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PREFACE 

This is a theoretical study of intensity cross correlation and 

forced Rayleigh scattering in a two dimensional system. Theoretical 

results are obtained for a simple rotational diffusion model and are 

evaluated numerically. The final results shed some insights into 

what may be expected in future experiments. 
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CHAPTER I 

INTRODUCTION 

It is well known that the particles in an isotropic system such as 

-+ 
a liquid or gas are equally likely to be at any point r ir1 space. Hew-

ever, if we consider two particles at a time, the presence of one particle 

at a point r 1 limits the position r 2 available to the other particle. 

Because there are particle interactions, different values of the relati ~1e 

position r 2-r1 of any two particles in the system do not appear with 

equal likelihood. In other words, there exists a definite amount of 

correlation between the simultaneous positions r 2 and r 1 of the two 

particles. 

The general configurational distribution function for all particles 

- - -in the system is denoted by FN(r1 ,r2····rN) and satisfies the normaliza-

tion condition 

- - - 3- 3_ 3_ Iv F (r ,r ••••r )d r d r ••••d r = l 
N l 2 N l 2 N 

(1.1) 

By integrating F (~ ,r ····~) over the coordinates r ···•r and 
N l 2 N 2 N 

multiplying the result by N, we obtain a single particle distribution 

function 

! (- - - ) 3_ 3_ 3_ 
N F r r ••••r d r d r ••••d r 

v N l' 2 N 2 3 N 
(1. 2) 

where r 1 (r1 ) represents the particle density at the point r 1 . Obviously, 

1 
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N. The two-particle distribution function is defined as 

= - - 3- 3 
N ( N-1) JV E' ( r • • • • r ) d r • • • • d r 

N 1 N 3 N 
2 (2) (-) n g r ( 1. 3) 

(2) -
where r = r 2-r1 and g (r) is the pair distribution function of the 

system. 
(2) -

In the case of noninteracting particles, g (r) = 1. However, 

(2) - . . 
for real systems, g (r) is generally different from 1. These distribu-

tion functions are of great importance because they may be related to 

macroscopic and thermodynamic properties of the material (1). For 

example, the density fluctuation e is given by 

e [ (2) - J 3_ 1 + n !A g (r) - 1 d r (1. 4) 

the compressibility KT by 

= 1 [n !A [g< 2> (;_:) - l]d3r + l] 
nk 'l' 

B 

{1.5) 

the internal energy E by 

E = (1.6) 

and the pressure P by 

p = (1. 7) 

where n is the particle density in the system, g( 2) (r) is the pair dis-

tribution function of the particles which is a function of l~I for fluids 

and which measures the probability of findinq a pair of particles sepa-

rated by a distance r and u(r) is the potential energy of interaction 
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between particles. 

The pair correlation function g( 2) (r) is also related to the intensity 

distribution I(s) of radiation scattered by a sample, 

I (s) = I [ l + n /Xl [g ( 2 ) ( r) - 1 J sin ( s r) d 3r J 
o o sr 

(1. 8) 

where r 0 is the scattering from N isolated or noninteracting particles 

and I(s) is a function of Isl for fluids. Here s = k -k. is the differ­
s l 

ence between the scattered and the incident wavevectors, and the single 

particle form factor is taken to be unity. Thus, scattered intensity 

data of sufficient quality may be inverted numerically to determine 

g( 2 ) (r) directly from experimental data. 

g(2)(r) = 1 + --1- ! 00 [1 (s) - l]s sin (sr) ds 
2 o IO 211 nr 

(1. 9) 

These fundamental relationships have led to much effort to measure 

g( 2} (r) directly on one hand and to calculate g( 2) (r) from u(r) on the 

other. The theoretical work has been discussed and has taken many paths 

in many texts (1-7). 

The early work of Prins and Petersen (8) is of interest because it 

is simple and qualitatively accurate. It treats a liquid as having a 

"local-solid" structure which becomes more random as the distance 

between particles increases. The model has potential for extension to 

higher order correlation functions as well. Furthermore, the recent 

work of Stillinger and Weber (9) also suggests hidden solid structure in 

fluids. To detect such structure would require the measurement of 

(2) 
higher order correlation functions than g (r) , as the random ordering 

of an amorphous system on a large space or time scale averages this 
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. £ . f (2) ( ) in orrnat1on out o g r . These higher order correlation functions 

may be related to such important phenomena as freezing but have not been 

studied experimentally for pure fluids. However, there is currently 

experimental work being conducted on colloidal systems which may reveal 

such correlation functions. 

The purpose of this thesis is to anticipate results for the 

measurement of higher order correlation functions from "two-dimensional" 

colloidal samples. While the formalism presented here applies strictly 

to a simple atomic fluid, it may also be applied to describe colloidal 

suspensions of highly interacting particles. Here the large colloidal 

particles are the "atoms" of the fluid and the solvent is the "vacuum" 

between particles. The pair correlation function describes the corre-

lation between colloidal particles. The number fluctuations are those 

of the colloidal particles. The pressure is the osmotic pressure of the 

suspension. 

For the local structure of a fluid we assume a two-dimensional 

hexagonal close packed structure which rotationally diffuses in time. 

The forced-Rayleigh and cross-correlation functions are computed for 

this system. 
(4) 

These functions depend on g (r) , a four particle corre-

lation function, in general. However, because we have a "local-solid" 

assumption, the correlation functions do not appear explicitly (in a 

way similar to Prins and Petersen) . Functional forms are derived and 

they are evaluated numerically. New features are seen and discussed 

with respect to ordinary single detector equilibrium intensity auto-

correlation. 



CHAPTER II 

THEORY 

Light scattering has been studied for more than one hundred years. 

It has a.broad range of applications in physics, chemistry, biology, 

polymer science and engineering. Here we only briefly mention the 

well known (21) relation between light scattering and correlation func-

tions. Let us consider a plane wave incident on a single particle as 

shown in Figure 1. 10 Here k1 is the incident wave vector, k is the 
s 

scattered wave vector, 6 is the angle between the incident and scattered 

wave vector, l/J is the angle between the particle and the detector from 

the local origin, r 1 is the vector between the origin and the particle, 

r 2 is the vector between the origin and the detector, and k is the vector 

difference between the incident and scattered wave vector. 

The electric field at the particle is 

e: 
p 

and the scattered field at the detector is 

field at the detector is 

e: 
s 

= 

ik · 1 r -r I 
- s 2 1 e: e 

p 

k 
s 

ITT' s 

5 

(2 .1) 

(2.2) 

then the electric 
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INCIDENT WAVE 

PHOTOMULTIPLIER 

Figure 1. Light Scattering Geometry 



- r2 
ik ·r -iwt 1 ik s(r2-rl ~) s (r 2) - I 1 = € e e 1r21 

0 r2 

ik r -iwt i(k -k 
r2 -

s 2 I s lr2I) ·r1 
e = s e 

0 r2 

By assumiDg the process is nearly elastic (i.e. ik1 I 

k 
s 

Ji< I s 

= k 

(k 2 + k 2 - 2k k cos8)~ 
I s I s 

7 

(2.3) 

:k l) then 
I SI 

(2. 4) 

This is simply a Born approximation and the scattered field is 

[s 
0 

ik r 2-iwt .k s i • r 
e ]e 1 

r2 
( 2. 5) 

When we consider scatte~ing from N particles, the electric field 

correlation function becomes 

N 
< l: 
i ,j=l 

-iwt 
e e 

ik·(r. <t>-r.<oll 
l. J > ( 2. 6) 

-iwt 
The high freq11ency term e will be canceled by a. sir:-J.lar term., 
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when an intensity correlation function is formed. Thus we need only 

consider the correlation function 

- -* <c(t)e: (o)> = 
l N ik·(~.(t)-~.{o)) 

I <- [ e i J > 
o N i,j=l 

= I S{k,t) 
0 

( 2. 7) 

where I is again the single scattering from N isolated or noninter­
o 

acting particles and where 

- - -
s {k, t) 1 ~ <e It i, j=l 

ik·(r.(t)-r.(o)) 
l. J > (2. 8) 

Since the photomultiplier can only measure the intensities, we 

must calculate <I(t)I(o)> = <"E:(t)E:*(t)e(o)s*(o)>. If there are many 

scattering centers in the scattering volume, the probability distribu-

tion of E(t) will be a Gaussian distribution and the correlation func-

tion is given by 

<I(t)I(o)> = 2 12 I 2 I (Is (k,o} + Y :S{k,t) I ) 
0 

where Y depends on geometrical factors and <I(t)I(o)> is called the 

(2.9) 

autocorrelation function (11). It is a function averaged over time, re-

lating the intensity at time zero to the intensity at ti~e t. If not 

zero, it means that the value of intensity at time zero is related to 

the intensity at time t. As t increases, the autocorrelation must 

decrease and the autocorrelation approaches the square of the average 

intensity as t + ~. We can summarize some standard and well known 

properties of the autocorrelation function as follows (1): 

1. The autocorrelation function depends on the time interval t 2-t1 
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(in our case, t 1 = O and t 2 = t). 

2. The quantity <I(o)I(o)> is identically equal to the mean square 

value of the variable I at time zero. In a stationary ensemble, it 

would be a constant and positive definite 

<I(o)I(o)> = constant > 0 (2.10) 

3. For any time interval t, the magnitude of <I(o)I(t)> can not 

exceed the value <I(o)I(o)>. 

4. The function <I(t)I(o)> is symmetric about t = 0. 

5. As the time interval t becomes large, the values of I(o) and 

2 I(t) becomes uncorrelated and <I(t)I(o)> + <I(o)> . 

To realize these well known results experimentally one must use a 

large scattering volume such that Gaussian statistics prevails. In such 

a volume, there are many 2cattering centers, which may be independent 

particles or independent regions of correlated particles. Because each 

region is independent, the scattered field from each region is indepen-

dent of the €-field from other regions. If there are a large number of 

these regions, there are a large number of contributions to the total 

scattered s-field. This is similar to a random walk of E-fields which 

tends towards a Gaussian distribution. The important point is that a 

Gaussian distribution of scattered e-fields can be completely character-

. d b <2 ) ( ) . . ize y g r,t a time dependent two-particle correlation function simi-

lar to the time independent g( 2 ) (r) shown in Equation (1.9). We wish to 

explore the newer techniques of forced Rayleigh and cross correlation 

scattering to investigate microscopic liquid order. To examine higher 

order correlation functions, however, requires a violation of Gaussian 

statistics, which is accomplished by looking at only one or a few corre-
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lation regions. On this scale we expect that the fluid will have nearly 

a solid-like order as assumed in the Prins and Petersen model. 

In our model we assume that the scattering volume is so small that 

only a single crystal structure is in it at any time. The sample is 

assumed to be fairly incompressible so that number fluctuations 

are small. Only rotations of the lattice and not vibrations will be 

considered in intensity fluctuation. 

For stimulated Rayleigh scattering the crystal correlation region 

will be oriented by crossed laser beams. Subsequent decay of the orien-

tation of the crystal correlation region is monitored by a probe beam. 

The scattered intensity measured by the probe beam is similar to previous 

intensity calculation and is given by 

<I(k)> = l: f t,m P{r}•••• (2.11) 

The cross correlation function for the scattered intensity into two 

separate detectors, described by the scattered wavevectors k and q, is 

given by 

<I(k,q)> = 

x 

2 2 2 2 - - -
4 -a(rt+r +r +r ) ik· (rt-r ) 

l: f s e m n p e m 
t,m,n,p o 

iq·(~-~) 
e n p P{~}···· (2 .12) 

where P is the probability for finding the particles at positions {r} as 

a function of time. 
-ar2 

The factor e in expressions (6) and (7) accounts 

for the scattering volume size and a is set at unity in MKS units. The 

sums t, m, n, p run over the lattice sites. 



ik· (~ -~ ) 
Q, m 

By expanding e 

- - -ia· (r -r ) 
- n P 

and e -

(12), the correlation functions become 

<I (k) > 

2 2 
-a(r +r ) 

11 

into Bessel's expansions 

x [ [ e n p 
t it(8 +~) 

I- - nP J Ei J (q11 r -r I) e -
t t n p 

(2.14) 
n,p 

To simplify calculations and yet retain some physical reality in the 

model, we consider the particles to be in fixed lattice positions and to 

move only as a rotation of the whole unit (at least in the scattering 

volume) • Thus the probability P for finding the particles in a certain 

position is much easier to describe than the general case. The parti-

cles each occupy a site in a lattice and the orientation of the lattice 

at time t with respect to a fixed Z-axis is determined by w, with w0 

for t = O. These angles are shown in Figure 2. The k direction is 

associated with t = 0, and 8 gives the "lattice" orientation with re-

spect to this direction. The angle 8Q,m references particles to one 

another in the plane. Similarly for q11 the lattice orientation is 

described by ¢. For a two-dimensional system we have taken the projec-

tion of k and q along the plane to find i<11 and q 11 , respectively. These 

vectors describe the scattering. 

For convenience W·2 further simplify notation as follows: 

<I(k,q)> = 
4_ is(y -n) 

s J [ A (k)A (a)e o eit(ijl-;) P(1'1 ·1· 'd·'·d·~ 
o s,t s t ~ "'"'o' T "o 



z z 

Figure 2. Particle and Detector Projection Onto Sample Plane 

~rl 

I-' 
I'-) 



is (l/J -n) 
<I(k)> = s 2 f I A (k)e o P(1jJ,1jJ )d'.J.!dtjJ 

where 

0 s s 0 0 

A (k) 
s = 

= 

2 2 
-a(r 0 +r ) 

1
_ _ .s is6£m 

~ e N rn J (k I) 
£~m s 11 r£-rm 1 e 

I 
n,p 

13 

(2.15) 

(2.16) 

Now we suppose that p(ij;,'.J.!0 ) obeys a rotational diffusion dynamics 

such that 

= 

2 a P CiJi iµ > , 0 
D-----

a iti2 

aP(ijJ,ljJ) 
0 

at 

where D is a phenomenological rotational diffusion constant. 

We assume a power series expansion for P(i/J,ij; ) such that 
0 

p (1/J I i/J ) 
0 

If P is real, we have to sum from -m 
2 

. aP a P 

to m with E 
m 

stituting P(ijJ,ljJ ) into~ and -- we have 
o at aiµ2 

aP c 1/1, w > 
0 

at 

32P(tjJ,tjJ ) 
D ____ o_ 

2 
3;/I 

3E . ,1, _ m im'l" 
l... --e 
rn at 

2 irnijJ 
Z: DE (-m ) e 
m m 

E 
-m 

(2.17) 

(2.18) 

By sub-

(2 .19) 



thus 

ClE 
m 

Clt 

This is easily solved to find 

E = m 

= 
2 

-m DE 
m 

2 
-m Dt 

E e 
mo 

Since the lattice has some given position at t 

14 

(2 .20) 

(2 . 21) 

0, the initial 

value is given by Green's function condition 

Thus 

Since 

P (t=O) (2.22) a (1/!-1/! l 
0 

-inijJ 
By imposing e on both sides and integrating, we find 

-iniJ! le cS (t/J-iji ) dljJ 
0 

= 

-intjJ 
0 

The left side immediately gives e and the right side gives 

E 
m 

E fei(m-n)ijJdiJ! = 211 E E (_.!_)fei(m-n)ijJdijJ 
mo mo 2n m 

= 21T E E 
m mo 

= 27f E 
no 

inljJ 
e o = 2TI E 

no 

cS 
mn 



15 

E 
m 

E 
mo 

2 
-m Dt 

e (2.23) 

then the Green function is 

p (1/J I l/J ) 
0 

= 
l imljJO 

I - e 
m 2TI 

2 
imij; -m Dt 

e e (2.24) 

The averaged scattered intensity for the cross correlation for two 

detectors is given in equilibrium by averaging over a uniform distribu-

tion of initial states for l/J to find 
0 

<I(k,q)> 
(2.25) 

The "forced-Rayleigh" signal is produced by the selected initial 

orientation ~o and found by averaging over 1jJ for subsequent times. 

<I (k) > = 
im(n-1/J ) 20 t 

~ A (k)e 0 e-m 
m m 

(2.26) 

-m2Dt From the e term we see that higher order harmonics of (~-n) or 

(n-l/10 ) decay more rapidly in time. In some sense the cross correlation 

result is the "square" of the forced Rayleigh result. Both results 

depend on a relative measurement of angle (~-n) or (n-~ ) . For forced 
0 

Rayleigh scattering the initial position is physically prepared, while 

for cross correlation it is a fluctuation at I(k, t=O) which triggers 

the subsequent measurement at I(q,t). 

In the next sections we calculate some typical correlation functions 

and discuss their significance. 



CHAPTER III 

COMPUTATION 

The evaluation of the A (k) terms and subsequently the cross corre­
m 

lation an_d forced Rayleigh scattering functions are computed numerically. 

This is done for a two dimensional model because the first experiments 

will be done in this reduced dimension. The reason for this is that a 

two dimensional structure produces a scattering pattern in k-space which 

is more easily detected. A three dimensional structure produces recip-

rocal lattice points while a two dimensional structure produces recipro-

cal lines. It is easier to position detectors to intersect lines than 

points. The possible orientations are also reduced in two dimensions 

which means that stronger intensity correlations can be measured. In 

this case there is less "space" to a".erage the k-space structure over 

resulting in less smearing out of the k-space structure. 

For our two dimensional lattice we take a two-dimensional HCP 

structure as shown in Figure 3. For the 19 particles shown in the 

figure there are 171 pairs to be considered in the computation of A (k). 
m 

Clearly a computer is a great help in such an evaluation. The difficult 

part of this calculation is accurate estimation of J (x) . Both the 
n 

order n and the argument x change and we must find a good recurrence 

relations for the cases : n 2: x and n < x. For n 2: x, it is not diffi-

cult for us to get good numerical estimates of J 0 (x) and J 1 (x). From 

these two leading terms, the higher order terms can be calculated very 

16 
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Figure 3. Hexagonal Close-Packed Structure 
Used in This Two Dimensional 
Study 

17 
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accurately without much significant error using the recurrence relation 

for Bessel functions. However, we have a difficulty once the argunent 

becomes larger than the order. A different recurrence relation has been 

found and fitted. A careful check has been made of this procedure, 

since we do not want any discrepancy from the limited values that can be 

found in tables.- Any small error can cause a great error as it propa-

gates through many iterations in the calculation. 

We discuss both cases separately as follows: 

(I) n ~ x (i.e. the order greater than the argur:ient). 

. (x/2) (t-1/t) 
Let us introduce a generating function G(x,t) = e and 

expand this generating function in a Laurent's series. We obtain 

(x/2) (t-1/t) 
e = 

co 

2: 
n=-oo 

J (x)tn 
n 

( 3 .1) 

Simply by differentiating the generating function partially with 

respect to t, substituting Equation (3.1) for the exponential and 

equating the coefficients of the same powers of t, we obtain 

J l(x) + J l(x) n- n+ 
2n = - J (x) 
x n 

This is a three-term recurrence relation. By finding accurate 

( 3. 2) 

values for J 0 (x) and J 1 (x), any higher order terms will be found from 

this equation. The numerical approximations of J 0 (x) and J 1 (x) shown 

below were used to generate higher order J 's. 
n 

FO*COS(GO)/& 

F1*COS (Gl) ;,/-;;_ 

(3.3) 
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where the * indicates multiplication and where 

FO 0.79785-0.00000077*x-0.0055274*x2-o.00009512*x 3 

+ 0.00137237*x4-0.00072805*x5+o.00014476*x6 

GO = x-0.7854-0.041664*x-0.00003954*x2+0.0026257*x3 

- 0.00054125*x4-o.00029333*x5+0.00013558*x6 ( 3. 4) 

Fl = 0.79788+0.00000156*x+0.016597*x2+o.00017105*x3 

- 0.0024~5l*x4+0.001136S*x5-o.00020033*x6 

Gl x-2.3562+0.12499*x+0.0000565*x2-0.0063788*x3 

+ 0.00074348*x4+o.ooo79824*x5-o.00029166*x6 

Accurate values for the J 's were obtained numericallv bv this n ~ ~ 

technique. The leading tenns J 0 (x) and J 1 (x) can also be found from 

tables (12-15). 

(II) n < x. 

The recurrence relation in Part (I) does not work accurately for 

this case. Here we have to work down from higher order terms by assum-

ing this higher order is much higher than the order we wish to obtain. 

Because there are restrictions on the range of numbers that the computer 

can manipulate, we have to choose a number for this order which is suf-

ficiently high without pushing the limitations of the computer. For 

example, we choose a value of n such that we can set 

and 

Jn+l(x) = 0 

J (x) = C 
n 

( 3. 5) 

( 3. 6) 
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where C is a small constant number. By using 

Jn-1 (x) 2n J (x) J ( ) - 1 x , x n n+ 
( 3. 7) 

J 1 Cx), J 2 Cx) ..•.•••. etc. can be computed. Since C is arbitrary, the 
n- n-

J 's are all off by a common factor. This factor is detennined by the 
n 

condition 

co 

J (x) + 2 Z J (x) = C 
o m=l 2m 

( 3. 8) 

Solving for C and rescaling J 1 (x), J 2 (x) •....... etc. ultimately 
n- n-

generates whatever term we wish to calculate. The accuracy of this cal-

culation can be checked by trying a different value for n than we chose 

initially. In our calculation, we use an order which is always 20 larger 

than the order we wish to calculate. The order was chosen to be no more 

than 20 larger than the order we want, because there is a limit on the 

largest, 1038 , and the smallest, l0-38 , nurr.bers which the PDP 11 digital 

computer can handle. 

Now, we can calculate A (k), the coefficients in the average inten­
n 

sity cross correlation. We have complex values in general 

A (k) 
n 

(3.9) 

which must be separated into real and imaginary parts for computation 

as follows 

A (k) 
n 

RE(A (k)) + iIM(A (k)) (3.10) 
n n 

This computation showed good agreement with selected values picked from 
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tables (12 ,15). 

Next we must calculate k11 and q11 . This is facilitated by con-

sidering the projection of the scattered wav2vector k onto the sample 

plane as shown in Figure 4. 

As mentioned earlier, we have 

= lk - k I s I 
= ( 3 .11) 

Since the path difference for the first constructive interference is 

S sin(8) ;\ 

we have 

e (3.12) 

and the separation between Bragg's planes is 

S = a cos(8) (3.13) 

where a is the lattice constant (a = 1.2 um in our calculation) and ;\ is 

incident wavelength (;\ = 0.6328 um). From above known values, we can 

..... 
find the angle between the vector k and the sample plane. Then the pro-

jected k11 which probes the structure is: 

= Pel cos (f3> 

-

2;rn 
sin ( S) 

I.. 
( 3. 14) 

After we find the projection of k on the sample plane, the angle 

eim must be computed. To do this we use the solid state basis vectors 

for the two-dimensional hexagonal structure. 

From Figure 5, we can assign the coordinates for particle m, (the 
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Figure 4. Calculation of the Projection of k 
on the Sample Plane 
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• • • 
Figure 5. Relation Between Angles 8"m' 8 and ~O :;., k 11im 
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variable particle, labeled by (P,Q)) and particle 1, (the fixed particle, 

labeled by (M,N)), Here P, Q, M, N are integer variables. The vertical 

and horizontal components for the particle's position are expressed by 

Vl(M,N) and V2(M,N), respectively. Explicitly for an HCP structure we 

have 

Vl (M,N) (M-2N)a/2 

and (3.15) 

V2(M,N) ./) Ma/2 

where a again is the lattice constant. 

ik11 1r1-rrnlcos(ek11 irn> 
When we expand e into a Bessel's function 

series, we have ekllQ,m between kll and the difference of rl-rrn. 

direction of vectors and angles have to be carefully determined. 

The 

From 

the Figure 2 in Chapter II, we can see 8 = ljJ0 when k11 is on the z-axis 

and 

e tm + e = 0 + ljJ 
Q.m o 

( 3 .16) 

so eim = 

In the computer program, Ql and QO correspond to 8k n and ljJ , re-
11 "'m o 

spectively. Further details may be found in the program given in 

Appendix II (statements 110 to 422) ~ 

By combining all the terms in An(k), we obtain A1 (k), A2 (k) •..• An(k) 

separately and store them for further computation. Once we have these 

coefficients in the computer storage, time-independent and time-dependent 

correlations can be computed imrnediately. The averaged intensity of the 
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scattered light and its correlations are given in Equation (2.25) and 

(2.26). Here we will only present the normalized cross correlation 

function as follows: 

Q (k,g) 
<I(k,g)> <I(k,g)> 

= ( 3 .17) = <I(k)><I(q)> 2 
<I(k)> 

where s-n is the angle between the projections of wavevectors k and q on 

the sample plane. Furthermore, k and q are taken to have the same mag-

nitude, a value which corresponds to position of the first Debye-Scherrer 

ring. We only have to change s-n from 0 to 180° to get the corresponding 

intensities. For convenience, we can fix one wavevector projection on 

z-axis and rotate the other from 0 to 180°. All the P.. (k) and the com­
n 

puter program are given in the Appendix II. 



CHAPTER IV 

RESULTS AND DISCUSSION 

For our results, we present two cases. One is cross correlation 

from two detectors and the other is the autocorrelation for forced-Ray-

leigh scattering. For each case, we will present three sets of figures. 

1. The time-independent correlation as a function of angles. 

2. The time-dependent correlation as a function of angles for 

several different times. 

3. The time-dependent correlation for fixed angles. 

4. In the final two figures, we will present the anti-correlation 

in the cross correlation case and comparison between correlation and 

anti-correlation. 

Figure 6 gives the relation between cross correlation and the 

detector separation angle (~-n). In a simple hexagonal crystal struc-

ture, we have a six-fold scattered intensity pattern for the diffrac-

tion pattern. Because of the underlying symmetry, we get maximum 

intensity correlation when one detector is at ~ = o0 and the other 

0 0 
detector at n = 60, 120 •.. etc. By the same argument we have anti-

correlation when one detector is maximum at ~ = O, the other detector 

is dark at n = 30°, 90°, 150° ..• etc. Due to the finite scattering 

volume, diffraction gives finite light scattering intensities to both 

detectors and the correlation does not go to zero anywhere. For single 

detector equilibrium autocorrelation, there is no angle dependence 

26 
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because the initial orientation is averaged over all angles in equilib-

rium. However, for a sample initially prepared by crossed beams in a 

forced Rayleigh scattering experiment, we see the decay from the initial 

structure shown in the Figure 7. 

Figure 8 shows the decrease in the amplitude of the cross correla-

tion function when time-dependence is considered. Figure 9 shows the 

corresponding decay of the forced-Rayleigh scattered intensity. As the 

decay time in the correlation functions increases, the correlation 

function magnitudes changes. Not only do we have a monotonic decrease 

0 
in the correlation functions, but there are also angles (e.g. 30 ) when 

we have anti-correlations, where the correlation function increases. 

This comparison has been given in Figures 8-9 for Dt = O, 0.001 and 0.01. 

Figure 10 displays a time-dependent graph for a fixed angle. It 

shows that the cross correlation function decays very fast as time 

increases. This can also be seen from equation where the term 

2 
exp(-m Dt) strongly controls the cross correlation function to give this 

fast exponential decay. 

In this thesis we have seen that a local solid assumption for fluid 

structure can lead to forced Rayleigh and cross correlation experimental 

results which are quite different from the usual single detector auto-

correlation experiment from fluid systems. Angular structure in the 

scattered intensity is related to the symmetry of the local particle 

structure. If we had a square lattice structure, we should correlate 

. 0 0 0 0 0 0 
maxllilally at ~-n = o , 90 , and 180 rather than at ~-n = o , 60 , 120 , 

and 180° as for the HCP lattice. Thus, such experiments should reveal 

local symmetry or lack of it. Variation of the scattering volume com-

bined with correlation should reveal structural correlation lengths. 
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The unusual phenomena of anti~correlation is predicted and should be 

observed experimentally. Finally, while the calculations are quite in­

volved, it seems that the basic static and dynamic features are repro­

duced fairly well by the low mode (n=6) having the symmetry of the 

lattice. This may be a great help in modeling results of future experi­

ments. 
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Figure 6. Time-independent Cross Correlation as a Function of the Angle (~-n). The Cross 
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Figure 7. Time-independent Forced Rayleigh Correlation as a Function of the Angle (~-n). It 
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Figure 10. The Decay of Cross Correlation With Fixed (l;-n) = o0
• It Shows That the Cross Correla-

tion Decays With Time Monotonically. As 'rime Increases to Infinity, It 
Goes to One as the Particles Become Uncorrelated vJ 
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APPENDIX A 

PROGRAM FOR BESSEL'S FUNCTION CALCULATION 

This program is used to calculate the Bessel's function values. It 

is good for any order and argument. 
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LIST 

CCHEN MU BASIC/RT-11 VOL-OlC 

10 REM BESSEL FUNCTION 
11 DIM 1(50) ;T(lOO) 
15 PRINT "N"; "X"; "1 (X) " 
20 FOR L=O TO 50 
30 FOR A3=0 TO 50 STEP 5 
40 IF A3=0 THEN 900 
42 F9=7:97885*100(-l)-7:7*100(-7)*(3/A3)-5:5274*100(-3)*(3/A3)92 
43 F8=-9:512*100(-5)*(3/A3)93+1:37237*100(-3)*(3/A3)94 
44 F7=-7:2805*100(-4)*(3/A3)25+1:4476*100(-4)*(3/A3)96 
45 F0=F9+F8+F7-4:4*100(-7) 
46 G9=A3-7:854*100(-l) 
47 G8=-4:1664*100(-2)*(3/A3)-3:954*100(-5)*(3/A3)92 
48 G7=2:6257*100(-3)*(3/A3)93-5:4125*100(-4)*(3/A3)94 
49 G6=-2:9333*100(-4)*(3/A3)95+1:3558*100(-4)*(3/A3)96 
50 GO=G9+G8+G7+G6+1:84*100(-5)+3*100(-8)*(3/A3)+3*100(-8)*(3/A3)93 
51 F6=7:9788*100(-1)+1:56*100(-6)*(3/A3) 
52 F5=1:6597*100(-2)*(3/A3)92+1:7105*100(-4)*(3/A3)93 
53 F4=-2:4951*100(-3)*(3/A3)94+1:1365*100(-3)*(3/A3)95 
54 F3=-2:0033*100(-4)*(3/A3)96 

40 

55 Fl=F6+F5+F4+F3+4:56*100(-6)-3:3*100(-7)*(3/A3)*1022-100(-8)*(3/A3)*10 
54 
56 G5=A3-2:3562+1:2499*100(-1)*(3/A3) 
57 G4=5:65*100(-5)*(3/A3)92-6:3788*100(-3)*(3/A3)93 
58 G3=7:4348*100(-4)*(3/A3)94+7:9824*100(-4)*(3/A3)95 
59 G2=-2:9166*100(-4)*(3/A3)96 
60 Gl=G5+G4+G3+G2+5:51*100(-6)+6:12*100(-6)*(3/A3)+100(-8)*(3/A3)*1003 
61 l(O)=A39(-:5)*FO*C09(GO) 
62 l(l)=A39(-:5)*Fl*C09(Gl) 
90 IF L>A3 THEN 96 
92 FOR K=2 TO L 
93 l(K)=2*(K-l)/A3*l(K-l)-l(K-2) 
94 NEXT K 
95 GO TO 888 
96 GOSUB 1000 
97 l(L)=l(L)/10010 
888 PRINT L:A3:l(L) 
900 NEXT A3 
950 NEXT L 
999 END 
1000 REM-SUBROUTINE-
1010 D=20 
1020 F=L+D 
1030 T(F)=O 
1040 T (F-1) =100 (-30) 
1050 FOR H=2 TO F 
1060 T(F-H)=(2*(F-H+l)/A3)*T(F-H+l)-T(F-H+2) 
1070 NEXT H 
1080 Sl=T(O) 
1090 FOR I=2 TO F STEP 2 



1100 Sl=Sl+2*T(I) 
1110 NEXT I 
1120 D9=10010/Sl 
1130 l(L)=D9*T(L) 
1140 RETURN 
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APPENDIX B 

PROGRAM FOR CORRELATION FUNCTION CALCULATION 

This program is used to calculate the cross correlation function. 
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CY CHEN MU BASIC/RT-11 VOL-OlC 

1 DIM Vl(S:S} :V2(5:5) :D(50} :E(SO) 
2 DIM J(SO) :T(lSO) :R9(50) :19(50) :B(50) :C(SO} 
3 Z=(37:51/180)*PI 
4 Zl=SIN(Z) 
5 A=l: 2*100 (-6) 
6 Al=:S*A 
7 A2=(39:5/2)*A 
8 FOR M=-1 TO 1 
9 FOR N=-1 TO 1 
10 Vl(M+2:N+2)=(M-2*N)*Al 
11 V2(M+2:N+2)=M*A2 
12 NEXT N 
13 NEXT M 
14 FOR L=O TO 6 
15 B(L)=O 
16 C(L)=O 
17 FOR M=-1 TO 1 
18 FOR N=-1 TO 1 
19 FOR P=-1 TO 1 
20 FOR Q=-1 TO 1 
21 IF M=l THEN IF N=-1 THEN 800 
22 IF P=l THEN IF Q=-1 THEN 800 
23 IF M=-1 THEN IF N=l THEN 800 
24 IF P=-1 THEN IF Q=l THEN 800 
25 IF M=-2 THEN IF N=l THEN 800 
26 IF M=-2 THEN IF N=2 THEN 800 
27 IF P=2 THEN IF Q=-2 THEN 800 
28 IF P=2 THEN IF Q=-1 THEN 800 
29 IF P=l THEN IF Q=-2 THEN 800 
30 IF P=-1 THEN IF Q=2 THEN 800 
31 IF P=-2 THEN IF Q=l THEN 800 
32 IF P=-2 THEN IF Q=2 THEN 800 
33 V=Vl(P+2:Q+2)-Vl(M+2:N+2) 
34 U=V2(P+2:Q+2)-V2(M+2:N+2) 
35 D5=(V92+U92}9:5 
36 IF D5=0 THEN IF L=O THEN 65 
37 IF D5=0 THEN IF L>O THEN 800 
38 A3=D5*2*PI*l:59/(:6328*100-6}*Zl 
42 F9=7:97885*100(-l)-7:7*100(-7}*(3/A3}-5:5274*100(-3}*(3/A3)92 
44 F7=-7:2805*100(-4}*(3/A3)95+1:4476*100(-4}*(3/A3}96 
45 FO=F9+F8+F7-4:4*100(-7} 
46 G9=A3-7:854*100(-l} 
47 G8=-4:1664*100(-2}*(3/A3)-3:954*100(-5)*(3/A3)92 
48 G7=2:6257*100(-3}*(3/A3)93-5:4125*100(-4)*(3/A3)94 
49 G6=-2:9333*100(-4}*(3/A3)95+1:3558*100(-4}*(3/A3)96 
50 GO=G9+G8+G7+G6+1:84*100(-5}+3*100*-8)*(3/A3)+3*100(-8)*(3/A3)93 
51 F6=7:9788*100(-1)+1:56*100(-6)*(3/A3) 
52 F5=1:6597*100(-2)*(3/A3)92+1:7105*100(-4}*(3/A3}93 
53 F4=-2:4951*100(-3)*(3/A3)94+1:1365*100(-3)*(3/A3)95 
54 F3=-2:0033*100(-4)*(3/A3)96 
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55 Fl=F6+F5+F4+F3+4:56*100(-6)-3:3*100(-7)*(3/A3)*1002-100(-8)*(3/A3)*10 
24 
56 G5=A3-2:3562+1:2499*l00(-1)*(3/A3) 
57 G4=5:65*l00(-5)*(3/A3)92-6:3788*l00(-3)*(3/A3)93 
58 G3=7:4348*100(-4)*(3/A3)94+7:9824*100(-4)*(3/A3)95 
59 G2=-2:9166*100(-4)*(3/A3)96 
60 Gl=G5+G4+G3+G2+5:51*100(-6)+6:12*100(-6)*(3/A3)+100(-8)*(3/A3)*l003 
61 J(O)=A30(-:5)*FO*COS(GO) 
62 J(l)=A30(-:5)*Fl*COS(Gl) 
65 Cl=Vl(P+2:Q+2)92+V2(P+2:Q+2)92 
66 C2=Vl(M+2:N+2)92+V2(M+2:N+2)92 
67 C=(Cl+C2)*l0012 
68 E=EXP (-C) 
69 IF D5=0 THEN IF L=O THEN 71 
70 GO TO 88 
71 Ll=O 
72 Gl=O 
73 J(O)=l 
74 GO TO 400 
88 IF L=O THEN 98 
89 IF L=l THEN 98 
90 IF L>A3 THEN 96 
91 IF L>l THEN 92 
92 FOR K=2 TO L 

93 J(K)=2*(K-l)/A3*J(K-1)-J(K-2) 
94 NEXT K 
95 GO TO 98 
96 GOSUB 1000 
97 J(L)=J(L)/10210 
98 T8=4 
99 FOR W=O TO 15 
100 T9=T8*W 
101 Ll=L-T9 
102 IF Ll<4 THEN 110 
103 NEXT W 
110 D7=ABS(Vl(P+2:Q+2)-Vl(M+2:N+2)) 
111 D8=ABS(V2(P+2:Q+2)-V2(M+2:N+2)) 
120 IF Vl(P+2:Q+2)<Vl(M+2:N+2) THEN IF V2(P+2:Q+2)=V2(M+2:N+2) THEN 130 
125 GO TO 150 
130 Ql=PI/2 
140 GO TO 400 
150 IF Vl(P+2:Q+2)<=Vl(M+2:N+2) THEN IF V2(P+2:Q+2)>V2(M+2:N+2) THEN 170 
160 GO TO 190 
170 Ql=PI-ATN(D7/D8) 
180 GO TO 400 
190 IF Vl(P+2:Q+2)<=Vl(M+2:N+2) THEN IF V2(P+2:Q+2)<V2(M+2:N+2) THEN 210 
200 GO TO 230 
210 Ol=ATN(D7/D8) 
220 GO TO 400 
230 IF Vl(P+2:Q+2)>Vl(M+2:N+2) THEN IF V2(P+2:Q+2)=V2(M+2:N+2) THEN 250 
240 GO TO 270 
250 Gl=-PI/2 
260 GO TO 400 
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270 IF Vl(P+2:Q+2)>=Vl(M+2:N+2) THEN IF V2(M+2:N+2)<V2(P+2:Q+2) THEN 290 
280 GO TO 310 
290 Ql=-(PI-ATN(D7/D8}) 
300 GO TO 400 
310 IF Vl(P+2:Q+2)>=Vl(M+2:N+2) THEN IF V2(M+2:N+2}>V2(P+2:Q+Z) THEN 330 
330 Ql=-ATN(D7/D8) 
400 IF Vl(M+2:N+2)=0 THEN IF V2(M+2:N+2)>=0 THEN 402 
401 GO TO 404 
402 GO=O 
403 GO TO 750 
404 GO=PI 
405 GO TO 750 
406 IF Vl(M+2:N+2)<0 THEN IF V2(M+2:N+2)=0 THEN 413 
407 IF V2(M+2:N+2)>0 THEN 409 
408 GO TO 411 
409 GO=ATN(ABS(Vl(M+2:N+2))/V2(M+2:N+2)) 
410 GO TO 750 
411 GO=PI-ATN(Vl(M+2:N+2)/V2(M+2:N+2)) 
412 GO TO 750 
413 GO=PI/2 
414 GO TO 750 
415 IF Vl(M+2:N+2)>0 THEN IF V2(M+2:N+2)=0 THEN 422 
416 IF V2(M+2:N+2)>0 THEN 418 
418 GO=-ATN(Vl(M+2:N+2)/V2(M+2:N+2)) 
419 GO TO 750 
420 GO=-(PI-ATN(Vl(M+2:N+2)/ABS(V2(M+2:N+2)))) 
421 GO TO 750 
422 GO=-PI/2 
423 GO TO 750 
750 Pl=COS(L*(Ql-QO)) 
751 P2=SIN(L*(Ql-QO)) 
753 P3=COS(L*GO) 
754 P4=-SIN(L*GO) 
758 IF Ll=O THEN 762 
760 GO TO 766 
762 R9(L)=J(L)*Pl 
764 I9(L)=J(L)*P2 
765 GO TO 791 
766 IF Ll=l THEN 770 
768 GO TO 776 
770 R9(L)=-J(L)*P2 
772 I9(L)=J(L)*Pl 
774 GO TO 791 
776 IF Ll=2 THEN 780 
778 GO TO 786 
780 R9(L)=-J{L)*Pl 
782 I9(L)=-J(L)*P2 
784 GO TO 791 
786 IF Ll=3 THEN 788 
788 R9(L)=J(L)*P2 
789 I9(L)=-J(L)*Pl 
790 IF D5=0 THEN 796 
791 B(L)=B(L)+:5*R9(L)*E 



792 C(L)=C(L)+:5*I9(L)*E 
793 D(L)=D(L)+:5*(R9(L)*E*P3-I9(L)*E*P4) 
794 E(L)=E(L)+:5*(I9(L)*E*P3+R9(L)*E*P4) 
795 GO TO 800 
796 B(L)=B(L)+R9(L)*E 
797 C(L)=C(L)+I9(L)*E 
798 D(L)=D(L)+R9(L)*E*P3-I9(L)*E*P4 
799 E(L)=E(L)+I9(L)*E*P3+R9(L)*E*P4 
800 NEXT Q 
805 NEXT P 
810 NEXT N 
815 NEXT M 
820 PRINT L:B (L) :C (L) :D (L) :E (L) 
825 NEXT L 
830 FOR R=O TO 180 
831 FOR 08=0 TO 50 STEP 10 
832 D7=1:00000E-03 
835 Il=O 
850 Jl=O 
851 I2=0 
852 I3=0 
854 FOR S=-6 TO 6 
855 A=5 
856 IF S>=O THEN 870 
867 Jl=Jl+(B(-S)92+C(-S)92)*COS(S*R*A*PI/180) 
868 Il=Il+(B(-S)92+C(-S)92)*COS(S*R*A*PI/180)*EXP(-S92*D7*D8) 
869 GO TO 890 
870 Jl=Jl+(B(S)92+C(S)92)*COS(S*R*A*PI/180) 
871 Il=Il+(B(S)92+C(S)92)*COS(S*R*A*PI/180)*EXP(-S92*D7*D8) 
872 I2=I2+(D(S)*COS(S*R*A*PI/180)-E(S)*SIN(S*R*A*PI/180)) 
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873 I3=I3+(D(S)*COS(S*R*A*PI/180)-E(S)*SIN(S*R*A*PI/180))*EXP(-S92*D7*D8 

0 
890 NEXT S 
895 W9=R*A 
913 R3=12/B (0) 
914 R4=I3/B(O) 
915 Rl=Il/(B(0)92+C(0)92) 
916 R2=Jl/(B(0)92+C(0)92) 
917 Xl=D7*D8 
920 PRINT W9:R2:Rl:R3:R4 
921 NEXT 08 
925 NEXT R 
999 END 
1000 REM-SUBROUTINE-
1010 0=20 
1020 F=L+D 
1030 T(F)=O 
1040 T(F-1)=109(-30) 
1050 FOR H=2 TO F 
1060 T(F-H)=(2*(F-H+l)/A3)*T(F-H+l)-T(F-H+2) 
1070 NEXT H 
1080 Sl=T(O) 
1090 FOR I=2 TO F STEP 2 



1100 Sl=Sl+2*T(I) 
lllO NEXT I 
1120 09=10010/91 
1130 J(L)=D9*T(L) 
ll40 RETURN 

READY 
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