
AN EXPERIMENTAL IMPLEMENTATION FOR

PREFIX B-TREE AND ASSOCIATED

DYNAMIC LISTS

BY

HWEY-HWA WUNG
0

Bachelor of Education

National Taiwan Normal University

Taipei, Taiwan

Republic of China

1978

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the Degree of
MASTER OF SCIENCE

July, 1983

. '

Th«-~is
/q1S?:>.

wq(p51G
Ccp, ~

...

AN EXPERIMENTAL IMPLEMENTATION FOR

PREFIX B-TREE AND ASSOCIATED

DYNAMIC LISTS

Thesis Approved:

Dean of ra uate College

ii 1161154 i

PREFACE

This thesis deals with an experimental implementation

of a combined B-tree indexing scheme and a buddy system for

organizing and managing key words and inverted lists

respectively. Measurements are developed to compare the

performance of buddy system variations in terms of execution

time and storage utilization.

I wish to express my sincere appreciation and thanks to

Dr. James R. Van Doren, my thesis advisor, for his

guidance, patience, encouragement, and understanding in the

preparation of this study. Gratitude is expressed to Dr.

John Chandler and Dr. Michael Folk for serving as members of

the advisory committee.

I would like to thank Terry D. Kinzie and all

programmers in the department of Agricultural Economics for

their help and understanding. Deep appreciation is also

expressed to Miss Linda Crowly for all her help in improving

the readability of this thesis.

Special appreciation is due my parents, Mr. and Mrs.

Chih-Shien Wung, and their son, Pey-Min, for their constant

love, support, and encouragement throughout my studies in

the United States.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

I I. PREFIX B-TREE INDICES . 4

·Motivation of Pref ix B-Tree Indices . . . 5
Simple Pref ix B-Trees • • • 6
Pref ix B-Trees . • . . . • . . . • . • . . 10
Evaluation of Pref ix B-Tree Indices . • . 14

III. GENERALIZATED FIBONACCI BUDDY SYSTEM 15

Dynamic Storage Allocation . . . • • . . • 16
First-Fit • • . 16
Best-Fit • • • . • . 17
Buddy-System • 18

Characteristics of Buddy System . • • 19
Original Buddy System • . • • . • . . 20
Fibonacci System • • • . • • . . • . 22
Weighted Buddy System • . . . • • 22
Generalized Fibonacci Buddy System 23
Buddy System's Variation for Disk

Allocation • • • • . • . . • . 28
Comparsion of Buddy Systems . • . . • 30

IV. PREFIX B-TREE INDEX AND ASSOCIATED DYNAMIC
LISTS IMPLEMENTATION•••.• 33

Implementation for Simple Pref ix B-Tree 34
Data Structure Design • • • • 34
Logic Design • • . • . • . . • • 35

Implementation for Dynamic Lists . • . • • 37
Data Structure Design • • • • • . 37
Implementation Design • • • • • . 42

Major Logic Design • • • • • • . • • • 45
Measure of Buddy System • • • • • . • 46

V. SUMMARY, CONCLUSION AND SUGGESTION FOR FURTHER
WORK • • • • • • • • • • • • • • • • • • • 4 9

Summary of Pref ix B-Tree Indices' • • • 49
Summary of Dynamic Lists • • • • • . . 50
Conclusion and Suggested Further Work 53

lV

Chapter Page

BIBLIOGRAPHY . 55

APPENDIX A - HIGH LEVEL PDL FOR PREFIX B-TREE
STRUCTURE AND ASSOCIATED DYNAMIC LISTS 57

APPENDIX B - LOW LEVEL PDL DESCRIPTION FOR PREFIX
B-TREE AND DYNAMIC LISTS •• • . • • • . . 65

APPENDIX C - PDL DESCRIPTION FOR MEASURE ROUTINE

APPENDIX D - TEST CASE SIZE TABLES •.•

v

84

86

LIST OF TABLES

Table

I. A Fibonacci-Like Scheme (k(i) Often 2)

II. An Irregular Scheme

I I I.

IV.

v.

Percentage Internal Fragmentation for
Buddy Systems

Percentage External Fragmentation for
Buddy Systems • •

Percentage Total Fragmentation for Buddy
Systems • • • • • • . • • • . • . •

VI. Total Number of Allocated and Released Blocks

Page

29

30

51

51

52

for Buddy Systems • • . • • • • . 52

VII. Size Tables for Binary, Fibonacci, and Weighted
Buddy Systems . . . • • . • . . • • • 86

VIII. Size Tables for Generalized Fibonacci
Buddy Systems . . . • • .

vi

87

LIST OF. FIGURES

Figure

1. (a) A Full Leaf Node of B+-Tree (b} A Insertion
of Key 'rear', Causing the Shortest Separator

Page

'res' to be Promoted to the Upper Level Node 8

2. A Mininum Shortest Separator Chosen One Key
the Right from the Split Point of Figure 3

3. A Simple Pref ix B-Tree
4. Partial Index Structure of a Simple Pref ix

B-Tree
5. Common Prefix in Simple Prefix B-Tree of

6.

7.

8.

Figure 3- •••••••••••••

Pref ix B-Tree Derived from the Simple Prefix
B-Tree of Figure 3 • • • • • • • • • • •

Hinds' Fibonacci System Storage Layout with
Left Buddy Count . • • • • • • • • • • •

An Example of Hinds' Buddy System Locating
Process

9. Data Structure for a Simple Prefix B-Tree

10.

11.

Declaration of Major Data Structures for
a Simple Pref ix B-Tree Implementation •

Logic of Handling Overflow Condition for
a Simple Pref ix B-Tree ••••••

to

.

.

12. Data Structures for Managing Fragment Space
in Using Portions of Blocks • • • • • • • •

13. Declarations of Data Structures for Managing
Fragment Space in using Portions of Blocks

14. Logic for Allocating and Releasing a Block

15. Diagram for Major Logic Models

vii

. .

. .

8

9

12

12

13

25

27

34

36

38

39

41

44

45

CHAPTER I

INTRODUCTION

As an increasing number of applications require the

assistance of electronic data processing,

information is being stored in computers.

more and more

A major goal for

computer scientists is to find efficient techniques to store

information, especially when the information is stored in

files with large, varying-size keys on secondary storage.

Many different file organization techniques have been

proposed. Most of those techniques that work well for

smaller or formatted files do not work well for larger or

minimally formatted files. The choice of a good file

organization for files with minimal formatting depends on

the efficiency of secondary storage utilization and the

speed of information retrieval.

This thesis concentrates in part on the implementation

of Prefix B-Tree, a variant of a B-tree. It has been widely

used in file management, such as IBM's VSAM, Tree-Structured

file directories, and textual databases. It has been found

to yield good performance. The management of storage space

for inverted lists associated with keys is addressed with

equal importance.

Inverted lists are the lists of all records having a

1

2

given value of some attribute. For example, in textual

databases, the inverted list of each referenced word

contains the list of addresses on which this word is

mentioned. Since the textual databases are fairly large in

practical applications, it is very important to implement an

efficient method to construct the words and associated

inverted lists. Firstly, the organization of the index of

words should be considered so as to speed up information

retrieval and save space. The simple prefix B-tree and

prefix B-tree, which are discussed in Chapter II, are very

suitable for this consideration. Secondly, the storage of

the inverted lists should be considered so as to upgrade

space utilization. The number of occurrences of a word in a

document varies from one word to another. This variability

indicates that the lengths of inverted lists are variable.

Traditionally, the associated information is stored

immediately after the keys. The use of a B-tree structure

will guarantee 50 percent storage utilization.

Nevertheless, an alternate treatment of the associated

variable-length inverted lists can further improve the

storage utilization by using the buddy system, which is

discussed in Chapter III.

An experimental implementation involving both a simple

pref ix B-tree structure and a specific dynamic storage

technique is the main topic of this thesis. The Generalized

Fibonacci Buddy System is used to manage a separate storage

area for the inverted lists. This implementation is based

on the Pref ix B-Tree of Bayer and Unterauer {l)

Generalized Fibonacci Buddy System of Hinds (11).

3

and the

Chapter II contains a discussion of the characteristics

and evalution of Pref ix B-Tree structures.

Chapter III presents the dynamic storage management

concept and examines the basic characteristics and the

dynamic storage management algorithms of the buddy systems.

The variations of the buddy systems, especially the

Generalized Fibonacci Buddy System developed by Hinds (11),

are discussed. Finally a brief comparsion of buddy systems

is addressed.

Chapter IV presents the design and implementation of

simple prefix B-trees and their associated dynamic lists.

The data structure design and the high level description of

the implementation for both the simple pref ix B-tree

structure and the dynamic storage management are included.

The final chapter is a discussion of the experimental

results, advantages, and disadvantages of this

implementation and the practicability in file management.

Possible improvement and further study are also suggested in

this chapter.

Appendices include the low and

Design Language (PDL) descriptions of

high level Program

all programs and the

test size tables used for this implementation.

CHAPTER II

PREFIX B-TREE INDICES

Fer a given file stored on an exterhal rotating memory

device such as a disk or drum, the time required to retrieve

information from the file is the main component of the total

time required to process the data. An index can speed

information retrieval by directing the search to the small

part of the file containing the desired item. The tree

structure index has been proven effective for use with large

files (6).

In 1972 Bayer and Mccreight (6) first proposed the B-

tree by increasing the branching factor of a binary tree

from two to m to cut down dramatically the number of tree

levels. Some time later, many important refinements and

variations, such as the B+-tree, simple prefix B-tree, and

prefix B-tree, were explored and have become common file

organizations for the storage · of information on secondary

storage. This chapter, which assumes that the reader is

familiar with the basic B-tree and B+-tree (5, 9, 16, 21),

centers on the simple pref ix B-tree and prefix B-tree.

These trees are good file organizations for files with large

variable-length keys.

4

5

Motivation of Pref ix B-Tree Indices

Usually, B-tree schemes are used in cases in which the

keys are of a fixed length. But in many applications, such

as in textual database environments, the keys are generally

character strings of variable length and occur in clusters.

If a B-tree structure is applied to deal with variable

length keys, some undesirable situations may be encountered.

For example, if a tree structure is set up with fixed-length

key fields, then space wasted in the key fields and/or

ambiguous decoding may occur. On the other hand, a tree

structure with variable-length key fields has the advantage

of avoiding both wasted space in the key fields and the

ambiguous decoding of· the keys, but has the disadvantage of

storing the prefixes repeatedly. Addi~ionally, in a

B+-tree, the B+-index serves merely as a guide to direct the

search to the correct leaf. It is not necessary to contain

complete keys in the index nodes if the key can be

represented partially, yet sufficiently enough to uniquely

locate it in the leaf nodes. Therefore, the key compression

techniques, front and rear compression (1, 6, 20), can be

used to eliminate those characters that are not necessary to

distinguish a key from the keys immediately adjacent to it.

This fact implies that the use of the resultant compressed

value, namely the prefix or separator, to build up the

B+-index tends to increase the degree of branching, decrease

the height of the index, and save space required by the

index. In 1977, Bayer and Unterauer (1) considered key

6

compression and proposed a refined structure, a Pref ix B

Tree, to store the prefixes in the upper index part of a

B+-tree. Two kinds of prefix B-trees, simple prefix B-trees

and pref ix B-trees, both described by Bayer and Unterauer

(1), are discussed in detail in the subsequent sections.

Simple Pref ix B-Trees

Consider the rear compression technique. Bayer and

Unterauer (1) suggest the technique of choosing the shortest

separator, instead of using the complete key, to separate

two adjacent leaf nodes so as to efficiently utilize storage

space when dealing with keys of variable length. Suppose

that a leaf in a B+-tree is full and contains the keys

'compression', 'key', 'result', 'separator', and 'short', as

shown in Figure 1. In order to insert the key 'rear', this

leaf node must be split into two. Instead of storing the

duplicated key 'result' into the upper index as usual, any

string s with the property

rear < s ~ result

can be selected for the same purpose. According to the

prefix property defined by Bayer and Unterauer (1), the one

selected in the simple pref ix B-tree approach is the prefix

of the larger key of a key pair. Its length should be as

short as possile. As mentioned by Bayer and Unterauer (1),

this technique is only allowed when the leaf node is being

split. For the index node, the same splitting technique as

used in the original B-tree is applied; that is, one of the

7

separators on that index node is moved up one level and no

further compression will be performed. Thus far, a simple

pref ix B-tree can be defined as a B•-tree in which the

B•-index is substituted by a B-tree of separators.

The purpose of choosing the shortest separators is to

decrease the length of the separators and increase the

degree of branching. This idea can be taken a step further

by scanning a small interval around the middle of a

splitting leaf to obtain a good key pair so that a mininum

length of the shortest separator can be obtained. Based

upon the example shown in Figure 1, allowing a split point

to be chosen one key to the left or to the right of the

previous spilt point yields the shortest separator 'r' or

's'. Figure 2 shows the split point chosen between 'result'

and 'separator' yields 's' as the separator. This method

can be applied to the leaf nodes as well as to the upper

level nodes.

The operations performed on a simple pref ix B-tree,

such as searching, inserting, and deleting, are similiar to

those ~erformed on a B•-tree with variable-length keys,

except that a shortest seporator will be selected when a

node is split.

An example of a simple pref ix B-tree is shown in Figure

3. The keys extracted from the test data which was used for

implementing the

inserted in the

simple pref ix

tree in the

B-tree in

following

this thesis are

random order:

suppress, support, suspicion, suspect, tamper, term, trialy,

compression key result separator short

(a)

compression key rear result separator short

(b)

Figure 1. (a) A Full Leaf Node of B•-Tree and (b) A
Insertion of Key 'rear', Causing the
Shortest Separator 'res' to be Promoted
to the Upper Level Node

compression key rear result separator short

Figure 2. A Mininum Shortest Separator Chosen One Key to
the Right from the Split Point of Figure 3b

8

9

supp, taylor, time, sustain, supra, surrounding, supreme,

surely, sued, suppressing.

SUS

I
v v

suppr.supre

I l~I
v v v

~
~

[.supr.J

v

lsupraj

IB E·§1

v
v

v

suspect
suspicion

I support I I supreme I v

v

suppress
suppressing

I sustain I
v

surely
surrounding

v

tamper
taylor

v

~
~

Figure 3. A Simple Prefix B-Tree Example

v

10

Pref ix B-Trees

Consider again the simple prefix B-tree in Figure 3.

The separators in the upper level nodes are shorter than the

full keys, but the adjacent separator pairs share the common

pref ix which is repeatedly stored in the subtrees.

Obviously, when sets of keys are in clusters, some space in

the index nodes is wasted because of the repetition of the

common prefixes. For better storage utilization and further

reduction of the height of the index part of a simple pref ix

B-tree, Bayer and Unterauer (1) proposed the prefix B-tree

which is based on the idea of storing the common pref ix in

the ancestor nodes rather than the subtrees.

For the index part of a simple prefix B-tree, suppose

that node P is an arbitrary index node and that T(P) is the

subtree of the index and leaf nodes with root P. The tree

structure can determine the largest lower bound (LL(p)) and

the smallest upper bound (SU(P)) for node P from the father

node of P. For the root node of a simple prefix B-tree,

assume the following:

LL(root} = the character string smaller than (chron
ologically preceding} any key in the tree.

SU(root} = the character string larger than (chron
ologically following) any key in the tree.

For all keys or separators stored in node P and/or subtree

T(P), the following holds:

LL(P) S k < SU(P)

LL(P} S s < SU(P)

As shown in Figure 4, in node P, p(O),p(l), . . . , p(n)

11

are pointers to the sons (index or leaf nodes) of node P and

are denoted as son P(i) for 0 ~ i ~ n. s(l), .•• , s(n) are

separators, s(n) being the last on node P. The largest

lower bound and the smallest upper bound LL(P(i)) and

SU(P(i)), respectively, of son P(i) for 0 ~ i ~ n can be

defined by Bayer and Unterauer's (1, P.17) definition.

for i = 1,2, ••• ,n,
LL(P(i))=

f s (i)

LL(p) for i = 0,

for i = 0,1, •.. ,n-l,
SU(P (i)) =

["(i)

SU(p) for l = n.

Obviously, for any keys and separators in son p (i)

there must be a common prefix c(P(i)) which can be derived

by following two steps:

1. Obtain the longest common ·pref ix c(P(i)) (possibly
the empty string) of the bound pair LL(P(i)) and
SU(P(i)) by the front compression technique.

2. Determine the final common pref ix by Bayer and
Unterauter's (1, P.17} definition.

c(P(i)) =

E(P(i))l(j) if LL(P(i)) = ~(P(i))l(j)z
SU(P(i)) = c(P(i))l(J+l), where
l(j) preceed l(j+l) immediately
in the collating sequence and z
is an arbitary string.

c(P(i)) otherwise.

The largest lower bound and/or the smallest upper bound

may be changed while performing insertions or deletions. As

a result, the partial separators must be recomputed. Thus,

the basic operations performed on a pref ix B-tree are much

m~re complicated than those of the other B-tree schemes.

As an example, again consider the tree in Figure 3.

The common prefixes, shown in Figure 5, can be derived and

12

pruned off to yield a pref ix B-tree which is illustrated in

Figure 6.

parent SU(P)

node P p(O) s(l) p(l) s(n) p(n) unused

--r,·; son son P(O) son p(l)

Figure 4. Partial Index Structure of a Simple
Pref ix B-Tree

bound pair front common
compression pref ix

suppr,supre sup sup
supre,sus SU SU

sus,t empty string s

Figure 5. Common Prefix in Simple Prefix B-Tree
of Figure 5

~
~

v

v

suppr.supre

v

v

I supra I

SUS

11
v

0-

v

suspect
suspicion

I
v

jsupportj
I supreme I

v

v

v

suppress
suppressing

jsustainj

v

surely
surrounding

v

tamper
taylor

Figure 6. Prefix B-Tree Derived from the Simple
Pref ix B-Tree of Figure 3

13

v

14

Evaluation of Pref ix B-Tree Indices

Since both simple pref ix B-tree and prefix B-tree are

variations of a B+-tree, the main advantages of the B+-tree,

such as , guaranteeing good worst-case performance, good

storage utilization, and easy sequential processing, are

preserved. The techniques of choosing the shortest

separators, pruning off prefixes, and constructing prefixes

during a search are applied on both trees. Therefore, the

number of index levels, the number of disc accesses, the

retrieval time, and the space required by both trees are

less than those of B+-tree. However, the index building and

maintenance processes are quite complicated and time

consuming, especially for the prefix B-tree.

The separators in the index nodes are of variable

length, so that the branching degree of each node depends

heavily on the internal organization of a node. Thus,

during the index building and maintenance process, the

number of separators that can be packed into a node will not

be known until the predetermining tests have been performed.

Additional internal searching time is required due to the

varying location of separators within a node. For a prefix

B-tree, additional computation time is required for both (1)

recalculating partial separators for some insertions or

deletions which may alter the common pref ix and (2)

constructing prefixes while traversing the prefix B-tree

during a search.

CHAPTER III

GENERALIZED FIBONACCI BUDDY SYSTEM

In pratical applications, various amounts of memory

space are required for accommodating many requested sets of

information (data arrays, programs, etc.) concurrently in

main memory or for storing information on secondary storage.

However, the capacity of the computer is limited. Poor

storage management may cause the available memory to be

scattered throughout the memory pool so that the computer

can not allocate space for larger contiguous memory

requests. Therefore, managing or utilizing computer

storage, both internally and externally, in an efficient

manner is one main aspect of modern computing.

Basically, there are two types of management methods:

static storage management and dynamic storage management.

Static storage management allocates the storage blocks in

fixed sizes while dynamic storage management allocates the

storage blocks in varying sizes. This chapter discusses

dynamic storage management, which is the better method for

storing variable-length lists. It focuses on one particular

category of this management -- the buddy-system method.

15

16

Dynamic Storage Allocation

Many applications need blocks of varying sizes that

share a common memory area. Dynamic storage allocation

techniques are required for dynamically allocating

(reserving) and deallocating (releasing or freeing)

variable-size blocks of contiguous memory cells from a

common storage pool.

Obviously, storage blocks are divided into two classes:

free and reserved. When an area of n consecutive free space

is requested, a block of the appropriate size is selected

from the common storage pool and becomes a reserved block.

When a reserved block is released, this block is returned to

the common storage pool and becomes a free block. These

processes are the fundamental concepts of allocation and

deallocation. Based upon these ideas, several methods for

dynamic storage allocation have been published. The various

methods follow different procedures for gaining an available

block and returning the excess storage of this block. Some

common methods are given in this section. It is intended

that this section explains why the buddy system is chosen to

manage a separate memory space for information associated

with words in the Pref ix B-Tree experimental implementation.

First-Fit

In the first-fit policy, the free blocks are linked

into a circular list in some order, such as in ascending or

descending order of block addresses, in order of block size,

or in random order.

17

When a r~quest for a block of size n

words is serviced, a search is made along the free ring

until the first block of size m ~ n encountered. This block

is then detached from the list. The starting search point

can be the beginning of a free list, or it can circulate to

the right around the ring. If m >> n, the block is split

into two small blocks, one of size n, which is marked as

reserved and satisfies the request, and one of size m-n,

which is marked as free and is put back on the available

list. When a block is liberated, an attempt to coalesce

this block with its neighbors is made to form a larger free

block. The resulting, and possibly enlarged, free block is

put back on the free list. Sufficient information, such as

block size and block class (free or reserved), must be

carried in each block for the operation of coalescence (15).

Best-Fit

The best-fit method, like the previous method, employs

a circular list of all available blocks. When a block is

requested, a search of the entire list is performed to find

the smallest block that is large enough to fulfill the

request. The excess part of the block, if any, is put back

on the free list. When a block is liberated, the same

coalescing technique as used in the first-fit method is

applied.

18

Buddy-System

This scheme breaks memory into blocks of prescribed

sizes, such as blocks whose sizes are powers of two or

blocks whose sizes are numbers in the Fibonacci sequence.

Blocks with sizes in these sequence schemes can be split

into two smaller blocks, namely buddies, whose sizes are

also numbers in the sequence. schemes and also can be

reconstituted if and when both buddies are simultaneously

free. Additionally, the free blocks of the various sizes

are placed on the doubly linked lists of blocks of the same

size. Therefore, when a block is allocated, only the

available list containing blocks of sizes equal to the

requested size is examined. If this list is not found, then

list with the next larger block size is examined. As stated

in Hinds' (11, p.221) article, the following actions are

performed when the operation of allocation or deallocation

is encountered.

A: To satisfy a storage request

1. The smallest block of storage that is at
big as the request is selected as the
block.

least as
candidate

2. The candidate is checked for size and, if large
enough, is split into two smaller blocks (buddies)~
otherwise the candidate block is returned as the
block satisfying the request and the algorithm
terminates.

3. One of the buddies (the smaller of the two, if
possible) is selected as the new candidate and the
other is inserted into the free storage pool. The
algorithm then proceeds from A.2.

B: To return a block to the storage pool

19

1. The buddy of the newly returned block is located.

2. The buddy is inspected to see that it is whole (not
split into subbuddies) and free. if both conditions
are met, the the buddy is removed from free storage
and merged with the newly returned block to create
a larger block. This larger block is then taken as
the newly returned block and execution proceeds
with B.l.

3. If it is impossible to merge, then the newly
returned block is returned to the free storage area
and the algorithm terminates.

Since the buddy system manages blocks of storage on

separate availability lists rather than managing a single

availability list as the other methods do, the number of

searches per request of the buddy system is less than those

of other dynamic storage methods. Thus, use of the buddy

system on secondary storage is motivated by the speed of

finding a block and by

deallocating a block.

the speed of allocating and

Characteristics of Buddy System

The buddy system was first published by Knowlton (14)

in 1965. It was used for the storage bookkeeping method in

the Bell Telephone Laboratories Low Level List Language.

Since that time, there have been evolutionary systems

developed from Knowlton's original buddy system. Such

systems differ to some extent but all are similiar in many

features. Such features are as follows:

1. Memory is broken into many sizes of blocks that are
fixed in size and location.

2. Each block size has its own separate availability
list.

20

3. The basic structures for the allocation and
deallocation algorithms are the same.

The major differences are the sizes of the memory blocks

provided and the consequent address calculation for locating

the buddy of a released block.

As stated in the preceeding section, the buddy system

has a time performance advantage over other dynamic methods.

This advantage, however, is achieved at the e~pense of low

level storage utilization due to internal fragmentation and

external fragmentation. The other dynamic methods are

subject to external fragmentation alone. Internal

fragmentation refers to unused storage that dwells inside

the reserved blocks, whereas external fragmentation refers

to free blocks that are unable to service requests because

they are of insufficient size.

Original Buddy System

In Knowlton's original buddy system, namely the binary

buddy system, the lengths of the blocks are of powers of two

and contain two control fields and/or two link fields,

forward links and backward links. One control field, TAG,

is used to indicate if the block is free or in use. If the

block is free the two links are provided to link free blocks

into a ring. Otherwise, the space for the links is used for

storing information. The other control field, ISIZE, used

to contain the base 2 logarithm of the block size. When a

block is requested or liberated, the algoritms presented in

the preceeding section are used.

21

The buddy location process is relatively simple.

Suppose the entire pool of memory space consists of 2m

words, which are assumed to have relative addresses 0

through 2m - 1. ~ The block address for a block of size 2 is

a binary number in which the last k bits are zero. For

example, a block of size 16 has an address of the form

bb ••• bOOOO (where the b's represent either 0 or 1). If it is

split, the newly formed buddies of size 8 have the addresses

bb ••• bOOOO and bb ..• blOOO. Hence, given the address

bb ••• bOOO of a block of size 8, the address of its binary

buddy can be obtained by complementing the fourth bit from

the last bit. In general, given the address of a block of

the address of its buddy is obtained by

complementing the (k+l)st bit from the last.

Since storage is allocated in blocks of fixed, uniform

size by the buddy system, a request for memory is forced to

be rounded up to nearest block size. Therefore, unusable

memory occurs in fragments both internal and external to the

allocated blocks. Internal fragmentation, however, poses a

larger problem than external fragmentation (19). Generally

speaking, the more different-size blocks there are

available, the less internal fragmentation there should be.

Hence, this leads to investigations into methods that allow

more block sizes, such as the Fibonacci system by Hirschberg

(12), the weighted buddy system by Shen and Peterson (22),

and the generalized Fibonacci buddy· system by Hinds (11).

22

Fibonacci System

The sequence

0, 1, 1, 2, 3, -5, 8, 13, 21, 34, ... ,

in which each number is the sum of the preceeding two, was

originated in 1202 by Leonardo Fibonacci. The numbers in

the sequence are denoted by F(n), and are formally defined

as

F(O) = 0, F(l) = 1,

F(n+2) = F(n+l) + F(n) n <::. 0.

This sequence was given the name "Fibonacci Numbers" by a

mathematician named E. Lucas during the 19th century. The

name has been used ever since (15).

Based upon the Fibonacci number, a new system, namely

the Fibonacci system, was introduced by Hirschberg (12) in

1973. This system possesses the basic characteristics of

the buddy system. It has, however, its own set of

permissible block sizes, which are based on the numbers in

the Fibonacci sequence, and its own buddy locating process.

Since the calculation of the possible starting addresses of

the buddies needs three extra auxiliary lists and is a time-

consuming computation, the buddy locating process is not

addressed 1n this thesis.

Weighted Buddy System

The weighted buddy system, introduced by Shen and

Peterson (22) in 1974, permits block sizes of 2K, O $ k $ m,
K and 3·2 , 0 $ k $ m-2. In this system there are nearly

23

twice as many block sizes as there are available in a binary

buddy system. As suggested by Shen and Peterson (22), the

blocks are split in two different ways depending on the size

of the block to be split: (1) a block of size 2~+ 2 is split

into two blocks of sizes 3·2K and 2K, or (2) a block of size

3·2k is split into two blocks of sizes 2~· 1 and 2K.

To distinguish these different kinds of splits, a two

bit TYPE field is encoded in each block:

TYPE(P) = 11 if the block with address p is split from
a 21< size bl,ock,

= 01 if the block with address p is the left
split from a 3. 2" block,

= 10 if the block with address p is the right
split from a 3 · 2 K block.

Given the size k and the address x of the block, the

address calculation for the buddy of this block is defined

as: (22, p.560)

buddy (x) = x + 3·2K if x mod 2~+ 2 =0 and TYPE(x)=ll,

= x + 2~ if TYPE(x)=Ol,

= x - 2K+l if TYPE(x)=lO.

;;;
=3·2 and TYPE(x)=ll,

Generalized Fibonacci Buddy System

In 1975, a generalized Fibonacci buddy system was

published by Hinds (11). There are two innovations in this

system. The first is that block sizes are allowed to be

elements of an arbitrary (but fixed) generalized Fibonacci

sequence. The sequence has the form

F(n) = F(n-1) + F(n-k)

24

Thus, any. sequence for a buddy system can be completely

generalized by choosing k and F(i) (0 sis k-1). For

instance, k=l and F(O)=l yield the original buddy block

sizes:

1, 2, 4, 8, 16, 32,

K=2, F(0)=3, and F(l)=S yield the Hirschberg's Fibonacci

buddy block sizes:

3, 5, 8, 13, 21, 34, •.•

The second innovation is a very simple and efficient

technique for locating buddies by using the concept of Left

Buddy-Count (LBC).

The LBC can be described as follows. Suppose that an

arbitrary Fibonacci sequence has been picked and is to be

used on a storage pool. After a period of time in which
.

allocations and liberations have taken place, the pool may

be broken up and the resulting storage block with the LBC

field would appear as shown in Figure 7. As stated by Hinds

(10), each vertical line indicates the start of a block,

each horizontal line indicates a split and also points to

the right-hand buddy. Additionally, this diagram indicates

exactly what merges would have to take place and what blocks

are to be inspected to achieve the merges. Thus, to make

the merging process easy, the number of splits a block has

undergone, since it was created,

blocks at the time of a split.

Left-Buddy-Count (LBC).

must be encoded into the

This number is called the

The LBC is utilized with the other attributes of a

25

block, such as FREE, ISIZE, and K. The FREE field is a

boolean value indicating the availability of a block. The

ISIZE field is an index into a vector SIZE containing the

actual size of the block. K is a constant used to locate

buddies and assign proper sizes during a split. When a

block of size F(n) is split, the block of size F(n-1) is the

left buddy and the block of size F(n-k) is the right buddy.

0

I I
v 1 v 0

h v 2 v 0 v 0

Highest
address

Figure 7. Hinds' Fibonacci System Storage Layout
with Left Buddy Count

According to Hinds' (11, P.222) definition, to assign

the proper LBC to a block, let the LBC of the entire storage

pool be 0 at the beginning. During any split of a parent

block, assign to the newly created blocks:

26

LBC(right) = 0

LBC(left) = LBC(parent) - 1

For a merge the reverse relation is used:

LBC(parent)= LBC(left) - 1

Therefore, the determination of the relative location of a

buddy is easily done by testing the LBC. If LBC=O it is a

right buddy; otherwise, it is a left buddy. To locate

buddies, the following formules are used:

For the left-handed buddy

ISIZE = liberated block's ISIZE + K - 1
address = liberated block's address -

SIZE(left-handed buddy's ISIZE)

For the right-handed buddy

ISIZE = liberated block's ISIZE - K + 1
address= liberated block's address +

SIZE(liberated block's ISIZE)

For example, as shown in Figure 8, if block A whose

address, ISIZE, and LBC are 50, 3, and 0, respectively, is

liberated the following steps are performed:

1. Test LBC(A) to determine if its buddy is a left
handed buddy.

2. Compute ISIZE for the left-handed buddy
ISIZE = 3 + k - 1 = 4

3. Compute address for the left-handed buddy
address = 50 - SIZE(4) = 0

On the other hand, if block C whose address, ISIZE, and LBC

are 0, 3, and 2, respectively, is liberated, the address and

ISIZE of its buddy are computed as follows:

1. Since LBC(C) > 0, its buddy is right-handed.

2. ISIZE of C's buddy = 3 - k + 1 = 2

3. address of C's buddy= 0 + SIZE(3) = 30

27

c B A

2 v 0 v 0

0 30 50 80

SIZE = 10, 20, 30, 50, 80
k = 2

Figure 8. An Example of Hinds' Buddy System Buddy
Locating Process.

When merging two buddies together, two conditions

should be confirmed: both buddies are simultaneously free,

and both are not subdivided. As an example consider the

storage layout in Figure 8. Block A can not be merged with

its buddy because its buddy is already divided into block B

and block c.

28

Buddy System's Variation for Disk Allocation

Secondary storage has traditionally been managed with a

static storage technique. The buddy system has been proven

effective in internal storage (15). Therefore, Burton (3)

was interested in the buddy system for possible application

on secondary storage. However, in Hinds' buddy system the

block sizes are the form F(n) = F(n-1) + F(n-k) where k is- a

simple constant. This method tends to be unsuitable for disc

storage ailocation since logical blocks often overlap the

boundaries of physical blocks, such as sectors, tracks,

cylinders, and disc packs. Hence, in 1975, Burton (3)

improved this method by selecting a meaningful integral

value function k, so that the set of permitted block sizes

are the form F(n) = F(n-1) + F(n-k(n)).

The merits of Burton's (3, P.416) improvement are as

follows:

1. It is possible to prevent any logical block from
overlapping the boundary of any physical block
which is larger than the logical block.

2. Any sequence of block sizes may be allowed.

These merits can be illustrated by Burton's (3, P.417)

examples. Suppose that some ICL discs have 128 words per

sector, 1024 words per track, and 10,240 words per cylinder.

Table I shows one sequence of block sizes which insures that

every physical block is also a logical block. Table II

illustrates how, if need be, blocks of size 50 and 150 could

be provided while using the ICL discs.

The splitting and coalescing processes can be performed

29

in the usual manner. However, the k in this new variation

of the buddy system is a function rather than a constant.

Thus, a new problem of determining the size of the buddy of

a right block occurs during coalescing. To solve this

problem, Burton (3) introduces a new field, called the I-

field, to the control word of each block. The information

contained in the I-field concerns the sizes of the buddies

of the right blocks. For a right block, the I-field

contains the index of the size of the block's buddy. For a

left block, the I-field contains the value of the I-field of

its parent block. Consequently, the size of a right block's

buddy can be preserved when the block is split.

TABLE I

A FIBONACCI-LIKE SCHEME (k (i) OFTEN 2)

i SIZE (i) k (i)

0 16
1 32 1
2 48 2
3 80 2
4 128 2
5 256 1
6 384 2
7 640 2
8 1024 2
9 2048 1
10 4096 1
11 6144 2
12 10240 2

30

TABLE II

AN IRREGULAR SCHEME

i SIZE(i) k (i)

0 22
1 28
2 50 2
3 78 2
4 106 3
5 128 5
6 150 6
7 256 3
8 384 3
9 640 2

10 1024 2
11 2048 l
12 4096 l
13 6144 2
14 10240 2

Comparison of Buddy Systems

There are two properties, running time and storage

utilization effectiveness, which are important for a buddy

system. The running time is determined by the number of

blocks which are split and recombined. The efficiency of

storage management is analyzed in terms of internal and

external fragmentation. When a requested block size is not

equal to one of the provided block sizes, it is necessary to

31

allocate the next larger block size for this request. The

sum of unusable memory due to this overallocation over all

allocated blocks is referred to as internal fragmentation.

Memory overflow occurs when the requests can not be

satisfied because the available blocks are of insufficient

sizes. The ratio of the amount of unallocatable memory to

the total memory size is ref erred to as external

fragmentation. Since the external fiagmentation is a

proportion of total memory and the internal fragmentation is

a proportion of allocated memory, total fragmentation should

be computed as follows:

total = (1-external) * internal + external

According to these measures, a simulation of four buddy

systems (binary, Fibonacci, weighted, and tha F-2 buddy __

system based on the recurrence relation F(n+l)=F(n)+F(n-2})

was conducted by Peterson (18) in 1977 to obtain comparative

values of internal, external, and total fragmentation as

well as the average numbers of splits and recombinations.

Note that two kinds of distributions,· uniform and

exponential, were used to generate the sequence of requests

in this simulation. The comparative simulation results show

that as internal fragmentation decreases, external

fragmentation increases. This occurs because an increased

number of different block sizes, such as those in the

weighted and F-2 buddy systems, will result in a smaller

intrablock difference (F(n) - F(n-1)). Therefore, a better

fit to the requested block size can be made to yield lower

32

internal fragmentation. This also tends to increase the

number of smaller available blocks which are less useful

than the larger blocks provided by the binary and Fibonacci

buddy systems. These small and unusable but available

blocks contribute to higher external. fragmentation.

However, the total fragmentation for those buddy systems is

relatively constant, resulting in 25 to 40 percent of the

memory being wasted. The running time increases with an

increase in external fragmentation.

The amount of internal and external fragmentation in a

buddy system depends heavily on the distribution of requests

for memory and the block sizes provided.

to change the memory distribution to match

method. But, it wculd be possible for a

generate a sequence of numbers more closely

storage allocation requirement.

It is impossible

the allocation

buddy system to

matched to the

CHAPTER IV

PREFIX B-TREE INDEX AND ASSOCIATED

DYNAMIC LISTS IMPLEMENTATION

An experimental implementation

tree and a dynamic storage method

chapter. A simple prefix B-tree

storing the variable-length words.

for a simple pref ix B

is presented in this

structure is set up for

One extension of Hinds'

and Burton's generalized Fibonacci buddy system is the

system used to deal with inverted lists which are associated

with words. Program Design Language (PDL) descriptions of

this implementation are available in the appendices.

The implementation language for this project is PL/I.

In PL/I, a REGIONAL organization of a data set divides the

data set into regions and permits the users to control the

physical placement of regions in the data set. Because of

these features,

implementation.

relative address files are used in this

Each physical region will be treated as

either one leaf node or index node in the tree structure or

one common storage pool in the buddy system. The efficiency

of storage utilization, data transmission time, and internal

searching time depend on the region size. This thesis will

not study th~ topic of region size any futher and fixes the

size to 1024 bytes.

33

34

Implementation for Simple Pref ix B-Tree

Data Structure Design

The PL/I relative address file used for the tree

structure portion is called TREE. Since both the actual

keys in the index nodes and the separators in the leaf nodes

are variable in length, some additional information must be

kept in each node so that the fields and key values can be

located correctly. The data structures of the leaf nodes

and the index nodes are shown in Figure 9. Figure 10

presents the declarations of major data structures.

IUB NPW p(O)l(l)pw(l)p(l)l(2)pw(2) ... l(i)pw(i)p(i) unuse

INDEX
PART

LEAF PART

/

/

HORI LUB NW l(l)w(l)p(l)l(2)w(2)p(2) .•• l(j)w(j)p(j) unuse

Figure 9. Data Structures for a Simple Pref ix B-Tree

35

The index node and leaf node are called I REG and

L_REG, respectively. Both I REG and L REG are vectors of

bytes that hold regions of information stored in the TREE.

The additional information kept in I_REG includes IUB, NPW,

and l(i), which represent the number of bytes unused, the

number of separators stored within this index node, and the

length of separators pw(i), respectively. Likewise, LUB,

NW, and l(j) in the leaf node represent the number of bytes

unused, the number of actual words stored within the leaf

node, and the length of w(j), respectively. In the index

nodes, p(i) is a pointer to a descendant node as usual.

However, in the leaf node, p(j) is a pointer to the inverted

list associated with w(j). Since each physical region in

the relative address file is identified by a region number,

IREG NUM or LREG NUM is used to represent the region number,

depending on whether this region is used as an index node or

leaf node. IREG DISP and LREG DISP are the offset within

I REG and L REG, respectively. - - Except when a node is being

searched and updated, I_INFO, L_INFO, RPOINT, and APOINT are

dynamically based on I_REG(IREG_DISP), L_REG(LREG_DISP),

I_REG(IREG_DISP+2+PW_LEN), and L_REG(LREG_DISP+2+WORD_LEN)

accordingly.

Logical Design

This implementation centers on the random insertion

process of building and maintaining a simple pref ix B-tree

structure. Therefore, only the insertion algorithm is

36

designed. The overflow condition is handled by simply

splitting the overflow node into two or by attempting to

share the overflow node with one of its brothers. When a

node shares with its brother, the right brother is used

unless it is full, in which case the left brother is used.

TREE FILE RECORD ENVIRONMENT(REGIONAL(l),RECSIZE(l024));

I REG(l024)
L=REG(l024)

CHAR(l);
CHAR(l);

1 I HEAD BASED(I REG(l)), - 2 I UNUSE BYTE FIXED BIN(l5,0),
2 NUM PW FIXED BIN(l5,0);

1 L HEAD BASED(L_REG(l)), - 2 HORIZONTAL FIXED BIN(l5,0),
2 L UNUSE BYTE FIXED BIN(l5,0),
2 NUM WORD FIXED BIN(l5,0);

1 I INFO BASED(I REG(IREG DISP)),
-2 LPOINT - -FIXED BIN(l5,0),

2 PW LEN FIXED BIN(l5,0),
2 PART WORD CHAR(200);

RPO INT BASED(I_REG(IREG_DISP+2+PW LEN))FIXED BIN(l5,0);

1 L INFO BASED(L REG(LREG DISP)),
2 WORD LEN - -FIXED BIN (15 I 0),
2 WORD- CHAR(200);

1 APOINT BASED(L REG(LREG DISP+2+WORD LEN)),
2 REG - -BIT(B), -
2 DISP BIT(B);

!REG NUM,LREG NUM
IREG=DISP,LREG_DISP

FIXED BIN(l5,0);
FIXED BIN(l5,0);

Figure 10. Declaration of Major data Structures for
a Simple Pref ix B-Tree

37

Refer to Figure 11 for the following discussion. Since

the technique of choosing the shortest separator is used

only for splitting leaves, the split and equalization

procedures of a lowest level node are different from those

of an upper level node. When an index node is being split,

one of the separators in that node is moved up one level in

the tree. Consequently, the split and equalization

procedures of an index node are more complicated than those

of a leaf node.

Since the separators are of variable length, overflows

may trigger further splits, merges, or overflows if a

separator in the parent node is replaced by a longer or

shorter separator. However, such a condition occurs

infrequently. Thus, for simplification, such a condition is

treated as a equalization failure if it is detected.

Implementation for Dynamic Lists

Data Structure Design

The separate space for inverted lists is a relative

address file named ADRS. The physical region in ADRS is

called ADDR_REG, which is a vector of words that hold the

inverted lists stored in ADRS. For simplification, this

implementation uses four bytes for each address. Since the

inverted lists are variable in length, several inverted

lists may share an ADDR REG or one inverted list may cross

one or more ADDR REGs. Therefore, the starting point of

each inverted list in ADDR REG is not fixed. As shown in

INDX UPDATE: PROCEDURE;
IF OVERFLOW NODE HAS RIGHT BROTHER

THEN CALL EQUAL LEAF, IF SUCCEEDS THEN RETURN;
IF OVERFLOW NODE HAS-LEFT BROTHER

THEN CALL EQUAL LEAF, IF SUCCEEDS THEN RETURN;
CALL SPLIT LEAF; -

38

DO WHILE(CURRENT OVERFLOW NODE IS NOT ROOT NODE);
PROPAGATE THE SHORTEST SEPARATOR INTO PARENT NODE;
IF PARENT NODE IS NOT FULL THEN RETURN;

END;

SET PARENT NODE TO OVERFLOW NODE;
IF OVERFLOW NODE HAS RIGHT BROTHER

THEN CALL EQUAL INDX, IF SUCCEEDS THEN RETURN;
IF OVERFLOW NODE HAS LEFT BROTHER

THEN CALL EQUAL INDX, IF SUCCEEDS THEN RETURN;
CALL SPLIT_INDX; -

CREATE A NEW ROOT NODE;
END INDX_UPDATE;

SPLIT LEAF: PREOCEDURE;
FIND THE SPLIT POINT WITHIN A CERTAIN INTERVAL;
SPLIT OVERFLOW NODE INTO TWO LEAF NODES;
COMPUTE THE SHORTEST SEPARATOR BETWEEN THESE NEW

CREATED LEAF NODES:
END SPLIT_LEAF;

SPLIT.INDX: PRQC~DURE;
FIND THE SPLIT POINT WITHIN A CERTAIN INTERVAL;
PUT SEPARATORS BEFORE SPLIT POINT IN ONE INDEX NODE;
SET THE SEPARATOR ON THE SPLIT POINT TO THE SHORTEST

SEPARATOR TO BE PROPAGATED;
PUT THE REST SEPARATORS IN ANOTHER INDEX NODE;

END SPLIT_INDX;

EQUAL LEAF: PROCEDURE;
IF TOTAL LENGTH OF OVERFLOW NODE AND ITS BROTHER IS

GREATER THAN TWO TIMES OF REGION SIZE THEN RETURN;
COMBINE OVERFLOW NODE AND ITS BROTHER I~TO TOTAL NODE;
FIND SPLIT POINT AND SPLIT TOTAL NODE INTO TWO LEAVES;
COMPUTE AND UPDATE THE SHORTEST SEPARATOR BETWEEN THESE

NEW CREATED LEAF NODES;
END EQUAL_LEAF;

EQUAL INDX: PROCEDURE;
IF TOTAL LENGTH OF OVERFLOW NODE AND ITS BROTHER IS

GREATER THAN TWO TIMES OF REGION SIZE THEN RETURN;
COMBINE OVERFLOW NODE, ITS BROTHER, AND THEIR SEPARATOR

INTO TOTAL NODE;
FIND SPLIT POINT, SPLIT TOTAL NODE INTO TWO INDEX NODES,

AND UPDATE THE SEPARATOR IN THE PARENT NODE;
END EQUAL_INDX;

Figure 11. Logic of Handling Overflow Condition for
a Simple Pref ix B-Tree

39

Figure 9, the pointer, p(j), in the leaf nodes consists of

the relative region number REG and the offset within the

region named DISP. Ref er to Figure 12 for more details

concerning inverted lists.

LEAF NODE

HORI LUB NW 1(1)w(~)l(2)w(2)p(2~)-·_·_· __ l_(J-·)_w_(_j_)p--(J-·) __ u......,nuse

v

con-!linkl free
trol I block Icon-, NA I

trol
inverted
list

(unspanned record)

I
v

con-1 NA I inverted I SP
jtrol list (continued)
.______ _____ 11

(spanned record) .

I
v

con-,NAI i~verted I
trol list lcon-,NAI

trol
inverted
list(end) I ...

Figure 12. Data Structure for Managing Fragment Space in
Using Portions of Blocks

The major data structure of the dynamic lists is HEADER

and is stored in the first region of ADRS.

40

It is a

structure that contains all pertinent run information that

must be saved for future reuse. It contains SIZE_NUM, which

is the number of different block sizes allowed in a common

storage pool, and an available space list (SIZE_TABLE),

which keeps t~ack of all available blocks of storage. SIZE

contains the various allowable block sizes in increasing

order. K is the corresponding generalized Fibonacci factor.

SLLINK and SRLINK are the left and right links for the

headers of the availability lists. With respect to the

particular application, additional information, such as

ROOT, NEXT_TREE_REG, and NEXT ADDR_REG, must be kept to

indicate the region number of the root node, of the next

available region for the tree structure, and of the next

available region for the inverted lists. The declarations

for the data structures used in the dynamic lists

implementation are listed in Figure 13.

Each block needs one word for control purpose.

Moreover, the free blocks need one more word for left and

right links which link the blocks to the doubly linked

available lists. Therefore, two based arrays, CONTROL_FIELD

and LINK_FIELD, are used to redefine the control field

and/or link field for a particular purpose. CONTROL_FIELD,

which is based on ADDR_REG(O), has four elementary items.

FREE, LBC, and !SIZE have the same purpose as in Hinds' (11)

article.

article.

!FIELD corresponds to the I-field in Burton's (3)

LINK_FIELD, based on ADDR_REG(O), contains the

ADRS FILE RECORD ENVIRONMENT(REGIONAL(l),RECSIZE(1024));

ADDR REG(0:255)
ADDR-REGB(0:255)
ADDR-REGS(0:255)

1 HEADER,

FIXED BIN(31,0);
FIXED BIN(31,0);
FIXED BIN(31,0);

2 ROOT FIXED BIN(l5,0),
2 NEXT TREE REG FIXED BIN(lS,O),
2 NEXT-ADDR-REG FIXED BIN(l5,0),
2 SIZE-NUM - FIXED BIN(lS,0),
2 SIZE-TABLE(-1:-SIZE NUM),

3 SIZE FIXED BIN(lS,0),
3 K FIXED BIN(lS,0),
3 SLLINK,

4 SL REG BI T (8) ,
4 SLDISP BIT(8),

3 SRLINK, -
4 SRREG BIT(8),
4 SRDISP BIT(8);

1 CONTROL FIELD(0:255)
2 FREE-
2 · IFIELD
2 LBC
2 I SIZE

1 LINK FIELD(0:255)
2 LLINK,

3 LREG
3 LDISP

2 RLINK,
3 RREG
3 RDISP

1 LINK FIELDB(0:255)
2 LLINKB,

3 LREGB
3 LDISPB

2 RLINKB,
3 RREGB
3 RDISPB

1 SPAN PT
2 DUMMY
2 AREG REGS
2 AREG-DISPS

1 ADDR FIELD
2 NUM ADDR
2 ADDRESS(254)

BASED(ADDR_REG(O)),
BIT(l),
BIT(7),
BIT(8),
FIXED BIN(lS,0);

BASED(ADDR_REG(O)),

BIT(8),
BIT(8),

BIT(8),
BIT(8);

BASED(ADDR_REGB(O)),

BIT(8),
BIT(8),

BIT(8),
BIT(8);

BASED(ADDR REGS(255)),
CHAR(2), -
BIT(8),
BIT(8);

BASED(ADDR REG(AREG DISP+l)),
FIXED BIN(lS,0), -
FIXED BIN(31,0);

Figure 13. Declaractions of Data Structures for Managing
Fragment Space in Using Portions of Blocks

41

42

left link and the right link, LLINK and RLINK, respectively.

The other major data structure is ADDR_INFO, which is

dynamically based on ADDR REG(AREG_DISP+l) and has two

elementary items. NUM ADDR indicates the number of

addresses contained in the block. ADDRESS is a vector of

words that hold the addresses in the block. The purpose of

ADDR INFO is to allow the access of a inverted list.

With the exception of inserting and deleting blocks

from the avaialability lists, the link fields of the

processed block and its forward or backward block which

links or will be linked to the processed block need to be in

internal memory simulanteously. If both blocks are not in

the same region another vector, ADDR REGB, is needed to hold

the forward or backward block. . ·--Likewise, ADDR REGB has a

based array named LINK FIELDB serving the same linking

function as LINK FIELD. Additionally, the vector ADDR REGS

is needed for holding the portions of a spanned record (a

record which crosses more than one ADDR_REGs). SPAN PT is a

pointer based oh ADDR REGS(255) and pointing to the next

additional blocki·

Implementation Design

This implementation will allow no more than 64 physical

regions for the inverted lists. The NEXT ADDR REG keeps

track of all available physical regions. One of these

regions is used for HEADER and is kept in internal memory

until all requests are processed. Initially, there is only

43

one block of size 210 attached to the availabl~ space list

at the bottom. As requests for blocks arrive, a block

sufficiently large is split. If this split block is the

block of size 210 the next available region is attached to

the list header; New available blocks and blocks desired

for satisfying requests are attached to and removed from the

front of the appropriate list, as in a stack. Since each

block contains four bytes for the control word, two bytes

for the number of addresses included in the block, and four

bytes for each address, the block size is at least ten

bytes. It is impossible to start a block at the last word

of a region. Therefore the purpose for setting a link to

the last word of a region is to distinguish whether this

link points to a list header or a free block.

When an address is desired for adding to an existing

inverted list and the current address block containing this

list does not have enough room for the new address, the

current address block is returned to the memory pool and the

next larger block is fetched. Figure 14 shows the logic of

releasing and allocating a block. The largest block can

only contain 254 addresses. If an inverted list has more

than 254 addresses, the excess addresses are spanned to

additional regions and pointers are planted to these

regions. The NA field of the first region of a spanned

record contains the total number of addresses in the

inverted list while the NA fields of the additional regions

contain the number of addresses in the individual region or

44

block. Therefore spanned and unspanned records can be

identified by testing the NA of the blocks pointed to by the

pointers associated with words.

ALLOCATE:PROCEDURE;
SEARCH THE AVAILABILITY LISTS FOR A CANDIDATE BLOCK;
IF THERE IS NO CANDIDATE BLOCK THEN STOP;
DELETE THE CANDIDATE FROM THE AVAILABILITY LIST;
DO FOREVER;

IF CANDIDATE CAN NOT BE SPLIT INTO BUDDIES THEN RETURN;
IF REQUEST SIZE IS GREATER THAN THE BUDDIES CREATED BY

SPLITTING CANDIDATE BLOCK THEN RETURN;
SPLIT CANDIDATE INTO BUDDIES;
IF ONE OF BUDDIES CAN SATISFY THE REQUEST

END;
END ALLOCATE;

THEN MAKE IT AS THE NEW CANDIDATE AND PUT THE
OTHER ON ITS AVAILABILITY LIST;

RELEASE:PROCEDURE;
DO FOREVER;

IF CANDIDATE IS THE LARGEST BLOCK THE PUT IT ON ITS
AVAILABILITY LIST, RETURN;

FIND THE BUDDY OF CANDIDATE;
IF BUDDY IS FREE AND WHOLE

END;
END RELEASE;

THEN DELETE BUDDY FROM THE AVAILABILITY LIST
AND COALESCE WITH CANDIDATE;

ELSE RETURN;

Figure 14. Logic for Allocating and Releasing a Block

45

Major Logic Design

Both low and high level PDL of the logic used with this

implementation are contained in Appendices A and B. An

invocation diagram for the important modules is displayed in

Figure 15.

j I NIT-TREE j <;----[s_rMP_LE l~J _____ S> j sEARCH-INnx j

- £>-I SEARCH-LEAF I

v v

l'INSETADDRI I I IINSETWORDI l
v V v ~1 --~NDX-UPDATE,1

§LEAS~ ~LLOCi~ I v v
SPLIT- EQUAL-
INDX INDX

v

DELETE
BUDDY

v v

I INSERT I

v

DELETE
CAND

v v

SPLIT
LEAF

EQUAL
LEAF

Figure 15. Diagram for Major Logic Models

The SIMPLE routine is responsible for setting up or

46

maintaining a simple prefix B-tree. If it is to build a new

tree the INIT_TREE routine is invoked; otherwise, the SIMPLE

routine reads the information concerning the existing tree

into HEADER. The SEARCH INDX and SEARCH LEAF routines are

used to find the position of the search word. If the search

word is a new word the INSERT WORD routine is invoked;

otherwise, the INSERT ADDR routine is performed. The

INDX UPDATE routine is responsible for handling overflow

conditions. The ALLOCATE routine allocates a block of

storage large enough to satisfy the request size. The

RELEASE routine coalesces the buddies if possible and then

liberates blocks of storge that have been allocated.

The block allocated for a requested size is always

removed from the front of the availability list while the

buddy of the released block is deleted from any location in

the list. Therefore, the ALLOCATE and RELEASE routines have

their own deletion routines, DELETE CAND and DELETE BUDDY.

The INSERT routine invoked by both ALLOCATE and RELEASE

attaches a free block to the front of the appropriate list.

Measure of Buddy System

The performance of buddy systems depends upon execution

time and memory utilization. Since this implementation only

inserts new words or addresses into the tree, recombinations

are seldom encountered. The measure of execution time is

the number of blocks aJlocated and released, instead of the

number of splits and recombinations. Two arrays, ALLOC and

47

DEALL, are used to keep this information. ALLOC will be

incremented by one when a requested block is allocated by

invoking ALLOCATE. Likewise, DEALL will be incremented by

one when the RELEASE routine is performed to release a

block.

The measures of memory utilization are the same as in

Peterson's (18) article. The INTERNAL routine traverses the

simple pref ix B-tree in sequential order and computes the

overallocated space of the inverted lists. The EXTERNAL

routine searches the available space list to find all the

available blocks on the separate availability lists. The

PDL of these two routines is contained in the Appendix c.
This implementation addresses memory utilization in a

staged fashion. Initially, the number of available physical

regions is set to ten. When these regions have been

depleted, SIMPLE invokes both INTERNAL and EXTERNAL routines

to compute and report the internal and external

fragmentation, then increases the available regions by

increments of ten. The fragmentation-measuring procedures

execute recursively until all the test data is processed.

Finally, SIMPLE reports the total number of blocks allocated

and released.

For a comparison of the buddy systems' performances,

seven different size tables, shown in Appendix D, are used.

Four are generalized Fibonacci buddy sequences, namely GF-1,

GF-2, GF-3, and GF-4. The others are the binary, Fibonacci,

and weighted buddy systems. The test data contains fourteen

48

and bytes for each word, two bytes for the document number,

five bytes for the word number within the document.

sorted on word number to scramble the word order

It is

for the

purpose of random insertion.

CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

FOR FURTHER WORK

Among the several B-tree implementation techniques, the

Pref ix B-Tree indices provide enhanced performance while

indexing a large database with variable length keys. The

buddy system is used as the alternate treatment of the

variable-length inverted lists so as to increase storage

utilization. A summary of the experimental results,

advantages, disadvantages, practicability, and suggestions

for further research of this implementation follows.

Summary of Pref ix B-Tree Indices

Bayer and Unterauer (1) have conducted an

implementation comparing the performance of B•-trees, simple

pref ix B-trees, and pref ix B-trees. The following main

results are obtained (1, p.24). First, the time to perform

the algorithms for simple prefix B-trees is nearly identical

to the time for B•-trees, while prefix B-trees need 50-100

percent more time. Second, there is no difference in the

number of disc accesses when the trees have less than 200

pages. For trees having between 400 and 800 pages, simple

pref ix B-trees require 20-25 percent fewer disc accesses

49

than B*-trees.

50

Pref ix B-trees need about 2 percent fewer

disc accesses than simple pref ix B-trees.

Compared to B+-trees, the Prefix B-Tree indices have

the advantages of less storage requirements for the index

part and fast retrieval time from secondary storage, but

have the disadvantages of more complex index-building and

maintenance algorithms and much higher computing times. For

indexing large textual databases in which the words are

variable in length, occur in clusters, and reside on

secondary storage for external searching, Prefix B-Tree

indices are very suitable.

Summary of Dynamic Lists

The purpose of buddy systems is to keep track of the

common memory pools used to satisfy storage requires. Two

aspects of buddy systems are important: execution time and

memory utilization. The experimental results are classified

into four categories for performance analysis, namely

internal fragmentation, external fragmentation, total

fragmentation, and execution time.

These results, presented in Tables III - VI, are almost

identical to the results, mentioned in page 30, in

Peterson's (18) article. The following general conclusions

can be made from the Table III - VI. The weighted buddy

system has the best performance among all the systems in

terms of internal fragmentation, but can be recommended only

when the distribution of block sizes is skewed towards small

51

TABLE III

PERCENTAGE INTERNAL FRAGMENTATION
FOR BUDDY SYSTEMS

Regions Used
Systems

10 20 30 40 50

Binary 32.36 33.18 31.84 30.75 31.28
Weighted 26.43 24.36 22.96 21.79 21.66
Fibonacci 44.69 39.28 37.64 36.09 34.50
GF-1 39.77 35.96 34.24 32.06 32.39
GF-2 38.02 33.59 33.15 32.06 29.37
GF-3 43.06 38.43 37.81 36.45 34.10
GF-4 29.50 27.07 26.61 27.05 25.01

TABLE IV

PERCENTAGE EXTERNAL FRAGMENTATION
FOR BUDDY SYSTEMS

Regions Used
Systems

10 20 30 40 50

Binary 0.78 o.oo 1.30 0.19 3.09
Weighted 22.65 18.12 17.53 15.74 15.00
Fibonacci 2.42 0.93 1.64 1.17 3.02
GF-1 1.25 1.99 0.36 0.00 0.75
GF-2 o.oo 0.23 4.74 6.58 1.29
GF-3 0.00 o.oo 3.12 4.64 .2 .10
GF-4 2.96 1.25 4.01 9.49 0.90

TABLE V

PERCENTAGE TOTAL FRAGMENTATION
FOR BUDDY SYSTEMS

Regions Used
Systems

10 20 30 40

Binary 32.88 33.18 32.72 30.88
Weighted 43.09 38.06 36.36 34.10
Fibonacci 46.03 39.84 38.66 37.19
GF-1 40.52 37.23 34.47 32.06
GF-2 38.02 33.74 36.31 36.53
GF-3 43.06 38.43 39.75 39.39
GF-4 31.58 27.98 29.54 33.97

TABLE VI

TOTAL NUMBER OF ALLOCATED AND RELEASED
BLOCKS FOR BUDDY SYSTEMS

50

33.40
33.41
36.07
32.89
30.83
35.48
25.68

Systems Allocated Released

Binary 2611 977
Weighted 3146 1512
Fibonacci 2323 1289
GF-1 2564 920
GF-2 2580 946
GF-3 2507 873
GF-4 . 2740 1106

52

block sizes.

53

In most cases it can not be recommended

because its execution time and external fragmentation are

worse than those of any other system. The performance of

Fibonacci system is worse in this implementation than in

Peterson's implementation. No ideal Fibonacci sequence can

be found to fit this physical region size with a fullword

alignment of block sizes.

For a real request distribution, fragmentations may be

considerably different depending upon the "fit" of the

provided block sizes to the requested block sizes.

Obviously, GF-4 fits quite closely to the storage

requirements and has the best performance among all the

systems. If the information concerning the distribution of

requests that will be serviced by the memory management

system is absent, the binary buddy system is recommended due

to its average performance. However, when statistics are

available on the distribution of requests, the generalized

Fibonacci buddy system proposed by Burton (3) is a good

buddy system that can be tailored to any storage allocation

requirement.

Conclusions and Suggested Further Work

If the inverted lists are stored immediately after the

words B-tree schemes only guarantee 50 percent storage

utilization. Furthermore, a significant portion of the leaf

node may be used to store the inverted lists, instead of the

words, so as to increase the tree levels and decrease the

54

storage utilization. Compared to B-tree schemes, the buddy

systems used to manage the separate space for variable

length inverted listes can save a considerable amount of

space and simplify the inverted lists' management. These

buddy systems are worthwile to implement, especially for

relatively large textual databases when there is knowledge

of the storage request distribution. However, some futher

studies still can be made.

As Bayer and Unterauer (1) suggested, choosing a

suitable split point within a split interval can reduce the

length of shortest separators and save more space for the

index nodes. But, unfortunately, this technique might lead

to worse storage utilization because the split point might

not be in the middle of the splitting node, therefore

causing some nodes to be less than half full. More

experimental implementations can be made to find the

efficiency, in terms of height and the average storage

utilization, in split intervals.

Furthermore, it is necessary to perform empirical

studies to provide adequate block sizes and efficient region

sizes for actual use. Further experimentation should be

conducted to determine the fewest number of regions required

to minimize the time and space costs. Such investigation is

very useful in determining th~ practicality of combining a

B-tree scheme and a buddy system for future use.

BIBLIOGRAPHY

(1) Bayer, R. and Unterauer, K. "Prefix B-Tree." ACM
Transaction Database System, Vol. 2 (March, 197~
11-16.

(2) Bogart, T. G. "An Experimental System for Dynamically
Managing Secondary Storage." (Onpub. M.S. Report,
Oklahoma State University, 1978.)

(3) Burton, Warren. "A Buddy System Variation
Storage Allocation." Comm. ACM, Vol 19,
(July, 1976), 416-417.-- --

for Disk
No. 7

(4) Chang, H. K. "Commpressed Indexing Method." IBM
Technical Disclosure Bulletin, Vol. 11, No. -rr
(April, 1969), 1400.

(5) Christian, D. D. "A B-Tree Index Approach to Storing
and Retrieving Records on Direct Access Auxiliary
Storage." (Unpub. M.S. Thesis, Oklahoma State
University, 1977.)

(6) Comer, D. "The Ubiquitous B-Tree." Computing Surveys,
Vol. 11, No. 2 (June, 1979), 121-137.

(7)

(8)

Cranston, B.
Recombination
System." Comm.
331-332. --

and Thomas, R.
Scheme for the

ACM, Vol. 18, No.

"A Simplified
Fibonacci Buddy

6 (June, 1975),

Dasananda,
(Unpub.
1976.)

Surapol. "Fibonacci-Based Buddy Systems."
M.S. report, Oklahoma State University,

(9) Feng, A. L. "A Study of Two Competing Index
Mechanisms: Prefix B• Tree and Trie structures."
(Unpub. M.S. Thesis, Oklahoma State University,
1982.)

(10) Held, G. and Stonebraker, M. "B-Tree Re-examined."
Comm. ACM, Vol. 21, No. 2 (Feb., 1978), 139-143.

(11) Hinds, J. A. "An Algorithm for Locating Adjacent
Storage Blocks in the Buddy System." Comm. ACM,
Vol. 18, No. 4 (April, 1975), 221-222.

55

(12) Hirschberg, D. s. "A
Allocation Algorithms."
(Oc t • , 19 7 3) , 615- 618 •

56

Class of Dynamic Memory
Comm. ACM, Vol. 16, No. 10

(13) Keehn, D. G. and Lacy, J. O. "VSAM Data Set Design
Parameters." IBM Syst • .!!·, Vol. 13, No. 3 (1974),
186-213.

(14) Knowlton, K. c. "A·Fast Storage Allocator." Comm. ACM,
Vol. 8, No. 10 (Oct., 1965), 623-625.

(15) Knuth, D. E. The ~ of Computer Programming Vol. 1=
Fundamental Algorithms, Addison Wesley Publ. Co.,
Reading Mass., 1973.

(16) Knuth, D. E. The Art of Computer Programmin__g Vol. 1=
Sorting and Searching, Addison Wesley Puhl. Co.,
Reading Mass., 1973.

(17) OS· PL/I Checkout . and Optimizing Compilers: Language
~ Re'f"erence ManuaI (GC33-0009-4). New York:

International Business Machines Corporation, 1976.

(18) Peterson, J. L. "Buddy Systems." Comm. ACM, Vol. 20,
No. 6 (June 1977), 421-431.

(l~) Shen, K. K. and Peterson, J. L. "A Weighted Buddy
Method for Dynamic Storage Allocation." Comm. ACM,
Vo 1. 1 7 ' N 0 • 10 (Oct . 19 7 4) , 5 5 8-5 6 2 . --

(20) Wagner, R. E. "Indexing Design Considerations." IBM
Syst • .!!·, Vol. 12, No. 4(1973), 351-367. -

(21) Webster, R. E. "B•-Tree." (Unpub. M.S. Report,
Oklahoma State University, 1980.)

APPENDIX A

HIGH LEVEL PDL FOR PREFIB B-TREE STRUCTURE

AND ASSOCIATED DYNAMIC LISTS

SIMPLE:PROCEDURE(MAIN);
READ OPTIONS CARD;
IF THIS RUN IS A NEW TREE THEN CALL INIT TREE;
ELSE READ ADDRESS REG(O) INTO HEADER; -
READ A INSERT WORD;
DO WHILE(MORE INSERT WORDS);

SET WORD FOUND = FALSE;
SET THE STARTING SEARCH POINT = ROOT NODE;
DO WHILE(INDEX PART);

CALL SEARCH INDX;
PUT THE SEARCH PATH ON STACK;

END;
IF TREE IS NOT EMPTY THEN CALL SEARCH_LEAF;
IF WORD FOUND THEN CALL INSERT ADDR;

ELSE CALL INSERT-WORD;
READ NEXT INSERT WORD; -

END;
WRITE HEADER;

END SIMPLE;

INIT TREE:PROCEDURE;
READ IN THE SIZE NUMBER;
IF THE SIZE NUMBER EXCEEDS THE MAXINUM THEN PRINT ERROR;
INITIALIZE THE TREE EMPTY;
READ IN THE TABLE OF SIZES;
INITIALIZE THE AVAILABILITY LISTS EMPTY;
PUT ADDRESS REG(l) ON THE PROPER LIST;
PERFORMAT THE FILES;
INITIALIZE THE CONTROL FIELD FOR ADDRES REG(l);
INITIALIZE THE LINK FIELD FOR ADDRES REG(l);
WRITE ADDRESS REG(l);

END INIT_TREE;

SEARCH INDX:PROCEDURE;
READ INDEX REGION;
SET DISPLACEMENT = THE POSITION OF THE FIRST SEPARATOR;

57

DO N = 1 TO NUMBER OF SEPARATOR;
IF INSERT WORD < SEPARATOR

THEN DO;
SET REGION NUMBER = LEFT POINTER;
SET RIGHT BROTHER REGION = RIGHT POINTER;
SET RIGHT SEPARATOR = SEPARATOR;
RETURN;

END;
ELSE DO;

END;
END;

SET LEFT BROTHER REGION = LEFT POINTER;
SET LEFT SEPARATOR = SEPARATOR;
INCREMENT DISPLACEMENT TO THE POSITION OF THE

NEXT SEPARATOR;

SET DISPLACEMENT TO THE FIRST UNUSED BYTE;
SET REGION NUMBER = RIGHT POINTER;

END SEARCH_INDX;

SEARCH LEAF:PROCEDURE;
READ LEAF REGION;
SET DISPLACEMENT = THE POSITION OF THE FIRST WORD;
DO N = 1 TO NUMBER OF WORD;

IF INSERT WORD = WORD;
THEN DO;

END;

SET WORD FOUND = TRUE;
SET ADDRESS BLOCK LOCATION = RIGHT POINTER;
RETURN;

ELSE IF INSERT WORD > WORD
THEN INCREMENT DISPLACEMENT TO THE POSITION

OF THE NEXT WORD;
ELSE RETURN;

END;
END SEARCH_LEAF;

INSERT ADDR:PROCEDURE;
READ ADDRESS REGION POINTED BY LEAF NODE;
IF IT IS A SPANNED RECORD THEN

58

FIND THE LAST ADDRESS BLOCK OF THIS SPANND RECORD;
MOVE ADDRESS BLOCK TO TEMP ADDRESS BLOCK;
READ NEW ADDRESS INTO TEMP ADDRESS BLOCK;
COMPUTE REQUEST SIZE;
IF REQUEST SIZE > ORIGINAL ADDRESS BLOCK SIZE

THEN DO;
CALL RELEASE;
CALL ALLOCATE;
IF IT IS NOT A SPANNED RECORD THEN UPDATE THE

POINTER ASSOCIATED WITH THE INSERT WORD
IN THE LEAF NODE;

END;
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK;
DO WHILE(MORE ADDRESSES);

READ IN ADDRESSES TO TEMP ADDRESS BLOCK;
COMPUTE REQUEST SIZE;
CALL ALLOCATE;
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK;
UPDATE THE POINTER ON THE SPANNED REGION;
WRITE SPANNED REGION;

END;
WRITE THE AVAILABLE REGION;
UPDATE TOTAL NUMBER OF ADDRESSES;

END INSERT_ADDR;

INSERT WORD:PROCEDURE;
READ IN ADDRESSES TO TEMP ADDRESS BLOCK;
COMPUTE REQUEST SIZE;
CALL ALLOCATE;
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK;
PUT THE INSERT WORD AND ADDRESS BLOCK LOCATION INTO

LEAF NODE ON PROPER POSITION;
IF TOO MANY WORDS TO FIT ON ONE LEAF NODE

THEN CALL INDX UPDATE;
ELSE WRITE LEAF NODE;

DO WHILE(MORE ADDRESSES);
READ IN ADDRESSES TO TEMP ADDRESS BLOCK;
COMPUTE REQUEST SIZE;
CALL ALLOCATE;
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK;
UPDATE THE POINTER ON THE SPANNED REGION;
WRITE SPANNED REGION;

END;
WRITE THE AVAILABLE REGION;
UPDATE THE TOTAL NUMBER OF ADDRESSES;

END INSERT_WORD;

ALLOCATE:PROCEDURE;
IF REQUEST SIZE > REGION SIZE THEN PRINT ERROR;
SEARCH AVAILABILITY SPACE LIST FOR A CANDIDATE BLOCK;
IF THERE IS NOT A BLOCK LARGE ENOUGH THEN PRINT ERROR;
STARTING LOCATION = ADDRESS OF CANDIDATE;
READ CANDIDATE REGION INTO ADDRESS REGION;
CALL DELETE CAND;
DO FOREVER;-

MARK CANDIDATE USED;
IF THE CANDIDATE CAN NOT BE SPLIT INTO BUDDIES

59

THEN RETURN;
IF REQUEST SIZE > THE BUDDIES CREATED BY SPLITTING

THE CANDIDATE THEN RETURN;
SPLIT THE CANDIDATE INTO LEFT AND RIGHT BUDDY;

SET CONTROL FIELDS FOR BOTH BUDDIES;
IF REQUEST SIZE > RIGHT BUDDY

THEN DO;

END;
ELSE DO;

MARK RIGHT BUDDY FREE;
MARK LEFT BUDDY USED;
CALL INSERT(RIGHT BUDDY, LIST);
MARK LEFT BUDDY THE NEW CANDIDATE BLOCK;

MARK RIGHT BUDDY USED;
MARK LEFT BUDDY FREE;

END;
END;

CALL INSERT(LEFT BUDDY, LIST);
MARK RIGHT BUDDY THE NEW CANDIDATE BLOCK;

END ALLOCATE;

DELETE CAND:PROCEDURE;
INCREMENT DISPLACEMENT BY ONE;
SET RLINK OF THE LIST = RLINK OF CANDIDATE;
IF ONLY ONE BLOCK ON THE LIST

THEN DO;
IF CANDIDATE SIZE = REGION SIZE

THEN DO;

60

SET THE LINKS FOR NEXT ADDRESS REGION = LIST;
SET THE LINKS FOR THE LIST =

THE NEXT ADDRESS REGION;
INCREMENT NEXT ADDRESS REGION BY ONE;

END;
ELSE SET LLINK OF THE LIST = RLINK OF THE LIST;
DECREMENT DISPLACEMENT BY ONE;
RETURN;

END;
IF CANDIDATE AND RLINK OF CANDIDATE ARE IN THE SAME

REGION THEN DO;
SET LLINK(RLINK OF CANDIDATE) = LLINK OF CANDIDATE;
DECREMENT DISPLACEMENT BY ONE;
RETURN;

END;
READ RLINK OF CANDIDATE INTO ADDR REGB;
SET LLINK(RLINK OF CANDIDATE) = LLINK OF CANDIDATE;
WRITE RLINK OF CANDIDATE FROM ADDR REGB;
DECREMENT DISPLACEMENT BY ONE; -

END DELETE_CAND;

RELEASE:PROCEDURE;
DO FOREVER;

IF THE CANDIDATE IS THE LARGEST ALLOWABLE SPACE
THEN DO;

MARK IT FREE;

END;

CALL INSERT(CANDIDATE LOC, LIST);
WRITE CANDIDATE REGION FROM ADDR_REG;
RETURN;

FIND THE ADDRESS OF THE CANDIDATE'S BUDDY;
IF (BUDDY IS USED) OR (BUDDY IS SPLIT)

THEN DO;

END;

MARK CANDIDATE FREE;
CALL INSERT(CANDIDATE LOC, LIST);
WRITE CANDIDATE REGION FROM ADDR REG;
~ru~; -

CALL DELETE BUDDY;
IF BUDDY ADDRESS < CANDIDATE ADDRESS

61

THEN MARK BUDDY THE NEW CANDIDATE;
COALESCE THE BUDDIES;

END;
END RELEASE;

DELETE BUDDY:PROCEDURE;
INCREMENT DISPLACEMENT BY ONE;
IF ONLY ONE BLOCK ON THE LIST

THEN DO;

END;

LINKS OF LIST = RLINK OF BUDDY;
DECREMENT DISPLACEMENT BY ONE;
RETURN;

IF LLINK OF THE BUDDY POINTS TO A LIST HEADER
THEN RLINK OF THE LIST = RLINK OF BUDDY;
ELSE DO;

END;

IF BUDDY AND LLINK OF BUDDY ARE IN THE SAME
REGION THEN RLINK(LLINK OF BUDDY) =

RLINK OF BUDDY;
ELSE DOj

END;

READ LLINK OF BUDDY INTO ADDR REGB;
SET RLINK(LLINK OF BUDDY) = RLINK OF BUDDY;
WRITE LLINK OF BUDDY FROM ADDR_REGB;

IF RLINK OF THE BUDDY POINTERS TO A. LIST HEADER
THEN LLINK OF LIST = LLINK OF BUDDY;
ELSE DO;

END;

IF BUDDY AND RLINK OF BUDDY ARE IN THE SAME
REGION THEN LLINK(RLINK OF BUDDY) =

LLINK OF BUDDY;
ELSE DO;

END;

READ RLINK OF BUDDY INTO ADDR REGB;
SET LLINK(RLINK OF BUDDY) = LLINK OF BUDDY;
WRITE RLINK OF BUDDY FROM ADDR_REGB;

DECREMENT DISPLACEMENT BY ONE;

END DELETE_BUDDY;

INSERT:PROCEDURE(BUDDY LOC, LIST);
INCREMENT DISPLACEMENT BY ONE;
IF THE LIST IS EMPTY

THEN DO;

END;

SET THE LINKS FOR THE BUDDY = LIST;
SET THE LINKS FOR THE LIST = BUDDY;
DECREMENT DISPLACEMENT BY ONE;
RETURN;

SET LLINK OF BUDDY = LIST;
SET RLINK OF BUDDY = RLINK OF THE LIST;
IF BUDDY AND RLINK OF LIST ARE NOT IN THE SAME REGION

THEN DO;

END;

READ RLINK OF LIST INTO ADDR REGB;
LLINK(RLINK OF LIST) = BUDDYT
RLINK OF LIST = BUDDY;
WRITE RLINK OF LIST FROM ADDR REGB;
DECREMENT DISPLACEMENT BY ONET
RETURN;

LLINK(RLINK OF LIST), RLINK OF LIST= BUDDY;
DECREMENT DISPLACEMENT BY ONE;

... _ END INSERT;

INDX UPDATE:PROCEDURE;
ONLY ONE LEVEL THEN DO;

END;

CALL SPLIT LEAF;
CREATE A NEW ROOT;
RETURN;

READ PARENT OF LEAF REGION INTO P REG;
IF LEAF REGION IS NOT THE RIGHTMOST BROTHER

THEN DO;
READ RIGHT BROTHER INTO B REG;
CALL EQUAL_LEAF(TEMP_REG,B_REG,RIGHT);

END;
IF LEAF REGION IS NOT THE LEAFMOST BROTHER AND

RIGHT EQUALIZATION FAIL THEN DO;
READ LEAF BROTHER INTO B REG;
CALL EQUAL_LEAF(B_REG,TEMP_REG,LEFT);

END;
IF EQUALIZATION SUCCEEDS THEN RETURN;
CALL SPLIT LEAF;
DO WHILE(INDEX PART);

PUT PROPAGATED SEPARATOR AND PARENT REGION INTO
TEMP REG ON PROPER POSITION;

IF USED BYTES IN TEMP REG ~ REGION SIZE
THEN DO;

62

END;

SET I REG = TEMP REG;
WRITE-INDEX REGION FROM I_REG;
RETURN;

READ PARENT OF P REG INTO P REG;
IF INDEX REGION Is NOT THE RIGHTMOST BROTHER

THEN DO;
READ RIGHT BORTHER INTO B REG;
CALL EQUAL_INDX(TEMP_REG,B_REG,RIGHT};

END;
IF INDEX REGION IS NOT LEFTMOST BROTHER AND

RIGHT EQUALIZATION FAIL THEN DO;
READ LEFT BROTHER INTO B REG;
CALL EQUAL_INDX(B_REG,TEMP_REG,LEFT};

END;
IF EQUALIZATION SUCCEEDS THEN RETURN;
CALL SPLIT INDX;

END; -
CREATE A NEW ROOT;

END INDX_UPDATE;

SPLIT LEAF:PROCEDURE;
FIND THE SPLIT POINT WITHIN A CERTAIN SPLIT INTERVAL;
SPLIT THE TEMP REG INTO L REG AND B REG;
SET LEAF HEADERS FOR BOTH-L REG AND-B REG;
WRITE LEAF REGION FROM L REG; -
WRITE LEAF REGION FROM B-REG;

63

COMPUTE THE SHORTEST SEPARATOR BETWEEN L REG AND B_REG;
END SPLIT_LEAF;

SPLIT INDX:PROCEDURE;
FIND THE SPLIT POINT WITHIN A CERTAIN SPLIT INTERVAL;
SET THE PROPAGATED SEPARATOR = THE SEPARTOR ON THE

SPLIT POINT;
SPLIT THE TEMP REG INTO I REG AND B REG;
SET INDEX HEADERS FOR BOTH I REG AND B REG;
WRITE INDEX REGION FROM I REG; -
WRITE INDEX REGION FROM B-REG;

END SPLIT_INDX; -

EQUAL LEAF:PROCEDURE(FRONT,REAR,DIRECT);
IF THE TOTAL LENGTH OF FRONT AND REAR > 2048

THEN RETURN;
COMBINE FRONT AND REAR INTO TOTAL REGION;
FIND THE SPLIT POINT OF TOTAL REGION;
IF DIRECT = RIGHT

THEN SPLIT TOTAL REGION INTO L REG AND B REG;
ELSE SPLIT TOTAL REGION INTO B-REG AND L=REG;

64

COMPUTE THE SHORTEST SEOARATOR BETWEEN L REG AND B_REG;
SET LEAF HEADERS FOR BOTH L REG AND B REG;
WRITE LEAF REGION FROM L REG; -
WRITE LEAF REGION FROM B-REG;
UPADTE THE SHORTEST SEPARATOR;
WRITE PARENT REGION FROM P REG;

END EQUAL_LEAF; -

EQUAL INDX:PROCEDURE(FRONT,REAR,DIRECT);
IF THE TOTAL LENGTH OF FRONT AND REAR > 2048

THEN RETURN;
COMBINE FRONT, PROPAGATED SEPARATOR FOR FRONT AND REAR,

AND REAR INTO TOTAL REGION;
FIND THE SPLIT POINT OF TOTAL REGION;
SET PROPAGATED SEPARATOR = SEPARATOR ON THE SPLIT POINT;
IF DIRECT = RIGHT

THEN SPLIT TOTAL REGION INTO I REG AND B REG;
ELSE SPLIT TOTAL REGION INTO B-REG AND I-REG;

SET INDEX HEADERS FOR BOTH I REG AND B REG;-
WRITE INDEX REGION FROM I REG; -
WRITE INDEX REGION FROM B-REG;
UPADTE THE PROPAGATED SEPARATOR;
WRITE PARENT REGION FROM P REG;

END EQUAL_INDX; -

APPENDIX B

LOW LEVEL PDL DESCRIPTION FOR PREFIX B-TREE

AND DYNAMIC LISTS

Description of Variables for

Low Level PDL

TREE - REGIONAL(l) file that contains the available space
for the index of words.

ADRS - REGIONAL(l) file that contains the available space
for inverted lists.

TBSZ - sequential file that contains the size table.

INFL - sequential file that contains words and addresses.

I REG - vector of bytes that represents an index node.

L REG - vector of bytes that represents a leaf node.

B REG - vector of bytes that is the brother of a full node.

P REG - vector of bytes that is the parent of a full node.

ADDR REG - vector of words that contains inverted lists.

ADDR REGB - vector of words that is the brother of ADDR REG.

ADDR REGS - vector of words that contains the portion of a
- spanned record.

TOTAL REG - vector of bytes that contains a full node and
its brother node.

TEMP_REG - vector of bytes that contains a full node and the
inserted key or propagated separator.

HEADER - the first region of ADRS. It contains the
information of a tree. It has ten elementary items.
ROOT - root node of the tree.
LEVEL - number of levels of the tree.

65

NEXT TREE REG - next available region in TREE.
NEXT-ADDR-REG - next available region in ADRS.
SIZE NUM - number of block sizes.

66

SIZE-TABLE - structure that contains the block sizes,
Fibonacci factor, and the headers of available
lists. It has four elementary items.

SIZE - the size of a block
K - the Fibonacci factor.
SLLINK - the left link used for linkage to

availability lists. It contains region number,
SLREG, and offset, SLDISP.

SRLINK - the right link used for linkage to
availability lists. It contains region number,
SRREG, and offset, SRDISP.

CONTROL FIELD - structure that contains all
about a block. It has four elementary
based on ADDR REG(O).
IFIELD - represents the I-field in

article. See Chapter III.
FREE,LBC,ISIZE - represent FREE, LBC,

Hinds' (11) article. see Chapter VI.

information
items and is

Burton's (3)

and SIZE in

LINK FIELD - structure that contains the link fields for the
linked lists. It has two elementary items, LLINK and
RLINK, and is based on ADDR_REG(O).

LINK FIELDB - same as LINK FIELD but based on ADDR_REGB(O).

SPAN_POINT - structure that is a pointer and points to
additional address block. It has two elementary items,
AREG_NUM and AREG_DISP, is based on ADDR_REGS(255).

ADDR FIELD - structure that contains the information of a
- inverted list. It has two elementary items, NUM ADDR

and ADDRESS, is dynamically based on
ADDR_REG(AREG_DISP+l).

I HEAD - structure that contains the information about an
- index node. It has two items as follows and is based

on I REG(l).
I UNUSE BYTE - unused bytes in index node.
NUM PW= number of separators in the index node.

L HEAD - structure that contains the information about a
leaf node. It has three items as follows and is based
on L REG(l).
HORIZONTAL - Horizontal pointer points to the next

leaf node in order.
L_UNUSE_BYTE - unused bytes in the leaf node.
NUM WORD - number of words in the leaf node.

P HEAD - same as I HEAD but based on P_REG(l).

BI HEAD - same as I HEAD but based on B_REG(l).

BL HEAD - same as L HEAD but based on B_REG(l);

67

I INFO - structure that contains the information about a
separator. It has three items and is dynamically
based on I REG(IREG DISP).
LPOINT - Pointer poTnts to the left descendant.
PW LEN - length of separator.
PART WORD - separator

RPOINT - Pointer points to the right descendant and is
dynamically based on I_REG(IREG_DISP+2+PW_LEN).

L INFO - structure that contains the information about a
word. It has two items and is dynamically based on
L REG(LREG DISP).
LPOINT - Pointer points to left descendant.
WORD LEN - length of word.
WRD = word

APOINT - Pointer points to a inverted list and is
dynamically based on L_REG(LREG_DISP+2+WORD_LEN).

IREG NUM,LREG NUM,BREG NUM,PREG NUM,AREG NUM,AREG NUMB,
AREG=NUMS - the region-number of an index node, -leaf node,

brother node, parent node, address region, buddy
region, and spanned region, respectively.

IREG DISP,LREG DISP,BREG DISP,PREG DISP,AREG DISP,
ADDR-DISPS - offset within the Index node, leaf node,

brother node, parent node, address region, and spanned
region, respectively.

TEMP ADDR BLK - vector of words that contains the input
addresses.

MORE WORD - indicates if there is more words to be inserted.

BUDDY FLAG - indicates if the buddy is whole, or subdivided.

WORD FOUND - indicates if the inserted word exists.

TREE_STATUS - 'NEW' starts from a new tree.

EQUAL - If equalization succeeds.

FINISH - indicates if the input addresses belongs to the
same word.

FIRST_WORD - the first word of the right leaf node.

LAST WORD - the last word of the left leaf node.

PROP_SS - propagated separator.

SS - separator that separates two leaf nodes.

WRDADDR - structure that has three items as follows.
INS WORD - the word to be inserted.
CDOCN - document number where the INS WORD exists.
CWRDN - word number within CDOCN. -

START PT - the starting
-TEMP ADDR BLK.

point to put addresses

68

into

END PT - the ending point of the last address in the
TEMP ADDR BLK. - -

REQ_SIZE - a size for an allocation.

PATH - structure that contains the information about search
path. It has six items.
PATH REG - region number of the region that has been

searched.
PATH DISP - offset within the searched region.
PATH-L BRO - reg~on number of the left brother of the

searched region.
PATH R BRO - region number of the right brother of the

searched region.
PATH L WORD - the separator in the . left handside of

PATH DISP.
PATH R WORD - the separator in the right handside of

PATH DISP.

Low Level PDL Description

SIMPLE:PROCEDURE(MAIN);
BASE I HEAD ON I REG(O);
BASEL-HEAD ON L-REG(O);
BASE BI HEAD ON B REG(O);
BASE BL-HEAD ON B-REG(O);
BASE P HEAD ON P REG(O);
BASE CONTROL FIELD ON ADDR REG(O);
BASE LINK FIELD ON ADDR REG(O);
BASE CONTROL FIELDB ON ADDR REGB(O);
BASE SPAN POINT ON ADDR REGS(O);
ON ENDFILE(INFL) MORE WORD=FALSE;
READ OPTIONS CARD; -
IF TREE STATUS= 'NEW' THEN.CALL INIT_TREE;
ELSE DOT

END;

OPEN FILE(ADRS) DIRECT UPDATE;
OPEN FILE(TREE) DIRECT UPDATE;
READ FILE(ADRS) INTO(HEADER) KEY(O);

/* INPUT THE FIRST INSERT WORD */
OPEN FILE(INFL) INPUT SEQUENTIAL;
READ FILE(INFL) INTO(WRDADDR);
DO WHILE(MORE WORD);

WORD FOuND=FALSE;

END;

IREG~NUM=ROOT; /* SEARCH FROM ROOT */
L = LEVEL;
DO WHILE(L > 1); /*SEARCH INDEX PART*/

PATH REG(L) = IREG NUM;
CALL-SEARCH INDX; -
PATH DISP(LT = IREG DISP;
L = L-1; -

END;
IF LEVEL=O THEN DO; /* INSERT INTO A NEW TREE */

NEXT TREE REG,LEVEL = l;
READ-FILETTREE) INTO(L REG) KEY(O);
LREG NUM = O; -
LREG-DISP= 7;
L UNUSE BYTE = 1018;
NUM WORD = O;
HORIZONTAL = -1;

END;
ELSE CALL SEARCH LEAF;
IF WORD FOUND THEN CALL INSERT ADDR;

- ELSE CALL INSERT=WORD;

WRITE FILE(ADRS) FROM(HEADER) KEYFROM(O);
CLOSE FILE(ADRS),FILE(TREE),FILE(INFL);

END SIMPLE;

INIT_TREE:PROCEDURE;

69

OPEN FILE(TBSZ) INPUT;
READ FILE(TBSZ) INTO(SIZE NUM);
IF SIZE NUM > 63 -

THEN DO;
PRINT 'THE NUMBER OF SIZES EXCEEDS THE LIMIT';
STOP;

END;
ROOT,LEVEL,NEXT TREE REG = O;
NEXT ADDR REG =-2; -
DO I-= -1-TO -SIZE NUM BY -1;

READ FILE(TBSZ) INTO(SIZE(I));
READ FILE(TBSZ) INTO(K(I));
SLREG(I),SRREG(I) =I;
SLDISP(I),SRDISP(I) = -1;

END;
OPEN FILE(ADRS) DIRECT OUTPUT;
OPEN FILE(TREE) DIRECT OUTPUT;
CLOSE FILE(ADRS),FILE(TREE);
OPEN FILE(ADRS) DIRECT UPDATE;
OPEN FILE(TREE) DIRECT UPDATE;
AREG NUM = l;
FREETO) = TRUE;
IFIELD(O) = -1;
LBC(O) = O;
ISIZE(O} = -SIZE NUM;
LLINK(l),RLINK(lT=SLLINK(-SIZE NUM);
SLREG(-SIZE NUM),SRREG(-SIZE NUM)=l;
SLDISP(-SIZE NUM),SRDISP(-SIZE NUM)=O;
WRITE FILE(ADRS) FROM(ADDR REGT KEYFROM(AREG NUM);
CLOSE FILE(TBSZ); - -

END INIT_TREE;

SEARCH INDX:PROCEDURE;
READ FILE(TREE) INTO(I REG) KEY(IREG NUM);
IREG DISP = 5; -
BASE-I INFO ON I REG(IREG DISP);
PART SS=SUBSTR(PART WORD,l,PW LEN);
DO N-= 1 TO NUM PW;- - .

IF INS WORD < PART SS
THEN DO; -

IREG NUM=LPOINT;
BASE-RPOINT ON I REG(IREG DISP+4+PW LEN);
PATH R BRO(L) = RPOINT; - -
PATH-R-WORD(L)= PART SS;
RETURNT -

END;
ELSE DO;

PATH L BRO(L) = LPOINT;
PATH-L-WORD(L)= PART SS;
IREG-DISP = IREG DISP + 4 + PW LEN;
BASE-I INFO ON I-REG(IREG DISPT;
PART_SS=SUBSTR(PART_WORD,l,PW_LEN);

70

END;
END;
IREG DISP = IREG DISP + 4 + PW LEN;
BASE-RPOINR ON I-REG(IREG DISPT;
IREG NUM=RPOINT;

END SEARCH_INDX;

SEARCH LEAF:PROCEDURE;
LREG DISP = 7;
LREG-NUM = IREG NUM;
READ-FILE(TREE}-INTO(L REG} KEY(LREG NUM);
BASEL INFO ON L REG(LREG DISP); -
WORD=SUBSTR(WRD,l,WORD LEN);
DO N = 1 TO NUM WORD; -

IF INS WORD ~ WORD
THEN DO;

END;

WORD FOUND = TRUE;
BASE-APOINT ON L_REG(LREG_DISP+2+WORD_LEN);
RETURN;

ELSE IF INS WORD > WORD
THEN no;

LREG DISP = LREG DISP + 4 + WORD LEN;
BASE-L INFO ON L-REG(LREG DISP);
WORD=SUBSTR(WRD,l,WORD_LEN);

END;
ELSE RETURN;

END;
END SEARCH_LEAF;

INSERT ADDR:PROCEDURE;
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUM);
FINISH = FALSE; - -
BASE ADDR FIELD ON ADDR REG(AREG DISP+l);
TEMP NUM,TOTAL ADDR = NUM ADDR; -
IF NUM ADDR > 254 -

THEN DO;
ADDR REGS = ADDR REG;
P AREG NUMS=AREG-NUM;

71

DON= I TO (NUM ADDR/254-1);
P AREG NUMS=AREG NUMS;
READ FILE(ADRS) INTO(ADDR REGS) KEY(P AREG_NUMS};

END; - -
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUMS);
BASE ADDR FIELD ON ADDR REG(AREG DISP+lT;
AREG NUM ~ AREG NUMS; - -
AREG-DISP = AREG DISPS;

END; - -
/* MOVE ADDRESS BLOCK TO TEMP ADDRESS BLOCK */
DO N = 1 TO NUM_ADDR;

TEMP_ADDR_BLK(N)=ADDRESS(N);
END;
START PT = NUM ADDR + l;
CALL INPUT ADDR;
REQ SIZE =-6 + 4*END PT;
IF REQ SIZE> SIZE(ISIZE(AREG DISP))

THEN DO; -
CALL RELEASE;
CALL ALLOCATE;
IF TEMP NUM < 254 /* NOT A SPANNED RECORD */

THEN-DO;

72

REG = AREG NUM;
DISP= AREG-DISP;
WRITE FILETTREE) FROM(L_REG} KEYFROM(LREG_NUM};

END;
ELSE DO; /* SPANNED RECORD */

AREG NUMS=AREG NUM;
AREG-DISPS=AREG DISP;
WRITE FILE(ADRST FROM(ADDR REGS}

KEYFROM{P=AREG_NUMS);
END;
BASE ADDR FIELD ON ADDR REG(AREG DISP+l);
NUM ADDR=END PT;

END; - -
/* MOVE TEMP ADDRESS BLOCK TO ADDRESS BLOCK */
DO N = 1 TO NUM ADDR;

ADDRESS(N) =-TEMP ADDR BLK(N);
DD; - -
CALL REINPUT ADDR;
WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM};
READ FILE(ADRS) INTO(ADDR REG) KEY(REG); -
BASE ADDR FIELD ON ADDR REG(DISP+l);
NUM ADDR ~ TOTAL ADDR; -
WRITE FILE(ADRS)-FROM(ADDR REG) KEYFROM(REG);

END INSERT_ADDR; -

INSERT WORD:PROCEDURE;
FINISH = FALSE;
START PT = l;
TOTAL-ADDR = O;
CALL INPUT ADDR;
REQ SIZE =-6 +4*END PT;
CALL ALLOCATE; -
TEMP_REG=SUBSTR(L REG,l,LREG_DISP-l)j jLENGTH(INS_WORD)j I

INS_WORDTISUBSTR(L_REG,LREG_DISP,);
IF LENGTH(TEMP REG} > 1024

THEN CALL-INDX UPDATE;
ELSE DO; -

L REG = TEMP REG;
NUM WORD = NUM WORD + l;
L UNUSE BYTE =-1024 - LENGTH(TEMP REG);
WRITE FILE(TREE) FROM(L_REG) KEYFROM(LREG_NUM);

END;
BASE ADDR FIELD ON ADDR REG(AREG DISP+l);
/* MOVE FROM TEMP ADDRESS BLOCK TO ADDRESS BLOCK */
DO N = 1 TO END PT;

TEMP ADDR BLK(N)=ADDRESS(N);
END; - -
TEMP NUM=AREG NUM;
CALL-REINPUT ADDR;
WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM);
READ FILE(ADRS) INTO(ADDR REG) KEY(REG NUM);
BASE ADDR FIELD ON ADDR REG(AREG DISP+l);
NUM ADDR ; TOTAL ADDR; - -
WRITE FILE(ADRS)-FROM(ADDR REG) KEYFROM(TEMP_NUM);

END INSERT_WORD; -

INPUT ADDR:PROCEDURE;
TEMP WORD=INS WORD;
IF START PT <~ 254

THEN DO;
DON= START PT TO 254 UNTIL(FINISH=TRUE);

TOTAL ADDR = TOTAL_ADDR +l;
END PT = N;
TEMP ADDR BLK{N)=BDOCN*65536+BWRDN;
READ-FILETINFL) INTO(WRDADDR);
IF(NOT MORE_WORD) I (INS_WORD NOT = TEMP_WORD}

THEN FINISH=TRUE;
END;

END;
ELSE END PT = 254;

END INPUT_ADDR;

REINPUT ADDR:PROCEDURE;
DO WHILE(NOT FINISH);

ADDR REGS = ADDR REG;
TEMP-NUM = AREG NUM;
START PT = l; -
CALL INPUT ADDR;
REQ SIZE =-6 + 4*END PT;
CALL ALLOCATE; -
AREG NUMS = AREG NUM;
AREG-DISPS= AREG-DISP;
WRITE FILE(ADRS)-FROM(ADDR REGS) KEYFROM(TEMP);
BASE ADDR FIELD ON ADDR REG(AREG DISP+l);
NUM ADDR=END PT; - -
DO N = 1 TO NUM ADDR;

ADDRESS(N) =-TEMP ADDR BLK(N);
END; - -

END;
END REINPUT_ADDR;

73 .

ALLOCATE:PROCEDURE;
IF REQ SIZE > 1024

THEN DO;
PRINT 'REQUEST SIZE EXCEEDS THE REGION SIZE';
STOP;

END;
SEARCH AVAILABILITY SPACE LIST FOR A CANDIDATE BLOCK;
IF SEARCH FAILS

THEN DO;

END;

PRINT 'NO LARGE ENOUGH BLOCK';
STOP;

/* THE CANDIDATE BLOCK IS ON THE LIST *./
AREG NUM = SRREG{I);
AREG-DISP= SRDISP(I);
READ-FILE{ADRS) INTO(ADDR REG) KEY(AREG_NUM);
CALL DELETE CAND{I}; -
DO WHILE ('l'B);

FREE{AREG DISP} = FALSE;
IF K{I) =-0 THEN RETURN; /* CANNOT SPLIT AGAIN */
IF REQ SIZE> SIZE(I+K(I))

REQ-SIZE > SIZE(I+l) THEN RETURN;
ISIZE{AREG DISP} = I+l;
LBC{AREG DfSP) = LBC(AREG DISP)+l;
AREG DIS'B = AREG DISP + SIZE{I+l)/4;
ISIZE(AREG DISPB)-= I + K(I);
IFIELD{AREG DISPB)=I+l;
LBC{AREG DISPB) = O~
IF REQ SfZE > SIZE(I+K(I})

THEN DO;
FREE{AREG DISPB) = TRUE;
FREE(AREG-DISP) = FALSE;
CALL INSERT{ISIZE{AREG DISPB)};
I = I + l; -

END;
ELSE DO;

END;
END;

FREE{AREG DISPB)= FALSE;
FREE(AREG-DISP) = TRUE;
CALL INSERT{ISIZE{AREG DISP));
I = I + K(I); -
AREG_DISP = AREG_DISPB;

END ALLOCATE;

DELETE CAND:PROCEDURE(LIST);
AREG DISP = AREG DISP + l;
SRLINK(LIST) = RLINK(AREG DISP);
/* ONLY ONE BLOCK ON LIST-*/
IF LDISP{AREG DISP) = RDISP{AREG DISP)

LREG(AREG DISP) = RREG(AREG DISP)
/* ON THE-LARGEST AVAILABLE-LIST */

74

THEN DO;
IF SIZE(ISIZE(AREG DISP-1)) = 1024

THEN DO; -
SRREG(LIST),SLREG(LIST)=NEXT ADDR REG;
SRDISP(LIST},SLDISP(LIST) = O; -
ADDR REGB = ADDR REG;
FREETO) = TRUE; -
IFIELD(O)=LIST;
LBC(O} =O;
ISIZE(O)= LIST;
LREG(l),RREG(l) =LIST;
LDISP(l),RDISP(l) = -1;
WRITE FILE(ADRS) FROM(ADDR REG)

KEYFROM(NEXT-ADDR REG);
NEXT ADDR REG = NEXT ADDR REG +-1;
ADDR-REG ; ADDR REGBT -

END; - -
ELSE SLLINK(LIST)=SRLINK(LIST);
AREG DISP=AREG DISP-1;
RETURN; -

END;
/* THE CANDIDATE AND RLINK OF CANDIDATE ARE IN THE */
/* SAME REGION */
IF FIXED(RREG(AREG DISP)} = AREG NUM

THEN DO; - -
LLINK(RDISP(AREG DISP))+l)=LLINK((AREG DISP);
AREG DISP = AREG-DISP - l; -
RETURN; -

END;
AREG NUMB=RREG(AREG DISP);
READ-FILE(ADRS) INTO(ADDR REGB) KEY(AREG NUMB);
LLINKB(RDISP(AREG DISP)}+l)=LLINK(AREG DlSP);
WRITE FILE(ADRS) FROM(ADDR REGB) KEYFROM(AREG NUMB);
AREG DISP = AREG DISP - l;- -

END DELETE_CAND; -

RELEASE:PROCEDURE;
DO WHILE('l'B};

IF SIZE(ISIZE(AREG DISP)) = 1024
THEN DO; -

FREE(AREG DISP) = TRUE;
LBC(AREG DISP) = O;
CALL INSERT(ISIZE(AREG DISP));

75

WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM);
KEYFROM(AREG_NUM); -

RETURN;
END;

IF LBC(AREG DISP) = 0 /* RIGHT BUDDY */
THEN DO;-

AREG DISPB=AREG DISP- SIZE(ISIZE(AREG DISP})/4;
IF AREG DISP=SIZE(ISIZE(AREG DISPB})+AREG DISPB;

THEN BUDDY FLAG ; WHOLE; -

·ELSE BUDDY FLAG = SPLIT;
END;

ELSE DO; /* LEFT BUDDY */

END;

AREG DISPB=AREG DISP+SIZE(ISIZE(AREG_DISP))/4;
IF LBC(AREG DISP) = 0

-THEN BUDDY FLAG = WHOLE;
ELSE BUDDY FLAG = SPLIT;

IF (BUDDY IS SPLIT BUDDY IS INUSE)
THEN DO;

FREE(AREG DISP)=TRUE;
CALL INSERT(ISIZE(AREG DISP));

76

WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM{AREG_NUM);
RETURN; -

END;
tALL DELETE BUDDY; /* COMBINE BUDDIES */
IF AREG DISPB < AREG DISP THEN AGRE DISP=AREG_DISPB;
ISIZE(AREG DISP)=ISIZE(AREG DISP)-lT
LBC{AREG DlSP)=LBC(AREG DISP)-1;
FREE(AREG DISP)=TRUE; -

END• -
' END RELEASE;

DELETE BUDDY:PROCEDURE;
AREG DISPB=AREG DISPB+l;
/* ONLY ONE BLOCK ON LIST */
IF LDISP(AREG DISPB)=RDISP(AREG DISPB)

LREG(AREG DISPB)= RREG(AREG DISPB)
THEN DO; - -

END;

SLREG(LREG(AREG DISPB)),
SRREG(LREG(AREG-DISPB))=LREG(AREG DISPB);
SLDISP(LREG(AREG DISPB)), -
SRDISP(LREG{AREG-DISPB))=LDISP{AREG DISPB);
AREG_DISPB=AREG_DISPB-1; -

/* LEFT LINK OF BUDDY POINTS TO LIST */
IF LDISP(AREG DISPB)=-1

THEN SRLINK(LREG(AREG DISPB))=RLINK(AREG DISPB);
ELSE DO; - -

IF LREG(AREG DISPB)=AREG NUM
THEN RLINK(LDISP(AREG-DISPB)+l)=RLINK(AREG DISPB);

=RLINK{AREG DISPB); -
ELSE DO; -

READ FILE(ADRS) INTO{ADDR REGB)
KEY(LREG(AREG DISPB));

RLINKB(LDISP(AREG DISPB)+l)=RLINK(AREG DISPB);
WRITE FILE(ADRS) FROM{ADDR REGB) -

END;
END;

KEYFROM(LREG{AREG_DISPB));

/* RIGHT LINK OF BUDDY POINTS TO LIST */
IF RDISP{AREG_DISPB) = -1

THEN SLLINK(RREG(AREG DISPB))=LLINK(AREG DISPB);
ELSE DO; - -

IF RREG(AREG DISPB)=AREG NUM THEN
LLINK(RDISP(AREG DISPB)+l)=LLINK(AREG DISPB);

ELSE DO; - -
READ FILE(ADRS) INTO(ADDR REGB)

KEY(RREG(AREG DISPB));
LLINKB(RDISP(AREG DISPB)+l)=LLINK(AREG DISPB);

·WRITE FILE(ADRS) FROM(ADDR REGB) -

END;
END;

AREG DISPB=AREG_DISPB-1;
END DELETE_BUDDY;

INSERT:PROCEDURE(LIST);
AREG DISP=AREG DISP+l;
/* LIST IS EMPTY */

KEYFROM(RREG(AREG_DISPB));

IF SLDISP(LIST)= -1 SRDISP(LIST)= -1
THEN DO;

77

LLINK(AREG DISP),RLINK(AREG DISP)=SRLINK(LIST);
SLREG(LISTT,SRREG(LIST)=AREG NUM;
SLDISP(LIST),SRDISP(LIST)=AREG DISP;
RETURN; · -

END;
LREG(AREG DISP)=LIST;
LDISP(AREG DISP)=-1;
RLINK(AREG-DISP)=SRLINK(LIST};
/* THE BUDDY AND RLINK OF LIST ARE NOT IN THE SAME */
/* REGION */
IF AREG NUM>=SRREG(LIST)

THEN-DO;
AREG NUMB=SRREG(LIST);
READ-FILE(ADRS) INTO(ADDR REGB) KEY(AREG NUMB);
LREGB(SRDISP(LIST)+l),SRREG(LIST)=AREG NUM;
LDISPB(SRDISP(LIST)+l),SRDISP(LIST)=AREG DISP;
WRITE FILE(ADRS) FROM(ADDR REGB) KEYFROMTAREG NUMB);
RETURN; - -

END;
LREG(SRDISP(LIST)+l),SRREG(LIST)=AREG NUM;
LDISP(SRDISP(LIST))+l),SRDISP(LIST)=AREG DISP;

END INSERT; -

INDX UPDATE:PROCEDURE;
EQUAL=FALSE;
L=L+l;
IF LEVEL=l THEN DO;

CALL SPLIT_LEAF;
CALL CREAT NEW ROOT;·
RETURN; - -

END;
PREG NUM=PATH REG(L);
READ-FILE(TREE) INTO(P REG) KEY(PREG NUM);
/* LEAF REGION IS NOT THE RIGHTMOST SIBLING */
IF PATH R BRO(L) >= -1

THEN-DO;

END;

BREG NUM=PATH R BRO(L);
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM);
CALL EQUAL_LEAF(TEMP_REG,B_REG,RIGHTT;

/* LEAF REGION IS NOT THE LEFTMOST SIBLING AND LAST */
/* EQUALIZATION IS FAIL */
IF PATH L BRO(L) >= -1 NOT EQUAL

THEN-DO;

END;

BREG NUM=PATH L BRO(L);
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM);
CALL EQUAL_LEAF(B_REG,TEMP_REG,LEFT)T

IF EQUAL THEN RETURN;
CALL SPLIT LEAF;
DO WHILE(L-<= LEVEL);

TEMP REG=SUBSTR(P REG,l,(PATH DISP(L)-1)) I I
- LPOINTI ILENGTH(PROP_SS)I IPROP_SS! IRPOINTI I

SUBSTR{P REG,PATH DISP(L}+2);
IF LENGTH(TEMP REG) <= 1024

THEN DO; -
P REG=TEMP REG;
NUM PWP=NuM PWP+l;
P uNUSE BYTE=l024-LENGTH(TEMP REG);

78

WRITE FILE(TREE) FROM(P REG) KEYFROM(PREG NUM);
RETURN; - -

END;
L=L+l;
IF L > LEVEL THEN DO;

END;

CALL SPLIT_INDX;
CALL CREAT NEW ROOT;
RETURN; -

IREG NUM=PREG NUM;
PREG-NUM=PATH-REG(L);
READ-FILE(TREE) INTO(P REG) KEY(PREG NUM);
/* LEAF REGION IS NOT THE RIGHTMOST SIBLING */
IF PATH R BRO(L) >= -1

THEN:-Do;

END;

BREG NUM=PATH R BRO(L);
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM);
CALL EQUAL_INDX(TEMP_REG,B_REG,RIGHTT;

/*LEAF REGION IS NOT THE LEFTMOST SIBLING AND LAST*/
/*EQUALIZATION IS FAIL */
IF PATH L BRO(L) >= -1 NOT EQUAL

THEN-DO;
BREG NUM=PATH L BRO(L);
READ-FILE(TREE)-INTO(B_REG) KEY(BREG_NUM);

END;

CALL EQUAL_INDX(B_REG,TEMP_REG,LEFT);
END;

IF EQUAL THEN RETURN;
CALL SPLIT_INDX;

CALL CREAT NEW ROOT;
END INDX_UPDATE; -

SPLIT LEAF:PROCEDURE;
LREG DISP=7;
BASE-L INFO ON TEMP REG(LREG DISP);
/* FIND SPLIT POINT-BETWEEN 490 AND 540 */
DO N=l TO (NUM WORD+l);

END;

IF (LREG DISP > 490) THEN GO TO EXITl;
LAST WORD=SUBSTR(WRD,l,WORD LEN);
LREG-DISP=LREG DISP+4+NUM; -
BASE-L_INFO ON-TEMP_REG(LREG_DISP);

EXITl: TEMP NUM=N-1;
FIRST WORD=SUBSTR(WRD,l,WORD LEN);
CALL COMPUT SS(LAST WORD,FIRST WORD);
PROP SS=SS;- - -
SPLIT PT=LREG DISP;
DO I=TTEMP NuMw+l) TO (NUM WORD+l};

END;

LAST WORD=FIRST WORD;
LREG-DISP=LREG DISP+4+WORD LEN;
BASE-L INFO ON-TEMP REG(LREG DISP);
FIRST WORD=SUBSTR(WRD,l,WORD-LEN);
CALL COMPUT SS(LAST WORD,FIRST WORD);
IF LENGTH(PROP SS) >= LENGTH(SS)

-THEN DO;

END;

PROP SS=SS;
SPLIT PT=LREG_DISP;
TEMP_NUM=I;

IF LREG DISP > 540 THEN GO TO EXIT2;

/* SPLIT OVERFLOW LEAF REGION INTO LEAF REGION AND */
/* BROTHER REGION */
EXIT2: READ FILE(TREE) INTO(B REG) KEY(NEXT TREE REG);
SUBSTR(B REG,7)=SUBSTR(TEMP REG,SPLIT PT); - -
L REG=SUBSTR(TEMP REG,l,SPLlT PT-1); -
NUM WORDB=NUM WORD+l-TEMP NUMT
NUM-WORD=TEMP-NUM; -
L UNUSE BYTE=l025-SPLIT PT;
L-UNUSE-BYTEB=l017-LENGTH(TEMP REG)+SPLIT PT;
HORIZONTAL PTB=HORIZONTAL; - -
RPOINT,HORlZONTAL,BREG NUM=NEXT TREE REG;
LPOINT=LREG DISP; - - -
WRITE FILE(TREE) FROM(L REG) KEYFROM(LREG NUM);
WRITE FILE(TREE) FROM(B-REG) KEYFROM(BREG-NUM);
NEXT_TREE_REG=NEXT_TREE=REG+l; -

79

END SPLIT_LEAF;

SPLIT INDX:PROCEDURE;
IREG DISP=7;
/* FIND SPLIT POINT BETWEEN 490 AND 540 */
DO N=l TO (NUM PW+l);

END;

IF (IREG DISP > 490) THEN GO TO EXIT3;
BASE I INFO ON TEMP REG(IREG DISP);
IREG_DISP=IREG_DISP+4+NUM; -

EXIT3: TEMP NUM=N-1;
BASE I INFO-ON TEMP REG(IREG DISP);
SPLIT PT=IREG DISP;- -
PROP SS=SUBSTR(PART WORD,l,PW LEN);
IREG-DISP=IREG DISP+4+NUM; -
DO N~(TEMP NUM+l) TO (NUM PW+l);

BASEL INFO ON TEMP REG(LREG DISP);
SS=SUBSTR(PART WORD~l,PW LENT;
IF (LENGTH(PROP SS) >= LENGTH(SS))

THEN DO;-

END;

PROP SS=SS;
SPLIT PT=IREG DISP;
TEMP_NOMW=N; -

IREG DISP=IREG DISP+4+NUM;
IF IREG DISP >-540 THEN GO TO EXIT4;

END;
/* SPLIT INTO TWO INDEX NODES */
EXIT4: I REG=SUBSTR(TEMP REG,l,SPLIT PT-1);
LPOINT=IREG DISP; - -
RPOINT,BREG-NUM=NEXT TREE REG;
NEXT TREE REG=NEXT TREE REG+l;
READ-FILETTREE) INTO(B REG) KEY(BREG NUM);
SUBSTR(B REG,5)=SUBSTRTTEMP REG, -

80

- - SPLIT_PT+2+LENGTH(PROP_SS);
NUM PWB=NUM PW+l-TEMP NUM;
NUM-PW=TEMP-NUM; -
I UNUSE BYTE=1025-SPLIT PT;
I=UNUSE=BYTEB=1021-LENGTH(TEMP_REG)+SPLIT PT+

LENGTH(PROP SS);
WRITE FILE(TREE) FROM(I REG) KEYFROM(IREG NUM}; -
WRITE FILE(TREE) FROM(B=REG) KEYFROM(BREG=NUM);

END SPLIT_INDX;

CREAT NEW ROOT:PROCEDURE;
ROOT=NEXT TREE REG;
NEXT TREE-REG=NEXT TREE REG+l;
READ-FILETTREE) INTO(! REG) KEY(ROOT);
SUBSTR(I_REG,5)=LPOINTTILENGTH(PROP_SS) I IPROP_SSI IRPOINT;
I_UNUSE_BYTE= 1014-LENGTH(PROP_SS);

NUM PW=l;
LEVEL=LEVEL+l;
WRITE FILE(TREE) FROM(I_REG) KEYFROM(ROOT);

END CREAT_NEW_ROOT;

81

EQUAL LEAF:PROCEDURE(FRONT REG,REAR REG,DIRECT);
IF-(LENGTH(FRONT REG)+LENGTH(REAR REG))>2048 THEN RETURN;
LREG DISP=7; - -
TOTAL_REG=FRONT_REG 11 SUBSTR(REAR_REG, 7);
/* FIND NEW PARTIAL SEPARATOR */
DO N=l TO (NUM WORD+NUM WORD+l);

TEMP NUM=TEMP NUM+l; -
BASE-L INFO ON TOTAL REG(LREG DISP);
LAST WORD=SUBSTR(WRD~l,WORD LEN);
LREG-DISP=LREG DISP+4+WORD LEN;
IF LREG DISP>(TLENGTH(TOTAL REG)/2)+3) THEN GO TO OUTl;

END; - -
OUTl: BASEL INFO ON TOTAL REG(LREG DISP);
FIRST WORD=SUBSTR(WRD,l,WORD LEN); -
SPLIT-PT=LREG DISP; -
IF SPLIT PT >-1024 I

LENGTH(TOTAL REG)-SPLIT PT > 1017 THEN RETURN;
CALL COMPUT SS(LAST WORD,FIRST WORD);
IF DIRECT='RIGHT' - -

THEN IF(P UNUSE BYTE+LENGTH(PATH R WORD(L))) >=
- - - - LENGTH (SS)

THEN DO;
L REG=SUBSTR(TOTAL REG,l,SPLIT PT-1);
L-UNUSE BYTE=l025-SPLIT PT; -
NUM WORD=TEMP NUM; -
WRITE FILE(TREE) FROM(L REG) KEYFROM(LREG NUM);
SUBSTR(B REG,7)=SUBSTR(TOTAL REG,SPLIT PTT;
L UNUSE BYTEB=l017-LENGTH(TOTAL REG)+SPLIT PT;
NUM WORDB=NUM WORD+NUM WORDB+l-TEMP NUM; -
WRITE FILE(TREE) FROM(B REG) KEYFROM(BREG NUM);
P_REG=SUBSTR(P_REG,l,(PATH_DISP(L)+l)) I,-

LENGTH(SS) I 1ss11suBSTR(P REG,
(PATH DISP{L)+4+LENGTH(PATH R WORD(L))));

P UNUSE BYTE=P UNUSE BYTE+LENGTH(- -
- - PATH R WORD(L))-LENGTH(SS);

WRITE FILE(TREE) FROM(P_REG) KEYFROM(PREG_NUM);
EQUAL=TRUE;
RETURN;

END;
ELSE RETURN;

ELSE IF(P UNUSE BYTE+LENGTH(PATH L WORD(L))) >=
- - LENGTH(SS);

THEN DO;
B REG=SUBSTR(TOTAL REG,l,SPLIT PT-1);
L-UNUSE BYTEB=l02s=sPLIT PT; -
NUM WORDB=TEMP NUM; -
WRITE FILE(TREE) FROM(B_REG) KEYFROM(BREG_NUM);

SUBSTR(L REG,7)=SUBSTR(TOTAL REG,SPLIT PT);
L UNUSE BYTE=1017-LENGTH(TOTAL REG)+SPLIT PT;
NUM WORD=NUM WORD+NUM WORDB+l-TEMP NUM; -
WRITE FILE(TREE) FROMTL REG) KEYFROM(LREG NUM);

82

P REG=SUBSTR(P REG,l,(PATH DISP(L)-3- -
- LENGTH(PATH L WORD(L)))) I ILENGTH(SS)

I 1ss11suBSTR(P_REG,PATH_DISP(L));
P UNUSE BYTE=P UNUSE BYTE+LENGTH(PATH L WORD(L))
- - - - -LENGTH(SS);

WRITE FILE(TREE) FROM(P_REG) KEYFROM(PREG_NUM);
EQUAL=TRUE;
RETURN;

END;
ELSE RETURN;

END EQUAL_LEAF;

EQUAL INDX:PROCEDURE(FRONT REG,REAR REG,DIRECT);
TEMP NUM=NUM PW+NUM PWB+2; -
LREG-DISP=7;- -
IF DIRECT='RIGHT'

THEN DO;
NUM=LENGTH(PATH R WORD(L));
TOTAL_REG=FRONT=REG I I NUM I I PATH_R_WORD(L) I I

SUBSTR(REAR_REG,5);
END;
ELSE DO;

NUM=LENGTH(PATH L WORD(L));
TOTAL_REG=FRONT=REG I I NUM I! PATH_L_WORD(L) I I

SUBSTR(REAR_REG,5);
END;

/* FIND NEW PARTIAL SEPARATOR */
DO N=l TO TEMP NUM/2;

BASE I INFO ON TOTAL REG(IREG DISP);
!REG DISP=IREG DISP+4+NUM; -

END; - -
BASE I INFO ON TOTAL REG(IREG DISP);
PROP SS=SUBSTR(PART WORD,1,PW-LEN);
/* PREDETERMINE PARENT REGION-*/
IF p UNUSE BYTE+NUM < LENGTH(ss) THEN RETURN;
ELSE-DO; -

SUBSTR(FRONT REG,l,LREG DISP-1)=
- SUBSTR(TOTAL REG,1,LREG DISP-1);

SUBSTR(REAR REG,5)= - -
- SUBSTR(TOTAL REG,LREG DISP+2+PW LEN);

IF (LENGTH(FRONT_REG)>l024-I LENGTHTREAR_REG)>l024)

/* RIGHT EQUALIZATION */
IF DIRECT='RIGHT'

THEN DO;
I REG=FRONT REG;

THEN RETURN;

SUBSTR(B REG,5)=SUBSTR(REAR REG,5);
NUM_PW=TEMP_NUM/2; -

NUM PWB=TEMP NUM-1-NUM PW;
I UNUSE BYTE;l024-LENGTH(FRONT REG);
I-UNUSE-BYTEB=l024-LENGTH(REAR-REG);
SUBSTR(P REG,(PATH DISP(L)+2));

-LENGTH(PROP_SS) I IPROP_SSI I
SUBSTR(P REG,(PATH DISP(L)-2-NUM));

83

P UNUSE BYTE=P UNUSE BYTE-LENGTH(PROP SS)+NUM;
END°i" - - - -

END~

ELSE DO; /* LEFT EQUALIZATION */
B REG=FRONT REG;
SUBSTR(I REG,S)=SUBSTR(REAR REG,5);
NUM PWB=TEMP NUM/2; ~
NUM-PW=TEMP NUM-1-NUM PWB;
I UNUSE BYTE=1024-LENGTH(REAR REG);
I-UNUSE-BYTEB=1024-LENGTH(FRONT REG);
SUBSTR(P REG,(PATH DISP(L)-2-NuM))=

-LENGTH(PROP SS) I !PROP SSI I
· SUBSTR(P REG,PATH DISP(L));
P UNUSE BYTE=P UNUSE BYTE+NUM-LENGTH{PROP SS);

END;- - - - -
WRITE FILE(TREE) FROM(I REG) KEYFROM(IREG NUM);
WRITE FILE(TREE) FROM(B-REG) KEYFROM(BREG-NUM);
WRITE FILE(TREE) FROM(P-REG) KEYFROM(PATH=REG(L));
EQUAL= TRUE; -

END EQUAL_INDX;

COMPUT SS:PROCEDURE(FRONT WORD,REAR WORD);
IF FRONT WORD >= REAR WORD -

THEN DO;

END;

PUT SKIP LIST('THE ORDER OF WORD IS WRONG');
STOP;

DO J = 1 TO 20; /* COMPUTE SHORTEST SEPARATOR */
IF SUBSTR(FRONT WORD,J,1) NOT= SUBSTR(REAR WORD,J,1)

THEN DO; - -
SS= SUBSTR(REAR WORD,1,J);
RETURN; -

END;
END;

END COMPUT_SS;

APPENDIX C

PDL DESCRIPTION FOR MEASURE ROUTINE

EXTERN:PROCEDURE;
DO N= -1 TO (-SIZE NUM+l) BY -1;

AREG NUM=SRREGTN);
AREG-DISP=SRDISP(N);
NUM BLOCK = O;
DO WHILE(AREG DISP < -1);

NUM BLOCK~NUM BLOCK+l;
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG_NUM);
AREG NUM=RREG(AREG DISP+lT;
AREG-DISP=RDISP(AREG DISP+l);

END; - -
END;
EXT RATE=TOTAL EXT*100/(l024*REGION USED);

END EXTERN; - -

INTERN:PROCEDURE;
/* SEARCH THE SMALLEST WORD */
!REG NUM=ROOT;
L = LEVEL;
DO WHILE(L>l);

READ FILE(TREE) INTO(! REG) KEY(IREG_NOM);
!REG NUM=SUBSTR(I REG,S,2);
L=L-I; -

END;
LREG NUM=IREG NUM;
/* SEQUENTIAL-TRAVERSAL LEAF NODES */
DO WHILE(LREG NUM>-1);

READ FILE(TREE) INTO(L REG) KEY(LREG NUM);
LREG DISP=7; - -
/* COMPUTE UNUSABLE BYTES IN EACH ALLOCATED BLOCK */
DO N=l TO NUM WORD;

BASE APOINT ON L REG(LREG DISP+2+WORD LEN);
LREG DISP=LREG DlSP+4+WORD LEN; -
CALL-DISPLAY; ~ -

END;
LREG NUM=HORIZONTAL;

END; -
RATE=(IN BYTE*lOO)/TOTAL BYTE;
PRINT 'INTERNAL FRAGMENTATION';

END INTERN;

84

DISPLAY:PROCEDURE;
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUM);
BASE ADDR FIELD ON ADDR_REG(AREG_DISP+lT;
IF NUM ADDR < 0 THEN RETURN;
INDX=ISIZE(AREG DISP);
NUM BLK(INDX)=NUM BLK(INDX)+l;
IF SIZE(INDX)=l024 THEN TEMP BYTE=8+4*NUM ADDR;

ELSE· TEMP-BYTE=6+4*NUM-ADDR;
INT BLK(INDX)=INT BLK(INDX)+SIZE(INDX)-TEMP BYTE;
TOTAL BYTE=TOTAL BYTE+ SIZE(INDX); -
IN BYTE=SIZE(INDX)+IN BYTE-TEMP BYTE;
IF-NUM ADDR > 254 THEN DO; /* SPANNED RECORD */

J;-NUM ADDR/254;
DO I=-1 TO J;

ADDR REGS=ADDR REG;
READ-FILE(ADRST INTO(ADDR REG)

KEY(AREG NUMS);
BASE ADDR FIELD ON ADDR REG(AREG-DISP+l);
INDX=ISIZE(AREG DISP); - -

85

NUM BLK(INDX)=NUM BLK(INDX)+l;
IF SIZE(INDX)=l024 THEN TEMP BYTE=8+4*NUM ADDR;

END;
END;

END DISPLAY;

ELSE TEMP-BYTE=6+4*NUM-ADDR;
INT BLK(INDX)=INT BLK(INDX)+SIZE(INDX)-TEMP BYTE;
TOTAL BYTE=TOTAL BYTE+ SIZE(INDX); -
IN_BYTE=SIZE(INDX)+IN_BYTE-TEMP_BYTE;

APPENDIX D

TEST CASE SIZE TABLES

TABLE VII

SIZE TABLES FOR BINARY, FIBONACCI, AND
WEIGHTED BUDDY SYSTEMS

BINARY FIBONACCI WEIGHTED
SIZE K SIZE K SIZE K

16 0 12 0 8 0
32 1 12 0 12 0
64 1 40 0 16 0

128 1 52 3 24 3
256 l 64 3 32 4
512 1 104 3 48 3

1024 1 156 3 64 4
220 3 96 3
324 3 128 4
480 3 192 3
700 3 256 4

1024 3 384 3
512 4
768 3

1024 4

86

87

TABLE VIII

SIZE TABLES FOR GENERALIZED FIBONACCI BUDDY SYSTEMS

1 2 3 4
SIZE K SIZE K SIZE K SIZE K

16 0 16 0 16 0 16 0
24 0 24 0 28 0 32 1
40 2 40 2 44 2 48 2
64 2 64 2 72 2 80 2
88 3 104 2 100 3 112 3

128 3 168 2 116 5 160 3
256 1 272 2 160 4 208 4
384 2 376 3 276 2 320 3
640 2 480 4 348 5 432 4

1024 2 584 5 464 4 544 5
752 5 624 4 704 5
920 6 724 7 864 6

1024 8 824 8 944 9
9·24 9 1024 10

1024 10

'2--
VITA

HWEY-HWA WUNG

Candidate for the Degree of

Master of Science

Thesis: AN EXPERIMENTAL IMPLEMENTATION FOR PREFIX B-TREE
AND ASSOCIATED DYNAMIC LISTS

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Taichung, Taiwan, Republic of
China, March 22, 1954, the daughter of Mr. and
Mrs. C. S. Wung.

Education: Graduated from Taipei Municipal First High
Girls' School, Taipei, Taiwan, Republic of China,
in June, 1972; received Bachelor of Education
degree from National Taiwan Normal University,
Taipei, Taiwan, Republic of China, in June, 1978;
completed requirements for the Master of Science
degree at Oklahoma State University in July, 1983.

Professional Experience: Programmer, Fluid Power
Research Center, Stillwater, Oklahoma, Jan, 1981 -
Dec, 1981; programmer, Agricultural Economics
Dept., Stillwater, Oklahoma, Jan. 1982 - April
1983.

