implement the semantic actions) to the syntax analyzer.

There is little incentive to use a syntax-directed translation scheme,

however, unless the compactness of the grammar is of some tangible

benefit. A more compact grammar--all else being equal--reduces the

space requirements of the syntax analyzer, since the storage occupied by

the production rules is reduced and (often more significantly) since the

size of the parsing tables required by any efficient parsing method

grows with the grammar which guides the parse.4 The question of impor

tance to the designer is whether these savings in storage are sufficient

< express1on> ~ ::= <expression>1 + <tenn>

f .if< expression >I. TYPE = <term>. TYPE then
<expression /l. TYPE : = <expression >1• TYPE;

else error;J

<expression > : : = <term>

{ <expression>.TYPE := <tenn>.TYPE; J
<term:JI · ·= <term>1 * <factor>

[j_f < tenn >1 ~TYPE and <factor>. TYPE a re numeric then
<tenn>P.TYPE := 11 numeric 11 ;

elseif <term>1.TYPE and <factor>.TYPE are string then
<term)'J.TYPE := 11 string 11 ;

else error;]

<factor> · · = id

62

[<factor>.TYPE := type found by lexical analyzer for id; J

<factor> (<express ion>)

<factor>.TYPE := <expression>.TYPE;

Figure 2. Syntax-Directed Translation Scheme for the Model Language

63

to offset the storage occupied by the semantic action routines. Unfor-

tunately there is no generalizable answer.

In the case of the model expression language presented here, it is

unlikely that a syntax analyzer based upon the SOTS of Figure 2 would be

more compact than one based upon grammar 3.1 The model language, however,

does not constitute a realistic basis upon which to decide between the
. .

two approaches to performing type checking. Grammar 3.1 does not reflect

accurately the extent to which a grammar must be expanded if it is to

embody all of the rules related to the types of data objects which may

appear in expressions in a practical programming language. Particularly

deceptive in the small number of terminal symbols which represent identi

fiers. Grammar 3.1 has just two. In a more realistic expression lan-

guage, one might need as many as a dozen different symbols for identi

fiers and at least that many additional production rules in the grammar.

The storage required for the production rules and the parsing tables

might well become unacceptably large.

The discussion thus far has overlooked an important aspect of the

problem of distinguishing between syntax and semantics in the expression

verifier. An expression supplied to the program generator by the user

may include one or more identifiers which have not been declared. Given

the requirements specified in Chapter II for responding to this kind of

problem, the syntax analyzer has two tasks to perform:

1. It must determine whether the expression, apart from
its undeclared identifiers, is valid.

2. It must determine the attributes which legitimately
may be assigned to each undeclared identifier for
which the context implies such attributes.

The design issue posed by these requirements is the choice between

treating these tasks as semantic actions and treating them, insofar as

possible, purely syntactically.

64

The issue may be explored by considering it in the context of the

model expression language. To treat the problem of undeclared identi

fiers syntactically, one must introduce a new terminal symbol, idundcl,

to represent such identifiers. This symbol may appear anywhere in an

expression where either idnum or idstring is allowed. The straight

forward modification to grammar 3.1 to take account of the new terminal

symbol is to add two productions, namely,

<factor> : := idundcl
and

<string term> : : = idundcl.

This change renders the grammar ambiguous. Figure 3 shows two distinct

parse trees for the expression idundcl + idundcl, demonstrating the

ambiguity in the grammar. In fact there are two parse trees for every

expression of indeterminate type (that is, for every expression which

cannot be classified unequivocally as either numeric or string based

upon the operators or the types of the identifiers present in the expres

sion).

Since practical, efficient parsing techniques almost invariably

demand an unambiguous grammar for the language to be parsed, this straight-

forward alteration of grammar 3.1 is not an adequate solution to the

problem of handling undeclared identifiers. To eliminate the ambiguity,

one must treat expressions of indeterminate type as a special case.

Moreover, one must add numerous productions to the grammar in order to

capture the rule that idundcl may appear anywhere either idnum or idstring

is permitted. Grammar 3.3, listed in Figure 4, is an unambiguous grammar

for the model expression language which takes account of undeclared

identifiers. The number of productions has grown to nearly double that

for grammar 3 .1.

<express ion>

<numeric expression>

'. <numeric expression> + <tenn>

<tenn> <factor>

<factor> idundcl

idundcl

(a)

<string expression>

<string expression> + <string term>

<string term> idundcl

idundcl

(b)

Figure 3. Two Parse Trees Illustrating the
Ambiguity in a Simple Extension of
Grammar 3.1

65

66

By contrast, grammar 3.2, with its six productions, is adequate if

the processing needed to permit undeclared identifiers in expressions is

incorporated into the semantic actions. The major adjustment required

to the syntax-directed translation scheme of Figure 2 is a change in the

conditionals which compare the types of already-parsed subexpressions.

Strict equality of types is no longer required, for example, for the

<expression> and the <term> of the first production rule. If the types

are unequal but one is of indeterminate type, the subexpression <expres

sion>+ <term> is still valid. The effect of the modifications to the

semantic actions is to make the code for them somewhat larger.

Thus the first task associated with processing an expression contain

ing undeclared identifiers-accepting the expression if its only defects

involve these identifiers--can be accomplished either syntactically (at

the cost of a significantly larger grammar) or semantically (with somewhat

larger semantic routines). The second task--establishing the attributes

of the identifier if they are clear from its context in the expression-

cannot be performed without some recourse to semantic routines. At the

very least it will be necessary to record the attributes as they are

detennined, and this will require that some recording routine be invoked.

Consider the simple expression A + B, where A has been declared to

be a string variable but B is undeclared. The expression is valid only

if B is a string value. The expression verifier must take note of this

fact so that the repair module which allows the user to supply a declara

tion for B restricts the user's options to declaring B to be a scalar

variable of type string or abandoning the expression. In an expression

verifier for the model expression language of grammars 3.2 and 3.3,

processing would take one of the following forms:

<:expression>::= <Stri·ng expression>

'.
:·~I <numeric express ion>
!<indeterminate expression>

<numeric expression> ::=<numeric expression>+ <term>
<numeric expression> + <indeterminate term>
<indeterminate expression> + <term>
<term>

<term> : : = <term> * <factor>
I< term> * <i ndetermi na te term >
<indeterminate term>* <factor>
I <factor>

<factor>::= idnum
I (<numeric expression>)

<String expression> ::=<String expression>+ <String term>
<indeterminate expression> + <string term>
<String expression> + <indeterminate term>
<String term>

<String term>::= idstring
I kstring expression>)

<indeterminate expression> ::=
<indeterminate expression> +<indeterminate term>

!<indeterminate term>

<indeterminate term>::= idundcl
I (< i ndetermi na te express ion>)

Figure 4. Simple Expression Grammar, Modified to Include Undeclared
Identifiers

67

68

1. If grammar 3.2 is the basis for the verifier, the lexical
analyzer would reduce the input text to the token string
.iQ.. + id. The parser would eventually use the production
<expression>~::= <expression>l +<term>. Since the
first id is of numeric type while the second is undeclared,
<expression>l.TYPE is string while <term>.TYPE is indeter
minate. The semantic action to be taken here consists of
setting <expression>~.TYPE to string and noting that <tenn>.
TYPE--and hence the type of the identifier B--must be string
as well.

2. · If grammar 3.3 is the basis for the verifier, the lexical
analyzer would reduce the input text to the token string
idstring + idundcl. The parser would eventually use the
production <String expression> ::=<String expression>+
<indetenninate tenn>. No semantic action is required to
test for a mixed mode operation, since the grammar assures
that these cannot be parsed. But some action is required
to take account of the fact that the indeterminate
tenn --and hence also the identifier B which constitutes
it--must eventually be made to be of type string.

Thus even when the rules for types are encoded as much as possible into

the grammar for the expression language, it is impossible to avoid

semantic processing altogether.

The foregoing discussion has shown that there are indeed two work

able approaches to handling type information in an expression verifier.

The choice between the two is among the fundamental issues facing the

designer of a verifier. Unfortunately, neither method is clearly supe

rior. For the present project, the decision is to treat all type infor-

mation semantically; that is, the verifier's syntax analyzer will be

based on a syntax-directed syntax scheme much like that of Figure 2.

This approach has the benefit, previously noted, of keeping the

grammar upon which the syntax analyzer is based relatively small. This,

in turn, reduces the size of the parsing tables required by any of the

common table-driven parsing methods. This savings in storage at least

partially offsets the additional storage required for the semantic

routines. A second benefit of this scheme is its flexibility. If one

69

wished to alter the verifier so that it could distinguish between expres

sions of type integer and those of type real, one could so at the modest

code of expanding the semantic routines somewhat. By contrast, if type

checking is performed syntactically, such a modification would require a

substantial expansion of the grammar and consequently of the parsing

tables. Finally, adopting the semantic approach to type checking has

the further advantage of giving the designer a wider range of options in

the choice of parsing techniques. In particular, it leaves open the

possibility of basing the syntax analyzer on an LL(k) grammar. It is

notoriously difficult--if not impossible--to encode type rules for any

realistic expression language into an LL(k) grammar. 5 Yet, as a later

discussion shall show, LL(k) parsers are among the more attractive

choices in the present application.

Parsing Methods: A Survey

Numerous techniques have been devised for parsing context-free

languages. Although virtually any of them could be used to recognize

syntactically well-formed CBASIC expressions (provided that the expres

sion grammar is cast in a suitable form), not all of them can meet the

requirements for speed, compactness, and ability to isolate errors,

which are of great importance in the present application. While an

exhaustive survey of parsing techniques is not appropriate in a design

study which aims at specifying a practical product within a reasonable

amount of time, a review of some of the methods which hold out some

prospect of being suitable is fruitful. The present section provides

such a review.

70

The parsing methods which involve backtracking (that is, those

which may require multiple passes over portions of the input string} are

very attractive because of their compactness. A backtrack parser requires

no parsing table; it needs only a representation of the production rules

for the grammar. It operates by attempting to construct a derivation of

the input string through an application of the production rules on a

trial-and-error basis: a potential derivation is pursued until it

becomes inconsistent with the string being parsed, at which point the

parser backs up in the input string and attempts an alternative deriva

tion. A backtrack parser may work either from the bottom up, in which

case it attempts to construct a derivation of the input string in reverse

(working from the input string back to the start symbol for the grammar),

or from the top down, in which case it seeks a series of production

rules which leads from the start symbol to the input string [2].

Backtrack parsers are relatively easy to implement because they

impose few restrictions on the grammars for the languages they are to

parse. They are economical in their use of storage space, requiring in

addition to the code which implements the parsing algorithm only a stack

(whose maximum depth is, in the worst case, a linear function of the

length of the input string) and a representation of the production rules

for the grammar. In a microcomputer environment, this compactness is a

great virtue.

Unfortunately, backtrack parsing has some serious drawbacks.

First, in the worst case its execution time is an exponential function

of the length of the input string [2]. Surely it is a fundamental maxim

of interactive system design that one ought not to invoke an algorithm

of exponential time complexity while the user is waiting at the tenninal!

71

Thus the use of a backtrack parser in an expression verifier for an

interactive program generator is open to serious criticism. Second, a

backtrack parser provides virtually no means of issuing meaningful

diagnostic information; it is incapable of precisely identifying the

location and nature of a syntax error [2]. This technique is therefore

not well suited for use in the expression verifier under consideration
''

here.

Backtrack parsing has its place in expression verification in

program generator systems, despite the fact that it does not meet the

requirements imposed for the present design effort. Where space is

severely restricted, backtrack parsing may be the only workable alterna

tive. When detailed error messages are not required--as, for example,

when the users of the program generator are experienced programmers-

backtrack parsing may be an acceptable choice. The time complexity of

the method remains something of a problem in either case.

Of the parsing methods which do not involve backtracking, several

appear to be worthy candidates for use in the expression verifier's

syntax analyzer. Two are top-down methods: recursive descent parsing

and its table-driven variant, predictive parsing. The others are bottom

up techniques: operator precedence parsing and LALR parsing.

A recursive descent parser is a collection of mutually recursive

procedures, each of which corresponds to a nonterminal symbol of the

grammar for the language to be parsed and recognizes strings which that

nonterminal derives. The procedures represent a kind of encoding of the

production rules for the grammar. A recursive descent parser attempts

to construct a derivation of the input string from the start symbol in

which, at each step, the leftmost nonterminal is expanded, that is,

72

replaced by the left-hand side of one of the production for which it is

the right-hand side. In order to avoid backtracking, the parser must be

able to choose (from among the several productions for which the non

terminal being expanded is the right-hand side) that production which

will put the parser on the path towards deriving the input string if in

fact it belongs to the language. The selection is made based upon an
. .

examination of the next one or more characters of the unexpended input

string.

Recursive descent parsers work with a subset of the context-free

grammars known as LL(k) grammars. These grammars are unambiguous and

free of left-recursion.6 They possess certain other properties which

guarantee that at any point in its reconstruction of the leftmost deriva

tion for some string in the language it recognizes, a recursive descent

parser will be able to select the one applicable production by examining

the next k characters of the input string. One potential difficulty in

using a recursive descent parser is that it is not always easy--or even

possible--to construct a suitable grammar for the language to be parsed

[4].

The major obstacle to employing a recursive descent parser in the

present application, however, is the technique's reliance on recursive

procedures. Although programming languages which support recursion have

been implemented for microcomputers, the cost of using recursive pro

cedures--in te~s of the storage required for the activation records for

pending invocations of procedures--is dangerously high in an environment

in which storage is at a premium.

Another top-down parsing technique, which Aho and Ullman [2], call

k-predictive parsing (or simply predictive parsing),7 is similar in

73

approach to recursive descent but avoids the use of recursive procedures.

Instead, a predictive parser maintains a stack which records the history

of its parsing decisions. A table--indexed on one dimension by the

nonterminal symbols of the grammar and on the other by strings of

terminals--guides the selection of the production to be used at each

step of the parse. This parsing table may be constructed using an
' .

algorithm which examines the production rules for the grammar to be

parsed. As with the recursive descent technique, the grammar must be

LL(k), for some k greater than or equal to one. For many applications,

an LL(l) grammar is adequate. A parser for a language defined by such a

grammar need examine only the first character of the unexpended input

string to detennine which production to use in expanding the leftmost

nontenninal in the sentential fonn it has thus far derived. The parsing

table which guides this determination is indexed by the nontenninals of

the grammar on one dimension and by the tenninal symbols on the other.

Thus for a grammar with a modest vocabulary, the table is quite compact

[2].

In addition to its relatively modest storage requirements, predic

tive parsing offers two benefits equally important in the present applica

tion. First, a predictive parser is fast--it runs in time proportional

to the length of the input string [2]. Second, such a parser is able to

isolate an error in the input in such a way that a reasonably precise

diagnostic message may be issued [3]. In short, a predictive parser is

well-suited to serve as the basis for the expression verifier's syntax

analyzer.

Appendix B lists the production rules of an LL(l) grammar which

describes the syntax of CBASIC expressions. One feature of this grammar

74

has important implications for the design of a syntax analyzer based on

a predictive parser: the production rules impose a rather unnatural-

though perfectly correct-~structure on expressions. In particular, the

grammar does not support the ordinary algebraic view of an expression as

a collection of subexpressions connected by operators. For example,

grammar 3.2--which is not LL(l)--has this relatively natural description '.
of an arithmetic term:

<term>::= <term>* <factor>

In the LL(l) grammar of Appendix B, the corresponding description is

mo re aw kw a rd:

<term>::= <factor> <term more>

<term more> : := mulop <factor> <term more>

!null

If this were merely an aesthetic matter, it would not be worth mention-

ing. In fact, the manner in which the LL(l) grammar breaks up subexpres-

sions makes semantic analysis--in the present application, verification

that the types of operands are correct--somev1hat complicated. To verify

that a multiplication does not involve mixed or illegal types, for

example, the semantic routine must have access to information about the

types of both of the operands. In a predictive parser, this information

does not appear together on the parser stack. Typically, if semantic

processing of complete subexpressions is required, the parser must

maintain auxiliary stacks for operators and operands. Such a scheme

would be necessary in the syntax analyzer for an expression verifier if

it were based on a predictive parser. It is worth nothing that in its

need to group together the operands and operator for each subexpression

in an expression, the semantic (type verification) processing of the

75

expression verifier resembles the intermediate code generation phase of

a compiler for a language which supports arithmetic and string expres

sions. Pyster [20] describes a code generation scheme for a compiler

which parses according to an LL(l) grammar. This scheme might serve as

a model for the semantic action routines for the expression verifier's

syntax analyzer.
. .

Certain non-backtracking bottom-up parsers for languages consisting

of expressions may be based on grammars resembling grammar 3.2. Such a

parser supports straightforward type verification, since it can call for

semantic processing when a complete subexpression is at the top of its

stack.

Bottom-up parsers attempt to construct a derivation for the input

string in reverse. The basic operations in such a parser are shifting a

symbol from the input string onto the parser stack and reducing a sequence

of symbols on the stack by substituting a nonterminal for the sequence,

where this nonterminal is the lefthand side of a production for which

the sequence of symbols is the right-hand side. When a series of parser

moves leaves the grammar's start symbol alone on the stack with no more

characters to be examined in the input string, the parser has accepted

the string. The fundamental problem in constructing a bottom-up parser

is devising a method for guiding the parse: given an arbitrary configura

tion of the parser, it is necessary to specify whether the parser is to

shift or to reduce (and, if it is to reduce, the parser must identify

the production to be used). Non-backtracking bottom-up parsers typically

make use of a parsing table to direct the parse. These parsing tech

niques employ various methods for constructing the tables and apply to

various subsets of the context-free grammars [3].

76

In operation-precedence parsing, the shift-reduce decision (as well

as the selection of the production by which to make a reduction when

this is required) is guided by three disjoint relations--called prece

dence relations--on the set of terminal symbols for the language to be

parsed. In the parse of an input string, the relation which obtains

between the top terminal symbol on the parsing stack and the first

symbol in the unprocessed portion of the input string determines whether

the parser is to shift the current input symbol onto its stack or to

reduce some sequence of symbols already at the top of its stack to a

single nonterminal. When a reduction is required, the precedence rela

tions whi.ch obtain between pairs of terminal symbols on the stack deter

mine the extent of the handle (that is, the sequence of grammar symbols

to be reduced). Given a grammar in which no two production rules have

identical right-hand sides, determining the handle amounts to selecting

the production by which the reduction is to be made [3].

Although operator precedence parsing applies to a limited subset of

context-free languages, languages which define sets of arithmetic expres

sions typically fall into this subset. On two of the three criteria of

importance in choosing a parsing method the expression verifier, speed

and compactness, the operator precedence technique excels.

Operator precedence parsers are typically fast, since there is no

backtracking involved. Execution time may be adversely affected by the

requirement that the handle be matched to the right-hand side of some

production when a reduction is called for, but unless the grammar is

quite large or the matching algorithm especially inefficient the parser

should perform satisfactorily.

77

Parsers employing the operator precedence technique have modest

storage requirements. Like the other types of parsers under considera

tion here, operator precedence parsers require a parsing stack and a

representation of the production rules for the grammar which generates

the language to be parsed. They require, in addition, some representa

tion of the precedence relations. A very compact scheme for storing '.
these entodes them into a pair of precedence functions; two vectors with

n integer entries each are sufficient to store the precedence information

for a language wih n terminal symbols. Unfortunately, this method

delays the detection of errors and complicates the problem of producing

adequate diagnostic messages. An alternative representation for the

precedence relations employs a two-dimensional array indexed along each

dimension by the terminal symbols of the grammar. Each entry in the

array indicates which, if any, of the three precedence relations obtains

between the pair of terminal symbols which index the entry [3]. This

method, while more demanding of storage space, takes advantage of the

full power of the parser to detect errors and i~ the technique of choice

in an application where error handling is of central concern.

Since predecence relations are defined only on the set of terminal

symbols, nonterminal symbols have no influence on the parse of an input

string. If the grammar for the language to be parsed contains single

production (that is, productions of the form A ::= B, where A and Bare

both nonterminals), an operator precedence parser may fail to accept a

string in the language because it fails to make an essential reduction

by a single production. This problem can be circumvented by adding to

the parser special code--peculiar to the grammar for the language being

parsed--to test, at each reduction made by the parser, whether a further

78

reduction by a single production is appropriate. Alternatively, one can

treat the nonterminals of the grammar as indistinguishable and use a

single symbol to represent any nonterminal on the parser stack. Then

single productions, since they are used to reduce one nonterminal to

another, are irrelevant. Using this scheme, one can be certain that the

parser will accept all strings in the language generated by the grammar, '.
but one cannot be sure that certain strings not in the language will not

also be accepted [2]. Since grammars for the arithmetic and string

expressions suitable for use with an operator precedence parser rely on

single productions to encode the rules for the associativity of binary

operators and for the order of eva1uation of subexpressions, any attempt

to use operator precedence parsing in the expression verifier must take

account of this problem.

An operator precedence parser detects syntax errors in a candidate

sentence in two distinct ways. First, it may find that no precedence

relation obtains between the topmost terminal symbol on its stack and

the current input symbol. In this case, the table storing the represen-

tation of the precedence relations might contain an entry which indicates

what action is to be taken to recover from the error. Second, the

parser could find, on making a reduction, that the handle it has isolated

matches none of the right-hand sides of the production rules of the

grammar. Here the central problem in error recovery is determining

which right-hand side the handle most nearly resembles [3].

Fortunately, the defective handles which may be isolated by an

operator precedence parser for a language consisting of arithmetic and

string expressions fall into a small number of categories. Typically

79

such defective handles reflect missing operands in the input string.

This is not surprising since in a typical expression grammar (e.g.,

grammar 3.2) the operands in a subexpression are represented by non

terminals (as in the production <term>::= <term>* <factor:>), and

nonterminals have no bearing on the parser's determination of the extent

of the hpndle. It is relatively easy to isolate these kinds of errors

and to take the appropriate actions to recover from them [3]. One class

of defective handles which a parser for CBASIC expressions might isolate

is infinite. These handles are found when a subscript or argument list

contains too many subscripts or arguments or when a list contains con

secutive commas. This condition is not difficult to detect, but produc

ing a meaningful diagnostic message in response to it adds complexity to

the syntax analyzer.8

In sum, the operator precedence technique is a reasonable choice of

parsing method for the expression verifier's syntax analyzer. It offers

a fast and compact parser. It has the disadvantage of requiring some

elaborate ad hoc extensions for handling single productions and for

processing certain kinds of errors.

LR parsing offers the most straightforward method for syntax analysis

in the expression verifier. Like the operator precedence technique, LR

parsing works with a grammar which reflects the natural structure of

expressions. But it does so with none of the awkwardness characteristic

of operator precedence parser--single productions pose no problem for an

LR parser, and error handling is completely consistent. The benefits of

LR parsing come at the price of somewhat larger parsing tables. Aho and

Ullman [2] describe the theory behind the technique; Backhouse [4]

offers a different and occasionally more lucid treatment of the topic.

80

Aho and Ullman [3] elsewhere provide a practical guide to constructing

LR parsers.

The lookahead--LR (LALR} technique offers considerable power (that

is, it can be applied to a large class of context-free languages} while

requiring relatively compact parsing tables. The most general LR method,

so-called canonical LR parsing, often requires tables so large--even for . .
language~ with a few dozen production rules--as to be impractical [3].

The present study, therefore, focusses on the LALR technique. In partic

ular, LALR(l} parsing, in which a parsing decision (the choice between

shifting a symbol from the input string onto the parsing stack and

reducing a sequence of symbols already on the stack} is guided by the

contents of the stack and the first character of the unexpended input

string, is to be explored here.

The grammar of Appendix A is an LALR(l) grammar. It is an unam-

biguous grammar which encodes all of the rules for the associativity of

binary operators and precedence rules (that is, rules for the order of

evaluation} for all operators. The numerous single productions serve

primarily to establish these rules. Without them, the grammar would be

ambiguous, and no ambiguous context-free grammar is an LR grammar. The

grammar of Appendix C, by contrast, is ambiguous, precisely because it

does not encode the precedence and associativity rules for the binary

arithmetic operators. It has fewer production rules and a smaller set

of nonterminal symbols than the grammar of Appendix A. The grammar of

Appendix C is of interest here because, despite its ambiguity, it can be

parsed by an LR parser. The ambiguous character of the grammar is

reflected by the fact that the algorithm for constructing LALR(l} parsing

tables detects conflicting parsing decisions in certain situations.

81

Specifically, because certain precedence and associativity rules are not

encoded into the grammar, it is sometimes not clear whether the parser

should reduce a subexpression on its stack or shift the next input

symbol (which, in the situations where the conflicts arise, is always a

binary arithmetic operator) onto the stack. The table-building algorithm

therefore attempts to insert two entries--one calling for a shift, the

other for a reduction--into one position of the table. It is possible

to base an LALR(l) parser on the grammar of Appendix C because it is

possible, based on the precedence and associativity rules given in the

definition of the expression language, to resolve the conflicts by

selecting the appropriate parsing table entry where the table-construc

tion algorithm finds two [3]. This technique does not apply to all

ambiguous grammars, but it works for the present application. The

advantage is that it saves storage space by reducing the number of

production rules (which must be stored, in some fonn, within the syntax

analyzer) and by reducing the size of the parsing tables.

Except for the backtracking methods, any of the parsing techniques

reviewed here represent reasonable alternatives for implementing a

syntax analyzer for the expression verifier. For this project, the

LALR(l) method, relying on the ambiguous grammar of Appendix C, will

provide the basis for the design. Its principal virtue lies not in

superior performance on the three criteria of importance to the expres

sion verifier--speed, compactness, and ability to provide adequate error

diagnostics--but in its naturalness. The LALR(l) grammar, unlike the

LL(l) grammar, reflects the structure of expressions in a way which

confonns to the ordinary algebraic division of expression into subexpres

sions and which readily supports the kinds of semantic processing required

82

in the present application. And, unlike the operator precedence tech

nique, LR parsing is not burdened with the need for~ hoc extensions to

permit the use of a grammar with single productions and to process

certain classes of errors. In brief, by selecting the LALR technique

for this application, the designer sidesteps--or permits the implementor

to sidestep--the need to work around the special problems posed by the
''

other methods.

The Semantic Actions

The syntax analyzer for the expression verifier is to be guided by

the syntax-directed translation scheme listed in Appendix D. The seman-

tic actions associated with the production rules implement three types

of processing: first, they include tests which verify that subexpresions

are of the correct type given the operations to be performed; second,

they provide a mechanism for establishing the attributes of undeclared

variables whenever their context makes this possible; and third, they

enable the syntax analyzer to determine whether the candidate expression

is valid as the target of an assignment or read operation.

Type checking employs an expanded version of the processing described

in Figure 2 for the model expression language. The greatest source of

additional complexity is the treatment of argument lists for CBASIC

built-in functions. Each such function requires a definite number of

arguments of the appropriate types in a prescribed order. The type

verification logic invoked when a reduction is made using one of the

productions

<factor> ::= ..iQ.. (<expression>),

<factor> ::= ..iQ.. (<expression>, <expression>), or

<factor> ::=id (<expression>, <expression>, <expression>)

must detennine what sort of subscript or argument list ..iQ.. requires.

This infonnation comes from the symbol table entry for the identifier

83

represented by id, information which the type checking routine obtains . . ~

either by accessing the symbol table or from data provided by the lexical

analyzer as part of the token string for the candidate expression. The

type checking routine must then ensure that the type of each expression

in the list within the parentheses is acceptable. The CBASIC function

MID$, for example, which returns a substring of its string argument,

takes an argument list consisting of a string expression followed by two

numeric expressions. The type verification logic must enforce this

requirement.

The syntax analyzer's handling of undeclared variables is based

upon the fact that the context in which such a variable appears often

makes it obvious what the variable's attributes must be if the candidate

expression is to be valid. The variable's position in a subscript or

argument list, or the operator being applied to the variable, or the

type of the variable's companion operand in a subexpression which joints

two operands with a binary operator, might serve as the clue which

establishes an undeclared variable's type. The number of dimensions for

the variable is easily ascertained from the subscript list, if any,

which follows the identifier.

The principal difficulty in establishing the attributes for indi

vidual undeclared variable is that the syntax analyzer has the informa-

tion which makes it possible to detennine a type only after it has

84

reduced the variable to a <factor>, a <tenn>, or some other nontenninal.

To put it somewhat differently, the syntax analyzer deals with subexpres

sions of indetenninate type and not directly with undeclared identifiers.

Consider, as an example, _the expressions

A * B

and

A * {B + C)

where A is declared to be a scalar numeric variable and B and C are

undeclared. In both cases, the syntax analyzer's first opportunity to

establish the type{s) of the undeclared variable(s) comes when it is

about to make a reduction using the production

<tenn> : : = <tenn> * <factor>.

At this point in the parse of the candidate expression, the translation

associated with <factor> which gives its type (and which is denoted by

<factor>.TYPE) has the value 11 indetenninate. 11 But because <factor>

represents a subexpression which is an operand of the arithmetic operator

*, its type must be numeric if the expression is to be valid. The

problem lies in taking this newly-acquired information about the subex

pression and applying it to the variables which it includes. From an

intuitive point of view, it is clear that in the case of the first

expression, <factor> is associated with the single variable B, while for

the second expression <factor> stands for the subexpression (B + C).

Thus for the first expression the syntax analyzer must record that B

must be a scalar numeric variable, and for the second it must note that

both B and C must be scalar numeric variables. The syntax analyzer must

be provided with a mechanism which can perform this sort of processing

in a systematic way.

85

The syntax-directed translation scheme of Appendix D supports such

a mechanism. It maintains a linkage between any nonterminal which

represents a reduced subexpression and the sequence of tokens which

constitute that subexpression using the translation fields FIRST and

LAST. These are pointers to the first and last tokens, respectively, in

the sequ~nce making up the subexpression. FIRST and LAST are kept on

the parsing stack, along with the nonterminal symbol itself and the

translation field TYPE. For any nonterminal on the stack whose TYPE has

the value "indeterminate," the sequence of tokens marked out by its

FIRST and LAST fields contains at least one token representing an unde

clared variable. Whenever the context makes it clear what the type of a

subexpression represented by such a nonterminal must be, this newly

acquired information applies to those identifiers represented by the

tokens between FIRST and LAST.

When a subexpression whose type has just been established from its

context consists of only a single token (namely, an undeclared variable),

the syntax analyzer need only mark the token by changing its type informa

tion field from "undeclared" to "must be string" or "must be numeric."

When the subexpression consists of several tokens of which more than one

represent undeclared variables, however, it is not clear which tokens

should receive the new type information. Fortunately, a very simple

rule applies: Whenever the type of a subexpression is established by

context, all of the subexpression's undeclared variables for which types

have not been established already receive the new type information.

This scheme is effective because the parser works in a bottom-up fashion,

analyzes the candidate expression according to its natural division into

subexpressions, and takes account of the precedence and associativity of

the operators.

86

In establishing the attributes for undeclared variables, the syntax

analyzer must check for inconsistent usage of the same undeclared name

within the candidate expression. In the input string

A* A (I),

for example, the name A is used for both a scalar variable and for an

array. If A has not been declared, the syntax analyzer will discover
' '

conflicting requirements for the attributes of A. In a case such as

this, the expression verifier's response should be to signal the incon

sistent use of the name rather than to prompt for a declaration.9 To

detect this sort of error, the syntax analyzer must maintain some record

of the fact that it has established attributes for an undeclared name.

Whenever it attempts to establish the attributes for an undeclared

variable, it must check that there is no prior inconsistent usage of the

name. Probably the most straightforward method for accomplishing this

is by creating a symbol table entry for a name when its attributes are

first established. The symbol table is consulted each time the attrib-

utes are about to be established for an undeclared name to ensure that

there is no inconsistency of usage.10

In order to test for inconsistent usage of undeclared names, the

syntax analyzer must have access to the names themselves and not merely

to the tokens emitted by the lexical analyzer. This linkage to the text

entered by the user is accomplished by requiring that the lexical ana

lyzer supply, as part of the information accompanying each token it

emits, a pointer to the beginning of the corresponding section of the

user's input string and the length of this section. The syntax analyzer

can determine the name associated with an identifier token by extracting

the appropriate substring of the input.

87

The third significant task accomplished by the semantic actions of

the syntax-directed translation scheme of Appendix D is the determina-

tion of the candidate expression's validity as the target of an assign-

ment or read operation. An expression may be so used if it consists of

a single scalar variable or a single reference to an element of an

array. The flag VALID AS TARGET will be set to "true" if the expression '.
is indeed valid as a target. The syntax analyzer relies on the fact

that any expression which may be used as a target has a rightmost deriva-

tion which begins

<expression>==> <relation>== <Simple expression>

==> <element>.

Thus the parse of any such expression ends with a sequence of reductions

by the production rules

<Simple expression> : :=<element>

<relation> ::=<simple expression>

<expression>::= <relation>.

Further, any expression which may be used as a target has a derivation

which makes use of at least one of the following production rules:

<element> : := id

<element> ::=id (<expression>)

<element> ::= jj_ (<expression>, <expression>),

<element> ::=id (<expression>, <expression>, <expression>).

The semantic actions set the flag VALID AS TARGET when any of these four

production rules is used to make a reduction. The flag's setting is

unchanged when any of the three single productions listed above is used.

The flag is reset when any other production is used. The result of the

actions is that the flag VALID_AS_TARGET is correctly set at the conclu-

sion of syntax analysis.

88

Summary of Design Decisions

The syntax analyzer for the expression verifier is to be based upon

an LALR(l) parser. Although other parsing techniques are reasonable

choices in this application, the LALR(l) method represents a natural and

straightforward approach to analyzing the syntactic structure of candi

date expressions.

Much important work is assigned to the semantic action routines

called by the parser. Testing for mixed mode operations and for compati

bility of operators and operands is performed by such routines. Semantic

actions play a central role in establishing the attributes of variables

which have not been declared previously. Comparatively simple semantic

actions are used to determine whether a candidate expression is valid as

the target of an assignment or read operation.

The implementation of a syntax analyzer according to the design

proposed here poses two significant challenges. First, the implementor

must work out specific error-handling strategies corresponding to each

empty entry in the parser's action table. Each such strategy involves

setting up an error message which conforms to the guidelines established

in Chapter II and recovering from the error (by altering the configura

tion of the parser) so that the remainder of the candidate expression

may be analyzed. Second, the implementor must code the semantic action

routines as compactly as possible. These routines have many responsibil

ities, and without considerable care in programming they could grow to

be unacceptably large.

89

The Lexical Analyzer

The lexical analyzer's function is to recognize the basic entities

of the expression language (identifiers, operators, and other symbols)

present in the candidate expression. For each such entity, the lexical

analyzer emits a single token. The syntax analyzer then parses the

string of tokens corresponding to the candidate expression rather than

the candidate expression itself. In the present application, the syntax

analyzer performs some semantic processing which requires more informa

tion than is provided by the tokens themselves; thus the lexical analyzer's

output includes, in addition to the tokens, information associated with

each token (for example, the attributes of an identifier).

The information requirements of the syntax analyzer dictate the

output of the lexical analyzer. For each basic entity it encounters,

the lexical analyzer must, of course, emit a token. The token may be a

small integer value which is a code known to the syntax analyzer and

which identifies what sort of entity which has been found. Along with

this, the lexical analyzer should indicate the position within the user

input string at which the entity begins and the length (in characters)

of the entity. This information establishes a link between the token

and the user's input. Such a link is useful in providing precise error

messages. When the token represents an identifier or a constant, the

syntax analyzer must have information about its type. When an identifier

token represents a CBASIC built-in function name, the type information

must indicate not only what type of value the function returns but also

must encode an indication of the types of arguments the function requires.

The type field supplied by the lexical analyzer may be a small integer

value. A range of these values would indicate a numeric-value entities;

90

another range, string-valued entities, yet another, entities of uncertain

type. For built-in functions, the type code could index a table giving

descriptions of valid argument lists. Finally, the syntax analyzer, in

its semantic processing, makes use of the number of dimensions declared

for an array and the number of arguments permitted for a function. This

information may be embedded in the type code, but processing will be

simplified if it is made available in a separate field.

Thus for each basic entity it encounters, the lexical analyzer

emits a package of information. Since the analyzer processes the entire

candidate expression, it often will emit more than one such package.

For space efficiency, storage for token packages should be allocated as

they are needed at execution time. The packages may be linked together

into a list, and the lexical analyzer need return to its caller only a

pointer to the head of this list. Figure 5 shows three types of nodes

which may appear on a list of tokens: one for identifiers, one for

constants, and one for other language entities (operators and "punctua

tion"). Four fields are common to all three types: LINK, which points

to the next token package on the list; TOKEN_CODE, which indicates the

kind of entity represented by the token; START, which gives the position

in the input string of the first character of the text corresponding to

the token; and LENGTH, which gives the length of the text corresponding

to the token. In addition, the nodes for identifier and constant tokens

include the field TYPE, which provides type information for the syntax

analyzer. The node for identifiers has, in addition, a field storing

the number of elements--if any--which must appear in a subscript or

argument list following the identifier.

91

'.

LINK LINK LINK

TOKEN CODE TOKEN CODE TOKEN CODE

START START START

LENGTH LENGTH LENGTH

TYPE TYPE

ELEMENTS

(a) Identifiers (b) Constants (c) Others

Figure 5. Nodes for the Token List Emitted by the
Lexical Analyzer

92

The elementary entities which may appear in a CBASIC expression-

identifiers, constants, operators, and other symbols--may be described

formally by regular grammars. They may therefore be recognized by

finite automata. The lexical analyzer for the expression verifier is to

be based upon a deterministic finite automaton which recognizes these

entities. The lexical analyzer must also include certain semantic

routines, associated with the various states of th~ automaton, which

enable it to collect the information to be placed into token packages.

The semantic routines may also test that entities in the input string

meet certain requirements not conveniently encoded into the automaton

itself (for example, the limits on the magnitudes of numeric constants).

Aho and Ullman [3] offer practical guidance in the implementation of

lexical analyzers based upon finite automata.

The lexical analyzer for the expression verifier requires some

sophistication in its handling of errors. On encountering an error in

the input string, it must continue processing until it encounters a

character which serves as a delimiter for the defective entity, set up

an error message (if an error with an equal or higher announcement

priority has not been encountered already), emit a token package, and

resume processing for the remainder of the input string. To implement

this error handling strategy, the automaton guiding lexical analysis is

to be provided with states in which the automaton, having found a defect

in an entity, scans the input string until it encounters a delimiter.

On encountering a delimiter, the automaton enters a state for which the

associated semantic action is a routine which sets up an error message

and adds a node to the token string.

93

An important feature of the present design for an expression veri-

fier is that no special tokens are required to represent defective

lexical entities. In constructing a token package for a defective

entity, the lexical analyzer uses the token code it would have supplied

had it found a correct version of the entity. Thus, on encountering the

defective variable name 11 customer_name 11 , the analyzer would emit an

identifier token. If the expression verifier found no other error with

greater priority for announcement, it would issue the error message set

up by the lexical anlyzer when it encountered the defective name.

There are two complications associated with this scheme for error

handling. First, there is the problem of assigning a type to a defec

tive identifier. Since it cannot have been declared, its natural type

is "undeclared." In order to save some unnecessary processing in the

syntax analyzer, however, it is probably best to distinguish defective

identifiers from well-formed but undeclared identifiers. This can be

done by creating a new type ("defective") which is treated as undeclared

but for which the processing involved in establishing attributes is

bypassed. Second, there may be invalid sequences of characters in the

input string which cannot be said to be "defective versions" of any of

the language 1s basic entities. There are sequences beginning with a

character which can begin no valid entity. There are at least two

alternatives for handling these:

1. The lexical analyzer could set up an error message but
emit no token package. The drawback here is that the
syntax analyzer may override this message with a complaint
about a missing entity.

2. The lexical analyzer could treat such sequences by assum
ing that they are defective instances of some class of
entities. In fact it could use the first character of
the sequence to determine to which class it would be
assigned. This means that the implementation must build

in assumptions about what the user intends by a sequence
beginning with a certain character.

94

The second alternative seems best. Although it may occasionally give

rise to a less than precise message, it does not effectively ignore the

invalid sequence and thus is less likely to produce confusion than the

first technique.

Implementing the lexical analyzer would require a substantial

effort. In addition to devising the finite automaton and programming it

as compactly as possible, the implementor must provide semantic routines.

The present discussion has indicated the basic technique to be used by

the analyzer and has specified how it is to present the results of its

processing to its caller, but much of the detail is left to the implemen-

tor.

Other Expression Verifier Routines

The syntax analyzer and the lexical analyzer perform the bulk of

the processing involved in determining the correctness of a candidate

expression. Three other routines--the variable declaration module, the

error message display module, and the verifier driver--are somewhat less

complex. They nevertheless merit some discussion.

The variable declaration module enables the user to specify the

attributes of a variable which has not been declared previously. More-

over, it restricts the user's choice of attributes to those which are

valid given the context within which the variable appears. The declara-

tion module is invoked after the lexical analyzer and syntax analyzer

have successfully processed the candidate expression. It traverses the

token string, stopping at each token not already declared to obtain a

declaration. At any point the user may refuse to supply a declaration

and thus abandon the candidate expression.

95

In determining what choices of attributes are appropriate for an

undeclared variable, the module relies primarily upon information col

lected by the syntax analyzer from the variable's context within the

candidate expression. This information is recorded in the token package

associated with the variable and includes the type--numeric or string-

and the number of dimensions (zero for a scalar) which the variable must

have.

If the type of the expression as a whole is indeterminate, then it

must contain at least one variable whose type cannot be determined from

its context. In this case, the declaration module has no information

from the syntax analyzer upon which to base a restriction of the choice

of type for the variable. There is, however, another source of informa

tion. If the calling routine has specified in advance what the type of

the expression must be, this is sufficient to establish the type for any

variable within the candidate expression whose type cannot be established

from context. Moreover, even if the caller does not restrict the type

of the expression, once the user makes a declaration for the first

variable--where the choice of type is unrestricted--the type of the

expression as a whole is established. Consequently any other undeclared

variables for which the syntax analyzer could provide no type informa

tion now have their types established as well.

The foregoing possibilities for processing undeclared variables in

an expression of indeterminate type rest on the following principle: In

an expression of indeterminate type, the types assigned to undeclared

variables whose types have not been established by their contexts must

match the type ultimately taken on by the expression as a whole. Thus,

for example, if the caller requires that an expression be string-valued,

96

but the user's entry is of indeterminate type, the variable declaration

module must require that all undeclared variables whose types are not

otherwise detennined by context be of type string. The principle holds

because every expression of indeterminate type fits one of the following

descriptions:

1. It consists of a single undeclared scalar variable or of
a reference to an element of an array which has not been
declared. Any undeclared variable in the subscript list
for an array will have its type established by context.
Thus if an expression falls into this category it contains
exactly one undeclared variable whose type cannot be
established from its position in the expression. Clearly
the type assigned by the user to this undeclared variable
establishes the type for the expression as a whole.

2. It consists of subexpressions of indeterminate type
joined by the binary operator +. Such an expression can
be viewed as a series of subexpressions matching the
description of paragraph 1 linked by+ operators. Since
the operator is associative and since it requires its two
operands to be of the same general type (both numeric of
both string), it follows that all undeclared variables
whose type is not otherwise established by context must
be assigned the same type and that this will be the type
of the expression as a whole.

The happy consequence is that the variable declaration module is always

able to guide the user's choice of attributes for undeclared variables

in such a way that the resulting expression is certain to be correct.

No additional calls to the syntax analyzer are required to confirm its

validity.

The error message display routine has the responsibility for issu-

ing a diagnostic message when an error has been encountered in a candi-

date expression. In producing a message, the display routine will rely

on a standard text used for all occurrences of the type of error in

question and often also on information which applies specifically to the

current instance. The standard texts for diagnostic messages are to be

stored in a disk file. Information specific to the current candidate

97

expression is to come from an error information record accessible to all

expression verifier routines. On encountering an error, a verifier

routine consults this record to determine whether an error with an equal

or higher priority for announcement has already been detected. If not,

the routine enters a code for the new error into the record. It may

also enter information which locates the error more precisely; typically

this takes the form of the positions and lengths of substrings of the

user's input.

The format of the diagnostic messages depends greatly on the type

of user/program interaction employed by the program generator. If the

generator makes use of the full CRT screen and takes advantage of cursor

addressing and rudimentary graphics capabilities, an error message from

the expression verifier is likely to consist of a standard text displayed

at some position on the screen with highlighting of the appropriate

substrings of the user's input. If, by contrast, the program generator

works in a line-oriented fashion, the error message will consist of a

standard text into which substrings of the current candidate expression

are inserted. The former method is probably more convenient for the

user. The question of which is to be used, however, is to be answered

by the designer of the entire program generator. The decision on this

point has little consequence for the expression verifier except as it

influences the operation of the error display routine.

The driver routine for the verifier is quite straightforward in its

operation. The driver logic is described in a very high level pseudo

code in Figure 6. Of particular importance is the fact that only two

overlays--the lexical analyzer and the syntax analyzer--must be loaded

from disk during the processing of a valid expression. Where there is a

call lexical analyzer;
call syntax analyzer;

if expression violates caller's requirements for type or for validity
as target of read or assignment then

set expression type code !Q. "violates-requirements";

elseif an error (other than undeclared variable) has been detected
then

call error message display routine;
set expression type code 1Q. "invalid";

else

if there are undeclared variables in the expression then
call variable declaration module;

enCITT;

.if. user has abandoned the expression then
set expression type code to "user-abandoned";

end if;

endif;

Figure 6. The Expression Verifier Driver Logic

98

99

defect--either an unrepairable error or one or more undeclared variables-

a third overlay must be loaded. No procedure call which involves loading

an overlay is embedded in a loop. Thus while processing an expression

is likely to introduce a delay noticeable to the user, the time devoted

to loading overlays is kept to the minimum one could expect, given the

space constraints within which the verifier must operate.

ENDNOTES

lA consequence of this is that moving the program generator system
to a larger machine--perhaps a 16-bit microcomputer with 128K or 256K
bytes of primary storage--will not affect the generator's features
significantly. The extra storage will best be used not to add more
capabilities to the generator but to reduce the reliance on overlays and
thus improve response time. One attractive possibility would be to let
the entire expression verifier system reside permanently in primary
storage, so that its processing would not be slowed at all by the overlay
mechanism.

21t is conceivable that this alternative approach could be imple
mented without insisting that the lexical analyzer and syntax analyzer
be fully co-resident in primary storage. This would require breaking
the syntax analyzer into two segments--one which called the lexical
analyzer and which therefore could not share its space in primary storage,·
and one which made no reference to the lexical analyzer and which there
fore could share its space. The deffect in this scheme is that it
requires two loads from disk to primary storage for each token in the
input. This represents an exorbitant time penalty, and thus the approach,
though conceivable, is not practical.

3This translation scheme is designed to be used in conjunction with
a bottom-up parser, that is, with a parser which attempts to construct a
derivation of the input string in reverse. The semantic actions are
appropriate only for such a parser.

4The sizes of the LALR(l) parsing action tables illustrate this
growth. For grammar 3.2, the table has 72 entries [3]. The correspond
ing table for grammar 3.1 requires 154 entries.

5The research supporting this project included numerous attempts to
construct an LL(l) grammar for CBASIC expressions which incoreorated the
rules for identifier types. None was successful. Backhouse L4] discusses
the problem of encoding type rules into LL(k) grammars and gives a
simple example which, he notes wrily, "asserts that no programming
language of any complexity can be LL." Backhouse suggests that type
rules be left out of the formal definition of the syntax of expressions
so that LL parsing may be used in compilers for practical languages.

6An ambiguous grammar sometimes may be used as a basis for a recur
sive descent parser if the recursive routines are written to avoid the
conflicting parsing decisions which stem from the ambiguity.

7The tenn "predictive parsing" is sometimes used with a more general
sense to include both recursive descent and the table-driven method
described here.

100

101

BA grammar for CBASIC expressions which is suitable for use with an
operator precedence parser will include a production of the fonn:

<factor>::= .iQ. (<expression>, <expression>, <expression>}
The implies that that the precedence relation , = , obtains. This
means, in turn, that if the topmost tenninal on the stack is a comma and
the current input symbol is also a comma, the parser is to shift the
current input onto the stack. The parser cannot count commas--it shifts
no matter how many commas are already on the stack. And since nontermi
nals do not enter into parsing decisions, the parser is indifferent as
to the presence of an [expression] between commas.

The condition is easily detected. It is indicated whenever the
parser f,nds that a handle beginning with "id (", ending with"}", and
containing at least two commas matches none-Of the right-hand sides of
the production rules of the grammar. Recovery is also straightforward-
the parser simply makes the reduction to <factor>. Detennining the
nature of the error precisely enough for diagnostic purposes, however,
requires considerable testing, since the problem could involve one or
more of the following:

1. The argument or subscript list contains more than two
commas.

2. The argument list--in the fonn in which it appears in the
handle--contains fewer than three <expression>s.

3. In addition to one or both of the above, there may be a
semantic problem (for example .iQ. might be a scalar vari
able}.

A sizeable amount of code is needed to isolate the problem so that a
reasonable error message is issued.

9Such an error would have an intennediate priority for announcement
in the event of multiple errors.

10Care must be taken to purge these entries from the symbol table if
the user decides not to make a declaration for the corresponding names
or in the event that an unrepairable error in the candidate expression
is encountered.

CHAPTER IV

SUMMARY AND RECOMMENDATIONS

FOR FURTHER STUDY

Summary

An expression verifier in an interactive program generator is

responsible for determining whether a candidate expression supplied by

the generator's user conforms to the generator's rules for forming

expressions. This study has considered some of the issues facing the

designer of an expression verifier for a microcomputer-based program

generator intended for users who are not experienced programmers. Such

a verifier must be capable of responding gracefully to errors in expres

sions but must make only modest demands on the microcomputer's limited

primary storage space.

The error handling facilities of the verifier must provide, at the

minimum, for diagnostic messages which accurately diagnose any defects

in an expression and which isolate those portions of an expression where

the errors lie. In addition, the verifier should incorporate a coherent

scheme for signalling multiple errors in an expression; a system in

which the errors are announced one at a time, with the most obscure

being the first to be brought to the user's attention, is well-suited to

the needs of the user and admits of a practical implementation. Finally,

the verifier should permit the user to provide declarations for unde

clared variables which appear in an otherwise valid expression. The

102

103

verifier should deduce the attributes of such variables wherever their

contexts in the expression permit and should use this information to

constrain the user's options in making declarations.

In order to reduce the verifier's requirements for primary storage

space, the verifier system must make use of the target machine's overlay

mechanism. This can be accomplished by dividing the verifier's process

ing into two phases. The first, lexical analysis, identifies each of

the basic components of the expression (that is, its identifiers, con

stants, operators, and "punctuation" symbols) and emits a package of

information for each of these tokens. The second phase, syntax analysis,

parses the string of tokens produced by lexical analysis. The lexical

analyzer and syntax analyzer normally reside on disk; each is called

into primary storage, as needed, by the verifier's driver routine. The

two modules are assigned to the same region of primary storage. The

error-processing modules are also disk-resident and are loaded into

primary storage only as they are needed.

The lexical analyzer can be based upon a finite state automaton

which recognizes the various elementary entities of the expression

language. The syntax analyzer can be built around a parser for the

expression language. The designer of the syntax analyzer must resolve

two issues. First, there is the question of how to test that the oper

ands in the expression are of the appropriate data types. The type

rules for the expression language could be encoded into a grammar for

the language. Alternatively, the syntax analyzer might invoke semantic

routines to test for compliance with the type rules as each subexpres

sion is successfully parsed. Second, the designer must select from

among the many parsing techniques now available. For the present verifier,

104

a syntax analyzer using semantic routines for type checking and based

upon an LR parser is a reasonable choice.

Recommendations for Further Study

This project included no attempt to implement an expression verifier.

An implementation would represent a reasonable extension of the work
' .

presented here. It would involve, among other tasks, the following:

1. the design of error messages for the various classes of
errors, following the guidelines presented in Chapter II;

2. the construction of error recovery subroutines in the
lexical and syntax analyzers to support the error handling
specified in Chapter II; and

3. the construction of a finite state automaton to serve as
the basis for the lexical analyzer.

The expression language accepted by the verifier specified here

does not allow for references to user-defined functions. Although these

functions are of questionable value given their reliance on global

variables, they are part of the CBASIC language and might be supported

by a program generator system. They pose a problem for the expression

verifier because their argument lists may consist of an arbitrary number

of expressions of arbitrary type. Although the outline of solution to

this problem is not difficult to devise, implementing it efficiently is

matter for further investigation.

Perhaps the most important area of further study suggested by the

work presented here involves empirical tests of alternative solutions to

problems posed by the user interface. The present study reasoned from

experience to settle questions about how the verifier would respond to

errors. Quantitative, empirical investigations might suggest better

answers to these questions, especially in two cases.

1. When a candidate expression contains more than a single
error, how are these errors to be reported to the user?

2. When the verifier discovers an undeclared variable,
should it offer the user the option of changing the
variable name (to correct a misspelling, for example) as
well as the option of supplying a declaration?

105

The difficulty with empirical tests is that one must select some crite-

rion on the basis of which to compare alternative solutions. For error

handl ing mechanisms, this choice is difficult because there are several

plausible criteria. One might judge the effectiveness of such a mecha-

nism by counting how many attempts the user must make, on average, in

order to make a successful correction. Alternatively, one might measure

how frequently a user abandons a candidate expression the face of some

error; this would identify schemes which are confusing or intimidating.

Or, again, one might evaluate the effectiveness of an error-handling

scheme as a teaching mechanism by measuring how quickly and to what

extent novice users learn to avoid the error the scheme handles. This

list of possibilities could be extended almost indefinitely. Thus, if

empirical studies of the expression verifier 1 s user interface are to be

undertaken, they must be accompanied by serious reflection about what

constitutes a "good'' interactive error-handling technique.

REFERENCES CITED

[l] Aho, A. V. In Yeh,

[2] Aho, A. V. and Ullman, J. D. The Theory of Parsinl Translation,
and Compiling, Vol. 1: Parsing. Prentice-Ha f, Inc., Engle
wood Cliffs, N.J., 1972.

[3] Aho, A. V. and Ullman, J. D. Principles of Compiler Design.
Addison-Wesley Publishing Company, Reading, Mass., 1977.

[4] Backhouse, R. C. Syntax of Programming Languages: Theory and
Practice. Prentice-Hall International, Englewood Cliffs,
N. J., 1979.

[5] Balzer, R. Transformational implementation: an example. IEEE
Transactions on Software Engineering, SE-7, 1 (Jan. 19~
3-14.

[6] Compiler Systems, Inc. CBASIC: A Reference Manual. Compiler
Systems, Inc., Sierra Madre, Ca., 1980.

[7] Conway, R. W. and Wilcox, T. R. Design and implementation of a
diagnostic compiler for PL/I. Communications of the ACM, 16,
3 (Mar. 1973), 169-179.

[8] Denning, P. J. Smart editors. Communications of the ACM 24, 8
(Aug. 1981), 491-493.

[9] Green, C. The design of the PSI program synthesis system. In
Proceedings of the Second International Conference on Software
Engineering. IEEE Computer Society, Long Beach, Calif., and
Association for Computing Machinery, New York, N.Y., 1976,
4-18.

[10] Green, C. The PSI program synthesis system--an abstract. In
Proceedings of the 1978 National Computer Conference. AFIPS
Press, Montvale, N.J., 1978, 673-674.

[11] Heidorn, G. E. Automatic programming through natural language
dialogues: a survey. IBM Journal of Research and Development,
20, 4 (July 1976), 302-313.

[12] Johnson, R. C. Automated software development eliminates applica
tion programming. Electronics,55, 2 (June 2, 1982), 129-140.

106

107

[13] Kuck, D. J. The Structure of Com uters and Com utations, Vol. 1.
John Wiley

[14] Lerner, E. J. Automatic programming. IEEE Spectrum, 19, 8 (Aug.
1982), 28-33.

[15] Manna, Z. and Waldinger, R. Studies in Automatic Pro,ramming Logic.
Elsevier North-Holland, Inc., New York, N.V., 19 7.

[16] Manna, Z. and Waldinger, R. Synthesis: dreams ==>programs.
· IEEE Transactions on Software Engineering, SE-5, 4 (July

1979), 294-328.

[17] Manna, Z. and Waldinger, R. A deductive approach to program syn
thesi$. AC~ T0~nsacti~ns on Programming Languages and Systems,
2, 1 lJan. 98 , 90-1 4.

[18] Prywes, N. S. Automatic generation of computer programs. In
Rubinoff, M. and Yovits, M. C., eds., Advances in Com~uters,
Vol. 16. Academic Press, New York, N.V., 1977, 57-12.

[19] Prywes, N. S. Pnueli, A., and Shastry, S. Use of a nonprocedural
specification language and associated program generator in
software development. ACM Transactions on Programming Lan
guages and Systems, 1, 2 (Oct. 1979), 196-217.

[20] Pyster, A. B. Compiler Design and Construction. Van Nostrand
Reinhold Company, New York, N.V., 1980.

[21] Raphael, B. The Thinking Computer: Mind Inside Matter. W. H.
Freeman and Company, San Francisco, Ca., 1976.

[22] Roth, R. L. Program generators and their effect on programmer
productivity. In Proceedings of the 1982 National Com~uter
Conference. AFIPS Press, Arlington, Va., 1982, 351-35.

[23] Shneiderman, B. Human factors experiments in designing interactive
systems. Computer, 12, 12 (Dec. 1979), 9-19.

[24] Teitelbaum, T. and Reps, T. The Cornell Program Synthesizer: a
syntax-directed programming environment. Communications of
the ACM, 24, 9 (Sept. 1981), 563-573.

[25] Teitelbaum, T. Reps, T., and Horwitz, S. The why and wherefore of
the Cornell Program Synthesizer. ACM SIGPLAN Notices, 16, 6
(June 1981), 8-16.

[26] Weizenbaum, J. Computer Power and Human Reason: From Judgment to
Calculation. W. H. Freeman and Company, San Francisco, Ca.,
1976.

APPENDIX A

A CONTEXT-FREE GRAMMAR FOR CBASIC EXPRESSIONS

The following are the production rules for an unambiguous grammar

which defines the syntax of CBASIC expressions. It is an LALR(l) grammar

which encodes the rules for precedence and associativity of operators

but which does not take account of the rules governing the types of

variables and constants. In the notation employed here as throughout

the appendices, nonterminal symbols of the grammar are enclosed in

pointed brackets (<,>), and terminal symbols more than one character in

length are underlined. Multiple-character terminal symbols typically

stand for a class of CBASIC keywords or operator symbols. These classes-

which in a typical expression verifier would be recognized by the lexical

analyzer--are defined below.

<expression> ::=<expression> orop <logfact>
l<logfact>

<logfact> ::= <logfact> and <logprim>
l<logprim> -

<logprim> ::=not <logelt>
l<logelt>

<logelt> ::=<Simple expresson> relop <Simple expression>
!<simple expression>

<Simple expression> ::=<Simple expression>+ <term>
<simple expression> - <term>
~<term>
<term>

<term> : : = <term> mul op <factor>
I <factor>

108

<factor> : :=<element>" <factor>
I< element>

<element> : := (<expression>)

I id
id (<expression>)
id (<expression>,<expression >)
"'10 (<expression >,<expression >,<expression>)
constant

In :the foregoing, the terminal symbol 11+11 represents the binary

109

addition or concatenation operator, and 11 - 11 represents the binary sub-

traction operator. The terminals orop, and, not, relop, sign, and mulop

stand for the following classes of CBASIC operators:

orop:
and:
not:
rel op:

sign:
mu lop:

OR , XOR
AND
NOT
LT , LE , EQ , GE , GT , NE ,
< '< =' =' > =' > '<>
unary -, unary +
*' I

The terminal symbol .is!. stands for any identifier, be it a user-supplied

variable name or the name of a CBASIC built-in function. The terminal

symbol constant stands for any CBASIC constant, integer, real, or string.

Finally, the terminal symbols 11 "' 11 , 11 (11 , 11) 11 , and 11 , 11 stand for themselves;

that is, they are symbols which may appear in CBASIC expressions.

Note that the unary and binary versions of 11 +11 and 11 - 11 may be

distinguished easily be a lexical analyzer using one-token look-behind.

If the previous token represents an identifier, constant, or closing

parenthesis, a 11 +11 or II II is binary; otherwise, a 11 +11 or 11 - 11 is unary.

APPENDIX B

AN LL(l) GRAMMAR FOR CBASIC EXPRESSIONS

The following are the production rules for an LL(l) grammar which

defines the syntax of CBASIC expressions. Like the grammar of Appendix

A, this grammar encodes the rules for precedence and associativity of

operators but not those governing the types of identifiers and constants.

The notational conventions and the classification of terminal symbols

are the same as for Appendix A, with the additional convention that the

symbol null stands for the null string.

<expr> ::= <logfact><expr more>

<expr more> ::= orop <logfact><expr more>
I null

<logfact> ::=and <logprim><logfact more>
1null

<logprim> ::=not <logelt>
!<i'Ogel t>

<logelt> ::=<Simple expr><logelt more>

<logelt more> ::= relop <logelt more>
I null

<Simple expr> ::= ~ <term><Simple expr more>
l<term><simple expr more>

<simple expr more> ::= + <term><simple expr more>

I - <term><simple expr more>
null

<term > : : = <factor>< term more>

<term more>::= mulop <factor><term more>
I null

110

<factor> : := <element><factor more> ,

<factor more> : : = ,.. <e 1 ement><factor more>
I null

<:element>::= (<expr>)
constant
id <e 1 ement more>

<element more> : := (<sublist>)
I null

<sublist>::= <expr><Sublist more>

<Sublist>::= ,<expr:><sublist more>
I null

111

APPENDIX C

AN AMBIGUOUS GRAMMAR FOR CBASIC EXPRESSIONS

The following are the production rules for a grammar for CBASIC

expressions. The grammar encodes the precedence rules for the unary

operators (signs and the logical negation operator) and establishes the

precedence of the binary arithmetic operators over the logical operators.

It does not encode the rules for associativity of binary operators, nor

does it establish the precedence hierarchy within the classes of arith-

metic and logical operators. The grammar is suitable for use with an

LALR(l) parser if the conflicting parsing table entries detected by the

LALR table-building algorithm are resolved in such a way that the correct

precedence and associativity rules are established. The notational

conventions are those of Appendix A, with some of the tenninal symbols

changed.

<expression> •• = <expression> logop <expression>

lnot <relation>
<relation>

<relation> ··=<Simple expression> relop <Simple expression>
!<Simple expression>

<Simple expression> ::=sign <element>
l<elemenh

<element> ::=id
lid(<expression>)
id(<expression>,<expression>)
id(<expression>,<expression>,<expression>)
constant
<element> + <element>
<element> arithop <element>
(<expression>)

112

113

In the foregoing, the tenninal symbol 11 +11 represents the binary

addition or concatenation operation. The tenninals logop, not, relop,

sign, and arithop represent the following classes of CBASIC operators:

OR , XOR , AND
NOT

l ogop:
not:
reTop: LT , LE , EQ , GE '

< '< =' =' > =' > ' <>
sign: unary +, unary -
arithop·:· binary -, *, I,"

GT , NE ,

Other tenninal symbols have the same interpretation as in Appendix A.

The method for distinguishing between the binary and unary versions of

11+11 and 11 - 11 given in Appendix A applies here as well.

APPENDIX D

A SYNTAX-DIRECTED TRANSLATION SCHEME

FOR VERIFYING CBASIC EXPRESSIONS

The syntax analyzer for the expression verifier calls semantic

action routines to check the types of operands in expressions, establish

the types of undeclared variables when the context permits, and to

determine if the candidate expression is valid as the target of an

assignment or a read operation. The syntax-directed translation scheme

described here is based upon the grammar of Appendix C. The notational

conventions for the production rules are unchanged. The semantic rou

tines associated with a production are sketched in a pseudo-code form.

The pseudo-code has a syntax similar to that of many procedure-oriented

programming languages. In lists of formal parameters or actual param-

eters, a symbol of the form <nonterminal> or terminal represents a data

aggregate holding all of the information stored on the parser stack for

the corresponding grammar symbol; in addition to the symbol itself, this

includes the fields TYPE, FIRST, and LAST.

<express ion >Ill : : = <expression >1 l ogop <express i on>2

[call PROCESS_BINARY_SUBEXPRESSION

(1ogop,<expression>l,<expression>2,<expression>lll);J

<expression>::= not <relation>

f call PROCESS_UNARY_SUBEXPRESSION ?
(not,<relation>,<expression>); l

114

<expression>::= <relation>

[call PROCESS_SINGLE_PRODUCTION
(<relation >,<expression>);]

<relation> ::=<simple expression>l relop <simple expression>2

[call PROCESS_BINARY_SUBEXPRESSION
(rel lp,< simple express ion> 1,< simple express i on>2,
<re ation>); J

<relation>::= <simple expression>

f call PROCESS_SINGLE_PRODUCTION
(<simple express ion> ,<relation>); J

<simple expression> : : = 2i.9.!!_ <element>

[call PROCESS_UNARY_EXPRESSION
(sign,<element>,<simple expression>); J

<simple expression> ::=<element>

[call PROCESS_SINGLE_PRODUCTION
(<element>, <Simple expression>); J

<element> : : = id

[call ~ROCE~S_IDENTI~IER
C~.E_,~,.!..Q_.FIRST,.!..Q_.LAST,----,----,----,<element>);1

<element> ::= .i.£(<expression>)

115

[call ~ROCE~S_IDENTIFIER .
(.!..Q_,l,.!..Q_.FIRST,).LAST,<express10n>,----,----,<element>);}

<element> ::= .i.Q_(<expression>l,<expression>2)

[call PROCESS IDENTIFIER
--(.i.Q_, 2, id:-FIRST,). LAST ,<express i on>l, <express i on>2,

----,<element>); J
<element> ::= .iQ.(<expression>l,<expression>2,<expression>3

{call PROCESS IDENTIFIER
--(_:i.Q.,3, id:-FIRST,) .LAST ,<express ion>l, <express i on>2,

<expression>3,<element>); J
<element> : := constant

[call PROCESS SINGLE PRODUCTION
--(constant,<element>); J

<element>¢ : := <element>l + <element>2

[call PROCESS BINARY SUBEXPRESSION
--(+,<element >1,<el ement >2 ,<element>¢); j

<element>¢ ::=<element>! arithop <element>2

f call PROCESS_BINARY_SUBEXPRESSION
(arithop, <element >1, <e 1 ement >2,<e1 ement>¢); ~

<element>::= (<expression>) ..
[<element>. TYPE := <expression>.TYPE;

<element>.FIRST := (.FIRST;
~lement>.LAST :=).LAST;
VALID_AS_TARGET := false; J

116

The bulk of the semantic processing is perfonned by the routines

described below. Each routine performs the processing required by one

class of productions.

PROCESS BINARY SUBEXPRESSION:
procedure (operator,<subexprl>,<subexpr2>,<result>);

if operator = 11arithop 11 QI. operator = 11 logop 11 then

if either <Subexprb.TYPE or <Subexpr2>.TYPE is "string" then
set up error message; /* String found where numeric required */

endif;

for each of <Subexprl> and <Subexpr2> do;
j_f_ the type of the subexpression is "indeterminate" then

set types for all undeclared variables in the subexpression
whose types have not already been established to "must be
numeric";

endif;
end for;

<result>.TYPE := 11 numeric 11

else /* operator = 11 +11 or operator = "relop" */

j_f_ both <subexprl>. TYPE and <Subexpr2>. TYPE are "indetenninate" then
<result>.TYPE := 11 indeterminate 11 ;

elseif only one of <subexprl>.TYPE and <Subexpr2>.TYPE is
"indeterminate" then

<result>.TYPE := (type of the subexpression for which TYPE is
determinate);

set types for all undeclared variables (for which the type has
not previously been established) in the subexpression of indeter
minate type to "must be (type of the subexpression for which TYPE
is determinate)";

elseif <Subexprl>.TYPE f <SUbexpr2>,TYPE then
<result>.TYPE := 11 indeterminate 11 ; --

set up error message; /* Mixed mode */

else /* <SUbexprl>.TYPE = <SUbexpr2>.TYPE */
if operator = 11 relop 11 then

<result>.TYPE := 11 numeric 11 ;

else /* operator = 11+11 */
<result>.TYPE :- <subexprl>.TYPE

end if;

end if;·

end if;

result .FIRST := subexprl .FIRST;
result .LAST := subexpr2 .LAST;

VALID AS TARGET := false;

return;

end PROCESS_BINARY_SUBEXPRESSION;

PROCESS UNARY SUBEXPRESSION:
procedure (operator,<subexpr>,<result>);

if <Subexpr>.TYPE = 11string 11 then
~set up error message; /* String found where numeric required */

e 1 seif <Subexpr>. TYPE = 11 i ndetermi nate 11 then
set types for all undeclared variables in the subexpression whose
types have not already been established to "must be numeric";

endif;

<result>.TYPE := 11 numeric 11 ;

<result>.FIRST := operator.FIRST;
<result>.LAST := <subexpr>.LAST;

VALID AS TARGET := false;

return;

end PROCESS_UNARY_SUBEXPRESSION;

PROCESS SINGLE PRODUCTION:
procedure (<subexpr>,<result>);

<result>.TYPE := <subexpr>.TYPE:
<result>.FIRST := <subexpr>.FIRST;
<result>.LAST := <Subexpr>.LAST;

117

return;

end PROCESS_SINGLE_PRODUCTION;

PROCESS IDENTIFIER:
proceaure (ident,elements,first token, last token,<subexprl>,

<Subexpr2>,<subexpr'"'3>,<result>J;

if ident.TYPE = "undeclared" then
-ident.ELEMENTS :=elements;--
endif;

118

if elements 1 number of subscripts/arguments expected for ident then
set up error message; /* Wrong number of subscripts or arguments */

else

if elements > ~ then

for each subscript/argument subexpression do;

.if the subexpression is of indetenn.inate type then
set TYPE for subexpression to "(type required by ident)";
set types for all undeclared variables in the subexpression
whose types have not already been established to "(type
required by ident)";

elseif the subexpression is not of the type required by ident
then
---set up error message; /* Subscript/argument of wrong type */
end if;

end for;

endif;

end if;

<result>.TYPE := if ident is a function then
-type returned by funct1on
else
---icrent. TYPE;

<result>.FIRST := first_token;
<result>.LAST := last_token;

VALID AS TARGET := true;

return;

end PROCESS_IDENTIFIER;

VITA

John Frederic Lucas

Candidate for the Degree of '.
Master of Science

Thesis: AN EXPRESSION VERIFIER FOR AN INTERACTIVE PROGRAM GENERATOR

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Palo Alto, California, February 14, 1955,
the son of John P. and Marilyn J. Lucas.

Education: Graduated from Cortez High School, Phoenix, Arizona, in
June, 1971; received Bachelor of Arts degree in Chemistry and
in Religion from Claremont McKenna College in 1975; received
Master of Arts degree in Religion from Claremont Graduate
School in 1980; completed requirements for the Master of
Science degree at Oklahoma State University in December, 1982.

Professional Experience: Research assistant, Claremont Graduate
School, 1978-79; research assistant, Center for Process Studies,
School of Theology at Claremont, 1979-80; graduate teaching
assistant, Department of Computing and Information Science,
Oklahoma State University, 1980-81; research assistant, Time
Management Software Incorporated, 1981-82.

