EFFECTS OF INITIAL NUMBERS AND INTRINSIC
 RATES OF INCREASE ON THE OUTCOME OF INTERSPECIFIC COMPETITION AS

 PREDICTED BY THE LOTKAVOLTERRA COMPETITIONEQUATIONS

By
KEITH WILLIAM DORSCHNER
Bachelor of Science
Virginia Polytechnical Institute and State University Blacksburg, Virginia
1978

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
May, 1982

Thesis 1982 D717e cop. 2

EFFECTS OF INITIAL NUMBERS AND INTRINSIC
RATES OF INCREASE ON THE OUTCOME OF
INTERSPECIFIC COMPETITION AS
PREDICTED BY THE LOTKAVOLTERRA COMPETITION

EQUATIONS

ACKNOWLEDGMENTS

I would like to thank all those who have had a hand in the completion of this work. Commíttee member Dr. George L. Barnes has provided much encouragement and advice these past two years as has my major adviser, Dr. Raymond D. Eikenbary. Dr. Eikenbary has my deepest sympathy as he has merely begun the monumental task of molding me into a scientist. Dr. Ronald McNew was invaluable for his elucidation of some of the more complicated mathematics I encountered while reviewing the literature.

I would also like to express my gratitute to Dr. Stanley Fox for his essential contríbutions and rewrites. Without his help this project would have never been initiated, let alone completed.

In genuine altruistic spirit, fellow graduate student Kent Shelby offered both sound recomendations and wild speculations. His help will not go unrewarded!

Of course, my acknowledgements would not be complete without thanking my parents whose monetary and moral support are largely responsible for any success I have attained in my college career.

Finally, I would like to thank Victoria for her support and tolerance throughout this ordeal.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. MATERIALS AND METHOUS 6
III. RESULTS 7
IV. DISCUSSION 25
LITERATURE CITED 31
APPENDIXES 33
APPENDIX A - EDITED VERSION OF COMPET-1 33
APPENDIX B - TABLES 38

LIST OF TABLES

Table Page
I. The Effect of Various r Values on the Outcome of Inter- specific Competition When Initial Species Numbers Fall on the Coexistence Line Above, Below, and at the Point of Isocline Intersection 39
II. The Effect of Various Starting Densities on the Outcome of Interspecific Competition 42
III. Influence of Distance From the Coexistence Line on the Saturation Time of a Competitive Interaction 46
IV. The Effect of Various r Values and Initial Densities on the Outcome of Interspecific Competition 49
V. The Effect of Unequal r Values on the Coexistence Line in $N_{1}-N_{2}$ Space 52
VI. The Effects of Biotic Potential and Distance from theCoexistence Line on the Outcome of InterspecificCompetition55
Figure Page

1. Generalized Graphical Appearance of Case 3 of the Lotka- Volterra Competition Equations 4
2. Saturation Time VS r_{2} for Different Initial Numbers When $r_{L}<r_{W}$ 8
3. Saturation Time VS r_{2} for Different Initial Numbers When $r_{L}>r_{W}$ 9
4. Paths in $N_{1}-N_{2}$ Space for Two Competing Species With Three Values of r_{2} Where $r_{L}<r_{w}$ 10
5. Paths in $\mathrm{N}_{2}-\mathrm{N}_{2}$ Space for Two Competing Species With Four Values of r_{2} where $r_{L} \geq r_{W}$ 11
6. Convergence on the Isocline Intersection When Initial Numbers Fall on the Coexistence Line and $r_{1}=r_{2}$ 13
7. The Effect of Distance From the Coexistence Line on the Saturation Time of a Competitive Interaction When $r_{1}=r_{2}$. 14
8. The Effect of Various Starting Densities on the Outcome of Interspecific Competition When $r_{1}=r_{2}$ 15
9. The Effect of Various Starting Densities on the Outcome of Interspecific Competition When $r_{1}=r_{2}$ 16
10. The Effect of Various Starting Densities on the Outcome of Interspecific Competition When $r_{1}=r_{2}$ 17
11. The Effect of V arious Starting Densities on the Outcome of Interspecific Competition When $r_{1}=r_{2}$ 18
12. Effect of Diverging r Values on the Coexistence Line in N_{1} N_{2} Space 20
13. Paths in $N_{7}-N_{2}$ Space for Four Different Initial Densities With Various Orientations to the Straight and Curved Co- existence Lines When $r_{1} \neq r_{2}$ 21
14. Relationship Between Distance From the Coexistence Line and the Inflection r Value 22
15. Paths in $N_{1}-N_{2}$ Space for Four Values of r_{1} Showing a Reversed Competitive Outcome as r_{1} Becomes Sufficiently Larger than r_{2}. 23
16. Paths in $N_{1}-N_{2}$ Space for Seven Values of r_{2} Showing a Reversed Competitive Outcome as r_{2} Becomes ${ }^{2}$ Sufficiently Larger than r_{1}. 24
17. Vector Fields When Equal Growth Rates are Plotted as a Function of N_{1} and N_{2}. 27
18. Vector Fields When Unequal Growth Rates $\left(r_{1}>r_{2}\right)$ are Plotted as a Function of N_{1} and $\mathrm{N}_{2} \ldots$.......... 28
19. Vector Fields When Unequal Growth Rates $\left(r_{1}>r_{2}\right)$ are Plotted as a Function of N_{1} and $N_{2} \ldots$........... 30

CEAPTER I

INTRODUCTION

The well known competition equations of Lotka-Volterra can be written as a set of differential equations, namely,

$$
\begin{aligned}
& \text { 1) } \frac{d N_{1}}{d t}=r_{1} N_{1}\left(\frac{K_{1}-N_{1}-\alpha_{12} N_{2}}{K_{1}}\right) \\
& \text { 2) } \frac{d N_{2}}{d t}=r_{2} N_{2}\left(\frac{K_{2}-N_{2}-\alpha_{21} N_{1}}{K_{2}}\right)
\end{aligned}
$$

where N_{1} and N_{2} are the population sizes of the two competing species with K_{7} and K_{2} their respective carrying capacities and r_{1} and r_{2} their instantaneous per capita rates of growth (biotic potentials). The two alphas are competition coefficients: α_{12} is the per capita inhibitory influence of species 2 on species 1 and α_{21} is the reciprocal effect of species 1 on species 2. When these equations are coupled, they describe the simultaneous growth of two competing species in a homogenous environment over ecological time.

Ecologists have utilized these competition equations, and continue to do so, despite recognized drawБacks. These include linear approximations of the competition coefficients (Gilpin and Justice 1973, Smith-

Gill and Gill 1978, Abrams 1980), the assumption that all individuals are competitive equivalents, and that biotic potentials and carrying capacities are constant (Pinaka 1978). Lacking from these equations are such considerations as stochastic fluctuations (Rao 1979) and time lags (Wangersky and Cunningham 1957, Hassel and Comins 1976). Nonlinear alternatives are discussed in Vandermeer (1973), Rosenzweig and MacArthur (1963) and Gilpin (1973). Due to these deficiences, the equations are generally considered to be poor representatives of reality (Wilbur 1972), but they still model competition adequately for some species in nature (Istock 1977). Even Gause (1934) concluded that in all probability no population ever grows exactly according to the Lotka-Volterra predictions but that the true equations are likely to yield solutions very similar to those of Lotka-Volterra.

Simple algebraic manipulations of the equations can define the conditions where the growth of either population is zero in the presence of its competitor for any given values of $K_{1}, K_{2}, \alpha_{12}$, and α_{21}. Four possible outcomes are realized depending upon the geometric configurations formed when the resulting isoclines are plotted (Gause and Witt 1934, Vandermeer 1970, Pianka 1978).

The outcomes, or cases, may be described by a set of inequalities formed by the competition coefficients and carrying capacities (Reiners, et a1. 1973, Pinka 1978). These are:

1) $\alpha_{12}<\frac{K_{1}}{K_{2}}$ and $\alpha_{21}>\frac{K_{2}}{K_{1}}$ 2) $\alpha_{12}>\frac{K_{1}}{K_{2}}$ and $\alpha_{21}<\frac{K_{2}}{K_{1}}$
2) $\alpha_{12}>\frac{K_{1}}{K_{2}}$ and $\alpha_{21}>\frac{K_{2}}{K_{1}}$
3) $\alpha_{12}<\frac{K_{1}}{K_{2}}$ and $\alpha_{21}<\frac{K_{2}}{K_{1}}$

Species 1 is the sole survivor, or winner, in case 1 whereas species 2 wins in case 2. A stable two species equilbrium is realized in case 4; but of greatest interest is case 3, because its outcome is not determined by these inequalities alone.

The superimposed isoclines of species 1 and species 2 have the same general appearance in all competitions of case 3 (Fig. 1). For each species, population size will decrease for points above its isocline and increase for points below its isocline. The point of isocline intersection is regarded as an unstable equilbrium condition; arrows pointing toward it indicate the areas where both species will grow or decrease, arrows pointing away from the intersection denote regions in which only one species is able to grow. An arrow at either carrying capacity, K_{1} or K_{2}, indicates a stable condition where the competitor has become extinct.

Under case 3, each species inhibits the other's growth more than its own and the outcome of competition has been generally thought to depend solely upon the initial densities of species 1 and species 2 (Vandermeer 1970, Pianka 1978).

Park (1962) was able to correlate environmental conditions with success or failure in interspecific competition including a zone of indeterminate outcome where slight changes in initial numbers could alter the usual competitive outcome. In other experiments, Park (1957) found starting densities to make little difference. However, in each of these papers it is unclear as to which case the competitions represent. Using initial numbers, Coste et al. (1978) delinated the stability domains of each species under case 3 and showed that r values can influence the outcome of competition. Strobeck (1973) has determined r values to be

Figure 1. Generalized Graphical Appearance of Case 3 of the Lotka-Volterra competition equations.
important in the coexistance of $n>2$ species only, but MacArthur (1969) did not consider them important even in this. Gi11 (1972) suggested that competitive ability is unrelated to either r or K, but later (Gill 1974) showed graphically that r values can alter the outcome of case 3 competition.

The objective of this study was to determine the effects of initial population sizes and biotic potentials on the outcome of case 3 of the Lotka-Volterra equations. For more detailed information on these and other related equations, the reader is advised to turn to Wangersky (1978) and May (1976).

CHAPTER II

MATERIALS AND METHODS

The objectives of this study were met through the utilization of "compet-1", a computer program modeling the Lotka-Volterra competition equations (Reiners et a1.1973). "Compet-1" was altered to allow the winning population to reach its exact K while the numbers of $i t s$ competitor fell to zero and to output values for $d N / N d t$ and $d N / d t$. Further trivial changes facilitated input.

The values for $K_{1}, K_{2}, \alpha_{12}$, and α_{21} were chosen in such a manner as to satisfy the inequalities appropriate for case 3. Species isoclines were plotted and initial population sizes were chosen which represented appropriate areas of the piot. The effects of different r values for populations at given starting densities were determined by holding the r of one species constant and altering the other. The data collected over 445 trials included the survivor (or winner) of the struggle, the amount of time required for the survivor to reach K (dubbed saturation time), and the exact numerical path in $N_{1}-N_{2}$ space taken by the populations as the winner reached its K over time.

RESULTS

A difference in the r values of two competing species affects events leading to the outcome of competition often without changing the outcome itself. A difference in r values elicits some general effects, no matter what the initial densities. The greater the disparity between r_{L} and r_{W} (either $r_{L}<r_{W}$ or $r_{L}>r_{W} ; r=r_{L}$ of loser, $r_{W}=r$ of winner) the longer the saturation time (Figs. 2 \& 3). More growth is obtained by the losing species before its eventual demise if r_{L} is increased relative to r_{W} (r_{L} / r_{W} increases) for either $r_{L}<r_{W}$ (Fig. 4) or $r_{L}>r_{W}$ (Fig. 5) providing competition is initiated below both isoclines. The disparity between r_{L} and r_{W} also affects the precision with which the two species follow the isocline of the winner in $N_{1}-N_{2}$ space. The precision increases as r_{W} / r_{L} increases for either $r_{L}<r_{W}$ (Fig. 4) or $r_{L}>r_{W}$ (Fig. 5).

Initial population size also affects saturation time when r values are held constant. The greater the initial size of the eventual winner, the faster it reaches K (Fig. 2). Conversely, the greater the initial numbers of the eventual loser, the more slowly the winner reaches K (Fig. $3)$.

The intersection of the two species' isoclines in case 3 competition is generally regarded as an unstable equilibrium; the point that falls directly on this intersection will remain stable at that value of N_{1} and N_{2} (coexistence), but points that fall away from this intersection should

Figure 2. Saturation Time VS r_{2} for Different Initial Numbers When $r_{L}<r_{W}$.

Figure 3. Saturation Time VS r_{2} for Eifferent Initial Numbers when $r_{L}>r_{W}$.

Figure 4. Paths in $N_{1}-N_{2}$ Space for Two Competing Species With Three Values of r_{2} Where $r_{L}<r_{W}$.

N_{1}
Figure 5. Paths in $\mathrm{N}_{1}-\mathrm{N}_{2}$ Space for Two Competing Species With Four Values of r_{2} where r_{L} $\geq r_{W}$.
move toward the K of either species as the other goes extinct. There is, however, a specialized condition wherein points off the intersection are attracted to the intersection and, thus, coexistence. If initial densities fall directly on an extended line connecting the orgin and the isocline intersection (coexistence line), and r_{1} equals r_{2}, the two species approach the intersection from either above or below (Fig. 6). Coexistence of the two species is realized. In various computer runs within this specialized condition, one or the other species often won, but only after considerable "generations" (Tables I, II, Appendix B). Lack of coexistence in some cases is thought to be an artefact of the approximation technique of the computer model and the mathematical impossibility of obtaining an exact slope of the line from division of two endless decimals. In these cases, the initial densities could not be placed directly onto the coexistence lines, so true coexistence was not obtained.

For initial densities near but not on the coexistence line, saturation time increases as the distance from the line decreases (Table III, Appendix B, Fig. 7). This increase is most pronounced when initial numbers fall very close to the coexistence line and reaches infinity (coexistence) as the line is reached.

Given r_{1} equal to r_{2}, the outcome of competition for all initial densities is deterministic. Initial densities that fall below the coexistence line grow to K_{1}, leaving species two extinct; initial densities that fall above the line grow to K_{2}, leaving species one extinct (Figs. 8-11).

When r values are unequal, the outcome of competition is still deterministic, but is no longer dependent on initial densities relative to the extended straight line connecting the origin and the isocline

Figure 6. Convergence on the Isocline Intersection When Initial Numbers fall on the Coexistence Line and $r_{1}=r_{2}$.

Figure 7. The Effect of Distance From the Coexistence Line on the Saturation Time of a Competitive Interaction when r_{1} $=r_{2}$.

Figure 8. The Effect of Various Starting Densities on the Outcome of Interspecific Competition when $r_{1}=r_{2}$.

Figure 9. The Effect of Various Starting Vensities on the Outcome of Interspecific Competition When $r_{1}=$ r_{2}.

Figure 10. The Effect of Various Starting Densities on the Outcome of Interspecific Competition When $r_{1}=r_{2}$.

Figure 11. The Effect of Various Starting Densities on the Outcome of Interspecific Competition when $r_{1}=r_{2}$.
intersection (coexistence line). Instead, the boundary that predicts. the outcome is an extended curve from the origin, through the isocline intersection and beyond in $N_{1}-N_{2}$ space. The curve is concave for $r_{2}>$ r_{1}, convex for $r_{1}>r_{2}$, and steeper for more disparate r values (Fig. 12). Initial densities that fall above this curved coexistence line grow until species 2 wins (Fig. 13, points A, B); initial densities that fall below this curved 1 ine grow until species 1 wins (Fig. 13, points C, D). This is true regardless where the initial points fall with respect to the original straight coexistence line (Fig. 13, Points B, C). In other words, at any perpendicular to the original straight coexistence line, the further away initial numbers are from the line, the more different r values must become in order to distort the curved coexistence line enough such that these points then lay to the opposite sides of this curve and thus reverse the outcome of competition predicted from equal r values (Fig. 14).

When r values are different, their effect on the competitive outcome is dependent upon where competition is initiated in relation to the isocline intersection. To reverse the outcome of competition predicted from equal r values, initial points below the intersection require a sufficient inequality as $r_{1}>r_{2}$ (Fig. 15). Initial densities above the intersection require a sufficient inequality as $r_{2}>r_{1}$ (Fig. 16).

Figure 12. Effect of Diverging r Values on the Coexistence Line in $\mathrm{N}_{1}-\mathrm{N}_{2}$ Space.

Figure 13. Paths in $\mathrm{N}_{1}-\mathrm{N}_{2}$ Space for Four Different Initial Densities With Various Orientations to the Straight and Curved Coexistence Lines When $r_{1} \neq$ r_{2}

Figure 14. Relationship Between Distance From the Coexistence Line and the Influection r Value. Inflection r Value is that Value Which Results in Population Numbers Crossing the Straight Coexistence Line. Curve A Represents Initial Densities Above the Intersection and Coexistence Line; Curve B Contains Initial Numbers Below the Intersection and Coexistence Line.

Figure 15. Paths in $\mathrm{N}_{1}-\mathrm{H}_{2}$ space for Four Values of r_{7} Showing a Reversed Competitive Outcome as r_{7} Becomes Sufficiently Larger Than r_{2}.

Figure 16. Paths in $\mathrm{N}_{1}-\mathrm{N}_{2}$ Space for Seven Values of r_{2} Showing a Reversed Compétitive Outcome as r_{2} Becomes ${ }^{2}$ Sufficiently Larger Than r_{1}.

Some effects due to unequal r values of two competitors are intuitive. One would expect, if there is room for both species to increase initially, that the eventual loser would grow at a faster rate with increasing r values until its isocline is reached. One would expect that the winning species would reach its K faster as its initial numbers are increased and that the greater the initial numbers of the loser, the more time it would take for the winner to reach its K. It is also reasonable that the eventual winner of a competition would require more time to reach its K with progressively lower r values. It seems counter intuitive, however, to expect a longer competitive interaction as observed when r_{W} became progressively larger than r_{L}.

Perhaps the most interesting effects of unequal r values were those dealing with the coexistence line. Coste et al. (1978) correctly delineated the stability domains of a 2-species case 3 competitive interaction but failed to elucidate the effects of unequal r values in shaping these areas. They correctly stated that it is possible for the competitive process to select a particular species (say species one) whose growth rate, r_{1}, is smaller than that of its competitor. This is possible, however, only when a certain inequality is met, namely:

$$
r_{1}>\frac{r_{2}}{\alpha_{12}}
$$

But this inequality does not include initial numbers and therefore cannot account for their effect in determining competitive outcomes. There are initial densities which always favor the species with the lower biotic potential regardless of the magnitude of the competitor's r.

Another effect of unequal r values may be observed by invoking the concept of r-selection. When individuals are not in competition (density independence by definition) natural selection is thought to favor the genotype with the highest Malthusian parameter, resulting in a larger r for the population as a whole. This is the process of r-selection which can be graphically depicted by the addition of a third axis, the per capita logarithmic growth rate ($\mathrm{dN} / \mathrm{Ndt}$), to the already familiar plot of competitive isoclines in $N_{1}-N_{2}$ space. At the point of density independence the per capita logarithmic growth rates are maximal and equal to r_{1} and r_{2}. As populations grow each $\mathrm{dN} / \mathrm{Ndt}$ decreases and reaches zero at each respective carrying capacity. Growth rates then become negative for densities beyond these points.

Using this concept, the coexistence line is seen as the two dimensional projection of the line where $d N_{1} / N_{1} d t=d N_{2} / N_{2} d t$ when $r_{1}=r_{2}$ (Fig. 17). However, r-selection warps this straight line into a curve which is convex for $r_{1}>r_{2}$ and concave for $r_{2}>r_{1}$.

Gill (1974) showed determinancy of outcome in a case 3 interaction dependent on disparity of r values but failed to appreciate some of the complexities of the relationship. In the case of $r_{7}>r_{2}$, Gill maintained that species two must attain at least $N_{2}>K_{1} / \alpha{ }_{12}$ because at any density lower than this the vector field favors species 1 . This statement is clearly fallacious as species 2 may initiate competition at densities far less than this and still emerge victorious (Fig. 18). Conversely,

Figure 17. Vector Fields when Equal Growth Rates are Plotted as a Function of N_{1} and \mathbb{N}_{2}. For Any Set of Initial Densities Competition Will Favor the Species With the Largest Value of $\mathrm{dN} / \mathrm{Ndt}$.

Figure 18. Vector Fields When Unequal Growth Rates ($r_{1}>r_{2}$) Are Plotted as a Function of N_{1} and N_{2}. Dotted Line Represents all Points Where $\mathrm{dN} / \mathrm{N}_{1}^{2} \mathrm{dt}=\mathrm{dN} / \mathrm{N}_{2} \mathrm{dt}$ and Curved Lines With Arrows Represent the Carved Coexistence Line. A Competitive Interaction is Depicted in Which Species 2 Survives Despite Initial Numbers $<\mathrm{K}_{\mathrm{l}} / \alpha_{12}$.
species 1 is not doomed to extinction if introduced at densities greater than those separated by the line where $d N_{1} / N_{1} d t=d N_{2} / N_{2} d t$ (Fig. 19). A species may reach such high densities during periods of mass movement instigated by migration or ecological disaster, as in a fire.

One applied area where this work is of potential use is in biological control. It is generally agreed upon that the larger the number of beneficial species in a complex, the greater the chances that the complex will regulate a host population. For this reason, researchers in biological control may strive for the establishment of exotic beneficials but at the same time do not want their potential competitors (the indigenous beneficials) to become extinct. If the inequalities formed by the exotic and indigenous species match those of case 3 , competitive exclusion of one of the species may not necessarily be the end result. These findings suggest that there are initial population numbers that may result in coexistence or very long saturation times which would make extinction in a short time very unlikely. Workers should introduce the appropriate number of exotics that will result in a point on or near the line of coexistence, or the isocline intersection.

Another benefit may be visualized utilizing the process of competitive exclusion. Certain desirable species may be useful as competitors of an undesirable species. Numbers should be introduced resulting in a point that lies to the proper side of the curved coexistence line. For example, if there exists a pest of a desirable species which is detrimental due to a certain physiological factor (ie. a toxin) an ecological equivalent may be found that does not exhibit this trait. The harmless competitor could then be introduced in the appropriate numbers and the extinction of the harmful species would be the predicated outcome of the struggle.

Figure 19. Vector Fields When Unequal Growth Rates $\left(r_{1}>r_{2}\right)$
are Plotted as a Function of N_{1} and N_{2}. Competitive Interaction is Shown in Which Species 1 Survives Despite Initial Numbers Greater Than Those Separated by $d N_{1} / N_{1} d t=d N_{2} / N_{2} d t$.

LITERATURE CITED

Abrams, P. 1980. Are competition coefficients constant? Inductive versus deductive approaches. Amer. Natur. 116: 730-735.

Coste, J., J. Peyraud, P. Caullet, and A. Chenciner. 1978. About the theory of competing species. Theoret. Pop. Biol. 14: 165-184.

Gause, G. F. 1934. The Struggle for Existence. Hafner, New York.
Gause, G. F. and A. A. Witt. 1935. Behavior of mixed populations and the problem of natural selection. Amer. Natur. 69: 596-609.

Gil1, D. E. 1972. Intrinsic rates of increase, saturation densities and competative ability. I. An experiment with Paramecium. Amer. Natur. 106: 461-471.

Gil1, D. E. 1974. Intrinsic rate of increase, saturation density, and competitive ability. II. The evolution of competitive ability. Amer. Natur. 108: 103-116.

Gilpin, M. E. and K. E. Justin. 1973. A note on nonlinear competition models. Math. Biosic. 17: 57-63.

Hassell, M. P. and H. N. Comins. 1976. Discrete time models of 2 species competition. Theor. Pop. Biol. 9: 202-221.

Istock, C. A. 1977. Logistic interaction of natural populations of two species of waterboatmen. Amer. Natur. 111: 279-287.

MacArthur, R. 1969. Species packing, and what interspecies competition minimizes. Proc. Nat. Acad. Science, USA. 64: 1369-1371.

May, R. M., ed. 1976. Theoretical Ecology, Principles and Applications. Philadelphia: W. B. Saunders Co. 317 p.

Park, T. 1957. Experimental studies of interspecies competition III. Relation of initial species proportion to competitive outcome in populations of Tribolium. Physiol. Zool. 30: 22-40.

Park, T. 1962. Beetles, competition, and populations. Science 138: 1369-1375.

Pinaka, E. R. 1978. Evolutionary Ecology. 2nd Ed. Harper and Row, New York.

Rao, C. R. 1979. Numerical solutions of the Lotka-Volterra equations with stochastic approximations. Tex. J. Science. 31: 75-83.

Reiners, W. A., W. E. Glanz, and S. F. Cornish. 1973. Ecological Modeling. Iowa City: Conduct. 76 pp.

Rosenzweig, M. L. and R. H. MacArthur. 1963. Graphical representation and stability conditions of predator-prey interactions. Amer. Natur. 97: 209-223.

Smith-Gill, S. J. and D. E. Gill. 1978. Curvilinearities in the competition equations: an experiment with ranid tadpoles. Amer. Natur. 112: 557-570.

Strobeck, C. 1973. N species competition. Ecology 54: 650:654.
Vandermeer, J. H. 1970. The community matrix and the number of species in a community. Amer. Natur. 104: 73-83.

Vandermeer, J. H. 1973. Generalized models of two species interactions: a graphical analysis. Ecology. 54: 809-818.

Wangersky, P. J. and W. J. Cunningham. 1957. Time lag in population models. Cold Spring Harbor Symp. Quant. Biol. 22: 329-338.

Wangersky, P. J. 1978. Lotka-Volterra population models. Ann. Rev. Ecol. Syst. 9: 189-218.

Wilbur, H. M. 1972. Competition, predation, and the structure of the Ambystoma-Rana sylvatica community. Ecology 53: 3-21.

APPENDIX A

EDITED VERSION OF COMPET-1

REM FOR FURTHER INFORMATION ABOUT THIS PROGRAM CONTACT REM CONDUIT P. O. BOX 388, IOWA CITY, IOWA 52240 (319) 353-3170 REM REGISTRY NUMBER: B10083 REM LAST REVISION 7/26/77 BY NEIL S. FERGUSON FOR CONDUIT REM THIS PROGRAM IS DISTRIBUTED WITH THE SUPPORT OF THE NATIONAL REM SCIENCE ROUNDATION GRANT NO. SED75-06596. ANY OPINION, FINDINGS, REM CONCLUSIONS, OR RECOMMENDATIONS EXPRESSED OR IMPLIED ARE THOSE REM OF THE AUTHORS AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE REM NATIONAL SCIENCE FOUNDATION. REM "COMPET-7" -- (BASIC PROGRAM BEGINS AT LINE 360) REM

REM VERSION 1: WRITTEN BY WILLIAM E. GLANZ '70, AND WILLIAM A. REM REINERS. DEPT. OF BIOLOGY. DARTMOUTH COLLEGE. WRITTEN IN REM BASIC ON THE DARTMOUTH TIME-SHARING SYSTEM. REM

REM COPYRIGHT 1974 BY THE TRUSTEES OF DARTMOUTH COLLEGE REM REM DESCRIPTION: REM REM THIS PROGRAM IS AN INTERSPECIFIC COMPETITION MODEL BASED REM ON THE CLASSICAL LOTKA-VOLTERRA EQUATION. IT CALCULATES THE REM POPULATION SIZE OF TWO COMPETING SPECIES IN SUCCESSIVE TIME REM STEPS USING DATA FROM WITHIN THE PROGRAM. THE CALCULATIONS REM ARE DONE USING INCREMENTAL ADDITION.

```
REM
```

REM

```
REM
```

280 REM THIS PROGRAM IS TAKEN FROM THE TEXT ECOLOGICAL MODELING BY

410 PRINT "ENTER GROWTH RATE"
420 INPUT R1

450 PRING "ENTER FRACTION OF OVERLAP BY POPULATION \#2"
460 INPUT J1
470
480
490
500 PRINT "ENTER INITIAL POPULATION SIZE"
510 INPUT N2
520 PRINT "ENTER GROWTH RATE"
530 INPUT R2
540 PRINT "ENTER ENVIRONMENTAL CAPACITY"

550 INPUT K2
560 PRINT "ENTER FRACTION OF OVERLAP BY POPULATION \#1"
570 INPUT J2
580 REM READ NUMBER OF TIME PERIODS TO SIMULATE AND CALCULATION
590 PRINT INVERAL
620 PRINT "INTERVAL OF COMPUTATION IS 0.1"
630 LET I=0.1
640 PRINT
650 PRINT "TIME", "POP, \#1", "POP, \# 2"
660 PRINT
661 LET E=1
670 FOR Tョ 1 TO 2000
672 LET Pl=0
674 LET P2=0
676 LET DI=0
678 LET D2=0
680 REM I IS COMPUTATION INTERVAL, SO 1/I IS NUMBER OF INTERVALS
690 FOR $A=1$ TO INT (1/I+.5)
700 LET Gl $=1 * \mathrm{R} 1 * N 1 *(\mathrm{~K} 1-\mathrm{N} 1-\mathrm{J} 1 * N 2) / K 1$
710 LET G2 $=\mathrm{I} * \mathrm{R} 2 * \mathrm{~N} 2 *(\mathrm{~K} 2-\mathrm{N} 2-\mathrm{J} 2 * \mathrm{~N} 1) / \mathrm{K} 2$
712 LET Pl=G1/NT+P1
714 LET P2= $22 / N 2+P 2$
720 LET N1=N1+G1
730 LET N2-N2+G2
732 LET DI = DI +G1
734 LET D2=D2+G2
740 NEXT A

```
750 REM INTEGER VALUES FOR POPULATION SIZES
760 LET QT=INT (N7+.5)
770 LET Q2=INT (N2+.5)
780 PRINT T, Q1, Q2, P1, P2, D1, D2
781 IF QT=0, OR, Q1=K1 GOTO 783
7 8 2 ~ G O T O ~ 7 8 4 ~
783 IF Q2=0, OR, Q2=K2 GOTO 791
784 LET E=E+1
785 NEXT T
786 PRINT
791 PRINT "EXTINCTION TIME WAS", E
792 PRINT
793 PRINT
800 PRINT "DO YOU WISH TO RERUN THIS PROGRAM" (YES/NO)"
810 INPUT Z$
820 IF Z$="YES" THEN 370
830 IF Z$="NO" THEN }86
840 PRINT "PLEASE ENTER A YES OR A NO"
850 GOTO 800
860 END
```

APPENDIX B

TABLES

TABLE I
THE EFFECT OF VARIOUS r VALUES ON THE OUTCOME OF INTERSPECIFIC COMPETITION WHEN INITIAL SPECIES NUMBERS FALL ON THE COEXISTENCE LINE ABOVE, BELOW, AND AT THE POINT

OF ISOCLINE INTERSECTION

		$\begin{aligned} & \text { (below) } \\ & N_{1}=20 \\ & N_{2}=20 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { (intersection) } \\ & N_{1}=40 \\ & N_{2}=40 \end{aligned}$		$\begin{aligned} & \text { (above) } \\ & N_{1}=60 \\ & N_{2}=60 \end{aligned}$	
r_{1}	r_{2}	sat. time	winner	sat. time	winner	sat. time	winner
1	0.01	966	N_{1}	> 2,000	tie	517	N_{2}
1	0.1	106	N_{1}	$>2,000$	tie	65	N_{2}
1	0.2	60	N_{1}	$>2,000$	tie	40	N_{2}
1	0.4	32	N_{1}	> 2,000	tie	29	N_{2}
1	0.5	30	N_{1}	$>2,000$	tie	28	N_{2}
I	0.6	30	N_{1}	> 2,000	tie	28	N_{2}
7	0.9	31	N_{1}	> 2,000	tie	32	N_{2}
1	0.99	41	N_{1}	> 2,000	tie	42	N_{2}
1	0.999	64	N_{1}	> 2,000	tie	66	N_{2}
1	1	> 2,000	tie	> 2,000	tie	> 2,000	tie
0.01	1	966	N_{2}	> 2,000	tie	517	N_{7}
0.1	1	106	N_{2}	> 2,000	tie	65	N_{1}
0.6	1	30	N_{2}	> 2,000	tie	28	N_{1}
0.99	1	41	N_{2}	. $>2,000$	tie	42	N_{1}

TABLE I (Continued)

FOR $K_{1}=120, K_{2}=100, \quad \alpha 12=2.0, \alpha 21=1.25$							
		$\mathrm{N}_{1}=$	-	$N_{1}=53 . \overline{33}$		$N_{1}=76$	
		$\mathrm{N}_{2}=20$		$N_{2}=33.333334$		$N_{2}=47.5$	
r_{1}	r_{2}	sat. tíme	winner	sat. time	winner	sat. time	winner
2	0.25	48	N_{1}	>2,000	tie	30	N_{2}
0.25	2	37	N_{2}	>2,000	tie	27	N_{1}
0.25	0.25	253	N_{1}	>2,000	tie	257	N_{1}
	FOR $K_{1}=K_{2}=100$			$\alpha 12=1.1 \quad \alpha 21=1.5$			
		$\mathrm{N}_{1}=$		$N_{1}=$. 384615		
		$N_{2}=40.000004$		$N_{2}=76.923083$		$N_{2}=100.00001$	
r_{1}	r_{2}						
0.25	0.25	615	N_{1}	>2,000	tie	> 2,000	tie
1	0.25	61	N_{1}	>2,000	tie	63	N_{2}
0.25	1	179	N_{2}	>2,000	tie	97	N_{1}
	FOR K $K_{1}=25, \quad K_{2}=125$,			$\alpha 12=0.2136752 \quad \alpha 21=8 . \overline{33}$			
	$\begin{aligned} & N_{1}=1 \\ & N_{2}=48.750068 \end{aligned}$			$\begin{aligned} & N_{1}=2.1897785 \\ & N_{2}=106.75185 \end{aligned}$		$\begin{aligned} & N_{1}=3 \\ & N_{2}=146.2502 \end{aligned}$	
r_{1}	r_{2}						
0.25	0.25	850	N_{2}	> 2,000	tie	201	N_{7}
1	0.25	50	N_{1}	> 2,000	tie	41	N_{2}
0.25	1	230	N_{2}	> 2,000	tie	30	N_{7}

TABLE I (Continued)

TABLE II

THE EFFECT OF VARIOUS STARTING DENSITIES ON THE OUTCOME OF INTERSPECIFIC COMPETITION

N_{7}	N_{2}	Winner	Saturation Time
16	60	N_{7}	139
12	64	N_{2}	311
12	81	N_{2}	226
16	96	N_{2}	253
22	92	N_{1}	161
36	64	N_{1}	80
10	32	N_{1}	121
7	40	N_{2}	274
4	20.000002	N_{1}	600
15.384615	76.923083	tie	> 2,000
20	100.00001	tie	>2,000
$K_{1}=K_{2}=100, \alpha_{21}=1.5, \alpha_{12}=2.5, r_{1}=r_{2}=0.25$			
52	8	N_{1}	50
12	2	N_{1}	60
4	4	N_{2}	44
48	24	N_{2}	49
54	24	N_{2}	53
64	26	N_{2}	58

TABLE II (Continued)

64	18	N_{1}	56
64	12	N_{1}	56
36.000001	12	N_{1}	207
54.545455	18.181818	tie	>2,000
70.000002	24	N_{1}	201
$K_{1}=25, K_{2}=125, \alpha_{12}=0.2136752, \alpha_{21}=8 . \overline{33}, r_{1}=r_{2}=0.25$			
2	105	N_{2}	399
5	94	N_{7}	81
1	115	N_{2}	210
4	97.5	N_{1}	98
5	110	N_{1}	90
5	2	N_{1}	25
3	30	N_{1}	62
1	64	N_{2}	307
1	75	N_{2}	271
3	92	N_{1}	121
1	48.750068	N_{2}	850
2.1897785	106.75185	tie	> 2,000
3	146.2502	N_{2}	850

TABLE II (Continued)

40	20	N_{7}	16
60	20	N_{1}	13
20	40	N_{2}	16
60	40	N_{7}	18
20	60	N_{2}	13
40	60.	N_{2}	18
20	20	tie	> 2,000
40	40	tie	> 2,000
60	60	tie	> 2,000
$K_{1}=120, K_{2}=100, \alpha_{12}=2.0, \alpha_{21}=1.25, r_{1}=r_{2}=0.25$			
44	40	N_{2}	65
56	40	N_{2}	83
44	36	N_{2}	71
48	32	N_{2}	96
40	28	N_{2}	87
32	24	N_{2}	79
24	20	N_{2}	72
64	32	N_{1}	81
60	28	N_{1}	76
72	20	N_{1}	57
52	28	N_{1}	89

TABLE II (Continued

44	24	N_{1}	91
36	20	N_{1}	95
28	16	N_{1}	101
53.33	33.333334	tie	$>2,000$
32	20	N_{1}	253
76	47.5	N_{1}	257
36	48	N_{2}	52

TABLE III
INFLUENCE OF DISTANCE FROM THE COEXISTENCE
LINE ON THE SATURATION TIME OF A COMPETITIVE INTERACTION

TABLE III (Continued)

N_{1}	N_{2}	Winner	Sat. Time	Distance
53.333	33.333334	ti.e	2,000	0.000
53.3335	33.33307	N_{1}	220	0.0003124
53.335	33.33067	N_{1}	216	0.0031426
53.336	33.3291	N_{1}	209	0.005004
53.338	33.3259	N_{1}	200	0.0087775
53.34	33.32267	N_{1}	193	0.0125766
53.4	33.22667	N_{1}	152	0.1257843
53.5	33.06667	N_{1}	136	0.314464
53.6	32.90667	N_{1}	127	0.5031436
53.7	32.74667	N_{1}	121	0.6918232
53.8	32.58667	N_{1}	117	0.8805028
54	32.26667	N_{1}	110	1.2578621
54.5	31.46667	N_{1}	100	2.2012618
55	30.66667	N_{1}	94	3.1446583
57	27.46667	N_{1}	79	6.9182507
61	21.06667	N_{1}	64	14.465436
68	9.86667	N_{1}	47	27.673
53	33.86667	N_{2}	115	0.6289342
51	37.06667	N_{2}	81	4.4025
49	40.26667	N_{2}	70.	8.1761
44	48.26667	N_{2}	57	17.6101
37	59.46667	N_{2}	47	30.8177
76.01	47.484	N_{7}	191	0.018868

TABLE III (Continued)

N_{1}	N_{2}	Winner	Sat. Time	Distance
76.05	47.42	N_{1}	162	0.0943398
76.09	47.356	N_{1}	152	0.1698
76.14	47.276	N_{1}	144	0.2642
76.2	47.18	N_{1}	137	0.3774
76.27	47.068	N_{1}	132	0.5094
76.32	46.988	N_{1}	129	0.6038
76.45	46.78	N_{1}	123	0.8491
76.55	46.62	N_{1}	N_{1}	119
76.65	46.46		116	1.0377
				1.2264

TABLE IV

THE EFFECT OF VARIOUS r VALUES AND INITIAL DENSITIES ON THE OUTCOME OF INTERSPECIFIC COMPETITION

r_{1}	r_{2}	N_{1}	N_{2}	Winner	Sat. Time
1	0.1	40	20	N_{1}	99
1	0.4	40	20	N_{1}	30
1	0.6	40	20	N_{1}	22
1	0.1	60	20	N_{1}	99
1	0.4	60	20	N_{1}	28
1	0.6	60	20	N_{1}	20
1	0.1	20	40	N_{2}	97
1	0.4	20	40	N_{2}	27
1	0.1	60	40	N_{1}	167
1	0.4	60	40	N_{1}	41
1	0.6	60	40	N_{1}	28
1	0.1	20	60	N_{2}	57
1	0.4	20	60	N_{2}	20
1	0.6	20	60	N_{2}	16
1	0.1	40	60	N_{2}	62
1	0.4	40	60	N_{2}	24
1	0.6	40	60	N_{2}	21
0.1	1	40	20	N_{1}	96
0.4	1	40	20	N_{1}	27

TABLE IV (Continued)

r_{1}	r_{2}	N_{7}	N_{2}	Winner	Sat. Time
0.1	1	20	60	N_{2}	99
0.4	1	20.	60	N_{2}	28
0.1	1	40	60	N_{2}	167
0.6	1	40	60	N_{2}	18
0.1	1	21	20	N_{2}	109
1	0.1	21	20	N_{1}	106
$K_{1}=120, K_{2}=100, \alpha_{12}=2.0, \alpha_{21}=1.25$					
1	0.1	24	24	N_{1}	135
0.1	1	24	24	N_{2}	78
1	0.1	40	8	N_{1}	80
0.1	1	40	8	N_{2}	123
$K_{1}=25, K_{2}=125, \alpha_{12}=0.2136752, \alpha_{21}=8 . \overline{33}$					
1	0.1	3	30	N_{1}	74
0.1	1	3	30	${ }^{N} 1$	176
1	0.1	1	80	N_{1}	130
0.1	1	1	80	N_{2}	510

TABLE IV (Continued)

1	0.1	44	12	N_{1}	111
0.1	1	44	12	N_{2}	59
1	0.1	44	20	N_{2}	99
0.1	1	44	20	N_{2}	53
$K_{1}=K_{2}=100, \alpha_{21}=1.5, \alpha_{12}=1.1$					
1	0.1	10	32	N_{1}	109
0.1	1	10	32	N_{2}	482
1	0.1	12	64	N_{7}	164
0.1	1	12	64	N_{2}	526

TABLE V

THE EFFECT OF UNEQUAL r VALUES ON THE COEXISTENCE LINE IN $N_{1}-N_{2}$ SPACE

N_{1}	N_{2}	Winner	N_{1}	N_{2}	Winner
1	5	N_{1}	68	38	N_{2}
1	12	N_{2}	78	36	N_{1}
3	12	N_{1}	78	40	N_{2}
6	12	N_{2}	86	36	N_{1}
4	16	N_{2}	86	38	N_{1}
6	16	N_{1}	86	39	N_{2}
5	20	N_{2}	92	38	N_{1}
8	20	N_{2}	92	40	N_{2}
9	20	N_{2}	98	40	N_{1}
10	20	N_{1}	98	42	N_{2}
12	23	N_{2}	106	40	N_{1}
14	23	N_{1}	106	42	N_{2}
16	23	N_{1}	114	42	N_{1}
18	25	N_{2}	114	44	N_{2}
20	25	N_{2}	120	42	N_{1}
22	25	N_{1}	120	44	N_{2}
24	26	N_{1}	46	34	N_{2}
36	28	N_{1}	54	31	N_{1}
36	32	N_{2}	54	36	N_{2}
46	31	N_{7}	68	35	N_{1}

TABLE V (Continued)

N_{7}	N_{2}	Winner	N_{7}	N_{2}	Winner
$r_{1}=0.5, r_{2}=0.25$					
2	4	N_{1}	32	26	N_{2}
2	6	N_{2}	44	28	N_{1}
4	8	N_{1}	44	30	N_{2}
8	10	N_{1}	62	36	N_{1}
8	12	N_{2}	70	38	N_{1}
12	14	N_{1}	70	40	N_{2}
12	16	N_{2}	86	42	N_{1}
16	16	N_{1}	86	44	N_{2}
16	18	N_{2}	140	56	N_{1}
22	20	N_{1}	140	58	N_{2}
22	22	N_{2}	140	62	N_{2}
32	24	N_{1}			
$r_{1}=0.25, r_{2}=1.0$					
1.6	1	N_{2}	48	22	N_{1}
20	1	N_{2}	48	24	N_{2}
24	1	N_{1}	56	38	N_{1}
18	. 5	N_{1}	56	40	N_{2}
24	3	N_{2}	59	44	N_{1}
28	4	N_{1}	59	46	N_{2}

TABLE V (Continued)

N_{1}	N_{2}	Winner	N_{1}	N_{2}	Winner
28	6	N_{2}	62	50	N_{1}
36	8	N_{1}	62	54	N_{2}
36	10	N_{2}	66	64	N_{1}
42	14	N_{1}	66	66	N_{2}
42	15	N_{2}			
70	76	N_{1}			
70	78	N_{2}			
73	86	N_{1}			
73	88	N_{2}			
76	98	N_{1}			

TABLE VI

THE EFFECTS OF BIOTIC POTENTIAL AND DISTANCE FROM THE COEXISTENCE LINE ON THE OUTCOME OF INTERSPECIFIC COMPETITION

N_{1}	N_{2}	r_{1}	r_{2}	Winner	Sat.Time	Distance
77	45.9	0.25	0.25	N_{1}	108	1.887
77	45.9	0.3	0.25	N_{2}	136	1.887
77	45.9	0.4	0.25	N_{2}	72	1.887
77	45.9	0.5	0.25	N_{2}	58	1.887
77	45.9	0.65	0.25	N_{2}	48	1.887
77	45.9	1.0	0.25	N_{2}	39	1.887
77	45.9	2.0	0.25	N_{2}	31	1.887
79	42.7	0.25	0.25	N_{1}	88	5.66
79	42.7	0.3	0.25	N_{1}	90	5.66
79	42.7	0.4	0.25	N_{1}	104	5.66
79	42.7	0.5	0.25	N_{2}	79	5.66
79	42.7	0.65	0.25	N_{2}	58	5.66
79	42.7	1.0	0.25	N_{2}	44	5.66
79	42.7	2.0	0.25	N_{2}	34	5.66
81	39.5	0.25	0.25	N_{1}	78	9.434
81	39.5	0.4	0.25	N_{1}	79	9.434
81	39.5	0.5	0.25	N_{1}	82	9.434
81	39.5	0.65	0.25	N_{1}	92	9.434
81	39.5	1.0	0.25	N_{2}	57	9.434
81	39.5	2.0	0.25	N_{2}	40	9.434

TABLE VI (Continued)

N_{1}	N_{2}	r_{1}	r_{2}	Winner	Sat. Time	Distance
85	33.1	0.25	0.25	N_{1}	66	16.98
85	33.1	0.3	0.25	N_{1}	65	16.98
85	33.1	0.4	0.25	N_{1}	63	16.98
85	33.1	0.5	0.25	N_{1}	63	16.98
85	33.1	0.65	0.25	N_{1}	62	16.98
85	33.1	1.0	0.25	N_{1}	62	16.98
85	33.1	2.0	0.25	N_{1}	64	16.98
75	49.1	0.25	0.25	N_{2}	101	1.887
75	49.1	0.25	0.3	N_{1}	128	1.887
75	49.1	0.25	0.4	N_{1}	72	1.887
75	49.1	0.25	0.5	N_{1}	57	1.887
75	49.1	0.25	0.65	N_{1}	46	1.887
75	49.1	0.25	1.0	N_{1}	36	1.887
75	49.1	0.25	2.0	N_{1}	28	1.887
74	50.7	0.25	0.25	N_{2}	88	3.774
74	50.7	0.25	0.3	N_{2}	97	3.774
74	50.7	0.25	0.4	N_{1}	81	3.774
74	50.7	0.25	0.5	N_{1}	61	3.774
74	50.7	0.25	0.65	N_{1}	48	3.774
74	50.7	0.25	1.0	N_{1}	37	3.774
74	50.7	0.25	2.0	N_{1}	28	3.774

TABLE VI (Continued)

N_{7}	N_{2}	r_{1}	r_{2}	Winner	Sat.Time	Distance
72	53.9	0.25	0.25	N_{2}	76	7.547
72	53.9	0.25	0.3	N_{2}	77	7.547
72	53.9	0.25	0.4	N_{2}	88	7.547
72	53.9	0.25	0.5	N_{1}	77	7.547
72	53.9	0.25	0.65	N_{1}	55	7.547
72	53.9	0.25	1.0	N_{7}	40	7.547
72	53.9	0.25	2.0	N_{1}	30	7.547
69	58.7	0.25	0.25	N_{2}	66	13.208
69	58.7	0.25	0.3	N_{2}	66	13.208
69	58.7	0.25	0.4	N_{2}	66	13.208
69	58.7	0.25	0.5	N_{2}	70	13.208
69	58.7	0.25	0.65	N_{2}	96	13.208
69	58.7	0.25	1.0	N_{1}	46	13.208
69	58.7	0.25	2.0	N_{1}	32	13.208
61	71.5	0.25	0.25	N_{2}	53	28.302
61	71.5	0.25	0.3	N_{2}	52	28.302
61	71.5	0.25	0.4	N_{2}	51	28.302
61	71.5	0.25	0.5	N_{2}	51	28.302
61	71.5	0.25	0.65	N_{2}	51	28.302
61	71.5	0.25	1.0	N_{2}	53	28.302
61	71.5	0.25	2.0	N_{2}	99	28.302

TABLE VI (Continued)

N_{1}	N_{2}	r_{1}	r_{2}	Winner	Sat.Time	Distance
33	18.4	0.25	0.25	N_{1}	96	1.887
33	18.4	0.25	0.3	N_{1}	106	1.887
33	18.4	0.25	0.4	N_{2}	77	1.887
33	18.4	0.25	0.65	N_{2}	53	1.887
33	18.4	0.25	1.0	N_{2}	45	1.887
33	18.4	0.25	2.0	N_{2}	38	1.887
35	15.2	0.25	0.25	N_{1}	75	5.66
35	15.2	0.25	0.3	N_{1}	71	5.66
35	15.2	0.25	0.4	N_{1}	70	5.66
35	15.2	0.25	0.5	N_{1}	84	5.66
35	15.2	0.25	0.65	N_{2}	67	5.66
35	15.2	0.25	1.0	N_{2}	50	5.66
35	15.2	0.25	2.0	N_{2}	41	5.66
37	12	0.25	0.25	N_{1}	64	9.434
37	12	0.25	0.3	N_{1}	59	9.434
37	12	0.25	0.4	N_{1}	54	9.434
37	12	0.25	0.5	N_{1}	53	9.434
37	12	0.25	0.65	N_{1}	55	9.434
37	12	0.25	1.0	N_{2}	63	9.434
37	12	0.25	2.0	N_{2}	44	9.434
40	7.2	0.25	0.25	N_{1}	52	15.094
40	7.2	0.25	0.3	N_{1}	48	15.094
40	7.2	0.25	0.4	N_{7}	43	15.094

TABLE VI (Continued)

N_{1}	N_{2}	r_{1}	r_{2}	Winner	Sat.Time	Distance
40	7.2	0.25	0.5	N_{1}	40	15.094
40	7.2	0.25	0.65	N_{1}	39	15.094
40	7.2	0.25	1.0	N_{1}	39	15.094
40	7.2	0.25	2.0	N_{2}	62	15.094
31	21.6	0.25	0.25	N_{2}	89	1.887
31	21.6	0.3	0.25	N_{2}	100	1.887
31	21.6	0.4	0.25	N_{1}	89	1.887
31	21.6	0.5	0.25	N_{1}	75	1.887
37	21.6	0.65	0.25	N_{1}	65	1.887
31	21.6	1.0	0.25	N_{1}	57	1.887
31	21.6	2.0	0.25	N_{7}	50	1.887
30	23.2	0.25	0.25	N_{2}	77	3.774
30	23.2	0.3	0.25	N_{2}	76	3.774
30	23.2	0.4	0.25	N_{2}	89	3.774
30	23.2	0.5	0.25	N_{1}	91	3.774
30	23.2	0.65	0.25	N_{1}	73	3.774
30	23.2	1.0	0.25	N_{1}	61	3.774
30	23.2	2.0	0.25	N_{1}	53	3.774
27	28	0.25	0.25	N_{2}	61	9.434
27	28	0.3	0.25	N_{2}	57	9.434
27	28	0.4	0.25	N_{2}	53	9.434
27	28	0.5	0.25	N_{2}	52	9.434
27	28	0.65	0.25	N_{2}	52	9.434

TABLE VI (Continued)

N_{1}	N_{2}	r_{1}	r_{2}	Winner	Sat.Time	Distance
27	28	1.0	0.25	N_{2}	59	9.434
27	28	2.0	0.25	N_{1}	68	9.434
21	37.6	0.25	0.25	N_{2}	48	20.755
21	37.6	0.3	0.25	N_{2}	44	20.755
21	37.6	0.4	0.25	N_{2}	39	20.755
21	37.6	0.5	0.25	N_{2}	36	20.755
21	37.6	0.65	0.25	N_{2}	34	20.755
21	37.6	1.0	0.25	N_{2}	32	20.755
21	37.6	2.0	0.25	N_{2}	31	20.755

VITA

Keith William Dorschner
Candidate for the Degree of
Master of Science

Thesis: EFFECTS OF INITIAL NUMBERS AND INTRINSIC RATES OF INCREASE ON THE OUTCOME OF INTERSPECIFIC COMPETITION AS PREDICATED BY THE LOTKA-VOLTERRA COMPETITION EQUATIONS

Major Field: Entomology
Biographical:
Personal Data: Born in Middleport, New York, February 2, 1955, the son of Dr. and Mrs. K. P. Dorschner.

Education: Graduated from James Madison High School, Vienna, Virginia, in May, 1973; received Associate of Arts degree in Humanities from North Florida Junior College in 1975; received Bachelor of Science degree from Virginia Polytechnic Institute and State University in 1978; completed requirements for the Master of Science degree in Entomology at Oklahoma State University in May, 1982.

Professional Experience: Graduate research assistant, Department of Entomology, Oklahoma State University 1980-82; and Teaching assistant, Department of Entomology, Oklahoma State University 1980.

Organization: Entomological Society of America.

