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CHAPI'ER I 

INTRODUCTION 

During recent times, heavy metal pollution of aqueous systems has 

become an acknowledged and pressing problem. A large number of research­

ers in both the United States and Europe are currently conducting studies 

designed to further elucidate the role and behavior of heavy metals in 

the environment. 

Once many metals are discharged into a surface water supply from 

either a point or non-point source they may participate in several re­

actions. They may remain soluble in the aqueous phase or be chemically 

precipitated with aqueous phase anions. In addition the metal ions may 

be adsorbed onto sediments and suspended organic and inorganic matter. 

They may be adsorbed by bacteria and algae or react to form metallic 

complexes with the many available ligands occuring in natural water 

systems. Complexation of the metal may serve to reduce its biotoxicity. 

An understanding of the fate and behavior of heavy metals in aquatic 

systems is essential for the effective management of those pollutants. 

Changes in various environmental conditions can promote a redistribution 

of the metals amo~ their various phases, Two important environmental 

conditions that may affect the fate of heavy metals in surface water 

systems are pH and the oxidation-reduction potential. pH ~overns the 

solubility of the metal whereas oxidation-reduction potential determines 

the form of the metal available for reaction. Redox potential is im­

portant even for those metals that do not undergo oxidation-reduction 
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reactions, A change in redox potential could alter the availability of 

naturally occuring ligands and therefore could promote or enhance metal 

complex formation. 

The purpose of this work is to study the effects of artificially 

altering the red.ox potential of laboratory systems on the release of 

four heavy metals from river sediments, The sediments were obtained 

from the Arkansas River as it flows through Tulsa, Oklahoma, The four 

heavy metals studied include chromium, copper, zinc, and lead. All of 

these metals appear on EPA's list of priority pollutants and are of 

significant environmental interest, 
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CHAPI'ER II 

LITERATURE REVIEW 

Heavy metals create toxic conditions for an organism when the heavy 

metal interferes with the normal functioning of that organism. Such a 

condition can be mild, chronic, acute or even lethal for the organism. 

These elements may be referred to as "trace metals" for the toxic 

effects may occur at exceeding low metal concentrations. Each heavy 

metal has its own environmental significance and certain industrial 

hazard or pathological effects. The availability of heavy metals for 

uptake by organisms is governed by pi and oxidation-reduction potential. 

Redox Potential 

Redox potential (Eh) may be defined as the electron-e~caping 

tendency of a reversible oxidation-reduction system, and thus is an 

intensity factor. Zobell (1) indicated that positive Eh values are 
hp? 

generally characteristic of bottom deposits which are well oxygenated 

including those which consist of coarse sediments or those which are 

poor in organic matter. Negative Eh values are characteristic of bottom 

deposits rich in organic matter and which consist largely of fine 

sediments. An abundance of readily decomposable organic matter appears 

to promote reducing conditions, In the presence of organic matter, 

bacteria and allied micro-organisms create reducing conditions. 
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The Redox Potential in the Aquatic Environment 

In distilled water saturated with oxygen the redox potential is 

about 500-600 mv (relative to the calomel reference electrode). Water 

from a hypolimnion which is deprived of oxygen will show a lower redox 

potential down to about 100 mv which indicates the solution has a strong 

reducing capacity. Below the mud-water interface, the redox potential 

often falls sharply and values of -100 mv can be found (2), 

Higher redox potentials favor the presence of heavy metals in their 

higher oxidation state, while lower oxidation states are usually found 

in reducing environments. For example, in an oxidizing environment, iron 

and manganese are oxidized to ferric and manganic ions which are quickly 

precipitated as Fe(OH)J(s) and MnOZ(s)' As these precipitates settle 

toward the sediments, they remove other heavy metals, hence, the 

solubility of heavy metals would decreased simultaneously. However, in 

some aquatic systems, such as eutrophic lakes that experience anaerobic 

conditions in the sediments, the ferric and manganic precipitates are 

++ ++ reduced respectively to ferrous (Fe ) and manganous (Mn ) ions, which 

are much more soluble, This causes the heavy metals to be released into 

the overlying waters and to be cycled throughout the system. Once the 

aerobic conditions are restored, the ferrous and manganous ions are 

again reprecipitated as ferric hydroxide and manganic dioxide. Then the 

cycle described above is repeated. 

The interaction between heavy metal ions and inorganic and organic 

substances is important because it establishes the ultimate chemical 

form of heavy metals in the sediments, and in addition it determines the 

rate and extent of metal distribution in the sediments. It also affects 

the toxicity of the metal with respect to organisms such as bacteria. 



For example, if a toxic heavy metal is strongly complexed within an 

organic molecule, the overall toxicity of the metal ion toward the 

organisms in the sediments can be substantially reduced. 

It is very important to und.erstaIXi the chemical, physical arxi bio-

logical reactions of heavy metals that take place at the sediment-water 

interface. It is notable that heavy metals adsorbed by the solid :i;:tlase 

of sediments are usually in the reducing zone of the aquatic system and 

undergo reduction reactions. These heavy metal ions would become more 

soluble with the aid of ga.ses from the decomposition of organic ma.teri-

als and diffuse u];Mard to reach the aerobic zone. Upon reaching the 

aerobic zone, those heavy metals would again reprecipitate as oxidized 

states immediately. Thus, heavy metals a.re mobilized u:i;:ward and then 

oxidized am precipitated dow?lN'ard as a cycle in a closed aquatic 

systems. 

Chromium 

-2 +6 Chromium has oxidation states ranging from Cr to Cr and most 

commonly occurs as cr0 , Cr +2 , Cr +J and Cr +6 (J). Divalent chromium 

is relatively unstable and can be oxidized to the trivalent form. 

Thus, only two forms--Cr +3 and Cr +6 __ a.re found in nature. The re-

duction potential of hexavalent to trivalent chromium is strong. The 

+6 Cr , almost always linked to oxygen, is a strong oxidizing agent. The 

hexavalent form of chromium appears to be relatively stable in water, 

probably because of the low concentrations of reducing materials. The 

trivalent form is associated with particulate matter, which suggests 

that organic particles may reduce and bind the element, leaving the 

hexavalent form in solution (3). 

Chromates and dichromates a.re easily reduced to trivalent 
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chromium in acid solution and in the presence of organic matter. The 

trivalent state is the most stable oxidation state. It has a strong 

tend.ency to form complexes whose ligand rates of exchange are low. 

Copper 

Copper is one of the transition elements with four possible oxi­

dation states: cu0 , Cu+1, Cu+2 and Cu+3 (4). In aqueous solution the 

+2 +1 only stable oxidation state is Cu , for Cu will disproportionate to 

cu0 ani Cu +2 as followss 

2 Cu +1 -----+ .cu0 + Cu +2 

+1 Insoluble aqueous complexes of Cu are quiet stable in aqueous 

media. +1 +2 The relative stabilities of Cu and Cu species in solution 
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depend on the nature· of ligands present and. vary with the composition of 

+1 the solution. In aqueous solution, only a low concentration of Cu 

soluble species can exist (4). 

Cu+J is a strong oxidant and can be obtained only under highly 

ox1dizi~ conditions. Such conditions can be achieved by heating in the 

presence of oxygen. 

In the sedimentary cycle, copper is concentrated in the clay miner-

al fractions. Reducing conditions are common in many organic rich 

environments. 

Lead 

Lead exists in three oxidation states 0, +2, and +4 bit lead exists 

in aqueous solution almost entirely as Pb(II) species (5). The equilib­

rium Pb +4 + 2e - ----~ Pb +2 has a EO value of over .21 and thus Pb(IV) 

species like Pb02 exist only under extremely oxidizing conditions. 

Pb+2 dominates in acidic conditions. The divalent inorganic lead 



compounds are very stable. In a simple mod.el of freshwater system of i;:H 

between 6 and 8, the lead will be entirely complexed as the carbonate 

species Pb (co3);2 and Pb::OJ at more acid pH values. 

Zinc 

The behavior of zinc a.s a function of redox potential has not fully 

been resolved (6). Some investigators have concluded that zinc is more 

soluble under reducing conditions because of the iron and manganese hy-

drous oxides, which tend to sorb or coprecipitate zinc under oxidizing 

conditions ( 7 ) • An alternative view is that the low solubility of zinc 

in the presence of sulfides, which are produced under reducing con­

ditions, make trace metals more soluble under oxidizing condition (8 ), 
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O'Connor and Renn ( 9), who studied the soluble-adsorbed zinc equi­

libria in river water concluded that the adsor-ption equilibrium was more 

strongly related to PI than to the Freundlich isotherm. Young ( 6 ~ in­

dicated that zinc always has an oxidation state of +2 in aqueous system 

and is not directly affected by changes in Eh, However, the valances and 

reactivity of ligands reacting with zinc are affected by Eh. 

Huang et al. (10) showed the equilibrium solubility and stable 

solid species of zinc at :i;i1 5 is a function of pE (pE=-logEh). 

Precipitation of zinc compounds appears to be_ important only in re­

duction states. Holmes et al. ( 8 ) concluded that formation of zinc 

sulfide controls the mobility of Zn in an estuarine system. Seasonal 

fluctuations in dissolved zinc levels are also attributed to variations 

in redox potential. In the summer, when reducing conditions prevail in 

the hypolimnion due to the combined effects of lower o2 solubility and 

greater biological oxy~en demand, zinc is incorporated into the sedi­

ments by formation of ZnS. In winter, Eh increases and zinc is 



released to the water. 

Oxidation-reduction Reactions 

in ~oil-water Systems 

8 

Some factors that are correlated to redox reactions in a aquatic 

soil system are water saturation, organic matter, temperature, oxygen 

content, and pH value. Actually, reduction may take place if the 

following conditions are met simultaneously: presence of organic matter, 

absence of an oxygen supply, presence of anaerobic microorganisms and 

an environment suitable for their growth. 

The presence of organic matter in an aquatic systemwill affect the 

redox potential. Burrow and Cordor.(11) studied the development of redox 

potential in relation to the decomposition of various types of organic 

matter in soil. They found that the type of decomposable organic matter 

present in the soil is a highly important factor in the determination of 

the degree of reducing intensity. The redox potential will not change 

greatly from those samples with no organic matter. 

The decomposition of organic matter starts in an optimal tem­

perature range after the dry sediment is waterlogged. Under some 

circumstances bacteria rapidly proliferate, and the oxygen is depleted. 

The reduction of nitrate commences with the disappearance of oxygen 

and a concurrent initiation in the reduction of manganese and iron 

oxides also. This is followed by reduction of sulphates and phosphates. 

Several efforts have been made to establish a relationship between 

soil oxygen content and redox potential. Scott and Evans (12) attempted 

to measure oxygen content and redox potential in saturated soil but no 

close re~ationship was measured. Armstrong (13) found a fairly close 

relationahip between redox potential.and oxygen diffusion rate through-



out the soil profile, with the Eh decreasing to +100 to +200 mv as the 

oxygen diffusion rate decreased to about 0.4 g 10-8/cm2/min. 

Turner and Patrick (14) found that the decreasing oxygen content 

had little effect on redox potential until an oxygen content of below 4 

percent was reached. Below 4 percent oxygen, a marked change in redox 
-

potential oc~u:red with an average Eh at zero oxygen of 332 ± 5 

millivolts. 
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If oxy~en is available, oxyg~n may function as an electron acceptor 

and if oxygen is not available, other reducible compounds may function 

as electron acceptors. Under soil conditions, NOj , Mn(IV) Mn(III), 

Fe(III) and S(VI) are important reducible compounds, but reduction of 

these compounds by organic matter is very slow. 

From Quispel's experiments (15), he drew a conclusion that in an 

FeS containing soil, the redox potential is mainly determined by the 

mutual relation between the capacity of oxygen and the capacity of 

sulfide ions. In the reducing organic containing soil, the reducing 

organic substances and bacteria may be equally important. When no 

reducing substances are present and the soil is well aerated, the po-

tential is mainly determined by oxygen. 

pH and Eh 

Redox potential in many ways is analogous to pH (16). It measures 

the ability of an environment to supply electrons to an oxidizing agent, 

or to supply protons (hydrogen ions) to a base or.to take up protons 

from an acid. 

In a complex solution like seawater or fresh water and a soil, the 

redox potential is determined by a numbe= of reactions, just as pH is 

determined by the combined effects of the carbon dioxide system, the 
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boric acid system and various organic acids. The particular reactions 

are difficult to identify, and are less important than the overall 

ability of the environment to maintain the Eh and pH constant when small 

a.mounts of f orei~n material are added. 

Pearsall (17) found that while the various potential values (Eh) 

were determined at different Pi levels, an arbitrary correction is em­

ployed which expresses the potential at a constant pH value as pH 5.00, 

termed E5, for purposes of comparison of various samples. For every 

unit of pH above 5.00, the potential is increased by 58 mv. 

Microbiological Aspects of Anaerobic 

Soil-water System 

Many researchers have worked on incubation of water logged soils 

(18), (19), (20). It is essentially an anaerobic system at the aquatic 

soil interface. Due to submergence of soil, reduced conditions and 

anaerobic environments are created and these bring about different 

physical, chemical and biological charures in the soil. 

On waterlogging, the arable soil changes from an oxidizing to a 

reducing condition. One possible reason is the oxygen ccnsu~ntion 

and the accumulation of reduced materials by decomposing soil organic 

matter under limited oxygen supply from the surface water. 

Takai (21) concluded the following from his study which investi­

gated the reaction proce·ss in paddy soils: 

1. In the early stage of the incubation process, Eh drops rapidly 

and ferric iron is reduced vigorously. 

2. Nitrate disappears at the beginning of incubation, and ammonia 

is liberated along with the progress of reduction. 

J. An active sulfide formation takes place after a periods of 
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incubation time. 

4. The dominate bacterial type are followed as the orders of aerobe, 

anaerobe and sulfate reducing bacteria. 

He also noticed that: 

1. Dissolved oxygen is consumed within one day. 

2. Hydrogen occured. 

J. Carbon dioxide increased rapidly at the beginning and then 

decreased continuously. 

4. Methane occured as the carbon dioxide decreased, that may relate 

to the methane bacteria reduces carbon dioxide to methane anaerobically. 

The Effects of Aeration on Redox Potential 

Pearsall and Mortimer (22) observed the effects of aeration on 

redox potential. They found that a sudden rise in potential occured 

on addition of air. In the absence of air the potential will later 

fall, They also tested these bottles by bubbling with nitro~en to re­

move all trace of oxygen. The potential fell 110 mv in 1 hour. 

In 1941, Mortimer and Pearsall (2J) observed the change in redox 

potential and the concentrations of dissolved substances in artificial 

mud-water systems subjected to varying degrees of aeration. They used 

three difference treatments, In one the artificially aerated tank 

was subjected to continual aeration. A second aerated tank was allowed 

to stand with the water surface exposed to the air. The third tank, an 

anaerobic one, was covered and sealed with paraffin. They found the 

greatest change in the anaerobic tank. At 70 days, the mud surface had 

darkened in colour and the dissolved oxygen in the water had 4isappear­

ed. Nitrate had become completely reduced in the water and the ammonia 

concentration had begun to rise. 
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Bloomfield (2~) investigated the inf.luence of anaerobic and aerobic 

conditions on the solubilities of Zn, Ni, Cu, Pb, Cd, and Cr in sludge. 

He found that aerobic incubation caused the pH to fall, whereas, under 

anaerobic conditions, the sludge became more alkaline. He found that 

under anaerobic conditions the amount of Cu dissolved in water de­

creased, yet the amount of Cd and Pb had a net increase in the water 

solubility. Bloomfield also aerated the sludge after a previqus anaer­

obic incubation. He found that subsequent aeration increased the amount 

of water soluble Cu, Zn and Cr, but the corresponding effect on Ni, Pb 

and Cd was small. 

Problems Encounter in Measuring Redox Potential 

Morris (25) and Bohn (26) indicated that the true redox equi­

librium can not be observed in any natural aquatic system, because most 

redox reactions are extremely slow for lack of suitable biochemical 

catalyst and partly because of the continuously input of photosynthetic 

energy source that disturbs the trend toward equilibrium conditions. 

Quispel (15) found that the measurement of the redox potential of 

soil should be made in an undisturbed condition. Since the inserting of 

the electrodes in itself produces a disturbance of the soil equilibrium, 

one should wait until equilibrium has become reestablished before 

measuring the redox potential. 



CHAPI'ER III 

MATERIAIS AND METHODS 

The sample sediments used in this study were collected from the 

Arkansas River below the 23rd Street Bridge, Tulsa, Oklahoma. After 

they were brought to the laboratory, the sediments were completely air­

dried in thin layers in acid-washed plastic pans at room temperature. 

Then, the sediments were thoroughly mixed and were stored in the re­

frigerator until they were used. These sediments were brought to room 

temperature before being used. 

The sediments were mainly composed of sand deposits in the river. 

A former report showed that the quality of the river water is unsuitable 

for municipal p-...;rposes because of the excessive concentrations of total 

dissolved solids and chloricles (27}, 

Research Approach and Setup 

The experiment was set up to measure the amount of chromium, 

copper, lead, and zinc found in the sediments and the water soluble 

concentration of each metal at different redox values (Eh). All con­

tainers and glassware used in this experiment were acid-washed with a 

solution of concentrated nitric acid and then were rinsed thoroughly 

with distilled deionized water before using, 

13 
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Experiment Procedures 

In the first part of this experiment, the amount of each metal in 

the sediments was measured by the method described by Krishnamurty et 

al. (JO) that basically involves nitric acid and hydrogen peroxide 

digestion. First, the sediment sample was dried completely in an oven 

0 at 110 c. Approximately 0.5 gram of it was then slurried with 0.5 ml 

of distilled deionized water. Ten ml of concentrated reagent-grade 

NHOJ were added to the slurry in a 150-ml beaker covered with a watch 

glass. After a 2-hour acid digestion at about l00°c on a hot plate 

and cooling for 15 minutes, J-ml of JO percent H2o2 were added drop­

wise to the extraction mixture. Heating was continued for another 

hour with intermittent stirring by gentle swirling of the beaker. The 

cooled digestate was filtered through a funnel into a glass tube. The 

filtered digestate was diluted with distilled deionized water to 50 ml 

in a volumetric flask and analyzed directly using the Perkin-Elmer 

Model HGA-400 graprli te furnace. 

To determine the effects of oxidation-reduction potential on the 

release of soluble metals from the Arkansas River sediments, ten grams 

of dried sediments were placed in 200-ml Erlenmeyer flasks with 150-ml 

of distilled deionized water. Oxygen or nitrogen was then bubbled 

into duplicate flasks for JO, 60, and 120 minute time intervals. 

After bubbling, the flasks were immediately sealed with parafilm and 

put on a shaker table for shaking and incubation for 7 to 15 days. 

During this time the redox potential dropped due to microbial activity. 

After removal from the shaker table, the redox potential was deter-

mined by directly inserting a redox probe through the parafilm. Once 
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the Eh value had been obtained, the sample was immediately filtered 

and the filtrate was analyzed directly using a Perkin-Elmer Model HGA-

400 graphite furnace. 

For the experimental units, mixing was accomplished by an 

Eberbach Box-type mechanical shaker. Redox potentials (Eh) were 

measured using an Orion Research, Digital pi and mv Meter, and the 

platinum electrode probe, Fisher, Model 94-06 was calibrated by 

several methods. The first method for electrode calibration uses a 

solution of M/300 K3Fe(CN)6 and M/300 K4Fe(CN)6 in M/10 KCl, which has 

an Eh value of +0.430 volt at 25°0 (1). The second method is that of 

Michaelis (29) using a solution that contains 4,000 grams of NaOH and 

12.006 grams of acetic acid per liter of distilled water. A stream 

of hydrogen is then bubbled through the solution until it is saturated. 

Such a solution has an Eh value of -0.273 volt at 25°c. 



CHAPTER IV 

RESULTS AND DISCUSSION 

The results from the analyses far the a.mounts of copper, lead., 

chromium and. zinc contained in the sediment samples are shown in Table 

I. 

TABLE I 

RESULTS OF ANALYSES OF HEAVY MEI'AL QUANTITIES 
IN THE SEDIMENTS OF 'IliE ARKAtEAS RIVER AT 

T'dE 2)RD STREET BRIIGE, TUI.SA, OKLAHOMA 

Element 
Concentration 

(microgram/ gram) 

Cr 
Cu 
Pb 
Zn 

JO.O 
11.0 
12.0 
70.0 

The quantity of total chromium in the Arkansas River sediment was 

found to be JO microgram/gram of dried sediment. The distrirution of 

soluble chromium at different Eh values ranged from 0.03 micrograms/gram 

to 0.08 micrograms/gram of dried sediment. When the Eh was increase 
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from +150 mv to +400 mv , the a.mount of soluble chromium in the water 

increased. The relationship of soluble chromium versus Eh value in the 

sediment solution is shown in Figtlre 1. 

This result compares favorable with that obtained in Bloomfield's 

(24) work in which the water soluble chromium was also found. to increase 

as aeration continued. However, with respect to the a.naerobic reaction, 

Bloomfield found that the longer the a.naerobic incubation, the more water 

soluble chromium was released. This trend is not observed in this ex­

periment, however, the lowest redox potential attained for this work was 

-250 mv. 

Figure 2 shows the effects of Eh on the solubility of copper. It 

is obvious that the higher the redox potential the lower the water 

solubility of copper. This relationship ha.s also been shown by Si.ms 

(20) • He found that water-soluble Cu was related inversely to Eh value, 

and indicated the inverse relationship was caused by the formation of 

different metal-organic complex. Bloomfield found the same results in 

that the longer the aerobic incubation, the less water soluble copper. 

From Figure J,·the solubility of lead also changed significantly as 

the Eh value changed. The higher Eh, the lower solubility of lead. 

Bloomfield (24) also found. that the water soluble lead decreased. within 

the first month period of aeration. Reddy' and Pa.trick's (7) work has 

the same result that water-soluble lead decreased with an increase in 

Eh and p:I. They also indicated that precipitation of Pb as Pb(CH)2 

and PtCOJ ma.y be the main factor governing Pb concentration in soil 

systems. 

The effects of sediment Eh on the quantity of soluble zinc is shown 

in Figure 4. The lowest amount of soluble zinc for this study was found 

in the range of Eh values of 200 to JOO mv. Beyond that range, soluble 



Figure 1. Soluble Chromium Versus Sediment Solution Eh 
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Figure 2. Soluble Copper Versus Sediment Solution Eh 
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Figure 3. Soluble Lead Versus Sediment Solution Eh 



23 

;: 

+ 

;::: 
N 
.... 

• 
= - --~ UJ 

• 
::;. 

• 

• 
:::: 

' . • 

N + 
I 



Figure 4, Soluble Zinc Versus Sediment Solution Eh 
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zinc increased.. Bloomfield's (24) work showed that water soluble zinc 

increased. within one month of anaerobic incubation, and decreased within 

the first month of aerobic incubation. Bloom.field., however, as noted 

before did not take Eh measurements, which makes comparison difficult. 

Sims (20) found that water soluble zinc decreased. from 2.7% to 2.4% as 

the Eh value decreased. from 0 to -150 mv a.nd also decreased. from 5.5J' to 

2.zig a.t Eh value between +150 mv to ·+300 mv. The aerobic results in this 

experiment are similar to what Sims reported. 

A relationship does exist between :pH and the oxidation-reduction 

potential in aqua.tic systems. Both the parameters are highly dependent 

upon the presence of organic material and the ensuin,; microbial a..'ld bio­

chemical reaction. The relationship between the two parameters as de­

fined in several experimental works is linear. According to Hesse (JO) 

for each unit drop in :pH at specific temperature there is a specific 

increase in the redox potential. Figure 5 plots :pH versus Eh for iden­

tical solutions containing Arkansas River sediments and distilled 

deionized water. The linear relationship as described by Hesse is exhi~ 

bited here. In addition it should be noted that according to the work 

by Ung (31) using sediments from the same source, the :pH range of 7.5 to 

8.J is the range of minimum solubility for the metals studied. 

The results of this experiment showed that the heavy meta.ls are 

potentially available for release from the sediment of the Arkansas River 

as a. result of changes in Eh. That data. collected in this experiment 

is essentially of relative value. Using different water-sediment ratios 

may ca.use the sediment to lea.ch more or less meta.ls, which would Provide 

different solubility data.. In this experiment, all the samples had an. 

identical water-sediment ratio to facilitate the investigation of 



Figure 5. Water-Sediment Eh Versus Hi 



28 

c • • ~ 
<!-

• 
.... • 

1~ 
+ 

.... ---N 
+ 

c ,... ·- ..i:= 
+ w I 

l= 
I 
I 

~~ 
• I 

Jg • 1~· ":·· 

I. 
= .... -~ 

~ "" N ... 0 C1\ = r- \0 r.n ~ ~ 
I • • • • • • • • • • • = = = = = r- r- r- r- r- r-

::c 
a_ 



29 

changes in solubility under a variety of Eh values. 

The maximum release of the metals, except for lead, only rep­

resented a small fraction of the total metal content of the sediments. 

The maximum percentages of chromium, copper, lead and zinc released were 

2 .17%, 5%, 41. 67% and 17. 14% res pee ti vely. Maximum amounts of chromium 

were released under aerobic condition whereas maximum amounts of soluble 

copper, lead and zinc were found under anaerobic conditions. Except for 

lead, redox potential does not play a major role in the release of these 

heavy metals from Arkansas River sediments. For lead, specifically, the 

maximum release of the metal seen under laboratory conditions may only 

occur in a few areas of the river. The pool located to the north of the 

low water dam which is currently being constructed would be the most 

likely place for anaerobic condition to prevail for any substantial 

length of time. Natural reaeration of the river beyond the pool area 

would aid in keeping conditions aerobic, thereby minimizing lead release. 



CHAPI'ER V 

CONCLUSIONS 

The following conclusions can be drawn from the results of this 

experiment work: 

1. The amount of chromium, copper, lead, and zinc released in the 

water were influence by the changing of Eh value. 

2. The amounts of all the metals released compared to the 

quantities bound in the sediment were small. 
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CHAPI'ER VI 

RECOMMENDATIONS FCR FUTURE WCRK 

The recommendations for the future work are: · 

1. To study the effects of Eh on metal solubility in systems 

containing both water and sediment from the Arkansas River. This 

would allow an investigation of the ~ffects of Eh on metal solubility 

in the presence of ligands and other ions. 

2. To study the solubility of zinc over a wider variety of Eh 

values. 

J. To study the effects of Eh on metal solubility using additional 

heavy metals commonly found polluting the aqueoas environment. 
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