
PRONY'S METHOD: DETERMINING THE NUMBER 

OF EXPONENTIAL MODES AND THE 

OPTIMAL SAMPLE PERIOD 

By 

DANIEL C. EASLEY 
JI 

Bachelor of Science in Electrical Engineering 

Oklahoma State University 

Stillwater, Oklahoma 

1979 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

July, 1982 





PRONY'S METHOD: DETERMINING THE NUMBER 

OF EXPONENTIAL MODES AND THE 

OPTIMAL SAMPLE PERIOD 

Thesis Approved: 

ii 

1131271 J 



ACKNOWLEDGMENTS 

This research is a continuation of research of the Oklahoma State 

University Center for Systems Science. It is largely through the efforts 

and interest of Dr. Robert J. Mulholland that the particular problems of 

this research have been addressed. Financial assistance has been provided 

by the Oklahoma State University Water Research Center, and experimental 

data was provided by the United States Environmental Protection Agency 

under grant CR-806330. Dr. Robert J. Mulholland was the principal in

vestigator on these grants. 

I would like to express my deep gratitude to Dr. Mulholland. Not 

only has he been my thesis adviser, but he has been an outstanding in

structor in the numerous courses I have had under him. I would also like 

to thank the other members of my graduate conunittee, Dr. James R. Rowland 

and Dr. Rao Yarlagadda, for their continuing interest in my education. 

The assistance of my typist, Dana Garvie, was invaluable. She went 

beyond the call of duty in helping me to meet deadlines. 

My parents, Mr. and Mrs. Charles H. Easley, have been supportive of 

me in every possible way throughout my entire educational career. The 

emotional and spiritual training which they gave me, especially as a 

child, continues to bear fruit today. 

Finally, my greatest thanksgiving goes to my Lord and Savior, 

Jesus Christ. Ultimately, all good things come from Hirn, and all praise 

must return to Hirn. To God alone be glory! 

iii 



TABLE OF CONTENTS 

Chapter 

I. THE RESEARCH PROBLEM 

II. REVIEW OF PREVIOUS RESEARCH 

III. PRONY'S METHOD FOR FITTING EXPONENTIAL FUNCTIONS 

IV. DETERMINING THE NUMBER OF EXPONENTIAL MODES 

A. Introduction .......... . 
B. Prony's Method and the Rank of a Matrix 
C. Survey of Matrix Factorizations .... 
D. The Measurement Rank of a Matrix 
E. Comparison of the Matrix Factorizations 
F. Prony's Method and the Matrix Factorizations 
G. Summary . . . . . . . . . . . . 

V. DETERMINING THE OPTIMAL SAMPLE INTERVAL 

A. Introduction . . . . . . . . 
B. A Sampling Theory for Prony's Method 
C. Some Numerical Investigation 
D. Sunnnary . . . . . . . 

VI. CONCLUSION AJ.~D RECOMMENDATIONS 

SELECTED BIBLIOGRAPHY 

iv 

Page 

1 

3 

5 

10 

10 
10 
12 
22 
27 
29 
45 

47 

47 
47 
52 
68 

71 

74 



LIST OF TABLES 

Table 

I. Operations Counts for Various Factorizations . . 

II. Prony Solution Values to Demonstrate Inferiority 
of Unmodified Gram-Schmidt Orthogonalization 

III. Prony Solution Values for an Example with N=2 

IV. Prony Solution Values for an Example with N=3 

V. Prony Solution Values for an Example with Complex 
Poles . . . . . . . . . . · 

VI. Prony Solution Values for T too Large 

VII. Component Values for Figure 5 

VIII. EXT Data Set . . 

IX. Prony's Solution for EXT Data Set 

x. Optimal Sample Period and Sample Bounds for 
Various Data Functions . • . • . . . . . . 

v 

Page 

28 

36 

38 

41 

44 

51 

56 

67 

67 

70 



LIST OF FIGURES 

Figure Page 

1. Determining a System Transfer Function 1 

2. Diagonal Values from Table II 36 

3. Mean Diagonal Values for an Example with 
ljJ = N+3 . . . . . · · · · · 44 

4. Determining the Optimal Sample Interval 54 

5. Choice of Proper Data Length 56 

6. Choice of Optimal T for an Example with N=l 58 

7. Choice of Optimal T for an Example with N=2 60 

8. Choice of Optimal T for a Second Example with N=l 62 

9. Choice of Optimal T for Nore Examples with N=2 63 

10. Choice of Optimal T for an Example with N=3 65 

vi 



CHAPTER I 

THE RESEARCH PROBLEM 

The problem of fitting sampled data to an exponential curve occurs 

in many applications. The particular application which motivated this 

research was the need to identify the system transfer function for a 

specific class of ecological systems (Mulholland, 1981). There are 

likewise many methods for fitting data to an exponential curve. One 

such technique, Prony's method, is examined in this research. 

The particular application in view is clarified by reference to 

Figure 1. The system transfer function H(s) is desired. The system is 

assumed to be linear, and is known to be in steady state with a constant 

unit input u(t). This input is removed at time t=O. If the system has 

N poles, then the output x(t) will have N exponential modes. The output 

is corrupted by system noise w(t) and by measurement noise vk. Output 

measurements zk, k = 0, 1, ..• are periodically spaced with peri9tf ' 

_t_ 
t 

u( t) System 
-Sy_s_t-em-+-1 H(S) 

Input 
System 
Output 

Fitt:ing x( t) 
Xethod f-F-it~t-e_d_ 

Out::iuc 

Figure 1. Determining a System Transfer Function 

1 



2 

If the output measurements can be fit to a continuous exponential func

tion x(t), then the transfer function can be approximated by 

h(t) -~(t) "' ~~(t) 

H ( s) .l [h ( t )] 

The negative sign is necessary because of the inverted step input. 

( 1. 1) 

( 1. 2) 

;t[.] 

represents the Laplace transform, h(t) is the impulse response, and x(t) 

is the time derivative of x(t). Thus, to find the system transfer func

tion, it is first necessary to fit the periodic measurements zk to a 

continuous exponential curve. 

The research presented in this paper has been limited to two speci

fic questions. First, given the measured output of the system zk, can 

the number of exponential modes N in the data be determined? That is, 

how many poles does the system have? Second, what is the optimal sample 

period T for a given system? 

To answer the first question, a number of methods are examined, and 

the singular value factorization is found to give the most reliable esti

mate of the number of exponential modes. The singular value factorization, 

when used with Prony's method, is also found to provide a better fitting 

function for the data than do other factorizations. To answer the second 

question, a number of data functions are simulated, and the sample period 

which provides the most accurate fitting function is observed. This sam

ple period is found to be within the bounds predicted by a sampling theory. 



CHAPTER II 

REVIEW OF PREVIOUS RESEARCH 

Prony's (1795) method is a technique for fitting exponential 

functions to periodically spaced data. Hildebrand (1956) and Hamming 

(1962) provide excellent developments of the technique along with illu

strative examples. Householder (1949) discusses an iterative refinement 

to Prony's method which makes it a true least-squares curve fit. Other 

books on numerical methods tend to overlook Prony's method or dismiss it 

as being unpractical and prone to large errors. It is suspected that a 

lack of an adequate sampling theory is responsible for this systematic 

neglect of what could otherwise be a powerful tool for model identifi-

cation. 

Prony's method is very useful for analyzing experimental data when 

the full state vector is not measured. The regression analysis technique, 

by contrast, requires data for all components of the state. Lin and Yu 

(1977) have used Prony's method to solve for the companion matrix. 

Mulholland (1981) has generalized this technique. 

The problem of determining the number of exponential modes was ad

dressed by Householder (1949). Van Blaricum and Hittra (1977) compared 

the method suggested by Householder with a method of their own. 

Householder's method is referred to later in this paper as the FG factori

zation. Van Blaricum's method is the eigenvector analysis discussed 

later, and is related to the singular value factorization. The problem 

3 



4 

of determining the number of modes becomes that of determining the rank 

of a matrix A. This rank determination problem is addressed in a wide 

body of literature. Of particular use have been Dongarra et al. (1979), 

Stewart (1973), and Lawson and Hanson (1974). 

The problem of determining the optimal sample period for Prony's 

method is addressed by Mulholland (1981). Chapter Vis an extension of 

this work. Chapter III is also based upon the work of Mulholland (1981). 

The computer programs used for the numerical aspect of this research 

were programmed in FORTRAN IV. The programs were run in double precision 

on an IBM 370. These programs made extensive use of the LINPACK sub

routines available for nominal cost from IMSL, Inc., Sixth Floor, NBC 

building, 7500 Bellaire Blvd., Houston, Texas 77036. In particular, 

the QR factorization and singular value factorization were done by the 

subroutines DQRDC and DSVDC. The LINPACK subroutines include a subset 

of the Basic Linear Algebra Subroutines (BLAS), which were also much 

used. See Dongarra et al. (1979) for complete details. 



CHAPTER III 

PRONY' S METHOD FOR FITTING 

EXPONENTIAL FUNCTIONS 

Given a scalar measurement of periodically spaced data, defined by 

x(t), Prony's method seeks an exponential decomposition of the form 

x(t) 
').. 1 t ~ 2t A ~Nt 

= p1e + p 2e + + pNe (3. 1) 

where N is a fixed integer. The A notation is used to distinguish the 

fitting function x(t) from the data function being fitted, x(t). The A 

notation is dropped for p and A excepting where confusion may result. 

If x(t) is to be correctly fitted by x(t), some information about the num-

ber N of exponential modes in x(t) must be known. The derivation of 

Prony's method is simplified if it is originally assumed that the fit-

ting function is exact, that is x(t) = x(t). Prony's method requires 

periodic measurements of x(t), so (3.1) can be rewritten as 

xk = x(k-r) 

where T is the sample period, k is any integer, and 

11. 
]. 

A. i· = e i ' 1,2, ... ,N. 

(3. 2) 

(3. 3) 

In (3.2), the integer k indicates the k-th periodic sample of x(t), and 

by letting k range from 0 to (M-1) the data set is given by 

x 

Writing (3.2) fork 

(xo, xl, x2, ... , 2)1-1). 

0, 1, ... , (M-1) gives 

5 

(3 .4) 
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XO pl + ... + PN 

xl plµ 1 + ... + pNµN 

2 2 
= x2 plµ 1 + ... + pNµN (3.5) 

where the data set of (3.4) containing M knowns has been set equal to 

the 2N unknown constants: p 1 , ... , pN and µ 1 , ... , µN. Thus, no unique 

solution of (3.5) is possible for M <2N. For M >ZN a solution is possible, 

with an over determined system resulting when the strict inequality holds. 

If the fitting function is not exact then x(t) ~ x(t) and equations 

(3.5) become approximations. In this event, Prony's solution to (3.5) is 

approximately a least squares error solution. That is, the residual 

defined by 

[
M-1 l ~ 

L: [~ - ~(kr) J 2 
k=O 

(3. 6) 

is approximately minimized by Prony's solution (Householder, 1949). In 

equation (3.6) the~ are the values being fitted, and the x(kT) are 

values from the fitting function. If the ~ in (3.6) represent measured 

values from a system output, then they would correspond to the zk in 

Figure 1. 

Prony's method does not attempt to solve (3.5) directly, but instead 

develops a solution algorithm which requires the computation of the roots 

of an N-th order polynomial and the solution of two N-th order linear 

algebraic equation systems. Let µ 1 , ... , µN be the roots of 

N N-1 
cOµ +clµ + ••• + ~-1µ + cN = 0 (3.7) 
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In factored form this is given by: 

(3. 8) 

Equation (3. 7) assumes c0 = 1. In order to determine the unknown coef

ficients (c 1 , ... , cN) in (3.7), the first equation of (3.5) is multiplied 

by~· the second by cN-l' and so forth, until the N-th equation is 

multiplied by c 1 and the (N+l)-th by c0 . The results of these multipli

cations are then added to give 

~(pl+•••+ pN) + cN-l(plµl + ... + PNµN) + ... 

N-1 N-1 N N 
+ c 1 ( p 1 l1 1 + . . • + PN llN ) + CO ( p 1µ1 + . . . + PN llN) (3.9) 

This assumes M > N. In (3. 9) it should be noted that each µ. , for i = 1 
J_ 

to N, satisfies the polynomial (3.7), so the left side of (3.9) sums to 

zero and 

(3. 10) 

The same multiply and sum procedure can be applied to any of the 

equations of (3.5). This gives the generalized equation: 

(3. 11) 

In particular, the following set of (M-N) equations in N unknown poly-

nomial coefficients may be formed. (Since a scale factor is arbitrary, 

c0 is assumed equal to 1.) 

+ ... + (3. 12) 

-111-1 c x.. + ... + c x._ 
1 M.-2 N M.-N-1 



A unique solution of (3.lZ) can be obtained only for M_:_ZN. If M =ZN, 

(3.lZ) has an exact solution. A least squares estimate can be obtained 

when M >ZN. 

A solution of (3.lZ) for the coefficients c 1, cz, ... , cN defines 

the N-th order polynomial (3.7). The N roots of this polynomial, in 

turn, define the exponential (3.1), and according to (3.3) 

8 

k = 1, Z, ... , N. (3. 13) 

Also, the N roots computed from (3.7) define the coefficient powers in 

(3.5), from which values for p 1 , Pz' ..• , pN can be computed. 

The procedure outlined above assumes that the Ak do not include 

multiple poles. Van Blaricum and Mittra (1977, p. 174-175) discussed 

the multiple pole case, and showed that Prony's method generally pro-

duces good estimates for the Ak and poor estimates for the pk when mult-

iple poles are present. 

Prony's method for single poles is summarized in the following 

algorithm: 

Algorithm 3.1: Prony's Method. 

Given M data points: x0 , x1 , ... , ~-l representing periodically 

spaced data of period T, fit the data to an exponential function of the 

form: 

x( t) (3.14) 

1. Define the matrix and the vectors: 

~-1 

w (3. 15) 

~1-N- l ~-N-Z 



2. 

3. 

~N+l = (~, ~+l' 
T 

••• , '11-1) • 

Solve for 

Solve for the 

i = 1, 2, ... , N from the linear system: 

W~ = -~'Hl 

roots µ., i 
l. 

N N-1 
µ + clµ 

1, 2, ... ' N of the polynomial: 

+ ... + cN-1 µ + CN = 0. 

4. Solve for A., i = 1, 2, ... , N from: 
l. 

A.= (l/T)£n(µ.). 
l. l. 

5. Define the matrix and vectors: 

1 1 1 

v = 
M 

(xo, 
T x = xl, ... ' ~-1) 

(pl' 
T 

l: p2, ... ' pN) . 

6. Solve for P. , i 1 ' 2, ... ' N from the linear system: 
l 

VM p = x. 
t - -

9 

(3.16) 

(3.17) 

(3. 18) 

(3. 19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Prony's method reduces the nonlinear exponential fit of (3.1) to 

two standard problems of numerical analysis. Two linear systems, (3.18) 

and (3.24), must be solved, and one N-th order polynomial (3.19) must be 

solved. 



CHAPTER IV 

DETERMINING THE NUMBER OF 

EXPONENTIAL MODES 

A. Introduction 

The purpose of this chapter is to find a way of estimating the 

number of exponential modes N in the measured data. Section B shows 

that this problem reduces to that of determining the rank of a particu-

lar matrix. Sections C through E examine various means of determining 

the rank of a matrix. Section F examines the effectiveness of these 

methods as they are applied to Prony's method. Of the methods examined, 

it is found that when the singular value factorization is incorporated 

into Prony's method, it produces the best estimate for N, and also pro-

duces the most accurate estimate for the exponential fitting function (3.i). 

B. Prony 1 s Method and the 

Rank of a Matrix 

The difference equation (3.11) must be satisfied for vectors 

~l' ~2 , ... ,~defined as follows: 

XO l xi l 
~l 

:~J 
~2 = x2 ' .. ·- ' ~"I • I 

~y J 

(4. 1) 

~+y-1 

10 
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If Y > N, then these N vectors will be independent. Any N+l of these 

vectors, however will form a dependent set (Householder, 1949, p. 10). 

Thus, the problem of determining the number of exponential modes reduces 

to that of determining the rank of the matrix given by 

lx0 
xl xi-1 

Wy. i. (4.2) xl x2 x. ' y > 
1. ]_ 

x y-1 x 
y xy+i-1 

If N > i then Wy. will be of full rank. 
]_ 

rank N. 

Methods for detecting dependency in 

If N < i, then Wy. will be of 
]_ 

Wy. involve factoring Wy. into 
1. ]_ 

a triangular matrix T and some other matrix or matrices. Then Wy. is of 
1. 

rank K only if the first K diagonal elements of T are non-zero. In prac-

tice, the data points x0 , x1 , •.. will be noisy, and the test for a zero 

diagonal element will be replaced with a test for a negligible element. 

Section D will define this test. 

Such matrix factorizations also are useful in finding the least 

squares error solution to a linear system. The linear system with m 

equations in n < m variables may be represented by 

Ax = b (4.3) 

where A is a m x n, x is a n-vector of the unknown variables, and b is a 

m-vector. When m < n, then (4.3) does not have a unique solution. When 

m = n (4.3) has an exact solution if A is not singular. If m > n (4.3) 

represents an over determined system. In this case, the residual r is 

given by 
r=Ax-b. (4.4) 

The least squares error solution to (4.3) when m .:_ n is the best in the 
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sense that it will minimize the Euclidean length of the residual r. The 

least squares problem shall be denoted as 

Ax ,; b. (4.5) 

Prony's solution may use such a least square error solution to equations 

(3.11) when M >2N. The survey of matrix factorizations which follows will 

include indication of how the factorization is used to solve (4.5). 

C. Survey of Matrix Factorizations 

1. Normal Equations with Cholesky Factorization 

The least squares problem (4.5) may be shown to be equivalent to 

solving the system (Rice, p. 148): 

ATAx = ATb. 

These are the "normal equations," and must be solved for x. 

One may attempt to solve for~ in (4.6) as: 

x = (ATA)-lAT~· 

(4.6) 

(4. 7) 

However, matrix inversion is comparatively inaccurate, very expensive, 

and rarely necessary. It is much better to solve (4. 6) by Gaussian elimi-

nation. Gaussian elimination factors the matrix A into two matrices: 

A= LU, where L is a triangular matrix. Thus it is also called the "LU 

factorization." Gaussian elimination is extensively described in almost 

any book dealing with computer matrix manipulations (Rice, p. 33-34; 

Dongarra et al., p. 1.10-1.11; Forsythe et al., p. 32-41). 

It is even better to note that ATA is positive definite if A is 

non-singular. The normal equations (4.6) may thus be solved by Cholesky 

factorization. Cholesky factorization is about half as expensive as 

Gaussian elimination (See Table I). 
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The Cholesky factorization of a positive definite matrix H is given 

by: 

where R is upper triangular with positive diagonal elements. In our 

case, 

To solve system (4.6) one may first solve 

RTw = ATb 

for ~. and then 

Rx = w 

(4.9) 

(4.10) 

(4.11) 

for x. These two systems are triangular, and may be solved by back sub-

stitution rather than by matrix inversion. 

A Cholesky factorization of the augmented matrix 

H = (A,E_) T (A,E_) (4. 12) 

can give both the solution x and the norm of the residual r with no 

further computation. See Section B.2. 

The Cholesky factorization is widely described in the litera-

ture (Dongarra, et. al., p. 3.1, 3.9-3.10, 8.1-8.3; Rice, p. 46-48) 

2. The QR Factorization 

A square matrix H is orthogonal if HTH = I, where I is the identity 

matrix. 
T -1 T For an orthogonal matrix H, H = H and HH = I. 

The QR decomposition of a matrix A is given by: 

A = Q' [~] • 
(4.13) 

Matrix A is m by n; Q' is orthogonal and m by m, and R is upper triangular 

and n by n. It is assumed m > n. 



If Q' is partitioned as Q' 

matrix A is given by: 

(Q,Q"), then the QR factorization of 

14 

A = QR, (4.14) 

where Q is m by n. This factorization is often all that is needed, so 

that the full decomposition need not be computed. 

or 

Then to solve ~ ~ 12_, multiply by QT on both sides to obtain: 

QTAx = QT.!2_ 

Rx = QT.!2_, 

(4. 15) 

(4.16) 

This is a triangular system which may be solved by back substitution. 

The residual E_ may be found from the full QR decomposition (4.13). See 

Dongarra et. al., (1979, p. 9.2) for details. 

If the diagonal elements of R are chosen to be positive, then for a 

non-singular matrix A, (4.14) represents a unique factorization, and the 

R matrix in (4.14) is identical to the R matrix obtained by Cholesky 

factorization. This is proved from 

ATA = (QR)TQR = RTQTQR = RTR. (4.17) 

If Q and A are partitioned as A 

and Q1 are k by n, and if R11 is the k by k leading principal submatrix 

of R, then the QR factorization of the truncated matrix A1 is given by 

(4.18) 

The least squares problem ~ ~ 12_ may be solved in a somewhat differ

ent manner as follows: 

Form the augmented matrix 

A = (A ,12_) (4. 19) 

The QR factorization of this matrix is given by 



A = QR 

Q = (Q ,_g) 

R = [~ ~] 
Then the solution x is obtained from 

Rx z 

The residual is 

r = Ax - b = P.9..· 

The norm of the residual is 

II.Ell = P. 

15 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

There are several methods for obtaining the factorization A = QR. 

The most commonly known and most easily understood is Gram-Schmidt ortho

gonalization. This method, however, has numerical difficulties. Modified 

Gram-Schmidt orthogonalization overcomes the numerical difficulties of the 

Gram-Schmidt method, uses less storage, and lends itself to a pivoting 

scheme. It produces a Q matrix which may be numerically far from ortho

gonal; but the least-squares solution is nevertheless accurate (Rice, 

1981, p. 152; Stewart, 1973, p. 217). Another method of obtaining the 

QR decomposition uses elementary plane rotations (Givens transformations). 

Perhaps the most widely used method at present uses elementary reflections 

(Householder transformations). This method is best with regard to speed 

and storage requirements. It produces an orthogonal Q matrix. It pro

vides essentially the same accuracy as modified Gram orthogonalization, 

although numerical research indicates that the modified Gram-Schmidt al

gorithm may produce slightly more accurate results to the least squares 

problem as the residual size increases (Jordan, 1~68; Wampler, 1969). 

These methods are widely described in the literature (Rice, 1981, p. 149-155; 



16 

Lawson and Hanson, 1974, p. 9-17, 53-62; Dongarra et al., 1979, p. 9.1-9..3, 

9. 13-9. 17) . Each of the methods above theoretically produces the same 

Q and R matrices, to within the signs of the rows and columns. The dif-

ference is in the numerical accuracy of the methods, and their speed and 

storage requirements. 

3. The FG Factorization 

The FG factorization of a matrix A is given by: 

A = FG. (4.26) 

A is m by n, F is m by n with orthogonal columns, and G is n by n and 

upper triangular with ones on its diagonal. 

Since F has orthogonal columns, 

FTF = D 

where D is a diagonal matrix. 

(4.27) 

If we assume the QR factorization produces a R matrix with positive 

diagonal elements, then the QR and FG factorizations are related as 

follows: 

FG = QR 

(FG)TFG = (QR)TQR 

GTDG = RTR 

IDG = GID = R 

G RID ~l 

Furthermore, 

FG QR 

FG QvDG 

F = QID. 
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Thus we have the following two relationships: 

G RID -l (4.28) 

F (4.29) 

Furthermore, since G has ones on its diagonal 

~=r .. 
11 11 

(4. 30) 

Thus the FG factorization may be regarded simply as a variant of 

the QR factorization. The solution to the least-square problem Ax = b 

is given by: 

Alternately, if we let 

A (A,)D 

F = (F ,i) 

then the solution to Ax= b, where A is m by n, is given by: 

Gx = w 

The residual is 

r=Ax-b=f 

The norm of the residual is 

11£11 = llill Id 
n+l ,n+l 

- -r 
where dn+l,n+l is the last diagonal element of D = FF. 

(4. 31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

The FG factorization is of special interest due to treatment of it in 

literature regarding Prony' s method (Householder, 1949; Van Blaricum 

and Mittra, 1977). A. S. Householder suggested an algorithm for computing 

the FG factorization. It is suspected that the algorithm he suggested 

was for instructive purposes only, and was never intended for numerical 
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use. The algorithm he suggested is very similar to the unmodified 

Gram-Schmidt algorithm, and would thus have the same numerical difficult-

ies. For comparative purposes, the algorithm suggested by Householder 

for the FG factorization, and the unmodified Gram-Schmidt algorithms are 

given below. It must be emphasized that these algorithms are inferior 

and should not be used. A modified FG factorization which has the ad-

vantages of the modified Gram-Schmidt algorithm can easily be developed 

by comparing the two algorithms below with the modified Gram-Schmidt 

algorithm presented in Stewart (1973, p. 217). 

The algorithms assume A is m by n and non-singular. The notation 

~k + ik indicates that ik should replace ~k. 

_Algorithm 4.1: FG Factorization: A= FG (Householder, 1949, p. 11-12). 

For k 1' 2' ... ' n do: 

T 
gik (l/d .. )f.~ 

l.l. --]_ • 
(i= 1, 2, ... , k- 1) 

k-1 

ik = a - l: g.kf. -k i= 1 l. -]_ 

gkk 1 

dkk 
T 

ikik 

Algorithm 4.2: Gram-Schmidt Orthogonalization: A QR (Stewart, 1974, 

p. 216). 

For k = 1, 2, .•. , n do: 

k-1 

.9..k ~ - l: ri~i 
i=l 

rkk ll.s.k II 

(i 1, 2, ... 'k - 1) 
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4. Singular Value Factorization 

The singular value decomposition of a matrix A is given by 

(U') TAV = [~] (4.38) 

for m > n. A is m by n, U is an orthogonal m by m matrix, V is an ortho-

gonal n by n matrix, and S is a diagonal n by n matrix with non-negative 

diagonal elements. The diagonal elements s .. are the singular values of 
1.1. 

A and are uniquely determined by A. 

If U' is partitioned as U' = (U,U"), then the singular value factori-

zation is given by 

A = USVT (4.39) 

where U is m by n. This factorization is often all that is needed, so that 

the full decomposition need not be computed. 

The singular values of A are the square roots of the eigenvalues of 

ATA, and the columns of V are the eigenvectors of ATA. The eigenvectors 

T of AA are the columns of U. That is, the eigenvector decompositions of 

ATA and AAT are given by 

and 

The spectral norm of A is given by 

11 A \I = max { \I A~ I\ : I\ v 11 1 } 

and the Frobenious norm is given by 

[
m n 2 ]12 
l: l: a .. 

i=l j=l l.J 

max { s .. } 
1.1. 

.~ s~i [ ] 
12 

i= 1 

(4.40) 

(4.41) 

(4.42) 

(4.43) 
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For a non-singular A, a useful condition number is given by 

K(A) max { s .. } /min { s .. }. 
1.1. 1.1. 

(4.44) 

This condition number is a measure of the sensitivity of the solution x 

to the matrix A: 

min { s .. } < llA~ II <max { s.) . 
1.1. - 11~11 - 1.l 

(4.45) 

The solution to the least squares problem ~ ~ b is obtained by 

solving for x in the diagonal system: 

(4.46) 

This is equivalent to solving for z in: 

Sz (4.47) 

and then for x in: 

x = Vz • (4.48) 

The residual vector r = A:x. - b can be found from the full singular value 

decomposition (4.38). See Dongarra et. al., (1979, p. 11.3) for details. 

The singular value factorization of A = (A,Q.) is of interest. If 

A ism by n, then A ism by (n+l). Suppose further that A has rank n; 

i.e., A is singular. Then then+ 1 singular value is zero. Furthermore, 

-T-
since the columns of V are the eigenvectors of A A, and the singular 

values are the square roots of the eigenvalues of A~A (equation 4.40.) 

then by the definition of an eigenvector, 

(4.49) 

where ~+l is the last column of V. 

Now consider equations (3.12) in the form given in (3.18): 

W_£~ = -c~N+l (4.50) 

The least squares solution by the normal equations is given by 

(4.51) 
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Define: 

w (W ·-';_~+ 1) (4.52) 

and 

(4.53) 

Then (4.48) can be expressed equivalently as 

-T- -
W W_s:_N = 0. (4.54) 

Comparison of (4.49) with (4.54) indicates that the coefficients for the 

polynomial (3.7) are given by setting n = N and identifying v = _s_T, 
~+l L' 

that is: 

v N+l,N+l 

c 1 = v 
N,N+l 

cN = vl,N+l 

(Van Blaricum and Mittra, p. 179). 

(4.55) 

In general, a least squares solution to ~ = .£, where A is dimensioned 

m by n, is given from the singular value decomposition of A 

xl v l ,n+l I vn+l ,n+l 

v I v 2,n+l n+l,n+l (4.56) 

xn = vn,n+l I vn+l ,n+l' 

However, (4.56) is a solution to the least squares problem A~~ b 

only if (A,!'.) is of rank n, where A is dimensioned m by n. If (A,.£) is ()£ 

rank n+l, but is very nearly of rank n, then the singular value decomposi-

tion of (A,.£) provides an approximation to the least squares solution. 

The approximation becomes more accurate as (A,Q) comes "closer" to being 
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of rank n; that is, as the n+l singular value becomes closer to zero. 

The singular value factorization is extensively described in the 

literature (Dongarra et al., p. 11.1-11.23; Lawson and Hanson, p. 18-27, 

107-120, 196-198; Forsythe et al., p. 201-235; Stewart, 1973, p. 317-326). 

D. The Measurement Rank of a Matrix 

1. Definition 

If a matrix A represents measured data, then it is known only to a 

finite "measurement precision." If b represents an actual data value, and 

a represents the measured value, then the measurement precisi9n s will 

satisfy 

s < ja - bj • (4.57) 

To within the precision of the measurements then, the matrix A cannot be 

distinguished from the matrix B, where: 

A= B + E. (4.58) 

A, B, and E are m by n matrices, and E is a completely arbitrary matrix, with 

max { I e .. I } < s 
1J -

(4.59) 

If B represents the actual matrix known to infinite precision, then A 

represents the measured matrix, and E represents the error in these 

measurements. A is the matrix B perturbed by E. 

Note that in this definition it is assumed that each element of A 

is known to the same absolute precision. This is consistent with many 

physical measurement processes. For example, a voltmeter which is ac-

curate to three significant digits, and truncates after the third digit 

would have (after normalization), s = 10-3 . The matrix E has elements 

uniformly distributed between 0 and 10- 3 . If in addition we can subtract 
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the truncation bias (or the voltmeter rounds to the nearest digit rather 

than truncates) then E = 10- 3/2, and E has elements uniformly distributed 

between -10-3/2 and +10- 3/2. 

The rank K of the matrix A is the number of columns of A which are 

linearly independent. But A is known only to finite precision. Thus, 

we must define a "measurement rank" of matrix A as the rank of matrix 

B = A - E, over all choices of the matrix E. That is, the measurement 

rank of A is the true rank of any possible perturbation of A, where 

"possible" perturbations must be less than E. 

The true rank of a matrix A known to infinite precision must be 

greater than or equal to the measurement rank of the same matrix A known 

only to finite precision. 

2. An Upper Bound for the K+l Singular Value 

In order to determine the measurement rank of matrix A, we must de-

termine when a diagonal element is "negligible." For the Cholesky fact-

orization or the QR factorization, the negligible element will be some 

r ..• For the FG factorization, the negligible element will be r .. = ~. 
ll ll ll 

For the singular value factorization the negligible element will be some 

s ... An element is negligible if some perturbation of A could make that 
u. 

element equal to zero. 

If matrix A is of measurement rank K, then sK+l K+l should be neg-
' 

ligible. In this section an upper bound is obtained for sK+l,K+l. 

the following section an expected value for sK+l,K+l is obtained. 

section 4 this will be related to rK+l K+l' , 

In 

In 

Let A = B + E. If their respective singular values are b., a., and 
l l 

ei' and each set is labelled in non-increasing order, then 
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( 4' 60) 

(Lawson and Hanson, 1974, p. 25; Stewart 1973, p. 321). 

It follows that the smallest matrix E such that B + E is singular 

satisfies an= e 1, where A ism by n, and it is assumed m > n. It can be 

shown that 

(4. 61) 

where a.= max {ila .. \I} (Stewart, 1979, p. 183). For the singular value 
l] 

factorization of A, a. is identified as s and s .. is negligible when 
l ii' ll 

s .. < ltils 
ll 

(4. 62) 

where s is the measurement precision. Matrix A has measurement rank K if 

for only the first K elements, s. . > /til s • 
ll 

3. An Expected Value for the K+l Singular Value 

Consider once again the matrix A = B + E. E represents a noise 

matrix. Assume that the noise is uncorrelated with standard deviation cr. 

Assume that B is of rank Kand dimensioned m by K+l. Reasoning similar 

to that used for equation (4.49) will produce 

(BTB).:::_~+l 0 . (4.63) 

where _.:::.'K+l is the K+l column of matrix V' of the singular value factori

zation of B, and is to be distinguished from ~+l which will be defined 

later. 

The matrix H = ATA will have the i, j element given by 

h .. 
T 

l] ~i~j 

(b. 
T 

e.) h .. = + e.) (b. + 
1.J -i -i -] -] 

h .. 
T T + b:e. 

T 
b.b. + e.b. + e.e. ( 4. 64) l] -i-J -i-] -i-J -i-J 
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The expected value of the first term in (4.64) is deterministic. The 

expected value of the second and third terms is zero because the noise 

is uncorrelated. For the same reason, the expected value of the fourth 

term is given by 

T I E { e .e.} 0 i j 
l J 

(4.65) 

ma 
2 

i = j. 

Thus, the expected value of His: 

E { H} = B TB + m a 21, (4.66) 

where I is the identity matrix. 

If nK+l is the K+l eigenvalue of H, and ~K+l is the K+l eigenvector 

of H, then 

H~+l (4. 67) 

The expected value of the left hand side is 

T 
= E {(A A)~K+l} (4.68) 

T 
"' E {(A A) }E {~+l} (4.69) 

T 2 
"' (B B + rr,a I)~+l (4.70) 

mcr2~~+1 . (4.71) 

Equation (4.69) follows from (4.68) only if the noise in (ATA) is uncor-

related with the noise in ~+l' This is not strictly the case, but it is 

a reasonable approximation. Equation (4. 70) follows from (4.69) if 

E {;+l} "'~+l' This is again a reasonable approximation. 

Comparison of (4. 71) with (4.67) would indicate that the expected 

2 
value of nK+l is approximately ma . Since singular values of A are the 

square roots of eigenvalues of ATA, the expected value for the K+l singu-

lar value of A is approximately 
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E { s } = /ril rT. K+l K+l v 
(4.72) 

' 
Thus, (4.72) would suggest that a reasonable test for a negligible 

singular value would be 

s .. < i; rm cr. 
11-

(4. 73) 

where s _::._ 1 is a safety factor to allow for singular values above the 

mean. A good value for s would need to be determined empirically. 

Equation (4.73) represents a slight improvement over (4.62). For 

example, if E represents uniform noise distributed between -w/2 and 

+w/2, thens =w/2, and cr=w//IT. Therefore, for i; < 2//12= 1//3 

(4. 73) gives a closer bound than (4.62). For E representing Gaussian 

noise the improvement is more dramatic, since an upper bound for s will 

be placed at perhpas 2cr or 3cr 

The derivation of this section for the expected value has closely 

followed the derivation in Van Blaricum and Mittra (1979, p. 179-180). 

4. An Approximation for the K+l Singular Value 

Rigorous bounds for rK+l K+l of the QR factorization can also be 
' 

determined (Stewart, 1977, p. 509-517). These bounds are not nearly as 

strict as those for sK+l K+l· 
' 

same size as s ... 
11 

However, generally r .. is approximately the 
11 

In particular, r 11 /rii is a good approximation to s 11 /sii. The ratio 

r 11 /rii is always an underestimate of s 11 /sii' usually by a factor of less 

than three, and very rarely by a factor of more than ten. (Dongarra et al., 

p. 9.5, 9.25). Numerical examples in section F will illustrate this. 



E. Comparison of the Matrix Factorizations 

1. Speed and Accuracy 

For arithmetic of a given precision, those methods which involve 

the formation of H = ATA (Gaussian elimination; Cholesky factorization; 

eigenvalue analysis) cannot provide as great an accuracy as the other 

methods. Lawson and Hanson (1974, p. 126-129) provide an example dem-

onstrating this, and Golub and Wilkinson (1966, p. 143-144) provide a 

precise analysis on the bounds of the error. In the worst case, these 
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methods require a computer word length twice that required for the other 

methods in order to provide the same accuracy. 

In many cases, however, error due to machine round-off will be 

negligible compared to perturbation error of the matrix A. If machine 

T round-off is negligible, those methods which form A A are faster and 

should be used. Otherwise, those methods which do not use the normal 

equations are preferable. 

Table I provides a summary of the number of arithmetic operations 

required for each of the methods. Gaussian elimination and Cholesky 

factorization provide equivalent accuracy, but since the Cholesky factori-

zation is faster and provides the R matrix it is preferable. Also 

recall that for the factorization A = QR, the Householder transformation 

is fastest but the modified Gram-Schmidt algorithm may provide very 

slightly more accurate results. 

It should be noted that for use with Prony's method, the matrix to 

be factored is the matrix defined in (4.2). This matrix has a very 

specialized structure, so it is possible that any of the algorithms could 

be modified to take advantage of that structure for improved speed or 



Factor 

H=ATA=LU 

H=AT A=RTR 

A=QR 

A=QR 

A=QR 

A=FG 

A=USVT 

A=QR 
R=USVT 

H=ATA=VS 2VT 

TABLE I 

OPERATIONS COUNTS FOR VARIOUS FACTORIZATIONS 

Method 

Normal equations 
plus Gaussian elimination 

Normal equations 
plus Cholesky factorization 

Gram-Schmidt orthogonalization 
(or modified Gram-Schmidt) 

Orthogonalization by Givens 
transformations 

Householder transformations 

Algorithm 4.1 
(or modified Algorithm) 

Singular value factorization 

Householder transformations 
followed by Singular value 
factorization of R. 

Eigenvalue analysis of normal 
equations 

Operations 
Counts 

2 3 
mn /2 + n /3 

2 3 
mn /2 + n /6 

2 
mn 

2n3/3 
2 3 mn - n /3 

2 
mn 

2 2mn + t 

mn 2 + Sn3/3 
+ t 

4n3 /3 + t 

Comments 

Requires twice word length 
for same accuracy. 

Requires twice word length 
for same accuracy. 

Unmodified form should 
not be used. 

Unmodified form should 
not be used. 

Requires twice word length 
for same accuracy. 

The Operations Counts are taken directly from Lawson and Hanson (1974, p. 122). They are 
also derived elsewhere (Rice, 1981). Terms of lower order are neglected. t corresponds 
to the iterative phase of the QR algorithm. 

N 
OJ 
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memory requirements. 

2. Ability to Determine Rank 

Section D derived an upper bound and an expected value for the K+l 

singular value. The Cholesky factorization, the QR factorization and the 

FG factorization all provide a valuer .. which is approximately the same 
ll 

size as s 1. 1.• (In the FG factorization r .. = ~ = II f. \\). These r .. 
ll ll l ll 

values cannot provide as mucQ information as the s ... The numerical 
ll 

results in section F will demonstrate this. However, often the r .. do 
ll 

provide adequate information to estimate the rank K. 

F. Prony's Method and the Matrix Factorizations 

1. Using the Factorizations 

To clarify the preceding material of the chapter, two algorithms 

are presented. Algorithm 4.3 incorporates the singular value decomposi-

tion into Algorithm 3.1. Algorithm 4.4 incorporates the QR decomposition 

into Algorithm 3.1. It should be apparent from these two algorithms how 

to incorporate any of the other factorizations into Algorithm 3.1. It 

should be noted that Algorithm 4.3 produces only an approximation for the 

least squares solution for (3. 12), which provides the coefficients for 

polynomial (3.7). (See equations 4.49 to 4.55). To obtain the true 

least squares solution would require a second factorization. By contrast, 

Algorithm 4.4 provides the true least squares solution. (See equations 

4.19 to 4.25). This is because the QR factorization of A is equal to 

the truncated QR factorization of A= (A,_£). This is not true of the 

singular value factorization. However, in Section 2 it will be found 
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that the singular value factorization actually produces better coefficients 

for polynomial (3.7) than does the QR factorization. 

Algorithm 4.3: Prony's Method Using the Singular Value Factorization. 

1. Define the matrix: 

2. Factor W as: 

3. Search for a negligible s ... 
ll 

(4. 74) 

~+y -1 

(4.75) 

If a negligible s .. is not found, increase k and begin from step 1. 
ll 

Ifs .. is negligible and i > k, let k=i, and begin from step 1. 
ll 

If skk is the first negligible value, then N = k-1, and continue. 

4. Let 

s. 

v 
N+l ,N+l 

v 
N,N+l 

CN = v l .~+l • 

(This is an approximation) • 

The vector ~ is given by 

~ = ( CN ' CN-1 ' 

Solve for the roots µi' i=l, 2, 

N N-1 
coµ +clµ 

... ' 

(4.76) 

(4.77) 

N of the polynomial: 

(4.78) 



6. Solve for the A. i=l, i' 

7. Define the matrix and 

x = 

.E. = 

where M N + y 

2, ... " N from 

A. = ( 1/ T) tn(Jl. ) 
i l 

vectors: 

1 

~ 

M-1 
]12 

•.. ' ~-l)T 

T 
•.• ' pN) 

1 

1-N 

2 
~ 

8. Solve for p., i=l, 2, ... , N from the linear system 
l 

Algorithm 4.4: Prony's Method Using the QR Factorization. 

1. Define the matrix and vectors: 

x y-1 

2. Factor W as: 

3. Search for a negligible r ... 
ll 

x 
y 

QR 

~-1 

x k+y -1 
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(4. 79) 

(4.80) 

( 4. 81) 

(4.82) 

(4.83) 

(4.84) 

(4.85) 

If a negligible r .. is not found, increase k and begin from step 1. 
ll 

If r .. is the first negligible value, let N = i - 1, and continue. 
ll 
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4. Let 

c' 
N (4.86) 

Let ~+l be the leading principle submatrix of R, and express 

~+l as: 

I\J+1 = [ Ro' zpl 

Then solve for c' from the triangular system -N 

R'c' 
-N z 

5. Continue with step 5 of Algorithm 4.3 

2. The Effectiveness of the Factorizations 

(4. 87) 

(4.88) 

The major question of this chapter is whether the various factori-

zations can produce a good estimate of the number of exponential modes, 

N, in the original data. The preceding material in the chapter has been 

preparatory to answering this question. The remainder of the chapter 

examines four specific data functions in order to give a qualitative 

answer to this question. The first example primarily is intended to show 

the inferior numerical properties of Algorithm 4.1. This algorithm is 

the FG variant of unmodified Gram-Schmidt orthogonalization. The re-

maining examples compare the QR factorization (via Householder transform-

ations) with the singular value factorization. 

Each data function is of the form 

0, 1, .•. , H-1 

(4.89) 

Prony's method is used to fit each of these data functions to a function 
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of the form 

z(t) (4.90) 

If reference is made to Figure 1, then z(t) may be identified with ~(t), 

and x(t) is identified as 
\t 

x(t) = p1e (4.91) 

Thus, the function in (4.91) is corrupted in (4.89) by noise vk. It is 

assumed that the noise w(t) in Figure 1 may be modelled as being incorpo-

rated in the vk. Excepting where there may be confusion, the A notation 

for p. and A, will be dropped. The Prony solution (4.90) is computed in 
l l 

a fashion similar to Algorithm 4.3 or 4.4. Matrix (4.74) or (4.84) is 

formed dimensioned Y by l/J, and the values for Y and l/J are noted in each 

table. For a correct Prony solution, l/J N+l, and Y = M-N. Step 3 of 

each algorithm was omitted. The sampling period is T 

The vk are produced by a pseudo-random number generator, and are 

either uniformly distributed with zero mean and width w (equivalent to 

standard deviation cr ) , or normally distributed with zero mean and stan
v 

dard deviation cr . The "strength" of the noise refers to the size of a . 
v v 

Uniform noise could represent round-off error (truncation error) of a 

measuring device. In this case, the comments of section C.l are relevant. 

If the measuring device has d digits of accuracy, and if any truncation 

bias can be subtracted from the measurements, then 

-d 
w/2 = 10 /2. (4.92) 

The relationship between the width w of a uniform distribution and its 

standard deviation a is given by 
v 

a = (l//12)w. 
v 

(4.93) 
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The d. are the diagonal terms given by 
1-

di(FG) = IC 
1-1-

di(QR) r .. 
1-1-

di(SV) = s .. (4. 94) 
1-1-

for the FG, QR, and singular value factorizations respectively. 

The residual p is the residual norm from computing the c. in step 4 
1-

of either algorithm, that is, 

p (4.95) 

where ~1+l is the N+l column of wy,N+l' and the remaining tenns are 

identified in Algorithm 4.3 or 4.4. This residual was explicitly com-

puted, but it is seen to be about equal to dN+l for the FG and QR factori

zations. (Equations 4.25 and 4.37). The residual sis the nonn of the 

vector difference of the measured data and the fitting function, that is 

z; = Iii. - 3-11 (4.96) 

where 

A ~ ~ T 
z = (z(O), 3_C-r), .•• , 3_[(M-l)T]) (4. 97) 

T 
z.= (zo, zl' ... , ZM-1). (4.98) 

These residuals give an indication of the accuracy of the solution. 

All computations were performed in double precision on an IBM 370. 

Double precision represents 14 hexadecimal digits (about 16.8 decimal 

digits). Values in the table are shown to whatever precision is neces-

sary for the relevant discussion. The programming language used was 

FORTRAl1 IV. Algorithm 4.1 was used for the FG factorization. The QR 

factorization and singular value factorization were performed with DQRDC 

and DSVDC of the LINPACK subroutines. DQRDC performs the QR decomposition 



by means of Householder transformations. DSVDC performs the singular 

value decomposition by means of the "QR algorithm" which also uses 

Householder transformations. See Dongarra et al. (1979, p, 9.13-9.21, 

11.6-11.17) for details. 

It is useful in the discussion which follows to refer to the mean 

and standard deviation of the d. values. Let these be denoted as 
]. 

µd = Mean of d . 
i ]. 
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Standard Deviation of d .. 
]. 

(4.99) 

In all of the research which was done, the following relations were found 

to be true: 

µdN+l (SV) 
< ;:y E 

(4.100) 

µ 
dN+l(SV) "' ;y (J 

v 
(4.101) 

iJ 
"' iJ (4.102) dN+l (SV) v • 

Relation (4.100) follows from (4.62) and (4.101) follows from (4.72). 

Example 1: It was stated earlier that unmodified Gram-Schmidt ortho-

gonalization (or the FG variant of it) shows inferior numerical properties. 

Table II demonstrates this. The data function examined is 

zk = l.Oe-3.0kT + l.Oe-3.SkT + l.Oe-4.0kT, k = 0, 1, ... , M-1. 

(4.103) 

No noise is added. The QR and singular value factorizations are seen to 

extract the A. and p. with about the same accuracy. Unmodified Gram-Schmidt 
]. l 

orthogonalization (represented by the FG factorization) is considerably 

less accurate. The values for P and ~also indicate its poor accuracy. 

The d. values for the FG and QR algorithms are seen to be about 
]. 

equal except in the critical N+l value. This is the threshold value for 



TABLE II 

PRONY SOLUTION VALUES TO DEMONSTRATE INFERIORITY OF 
UNMODIFIED GRAM-SCHMIDT ORTHOGONALIZATION 

Data Function: zk = e-3. Dkt .,. e.;.3. 5K1 ·.,. e-4. Ok-r, 
k = 0, 1, ••. M-1 (4.103) 

11 = 53' y = 50' If' = 4, i: " 0. 1 
'.'lo Noise 

Unmodified 
Gram-Schmidt Householder 

True (FG factor- Transforms 
Item Value i zation) (QR factorization) 

'.-1 -3.0 -2.996 -2.99999 99996 39 
~2 -3.5 -3.481 -3.49999 99980 78 
"3 -4.0 -3.994 -3.99999 99993 53 

P1 1. 0 0.975 0.99999 99975 34 
P2 1.0 0.994 0.99999 99988 74 
P3 1. 0 1.029 1. 00000 00034 91 

dl 4.239 4.239 
d2 7.022 E-03 7.022 E-03 
d3 5.734 E-06 5.734 E-06 
d4 Q.O 1.093 E-08 1.354 E-15 

p 0.0 1.093 E-08 5.854 E-15 
o.o 2.421 E-07 3.383 E-14 

d. di 

10° 
1 

100 0 0 

l0-4 
0 

l0-4 
0 

0 0 

10-8 
0 10-8 

10-12 10-12 

10-16 10-16 0 

I 2 3 4 i l 2 J 4 

Singular 
Value 

Factorization 

-2.99999 99996 
-3.49999 99980 
-3.99999 99993 

0.99999 99976 
0.99999 99988 
1.00000 00035 

5.803 
1.251 t:-02 
6.523 E-05 
4.872 E-15 

5.987 E-15 
3.423 E-14 

d, 

lo0 
1. 
0 

0 

10-4 
0 

10-8 

10-12 

10-16 0 

2 J 4 

38 
74 
51 

29 
69 
00 

i. 

(a) FC Factorization (b) QR Factorization (c) Singul~r Val 11e 

Factorization 

Figure 2. Diagonal Values from Table II 
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detennining N. Figure 2 plots the values of d .. The decrease in their 
J.. 

magnitudes shows increasing dependency in the columns of matrix (4.2). 

Nevertheless, for the QR and singular value factorizations the N+l value 

drops significantly more than the other values. 

Since all computations were performed in double precision, it is 

questionable whether single precision computation for unmodified Gram-

Schmidt orthogonalization would have produced meaningful results. 

Example 2 : Even with very noisy data a good estimate of the number 

of modes N can be obtained. Either the QR or the singular value factori-

zation may be used, but greater confidence in the rank estimate will be 

obtained with the singular value factorization. Table III demonstrates 

Prony's solution for the data function 

= 1 0 -0.062kT + l.Oe-0.402kT + k 0 1 M-l. zk . e v k , = , , ... , • (4.104) 

Four noise distributions are used with various 0 . In every case, 
v 

relations (4.100) to (4.102) hold true. A good test for N would be: 

dN+l(SV) 2_ 1. 5 /Y 0 ' v 
(4.105) 

according to equation (4.73). For the examples in Table III, this test 

would be accurate even for singular values which deviate by as much as 

3crd.from their mean µd • 
J.. i 

The QR factorization also gives a good estimate of N. The suggested 

test is 

(4.106) 

However, for part (d) of Table III with uniform noise of width 0. 1, this 

test is seen to be inferior to (4.105). 

Part (d) of the table is also of interest because it compares the 

ability of Prony's method to extract the ,,\ . and p., with the ability of 
J.. J.. 



lla t" Furu.:t ion: -~ k 
>1 " 27; ( " 25; ~ 

True 
lte111 Va 1 ue 

,\ l -0.062 
>.2 -0.402 

p I.OU l 
p2 l.00 

di 
dz 
d3 

/yav 

µ 

~ 

Al -0.062 
,\ 2 -0.402 

P1 1.00 
P2 1. 00 

dl 
dz 

. .'.1.3 
{ (0 v 

~ 

TABLE III 

PRONY SOLUTION VALUES FOR AN EXAMPLE 
WITH N=2 

~ 8 -0. 062k1 '" e-0.'lll:!kT r "k • k 0 0, 1, ... , M-1 ( 4. l04) 
" 3; T ~ 30; 400 Mont~ C<lrlo trials 

(d) "k Gdussidn Nois~, JV 0.000289 (b) vk o Uniform 

QR Singuldr Value QR 
Fact<JriLation fdct<Jrization Factorization 

Mectll ~ Mean s. Dev. Mean S. Dev. 

-0.062007 0.00009 -0.062002 0.00009 -0.062011 il.00010 
-0.402055 0.00094 -0.402029 0.00094 -0.402112 0.00099 

1.00014 0.0017 1.00007 0.0017 1.00020 0.0018 
0.99989 0.0017 0.99997 0.0017 0.99979 0.0018 

2.64 0.30 E-3 3.40 0.42 E-3 2.64 0.28 E-3 
2.67 1::-1 0.25 E-3 3. l7 E-1 0.26 E-3 2.67 E-1 O. 27 E-3 
2.13 E-3 O. 38 E-3 1.39 E-3 0.25 E-3 2.14 E-3 0. 33 E-3 

1.44 E-3 

2.13 E-3 0.38 E-3 2.13 E-3 0.38 E-3 2.14 E-3 0.33 E-3 
1.49 E-3 0.27 E-3 1.49 E-3 0.27 E-3 1.52 E-3 0.22 E-3 

(c) vk Uni form Noise, w = 0.01 (d) vk Uni form 
(Oy = 0.00289) 

-0.0624 0.0010 -0.0619 0.0011 -0 .• 087 0.007 
-0.4045 0.0110 -0.4018 0.0109 -0. 777 0.276 

I. 0065 0.0189 0.9987 0.0192 1. 380 0.101 
0.9933 0.0186 1. 0014 0.0188 0.618 0.106 

2.64 0.29 E-2 3.40 0.42 E-2 2.65 0.28 E-1 
2.68 E-1 fl.27 E-2 3.18 E-1 0.25 E-2 3.14 E-1 0.23 E-1 
2.16 E-2 0.32 E-2 1. 42 E-2 0.21 E-2 1. 95 E-1 0.26 E-1 

1.44 E-2 

2.16 E-2 0.32 E-2 2. 16 E-2 o. 33 E-2 1. 95 E-1 0.26 E-1 
1. 56 E-2 0.25 E-2 1.52 E-2 0.23 E-2 2.26 E-1 0.39 E-1 

38 

Noise, w" 0.001 
(" v 0 0.000289) 

SinyulJr Value 
Fdc tori ld ti on ltem 

Mean s. Dev. 

-0.062006 0.00010 Al 
-0.402086 0.00099 A2 

l. 00013 0.0018 P1 
0.99987 0.0018 P2 

3.40 0.41 E-3 dl 
3.17 E-1 0.28 E-3 dz 
1.40 E-3 0.21 E-3 .'.:3 
1.44 E-3 /yov 

2.14 E-3 0.32 E-3 p 

l. 52 E-3 0.21 E-3 i; 

Nol se, w = o. 1 
(Ov • 0.0289) 

-0.0605 0.0108 \ l 
-0. 4296 0.1403 Az 

0.976 0. 19() P1 
1.027 o. l91 112 

3.40 0.42 E-1 dl 
3.50 E-1 0.25 E-1 dz 
1.39 E-1 l). 21 E- l d3 
1.44 E-1 ./yo" 

2.14 E-1 0.33 E-1 
1. 55 E-1 ll.29 E-1 
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the singular value factorization to estimate N. The standard deviation 

of A 2 using the singular value factoriztion is about 30 percent of the 

value for /..2 . But the estimate for N, as stated earlier, is accurate 

for di which vary from their mean µd even by as much as 3od . Thus, the 
i i 

Prony solution becomes meaningless (not even one significant digit of ac-

curacy remaining) before the estimate for N becomes inaccurate. This 

conclusion is supported by other examples in this research. 

The data function of part (a) of the table differs from that of 

part (b) only in that the noise distribution is Gaussian rather than uni-

form. An equivalent cr is used. The results are not seen to be signifi
v 

cantly different for the mean and standard deviation of the Prony solution 

values. 

In every case the residuals p for the QR factorization and the SV 

factorization are seen to be approximately equal, but the p for QR is 

very slightly smaller than the p for SV. This is apparent in part (d) 

of the table; in parts (a), (b), and (c) it is not apparent because ade-

quate digits are not displayed. The inequality 

p QR < p SV (4.107) 

is true not only for this example, but also for every example which 

occurred in this research. This result is expected since the singular 

value factorization of an augmented matrix produces only an estimate for 

the least squares problem (Section C.4). 

It would thus seem that the singular value factorization would pro-

vide a less accurate estimate for the Ai and pi than does the QR factori

zation. But the opposite is true, as can be seen from part (c) of the 

table. In particular, the residual c; is seen to be significantly lower 
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for the singular value factorization, and the estimates for A. and p. 
l l 

are seen to be much better for the singular value factorization. Since 

Prony's method is not a true least squares technique (Chapter III), and 

the singular value factorization (as incorporated in Algorithm 4.3) is 

likewise not a true least squares technique, apparently the "errors" 

made in the singular value factorization have the effect of causing 

Prony's method to come closer to being a true least squares technique. 

The reason for this is unknown. It can only be attributed to interaction 

of a positive nature between the singular value factorization and Prony's 

method. It is possible that Prony's method by the singular value factori-

zation is better than by the QR factorization only for some specific types 

of functions. These issues are areas for further research. 

The singular value factorization can produce an exact least squares 

solution by equations (4.46) to (4.48). This entails factorization of 

matrix (4. 74) dimensioned N by Y rather than N+l by y. Such a factori-

zation should produce exactly the same least squares solution as the QR 

factorization. Thus, to obtain the improved estimates for A. and p., it 
l l 

is not sufficient simply to use the singular value factorization. Rather, 

the singular value factorization must be used as specified in Algorithm 

4.3. 

Example 3: When the A. are more closely spaced, the columns of the 
l 

matrix (4.2) come closer to dependency. Thus, it is more difficult to 

obtain a good estimate for N. It is also more difficult to extract the 

A. and p .. Table IV illustrates these difficulties. The data function 
l l 

being examined is 

Z = 1 Oe-0.062kT 1 0 -0.200kT + 1 0 -0.402kT ..1.. v k 0 1 M 1 k . + . e . e , k' =, , ... , r-

(4.108) 



TABLE IV 

PRONY SOLUTION VALUES FOR AN EXAMPLE WITH N=3 

Data Function: zk = e-0.062k• + e-0.200k• + e-0.402k• + vk, 
k = 0, 1, ••• , M-1 (4.108) 

M = 28, y = 25, lJJ = 4, • = 3.0, 400 Monte Carlo trials 
vk = Uniform Noise, w = 0.001 (crv = 0.000289) 
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True QR Singular Value 
Item Value Factorization Factorization 

Mean S. Dev. Mean S. Dev. 

-0.0637 0.0007 -0.0618 0.0010 
-0.226 0.016 -0.198 0.018 
-0.434 0.030 -0.404 0.020 

Al -0.062 
A 2 -0. 200 
1'3 -0.402 

1.058 0.025 0.993 0.038 
1.167 0.145 1.008 0.119 
o. 775 0.167 0.999 0.156 

Pl 1. 00 
p 2 1. 00 
P3 1. 00 

3.80 O. 28 E-3 4.89 0.43 E-3 
2.85 E-1 0.24 E-3 4.36 E-1 0.30 E-3 
8. 70 E-3 0.31 E-3 9.23 E-3 0.22 E-3 
2. 96 E-3 0.51 E-3 1.41 E-3 0. 25 E-3 

dl 
d2 
d3 
d4 

lycrv 1.44 E-3 

2. 96 E-3 0.51 E-3 3.03 E-3 O. 55 E-3 
4.63 E-3 0.15 E-3 2.15 E-3 0.82 E-3 
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This data function differs from that of (4.104) only in the addition of 

the second term of (4.108). The noise strength used is the same as that 

in Table III (b). Yet, the values for A. and p. are not nearly as ac-
l l 

curate in Table IV. 

If (4.105) is again used as the test for N, an accurate N will be 

obtained. However, the dN(SV) and dN+l(SV) values are separated by less 

than an order of magnitude in Table IV, whereas in Table III (a) they 

were separated by over 2 orders of magnitude. The QR factorization could 

also give an accurate N if the test were changed to 

~+l(QR) .:._ 3.0 /Y crv. (4.109) 

But this illustrates the difficulty with the QR factorization. Exactly 

where should the threshold be? The singular value factorization has a 

clearly defined threshold. The QR factorization does not. Where there 

is little noise, or where the A. are widely separated, the QR factori-
1 

zation could provide an accurate estimate for N by the test 

~+l(QR) < 5.0 !Ycrv. (4.110) 

or even 

(4. 111) 

However, where there is greater noise or there are closely spaced A,, 
l 

the singular value factorization should be used. 

The value~ in equation (4.73) was chosen empirically to be 1.5 in 

equation (4.105). In the lack of any a priori knowledge, how would a 

proper value for ~ be chosen? If it is desired to set the threshold to 

detect dN+l(SV) 

for ~ would be 

which differ from the mean by 3µn , then the value 
""""N+l ( sv) 

(4.112) 
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where the N+l(SV) notation has been suppressed. But from relations 

(4.101) and (4.102), equation (4.112) becomes 

;y + 3 

;y (4.113) 

This would have given a value of 1.6 rather than 1.5 for equation (4.105). 

For small values of Y, and especially if the noise may be modelled as uni-

form noise, a better test may be given by: 

dN+l(SV) .:::_ IY E: (4.114) 

according to equation (4.62). The only problem with these schemes is whether 

the ~ value will also fall below !; fY cr or fY s . 
v 

Since the test for the ~+l value involves either s or crv, it is 

implied that these quantities are known. Often, however, the statistics 

of the noise vk are unknown. In this case how can an estimate for N be 

made? Figure 3 shows the diagonal values from the factorizations of 

matrix (4.74) or (4.84) for data function (4.108). Values of Y = 23 and 

i!J = 6 were used. It is apparent that d4 is almost an order of magnitude 

below d3 , but then the di values decrease at a much slower rate. This 

would indicate that the proper choice for N is 3; and this would be a 

correct estimate. The value for d4 (SV) is about 0.00153, and Y = 23. 

This would result in an estimate from (4.101) of cr 0.00032. If the 
v 

noise is assumed to be uniform, then from (4. 93), w 0. 0011. These 

values for 0 and w are verv close to the actual values. Thus, the v , 

singular value factorization can produce an estimate for the standard 

deviation of the noise 0 , as well as an estimate for the number of 
v 

exponential modes N. 

Example 4: The final example uses a function suggested by 

Van Blaricum and Mittra (1977). The Prony solution is given in Table V. 
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0 0 0 0 0 
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(a) QR Factorization (b) Singular Value 
Factorization 

Data Function: zk = e-0.062kT + e-0.ZOOkT + e-0.402kT + vk, 

k z 0, 1, .•. , M-1 (4.108) 

M z 28, y = 23, l/I a 6, 400 Monte Carlo trials 

vk • Uniform Noise, w • 0.001 (crv ~ 0.000289) 

Figure 3. Mean Diagonal Values for an 
Example with ~ = N + 3 

TABLE V 

PRONY SOLUTION VALUES FOR AN EXAMPLE 
WITH COMPLEX POLES 

~ lkT \?kT .i.. 9 \12kT 
Data Function: .z'< • e .,. e ... + .. . • "'k' 

< • 0, l, ••• , M-1 (4.115) 
i'I • 212, y • 200, ·• • 13, t • 1.0, 20 Monte Carlo r.rials . . . 
.\2 .:11 :\.1' >..l • A3' •••• Al2 • .\ll 
''<. • G.lussia.n .'iOise, av .. a.aas 

!tam 
True 
Value 

QR 
Factorization 

[magi nary .\ 1 
>art \ 3 

\ 5 
'-7 
'i 
"'ll 

-0.082 
-0.147 
-0.188 
-0.220 
-0.247 
-0.270 

0.926 
2.874 
~.835 
5.dOO 
8. 767 

10. 733 

J.0707 

1'4ean 

-0.0815 
-0.1387 
-0.1772 
-Q.2159 
-0.2577 
-0.3092 

0.9258 
2.8770 
~.3334 
5. 7969 
a. 7340 

10. 735 l 

0.477 
0.327 
0.117 

S. Cev. 

0.0007 
0.0036 
o. 0063 
0.0059 
0.0071 
O.Ol6o 

0.0009 
0.0021 
0.0042 
.).0038 
0.0113 
J.0141 

0.008 
0.007 
0.010 

0.010 

Slngular Value 
Fae tori zat ion 

!otean 

-0. 0821 
-J.1467 
-0.1570 
-0. 2190 
-0.2483 
-0. 2710 

o. 9260 
2. 3734 
~.cl352 
5.3003 
3. 7661 

!O. 7305 

0.374 
J.293 
0.058 

O. ll9 

s. f)!y. 

0.0007 
0.0035 
o. 0065 
.i.0061 
0.0067 
0.0144 

0.0009 
0.0023 
o. 0042 
0.0038 
0.0100 
0.0130 

·J.008 
o. 007 
J.806 

44 
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The data function is given by 
Al kT A2kT ;\12kT 

zk = l.Oe + l.Oe + ... + l.Oe + vk, k = 0, 1, .•. , M-1 

(4.115) 

The;\, are complex and occur in complex conjugate pairs. They are listed 
]_ 

in the table. The p. are not computed. The data function has 12 exponen
i 

tials, but they are fairly widely separated because they are complex. If 

the test for N using the singular value factorization is once again: 

the correct value for N would be obtained even for d. which differ from 
]_ 

the mean by as much as 5 standard deviations. For the QR factorization, 

the test could once again be 

~+1 < 3.0 .fY a . 
v 

The ;\. estimates returned by the singular value factorization are 
J. 

significantly better than the estimates from the QR factorization, even 

though the residual p is slightly smaller for the QR factorization. This 

would again support the conclusion from Example 2 that the singular value 

factorization works better for Prony's method than the QR factorization. 

To the precision shown in the table, the values obtained by the FG 

factorization (unmodified Gram-Schmidt) were the same as those indicated 

in the table for the QR factorization. Van Blaricum and Mittra (1977) 

however did not obtain meaningful results from the FG factorization for 

this identical data function. Their calculations were probably done in sin-

gle precision. If so, this would account for the discrepancy because of the 

inferior numerical properties of unmodified Gram-Schmidt factorization. 

G. Summary 

The problem of determining the number of exponential modes N in a 
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data function has been reduced to the problem of determining the rank of 

a matrix. Various matrix factorizations can provide an estimate of the 

rank of a matrix, but the singular value factorization has been shown to 

provide the best estimate. When incorporated into Prony's method, the 

singular value factorization has also been shown to provide a better fit

ting function for the data than any of the other factorizations. The 

ability of the singular value factorization to provide an estimate for 

N surpasses the ability of Prony's method to provide an accurate fitting 

function. 



CHAPTER V 

DETERMINING THE OPTIMAL SAMPLE INTERVAL 

A. Introduction 

The purpose of this chapter is to determine an optimal sampling 

period for Prony's method. First, a sampling theory for Prony's method 

is presented. This sampling theory indicates bounds for the sample period, 

but does not indicate the optimal sample period. Second, some specific 

functions are simulated on the computer, and an optimal interval for 

their sample period is observed. 

B. A Sampling Theory for Prony's Method 

In Prony's Method the 
1._ 1k-r ;i._ 2k-r 

xk = p 1e + p 2e 

data function is assumed to be of the form 
!._Nk-r 

+ ... +pNe , k= 0, 1, ... , M-1 (5.1) 

where -r is the (constant) sampling period. The data must be viewed over 

a total time interval of at least 

T = (2N - 1) -r . 

During this time interval, the sample period T must be chosen such that 

the slow exponential mode defined by some A. in (5.1) changes from one 
J. 

sample to another, while the fast exponential mode cannot be equal to 

zero at t T within the measurement precisions defined in (4.57). 

Assume first that the real parts of the A. are negative. That is, 
l 

they represent decaying exponential functions. This assumption is con-

sistent for any stable system. Assume further that the A. are real. 
1 

47 
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This assumption is not strictly necessary, but it simplifies the deri-

vation to follow. For complex A., the bounds stated later in (5.10) may 
l 

be regarded as being for the real parts of the A.· Finally, assume that 
l 

the A. are known, and ordered as follows: 
l 

(5.2) 

where AN defines the fast exponential mode and Al defines the slow ex

ponential mode (AN is more negative than A1). The sample period T must 

be chosen so that 
A lT 

P1 - pl e > s (5. 3) 

where sis the measurement precision defined in (4.57). Solving for T 

yields 

For the slow exponential mode this expression implies that AlT must be 

such that it is not rounded to zero to within the measurement precision 

defined by E The alternative is 

0 < 1 
A lT 

E /pl - e < (5.6) 

which implies 
A·T 

1 
1 e - (5. 7) 

where the dot indicates "equal to" in the finite precision arithmetic. 

The use of these data, defined by T such that (5. 7) holds, implies that 

µ ~ 1 in equation (3.5). This could lead to numerical problems with 

Prony's method since matrix (3.13) could become singular. 

The fast exponential also affects the choice of a proper sample 

period. In order to compute the exponential mode defined by >t N' it must 

not be rounded to zero at the end of the data set defined by (3.4). That 

is, for H = 2N in (3. 5), the exponential mode defined byµ N must appear. 



49 

Thus, 

(5. 8) 

Solving for T gives 

(5. 9) 

Thus, the value of T must be chosen according (5.9) so that the data set 

contains the fast mode. 

The maximum value for the sample period is given by (5.9), while the 

minimum value is defined by (5.4). Combining these two produces the fol-

lowing bounds for T : 

The choice of a proper sample period is only possible when 

Inequality (5.11) can be written as 

(2N-l) A /A 
N 1 

(5. 10) 

(5.11) 

(5.12) 

where N is the number of modes in the data function, s is the measurement 

precision, and AN and Al define the fast and slow exponential modes re

spectively, and pN and p1 are the coefficients associated with AN and >. 1 . 

If the inequality defined by (5.12) cannot be satisfied, then there is no 

sample period for which Prony's method will work. 

Equation (5.11) requires knowledge of the A. and p., which are not 
1. 1. 

available when the identification problem is under study. However, often 

bounds on the A. will be known, and p. may be assumed approximately equal 
1. 1. 

to 1.0. In particular, many systems, including ecological systems, may 

be described by compartment models. Compartment models have definite 

bounds on the upper and lower eigenvalues, corresponding to AN and Ai· 
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Mulholland and Gowdy (1977, pp. 321-344) derived a sampling theory for 

the regression analysis method for such compartment models. Mulholland 

(1981, p. 51) has shown that the sampling bounds for Prony's method are 

more strict than for the regression analysis method. For M large, the 

maximum sample period for the regression analysis method may be nearly 

twice that of Prony's method. This may cause problemswith the practical 

application of Prony's method which may explain why it is neglected in 

the literature. On the other hand, the regression analysis method re-

quires all components of the state vector, whereas Prony's method requires 

only scalar measurements. 

Under some conditions the upper bound for T may be too strict. For 

example, consider a case where N=2, and 
(2N-2)ANT > E/ > 

e - PN 

(2N-1) A T 
N 

e 

so that T does not satisfy (5.8). Then the equations (3.5) become 

XO = P1 + Pz 

+ 0 

(5 .13) 

(5.14) 

3 where the last term p2µ 2 is missing. Then if Al and Az are sufficiently 

separated (µ 3 >>µ 3) a Prony solution of (5.14) may still give a good 
1 2 

estimate for Al and AN. For example, consider the data functions given in 

Table VI. Functions (a) and (c) are as (5.14). Function (b) is as (5.14), 

2 but also missing the term p2µ 2 . The Prony solution for (a) is relatively 

accurate, even though T does not satisfy (5.8). The Prony solution for 

2 
(b) is relatively inaccurate, for apparently the p2µ 2 term is crucial. 

The Prony solution for(c) is also poor apparently because the Ai are too 
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closely spaced. 

It would thus seem that the term (2N - 1) in the inequalities (5.9) 

through (5.12) could be replaced with (2N - o) where 6 is determined by 

the value of N and the separation of the A. •• 
1 

In particular, (5 .10) 

becomes 

(5 .15) 

The minimum value for 8 is 1, and the maximum value for 8 is (N-1). It 

is to be expected that in general, 8 will be much closer to 1 than to 

(N-1). 

TABLE VI 

PRO NY SOLUTION VALUES FOR T TOO LARGE 

Data Function Prony Solution 

A.l ;\2 

-0.062kT -0.402kT 
k = 0, 1' 2 e - e 

(a) xk = -0.060 -0.412 -0.062kT k 3 e 

-0.062kT -0.402kT 
k = 0, 1 e - e 

(b) xk = -0.076 -0.306 -0.062kT k 1' 2 e 

-0.200kT -0.402kL 
k 0, 1' 2 e - e 

-0 .180 -0.468 (c) xk -0,200kT 
e k 3 
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C. Some Numerical Investigation 

The data functions examined in this section were simulated on a com-

puter as 
,\NkT 

+ pNe + vk 

k = 0, 1 , ... , M-1 . (5.16) 

The .\i are assumed to be real. For notational definiteness equations will 

always be expressed such that /, 1 > A.2 > • • • > .\ N ( ,\N is the most negative 

value). 

Prony's method is used to fit each data function of the form (5.16) 

to an exponential functi9n of 
.\lt 

~(t) = p 1e + (5. 17) 

Equations (5.16) and (5.17) are identical to (4.89) and (4.90). The 

discussion regarding those equations in Section IV.F.2 is therefore rele-

vant. In particular, equations (4.89) through (4.93) remain true. The 

method of generating vk remains the same. The A notation for p. and .\. 
l. l. 

in equation (5.17) is dropped excepting where it may cause confusion. 

Numerous simulations of (5.16) were performed in order to obtain 

the information presented in the following discussion. Most of these 

simulations involved repeated Monte Carlo trials in order to obtain mean-

ingful statistics. The number of Monte Carlo trials used is indicated in 

the relevant figures. Prony's solution for the data points simulated by 

(5.16) was performed using the singular value factorization as indicated 

in Algorithm 4.3. Step 3 of the algorithm was omitted. Matrix (4.74) 

was formed dimensioned y by lj; , and the values for y and lj; are given in 

each table or figure. For a correct Prony solution, lj; = N+l, and Y = M-N. 
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Where Monte Carlo trials are used, it is useful to refer to the mean 

and standard deviation of various estimates. If the item of interest is 

y, and its estimate is y, then the mean and standard deviation of y will 

be denoted as 

crA mean of y 
y 

w y 
standard deviation of y. (5.18) 

The normalized mean error e and normalized standard deviation s are 
y y 

often of greater interest than µA and crA. These unitless quantities are 
y y 

defined as 

e = (µA - y)/ y 
y y 

(5. 19) 

Note that the A notation on the left side of equations (5.19) is dropped. 

For application to Prony's method, the variable y will typically be re-

placed with A. or p .• 
l l 

The quantities of (5.19) provide a standard by which to judge how 

well y estimates y. The smaller that the quantities of (5.19) are, the 

better is the estimate. If e is small in comparison to s ' then s alone 
y y y 

provides the standard. Typically, when s is plotted against T , the 
y 

curve is concave upward, as illustrated in Figure 4. The optimal sample 

period then occurs at the single point where s is a minimum. An inter
y 

val for a near-optimal sample period is defined by 

- + Where' and'· are defined in Figure 4. This interval will be referred 
0 0 

to as the optimal sample interval. The factor of 2 in Figure 4 is ar-

bitrary, but provides a reasonable standard for comparisons similar to the 

11 3-decibel" point of filter functions. Often, the optimal sample interval 
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T 

for estimating >.. 1 will be different from that for estimating ,1..2 . In 

this case the overall optimal sample interval is given by the strictest 

combination of bounds. For example, if the optimal sample interval for 

>.. 1 is given by 

l.2<T<5.0 

and the optimal sample interval for >..2 is given by 

2.0 ..2_T 2..7.Q 

then the overall optimal sample interval will be given by 
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2. 0 .::_ T ..2_5. 0 (5.21) 

Relations (S.18) to (5.21) are important, for they define symbols and 

terms used throughout the remainder of the chapter, and in all of the 

remaining figures. 

1. Proper Data Length 

It is desired to extract as much information as possible from the 

data set defined in (5.16). For a given sample period T, the information 

in the data set should increase as M increases. However, for Re (A.) < 0 
1. 
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(as is the case for stable systems), as M approaches infinity, zM approaches 

0. Thus, with noisy data, or with measurements of a finite precision, 

there will be some finite value of M beyond which there is no information 

Consider the data set given by 

zk = 0.2S2e-0.062kT - 0.2S2e-0402kT + vk' k = 0, 1, ... , M-1. (5.22) 

Let vk be uniformly distributed with width w = 0.01, and let T = 4.0. 

Figure 5 plots eA and sA against the data length MT. It is especially 
i i 

apparent from the sA 
i 

curves that there is no more information to be 

gained from data lengths beyond about MT = 30. There appears to be sig-

nificant information however at MT 20. Table VII shows the values of 

the fast and slow components of zk for MT = 20 and MT = 30. Since the 

noise distribution is uniform with width w = 0.01, it is apparent that 

the fast component (A 2) is effectively zero for either MT = 20 or Mc = 30. 

For the slow component (A 1), information appears to be present at MT = 30, 

but this information is apparently of such poor quality that it does not 

improve the Prony solution. 

The graph of s for a sample period T = 1. 0 shows similar shape, 
Al 

but with the "knee" of the curve shifted from about M 30 to M = 20. 

Thus, the position of the knee is dependent on T. This is probably due 

to the accuracy of the solution being dependent on ' , with the optimal 

choice for T moving the "knee" of the curve further to the right than any 

other choice for T • In the following section it is shown that T = 4. 0 

is a much better sample period than T = 1.0. 

In order to gain as much information as possible,yet without wasting 

computation time, a data length of Mc= 40.0 is generally used for the 
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TABLE VII 

COMPONENT VALUES 
FOR FIGURE 5 

Component MT= 20 

• 252e -0. 062 HT 0.073 

_252e-0.402 MT 8.1 E-5 

MT 30 

0.039 

1. 5 E-6 
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remaining simulations to be discussed. 

2. Optimal Sample Period 

Example 1: Consider the data function given by 

zk = 0.252e-0.402k' + vk, k = 0 , 1 , •.. , M-1 (5. 23) 

For Figure 6 (a) the vk are uniformly distributed with width w = 0. 01. 

No attempt to find the lower bound for T was made. It is apparent that 

sA is much greater than eA , and therefore the optimal sample interval 

is defined by sA alone as in inequality (5.20). Table X (at the end of 

the chapter) shows that this optimal sample interval is given by 

? < T _:_ 5.0, 

The eA values should be randomly distributed, but they show some structure 

for unknown reasons. For Figure 6(b) the v are uniformly distributed 
k 

with width w = 0.0001. It is readily apparent that the shape of the sA 

curve is practically identical to that of Figure 6(a). This is an impor-

tant result, for it indicates that until the noise strength becomes too 

great, the shape of the standard deviation curve is independent of the 

noise strength. 

If the noise strength becomes great enough, then it is to be expected 

that the characteristics which cause the shape of the sA curve will no 

longer dominate, and the curve will take a different shape. This is ap-

parent from Figure 6(c), where the width of the uniform noise is w = 0.1. 

Table X shows that inequality (5. 10) is violated for T = 4. 0. The shape 

of the eA curve is due to this inequality being violated. 

It is suspected that the shape of the standard deviation curves in 

Figures 6(a) and 6(b) are due to the statistical nature of sampled data 
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from an exponential function. Consider why this might be true. For a 

given value of k, zk will be taken later in time as T increases. But 

for a decaying exponential function, this implies that zk is smaller in 
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value. Since the noise power is constant with time, the signal to noise 

ratio of the sampled data decreases as T increases. The shape of the 

curves in Figure 6 could be due to this statistical property of sampled 

data. However, the shape of the curves could also be due to the statis-

tics of processes within Prony's method. 

Example 2: Consider once again the data function given by (5.23) 

and repeated here: 

zk = 0.252e-0 · 062kT - 0.252e-0 · 402kT + vk' k = 0, 1, ... , M-1. 

(S.24) 

Let vk be uniformly distributed with width 0.01. Figure 7(a) and (b) 

shows the normalized mean error and standard deviation for A1, A2 , p 1, 

and p2 . Table X shows that the overall optimal sample interval is given 

by 

1.4 ~ T ~ 5.0. (5.25) 

This interval violates the bounds given by (5.10) as 

0, 32 ~ T ~ 3, 3, 

But the data function (5.24) is very similar to that given in Table VI (a), 

and for that function it was noted that inequality (5.15) gives the proper 

bounds with o = 2. This would give an interval of 

0.32 < T < 4.9. (5.26) 

Thus, (5.25) and (5.26) are in near agreement. Figure 7(a) also shows 

that values for eA are dramatically larger for T> 5.0. 
2 

+ The T. bound 
0 

for A2 is much more strict than for A1 . This is reasonable, since as 

T increases, the exponential term associated with AN becomes inaccurate 
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more quickly. 

For T > 7, some of the computed values for the ;\ . were negative or 
1. 

complex. Since this would result in complex;\,, these values were not 
1. 

used and did not con tribute to the statistics. As T increased, the num-

ber of unused values increased. It is of note that this difficulty 

occurred outside the bounds given by (5.15). 

The optimal sample interval for p. is given from Figure 7(b) and 
1. 

inequality (5.20) as 

1.2..:._T:::._8.0 (5.27) 

This interval is less strict than that observed for the A., and therefore 
1. 

contributes nothing to the overall optimal sample interval. This behavior 

is typical of the other data functions also, therefore, the sp and e 
p 

curves are not shown in the remaining figures. It is of note, however, 

that the e curve has a definite structure, and that in the optimal sample 
p 

interval the estimates for p. have a bias of about 0.003 from Figure 7 (b) 
1. 

and equation (5.19). 

Figure 7(c) repeats 7(a), excepting that the noise width is given 

by w = 0.001. Once again it is noted that the shape of the standard devi-

ation curve is independent of the noise strength. 

For T > 3, the shape of the curve for s;,_ is about the same as that 
2 

from Figure 6(a). The fast exponential dominantly effects the statistics 

of the Prony solution fo~ the larger values of T, 

Figure 8 shows the statistics for Prony's solution for T for the 

function 

0.252e-0.062k' + vk, k = 0, 1, zk = ... ' M-1 (5. 28) 

A comparison of Figures 6 and 7 would indicate that even for the smaller 
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values of T , the slower exponential does not by itself dominantly affect 

the statistics shown in Figure 7. Rather, the statistics in Figure 7 

are due to the interaction of the fast and slow exponentials. 

Example 3: As ~ decreases, one would expect r: to increase. This 

is in fact what happens. Figure 9(a) shows the normalized mean error and 

standard deviation for the Prony solution of A for the data function 
i 

zk = 0.252e-0 · 062kT - 0.252e-0 · 200kT + vk, k = 0, 1, ... ' M-1 

(5. 29) 

The optimal sample period is given in Table X as 

2.5 2-_ T 2-_ 12.0 (5.30) 

A comparison of Figure 9(a) and Figure 7(a) shows the same general 

shape for the standard deviation curves, but with the right-hand boundary 

shifted to the right. 
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Figure 9(b) gives the same information for the data function 

zk = 0.252e-0.20QkT - 0.252e-0.402kT + vk, 

k = 0 , 1 , ••• , M-1 (5.31) 

+ One might expect T to be unchanged from Figure 7(c) and data function 
0 

(5.24) since :\2 is unchanged. This is essentially the case, even though 

the shape of the standard deviation curve is considerably altered. This 

change in the shape of the standard deviation curve is due to Al and :\2 

being less widely separated. The optimal sample interval is given in 

Table X as 

1.0 .2_ T .2_5.0. (5. 32) 

A comparison of the values of e:\ and s:\ in Figures 7(c) and 9(b) shows 

that for the :\. more widely separated, the Prony solution is more ac
i 

curate. The same observation applies to comparing 7(c) with 9(a). 

Example 4: Consider the data function given by 

zk = 0.252e-0.062kT + 0.252e-0.200kT - 0.252e-0.402k, + vk, 

k = 0, 1, .•. , M-1 (5.33) 

The normalized mean error and standard deviation for the Prony solution 

values of the A. are plotted in Figure 10 against ,, Table X gives the 
]. 

optimal sample interval as 

2.5 < T .2_ 5.0. (5.34) 

+ Once again, T0 seems to depend primarily on AN. (Compare the optimal 

sample intervals in Table X for figures 6(a,b), 7(a,c) and 9(b) where 

:\N is the same.) The lower edge T- is the same as that given for Figure 
0 

9(a) for data function (5.29). Thus, ,- seems to depend primarily on 
0 

the interaction of the A., and is a function of the separation of the:\ .. 
]. ]. 

Example s: The function given by 

x(t) = 0.252e-0.062t - 0.252e-0.402t (5.35) 
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has occurred repeatedly in this research. This function is of special 

interest because it represents an actual ecological system. 

Batch experiments with radiolabelled methyl parathion were performed 

at the Athens Environmental Research Laboratory. Eight flasks were in-

oculated with algal biomass obtained from sustained (control) microcosms 

which had never been exposed to the pesticide methyl parathion. In this 

experiment, entitled Flask Study 4, treatment number 2 involved a single 

dose of methyl parathion introduced into the water compartment of a 

flask containing a living algal mat and sediments. Measurements of the 

levels of methyl parathion and its degradation products (units: nCi/ml of 

14c) in the water were made with a variable sample period starting at a 

daily rate. The measured data values are given in Table VIII. A curve 

fit based upon nonlinear regression for the entire data set (experiment 

designation EXT) yielded equation (5.35) as obtained by EPA scientists 

using a standard on-line computer program. This data set provides an 

interesting practical test for Prony's method. 

Prony's method was applied to these same data points to obtain a 

fitting function of the form 
\t J\ t 

z(t) + Pze 
2 

ple (5.36) 

Sample periods of T= 1 ' 2, 3' and 4 days were used. Missing data in 

the data set were provided by interpolation as indicated in Table VIII. 

Prony's solution was formulated according to Algorithm 4.3, but without 

step 3. The results of the calculations are given in Table IX. 

Several things are of note from Table IX. The solutions for sample 

periods of T = 2 and T = 3 are more accurate than those from the other 

sample periods. From the simulation of Example 2 (equation 5.24), and 
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TABLE VIII 

EXT DATA SET 

Day Data Day Data Day Data 

0 0.000 8 0.129 16 0.091** 
1 0.064 9 0.123** 17 0.083 
2 0.107 10 0.118 18 0.080** 
3 0.138 11 0.124* 19 o. 077* 
4 0.146* 12 0.110** 20 0.072** 
5 0.148** 13 0.098 21 0.068* 
6 0.151 14 0.098** 22 0.069** 
7 0.139 15 0.099* 23 0.070 

*Interpolation by Equation (5.35). **Interpolation by Geometric Mean 

TABLE IX 

PRONY'S SOLUTION FOR EXT DATA SET 

Equation 
Item (5.35) T = 1 T = 2 T = 3 T = 4 

Al -0.062 -0.080 -0.067 -0.061 -0.047 
A.2 -0.402 -0. 311 -0.377 -0.468 -0. 716 

P1 0.252 0.317 0.258 0.234 0.190 
P2 -0.252 -0.312 -0.257 -0.233 -0.190 

M 24 12 8 6 
y 22 10 6 4 
ijJ 3 3 3 3 

dl 0.882 0.598 0.468 0.370 
d2 0.103 0.118 0.126 0.118 
d 0.014 0.010 0.011 0.0032 

;-3 * 0.13 E-2 0.91 E-3 0.71 E-3 0.58 E-3 ycrv 

*a = 0.000289 is assumed. v 
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the curves of Figure 7, one would expect the solution at T = 4 to be 

almost as good as the solution at T = 2. Such is not the case, but the 

reason may be attributed to the sparseness of the data. 

The d3 values of Table IX would indicate a noise value with standard 

deviation of about 0 = 0.003. This is computed from equation (4.72) 
v 

where sK+l,K+l = d3 and m = y. For example, for T = l~ 

(J 

v 

lycr 
v 

o.014;m"' 0.003. 

(5. 37) 

(5.38) 

The values in data set EXT were measured to 3 significant digits. This 

would indicate uniform noise of width w = 0.001, which corresponds to 

standard deviation of 0 = 0.000289. Comparison with (5.38) indicates 
v 

that a significant amount of noise is present in the data which cannot 

be attributed to rounding error of the measurement device. 

D. Summary 

Table X summarizes much of the information from the simulation of 

various data functions. The overall optimal sample interval for each 

of the functions examined is within the bounds predicted by inequalities 

(5.10) or (5.15), with o = 2 in (5.15). The data function associated 

with Figure 7(a) is an exception but even here the interval is very 

nearly within the bound. 

The upper edge (T:) of the overall sample interval is determined 

differently for two basic cases. The first case is illustrated by 

Figure 6(c), where the noise is of great enough strength to become the 

+ predominant effect on T 
0 

In this case, the upper bound for T provided 

by the sample theory (inequalities 5.10 or 5.15) will also be a rough 
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+ estimate for T • The second case is illustrated by the remaining figures, 
0 

+ where the value for T is essentially independent of the noise strength. 
0 

+ In these figures, T 0 seems to be determined primarily by AN' and the value 

f + . . b or T is given y 
0 

+ 
T "' 2. 2/ A . 

o N 
(5.40) 

Before any quantitative relationship of the nature of (5.40) is stated 

with any degree of certainty, a great deal more research is needed simu

lating many other functions. The dependence of T+ on the separation of 
0 

the Ai especially needs attention. 

The lower edge (T-) of the overall sample interval is likewise de
o 

termined by two similar cases. In the first case the noise is of great 

enough strength to have the predominant affect on T • This research did 
0 

not produce any examples of this nature. The second case is illustrated 

by all the examples in this chapter, where T is essentially independent 
0 

of the noise strength. In these examples, T seems to be determined pri
o 

marily by the interaction of the A., and is a function of the separation 
l 

of the A.. No reasonable quantitative relationship for determing T· was 
l 0 

found. 

Even if a relationship similar to (5.40) cannot be shown to be true in 

general, a given data function can be simulated on a computer, and its 

optimal sample interval can be observed. This of course assumes that there 

is prior knowledge of the data function. This knowledge is not typically 

available when one is attempting to estimate a data function or identify 

a system. Nevertheless, once a reasonable estimate is available, an 

optimal sample period may be determined. 

This procedure was essentially followed with the EXT data set. Data 
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function (5.24) was available as an estimate of the data set. This data 

function showed an optimal sample interval of 

1.4 .::_ T .::_s.o. 

When Prony 's method was applied to the EXT data set, T = 1 produced poor 

results, and T= 2.0 and 3.0 produced good results as expected. However, 

T = 4.0 produced bad results. Thus, this data set showed basic agreement 

with what was expected from the simulation, except at T = 4.0. 

TABLE X 

OPTIMAL SAMPLE PERIOD AND SAMPLE BOUNDS 
FOR VARIOUS DATA FUNCTIONS 

Data Figure Optimal T Optimal T Bounds from: 
Function for \. * overall * (5.10) (5. 15) 

l. 

i T; ,+ -r-
0 0 

r+ 
0 

r+ ,+ 

5.23 6(a) 5.0 s.o 0.050 9.8 

5 .23 6(b) ? 5.0 ? s.o 4.9 E-4 21.2 

5.23 6(c) 3.5 ? 3.5 0,55 4.0 

5.24 7(a) 1 1. 4 10.0 1.4 5.0 0.32 3.3 4.9 
2 0.8 5.0 

5.24 7(c) 1.2 10.0 1. 2 6.0 3.2 E-2 5.2 7.7 
2 0.8 6.0 

5.29 9(a) 1 2.5 16.0 2.5 12. 0 3. 2 E-2 10.4 15 .6 
2 1. 6 12. 0 

5.31 9(b) l 1.0 5.0 1. 0 5.0 9.9 E-3 5.2 7.7 
2 0.8 5.0 

5.33 10 1 2.5 8.0 2.5 5.0 3. 2 E-3 4.2 5.3 
2 1. 6 6. 5 
3 l. 4 5.5 

* Values are not interpolated. Only actual data points are used. 

** ~= w/2 



CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

Two questions have been addressed by this research. First, given 

the noisy sampled output of a system, can the number of exponential 

modes in the data be determined? Second, what is the optimal sample 

period for a given system? For both questions, Prony's method of fitting 

data to an exponential curve have been examined. 

Chapter IV answered the first question by demonstrating that the 

problem of determining the number of exponential modes in the data re

duces to that of determining the rank of matrix (4.2). Various matrix 

factorizations which can produce an estimate of the rank of a matrix 

were surveyed. The singular value factorization was found to give the 

best estimate of the rank. Numerical examples verified this and also 

showed that Prony's method produces a better estimate of the fitting 

function when the singular value factorization is used than when any of 

the other factorizations are used. 

Chapter V answered the second question by developing a sampling 

theory which gives an upper and lower bound on the sample period. Several 

numerical examples were simulated on the computer. For these examples, 

the optimal interval for the sample period was found to be consistent 

with the bounds specified by the sampling theory. In addition, where the 

noise is not the dominant effect on this optimal sample interval, the 

upper bound appears to be determined primarily by the fast exponential 
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mode, and the lower bound appears to be a function of the separation 

of the exponential modes. 

The conclusion from Chapter IV should be obvious. When a least 

squares approach to Prony's solution is desired, the singular value 

factorization should be used. If it is used, it provides information 

regarding the rank of the matrix, it provides information regarding the 

standard deviation of the noise in the data, and it provides the least 

squares estimate for the fitting function. 
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The conclusions from Chapter V cannot be stated so definitely. It 

is difficult to quantitatively predict the optimal sample interval other 

than by computer simulation of the data function. This requires some 

prior knowledge of the function being investigated. 

Several areas of further research could be explored. These are 

listed below. 

1. Example 2 of Section IV.F.2 demonstrated that the singular value 

factorization as incorporated in Algorithm 4.3 produces a better fitting 

function than does the QR factorization. The reason for this is unknown. 

It is also possible that this is true only for certain functions. These 

are areas of further research. 

2. It was stated that the shape of the standard deviation curves 

in Figure 6 could be due to the statistical nature of sampled data from 

an exponential function. The same comment could be made regarding the 

standard deviation curves in the figures following Figure 6. If this is 

in fact the case, it has important implications for all samping methods. 

To investigate this would require simulations similar to that done in 

this research, but using curve fitting techniques other than Prony's 

method. For example, non-linear regression analysis could be used. If 
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the results obtained are similar to those obtained in this research, then 

it could be concluded that the shape of the standard deviation curves is 

independent of the fitting method, and therefore due to the statistical 

nature of the sampled data. 

3. In this research the relative sizes of the p. were constant; 
l 

that is, pl = p 2 = ••• = pN. If instead pl> p2 > pN' then it is to be 

expected that the statistics of the solution would be dominated by the 

exponential mode associated with p1, and that the exponential mode associ

ated with pN would be more difficult to extract from the data. 

4. To develop a greater ability to predict the optimal sample period 

for a given data function requires a great deal more research. Numerous 

data functions would need to be simulated, and the results tested on 

actual data sets. 

5. Householder (1949) demonstrated that Prony's method is not a 

true least-squares fit to the data. He also suggested an iterative 

technique with Prony's method to obtain the true least-squares fit. The 

extent to which this technique improves Prony's method is an area for 

further research. The technique could also have an effect on the optimal 

sample period. 
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