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CHAPTER I 

INTRODUCTION 

Tne well known competition equations of Lotka-Volterra can be written 

as a set of differential equations, namely, 

1) dN1 = r N ( dt 1 1 

2) dN2 = r N ( dt 2 2 

where N1 and N2 are the population sizes of the two competing species 

with K1 and K2 their respective carrying capacities and r1 and r2 their 

instantaneous per capita rates of growth (biotic potentials). The 

two alphas are competition coefficients: a 12 is the per capita inhibitory 

influence of species 2 on species l and a 21 is the reciprocal effect of 

species l on species. 2. Wben thes.e equations are coupled, they describe 

the simultaneous. growth of two competing·speci.es. in a homogenous environ

ment over ecological time. 

Ecol ogi.s.ts: have util i.zed these competition equati.ons., and continue 

to do so, despite recognized drawbacks. Thes.e include linear approxi

mations of tile competition coefficients. (Gilpin and Justice 1973, Smith-

1 
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Gill and Gill 1978, Abrams 1980), the assumption that all individuals· 

are competitive equivalents., and that biotic potentials and carrying 

capacities are constant (Pinaka 1978). ·Lacking from these equations are 

such considerations as stochastic fluctuations (Rao 1979) and time lags 

(Wangersky and Cunningham 1957, Hassel and Comins 1976). Nonlinear 

alternatives are dis.cussed i.n Vandermeer (1973), Rosenzweig and MacArthur 

(1963] and Gilpin Q973}. Due to these deficiences, the equations are 

generally considered to be poor representatives of reality (Wilbur 1972), 

but they still model competition adequately for some species in nature 

(!stock 1977}. Even Gause (1934} concluded that in all probability no 

population ever grows exactly according to the Lotka-Volterra predictions 

but that the true equations. are likely to yield solutions very similar to 

those of Lotka-Volterra. 

Simple algebraic manipulations of the equations can define the con

ditions where the growth of either population is zero in the presence of 

its competitor for any given values of K1, K2, a12 , and a21 . Four pos

sible outcomes are realized depending upon the geometric configurations 

formed when the resulting isoclines are plotted (Gause and Witt 1934, 

Vandermeer 1970, Pianka 1978). 

The outcomes, or cases, may be described by a set of inequalities 

formed by the competiti.on coeffici.ents and carrying capacities (Reiners, 

et al. 1973, Pinka 1978}. These are: 

Kl K2 Kl ·K 
n and 2} a 12 

2 a 12 < K2 a 21 >--· >Kand a21 <-
Kl 2 Kl 

3} a 12 > ~ and K2 < Kl and K2 
a 21 >- 4} a a21 <-

K2 Kl 12 K2 Kl 
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Species 1 i.s. the s.o 1 e s.urvivor, or winner, in case 1 whereas species 2 · 

wins. i.n case 2. A s:tab.le two s..pecies. equflbri.um is. realized in case 4; 

but of greatest interest fs. case 3, because its outcome is not deter

mined by thes:e inequalities. alone. 

The superimpos.ed isoclines of species and species 2 have the same 

. general appearance in all competitions of case 3 (Fig. 1). For each 

species, population size will decrease for points above _its isocline 

and increase for points below its isocline. The point of isocline inter

section is regarded as an unstable equilbrium condition; arrows pointing 

toward it indicate the areas wnere both species will grow or decrease, 

arrows pointing away from the intersection denote regions in which only 

one species is able to grow. An arrow at either carrying capacity, K1 

or K2, fndicates a stable condHi.on where the competitor has become 

ext 'inct. 

Under case 3, each species inhibits the other's growth more than 

its own and the outcome of competition has been generally thought to 

depend solely upon the initial densities of species 1 and species 2 

(Vandermeer 1970, Pianka 1978). 

Park (1962) was able to correlate environmental conditions with 

success or failure in interspecific competition including a zone of 

indeterminate outcome where slight changes in initial numbers could alter 

the usual competitive outcome. In other experiments, Park (1957) found 

starting densities: to make little di.fference. However, in each of these 

papers it is unclear as:. to w:h.ich. case th.e competitions represent. Using 

initial numbers, Coste et al· (_1978) delinated the stability domai.ns of 

eacfi species: under case 3 and s.howed that r values can influence the 

outcome of competition. Strobeck (1973) has determined r values to be 



dN 2 =O 
dt . 

,/ 

Figure l. Generalized Graphical Appearance of 
Case 3 of the Lotka-Volterra com
petition equations. 
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important tn tbe coexis.tance of n> 2 s.pecies. only, but MacArthur (1969) 

did not consider them important even i.n this.. Gill (1972) s.uggested 

that competitive al:lil ity is. unrelated to either r or K, but later (Gill 

1974} showed graphtcally that r values. can alter the outcome of case 3 

competition. 

The oojective of thfs. s.tudy was to determine the effects of initial 

population sizes and biotic potentials on the outcome of case 3 of the 

Lotka-Volterra equatfons.. For more detailed. information on these and 

other related equations:, the reader is advised to turn to Wangersky 

(1978) and May (1976}. 



CHAPTER II 

MATERIALS AND METHODS 

The objectives of this study were met through the utilization of 

11 compet-l 11 , a computer program modeling the Lotka-Volterra competition 

equati.ons (Reiners et al.1973). 11 Compet-l 11 was altered to allow the 

winning population to reach its exact K while the numbers of its compet

itor fe 11 to zero and to output va 1 u.es for dN/Ndt and dN/ dt. Further 

tri.vial changes factl Hated input. 

The values for K1, K2, a 12 , and a 21 were chosen in such a manner as 

to satisfy the inequalitfes appropriate for case 3. Species isoclines 

were plotted and initial population sizes were chosen which represented 

appropriate areas of the p~ot. Tbe effects of different r values for 

populations at given starting densities were determined by holding the 

r of one species constant and altering the other. The data collected 

over 445 trials included tbe survivor (or winner) of the struggle, the 

amount of time required for the survivor to reach K (dubbed saturation 

ti:meJ, and the exact numerical path in N1 - N2 space taken by the popu

lations: as. tb.e winner reached i.ts K over time. 

6 



CHAPTER III 

RESULTS 

A difference in the r values of two competing species affects events 

leading to the outcome of competition often without changing the outcome 

itself. A difference in r values elicits some general effects, no matter 

what the initial dens.ities. The greater the disparity b~tween rl and rw 

(either rl <rw or rl> rW; r = rl of loser, r~! = r of winner) the longer 

the saturation time (Figs. 2 & 3}. More growth is obtained by the losing 

species before its eventual demise if rl is increased relative to rw 

(rL/rW increases} for either rl< rW (Fig. 4) or rl> rw (Fig. 5) providing 

competition is initiated below both isoclines. The disparity between 

rl and rw also affects the precision with which the two species follow 

the isocline of the winner in N1-N2 space. The precision increases as 

rw/rl increases for either rl< rW (Fig. 4) or rl> rw(Fig. 5). 

Initial population size also affects saturation time when r values 

are held constant. The greater the initial size of the eventual winner, 

the faster it reaches K (Fig. 2}. Conversely, the greater the initial 

numbers of the eventual loser, the more slowly the winner reaches K (Fig. 

3). 

The inters.ection of the two species' isoclines. in case 3 competition 

is generally regarded as: an uns:tahle equilibrium; the point that falls 

directly on this· intersection will remain s.table at that value of N1 and 

N2 (coexistence], but points that fall away from this intersection should 

7 
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move toward the K of either s.pecies ·as. the other goes. extinct. There 

is, however, a specialized condition wherein points off the intersec

tion are attracted to the intersection and, thus, coexistence. If init

ial densities fall directly on an extended line connecting the orgin 

and the isocline intersection (coexistence line), and r1 equals r2, 

the two species approach the intersection from either above or below 

(Fig. 6). Coexistence of the two species is realized. In various compu

ter runs within this specialized condition, one or the other species 

often won, but only after considerable "generations" (Tables I, II, 

Appendix B). Lack of coexistence in some cases is thought to be an 

artefact of the approximation technique of the computer model and the 

mathematical impossibility of obtaining an exact slope of the line from 

division of two endless decimals. In these cases, the initial densities 

could not be placed directly onto the coexistence lines, so true coexis

tence was not obtained. 

For initial densities near but not on the coexistence line, satur

ation time increases as the distance from the line decreases (Table III, 

Appendix B, Fig. 7}. This increase is most pronounced when initial 

numbers fall very close to the coexistence line and reaches infinity 

(coexistence} as the line is reached. 

Given r1 equal to r2, the outcome of competition for all initial 

densities is deterministic. Initial densities that fall below the coexis

tence line grow to K1, leaving species two extinct; initial densities that 

fall above the line grow to K2, leaving species one extinct (Figs. 8-11). 

When r values are unequal, the outcome of competition is still 

determini.sti.c, but i.s. no longer dependent on initial densities relative 

to the extended straight line connecting the origin and the isocline 
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intersecti.on (_coexistence 1 ine l. Instead, the boundary that predicts. 

the outcome is. an extended curve from the origi.n, through the isocline 

intersection and beyond in N1-N2 s.pace. The curve is concave for r2 > 

r 1 , convex for r; >r2 , and steeper for more disparate r values (Fig. 12). 

Initial densities that fall above this curved coexistence line grow 

until species 2 wins (Fig. 13, points A, B); initial densities that fall 

below this curved line grow until species 1 wins (Fig. 13, points C, D). 

Thts is true regardles.s wliere the initial points fall with respect to 

the original straight coexistence line (Fig. 13, Points B, C). In other 

words, at any perpendicular to the ori.ginal straight coexistence line, 

the further away initial numbers are from the line, the more different r 

values must become in order to distort the curved coexistence line enough 

such that these points then lay to the opposite sides of this curve and 

thus reverse the outcome of competition predicted from equal r values 

(Fig. 14). 

When r values are different, their effect on the competitive outcome 

is dependent upon where competition is initiated in relation to the 

isocline intersection. To reverse the outcome of competition predicted 

from equal r values, initial points below the intersection require a 

sufficient inequality as r1 >r2 (Fig. 15). Initial densities above the 

i.ntersection require a sufficient inequality as r 2 >r1 (Fig. 16). 
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CHAPTER IV 

"' 
DISCUSSION 

Some effects due to unequal r values of two competitors are intuitive. 

One would expect, i.f there i.s room for both species to increase initially, 

that the eventual lo~er would grow at a faster rate with increasing r 

values until its is.ocli.ne is reached. One would expect that the winning 

speci.es would reach its. K faster as its initial numbers are increased and 

that the greater the ini.tia l numbers of the loser, the more time it would 

take for the winner to reach its K. It is also reasonable that the event-

ual winner of a competition would require more time to reach its K with 

progressively lower r values .. It seems counter intuitive, however, to 

expect a longer competitive interaction as observed when rw became pro

gressively larger than rl. 

Perhaps the most interesting effects of unequal r values were those 

dealing with the coexistence line. Coste et al. (1978) correctly delin

eated the stability domains of a 2-species case ·3 competitive interaction 

but failed to elucidate the effects of unequal r values in shaping these 

areas. They correctly stated that it is possible for the competitive 

process to select a particular species (say species one) whose growth 

rate, r1, is smaller than that of its competitor. This is possible, 

however, only when a certain inequality is met, namely: 

25 
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But this inequality does not include initial numbers and therefore can

not account for their effect in determin1ng competitive outcomes. There 

are initial densities which always favor the species with the lower bio

tic potential regardless of the magnitude of the competitor's r. 

Another effect of unequal r values may be observed by invoking the 

concept of r-selection. When i.ndividuals are not in competition (density 

independence by definition} natural selection is thought to favor the 

genotype with the highest 1~althusian parameter, resulting in a larger r 

for the population as a whole. This is the process of r-selection which 

can be graphfca lly depicted by the 9-ddition of a third axis, the per 

capita logarithmic growth rate (dN/Ndt), to the already familiar plot 

of competitive isocli.nes in N1-N2 space. At the point of density inde

pendence the per capi.ta logarithmic growth rates are maximal and equal 

to r1 and r2. As populations grow each dN/Ndt decreases and reaches 

zero at each respective carrying capacity. Growth rates then become 

negative for densities beyond these points. 

Using this concept, the coexistence line is seen as the two dimen

sional projection of the line where dN1;N1dt = dN2;N2dt when r1 = r2 

(Hg. 17}. However, r-selection warps this straight line into a curve 

which i.s convex for r1 > r2 and concave for r2 > r1. 

Gi.11 (1974) showed determinancy of outcome in a case 3 interaction 

dependent on disparity of r values but failed to appreciate some of the 

complexities of the relationship. In the case of r1 > r2, Gill maintained 

that species two must attain at least N2>K1;a12 because at any density 

lower than thi:s the vector field favors species 1. This statement is 

clearly fallacious as species 2 may initiate competition at densities 

far less than this and still emerge victorious (Fig. 18). Conversely, 
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species 1 is not doomed to extinction if introduced at densities greater 

than those separated by the line where dN1/N1dt = dN2/N2dt (Fig. 19). 

A species may reach such high densities during periods of mass movement 

instigated by migration or ecological disaster, as in a fire. 

One applied area where this work is of potential use is in bio

logical control. It is generally agreed upon that the larger the number 

of beneficial species in a complex, the greater the chances that the 

complex will regulate a host population. For this reason, researchers 

in biological control may strive for the establishment of exotic bene

ficials but at the same time do not want their potential competitors 

(the indigenous beneficials} to become extinct. If the inequalities 

formed by the exotic and indigenous species match those of case 3, com

petitive exclusion of one of the species may not necessarily be the end 

result. These findings suggest that there are initial population num

bers that may result i.n coexistence or very long saturation times which 

would make extinction in a short time very unlikely. Workers should 

introduce the appropriate number of exotics that will result in a point 

on or near the line of coexistence, or the isocline intersection. 

Another benefit may be visualized utilizing the process of competit

ive exclusion. Certain desirable species may be useful as competito~s 

of an undesirable species. Numbers should be introduced resulting in a 

point that lies to the proper side of the curved coexistence line. For 

example, if there exists a pest of a desirable species which is detri

mental due to a certain physiological factor (ie. a toxin) an ecological 

equivalent may be found that does not exhibit this trait. The harmless 

competitor could then be introduced in the appropriate numbers and the 

extincti.on of the harmful species would be the predicated outcome of the 

struggle. 
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Figure 19. Vector Fields When Unequal Growth Rates (r > r ) 

are Pl?tted as a Function of N and N . IA 2 

Compet!tive Interaction is Sho/m in Wfiich Species 

l Surv1 •es Despite In i ti a 1 Numbers Greater Than 

Those Separated by dN IN dt"dN IN dt 
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10 REM FOR FURTHER INFORMATION ABOUT THIS PROGRAM CONTACT 

20 REM CONDUIT P. 0. BOX 388, IOWA CITY, IOWA 52240 (319) 353-3170 

30 REM REGISTRY NUMBER: Bl0083 

40 REM LAST REVISION 7/26/77 BY NEIL S. FERGUSON FOR CONDUIT 

50 REM THIS PROGRAM IS DISTRIBUTED WITH THE SUPPORT OF THE NATIONAL 

60 REM SCIENCE ROUNDATION GRANT NO. SED75-06596. ANY OPINION, FINDINGS, 

70 REM CONCLUSIONS, OR RECOMMENDATIONS EXPRESSED OR IMPLIED ARE THOSE 

80 REM OF THE AUTHORS AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE 

90 REM NATIONAL SCIENCE FOUNDATION. 

100 REM 11 COMPET-l 11 -- (BASIC PROGRAM BEGINS AT LINE 360) 

110 REM 

120 REM VERSION 1: WRITTEN BY WILLIAM E. GLANZ 1 70, ANO WILLIAM A. 

130 REM REINERS. DEPT. OF BIOLOGY. DARTMOUTH COLLEGE. WRITTEN IN 

140 REM BASIC ON THE DARTMOUTH TIME-SHARING SYSTEM. 

150 REM 

160 REM COPYRIGHT 1974 BY THE TRUSTEES OF DARTMOUTH COLLEGE 

170 REM 

180 REM DESCRIPTION: 

190 REM 

200 REM THIS PROGRAM IS AN INTERSPECI FIC COMPETITION MODEL BASED 

210 REM ON THE CLASSICAL LOTKA-VOL TERRA EQUATION. IT CALCULATES THE 

220 REM POPULATION SIZE OF TWO COMPETING SPECIES IN SUCCESSIVE TIME 

230 REM STEPS USING DATA FROM WITHIN THE PROGRAM. THE CALCULATIONS 

240 SEM ARE DONE USING INCREMENTAL ADDITION. 

250 REM 

260 REM 

270 REM 
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280 REM THIS PROGRAM IS TAKEN FROM THE TEXT ECOLOGICAL MODELING BY 

290 REM WILLIAM E. GLANZ AND WILLIAM A. REINERS. 

300 REM 

310 REM 

320 REM 

330 REM * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
340 REM READ DATA FOR POPULATION ONE! INITIAL POPULATION SIZE, GROWTH 

350 REM RATE, ENVIRONMENTAL CAPACITY, AND FRACTION OVERLAP BY POP. #2. 

360 DIM Z$(3} 

370 PRINT II VALUES FOR POPULATION ONE" 

380 PRINT 

390 PRINT "ENTER INITIAL POPULATION SIZE 11 

400 INPUT Nl 

410 PRINT "ENTER GROWTH RATE 11 

420 INPUT Rl 

430 PRINT "ENTER ENVIRONMENTAL CAPACITY" 

440 INPUT Kl 

· 450 PRING 11 ENTER FRACTION OF OVERLAP BY POPULATION #2 11 

460 INPUT Jl 

470 PRINT 

480 PRINT II 

490 PRINT 

500 PRINT 11 ENTER INITIAL POPULATION SIZE 11 

510 INPUT N2 

520 PRINT 11 ENTER GROWTH RATE" 

530 INPUT R2 

540 PRINT "ENTER ENVIRONMENTAL CAPACITY" 



550 INPUT K2 

560 PRINT "ENTER FRACTION OF OVERLAP BY POPULATION #l 11 

570 INPUT J2 

580 REM READ NUMBER OF TIME PERIODS TO SIMULATE AND CALCULATION 

590 PRINT INVERAL 

620 PRINT 11 INTERVAL OF COMPUTATION IS O. l 11 

630 LET I=O. l 

640 PRINT 

650 PRINT 11 TIME 11 , 11 POP, #1 11 , 11 POP, # 211 

660 PRINT 

661 LET E=l 

670 FOR T,,. l TO 2000 

672 LET Pl=O 

674 LET P2=0 

676 LET Dl=O 

678 LET D2=0 

680 REM I IS COMPUTATION INTERVAL, SO l/I IS NUMBER OF INTERVALS 

69b FOR A=l TO INT (l/I+.5} 

700 LET Gl•I*Rl*Nl*(Kl-Nl-Jl*N2)/Kl 

710 LET G2=I*R2*N2*(K2-N2-J2*Nl)/K2 

712 LET Pl=Gl/Nl+Pl 

714 LET P2=J2/N2+P2 

720 LET Nl=Nl+Gl 

730 LET N2-N2+G2 

732 LET 01::01 +Gl 

734 LET D2=D2+G2 

740 NEXT A 
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750 REM INTEGER VALUES FOR POPULATION SIZES 

760 LET Ql=INT (Nl+.5) 

770 LET Q2=INT (N2+.5) 

780 PRINT T, Ql, Q2, Pl, P2, Dl, 02 

781 IF Ql=O, OR, Q1=Kl GOTO 783 

782 GOTO 784 

. 783 IF Q2=0, OR, Q2=K2 GOTO 791 

784 LET E=E+1 

785 NEXT T 

786 PRINT 

791 PRINT "EXTINCTION TIME WAS", E 

792 PRINT 

793 PRINT 

-

800 PRINT 11 00 YOU WISH TO RERUN THIS PROGRAM" (YES/NO)" 

810 INPUT Z$ 

820 IF Z$= 11 YES 11 THEN 370 

830 IF Z$=11 N0 11 THEN 860 

840 PRINT "PLEASE ENTER A YES OR A N0 11 

850 GOTO 800 

860 END 
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For: 

rl 

1 

l 

l 

l 

1 

1 

l 

l 

0.01 

0. l 

0.6 

0.99 

TABLE I 

THE EFFECT OF VARIOUS. r VALUES ON THE OUTCOME 
OF INTERSPECIFIC COMPETITION WHEN INITIAL 

SPECIES NUMBERS FALL ON THE COEXISTENCE 
LINE ABOVE, BELOW, AND AT THE POINT 

OF ISOCLINE INTERSECTION 

Kl = K2 = l 00 a 12 = a21 = l.5 

(below) (inters.ection} 
N = 20 N = 40 l N l = 40 N2 = 20 2 

r2 sat. sat. 
time winner time w:inner 

0. 01 966 Nl > 2 ,000 tie 

0. l 106 Nl > 2 ,000 tie 

0.2 60 Nl > 2,000 tie 

0.4 32 Nl > 2,000 tie 

0.5 30 Nl > 2,000 tie 

0.6 30 Nl > 2,000 tie 

0.9 31 Nl > 2,000 tie 

0.99 41 Nl > 2,000 tie 

0.999 64 Nl > 2,000 tie 

39 

(above) 
N1 = 60 
N = 60 2 

s.at. 
time winner 

517 N2 

65 N2 

40 N2 

29 N2 

28 N2 

28 N2 

32 N2 

42 N2 

66 N2 

l > 2,000 tie > 2,000 tie > 2,000 tie 

966 N2 > 2,000 tie 517 Nl 

106 N2 > 2,000 tie 65 Nl 

l 30 N2 > 2,000 tie 28 Nl 

41 N 2 ,> 2,000 ti.e 42 Nl 
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TABLE I {Continued} 

. FOR K1 = 120, K2 = TOO, al2 = 2.0, a21 = 1.25 

Nl = 32 Nl = 53.TI Nl = 76 

N = 20 2 N2 .= 33.333334 N2 = 47.5 

rl 
sat. sat. sat. 

r2 ti.me wi.nner time winner time winner 

2 0.25 48 Nl > 2 ,000 tie 30 N2 

0.25 2 37 N2 > 2 ,000 tie 27 Nl 

0.25 0.25 253 Nl > 2 ,000 tie 257 Nl 

FOR Kl = K = 2 100 al2 = 1.1 a21 = 1.5 

Nl = 8 Nl = 15.384615 Nl = 20 

N2 = 40.000004 N2 = 76.923083 N2 = 100. 00001 

rl r2 

0.25 0.25 615 Nl > 2 ,000 tie > 2,000 tie 

0.25 61 N 1 > 2 ,000 tie 63 N2 

0~25 179 N2 > 2 ,000 tie 97 Nl 

FOR K1 = 25, K2 = 125, a 12 = 0.2136752 Cl 21 = 8.33 

N = 1 1 N1 = 2.1897785 Nl = 3 

N2 = 48.750068 N2 = 106.75185 N2 = 146.2502 

rl r2 

0.25 0.25 850 N2 > 2 ,000 tie 201 Nl 

0.25 50 Nl > 2 ,000 tie 41 N2 

0.25 230 N2 > 2 ,000 tie 30 Nl 
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TABLE I (Continued) 

FOR: Kl = K2 = 100, a.ii'.'.= 2.5, a. ,_'l = 1.5 

N1 = 36. 000001 N1 = 54.545455 N1 = 72.000002 

N2 = 12 N2 = 18.181818 N2 = 24 

rl r2 

0.25 0.25 202 Nl > 2 ,000 tie 201 Nl 

0.25 51 Nl > 2 ,000 tie 41 tJ2 

0.25 1 26 N2 > 2 ,000 tie 30 N 1 
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TABLE II 

THE EFFECT OF VARIOUS STARTING DENSITIES ON 
THE OUTCOME OF INTERSPECIFIC COMPETITION 

··---

Kl = K2 = l 00, a12=l.l, = l. 5' r1 = r2 = 0.25 a 21 

Nl N2 Wi.nner Saturation Time 

16 60 Nl 139 

12 64 N2 311 

12 81 N2 226 

16 96 N2 253 

22 92 Nl 16 l 

36 64 Nl 80 

10 32 Nl 121 

7 40 N2 274 

4 20.000002 N l 600 

15.384615 76.923083 tie > 2 ,000 

20 100. 00001 tie > 2' 000 

Kl = K2 = 100, a 21 
::: 1.5, a 12 = 2.5, rl = r2 = 0.25 

52 8 Nl 50 

12 2 Nl 60 

4 4 N2 44 

48 24 N2 49 

54 24 N2 53 

64 26 N2 58 
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TABLE II (Continued) 

64 18 Nl 56 

64 12 Nl 56 

36.000001 12 N 1 207 

54.545455 18.181818 tie >2,000 

70.000002 24 Nl 201 

Kl = 25, K2 = 125, a 12 = 0.2136752, a 21 = 8.33, rl = r2 = 0.25 

2 105 N2 399 

5 94 N1 81 

115 N2 210 

4 97.5 Nl 98 

5 110 Nl 90 

5 2 Nl 25 

3 30 Nl 62 

1 64 N2 307 

75 N2 271 

3 92 Nl 121 

1 48.750068 .N2 850 

2.1897785 106.75185 tie > 2 ,000 

3 146.2502 N2 850 
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TABLE II (Continued} 

Kl = K2 = 100, a. 12 = a. 21 = 1. 5' rl - r -- 2 - 1.0 

40 20 Nl 16 

60 20 Nl 13 

20 40 N2 16 

60 40 Nl 18 

20 60 N2 13 

40 60 N2 18 

20 20 tie > 2,000 

40 40 tie > 2,000 

60 60 ti.e > 2 ,000 

K1 = 120, K2 = · 100, a 12 = 2.0, a. 21 = 1.25, rl = r2 = 0. 25 

44 40 N2 65 

56 40 N2 83 

44 36 N2 71 

48 32 N2 96 

40 28 N2 87 

32 24 N2 79 

24 20 N2 72 

64 32 Nl 81 

60 28 Nl 76 

72 20 Nl 57 

52 28 Nl 89 
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TABLE II (Continued 

44 24 Nl 91 

36 20 Nl 95 

28 16 Nl 101 

53.33 33.333334 ti.e > 2,000 

32 2Q Nl 253 

76 47.5 Nl 257 

36 48 N2 52 



Kl = 120, 

Nl 

76 

77 

79 

81 

85 

93 

75 

74 

72 

69 

61 

32 

33 

35 

37 

40 

31 

30 

27 

21 

TABLE I II 

INFLUENCE OF DISTANCE FROM THE COEXISTENCE 
LINE ON THE SATURATION TIME OF A 

COMPETITIVE INTERACTION 

K2 = 100, a 12 = 2.0, a 21 = 1.25, r1 = r2 = 0.25 

N2 Winner Sat. Time 

47.5 Nl 257 

45.9 Nl 108 

42.7 Nl 88 

39.5 Nl 78 

33. 1 Nl 66 

20.3 N l 52 

49. l N2 101 

50.7 N2 88 

53.9 N2 76 

58.7 N2 66 

71.5 N2 53 

20 Nl 253 

18.4 Nl 96 

15. 2 Nl 75 

12 Nl 64 

7.2 Nl 52 

21.6 N2 89 

23.2 N2 77 

28 N2 61 

37.6 N2 50 

46 

Distance 

0.000 

1.887 

5 .660. 

9.434 

16.98 

32.076 

1. 887 

3.774 

7.547 

13.208 

28.302 

0.000 

l. 887 

5.66 

9.434 

15.094 

1. 887 

3. 774 

9.434 

20.755 
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TABLE III (Continued) 

Nl N2 Winner Sat. Time Distance 

53.333 33.333334 tfe 2,000 0.000 

53.3335 33.33307 Nl 220 0.0003124 

53.335 33.33067 Nl 216 0.0031426 

53.336 33. 3291 Nl 209 0.005004 

53.338 33.3259 Nl 200 0.0087775 

53.34 33.32267 Nl 193 0.0125766 

53.4 33.22667 Nl 152 0.1257843 

53.5 33.06667 Nl 136 0.314464 

53.6 32.90667 Nl 127 0.5031436 

53.7 32.74667 Nl 121 0.6918232 

53.8 32.58667 Nl 117 0.8805028 

54 32.26667 Nl 110 l . 2578621 

54.5 31.46667 Nl 100 2.2012618 

55 30.66667 Nl 94 3. 1446583 

57 27.46667 Nl 79 6.9182507 

61 21.06667 Nl 64 14.465436 

68 9.86667 N1 47 27.673 

53 33.86667 N2 115 0.6289342 

51 37.06667 N2 81 4.4025 

49 40.26667 N2 70 8.1761 

44 48.26667 N2 57 17.6101 

37 59.46667 N2 47 30.8177 

76.01 47.484 Nl 191 0.018868 
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TABLE III (Continued} 

-·------

Nl N2 Winner Sat. Time Distance 

76.05 47.42 Nl 162 0.0943398 

76.09 47.356 Nl 152 0. 1698 

76. 14 47.276 Nl 144 0.2642 

76.2 47. 18 Nl 137 0. 377 4 

76.27 47. 068 N l 132 0.5094 

76.32 46.988 Nl 129 0.6038 

76.45 46.78 Nl 123 0.8491 

76.55 46.62 Nl 119 l. 0377 

76.65 46.46 Nl 116 1.2264 



Kl = K = 100 2 

r, r2 

1 0. 1 

1 0.4 

0.6 

1 o. i 

1 0.4 

0.6 

1 0. 1 

0.4 

0. 1 

1 0.4 

1 0.6 

0. 1 

0.4 

1 0.6 

0. 1 

0.4 

1 0.6 

0. 1 1 

0.4 1 

TABLE IV 

THE EFFECT OF VARIOUS r VALUES AND 
INITIAL DENSITIES ON THE OUTCOME 

OF INTERSPECIFIC COMPETITION 

ct 12 = (l21 = 1.5 

Nl N2 ·Winner 

40 20 Nl 

40 20 Nl 

40 20 Nl 

60 20 Nl 

60 20 Nl 

60 20 Nl 

20 40 N2 

20 40 N2 

60 40 Nl 

60 40 Nl 

60 40 Nl 

20 60 N2 

20 60 N2 

20 60 N2 

40 60 N2 

4Q 60 N2 

40 60 N2 

4Q 2Q Nl 

40 20 Nl 

'l-9 

Sat. Time 

99 

30 

22 

99 

28 

20 

97 

27 

167 

41 

28 

57 

20 

16 

62 

24 

21 

96 

27 
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TABLE IV (Continued) 

r1 r2 Nl N2 Winner Sat. Time 

0. 1 1 2Q 60 N2 99 

0.4 20 60 N2 28 

0 .1 1 40 60 N2 167 

0.6 40 60 N2 18 

0.1 21 20 N2 109 

0. l 21 20 Nl 106 

Kl :: 120' K2 = 100, a 12 = 2.0, a 21 = 1.25 

0. 1 24 24 Nl 135 

0. 1 l 24 24 N2 78 

1 a., 40 8 Nl 80 

0. l l 40 8 N2 123 

Kl :: 25, K = 2 125, a 12 = 0.2136752, a 21 = 8.33 

0. 1 3 30 NT 74 

0. 1 1 3 30 Nl 176 

0. 1 1 80 Nl 130 

a. 1 1 1 80 N2 510 



51 

TABLE IV (Continued) 

Kl = K2 = 100, a 12 =2.5, a 21 = 1.5 

1 0. 1 44 12 Nl 111 

0. 1 1 44 12 N2 59 

o. 1 44 20 N2 99 

0. 1 1 44 20 N2 53 

Kl = K2 = 100, a ·21 = 1 . 5' a 12 =1.l 

1 a. 1 10 32 Nl 109 

0. 1 1 i o . 32 N2 482 

0. 1 12 64 Nl 164 

. 0. 1 1 12 64 N2 526 



For: K1 

Nl 

1 

l 

3 

6 

4 

6 

5 

-8 

9 

10 

12 

14 

16 

18 

20 

22 

24 

36 

36 

46 

TABLE V 

THE EFFECT OF UNEQUAL r VALUES ON 
THE COEXISTENCE LINE IN N1-N2 

SPACE 

= 120, K2 = 100, a 12 = 2, a 21 = 1 . 25, r1 = 1.0, r2 = 0.25 

N2 Winner Nl N2 Winner 

5 Nl 68 38 N2 

12 N2 78 36 Nl 

12 Nl 78 40 N2 

12 N 86 36 Nl 2 
16 

N2 86 38 Nl 
16 

Nl 86 39 N2 
20 

N2 92 38 Nl 
20 N2 92 40 N2 

20 N2 98 40 Nl 

20 Nl 98 42 N2 

23 N2 106 40 Nl 

23 Nl 106 42 N2 

23 Nl 114 42 Nl 

25 N2 114 44 N2 

25 N2 12Q 42 Nl 

25 Nl 120 44 N2 

26 Nl 46 34 N2 

28 Nl 54 31 Nl 

32 N2 54 36 N2 

31 Nl 68 35 Nl 

52 
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TABLE V (Continued) 

Nl N2 Winner Nl N2 Winner 

rl = 0.5, r 2 = 0.25 

2 4 Nl 32 26 N2 

2 6 N2 44 28 Nl 

4 8 Nl 44 30 N2 

8 10 N1 62 36 Nl 

8 12 N2 70 38 Nl 

12 14 Nl 70 40 N2 

12 16 N2 86 42 Nl 

16 16 Nl 86 44 N2 

16 18 N2 140 56 Nl 

22 20 Nl 140 58 N2 

22 22 N2 140 62 N2 

32 24 Nl 

r1 = 0.25, r2 = 1.0 

16 1 N2 48 22 Nl 

20 1 N2 48 24 N2 

24 l Nl 56 38 Nl 

18 .5 Nl 5o' 40 N2 

24 3 N2 59 44 Nl 

28 4 Nl 59 46 N2 
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TABLE V (Continued) 

Nl N2 Winner Nl N2 Winner 

28 6 N2 62 50 Nl 

36 8 Nl 62 54 N2 

36 10 N2 66 64 Nl 

42 14 Nl 66 66 N2 

42 15 N2 

70 76 Nl 

70 78 N2 

73 86 Nl 

73 88 N2 

76 98 Nl 

76 100 N2 



For: 

Nl 

77 

77 

77 

77 

77' 

77 

77 

79 

79 

79 

79 

79 

79 

79 

81 

81 

81 

81 

81 

81 

TABLE VI 

THE EFFECTS OF BIOTIC POTENTIAL AND DISTANCE 
FROM THE COEXISTENCE LINE ON THE OUTCOME 

OF INTERSPECIFIC COMPETITION 

Kl = 120, K = 2 100, a 21 = 1 . 25' a 12 ·= 2. 0 

N2 rl r2 Winner Sat.Time 

45.9 0.25 0.25 Nl l 08 

45.9 0.3 0.25 N2 136 

45.9 0.4 0.25 N2 72 

45.9 0.5 0.25 N2 58 

45.9 0.65 0.25 N2 48 

45.9 1.0 0.25 N2 39 

45.9 2.0 0.25 N2 31 

42.7 0.25 0.25 Nl 88 

42.7 0.3 0.25 Nl 90 

42.7 0.4 0.25 Nl 104 

42.7 0.5 0.25 N2 79 

42.7 0.65 0.25 N2 58 

42.7 l.O 0.25 N2 44 

42.7 2.0 0.25 N2 34 

39.5 0.25 0.25 Nl 78 

39.5 0.4 0.25 Nl 79 

39.5 0.5 0.25 Nl 82 

39.5 Q.65 0.25 Nl 92 

39.5 1.0 0.25 N2 57 

39.5 2.0 0.25 N2 40 

55 

Distance 

1. 887 

1. 887 

l. 887 

1. 887 

1. 887 

1. 887 

1. 887 

5.66 

5.66 

5.66 

5.66 

5.66 

5.66 

5.66 

9.434 

9.434 

9.434 

9.434 

9.434 

9.434 



56 

TABLE VI (Continued) 

Nl N2 rl r2 Winner Sat. Time Distance 

85 33. 1 0.25 0.25 Nl 66 16.98 

85 33. 1 Q.3 Q.25 Nl 65 16. 98 

85 33. 1 0.4 0.25 Nl 63 . 16.98 

85 33. 1 0.5 0.25 Nl 63 16.98 

85 33.1 0.65 Q.25 Nl 62 16.98 

85 33. 1 1.0 0.25 Nl 62 16.98 

85 33. 1 2.0 0.25 Nl 64 16.98 

75 49. l 0.25 0.25 N2 101 1. 887 

75 49. 1 0.25 0.3 Nl 128 1. 887 

75 49. 1 0.25 0.4 Nl 72 1.887 

75 49 .1 0.25 0.5 Nl 57 1. 887 

75 49. 1 0.25 0.65 Nl 46 1. 887 

75 49. 1 0.25 1.0 Nl 36 1.887 

75 49. 1 0.25 2.0 Nl 28 l.887 

74 50.7 0.25 0.25 N2 88 3. 774 

74 50.7 0.25 0.3 N2 97 3.774 

74 50.7 0.25 0.4 Nl 81 3. 774 

74 50.7 0.25 0.5 Nl 61 3. 774 

74 50.7 0.25 0.65 Nl 48 3. 774 

74 50.7 0.25 1.0 Nl 37 3. 774 

74 50.7 0.25 2.0 Nl 28 3. 774 
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TABLE VI (Continued) 

Nl N2 rl r2 Winner Sat.Time Distance 

72 53.9 0.25 0.25 N2 76 7.547 

72 53.9 0.25 0.3 N2 77 7.547 

72 53.9 0.25 0.4 N2 88 7.547 

72 53.9 0.25 0.5 Nl 77 7.547 

72 53.9 0.25 0.65 Nl 55 7.547 

72 53.9 0.25 1.0 Nl 40 7.547 

72 53.9 0.25 2.0 Nl 30 7.547 

69 58.7 0.25 0.25 N2 66 13.208 

69 58.7 0.25 0.3 N2 66 13. 208 

69 58.7 0.25 0.4 N2 66 13.208 

69 58.7 0.25 0.5 N2 70 13.208 

69 58.7 0.25 0.65 N2 96 13. 208 

69 58.7 0.25 1.0 Nl 46 13.208 

. 69 58.7 0.25 2.0 Nl 32 13.208 

61 71. 5 0.25 0.25 N2 53 28.302 

61 71. 5 0.25 0.3 N2 52 28.302 

61 71. 5 0 ... 25 0.4 N2 51 28.302 

61 . 71.5 0.25 0.5 N2 51 28.302 

61 71.5 0.25 Q.65 N2 51 28.302 

61 71. 5 0.25 1.0 N2 53 28.302 

61 71. 5 0.25 2.0 N,.. 99 28.302 
L 
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TABLE VI (Continued} 

Nl N2 rl r2 Winner Sat. Time Distance 

33 18. 4 0.25 0.25 Nl 96 1.887 

33 18. 4 o. 25 0.3 Nl 106 1. 887 

33 18.4 0.25 0.4 N2 77 1. 887 

33 18.4 0.25 0.65 N2 53 1. 887 

33 18.4 0.25 1.0 N2 45 1.887 

33 18.4 0.25 2.0 N2 38 1 .887 

35 15. 2 0.25 0.25 Nl 75 5.66 

35 15. 2 0.25 0.3 Nl 71 5.66 

35 15. 2 0.25 0.4 Nl 70 5.66 

35 15. 2 0.25 0.5 Nl 84 5.66 

35 15. 2 0.25 0.65 N2 67 5.66 

35 15. 2 0.25 l.O N2 50 5.66 

35 15.2 0.25 2.0 N2 41 5.66 

37 12 0.25 0.25 Nl 64 9.434 

37 12 0.25 0.3 Nl 59 9.434 

37 12 0.25 0.4 Nl 54 9.434 

37 12 0.25 0.5 N 1 53 9.434 

37 12 0.25 0.65 Nl 55 9.434 

37 12 0.25 LO. N2 63 9.434 

37 12 0.25 2.0 N2 44 9.434 

40 7.2 0.25 0.25 Nl 52 15. 094 

40 7.2 0.25 0.3 Nl 48 15.094 

40 7.2 0.25 0.4 Nl 43 15.094 
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TABLE VI (Continued) . 

Nl N2 rl r2 Winner Sat.Ti.me Distance 

40 7.2 0.25 0.5 Nl 40 15.094 

40 7.2 0.25 0.65 Nl 39 15. 094 

40 7.2 Q.25 1.0 Nl 39 15.094 

40 7.2 0.25 2.0 N2 62 15.094 

31 21.6 0.25 0.25 N2 89 1. 887 

31 21.6 0.3 0.25 N2 100 1. 887 

31 21.6 0.4 0.25 Nl 89 1.887 

31 21.6 0.5 0.25 Nl 7~ 1. 887 

31 21.6 0.65 0.25 Nl 65 1 .887 

31 21.6 1.0 0.25 Nl 57 1.887 

31 21.6 2.0 0.25 Nl 50 1. 887 

30 23.2 0.25 0.25 N2 77 3. 774 

30 23.2 0.3 0.25 N2 76 3.774 

30 23.2 0.4 0.25 N2 89 3. 774 

30 23.2 Q.5 0.25 Nl 91 3. 774 

30 23.2 0.65 0.25 Nl 73 3. 774 

30 23.2 LO 0.25 ~1 61 3.774 

30 23.2 2.0 0.25 Nl 53 3. 774 

27 28 0..25 0.25 N2 61 9.434 

27 28 0.3 0.25 N2 57 9.434 

27 28 0.4 0.25 N2 53 9.434 

27 28 0.5 0.25 N2 52 9.434 

27 28 0.65 0.25 N2 52 9.434 
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TABLE VI (Conti.nued} 

Nl N2 rl r2 Winner Sat. Ti.me Distance 

27 28 l.Q 0.25 N2 59 9.434 

27 28 2.0 0.25 Nl 68. 9.434 

21 37.6 0.25 0 . .25 N2 48 20.755 

21 37.6 0.3 0.25 N2 44 20.755 

21 37.6 0.4 0.25 N2 39 20.755 

21 37.6 0.5 0.25 N2 36 20.755 

21 37.6 0.65 0.25 N2 34 20.755 

21 37.6 1.0 0.25 N2 32 20.755 

21 37.6 2.0 0.25 N2 31 20.755 
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