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CHAPTER I 

INTRODUCTION 

Interest in alcohol fuels as an alternate energy 

source and as a potential new agricultural industry has 

expanded enormously in the last few years. 

Fuel ethanol may be produced from sugar and starch base 

feedstocks. In order that the yield of ethanol be maxi

mized, it is imperative that process reaction conditions 

such as pH and temperature be optimized and maintained 

within narrow limits (25). 

Ethanol production consists of three major stages: the 

formation of a solution of fermentable sugars, saccharifica

tion, the fermentation of sugars to ethanol, and the distil

lation of ethanol (8). Different raw materials require 

variations in the initial part of the first production step 

-- the processing of the raw material to ultimately obtain 

fermentable sugars. Grain or other starch containing 

materials first require a reaction of starch with water 

(hydrolysis) in the presence of enzymes to produce a simple 

sugar solution. The second step -- fermentation -- is the 

same for all feedstocks and utilizes yeast to convert sugar 

to ethanol and carbon dioxide. The fuel alcohol is then 

obtained by distillation of the ethanol-water mixture (24). 

1 



Energy balances during ethanol production is still 

widely disputed. Recent advances in process technology, 

along with well designed plants enable one to produce 

anhydrous ethanol with a process energy input of approxi-

mately 40,000 Btu per gallon of ethanol (7). An additional 

40,000 Btu per gallon (7) are required to grow, harvest and 

transport the grain feedstock, resulting in total production 

energy requirements of 80,000 Btu per gallon (7). The 

energy contained in a gallon of anhydrous ethanol is 84,000 

Btu per gallon (7). 

It is, therefore, necessary to find ways of reducing 

energy input in production of ethanol. Parkinson (25) and 

Hartline (12) looked into some alternatives to conventional 

distillation processes; as an example a solvent extraction 

process for removing water from ethanol promises to use as 

little as 13% as much energy as conventional distillation. 

Downs and Clary (6) suggested that half of the total 

energy requirement for ethanol production can come from non-

liquid fuel sources such as wood and wood waste products, 

coal and crop residues. Waste heat streams which exit at 

several places can be passed through heat exchangers to pro

vide pre-heating for other parts of the process. 

When an aqueous suspension of granular starches is 

heated above the gelatinization temperature 1 , the granules 

1starch gelatinization is usually described as the 
rapid change from dispersion to paste that is observed when 
an aqueous starch slurry is heated (37). 

2 
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become highly hydrated and swell to many times their 

original volumes. Continued heating, particularly in the 

presence of shear, produces cooked pastes which are mixtures 

of swollen granules, granule fragments and molecularly 

dispersed starch molecules leached from the granules Cl6). 

Granule swelling and disintegration during cooking are 

accompanied by significant changes in the viscosity and 

other rheological properties of the slurry (36). 

Objective 

The objectives of this study are: 

1. To evaluate the viscometric properties of ground 

corn mash during cooking for ethanol production. 

2. To evaluate the shear stress-strain rate 

relationship at peak point, 165°F C73.9°C), and 

at 200°F C93.3°C). 



CHAPTER II 

LITERATURE REVIEW 

An important factor in determining non-Newtonian slurry 

viscosity is the solid volume fraction. The slurries, tend 

to be Newtonian for low solid concentrations (13,14). The 

volume fraction of solid has the strongest influence on the 

apparent viscosity of slurries (13, 32, 38, 39). Other 

factors which may also effect slurry viscosities, are the 

shape and size distribution of suspended particles, 

temperature, surface properties, electrical charges and 

nature of the flow fields (33). 

Harrison (10) was the pioneer in determining viscosity 

of starch granules. He concluded that the stiffening powers 

of different starches correspond qualitatively to the amount 

of water they absorb (10). Anker and Geedes (2) observed 

and explained the relationship between maximum viscosity and 

initial starch concentration by assuming: (a) that during 

the gelatinization process, the ungelatinized granules A 

form highly swollen gelatinized granules B which are then 

eventually ruptured as a result of shearing action, thereby 

losing most of their incorporated water and forming 

relatively nonhydrated disintegrated granules C; Cb> that 

the viscosity increment due to A and to C is small or 

4 
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insignificant as compared with the viscosity increment due 

to B; (c) that the viscosity concentration relationship with 

respect to B is approximately described by the Arrhenius 

equation: i.e. log µr = K[B] (where [B] denotes the 

concentration of B); (d) µs >> µ , whereµ =vis-a s 

cosity of solution and µ0 =viscosity of solvent. The 

relative viscosity µr will then be approximately propor

tional to µ and the value of µ can be substituted s s 

for µr in the Arrhenius equation; that is log µs = 

K[B]; (e) that the process A~ B, involving the taking up 

of water by the granule, is a first order process. At the 

end of a given time, the amount of B present will be 

directly proportional to the initial amount of A present. 

This process can be expected to be of the first order as 

long as there is sufficient water present so that no com-

petition occurs between granules for water; (f) that the 

process B ~ C, involving the rupture or disintegration of 

the gelatinized granules is a second - or higher - order 

process. This is expected since the rate of disintegration 

is a function of the shearing action on the swollen gran-

ules, and the intensity of this shearing action is a func

tion of the viscosity, which in turn is a function of the 

concentration of B. 

On the basis of these assumptions, the amount of B 

formed in a given time after initiation of the process is 

proportional to the initial concentration of A; however, as 

the initial concentration of A is increased, the maximum 
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amount of B is reached in a shorter time, and the value of 

the maximum attained for B varies logarithmically with the 

initial concentration of A (or to the amount of B formed in 

each comparable unit of time after the process A~ Bis 

initiated): 

thus, 

and 

then 

[ B] = K log [A] . . t . l max 1n1 ia 

log µsmax 

log µsmax 

= KI [BJ max 

= K 1 K log [A] . . t. 1 ; 1n1 ia 

meaning that the maximum viscosity of solution versus 

initial starch used is a straight line on log-log 

coordinates. 

Starch 

( 1) 

( 2) 

( 3) 

Most starches are mixtures of two polymers, amylose and 

amylopectin. Amylose is a linear Cl~ 4)- a-D glucan 

usually having a degree of polymerization Cd.P) of 400, 

while amylopectin is a branched D-glucan having mostly 

a -D-( 1 ~ 4) linkages, but with 4% of linkages of the 

a-D-(1 ~ 6) type as shown in Figure 1. This branched 

polymer, designated amylopectin, consists of short, amylose 

like chains of d.P. 12 to 50, linked into a branched struc-

ture ( 18) • 

Starches of the various plants differ with respect to 

their proportions of amylose and amylopectin. For example, 

the starch in corn (maize) of the variety most commonly 

grown in the United States contains 26% amylose and 74% 
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Component of Starch. A: Diagram of a 
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B: Enlarged View of the Shaded Section 
Showing Chemical Formula; C: Diagram of 
a Portion of an Amylopectin Molecule; 
D: Enlarged View of Shaded Area Showing 
Chemical Formula. (27) 
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amylopectin (18). 

Starch usually occurs in plants as discrete granules. 

In corn these are irregular polyhedra having a width of 10 

to 20 µm (18). The starch granule poses many challenging 

problems. Little is known of the way in which the starch 

material - amylose, amylopectin and the intermediate 

material - is combined together to form the resultant 

granule. The problem faced in understanding the structure 

of granules are best epitomized in Figure 2-4 (9), which 

show scanning electron micrographs of starch from maize and 

its genotypes. Granule shape and size depend on the apparent 

amylose content. The typical angular granules of normal 

maize (Figure 2) decrease as amylose content increases from 

27% to 50% with more rounded forms become common (Figure 3). 

When apparent amylose content of 70% is attained (Figure 4), 

sausage shaped granules appear (9, 19). 

It has been recognized in recent years that under cer

tain conditions an atom of Hydrogen is attracted by rather 

strong forces to two atoms, instead of only one, so that it 

may be considered to be acting as a Hydrogen bond between 

them. It is now recognized that -- the hydrogen bond is 

largely ionic in character and is formed only between the 

most electromagnetic atoms (26). 

Experimental difficulties have prevented the direct 

application of physical methods to find H-bonds in polysac

charides such as starch and cellulose but indirect evidence 

of such association is so convincing that hydrogen bonding 



Figure 2. Scanning Electron Micrograph of 
Granules of Normal Maize Starch 
Showing Typical, Angular and 
Roun<led Granules (9) 
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Figure 3. Scanning Electron Micrograph of 
Granules of Maize Starch with 
a Reputed Amylose Content of 
50% CArnylon 50) Showing 
Unusual Rounded Granular Forms 
( 9 ) 
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Figure 4. Scanning Electron Micrograph of 
Granules of Maize Starch with 
a Reputed Amylose Content of 
70% CAmylon 70) Showing 
Bizarre Granular Forms (9) 

11 
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is now generally accepted (4). Taylor (37) was probably 

among the first to recognize its important role in the field 

of starch chemistry. It was his opinion that the study of 

starch chemistry is incomprehensible without the postulation 

of micellar association through hydrogen bonding. 

Caeser (4) outlined the behavior of starch in an 

aqueous dispersion, and postulated the association of 

primary valance chains through H-bonds. In Figure 5 the 

association of two molecules of starch in the absence of 

water (I) and the association through water (II) is 

indicated schematically. 

0//,,,0 
H H 

R - - R R -
o/"'.,... ~o/ ',o 

- R "" /// ~ ,.,"'"" ',, / 
H H H 

{I) (II) 

Figure 5. Association of Hydrogen Bonds in Starch; 
(I) Inactive Form; (II) Active Form. 
The Hydrogen Bonds are Represented by 
Dots. 

In a polyhyroxylated compound such as starch, the 

arrangement would be expected to reduce the activity of 

hydroxyl groups. When starch is desiccated or thoroughly 

retrograded the internal arrangement approaches an 
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association of type (I) in which neighboring OH groups 

directly associate or are bonded with one another. In type 

(II) which may be designated as starch in a normal state, 

neighboring OH groups are linked through one or more 

molecules of tt2o which pry them apart and render them more 

reactive (the o - H --- O distance is 2.76A (26)). Retro

grading the starch granules resulted in moisture loss in 

excess of 10 percent. The assumption of association through 

hydrogen bonding infers that easily expelled water is 

loosely bonded to the exterior of micelles and the balance 

is bonded more or less intramicellarly as in (II). 

Gelatinization of Starch 

A normal starch granule when placed in cold water 

swells to a limited extent, perhaps 10% in diameter or 30 t0 

35% in volume Cl, 12, 29). On the other hand, in hot water, 

the granule gelatinizes, taking up to 10 or more times its 

weight of water with the hydroxyls of a gelatinized starch 

molecule holding large quantities of water by hydrogen 

bonding (4). 

In the absence of mechanical action, relatively little 

granule disintegration and solubilization of the starch 

takes place (2). From studies of viscosity changes which 

occur in corn and potato starch pastes on heating and 

stirring, Katz (15) concluded that the heat gelatinization 

curve is a result of two opposing factors: One, the 

progressive swelling and hydration of the starch granule 
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(which increases viscosity), and the other the breakdown of 

the vesicle walls (which decrease viscosity). Schoch (30) 

pointed out that the viscosity of a boiled starch paste must 

be due largely to the presence of swollen aggregates or 

fragments of granule structure since the viscosity markedly 

decreases upon autoclaving or violent mechanical agitation. 

As starch concentration increases, there is an 

appreciable decrease in the temperature at which the viscos

ity shows a measureable change, a marked increase in maximum 

viscosity, and a slight decrease in the temperature of the 

paste at which the peak viscosity is registered. Morever, 

the peak viscosity is more abrupt, and the subsequent de

crease in viscosity is more rapid (2). Figure 6 shows the 

Brabender curves at a variety of starch concentrations as 

replotted on rectangular coordinates (17). There are five 

successive points of significance on these curves: 

A - Peak viscosity, irrespective of the temperature 

at which the pasting peak is attained. 

B - The viscosity when the paste reaches a temperature 

of 95°C. 

C - Viscosity after cooking for one hour in the 

Brabender at 95°C. 

D - The viscosity when the cooked paste is cooled to 

50°C. 

E - The final viscosity after stirring in Brabender 

for one hour at 50°C. 

Figures 7 and 8 shows the viscosities at five different 
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critical points for commercial unmodified corn starch and 

commercial corn white dextrin (17). Figure 9 (9) shows the 

typical pasting behaviour of starches from the genotypes of 

maize: normal maize, waxy maize (with no amylose content), 

and amylomaize (with a reputed amylose content of 50%). As 

temperature of water is increased, granules swell to impinge 

on each other and increase viscosity of the starch paste. 

This process continues until peak "viscosity" is reached, 

for at this point cohesive forces in the original granule 

structure become excessively weakened and structure of the 

paste - and in consequence, the observed viscosity -

collapses as integrity of the granule is lost. Figure 8 

shows that waxy maize starch swell rapidly to give a high 

peak viscosity, but the intermolecular forces in this 

granule are weak and break down rapidly on further cooking. 

On cooling, however, there is very little "set back" because 

of absence of amylase. Normal maize starch takes a longer 

time to reach a much lower peak viscosity; the extent of 

breakdown of structure on prolonged stirring at high temper

ature is similar, but the degree of set back is large 

because of aggregation of amylose. In contrast, the amylo

maize starch registers no swelling at all (9). 

Viscosity 

The measurement of viscosity is of considerable importance 

in both industrial production and fundamental science. 

Viscosity is the quantity that determines the forces to be 
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overcome when fluids are used in pipelines, bearings, etc. 

and it controls the flow of liquid in such processes as 

spraying, injection mouldings, extrusion and surface coat-

ing. Viscosity has an important bearing on the mixing and 

heat transfer characteristics of fluids. Viscosity measure-

ment has also proved a valuable tool for the physical 

chemist since the viscosity coefficient is profoundly influ-

enced by the size, shape and arrangement of the molecules 

( 5) • 

Although the world's first viscometer is found as a 

temperature-compensated water clock that dates back to 2500 

B.C., the first formal attempt at analysis was performed by 

Isaac Newton in the late 1600s (40). He defined viscosity 

by considering the following model. Two parallel planes of 

liquid of area, A, are separated by a distance, dx, and move 

at a velocity differential, dv. Newton assumed that the 

force, F, required to maintain this difference in speed was 

proportional to the velocity gradient' dv /dx ( r ) ' through 

the material (3). 

Newton developed the equation: 

T = F µ(~) = ( 4) 
A dx 

or µ = T/ dv 
( 5) 

dx 

µ is the coefficient of viscosity and is defined as the 

ratio of shear stress to the strain rate, r . 
A material requiring a shear stress of 1 dyne/cm2 to 

produce a strain rate of one inverse second has a viscosity 



of one poise or 100 centipoise. It is only by coincidence 

that water at room temperature has a viscosity of one 

centipoise (24). 

Newtonian fluids are defined to be those exhibiting a 
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direct proportionality between shear stress and strain rate 

(34). In other words ratio of strain rate to shear stress 

is constant as shown in Figure 10. 
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All those fluids for which the flow curve (shear stress 

versus strain rate) is not linear through the origin at a 

given temperature and pressure are said to be non-Newtonian 

( 35) • 
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Non-Newtonian fluids are classified according to the 

general pattern of functional dependence of strain rate on 

shear stress (and in some cases time, and occasionally 

frequency of vibrational agitation) C42). These may be 

placed in one of six general groups: true plastic, pseudo 

plastic, dilatant, thixotropic, rheopectic, or viscoelastic 

(Figure 11). If the shear stress-strain rate relationship 

of non-Newtonian fluid plots as a straight line in log~log 

coordinates, the fluid is classified as "Power Law Fluid" 

(35) and is defined by equation 6. 

where: 

T = K(dv )n 

dx 

T =Shear stress, dyne 
cm2 

n 
K = Viscometric index, dyne-sec 

cm 2 

n = Viscometric coefficient, dimensionless 

dv 

dx 

. -1 = Strain rate, sec 

( 6) 

Rotational viscometers are widely used for the study of 

flow properties of non-newtonian materials. A great number 

of different designs of rotational viscometer have been 

described in the literature. Essentially a rotational visco-

meter comprises two members, separated by the material under 

test, which are able to rotate relative to one another about 

a common axis of symmetry. As one member rotates, the other 

tends to be dragged by it, i.e. the test material transmits 

a torque to the second member. In all rotational 



viscometers it is the relationship between torque and 

angular velocity that is used to characterize fluid 

properties of the test material (5). 
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CHAPTER III 

MATERIAL, EQUIPMENT AND METHOD 

Ground Corn 

Whole corn was purchased locally and ground in a 

Wiley's Laboratory mill #4 using three screen sizes 3, 4 and 

Smm. Sieve analysis of data from each screen are shown in 

Appendix A and plotted in Figure 12. For each sample, geo-

metric mean diameter and standard deviation were calculated 

by equations 7 and 8 (20). The results are shown in Figure 

12. 

dgm = log-1 [Icwilog di>/.lwi] ( 7) 

SD = log-![ l:wi Clog di - log dgm) 2 t/2 
gm 

l:w. 
1 

( 8) 

where d. = diameter of sieve openings of i'th sieve, 
1 micron 

di+l = diameter of openings in the next lower than 
i'th sieve <just above in a set), micron 

dgm = geometric mean diameter, micron 

d. = g7ometric mean diamet72 of particles on i'th 
1 

sieve = [Cdi)(di+l>l 

SD gm = Standard deviation 

w. 
1 = weight fraction on i'th sieve 

Starch content of corn normally varies between 69% and 
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73% (35,6). During cooking of corn in a water slurry, water 

is bound to the starch molecules resulting in large changes 

in viscometric properties of the slurry. 

Enzyme 

It is widely believed that a -amylases from a number of 

sources hydrolyze starch at random points in the polymer 

chain to give a random distribution of products that eventu

ally become identical ( 28) • a -Amylases cause hydrolysis of 

the interior Cl ~4)- Cl-·D glucosidic bonds of amylase and 

amylopectin, and is thus an endo-hydrolase. The bond 

rupture can occur almost anywhere in a chain of a-D(l ~4)

linked D-glucosyl residues, so long as there are at least 

6 D-glucosyl residues on one side, and at least 3 on the 

other side of the bond to be broken (18). Consequently the 

viscosity of gelatinous starch mashes is reduced. The final 

products of digestion of starch by a-amylases are soluble 

dextrin, glucose and maltose (18). 

TAKA-THERM, a liquid bacterial alpha-amylase of 

Bacillus lichentormis var. origin, produced by Miles 

Laboratories, Inc. was used in this experiment. TAKA-THERM 

exhibits exceptional thermostability and can liquify 

starches at temperatures above 90°C (194°F) (21). 

Equipment and Usage 

Cooking Mechanism 

Ground corn was cooked in a 15 liter glass jar covered 



Figure 13. The Apparatus Used 
Used for Ccoking 
of Corn-Water 
o:Hurry for 
Ethanol Pro
duction 
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with a cap (Figure 13). The agitator (Figure 13) was 

mounted on a steel rod (Figure 13) which was fastened to the 

cap. An extension rod (Figure 13) with three agitation 

blades (Figure 13) was chucked to the drill, passing through 

a hole mounted at the center of the cap. 

To cook the corn, steam was passed through a copper 

heat exchanger {Figure 13). Heating rate was controlled by 

controlling steam flow rate through the heat exchanger. 

Copper-constantan thermocouples were used to monitor temp-

erature of the slurry. 

Viscometer 

The Brookfield Synchro-Lectric viscometer model RVT 

with seven RV spindles and a modified LV-2 cylindrical 

spindle, equipped with Helipath stand (Fig. 14) was used to 

measure viscosity during cooking. The viscometer consisted 

of a synchronous motor, a calibrated torsional spring, a 

dial for reading angular displacement of the spring and a 

series of spindles of various sizes. The model RVT was 

calibrated for angular velocities of 0.5, 1, 2.5, 5, 10, 20, 

50 and 100 rev/min. The viscosity measuring range was 

controlled by selection of appropriate spindle. The spindle 

was driven by the motor through the torsional spring. The 

spring measured the viscous drag as the cylinder rotated in 

a stationary container. The full scale torque of the model 

-3 RVT torsional spring was 0.7187 x 10 Nt.m. The 

cylindrical spindle used in this experiment has a 5.128 nun 



Figure 14. Brookfield's Synchrometric 
Viscometer Shown with RV#2 
Spindle 
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diameter. A standard 600 mm Griffin beaker was used for 

measuring viscosity of the liquid. Van Wazer et al. (41) 

developed the following formulas for determining shear 

stress and strain rate. 

T = ( 9) 

Y= 

y = 

21' R L s 

2W RR c s 

d 2 CR - R ) c s 

2W R R c s 

RC - Rs 

where T =shear stress, dyne/cm 2 

Y= 
Y= 

B= 

. -1 strain rate, sec 

-1 
average strain rate, sec 

dial reading, dimensionless 

W = Angular velocity of the spindle, radians/sec 

K1 =Constant for torsional spring, dyne-cm 

R = Radius of spindle, .5128 cm s 

Rc =Radius of container, 8.3 cm 

L = Spindle length plus correction for end effect 
for RV #2 cylindrical spindle: 6.121 cm. 

(10) 

(11) 

d = distance from the axis of rotation at which strain 
rate is being calculated, cm 

Experimental Design 

Viscometric properties of corn-water slurries during 

cooking were determined for three different sizes of ground 

corn and three levels of mass fraction of corn to the total 



slurry mass. Ground corn passing through 3, 4 and 5 rrun 

screen on Wiley's laboratory mill were used. Mass 

distributions for sieve analysis for the three sizes are 

shown in Figure 12. Mass fractions chosen were 1.787, 

2.233, and 2.680 lit/kg as shown in Tables I and II. The 

experiments were conducted in a completely random design 

with three replications. 

For a typical days run, ground corn, water, and 
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a -amylase enzyme CTAKA-·THERM) were measured according to 

Table I and II. Heat and agitation was applied to the 

slurry and viscometric properties of the corn-water slurry 

was measured at constant temperature intervals beginning at 

165°F and ending at 200°F. Vigorous agitation of the 

slurry was maintained throughout the cooking process. 

Figures 15 and 16 show agitation of slurry before and during 

cooking. 



TABLE I 

EXPERIMENTAL PLAN FOR DETERMINING APPARENT VISCOSITY OF 
CORN-WATER SLURRIES AT 150°F-200°F 

Mass Fraction Screen Size Corn Mass Water Volume TAKA-THERM 
lit/kg rrun kg lit gm 

1.787 3 4.47 8 9.84 

4 4.47 8 9.84 

5 4.47 8 9.84 

2.233 3 4.09 9 9 

4 4.09 9 9 

5 4.09 9 9 

2.680 3 3.74 10 8.23 

4 3.74 10 8.23 

5 3.74 10 8.23 

w 
w 



TABLE II 

EXPERIMENTAL PLAN FOR DETERMING SHEAR STRESS-STRAIN 
RATE RELATIONSHIP OF CORN-WATER SLURRY AT 

165 °F AND 200 °F 

Mass Fraction Screen Size Corn Mass Water Volume 
lit/kg mm kg lit 

1.787 4 2.24 4 

2.233 4 2.05 4.5 

2.680 4 1.87 5 

TAKA-THERM 
gm 

4.92 

4.5 

4.12 

w 
~ 



Figure 15. Separation of Corn 
and Water Shown 
Before Operation 
of Agitation 
System 
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Figure 16. Cooking Vessel in 
Operation Show
ing Vigorous 
Agitation Main
tained Through
out Viscometric 
Tests 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Viscometric History 

Apparent viscosities of ground corn slurries at 150°F-

2000F C65.5-93.3°C) are tabulated in Appendix B, and 

plotted in Appendix C. The effect of particle size on 

apparent viscosity for different mass fractions of ground 

corn are shown in Figures 17-19. For mass fraction of 1.787 

lit/kg, the apparent viscosity of 3mm corn mash is higher 

than those for corn ground on 4 and 5 nun screens {Figure 

17). As shown in Figure 18, for mass fraction of 2.233 

lit/kg, the apparent viscosity of 3mm corn mash is unexpect

edly lower than those for 4 or 5mm. As expected the value 

of 5mm is lower than 4mm. It is apparent from Figure 19 

that for a mass fraction of 2.680 lit/kg, increasing the 

ground corn particle size doesn't affect apparent viscosity 

of the mash. This is due to the effect of higher percentage 

of available starch molecules which are obtained at smaller 

particle size of ground corn. During slurry heating, the 

starch molecule increase in volume due to rapid absorption 

of water. For mass fraction of 1.787 lit/kg, the starch 

granules absorb most of the water but the enzyme can not 

disintegrate them completely since they remain in a 
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partially crystaline form. However since higher percentage 

of starch molecules are available at smaller particle size, 

higher apparent viscosity of mash is observed. For a mass 

fraction of 2.233 lit/kJ this phenomena still exists with 

the exception of the 311ID' ground corn particle size in which 

the mash show a lower apparent viscosity than those for 4 

and 5mm. For the grain ground on the 3mm screen the amount 

of water and enzyme is optimum for the interaction, there

fore the starch molecule is broken down to dextrin easily, 

resulting in lower viscosity. The lower percentage of free 

starch molecules should make the apparent viscosity of corn 

mash ground through 4 and Smm screens less than the apparent 

viscosity of corn mash passing a 3mm screen. However the 

starch molecules in large particle sizes still hydrate but 

not as much as smaller particle sizes, and so the suspended 

particles make the viscous fluids thicker than expected. 

For a mass fraction of 2.680 lit/kg, there is sufficient 

water to allow the alpha-amylase enzyme to convert the free 

starch molecules to dextrins and the effect of suspended 

particles on apparent viscosity in this mass fraction is 

negligible. 

The apparent viscosity of mash for 1.787 lit/kg is gen

erally higher than 2.233, and 2.680 lit/kg respectively as 

shown in Figures 20-22. Mazurs et al. (17) showed similar 

results with acid modified starch. This occurs because the 

granule will first swell and then dissolve to give a 

molecularly dispersed solution. At high concentrations, 
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the latter is unstable and tends to set up a gel. Continual 

mechanical agitation breaks down this gel structure with 

consequent thinning of the paste (17). Enzymatic effect is 

similar to acid modification of corn starch, since it also 

breaks down the starch molecule. 

Peak Apparent Viscosity 

The highest apparent viscosity occurred at 165°C-

1700F (74.4-76.7°C). These values are tabulated in Table 

III. An analysis of variance was performed on the data to 

test the statistical significance of variation due to 

particle size and mass fraction. The analysis is shown in 

Table IV. The results indicate significant differences in 

mean value of peak apparent viscosity at different levels of 

mass fraction <a= .0001). This confirms work of previous 

investigators (9, 23) showing that apparent viscosity is a 

function of mass fraction. Particle size effect <a= .05) 

and interaction between particle size and mass fraction <a = 

.0075) are also significant. 

Duncan's multiple range test was performed to compare 

each treatment mean with other treatment means as shown in 

Tables V and VI. 

The results in Table V and Figure 23 show significant 

differences on peak apparent viscosity due to mass fraction. 

The effect of particle size on apparent viscosity (Figure 

24) is misleading since these values include the peak 

apparent viscosity of mash at mass fraction of 2.233 



TABLE III 

MAXIMUM APPARENT VISCOSITY AT FIRST PEAK, 
µ AND AT 200°F, µ , AS 
maxPl OBTAINED IN APPi~~tf B 

Repl. Screen Size Mass Fraction Peak Apparent Apparent Viscosity at 
Viscosity 200°F 

mm lit/kg centipoise centipoise 

1 3 1. 787 6340 6435 
2 3 1.787 9100 3800 
3 3 1.787 7645 6670 

1 3 2.233 860 800 
2 3 2.233 1100 1060 
3 3 2.233 1020 880 

1 3 2.680 1160 1220 
2 3 2.680 820 1380 
3 3 2.680 720 1760 

1 4 1.787 2710 6725 
2 4 1. 787 8220 3830 
3 4 1. 787 8220 3350 

1 ·4 2.233 3000 2550 
2 4 2.233 4970 1870 
3 4 2.233 3200 1725 

1 4 2.680 1000 1500 
2 4 2.680 840 860 
3 4 2.680 820 820 

.i:.. 
O'I 



Repl. Sreen Size 

mm 

1 5 
2 5 
3 5 

1 5 
2 5 
3 5 

1 5 
2 5 
3 5 

TABLE III (Continued) 

Mass Fraction Peak Apparent 
Viscosity 

lit/kg centipoise 

1.787 4400 
1. 787 1970 
1.787 3050 

2.233 2300 
2.233 2600 
2.233 2020 

2.680 640 
2.680 900 
2.680 950 

Apparent Viscosity at 
200°F 

centipoise 

7000 
2710 
3830 

2600 
1970 
1820 

1700 
1340 
1400 

~ 
.....J 



TABLE IV 

ANALYSIS OF VARIANCE OF THE PEAK 
APPARENT VISCOSITY FOR GROUND 

CORN SIZE AND MASS FRACTION 

48 

Source Degree of Sum of F Ratio Significance 
freedom Squares Level* 

Corrected 26 186117035 
total 

Size 2 11729368 3.55 0.0502 

Mass Fraction 2 112188468 33.94 0.0001 

Size * Mass 4 32451314 4.91 0.0075 
Fraction 

Error 18 29747883 

*Probability of error in rejecting a null hypothesis 
of significance of the source of variation. 

lit/kg which is lower than expected (the reason has been 

explained in the "viscometric history" section). 

Apparent Viscosity at 200°F 

Apparent viscosity was determined at 200°F because it 

is typical of maximum cooking temperature at one atmosphere. 

These values are shown in Table III. An analysis of vari-

ance shown in Table VII tests the statistical significance 

of variation due to particle size and mass fraction on 

apparent viscosity at 200°F. Effect of mass fraction on 

apparent viscosity of mash at 200°F was significant 



Grouping 

B 

A 

B 

TABLE V 

DUNCAN'S MULTIPLE RANGE TEST FOR 
PEAK APPARENT VISCOSITY 

Mean (centipoise) 

3196.1 

3664.4 

2092.2 

N 

9 

9 

9 

49 

Size (mm) 

3 

4 

5 

Means with the same letter (as in "grouping" column are 
not significantly different at the 95 percent confidence 
level ( a = • 05) 

Grouping 

A 

B 

c 

TABLE VI 

DUNCAN'S MULTIPLE RANGE TEST FOR 
PEAK APPARENT VISCOSITY 

Mean Ccentipoise) 

5739.4 

2341.1 

872.2 

N 

9 

9 

9 

Mass Fraction 
(lit/kg) 

1.787 

2.233 

2.680 

Means with the same letter {as in "grouping" column are 
not significantly different at the 95 percent confidence 
level ( a = • 05) 
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Source 

Corrected 
Total 

Size 

TABLE VII 

ANALYSIS OF VARIANCE OF APPARENT 
VISCOSITY AT 200°F FOR GROUND 

CORN SIZE AND MASS FRACTION 

Degree of 
Freedom 

Sum of 
Squares 

F ratio Signif ic~nce 
level 

26 98833363 

2 75313 0.03 .9709 

Mass Fraction 2 70519613 27.67 .0001 

Size * Mass 
Fraction 4 5304620 1.04 • 4136 

Error 18 22933816 

*Probability of error in rejecting a null 
hypothesis of significance of the source of variation. 
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ca= .0001>. 

Duncan's Multiple Range Test was performed to compare 

each treatment mean with other treatment means and are shown 

in Tables VIII and IX, and plotted in Figures 25 and 26. 

Table VIII and Figure 25 show a significant difference 

between peak apparent viscosity means at 200°F for mass 

fractions of 1.787 lit/kg and 2.233 or 2.680 lit/kg. 

Table IX shows no significant difference between treatment 

means due to particle size of corn even at the 90 percent 

confident level Ca =.l) (Figure 26). 

General Viscometric Relationships 

As outlined in the previous chapter, the Brookfield 

rotary viscometer was used to determine shear stress-strain 

rate relationships for corn slurries during cooking in the 

ethyl alcohol process. The LV#2 cylindrical spindle was 

used and angular displacements were recorded at various 

angular velocities of the spindle. Shear stress and strain 

rate were calculated from these data using equations 6 and 7 

and are tabulated in Appendix E. Since the results of this 

study showed that particle size has no significant effect on 

apparent viscosity of corn-water slurries during cooking, 

all test for determining shear stress-strain rate 

relationships were conducted with corn ground using a 4mm 

screen on the Wiley laboratory mill. The relationships 

between shear stress and strain rate for the three mass 

fractions of 1.787, 2.233 and 2.680 lit/kg are plotted in 



Grouping 

A 

A 

A 

Means with 

TABLE VIII 

DUNCAN'S MULTIPLE RANGE TEST 
FOR APPARENT VISCOSITY 

AT 200°F 

Mean CCentipoise) N 

2667.2 9 

2581.1 9 

2707.8 9 

the same letter (as in "grouping" 
are not significantly different at the 95 percent 
dence level < a = .05) 

TABLE IX 

DUNCAN'S MULTIPLE RANGE TEST 
FOR APPARENT VISCOSITY 

AT 200°F 

54 

Size(mm) 

3 

4 

5 

column 
conf i-

Grouping Mean (Centipoise) N Mass Fraction Clit/kg) 

A 4927.8 9 1.787 

B 1697.2 9 2.233 

B 1331.1 9 2.680 

Means with the same letter (as in "grouping" column) 
are not significantly different at 95 percent confident 
level ( a = .05) 
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Figures 27-32. The data in all cases plotted as straight 

lines in log-log coordinates. The corn-water slurries are 

typical (power law) non-newtonian fluids that obey equation 

6: 

( 6) 

where: T Shear stress, dyne/cm 2 = 
dv Strain rate, sec-l = 
dx 

n 
K = Viscometric index, dyne-sec-

2 cm 

n = Viscometric coefficient, dimensionless 

Values for k and n for each experiment are tabulated in 

Table X with the respective equations shown on each of the 

Figures 27-32 • The slope of the curves shown in these 

figures are all greater than unity indicating that 

corn-water slurries at 165°F and 200° are classified as 

dilatant fluids. 

Figures 27-32 and Table X shows that the viscometric 

parameters k and n are functions of mass fraction and temper-

ature at which viscometric properties are measured during 

cooking of the corn water slurry. Shear stress-strain rate 

curves for the three mass fractions and at 165°F are 

plotted on one set of coordinates in Figure 33. From this 

figure it is observed that the intercept of the shear 

stress-strain rate curve at a strain rate value of 1.0 is a 

function of the mass fraction of corn to total slurry mass. 

The effect of mass fraction on the viscometric index k is 
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Mass Fraction 

lit/kg 

1.787 

2.233 

2.680 

'!'ABLE X 

VALUES OF k AND n IN EQUATION 6 
FOR THREE MASS FRACTIONS AT 

165 AND 200°F 

Temperature k n 

OF 

165 

200 

165 

200 

165 

200 

dyne-seen dimensionless 

cm2 

1740 

743 

4640 

2710 

23,000 

14,700 

1.57 

1. 71 

1.81 

1.84 

1.90 

1.93 
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plotted in Figure 34 and defined by equation 12: 

k = al CMF)bl ( 12) 
. n 

where: k = viscometric index, dyne-~ec-cm 

MF = mass fraction, lit/kg 

dyne-sec n 
(kg/lit)bl al = index, 

cm 

b1 = dimensionless coefficient 

Likewise, the slope of the log-log plot of shear stress vs. 

strain rate curve in Figure 33 is a function of mass frac-

tion of corn to total mass of the slurry. The functional 

relationship between the exponent, n, and mass fraction for 

corn slurries at 165°F is plotted in Figure 35 and de-

scribed by equation 13: 

n = viscometric coefficient, dimensionless 

MF = mass fraction, lit/kg 

a2 = index, Ckg/lit)b2 

b2 = dimensionless coefficient 

Evaluation of the coefficients a 1 and a 2 and the expon

ents b1 and b 2 from Figures 34 and 35 yields equations 

(13) 

14 and 15 for the viscometric coefficient k and viscometric 

index n for corn-water slurries at 165°F. 

k = 39.5 (MF) 6 • 30 

n = l.20(MF)0. 476 

(14) 

(15) 

Shear stress-strain rate relationships for three levels 
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of mass fraction at 200°F are plotted in Figure 36. 

Effects of mass fraction of corn to total slurry mass on the 

viscometric properties, k and n, are described by equations 

12 and 13 above. Evaluation of the coefficients a 1 and 

a 2 and exponents b1 and b 2 from Figure 36 are plotted 

in Figures 37 and 38 on logarithmic coordinates and 

described by equations 16 and 17: 

k = 9.68(MF) 7 • 30 

n = l.44(MF)0. 300 

(16) 

(17) 

Equation 14 and 15 define the viscometric coefficient, 

k, and viscometric exponent, n, shown in equation 6 for 

corn- water slurries at 165°F. Likewise, equation 16 and 

17 define the viscometric coefficient, k, and viscometric 

exponent, n, again as defined by equation 6 for corn-water 

slurries at 200°F. 

Combining equations 6, 14 and 15 yields a general shear 

stress-strain rate relationship for corn water slurries 

during cooking for the ethanol process at 165°F. The 

equation is: 

0.476 
T = [ 39 • 5 (MF) 6. 30] * y [ 1. 20 (MF) ] (18) 

Likewise, combining equations 9, 14 and 15 yields the 

general shear stress-strain rate relationship for corn water 

slurries at 200°F during cooking for ethanol production. 

It yields equation 19: 
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0.300 
T = [ 9 .GSCMF) 7.30]* yCl.44CMF) ] (19) 

Therefore, viscometric properties of corn water 

slurries during cooking are defined for two different 

temperatures by equations 18 and 19. The 200°F point was 

selected as previously indicated because this is the maximum 

temperature reached during batch cooking of corn water 

slurries while producing fuel grade ethanol at atmospheric 

pressure. Likewise, equation 18 defines maximum visco-

metric properties experienced during cooking of corn water 

slurries. Utilization of equation 18 and 19 allows determ-

ination of peak maximum viscometric properties of non-

newtonian corn water slurry during cooking and 

determination of viscometric properties for the same slurry 

at maximum cooking temperatures of 200°F. These properties 

can be utilized in determining agitation and pumping power 

requirements during processing of corn water slurries for 

ethanol production. 



CHAPTER V 

SUMMARY AND CONCLUSION 

Viscometric properties of corn-water slurries during 

cooking for ethanol production were evaluated as a function 

of mass fraction and ground corn particle size. The effect 

of starch granule swelling and disintegration during cooking 

on apparent viscosity of slurries were studied. Maximum 

apparent viscosity was observed to occur at 165°F-170°F. 

Maximum cooking temperature was 200°F, since it is typical 

of maximum cooking temperature in batch processes at one 

atmosphere. 

Analysis of variance and Duncan's Multiple Range Test 

were performed on peak apparent viscosity and apparent 

viscosity at 200°F. Shear Stress-Strain Rate relationships 

at these temperatures Cl65°F and 200°F) were measured 

using Brookfield's rotational viscometer. The LV#2 

cylindrical spindle was used and dial displacements were 

recorded at various angular velocities of the spindle. 

Shear Stress and Strain Rate values were calculated from 

these data using equation 9 and 11, and viscometric 

parameters were evaluated. 
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Conclusion 

Interpretation of the experimental data resulted in the 

following conclusions: 

1) Mass fraction is the most important parameter 

affecting apparent viscosity of the corn-water 

slurry during cooking for ethanol production. 

2) Particle size was found to have no significant 

effect on viscometric properties of corn-water 

slurries during cooking for ethanol production. 

3) The corn-water slurries were found to be power law 

non-newtionian fluids at temperatures of 165°F and 

200°F and are described by equation 6: 

KCdv) 
n 

T = dx 

where T = Shear Stress, dyne/cm 2 

dv Strain rate, sec-l = 
dx 

n 
K = viscometric index, dyne-sec-

Cm2 

n = viscometric coefficient, 
dimensionless 

since the slope of the line, n, is greater than 

( 6) 

unity, the corn-water slurry is classified as dila-

tant fluid. 

4) The viscometric index, k, is a function of corn to 

total slurry mass. The effect of mass fraction on 

the viscometric index, k, is plotted in logarithmic 

coordinates and defined by equation 14 and 16: 



76 

K = 39.5 (MF) 6. 30, at 165°F (14) 

and K = 9.68 (MF)7.30 1 at 200°F (16) 
n 

where K = viscometric index, dyne-sec-

Cm 2 

MF =mass fraction, lit/kg 

5) The viscometric coefficient, n, is a function of 

mass fraction of corn to the total mass of slurry. 

The functional relationship between the exponent, 

n, and mass fraction plots as a straight line in 

logarithmic coordinates and is described by: 

n = 1.20 (MF) 0 • 476 , at 165°F 

n = 1.44 (MF)o. 3oo, at 200°F 

(15) 

(17) 

where n = viscometric coefficient, dimension
less 

MF =mass fraction, lit/kg 

6) An equation for shear stress-strain rate relation-

ship for corn water slurries during cooking for 

ethanol production, using 4 mm ground corn at 

165°F was obtained. The equation describing this 

relationship at 165°F is: 

6 30 * - [ 1. 20 (MF) O 0 4 7 6 ] T = [39.5CMF) • ] y (18) 

Likewise at 200°F the equation was found to be: 

7 30 * -[l.44(MF)O.JOO] 
T = [ 9. 68 (MF) 0 

] y ( 19) 

Suggestions for Further Study 

Viscometric properties of other types of cereal grain 
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slurries such as wheat and milo should be studied. 

Further testing with a wider range of particle size and 

mass fraction of corn to total slurry is necessary to test 

the reliability of equations developed for viscometric 

index, k (equation 12) and viscometric coefficient, n 

(equation 13). 

Further study should be performed on reliability of 

equations 18 and 19 for designing the agitation system of 

corn water slurry during cooking for ethanol production. 
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APPENDIX A 

MASS DISTRIBUTION OF 3, 4 AND 5 MM 

GROUND CORN FOR THREE REPLICATIONS 

AFTER 10 MINUTES OF SHAKING 

82 



Tyler 
Sieve # 

14 

28 

40 

48 

60 

100 

PAN 

Total 

TABLE XI 

PARTICLE SIZE DISTRIBUTION OF 3 MM GROUND 
CORN AFTER 10 MINUTES OF SHAKING 

1st 
Replication 

36.68 

34.85 

7.35 

9.36 

1.42 

6.25 

0.22 

96.13 

Mass of Corn, Grams 

2nd 
Replication 

36.08 

34.59 

7.47 

8. 45 

1.35 

6.95 

0.18 

95.07 

3rd 
Replication 

40.66 

34.39 

6.39 

6.95 

2.14 

5.58 

0.04 

96.15 

83 

Average 

37. 81 

34.61 

7.07 

8.25 

1.64 

6.26 

0.15 

95. 78 

-·-~-~-· .. ·~-



Tyler 
Sieve # 

14 

28 

40 

48 

60 

100 

PAN 

Total 

TABLE XII 

PARTICLE SIZE DISTRIBUTION OF 4 MM GROUND 
CORN AFTER 10 MINUTES OF SHAKING 

Mass of Corn, Grams 

1st 2nd 
Replication Replication 

39.88 51.09 

28.89 27.78 

7.62 5.52 

13.28 5.64 

0.96 1.73 

6.54 5.79 

0. 75 0.59 

97.92 98.14 

3rd 
Replication 

49.44 

29.16 

6.66 

7.14 

1.16 

6.38 

1.00 

100.94 

Average 

46.80 

28. 61 

6.60 

8.69 

1.28 

6.24 

0.78 

99.00 

____ ,. --- ···--·· 



Tyler 
Sieve # 

8 

14 

28 

48 

60 

100 

PAN 

Total 

TABLE XIII 

PARTICLE SIZE DISTRIBUTION OF 5 MM GROUND 
CORN AFTER 10 MINUTES OF SHAKING 

Mass of Corn, Grams 

1st 2nd 
Replication Replication 

22.3 21.13 

51.1 49.53 

16.27 17.13 

6.12 7.07 

2.48 2.17 

3.12 3.99 

1.04 1.07 

102.43 102.09 

3rd 
Replication 

19.9 

50.07 

17.18 

6.92 

2.27 

3.99 

0.88 

101.21 

85 

Average 

21.11 

50.23 

16.86 

6.70 

2.31 

3.70 

1.00 

101.91 



APPENDIX B 

APPARENT VISCOSITY OF GROUND 

CORN MASH AT 150-200°F 

MEASUREMENTS PERFORMED 

USING RV#3 SPINDLE 

AT 10 RPM 

96 



Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XIV 

APPARENT VISCOSITY OF 3 MM GROUND CORN 
MASH, USING 12 GALLONS OF WATER PER 

BUSHEL OF CORN Cl.787 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise. 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

6:42 150 170 150 170 

8:35 155 310 740 310 

10:37 160 1300 3400 3200 

13:07 165 3100 9100 7600 

16:13 170 6300 5700 5900 

18:48 175 5600 4100 4600 

21:13 180 5300 3500 4400 

24:13 185 4500 3700 4800 

27:22 190 4300 4000 5300 

30:08 195 4400 3200 4900 

34:35 200 6400 3800 6700 
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Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XV 

APPARENT VISCOSITY OF 3 MM GROUND CORN 
MASH, USING 15 GALLONS OF WATER PER 

BUSHEL OF CORN (2.233 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

4:22 150 14 8 9 

6:52 155 90 66 100 

10:08 160 450 720 290 

13:03 165 800 980 490 

16:02 170 860 1100 1000 

20:02 175 720 1000 1000 

24:27 180 740 780 850 

28:43 185 850 850 900 

35:58 190 780 880 1100 

41:22 195 720 900 960 

49:27 200 800 1060 860 
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Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XVI 

APPARENT VISCOSITY OF 3 MM GROUND CORN 
MASH, USING 18 GALLONS OF WATER PER 

BUSHEL OF CORN (2.680 lit/kg) 
AT 150-200°F 

89 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

6:22 150 6 6 6 

8:25 155 15 11. 11 

10:42 160 200 270 370 

12:58 165 1200 640 700 

14:47 170 960 820 720 

16:58 175 800 680 700 

19:25 180 820 630 780 

21:47 185 840 740 900 

25:02 190 1000 820 1000 

27:40 195 1100 840 980 

33:06 200 1200 1400 1800 



Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XVII 

APPARENT VISCOSITY OF 4 MM GROUND CORN 
MASH, USING 12 GALLONS OF WATER PER 

BUSHEL OF CORN Cl.787 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

6:28 150 13 150 130 

8:00 155 230 830 400 

10:07 160 1200 3000 3200 

13:18 165 2700 8200 6400 

16:35 170 2000 3200 8200 

19:07 175 2100 2900 3200 

22:28 180 2200 2400 2400 

25:48 185 2200 2200 2300 

28:40 190 1700 2700 2800 

32:13 195 2100 2700 3200 

38:25 200 6700 3800 3400 

90 



Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XVIII 

APPARENT VISCOSITY OF 4 MM GROUND CORN 
MASH, USING 15 GALLONS OF WATER PER 

BUSHEL OF CORN (2.233 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec Op 

6:05 150 15 8 9 

8:18 155 120 28 97 

10:53 160 960 400 760 

13:27 165 2300 5000 1600 

16:28 170 3000 2600 1600 

19:47 175 2300 1500 1700 

22:18 180 1800 1800 1300 

24:28 185 1800 1500 1500 

27:02 190 2000 1200 1300 

30:12 195 2300 1500 1200 

34:42 200 2600 1800 1700 
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Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XIX 

APPARENT VISCOSITY OF 4 MM GROUND CORN 
MASH, USING 18 GALLONS OF WATER PER 

BUSHEL OF CORN (2.680 lit/kg) 
AT 150-200°F 

. 92 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

7:17 150 5 7 6 

9:02 155 10 11 13 

11:28 160 800 200 240 

13:55 165 960 820 440 

16:10 170 1000 840 770 

19:17 175 820 790 820 

22:18 180 700 590 730 

25:33 185 860 720 760 

28:53 190 880 770 660 

32:10 195 1100 740 780 

37:10 200 1500 860 820 



Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XX 

APPARENT VISCOSITY OF 5 MM GROUND CORN 
MASH, USING 12 GALLONS OF WATER PER 

BUSHEL OF CORN Cl.787 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

7:53 150 12 84 22 

10:20 155 120 800 290 

11:50 160 980 1900 1800 

14:18 165 1700 4400 3100 

16:32 170 2000 3900 2800 

18:43 175 1700 3800 3000 

21:22 180 1600 3400 2900 

25:30 185 1300 3700 2300 

29:40 190 1300 3700 2400 

34:53 195 2000 3900 3600 

41:40 200 2700 6800 3800 
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94 

TABLE XXI 

APPARENT VISCOSITY OF 5 MM GROUND CORN 
MASH, USING 15 GALLONS OF WATER PER 

BUSHEL OF CORN (2.233 lit/kg) 
AT 150-200°F 

··-~---·-

App. Viscosity, Centipoise 
Replications: 

Sample Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

·~-·-----

1 7:43 150 9 7 10 

2 9:43 155 84 53 250 

3 11:50 160 1000 570 540 

4 14:00 165 2300 2600 1700 

5 16:43 170 2200 1400 2000 

6 19:23 175 1800 1100 2000 

7 21:48 180 1800 1200 1600 

8 25:00 185 1800 1000 1700 

9 29:45 190 1600 1800 1300 

10 32:57 195 2200 1000 1700 

11 38:47 200 2600 2000 1800 

----·-



Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE XXII 

APPARENT VISCOSITY OF 5 MM GROUND CORN 
MASH, USING 18 GALLONS OF WA'rER PER 

BUSHEL OF CORN (2.680 lit/kg) 
AT 150-200°F 

App. Viscosity, Centipoise 
Replications: 

Avg. Temperature 1st 2nd 3rd 
Time 

min:sec OF 

7:02 150 5 6 4 

9:12 155 5 9 8 

11:23 160 380 150 210 

14:08 165 540 390 950 

16:32 170 640 900 820 

20:05 175 720 760 920 

23:38 180 840 880 800 

27:57 185 1000 920 940 

30:47 190 920 780 900 

34:58 195 1100 1200 1000 

43:12 200 1700 1300 1400 
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APPENDIX C 

PLOT OF APPARENT VISCOSITY OF GROUND 

CORN MASH AT 150-200°F 

96 
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160 170 180 190 200 
Temperature , °F 

Figure 39. Plot of Apparent Viscosity of 3 mm Ground 
Corn Mash During Cooking at One Atmo
sphere. The Solid Mass Fraction is 
1.787 lit/kg 
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Figure 40. Plot of Apparent Viscosity of 3 mm Ground 
Corn Mash During Cooking at One Atom
sphere. The Solid Mass Fraction is 
2.233 lit/kg 
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Figure 41. Plot of Apparent Viscosity of 3 mm Ground 
Corn Mash During Cooking at One Atrno
Atrnosphere. The Solid Mass Fraction is 
2.680 lit/kg 
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Figure 42. Plot of Apparent Viscosity of 4 mm Ground 
Corn Mash During Cooking at One Atmo
sphere. The Solid Mass Fraction is 
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Corn Mash During Cooking at One Atmo
sphere. The Solid Mass Fraction is 
2.233 lit/kg 
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Figure 44. Plot of Apparent Viscosity of 4 mm Ground 
Corn Mash During Cooking at One Atmo
sphere. The Solid Mass Fraction is 
2.680 lit/kg 
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Corn Mash During Cooking at One Atmo
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APPENDIX D 

SHEAR STRESS AND STRAIN RA'rE VALUES CALCULATED 

BY EQUATIONS 9 AND 11 RESPECTIVELY. RPM AND 

DIAL READING ARE REPORTED. 4 MM GROUND 

CORN WAS USED 

106 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXIII 

SHEAR S'fRESS AND STRAIN RATE VALUES FOR 1. 787 lit/kg AT 
165°F; USTNG 4 t·:J·' ;;~:, ,.:. ' I ·~·-· 

Dial Readings Strain Rate, Sec -1 

Shear St~ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

186 2.0 2.0 1.7 0.248 0.248 0.211 

372 3.3 3.2 3.0 0.409 0.397 0.372 

744 5.0 4.7 4.5 0.62 0.583 0.558 

1490 7.0 7.0 7.0 0.868 0.868 0.868 

3720 12.0 12.0 13.5 1.49 1.49 1.67 

7440 19.3 20.0 23.5 2.39 2.48 2.92 

f-' 
0 
-....] 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXIV 

SHEAR STRESS AND STRAIN RATE VALUES FOR 1.787 lit/kg AT 
200°F; USING 4 MM GROUND CORN 

Dial Readings Strain Rate, Sec -1 

Shear st2ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

186 4.5 3.5 3.5 0.558 0.434 0.434 

372 6.5 5.0 5.0 0.806 0.620 0.620 

744 10.0 7.0 7.8 1.24 0.868 0.967 

1490 14.0 9.5 11.5 1.74 1.18 1.43 

3720 24.0 17.0 19.5 2.98 2.11 2.42 

7440 33.5 27.0 33.0 4.15 3. 35 4.09 

I-' 
0 
co 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXV 

SHEAR STRESS AND STRAIN RATE VALUE:S FOR 2. 23 3. lit/kg AT 
165°F; USING 4 MM GROUND CORN 

Dial Readings Strain Rate, Sec -1 

Shear St~ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

185 1.2 1.5 1.5 0.149 0.186 0.186 

372 1.7 2.0 2.7 0.211 0.248 0.355 

744 2.5 2.7 4.0 0.310 0.335 0.496 

1490 3.7 4.0 5.7 0.459 0.496 0.707 

3720 6.0 7.0 6.4 0.744 0.868 0.794 

7440 10.0 11.0 9.8 1.24 1.36 1.22 

I-' 
0 
-0 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXVI 

SHEAR STRESS AND STRAIN RATE VAI,OES FOR 2. 2 3 3 • lit/kg AT 
200 °F; USING 4 MM GROUND CORN 

Dial Readings Strain Rate, Sec -1 

Shear st2ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

186 1.5 1.8 2.5 0.186 0.223 0.310 

372 2.5 2.5 4.0 0. 310 0.310 0.496 

744 4.5 3.5 5.2 0.558 0.434 0.645 

1490 5.2 5.0 7.5 0.645 0.620 0.868 

3720 8.0 8.5 10.0 0.992 1.05 1.24 

7440 13.5 12.5 14.0 1.67 1.55 1.74 

I-' 
I-' 
0 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXVII 

SHEAR STRESS AND STRAIN RATE VALUES FOR 2.680.lit/kg AT 
165°F; USING 4 MM GROUND CORN 

Dial Readings Strain Rate, Sec -1 

Shear st2ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

186 1.7 0.6 0.5 0.124 0.0744 0.062 

372 1.2 0.8 0.9 0.149 0.0992 0.112 

744 1.7 1.1 1.5 0.211 0.136 0.186 

1490 2.2 1.8 1.7 0.273 0.223 0.211 

3720 3.2 2.7 2.5 0.397 0.335 0.310 

7440 4. 3 4.5 4.0 0.558 0.533 0.496 

I-' 
I-' 
I-' 



RPM 

2.5 

5 

10 

20 

50 

100 

TABLE XXVIII 

SHEAR STRESS AND STRAIN RATE VALUES FOR 2.680.lit/kg AT 
200°F; USING 4 MM GROOND CORN 

Dial Readings Strain Rate, Sec -1 

Shear st2ess 1st repl 2nd repl 3rd repl 1st repl 2nd repl 3rd repl 
dyne/Cm 

186 1.0 0.8 0.9 0.124 0.0992 0.112 

372 1.5 1.0 1.2 0.186 0.124 0.149 

744 2.0 1.3 1.7 0.248 0.161 0. 211 

1490 2.7 2.4 2.2 0.335 0.298 0.273 

3720 4.3 4.0 3.5 0.533 0.496 0.434 

7440 5. 0 5.7 6.0 0.620 0.707 0.744 

f--' 
....... 
rv 
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