
CONDENSATION OF MIXTURES GIVING TWO -
IMMISCIBLE LIQUID PHASES 

By 

ANIL VASANT GOKHALE 
~ 

Bachelor of Chemical Engineering 

University of Bombay 

Bombay, India 

1980 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

December, 1982 





CONDENSATION OF MIXTURES GIVING.TWO 

IMMISCIBLE LIQUID PHASES 

Thesis Approved: 

Dean of the Graduate College 

ii 11·13217 



PREFACE 

Condensation of multicomponent vapor may result ±n the formation 

of two liquid phases immiscible with one another. Predicting the heat 

transfer rates across the condensate layer is complicated because of 

its complex and unpredictible structure. This work initiates a major 

study on this problem. The equipment design and set up is done and 

various experimental and photographic techniques are established. 
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sincerely appreciated. It is a pleasure to thank Dr. Mayis Seapan 

for the financial assistance. I also express my sincere gratitude to 

Suresh Balakrishnan and Summer Dale for their help and everlasting 
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well done in a short time. 
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CHAPTER I 

INTRODUCTION 

Condensation 

Condensation of immiscible mixtures is encountered in a 

variety of process and related industries. The mixtures vary from 

crude' oil-water to turpentine gum-water to styrene-butadiene-water. 

In the majority of the cases, one of the immiscible phases is aque-

ous. However, the mechanism of condensation from mixed vapors into 

two (or more) immiscible liquid phases is not fully understood. 

In 1916, Nusselt published the first sound theoretical develop-

ment to calculate the heat transfer coefficients for the condensation 

of a single component. Nusselt made a series of assumptions, such 

as laminar flow of condensate film, no vapor shear, etc. and arrived 

at the following two equations to calculate the condensing heat 

transfer coefficient. 

For a single horizontal tube with condensation on the outside 

surface: 

h (1.1) 

and for a vertical tube, 

0.25 
(1. 2) 

1 



where: 

kl thermal conductivity of the liquid film, 

pf density of the liquid film, 

g gravitational acceleration, 

A latent heat of condensation, 

6tf temperature drop across the condensate film, 

µ£ viscosity of the condensate film, 

D diameter of the tube and 

1 length of the tube. 

Numerous results have been published after 1916 to show how 

2 

the heat transfer coefficient is affected when one or more of Nusselt's 

assumptions break down. To cite two examples, among others, the effect 

of turbulence was studied by Colburn (11), and the vapor shear effect 

by Boyko and Kruzhilin (10). 

In the case of condensation of immiscible mixtures, one of the 

most frequently violated of Nusselt's assumptions is that of a contin­

uous film of condensate. A large number of condensation patterns are 

reported. The two basic patterns, namely, dropwise and filmwise, ob­

served in the case of a single component, can be imagined to form 

various combinations during the condensation of two immiscible liquid 

phases. The mechanism of dropwise condensation for the case of a 

single component itself is not fully understood. Hence, the addition 

of another liquid phase gives rise to still more uncertainty. 

The mechanism of filmwise condensation is quite well understood. 

An.illustration is given in Appendix A. The original treatment of 

Nusselt is analyzed by Kern (18) and Jakob (16) extensively. 



Dropwise condensation has been a subject of interest for a long 

time because of the high heat transfer coefficients observed. The 

heat transfer coefficients observed are as high as ten times those 

calculated by Nusselt's equation. Several theories have been pro­

posed to explain this phenomenon. Bernhardt (6) has covered the 

subject quite comprehensively. He also has shown photographic evi­

dence to support the nucleation theory. A series.of photographs 

showing nucleation in progress is presented in Chapter V. These 

are for condensation of pure steam. These photographs also support 

Bernhardt's analysis. 

Nature of the Problem 

When a mixture of immiscible liquids is heated together in the 

same vessel, each of the liquids will exert its own vapor pressure. 

When the sum of the vapor pressures reaches the total pressure, 

boiling will start, resulting in a eutectic vapor mixture. Gibb's 

phase rule can be stated as: 

F + P = C + 2 

where: 

F degrees of freedom, 

P number of phases, and 

C number of components. 

(1.3) 
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In the process of boiling, we have two components in two liquid 

phases, plus a vapor phase. This leads to only one degree of freedom, 

namely, pressure, or alternatively, temperature. Hence, boiling of the 

two liquids together will, in theory, always result in a vapor phase 

of eutectic composition. If a vapor mixture with a composition other 



than eutectic is needed, the two liquid phases must be boiled 

separately, and the vapors mixed. 

During condensation, if the vapor composition is eutectic, 

the condensate will also have the same composition. This is repre­

sented by point E in Figure 1. However, if the vapor is richer in 

one component, that component will condense first selectively, till 

the vapor phase attains the eutectic composition. This is indicated 

by transformation from point A or B to point E in Figure 1. Hence, 

in this case, the bulk of the condensate collected will not be a 

eutectic mixture. 

Various condensing patterns have been reported. A detailed de­

scription is given in Chapter II. Several empirical equations have 

been proposed. However, there is not a single reported work which 

predicts the heat transfer coefficients from first principles. De­

signs have been done by using rules of thumb and results from single 

component condensation. 

4 

It is expected that when two liquid phases and one metal surf ace 

are in contact, the interfacial tensions will play a dominant role in 

deciding the condensation patterns, and hence the heat transfer coef­

ficients (henceforth referred to as coefficients). None of the re­

ported equations include any term accounting for interfacial tensions. 

The effect of vapor shear has not been studied either, though it is 

more important at this stage to work with a minimum number of variables 

to study the coefficients and the condensing patterns. 

This is the first step of a major study intended on this problem. 

In this work, the design of equipment is done along with acquiring and 

setting up the same. Experiments are done first with one pure 
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component (water) and then with a mixture of vapors (toluene and water). 

Experimental techniques are established and methods are worked out to 

deal with the practical difficulties involved in the experimental pro­

cedure. Special techniques are developed for still as well as motion 

photography. The data obtained agree well with the published data. 

Future work will be aimed at determining whether a "flow regime map" 

can be constructed whereby the liquid structure and its heat transfer 

characteristics can be related to the sequence of formation of the two 

phases, the amounts and properties of the individual phases, the geo­

metry of the system and the magnitude and direction of vapor shear on 

the interface. 



CHAPTER II 

LITERATURE REVIEW 

Investigation Using Horizontal Tubes 

In 1933, Kirkbride (19) published the first reported work on 

the subject of binary condensation. His experiments dealt with two 

mixtures, namely, benzene-steam and "cleaners naphtha"-steam. It 

was recognized that 'drop forming condensation' could have occurred 

and complicated the problem. An average heat transfer coefficient 

was calculated using the heat loads of the two components as the 

weighting factors. The equation can be written as: 

h 
m 

where: 

(2.1) 

h mean heat transfer coefficient, 
m 

h coefficient for organic phase (calculated by Nusselt 
0 

equation on the assumption that only the organic was 

condensing on the entire surfac.e), 

h coefficient for steam (calculated by Nusselt equation 
s 

on the assumption that only the steam was condensing 

on the entire surface), 

Q heat load for steam, and 
s 

Q0 heat load for organic phase. 

7 
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While calculating the pure component condensing coefficients, equation 

1.1 or 1.2 was used. The properties of the pure components were used 

along with the film temperature difference observed during binary con-

densation. 

No attempt was made to ensure that the vapors were of eutectic 

composition. In fact, it was reported that the uncondensed vapor 

leaving the test section was superheated. A horizontal internally 

cooled tube was used as the condensing test surface. Also, the 

temperature variation around the periphery of the tube was ignored. 

Baker and Mueller (3) studied benzene, toluene, mixed heptanes 

and trichloroethylene as the organic phases along with steam. Though 

they attempted to get eutectic mixtures, they reported a substantial 

amount of data on non-eutectic compositions. After a series of mathe-

matical manipulations, they obtained the following equation: 

h [ k 3 µ2 2 g ] 1/ 3 

av Pav 

where: 

= 1 28 av av ~ [
Cp µ pO. 712.38 (Q )-3.28 

. k ;\ O 
av av j · 

(2. 2) 

Pav average liquid density based on weight fraction in the 

condensate, lb/cubic ft., 

average specific heat of condensate based on weight 

fraction in the condensate, Btu/lb-deg F, 

;\ average latent heat of condensation based on weight 
av 

fraction in the condensate, Btu/lb, 

k average thermal conductivity of condensate based on 
av 

volume fraction in the condensate, Btu/hr-ft-deg F, 

µ viscosity of the film forming component (organic) lb/ft-hr, 
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Qs steam heat load, and 

Q total heat load 

The equation is not dimensionally consistent and should be used in 

only the given system of units. It was concluded that at that time, 

'a strictly theoretical attack' on the problem was not possible. 

Thermal and physical properties of the liquids, as well as the sur-

face properties, would be important. 

Baker and Tsao (4) used the electrical resistance method for 

measuring the surface t~mperature, and used an avearage value over 

the entire length of the tube as well as around the periphery. They 

calculated the temperature drop across the tube wall from the heat 

load and assumed it to be uniform around the circumference. The 

equations suggested are highly empirical and give absurd values if 

the parameters are used beyond their suggested range. 

Baker, Mueller and Tsao have indicated no change in the heat 

transfer coefficients with change in film temperature difference. 

The temperature difference varied from 7 to 70 deg F. However, Patton 

and Feagan (24) clearly showed that this was not true and presented 

a graph with ha: ( f;t)-O. 5 • This was supported by Sykes and Marchello 
f 

(28). 

Stepanek. and Standart (27) did some theoretical development but 

they could not arrive at a conclusive equation because of mathematical 

difficulties. They have presented a semi-theoretical equation. Bernhardt 

et al. (7) pointed out that the Stepanek-Standart equation breaks 

down for pure substances and shows a zero heat transfer coefficient 

for an intermediate composition. Also, it does not fit very well with 

the data of others. They point out that the dependence of h on the 
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film temperature difference varies with the substance in question. 

They studied benzene, toluene, dichlorethane and chlorobenzene along 

with water. 

The equation proposed by Sykes and Marchello (28) gives the 

same heat transfer coefficient as for a pure organic, if the density 

of the organic phase is same as that of water. However, there are 

no data available to support this. The dependence of h on film 

temperature difference was considered to be varying in accordance 

with the density of the organic phase. This was found not to be 

always true and later was associated with the condensation patterns 

by Polley and Calus (25). The second correlation of Sykes and 

Marchello is based on the two-film model and assumes that the organic 

film is adjacent to the wall and the water film is on top of the or-

ganic. This was expected to give minimum heat transfer coefficients, 

but failed to do so. Their third equation,based on the nucleation 

model,was the most successful over a wide range of systems. It assumed 

an organic film on the surface and the water drops nucleating on it. 

The equations are given in Appendix B. 

Kawasaki et al. (17) studied simultaneous mass and heat transfer 

effects, using the Maxwell equations for mass transfer. They suggest 

the following correlations on the lines of the Nusselt equation: 

Nu= 0.0295 (GaKuPr) 114 Re 112 
v 

where: 

Ga Gallileo number 

Ku Kutateladze number 

D3 2 p g 
2 

µ 

(2.3) 

and 
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It is apparent from the sketch of their apparatus that the vapor 

flowed across the tube with a possibility of vapor shear. Nusselt's 

development assumes negligible vapor shear. Also, they have shown 

one thermocouple each for measuring the surface temperature and the 

vapor temperature. The tube could not be rotated on its axis and 

hence they have neglected the effect of temperature variation 

around the tube. They use average properties of the condensate. 

Thermal conductivity, density, and viscosity are based on volume 

fractions and the specific heat is based on the weight fraction. 

Salov and Danilov (26) have studied the temperature variation 

around the periphery of a horizontal tube and along the length of 

a vertical tube. Based on these, they have presented analytical 

equations for local and mean values of heat transfer coefficients. 

The mixtures studies were benzene, toluene, trichlorethane, heptane, 

turpentine and gasoline along with water. 

Bernea and Mizrahi (5) have argued that correlating the heat 

transfer coefficient to the film temperature difference is not correct. 

They have come up with a proportionality as: 

Q 1.26 
h a ( A. ) 

Replacing ( t) by (h6tf) leads to ha (6tf)-4 · 84 

(2.4) 

Their study involves back-calculating the condensing heat transfer co-

efficient from the overall heat transfer coefficient. They have ca1i-

brated the coolant side coefficient to the Reynolds number of the coolant 
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flow at a particular value of Q/A. This was then used for all 

further calculations at various values of Q/A. There may be 

inherent changes in the coolant side coefficient as more and more 

experiments are done, due to scaling, dirt film formation, etc. 

Further, when the coolant side resistance has a dominant effect on 

the overall heat transfer coefficient, small errors in its value 

will lead to large errors in the calculation of condensing coeff i-

cients. There are too many variables involved and the approach 

itself is questionable. 

Yusufova and Neidukht (30) have studied complete and partial 

condensation of gasoline and water vapor inside horizontal tubes, 

with vapor velocities up to 15 m/s (50 f/s). They report that the 

condensing heat transfer coefficient is independent of the tube 

material and increases with a increase in the specific heat flux Q/A. 

The degree of finish of the tube surface has a considerable effect 

on the heat transfer coefficient. They report a proportionality as: 

h a:: 
0 1.1 

(-->-) 
A 

In this case substituting (Q/A) by (h Litf) will result in: 

(2.5) 

They also present a curve with decreasing h with a increasing film 

temperature difference. It is well accepted that the heat transfer 

coefficient during the condensation of immiscible mixtures is de-

pendent on the condensing patterns, or at least, changes with chang-

ing patterns. In the work of Yusofova and Neikdukht, the vapor 

velocities are likely to affect the condensing patterns. Hence, their 
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data are not very useful for studying the effect of one parameter 

at a time. 

Investigation Using Vertical Tubes 

Patterson et al. (23) worked with a heptane-water mixture at 

low water contents by injecting live steam into heptane. There was 

no attempt made to control the composition of the mixed vapors. The 

water was observed to condense in a dropwise manner, and the heptane 

formed rivulets or a film. No correlation was given to calculate 

the heat transfer coefficient. 

Hazelton and Baker (15) started with a theoretical development 

based on Nusselt's equation. Though with this they were not able 

to correlate the data successfully, empirical correlations were ar-

rived at based on the theoretical equations. Modifying the equipment 

of Baker and Tsao for a vertical tube, experiments were done for 

water with benzene, toluene and chlorobenzene. Also a correlation was 

presented for the data available on horizontal tubes. Hazelton and 

Baker have postulated six different types of flow patterns as quoted 

here. 

Flow type 1 (Film-drop) - The organic liquid com­
pletely wets the condensing surface, forming a continuous 
film which displaces the water from any point at which it 
may be originally in contact with the surface. The organic 
liquid condenses as a.film and flows from the surface as a 
film. The water forms drops on the surf ace of the organic 
film and flows from the surface as a series of drops. 

Flow type 2 - The converse of flow type 1, water form­
ing the continuous film. 

Flow type 3 (Channelling) - Some areas of the condenser 
surface are wet by the organic liquid; the remainder is wet 
by water. Both liquids form films over the area they wet and 
flow from these areas as films. Where there is an organic 
film, a portion of condensing water forms drops on its sur­
face and flows from it in discrete drops to join the adja­
cent film of water at the boundary of the two films. Organic 



liquid condenses on the water film in the same manner, and 
joinsits adjacent film. 

Flow type 4 (Double dropwise) - Neither liquid wets 
the condenser surface; dropwise condensation of both com­
ponents occurs. 

Flow type 5 - An intermediate between flow types 1 
and 3~ The organic liquid forms a continuous film on the 
condenser surface with small drops of water on its outer 
surface, much as in case 1, but at some point the surface 
is wet by isolated large drops of water which cling 
while the organic film flows over them. These drops fin­
ally become detached and join other water drops on the 
outside of the film, or they become large enough to be 
forced slowly down the condenser surface as a result of 
the flow of film past them. 

Flow type 6 - The converse of flow type 5, with 
water as the film (p. 3). 

The correlations of Hazelton and Baker are not dimensionally consis-

tent, and should be used only with the English (U.S. customary) 

system of units. Their theoretical equation was: 

h 
[K ( ' b'.2)g ]1/4 .1p1 aA1 + A 

0.943 
µ1 Lalltf 

and the correlations presented are, 

[ a>..1 + bA. 2 J 
h = 79 aL 

1/4 

for vertical tubes, and 

. 1/4 
[ a>..1 + bA. 2 J 

h = 61 aD 

for horizontal tubes. 

where: 

L length of the tube in ft, 

D diameter of the tube in ft, 

K thermal conductivity in Btu/hr-ft-deg F 

p density in lb/ft3 , 

g gravitational acceleration in ft/hr 2 , 

(2.6) 

(2. 7) 

(2. 8) 

14 



µ viscosity in lb/ft-hr, 

Ltf film temperature difference in deg F, 

a = weight percent of component 1 (organic) in the con­

densate, and 

b weight percent of component 2 (aqueous) in the con­

densate. 

100 - a 

15 

Cooper et al. (12) have presented data on isopropyl alcohol­

ethyl acetate eutectic mixtures. It was reported that the heat 

transfer coefficients were higher for the eutectic than those obtained 

for pure components. They also present data on butyl acetate-steam 

mixture. However, in this case, the heat transfer coefficients were 

found to be of intermediate values compared to the two pure component 

condensing coefficients. Bernhardt (6) has pointed out that the butyl 

acetate used by Cooper et al. was only 91 percent pure, and hence, the 

results are of questionable value. A decreasing trend in the coeffi­

cient was reported with increasing film temperature drop. 

Edwards et al. (13) condensed styrene-steam and butadiene-steam 

mixtures on the inside of a vertical tube. They used eutectic compo­

sitions and found that the condensing coefficients for butadiene-steam 

mixture matched quite closely with the McAdams equation. McAdams 

equation gives 20 percent higher values than Nusselt's theory. However, 

the data on styrene did not agree with the theoretical predictions and 

they recommended a correlation to be used for that system only. In 

the McAdams ~quation, they used physical properties and value of sur­

face loading of the pure organic component only. 



Tobias and Stoppel (29) studied various systems and initially 

tried to fit the data on the basis of the Hazelton-Baker equation. 

However, being unsuccessful, they developed their own equation. 

This equation, given below, is a modification of the Hazelton-Baker 

equation. 

h 

where: 

1 
1 - 545 

0.21 

hH coefficient given by Hazelton-Baker e~uation, 

(2. 9) 

M weight rate of condensation of the organic phase, 
a 

~ weight rate of condensation of water, 

Ly the difference in surf ace tension of water and the 

organic at the eutectic temperature, 

µa viscosity of organic phase, 

pa density of organic phase, 

Pb density of aqueous phase, 

K thermal conductivity of organic phase, and 
a 

~ thermal conductivity of aqueous phase. 

The equation shows considerable deviation in some cases and an 

explanation is given by Tobias and Stoppel (29). The anomalies 

resulting from the equation were anticipated. If water condenses 

alone, the numerator of the equation becomes infinite and if the or-

ganic component condenses alone, the denominator becomes negatively 

infinite. Also, the denominator becomes zero if: 

16 
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This is possible at very low percentages of water in the condensate. 

Hence, a range of 8 to 98 percent water by weight was recommended. 

Investigation Using Other Geometries 

Akers and Turner (1) used vario·us mixtures including non-

eutectics on a vertical "cold finger" of brass, 2.5 inches in dia-

meter and 3 inches long. Their data are within 2 percent of that 

for the corresponding eutectic compositions most of the time. They 

have noted a number of interesting observations which confirm that 

the mechanism of two phase condensation is quite complex and is not 

yet fully understood. 

Akers and Turner introduced the Harkins and Feldman (14) concept 

of spreading coefficients. For two liquids A and B, the spreading 

coefficientsSBA for A spreading over B and SAB for spreading B over 

A are defined as: 

(2.10) 

and 

YA - YB - YAB (2 .11) 

where: 

YA surface tension of A, 

YB surf ace tension of B, and 

YAB interfacial tension between liquids A and B 

If the spreadini coefficient SBA is positive, then B will spread 

over a drop of A and form a film over it. For SBA< 0, liquid A 
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will form drops and liquid B will form a film around it, the drops 

of A standing exposed to the vapor. Akers. and Turner state that, 

though it is not possible to predict the mechanism of two phase 

condensation accurately, the spreading coefficients are certainly 

indicative. 

For predicting the heat transfer coefficients, they have devel-

oped two equations. For the film-drop and the film-lens mechanism, 

they use the Nusselt equation, 

{ . 2 \ 1/ 3 - I !:!.1.)-1I3 
h 3 2 I - i.41 I . c2.12) 

\K p g I ' µ 

The viscosity of the surface-wetting liquid is used. The density 

is averaged based upon weight percent, and the thermal conductivity 

of the condensate is averaged based upon volume percent. All their 

data fit within 30 percent of the predicted values. 

For channeling flow, they have found that the data closely 

parallel, but are 20 percent below those predicted by the Kirkbride 

equation. Hence, they have recommended the use of: 

( aA. ha + pA.b ~) h 0.8 
a 

(2.13) 
aA. a bA.b 

where: 

a = heat load on component 1 (organic), 

b heat load on component 2 (aqueous), 

h coefficient for organic phase calculated using the 
a 

Nusselt equation, and 

hb coefficient for aqueous phase calculated using the 

Nusselt equation. 
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The work of Bernhardt et al. (7) is unique in the matter of 

visual observations and experimental techniques. A vertical gold­

plated copper plate was used as the condensing surface. Detailed 

motion pictures of the mechanism of condensation were taken. An 

electrical probe assembly and a dye technique were used independently 

to prove that, in the film-drop and film-lens mechanism, the film 

was always made of the organic phase and the discrete drops were of 

water. Before this study, it was only guessed that the film would 

be organic. The motion pictures show that the large standing drops 

of water as well as the surrounding organic liquid film were both in 

contact with the metal surface, and also exposed to the vapor. Hence 

the configuration is non-equilibrium with four phases, namely, solid­

liquid-liquid-vapor. Bernhardt et al. state that no correct theoret­

ical treatment is available, and hence empiricism is necessary for 

predicting heat transfer coefficients. Using a shared surface model, 

they have recommended a very simple expression. This equation calcu­

lates an average of the pure component heat transfer coefficient based 

on the volume fr~ction of each phase in the condensate. The equation 

is written as: 

where: 

h (2.14) 

h1 coefficient for organic phase calculated by Nusselt 

·equation, assuming only organic is present. 

h 2 coefficient for aqueous phase calculated by Nusselt 

equation, assuming only water is present. 

v 1 volume fraction of the organic phase in the condensate, 

v2 volume fraction of the aqueous phase in the condensate. 
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The equation fits most of the data within 20 percent. 

Boyes and Ponters (8) studied the behavior of organic and water 

phases in contact with a copper as well as a PTFE surface. The experi-

mental conditions were static. There was no continuous heat removal 

from the condensing surface and the condensate was not drained out. 

Using needles, drops of liquids were introduced on the surface. They 

found that the surface force as well as the bouyancy force plays on 

important part in determining the hydrodynamic behavior. 

Summary 

There are many questions still to be answered as to the effect of 

certain variables which may be expected to influence the condensation 
r . 

fb steam-organic mixtures, fil~mRerature difference being one of 

the very important ones. Another parameter which does not seem to be 

considered by most workers is the density ratio of the two components. 

This is surprising since one would expect this to be of considerable 

importance, particularly on horizontal tubes where gravity is likely 

to play an important role in drop behavior. That is, different heat 

transfer effects would be expected for drops which touched the metal 

surface as opposed to those which float on the film. 

The mechanisms of condensation as described by Hazelton and Baker 

are given above. In practice, the only mechanisms which have been 

observed are those of types 1, 3 and 5. The types which have water 

as the continuous film and organic as the drops (type 2 and 6) are not 

likely to be realized with any common organic components. The double 

dropwise mode (type 5) might be possible with water and selected 



organics condensing on a low energy surfaces such as PTFE, although 

this has not been achieved in practice. 
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Very little work has been done on the condensation of organic­

organic mixtures, this perhaps being due to the greater commercial 

interest in the organic-steam mixtures. The only reported data of 

this kind are those of Akers and Turner on heptane-methanol mixtures. 

They describe the mechanism as being film-lens type, but do not state 

which component formed the film and which formed the lens. Equation 

(2.12) was used to correlate the data obtained, and was accurate 

within 25 percent. 

Some other effects have not been studied by any of the above 

investigators. There is no published work on the effect of noncon­

densible gases on the condensation process. This is not at all 

surprising since the mechanism for the case of pure component mixtures 

itself is not clearly understood, and the introduction of the noncon­

densible gas would complicate the mechanism further. 

The only work in which high vapor velocities have been used was 

that of Yusofova and Neikducht, this being for a petroleum fraction and 

steam. No data exist on a single component organic condensing with 

steam. Hence, the effects of vapor shear are unknown. 

No data are available for the condensation of immiscible mixtures 

on tube banks, nor has there been any work published on the in-tube 

condensation of binary mixtures. Obviously, further work is required 

in all the above areas before a fuller understanding of the problem 

can be attained. 



CHAPTER III 

APPARATUS 

Introduction 

The apparatus was designed and assembled with the goal of obtaining 

qualitative (visual) as well as quantitative data. However, the main 

objective was to locate the problems that would be encountered in this 

type of experiment and find ways to eliminate them. The apparatus 

consists of several components and can be broadly subdivided into four 

sections: the vapor side system,. the cooling .water system, temperature 

··measurement and photography. A schematic flow diagram of the process 

is given in Figure 2 .. 

The boiling equipment consists of a 5 liter (1.32 gal) flask, 

heated by a heating mantle. The vapors of the sing~e component or the 

boiling mixture are carried out through a 1/2 in x 20 BWG, 316 stainless 

steel (henceforth referred to as 316SS) tube. The vapor is passed 

through a pipe tee, where the liquid droplets separate and return bac~ 

to the flask. The vapor is then let to the condensation cell from its 

top. Th~ condensate from the test surface is removed by a 1/4 in x 20 

BWG, 316SS tube. The condensate either may be led outside for a measure­

ment, or returned to the flask. The uncondensed vapor along with the 

condensate from the cell wall is taken out at the bottom of the cell 

through a 1/2 in x 20 BWG, 316SS tube and led to the auxiliary condenser. 
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The condenser has approximately 0.62 ft2 (0.0558 m2) of condensing 

surface area and is able to condense all the vapor coming to it. The 

condensate is led out through a 1/4 in.x 20 BWG, 316SS tube from the 

bottom and may be taken out for collection and measurement, or returned 

to the boiling flask. A 1/2 in.x 20 BWG, 316SS tube is connected to 

condenser and led to the vent at a substantially higher level. 

The cooling water is taken from a feed tank filled with tap water. 

Two centrifugal pumps are used. They are connected in such a way that 

they may be used either in series, in parallel, or independently of 

each other. The water flow is divided, with one branch for the test 

cell and the other for the auxillary condenser. Two rotame.ters were 

used to measure the individual flow rates. The coolant flow out of 

the cell and the condenser were returned independently to the feed tank. 

A 1/4 in.x 20 BWG, 316SS tube was used throughout for water. A de­

tailed description of the components is given below. 

Vapor Side System 

Vapor Generation 

The vapor generator consists of a 5 liter (3.2 gal), pyrex glass, 

round-bottom, three-necked flask. All three openings are closed by 

stoppers. The central, bigger neck is used as the vapor outlet~ The 

stopper is drilled with a 1/2 in hole and a 1/2 in.x 20 BWG, 3i6SS 

tube is forced through it. This tube is connected to another 316SS 

tube, using a 1/2 in brass union joint. 

In one of the smaller necks, a 3/8 in glass tube is inserted which 

extends to the bottom of the flask. This tube is approximately 3 feet 
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(90 cm) long and can be closed at the top by a #0 stopper. This tube 

serves as a feed line to the flask when it is in operation. Using a 

glass funnel, additional amounts of liquids are added to the flask 

without stopping the boiling or shutting off the experiment. When open 

at the top, this tube serves as a barometric leg to indicate the excess 

pressure maintained in the flask. 

The stopper in the third neck is drilled with a 1/4 in. hole and 

a 1/4 in.x 20 BWG, 316SS tube is forced in. The tube extends to the 

bottom of the flask and serves as a condensate return line. The other 

end of this tube is connected to the three condensate return lines 

through a union cross. During operatiqn the lower ends of the liquid 

return line and the glass tube are always immersed in liquid. 

Heat is supplied to the flask with a Glas-ColR heating mantle, 

\ STM,.1300. It has two separate heating c~rcuits with a 700W/110V rating 

each. Power is supplied to these using separate Variacs.R The upper 

circuit is switched on only after the lower circuit is at full power. 

Initially, a 600W/100V Glas-ColR heating mantle 0-414 was used. It 

was found that for steam generation, the amount of vapor generated was 

not enough to meet the requirements of the cell. 

Condensation Cell 

The condensation cell consists of three major components: The 

vapor chamber, the coolant chamber, and the test surface. A drawing 

of the assembled cell is given in Figure 3. 

The vapor chamber is made of brass. A cylindrical ring 6 1/4 in. 

(159mm) di~meter and 1 in. (2.54mm) wide, is fitted with two flanges 

at the two ends. These two flanges as well as the coolant chamber 
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flange are 5 1/2 in. (140rnm) i.d., 8 in. (203mm) o.d., and 3/8 in. (9.Srnm) 

thick. The vapor chamber flanges have grooves for one 0 ring gasket 

each. On the front side, a 6 in. (152mm) diameter, 1/4 in. (0.64rnm) 

thick glass plate is placed and secrued in place by using another 

flange. The purpose of the glass is to allow visual observation and 

to photograph the test surface during the experiments. The vapor 

chamber has 1/2 in.pipe threads at the top for connection to the vapor 

line. At the bottom is a 1/2 in. pipe-threaded outlet. This is connected 

to the auxilary condenser. It has a bypass line just below the cell, 

which can be used as a drain. The drain is kept closed during operation 

and may be used for purging. On the side of the chamber, at 105°, a 

hole was drilled and tapped with 1/4 in.pipe threads. This was used 

for fitting a thermocouple in the vapor space. 

The coolant chamber is also made from a 6 1/ 4 in. (159rnm) diameter 

brass ring, 1 in. (2 .54rnm) wide. The back is closed off with a 6 1/ 4 in. 

(159rnm) brass plate. On this back plate, six holes are drilled and· 

tapped with 1/4 in.pipe threads. These are used to pass the thermocoup·-

les connected to the copper plate. Each thermocouple wire is passed 

R 
through a Teflon plug. The plugs are fitted in place to seal off the 

holes. On the other side of the coolant chamber, a flange is welded. 

It has six holes tapped with 1/8 in.pipe threads. This flange is 

bolted to the back flange of the vapor chamber, holding the copper plate 

between the two. The plate separates the two chambers and forms the 

condensation surface. The coolant chamber has two 1/4 in. threaded holes 

for water flow. The one at the bottom serves as inlet and the one at 

the top is the outlet. 
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The condensate surface is machined from a 1 in. (2. 54mm) thick 

copper plate, 6 1/4 in. (l.59mm) in diameter. A detailed sketch of the 

plate is given in Figure 4. From the front side, 3/4 in. (19mm) of 

the plate thickness is carved out. The 5 in. (127mm) diameter indented 

surface acts as the test surface. The machining is done at an angle. 

This separates the condensate collected off the test surface from the 

condensate formed on the walls of the vapor chamber. The pit formed 

at the bottom of the surf ace holds the condensate from the test suf-

f ace in a small pool. A 5/32 in. (4mm) diameter hole is made at the 

bottom of the pit touching the test surface. A 1/4 in.copper tube is 

connected there for drawing out the condensate. The condensate line 

is connected to a two-way valve. This valve may be fully blocked, or 

connected to the measurement outlet, or to the condensate return line. 

From the back of the plate six holes are drilled to place the thermo­

couples. These are three identical pairs situated along the height of 

the plate. Of each pair, one hole is 1/ 8 in. (3. l 75mm) deep and the 

other goes up to 30/1000 in. (0.762mm) from the front surface. One 

thermocouple is placed in each of the holes and then filled with liquid 

solder. 

Auxiliary Condenser 

The auxiliary condenser is designed to condense all the vapor that 

may come to it from the cell. During the several runs, the heat load 

on the test cell is varied, and hence the heat load on the condenser 

also varies. The condenser consists of a cylindrical shell of copper, 

5 in. (127mm) diameter and 10 in. (254mm) long. The shell is closed on 

both the sides and supported vertically. A copper coil is suspended 
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from the top end. The coil is made from a 1/4 i~ copper tube, is 8 

inches (203mm) 'long and has a 3 in. (76mm) diameter, and has 1. 5 turns 

per in. of length. An effective outside surface area of 0.62 ft 2 

(0.0558 m2 ) is obtained. The vapor-liquid mixture comes in from the 

side openings at the top. The condensate is withdrawn from the bottom 

and passes through a 2-way valve. The valve may be opened to the con­

densate return line, or to the outside line for. measurement and with­

drawel from the system. Another opening is provided on the shell side 

of the condenser. This is connected to a tube open in the vent. The 

vent opens approximately 4 1/2 ft (115mm) above the condenser and 

10 ft (3 m) of tube length away. In case of failure in the auxil-

iary condenser, the uncondensed vapors will be safely purged out 

through the vent. The vent also acts as a purge for the noncon­

densibles during normal operation. A sketch of the condenser is shown 

is Figure 5. 

Cooling System 

Initially, only one pump was used to supply cooling water to both 

the condensation cell and auxiliary condenser. The pumpwasan Eastern 

MD15T with a rating of 4. 76 gpm (18 lit /min) and 9 ft (2. 7 m) head. 

The pressure drop through the system was much greater, and the flow 

rate dropped to a very small value. Another pump was added to the 

piping. This was an Eastern D-10 with 2.64 gmp (10 lit/min) rating . 

. This pump was connected in such a way that it could be operated in 

series or in parallel with the first pump. Also, it was possible to 
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operate either pump independently of the other. This gave a wide 

range of control over the flow rate. A schematic diagram is shown 

in Figure 2. 

Rotameters 
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For measurement of water flow rate to the test cell and the con­

denser, two separate rotameters were used. For the cell, a Fischer 

and Porter FP-1/2-35-G-10/35 rotameter tube with a range of 0.2 to 

2 gpm (0.757 to 7.57 lit/min) was used. The rotameter was specially 

made and precalibrated. The calibrations were checked and found to 

be accurate. To measure the flow rate to the condenser, a Fischer 

and Porter FP-1/4-20-G-5/84 rotameter was used. It was found that 

the upper limit on the measurement was too small. Hence, a 1/4 in 

tube with a toggle valve was connected parallel to the rotameter. 

The range was nearly doubled with the parallel flow. The rotameter 

was recalibrated. A number of flow measurements were done at various 

readings on the meter. A seventh order Lagrangian polynomial was used 

to express the flow rate as a smooth function· of the rotameter reading. 

The readings were taken using a spherical stainless steel float. A 

calibration chart is in Appendix C. 

Piping System 

For the circulation of cooling water, 1/4 in x 20 BWG, 316SS 

tubes were used throughout. All the tube fittings used were of brass. 

A controlled drain was provided downstream from the pumps. This was 

used to remove hot water from the cooling system. Adding controlled 

amounts of cold water to the feed tank, the coolant temperature could 
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be roughly controlled, or brought down to a desired level. 

Temperature Measurement 

The main component in the temperature measurement was the Leeds 

and Northrup K-5, Series 7555 potentiometer. The calibration and 

measurement instructions were followed from the K-5 potentiometer 

User's Manual (20). The medium range settings were used through out 

with a range of 0 to 0.161105 volts. The limit of error was±. (0.005 

percent of the reading+ 0.3 microvolts). The potentiometer uses a 

standard cell of 1.01930 volts. Copper-Constantan (type T) thermo­

couples were used as the sensing elements. The thermocouple wire was 

obtained from Omega Engineering and the beads were made using a bead 

welding machine. All the thermocouples were connected to a Doric Sel­

ector Switch Box. Two thermocouples were always immersed in a ice­

water bath. The connections were made inside the selector in such a 

way that the electromotive force measured was always a differential. 

For measuring actual temperatures, this differential was with respect 

to the ice-water bath temperature. It was also possible to measure 

the differential between a pair of thermocouples connected to the 

test plate. Of this pair, one thermocouple was very near the front 

surface and the other was half way through the plate thickness. 

In the initial runs, because of the low values of the coefficients 

obtained, it was suspected that the thermocouples we~e not in good con­

tact with the copper plate. It was found by measuring the electrical 

resistances that the thermocouple beads were not touching the copper 

plate. Possibly, some of the adhesive material had slipped between 



the thermocouple tip and the plate surface. The thermocouples were 

removed and reattached. It was then found that the thermocouples 
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were in physical contact with the surface. This created a sudden drop 

in the temperature readings. The voltmeter was internally connected 

in such a way that the negative leg of the thermocouple loop was ground­

ed. The link between the negative port and the ground port was opened. 

With this, the thermocouple readings were back to normal. 

Photography 

In order to make visual observations and obtain photographs of 

the condensation patterns, it was necessary to have a fog-free window. 

A search was made to procure electrically conducting glass similar to 

that of Bernhardt. However, finally a simple 1/8 in (3.18mm) thick 

pyrex glass was used. When glass was exposed to the cold surroundings, 

vapor condenses and fogs the inner surface. Initially, attempts were 

made to heat the glass with a hot air blower. At this time runs were 

made with pure steam and the blower was found to be inadequate. Infra­

red lamps were then used to heat the glass. Two reflector lamps of 

250W/110V each were used. The voltage to these was controlled by a 

variac and the power kept just adequate to keep the glass clear. This 

was found to be a fairly successful method to keep the glass clear. 

For providing natural (tungsten - visible range) light, two flood 

lights were used. They were 250W/110V and lSOW/llOV, respectively. 

A Nikon-F 35 mm camera was used to obtain the still photographs. 

Three extension rings, namely, K2, K3, and K4 were used. With these 

the camera could be focused at about 6 inches (15 cm) from the object. 
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The black-and-white film used was Kodak Plus-X pan film 125 ASA. A 

color film, Kodacolor II, 100 ASA was initially used to obtain photo­

graphs of steam condensing in a dropwise manner. Photographs were 

taken mainly at a speed of l/125th of a second. The aperture size 

(£/stop) was kept at 4.0. 

Motion photography was done using a Bolex 16 mm camera. The film 

used was black and white Kodak Plus-X, reversal type. Two different 

lenses were used. The first was 75 mm focal length with 10 mm exten­

sion ring, for closeup pictures. The other was a 50 mm focal length 

used for a view about 2 ft (60 cm) away from the test surface. The 

camera was run using a motor drive. The filming was done at a stand­

ard speed of 24 frames per second throughout. 



CHAPTER IV 

EXPERIMENTAL PROCEDURE 

After assembling the equipment, the entire piping system was 

flooded with water to check for leaks, if any. Flooding was done 

separately for the vapor and coolant paths. This ensured that the 

two were isolated from each other. 

When the test surface was fresh, it had very small marks of 

machining. The circular pattern of a lathe tool was visible. However, 

no polishing was done. These marks were not visible to the naked eye 

after a working time (in condensation service) of approximately 15 

hours. Initial runs were made using steam as the condensing substance. 

During these runs, tests were done to check the capacity of the auxil­

iary condenser. The coolant supply to the test cell was cut off and 

all the vapor was passed to the auxiliary condenser. The condenser was 

able to condense all the vapor generated in the boiler. The vent line 

was not purging any vapor and the vent pipe was at room temperature 

beyond the first three inches of its length. 

Approximately 25 initial runs were made to age the surface, each 

lasting approximately two hours. During these runs, a coating of copper 

oxide appeared on the surface. These runs were made primarily to over­

come effects due to the freshness of the test surface. 
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The first step to start the experiments was to turn on the po­

tentiometer. The User's Manual for the K-5 potentiometer' (20) rec­

ommends that the readings will be sufficiently accurate after a 

warm-up period of 15 minutes, and very accurate after an hour. 

The coolant feed tank was filled approximately to three fourths of 
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its volume by tap water. The valve to the auxiliary condenser was 

opened and the pumps started. The coolant flow to the test cell was 

shut off. The test liquid or liquid mixture was added to the boiling 

flask. The flask was filled a little over half of its volume, 

corresponding to a liquid level slightly above the upper edge of the 

heating mantle. The heaters were then turned on. The infrared flood­

lights were also turned on to heat the front glass of the test cell. 

The voltage to these was regulated at 75 volts. 

After the boiling started, some vapor condensed in the test cell 

and the rest went to the auxiliary condenser. A period of 20 minutes 

was allowed to elapse during which more and more vapor passed on to the 

condenser without condensing in the test cell. This vapor was expected 

to drive away all the air present in the cell initially. 

The coolant flow to the test cell was slowly started. The temper­

atures, flow rates and condensing rates were noted after 20 to 25 

minutes. The ice used in the ice-water bath was made from tap water 

and the temperature of the bath was assumed to be 32°F (0°C). 

While obtaining still photographs, the infrared heaters were temp­

orarily switched off and the tungsten visible lights were switched on. 

The infrared heaters were switched off in order to avoid heating of 

the camera. The glass would start to fog 50 to 55 seconds after turning 

off the infrared lamps. Hence a continuous sequence of photographs 
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was confined to a period less than 50 seconds. 

The lenses used on the motion picture camera were of higher focal 

length and it was possible to photograph the test surface from a 

longer distance. Hence, the infrared lamps were not disturbed and 

white lights were temporarily turned on when the camera was running. 

By switching the power to the driver motor, the camera action was con­

trolled remotely. This eliminated any vibrations as well as shaking 

that may occur in a hand-held, manually-triggered camera. 

For shutdown, power to the boiler was shut off. All lamps, in­

frared and white, were shut off. The coolant flow to the cell and 

the condenser was opened fully. The potentio~eter was switched off 

and the thermocouple in the ice-water bath was removed. 



CHAPTER V 

DATA ANALYSIS 

Data on Steam 

All the initial runs were made using steam as the condensing 

substance. Initially, when the surface was fresh, almost all the 

surface exhibited dropwise condensation. The pattern started to 

change gradually in iso.lated spots as the surface converted to cop-

per oxide. Table I gives the condensing heat transfer coefficients 

obtained during these runs. The coefficients predicted using the 

Nusselt equation are also given. The detailed calculations are 

shown in Appendix D. The values obtained experimentally are found 

to be substantially lower than the predicted values. This was 

attributed to the presence of noncondensable gas, that is air, in the 

test section. Othmer (22) has shown that the presence of small amounts 

of noncondensables in the vapor can reduce the condensing coefficients 

to a fraction of what they would be otherwise. Figure 6 gives a 

quantitative estimate of the effect of presence of air. 

When the vapor enters the test section, the cross-sectional area 

for flow increases suddenly. Also the rate of vapor delivery to the 

test section is not sufficiently large to allow uncondensed vapor to 

leave the test section. Calculation of theheat load on the auxiliary 
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TABLE I 

RESULTS FROM THE STEAM RUNS 

Heat Transfer Coefficient 
Run ff Heat Duty Btu/hr-ft2-°F 

Q Calculated Experimental 
Btu/hr hl h5 

15 2,852 2,220 597 721 

16 2,728 2,315 533 513 

17 2,133 2,513 802 1,194 

18 2,604 2,351 384 374 

19 1,116 3 ,118 141 143 

20 1,934 2 ,596 292 310 

21 2,852 2,281 1,030 1,394 

23 2,855 2,280 889 1,118 
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condenser point this out. Almost all the steam condenses in the test 

cell and a negligibly small amount appears in the condenser. Conse-

quently the air present initially in the chamber may not be removed. 

If the coolant flow to the cell is shut off, the vapors will pass 

through the cell uncondensed, driving out the air with it. However, 

as soon as the coolant flow to the test cell is started, all the 

vapor will condense on the test surface. This can result into a 

negative pressure gradient and air can reenter the vapor chamber. 

When the coolant inlet temperature was approximately 125°F 

(52°C) and the flow rate reduced, substantial amounts of vapor left 

the test section without condensing. In these observations, the con-

densing coefficients obtained were 35 to 50 percent of the predicted 

values (1000 Btu/hr-ft2-°F, or 4900 Kcal/hr-m2- 0 c). This indicates 

approximately 2 to 3 percent air in the vapor chamber. When the cool-

ant inlet temperature was 80°F (27°C) and the flow rate high, almost 

all the vapor condensed in the test cell. The condensing coefficients 

obtained were then 10 to 20 percent of the predictions (200 Btu/hr-ft2-

2 °F, or 1000 Kcal/hr-m -°C), indicating 5 to 8 percent air in the vapor 

space of the test cell. 

The two solutions to the problem of noncondensables are to avoid 

a sudden increase in the flow cross-section for the vapor and increasing 

the fraction of vapor leaving the test section uncondensed. 

Data on Toluene-Water System 

The latent heat of evaporation of a eutectic mixture of toluene 

and water is only 20 percent that of pure water. Hence, with the same 
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amount of heat input into the boiler, the rate of vapor generation is 

much greater and the problem of noncondensables seems to be overcome. 

Data were taken by varying the inlet temperature and the flowrate 

of coolant to the test cell. Table II gives the condensing coeffi­

cients obtained at the three different locations on the test surface. 

Figure 7 is a plot of condensing coefficients as a function of film 

temperature difference. Regression analysis of the data resulted in 

the proportionality: 

The detailed calculations are shown in Appendix E. Temperature was 

measured at two depths inside the test plate and by linear extrapolation 

the surface temperature was estimated. 

measured using a separate thermocouple. 

The vapor temperature was 

Low inlet temperature and high flow rate of the coolant accom-

panied by reduced vapor generation rate resulted in film temperature 

differences of the order of 50°F (28°C). The condensing coefficients 

observed in these cases deviated substantially from the values pre­

dicted by Bernhardt's equation. The problem of noncondensables may 

exist in these runs due to the reduced vapor generation rate. Further, 

Bernhardt's equation is not applicable to the double dropwise condens­

ing regime which was observed during these runs. Figure 8 is a compar­

ison of the experimental data with the predictions using Bernhardt's 

equation (2.14). It can be seen that the data agree well with the 

predictions in the upper portion of the observed range. 
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TABLE II 

RESULTS FROM TOLUENE-WATER RUNS 

Run# Heat Load 
Heat Transfer Coefficient 

') 

Btu/hr-f t2 
Btu/hr-.f tL. 

Top Middle Bottom 

24 12 ,113 364 308 308 
25 8,507 251 240 220 
26 9,564 449 389 386 
27 17,957 654 640 586 
28 8,464 609 717 479 
29 10,392 592 602 531 
30 3,683 69 88 85 
31 8,289 233 235 224 
32 7,373 691 833 548 
33 6,024 589 680 521 
34 11,944 369 342 330 
35 12,511 773 817 713 
36 13,693 650 688 628 
37 8,948 689 701 592 
38 16,902 752 666 614 
39 12'113 517 445 516 
40 8,954 439 429 384 
41 10,272 241 234 218 
42 9,286 382 448 423 
43 10,795 641 791 570 
44 8,687 649 698 581 
45 8,579 623 659 584 
46 8,587 617 600 549 
47 8,420 538 560 459 
48 8,289 660 665 463 
49 8,289 590 631 423 
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Visual Observations 

Through the glass window on the condensation cell, the 

condensation patterns were observed and photographed. Typical drop-

wise and filmwise patterns observed during the condensation of steam 

are shown in Figure 9 and Figure 10 respectively. In Figure 9 drops 

of various sizes are visible. Due to a predominantly smooth condensate 

film, the metal surface underneath the condensate film is clearly seen 

in Figure 10. 

Figures 11 to 15 are a series of photographs taken in a sequence 

with a two second interval between two consecutive frames. These 

pictures show dropwise condensation of steam. The nucleation, growth 

and ultimately drainage of a drop can be observed by comparison along 

the sequence. 

Figures 16 to 22 are pictures of two phase condensation patterns 

for toluene-water mixture. Figure 16 shows a predominantly double 

dropwise condensing pattern. The bigger drops of water drained out in 

the form of rivulets and the exposed surface was then occupied by new 

small drops of toluene. Figure 17 shows some patches of filmwise 

condensation. In Figure 18 the filmwise condensing pattern is predom-

inant and isolated sections of the surface continue to exhibit dropwise 

condensation. The variation in the condensing pattern may be attributed 

to the heat load or equivalently, the 6Tfilm" The respective heat loads 

corresponding to Figures 16, 17 and 18 were approximately 7,000, 12,000 

2 2 
and 16,000 Btu/hr-ft -°F (34,190, 58,610, and 78,150 Kcal/ hr-m -°C). 

Figures 19 to 22 are pictures taken at heat loads above 12,000 

2 2 
Btu/hr-ft -°F (58,610 Kcal/hr-m °C). A distinct film-rivulet-drop type 
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Figure 9. Dropwise Condensation of Steam 

Figure 10. Filmwise Condensation of 
Steam 
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Figure 11. Drcp·wise Condens.'!tion Sequence 
Frame 1 (steam) 

Figure 12. Dropwise Condensation Sequence 
Frame 2 (sbeam) 
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Figure 13. Dropwise Condensation Sequence 
Frame 3 (steam) 

Figure 14. Dropwise Condensation Sequence 
Frame 4 (steam) 
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Figure 15. Dropwise Condensation Sequence 
Frame 5 (steam) 

Figure 16. toluene-Water .Condensation-1 
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Figure 17. Toluene-Water Condensation-2 

Figure 18. Toluene-Water Condensation-3 
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Figure 19 . Toluene-Water Condensation-4 

Figure 20. Toluene-Water Condensation- 5 
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Figure 21. Toluene-Water Condensation-6 

Figure 22. Toluene-Water Condensation-7 
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of condensation is visible. From the fractional volumes of the two 

phases in the condensate, it can be deduced that the film was of 

toluene. The rivulets were water, carrying suspended drops of toluene. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

1. The presence of noncondensable gas in the condensation chamber 

affects the condensation substantially. Small amounts of air reduce 

the condensing coefficient to a small fraction of what it would be 

otherwise. 

2. A decrease in the condensing heat transfer coefficient wi'th an 

increase in the film temperature difference is found. 

3. The film-rivulet-drop type and dropwise condensation patterns 

are observed predominantly. However, an exact correlation between the 

condensing patterns and the condensing coefficients is not yet available. 

4. A majority of the proposed correlations in the literature are 

applicable to the experimental considerations used in those studies. 

5. In future work, the effect of vapor shear should be studied on 

both the condensing patterns and heat transfer coefficients. 

6. A detailed analysis of the patterns and coefficients may result 

in a "flow regime map" also incorporating the physical properties of the 

two liquids and the surface. 
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1. 

2. 

3. 

4. 

s. 

6. 

7. 

8. 

Isothermal 
wall, 

T < T 
w sat 

T 
w 

6 

Saturated vapor, 
T 
sat 

Condensate film in 
creeping laminar 
flow 

T 
sat 

Linear temperature 
profile through 
condensate 

Velocity profile 
through condensate 

Figure 23. Filmwise Condensation 

Assumptions Behind Nusselt Equation 

Saturated vapor. 

The liquid and the vapor have the same temperature· (T ) at the 

interface. (No interfacial resistance.) sat 

Heat is transferred by conduction only through the liquid film. 

The temperature profile is linear through the liquid film. 

The liquid and the solid surface are at the same temperature at 

their interface. 

The solid surface is isothermal. 

The liquid properties are not a function of temperature. 

The vapor exerts neither shear nor normal stresses on the liquid 

surface. 

62 



9. The liquid has zero velocity at the liquid-solid interface (no­
slip condition). 

63 

10. The sensible heat of subcooling the liquid is negligible compared 
to the latent heat load. 
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Investigator Test 
Surface 

Kirkbride (19) Steel 

Baker and 
Mueller (3) 

Baker and 
Tsao (4) 

Patton and 
Feagan (24) 

Oxidized 
Copper 

Oxidized 
Copper 

Oxidized 
Copper 

Sykes and Copper 
Marchello (28) 

Organic 
Component 

Condensation 
Pattern 

Benzene 
Cleaners 
Naphtha 

Benzene 
Toluene 
Heptane 
Chlorobenzene 

1 

Benzene 1, 3, 5 
Toulene 
Chlorobenzene 
Trichloro-

ethylene 
Tetrachloro­

ethylene 

Turpentine 

Toulene 
Carbon tetra­

chloride 

1 

,,.. .. ~--·-

Correlation Proposed 

h 
hlQl + h2Q2 

Ql + Q2 

h ( 

2 1-\ 
k3 2 

avpavg 

)1/3~ (
= p µ p 0 • 7 ) 2 • 3 8 ( )-3 • 2 8 

l.2B av 1 av Q1 

k A Q 
av av 

h 

h 

h 

1 - 0.0167 
D 

500 
1 - o.o085 v2 

. 366 D-l/4(1-0.0284) 
---,:-----'-- D 

1 - 0.0085 v2 

3000(M)-0.5 

h = hl (l-0.8R)(6t )0.67R 
' f 

and 
-1 

1 ) 
h = hl(Kl + S6t£ 

K2e 

k = (7.6 - l.8(P - P 
1 r 1 r 2 

) ]-1 

-10 aAl 
17.3 x 10 P 1 (1 + bA) 

k = 2 
2 6 l/ 2 µl M2 2 

[(Oh) (-y_) (--) (--)] 
1 Y1 µ2 Ml 

+ 80 

°' lil 



Investigator 

Stepanek and 
Standart (27) 

Polley and 
Calus (25) 

Kawasaki 
et al. (17) 

Salov and 
Danilov (26) 

Yusuf ova and 
Neikdukht (30) 

Test 
Surface 

Copper 

Brass 

Copper 

Organic 
Componen~ 

Condensation 
Pattern 

Benzene Assumed 1 
Toluene 
Dichloroethane 
Chlorobenzene 

Benzene 
Toluene 
n-Heptane 

Benzene 
Toluene 
Trichloro-

ethylene 

Benzene 
Toluene 
Trichlorethylene 
Heptane 
Turpentine 
Gasoline 

Kerosene 

1, 3 

h 

K3 

K4 

N 
u 

h Cl 

o. 725 

Correlation Proposed 

;\ K2 2 
av 1 Pl g 

l-12 Mf D 

1/4 

x K3 (l+K4Mf) 

[l - 4.38(E_)0.033(P1 0.62 6y 1/4 a p) (-)] 
2 y 2 

K1 0.5 1.6 6 1.4 
0.0584(~) (-) (£.1..) (_l) 

b K2 P2 y 2 

0.0295(Ga Ku Pr) 1 / 4 (Re) 1 / 2 

Q 1. 26 
(-) 
A 

°' 0\ 



Investigator 

Yusufova and 

Test 
Surface 

Organic 
Component 

Condensation 
Pattern 

Neikdukht (30) Steel Gasoline 

Patterson 
et al. (23) 

Hazelton and 
Baker (15) 

Cooper 
et al. (12) 

Edwards 
et al. (13) 

Tobias and 
Stoppel (29) 

Brass 
Aluminum 

Wrought 
Iron 
Muntz 
Metal 

Copper 

Copper 

Copper 

Brass 

Heptane 1 

Benzene 
Toluene 
Chlorobenzene 

1, 3, 5 

Butyl Acetate 

Styrene 1 
Butadiene 

Benzene 
Toluene· 
Cyclohexane 
Carbon tetrachloride 
n-Heptane 

< 

Correlation Proposed 

h Q 1.1 
a (-) 

A 

E_( K 1/3 
k zg) 

p 

D 0.27 
0.06(-) ( Q·L 0.36 

L • ' -·.) 

a1'1 + b1' 2 1/4 
h = 79 ( ) aL 

and 
a1' 1 + bA. 2 1/4 

h = 61 ( aD ) 

h 

K3 2 
0.96( lplg)/4f -0.15 

).l ,-) 
1 ).11 

h 
m 

h 

l--l-l(6y36p MK. l/2]0.21 
545 4 ) ( a b-b) 

µa g ~ aKa 

°' -..J 



Investigator Test Organic Condensation 
Surface Component Pattern 

Akers and Brass Benzene 1 
Turner (1) Heptane 

Carbon tetra-
chloride 3 

Bernhardt (6) Gold Freon 112 1 
Freon 113 
Perchlorethylene 
p-xylene 

Correlation Proposed 

JJt 1/3 -1/3 
h ( 3 2 ) = L47(4r) 

Kavpavg ]Jl 

aA1h1 + bA 2h 2 
h = 0.8 A + bA 

a 1 2 

h = h1v1 + h2v2 

°' co 
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READING ML/Ml N 
0. 1 46.933 5.9 307.718 11. 9 575.776 17. 9 989.262 
0.2 89.045 6.0 310.946 12.0 580.891 18.0 1016.152 
0.3 126.677 6. l 314.326 12., 586.024 i8. i 1045.645 
0.4 160.159 6.2 317.846 12.2 591.173 18.2 1078.031 
0.5 189. 811 6.3 321.494 12.3 596.334 18.3 1113.484 
0.6 215.920 6.4 325.260 12.4 601.502 18. 4 1152.285 
0.7 238.762 6.5 329.135 12.5 606.674 18.5 1194.676 
0.8 258.619 6.6 333.106 12.6 611.843 18.6 1240.930 
0.9 275.734 6.7 337.166 12.7 617.005 18.7 1291.285 
1. 0 290.326 6.8 341.304 12.8 622.156 18.8 1346.184 
1 . 1 302.642 6.9 345.511 12.9 627.289 18.9 1405.875 
1, 2 312.869 7.0 349.780 13.0 632.399 19.0 1470.680 
l. 3 321.211 7. 1 354.099 13. 1 637.480 19. 1 1540.949 
1. 4 327.872 7.2 358.465 13.2 642.527 19.2 1617.215 
1. 5 333.001 7.3 362.869 13.3 647.534 19.3 1699.648 
1. 6 336.787 7.4 367.304 13.4 652.496 19.4 1788.828 
1. 7 339.348 7.5 371.766 13.5 657.408 19.5 1885.168 
1. 8 340.842 7.6 376.247 13.6 662.263 19.6 1988.949 
1. 9 341.394 7.7 380.744 13.7 667.058 19.7 2100.840 

2.0 341.142 7.8 385.251 13.8 671.789 19.8 2221.309 
2. l 340. 178 7.9 389.766 13.9 676.451 19.9 2350.766 
2.2 338.630 8.0 394.285 14.0 68 l. 042 20.0 2490.113 
2.3 336.589 8. 1 398.804 14. 1 685.559 
2.4 334.141 8.2 403.323 14.2 689.999 
2.5 331.358 8.3 407". 838 14.3 694.364 
2.6 328.338 8.4 412.349 14.4 698.653 
2. 7 325.130 8.5 416.855 14.5 702.869 
2.8 321.807 8.6 421.354 14.6 707.013 
2.9 318.423 8.7 425.848 14.7 711. 091 
3.0 315.029 8.8 430.336 14.8 715. 109 
3. 1 311.675 8.9 IJ34.820 14.9 719.075 
3.2 308.398 9.0 439.300 15.0 723.000 
3.3 305.229 9. 1 443.776 15. 1 726.894 
3.4 302.221 9.2 448.251 15.2 730. 773 
3.5 299.382 9.3 452.726 15.3 734.656 
3.6 296.742 9.4 457.204 15.4 738.561 
3.7 294.322 9.5 461.687 15.5 742.512 
3.8 292. 142 9.6 466. 176 15.6 746.535 
3.9 290.215 9.7 470.674 15 .. 7 750.659 
4.0 288.550 9.8 475.183 15.8 754.919 
4. 1 287.158 9.9 479.707 15.9 759.352 
4.2 286.047 10.0 484.246 16.0 764.000 
4.3 285.218 l 0. 1 488.804 16. 1 768.906 
4.4 284.676 10.2 493.384 16.2 774.125 
4.5 284.417 10.3 497.985 16.3 779.710 
4.6 284.441 10.4 502.612 16.4 785.725 
4.7 284.748 10.5 507.267 16.5 792. 235 
4.8 285.330 10.6 511.950 16.6 799.312 
lj. 9 286.182 10.7 516.664 16.7 807.035 
5.0 287.300 10.8 521.409 16.8 815.494 
5. 1 288.672 10.9 526.187 16.9 824.779 
5.2 290.292 11.0 531.000 17 .0 834.995 
5.3 292. 150 11. 1 535.844 17. l 846.244 
5.4 294.237 11. 2 540.724 17 .2 858.638 
5.5 296.541 11. 3 545.638 17. 3 872.309 
5.6 299.052 11.4 550.585 17. 4 887.387 
5.7 301.759 11. 5 555.565 17.5 904.016 
5.8 304.652 11. 6 560.575 17 .6 922.344 

11. 7 565.615 17. 7 942.555 
11. 8 570.682 17.8 964.813 



APPENDIX D 

CALCULATIONS FOR STEAM CONDENSATION 

71 



A. Sample Calculations of Experimentally Observed Heat Transfer 
Coefficients. 

Sample Run 1!15 

Heat Load Q = Condensate rate x Enthalpy of condensation 

22 x 0 · 967 x 40 x 970.3 
454 

ml/min x gm/ml 
gm/lb 

Btu 
2852 hr 

min x -- x 
hr 

Btu 
lb 

Condensing surface area A '1T/4(Diameter)2 

'IT/4(5/12)2 

0.1364 ft 2 

Film temperature difference 6tf 

!, 

' 
209.0 - 174 

35°F 

Heat transfer coefficient h 

2852 
0.1364 x 35 

597.4 Btu 
hr-ft2-°F 

Q 

t vap t surface 

B. Sample Calculations of Predictions of Heat Transfer Coefficients 
Using Nusselt Equation. 

Sample Run ff 15 

Vapor temperature 209°F 

Surface temperature = 174°F 

Average condensate film temperature 191°F 
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All the film properties are evaluated at 191°F. 

Thermal conductivity 
Btu 

Ki= 0.3903 hr-ft2-oF 

Density pi o. 967 
gm 
ml 

lb 
- 60.3 tt3 

Viscosity lli 0.324 cp 

0.784 
lb 

- hr-ft 

Gravitational acceleration g 32.2 x 36002 ft 
hr2 

Surface loading f 
condensate rate 
wetted perimeter 

23 x (60/454) x 0.967 
4.25/12 

ml/min x (~/~) x gm/ml 

in 
in/ ft 

lb 
= 8 · 3 hr-ft 

Heat transfer coefficient 

[ ~i pi g ] 1/3 

h 0.924 
11.e. r 

[ 1. 39033 2 
x. 36002 J 113 

0.924 x 60.3 x 32.2 
0.784 x 8.3 

2219.7 
Btu 

hr-ft2-°F 
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A. Sample calculation of experimentally observed coefficients 

Sample run If 46 

All liquid properties are evaluated at a mean film temperature 
of 172°F. 

Property 

Thermal 
Conductivity K 

Btu 
hr-ft-°F 

Density p 

Enthalpy of Condenation A 

Btu 
lb 

Viscosity µ 

lb 
hr-ft 

Water Toluene 

0.3845 0.084 

60.73 52.65 

988 160 

o. 896 0.823 
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Condensation heat duty for water 

Qw condensation rate x A 

5 x 0.974 
454 

x 60 x 988 

ml/min x gm/ml min Btu 
gm/lb x fr x Th 

635.9 Btu/hr 

Condensation heat duty for toluene 

Q - condensation rate x A tol -

30 x 0.844 x 60 x 160 
454 

ml/min x gm/ml min Btu 
gm/lb x hr x lb 

535.4 Btu/hr 

Total heat load 

condensation area 

635.9 + 535.4 
0.1364 

8587.2 

Calculation of surf ace temperature for the middle thermocouple pair 

T 
front 

T back 

T surf ace 

169.8 

167.0 

T +l.9-( T ) 
front 95 Tfront - back 

30 
169.8 + 95 (169.8 - 166.9) 

170.7 
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Film temperature tf = T vap - T 
surface 

185.0 - 170.7 

14.3 °F 

Heat transfer coefficient 

8587.2 
14.3 

600.5 Btu 
hr-ft2-°F 

B. Sample calculations for prediction of heat transfer coefficient 
using Bernhardt's equation (2.14) 

h = heat transfer coefficient for water phase w 

0.943 

[ (0.3845) 3 (60.73) 2 32.2(3600) 2 ] 0 · 25 
0 · 943 0.896 (4.25/12) 14.3 

Btu 1969. 5 hr-ft2-°F 

ht heat transfer coefficient for toluene 

[ ~ oi g A]Cl.25 
0.943 D Lt 

Pe_ f 

43 [(0.084) 3 (52.65) 2 32.2(3600) 2x 
o. 9 0.823 (4.25/12) 14.3 

Btu 
380 hr-ft2-°F 

160]0.25 
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h 
mean 

h x volume fraction of water in condensate + 
w 

h x volume fraction of toluene in condensate 
tol 

1969.5 x 5 + 380 x 30 
35 

607.1 Btu/hr-ft2-°F 

78 



TABLE III 

DATA ON TOLUENE-WATER RUNS 

Run fl Condensate rate Temperatures °F 
ml/min Top Middle Bottom Vapor 

Water Toluene Front Back Front Back Front Back 

24 8.00 ·36.00 143.8 123.1 144.2 144.9 143.8 142.3 183.5 
25 5.33 27.33 134.0 118.4 136.5 134.0 134 .2 135.6 172. 7 
26 6.00 30.67 154.5 143.0 154.8 155.7 153.9 155.7 179.4 
27 10. 50 63.00 154.6 142.1 157.3 155.5 155.0 154.1 186.0 
28 4.33 27.00 165.8 158.3 169.4 166.9 167.3 166.7 182.0 
29 5.00 37.00 161.1 150.3 164.2 162.1 162.2 161.1 182.1 
30 2.33 11. 67 113. 2 115.1 118. 7 131.4 122.8 144.4 166.0 
31 4.00 28.00 132.8 115.1 137.0 131.4 136.1 144.4 173.9 
32 4.67 23.33 169.7 163.7 171. 8 170.3 168.9 169.4 182.3 
33 4.00 17.75 168.4 159.1 171. 8 168. 2 169.8 168.4 181.8 
34 7.50 38.25 130.9 119.6 131.9 132 .5 130.6 146.1 166.8 
35 8.50 35.50 157.9 144.1 161. 6 158.5 159.9 157.6 178.2 
36 9.00 41.00 159.1 145.4 163. 9 161.7 162.2 160.7 184.5 
37 5.50 29.50 169.3 162.3 171.2 169.7 169.3 168.9 184.5 
38 10.80 52.80 155.1 138.2 157.1 155.6 155.1 154.0 182.9 
39 8.00 36.00 154.2 146.8 157.4 155.1 156.3 155.9 179.9 
40 6.00 26.00 157.2 148.3 158.9 158.0 157.0 156.7 180.4 
41 7.00 29.00 129.4 120.9 130. 9 132.7 127.7 133.8 174.6 
42 6.50 25.00 156.2 146.9 161.5 157.9 159.8 154.7 183.4 
!f3 7.00 33.00 162.6 153.5 167.5 163.8 163.2 162.8 182.3 
44 5.50 27.50 168.7 160.0 171.5 168.4 169.5 168.2 184.9 
45 5.20 28.80 169.2 160.9 171.8 169.4 170.3 168.5 185.5 
46 5.00 30.00 168.3 159.2 169.8 166.9 168.6 165.9 185.0 
47 5.00 29.00 165.0 157.9 167.3 165.5 164.6 164.9 182.9 
48 5.00 28.00 164.5 155.8 166.2 162.5 161. 7 161.3 179.8 ---.J 

\0 

49 5.00 28.00 162.7 155.0 165.1 162.0 159.6 161.4 179.2 
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