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organizing and managing key words and inverted lists 

respectively. Measurements are developed to compare the 

performance of buddy system variations in terms of execution 

time and storage utilization. 
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CHAPTER I 

INTRODUCTION 

As an increasing number of applications require the 

assistance of electronic data processing, 

information is being stored in computers. 

more and more 

A major goal for 

computer scientists is to find efficient techniques to store 

information, especially when the information is stored in 

files with large, varying-size keys on secondary storage. 

Many different file organization techniques have been 

proposed. Most of those techniques that work well for 

smaller or formatted files do not work well for larger or 

minimally formatted files. The choice of a good file 

organization for files with minimal formatting depends on 

the efficiency of secondary storage utilization and the 

speed of information retrieval. 

This thesis concentrates in part on the implementation 

of Prefix B-Tree, a variant of a B-tree. It has been widely 

used in file management, such as IBM's VSAM, Tree-Structured 

file directories, and textual databases. It has been found 

to yield good performance. The management of storage space 

for inverted lists associated with keys is addressed with 

equal importance. 

Inverted lists are the lists of all records having a 

1 
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given value of some attribute. For example, in textual 

databases, the inverted list of each referenced word 

contains the list of addresses on which this word is 

mentioned. Since the textual databases are fairly large in 

practical applications, it is very important to implement an 

efficient method to construct the words and associated 

inverted lists. Firstly, the organization of the index of 

words should be considered so as to speed up information 

retrieval and save space. The simple prefix B-tree and 

prefix B-tree, which are discussed in Chapter II, are very 

suitable for this consideration. Secondly, the storage of 

the inverted lists should be considered so as to upgrade 

space utilization. The number of occurrences of a word in a 

document varies from one word to another. This variability 

indicates that the lengths of inverted lists are variable. 

Traditionally, the associated information is stored 

immediately after the keys. The use of a B-tree structure 

will guarantee 50 percent storage utilization. 

Nevertheless, an alternate treatment of the associated 

variable-length inverted lists can further improve the 

storage utilization by using the buddy system, which is 

discussed in Chapter III. 

An experimental implementation involving both a simple 

pref ix B-tree structure and a specific dynamic storage 

technique is the main topic of this thesis. The Generalized 

Fibonacci Buddy System is used to manage a separate storage 

area for the inverted lists. This implementation is based 



on the Pref ix B-Tree of Bayer and Unterauer {l) 

Generalized Fibonacci Buddy System of Hinds (11). 

3 

and the 

Chapter II contains a discussion of the characteristics 

and evalution of Pref ix B-Tree structures. 

Chapter III presents the dynamic storage management 

concept and examines the basic characteristics and the 

dynamic storage management algorithms of the buddy systems. 

The variations of the buddy systems, especially the 

Generalized Fibonacci Buddy System developed by Hinds (11), 

are discussed. Finally a brief comparsion of buddy systems 

is addressed. 

Chapter IV presents the design and implementation of 

simple prefix B-trees and their associated dynamic lists. 

The data structure design and the high level description of 

the implementation for both the simple pref ix B-tree 

structure and the dynamic storage management are included. 

The final chapter is a discussion of the experimental 

results, advantages, and disadvantages of this 

implementation and the practicability in file management. 

Possible improvement and further study are also suggested in 

this chapter. 

Appendices include the low and 

Design Language (PDL) descriptions of 

high level Program 

all programs and the 

test size tables used for this implementation. 



CHAPTER II 

PREFIX B-TREE INDICES 

Fer a given file stored on an exterhal rotating memory 

device such as a disk or drum, the time required to retrieve 

information from the file is the main component of the total 

time required to process the data. An index can speed 

information retrieval by directing the search to the small 

part of the file containing the desired item. The tree

structure index has been proven effective for use with large 

files (6). 

In 1972 Bayer and Mccreight (6) first proposed the B-

tree by increasing the branching factor of a binary tree 

from two to m to cut down dramatically the number of tree 

levels. Some time later, many important refinements and 

variations, such as the B+-tree, simple prefix B-tree, and 

prefix B-tree, were explored and have become common file 

organizations for the storage · of information on secondary 

storage. This chapter, which assumes that the reader is 

familiar with the basic B-tree and B+-tree (5, 9, 16, 21), 

centers on the simple pref ix B-tree and prefix B-tree. 

These trees are good file organizations for files with large 

variable-length keys. 

4 
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Motivation of Pref ix B-Tree Indices 

Usually, B-tree schemes are used in cases in which the 

keys are of a fixed length. But in many applications, such 

as in textual database environments, the keys are generally 

character strings of variable length and occur in clusters. 

If a B-tree structure is applied to deal with variable

length keys, some undesirable situations may be encountered. 

For example, if a tree structure is set up with fixed-length 

key fields, then space wasted in the key fields and/or 

ambiguous decoding may occur. On the other hand, a tree 

structure with variable-length key fields has the advantage 

of avoiding both wasted space in the key fields and the 

ambiguous decoding of· the keys, but has the disadvantage of 

storing the prefixes repeatedly. Addi~ionally, in a 

B+-tree, the B+-index serves merely as a guide to direct the 

search to the correct leaf. It is not necessary to contain 

complete keys in the index nodes if the key can be 

represented partially, yet sufficiently enough to uniquely 

locate it in the leaf nodes. Therefore, the key compression 

techniques, front and rear compression (1, 6, 20), can be 

used to eliminate those characters that are not necessary to 

distinguish a key from the keys immediately adjacent to it. 

This fact implies that the use of the resultant compressed 

value, namely the prefix or separator, to build up the 

B+-index tends to increase the degree of branching, decrease 

the height of the index, and save space required by the 

index. In 1977, Bayer and Unterauer (1) considered key 



6 

compression and proposed a refined structure, a Pref ix B

Tree, to store the prefixes in the upper index part of a 

B+-tree. Two kinds of prefix B-trees, simple prefix B-trees 

and pref ix B-trees, both described by Bayer and Unterauer 

(1), are discussed in detail in the subsequent sections. 

Simple Pref ix B-Trees 

Consider the rear compression technique. Bayer and 

Unterauer (1) suggest the technique of choosing the shortest 

separator, instead of using the complete key, to separate 

two adjacent leaf nodes so as to efficiently utilize storage 

space when dealing with keys of variable length. Suppose 

that a leaf in a B+-tree is full and contains the keys 

'compression', 'key', 'result', 'separator', and 'short', as 

shown in Figure 1. In order to insert the key 'rear', this 

leaf node must be split into two. Instead of storing the 

duplicated key 'result' into the upper index as usual, any 

string s with the property 

rear < s ~ result 

can be selected for the same purpose. According to the 

prefix property defined by Bayer and Unterauer (1), the one 

selected in the simple pref ix B-tree approach is the prefix 

of the larger key of a key pair. Its length should be as 

short as possile. As mentioned by Bayer and Unterauer (1), 

this technique is only allowed when the leaf node is being 

split. For the index node, the same splitting technique as 

used in the original B-tree is applied; that is, one of the 
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separators on that index node is moved up one level and no 

further compression will be performed. Thus far, a simple 

pref ix B-tree can be defined as a B•-tree in which the 

B•-index is substituted by a B-tree of separators. 

The purpose of choosing the shortest separators is to 

decrease the length of the separators and increase the 

degree of branching. This idea can be taken a step further 

by scanning a small interval around the middle of a 

splitting leaf to obtain a good key pair so that a mininum 

length of the shortest separator can be obtained. Based 

upon the example shown in Figure 1, allowing a split point 

to be chosen one key to the left or to the right of the 

previous spilt point yields the shortest separator 'r' or 

's'. Figure 2 shows the split point chosen between 'result' 

and 'separator' yields 's' as the separator. This method 

can be applied to the leaf nodes as well as to the upper 

level nodes. 

The operations performed on a simple pref ix B-tree, 

such as searching, inserting, and deleting, are similiar to 

those ~erformed on a B•-tree with variable-length keys, 

except that a shortest seporator will be selected when a 

node is split. 

An example of a simple pref ix B-tree is shown in Figure 

3. The keys extracted from the test data which was used for 

implementing the 

inserted in the 

simple pref ix 

tree in the 

B-tree in 

following 

this thesis are 

random order: 

suppress, support, suspicion, suspect, tamper, term, trialy, 



compression key result separator short 

(a) 

compression key rear result separator short 

(b) 

Figure 1. (a) A Full Leaf Node of B•-Tree and (b) A 
Insertion of Key 'rear', Causing the 
Shortest Separator 'res' to be Promoted 
to the Upper Level Node 

compression key rear result separator short 

Figure 2. A Mininum Shortest Separator Chosen One Key to 
the Right from the Split Point of Figure 3b 

8 
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supp, taylor, time, sustain, supra, surrounding, supreme, 

surely, sued, suppressing. 

SUS 

I 
v v 

suppr.supre 

I l~I 
v v v 

~ 
~ 

[.supr.J 

v 

lsupraj 

IB E·§1 

v 
v 

v 

suspect 
suspicion 

I support I I supreme I v 

v 

suppress 
suppressing 

I sustain I 
v 

surely 
surrounding 

v 

tamper 
taylor 

v 

~ 
~ 

Figure 3. A Simple Prefix B-Tree Example 
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Pref ix B-Trees 

Consider again the simple prefix B-tree in Figure 3. 

The separators in the upper level nodes are shorter than the 

full keys, but the adjacent separator pairs share the common 

pref ix which is repeatedly stored in the subtrees. 

Obviously, when sets of keys are in clusters, some space in 

the index nodes is wasted because of the repetition of the 

common prefixes. For better storage utilization and further 

reduction of the height of the index part of a simple pref ix 

B-tree, Bayer and Unterauer (1) proposed the prefix B-tree 

which is based on the idea of storing the common pref ix in 

the ancestor nodes rather than the subtrees. 

For the index part of a simple prefix B-tree, suppose 

that node P is an arbitrary index node and that T(P) is the 

subtree of the index and leaf nodes with root P. The tree 

structure can determine the largest lower bound (LL(p)) and 

the smallest upper bound (SU(P)) for node P from the father 

node of P. For the root node of a simple prefix B-tree, 

assume the following: 

LL(root} = the character string smaller than (chron
ologically preceding} any key in the tree. 

SU(root} = the character string larger than (chron
ologically following) any key in the tree. 

For all keys or separators stored in node P and/or subtree 

T(P), the following holds: 

LL(P) S k < SU(P) 

LL(P} S s < SU(P) 

As shown in Figure 4, in node P, p(O),p(l), . . . , p(n) 
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are pointers to the sons (index or leaf nodes) of node P and 

are denoted as son P(i) for 0 ~ i ~ n. s(l), .•• , s(n) are 

separators, s(n) being the last on node P. The largest 

lower bound and the smallest upper bound LL(P(i)) and 

SU(P(i)), respectively, of son P(i) for 0 ~ i ~ n can be 

defined by Bayer and Unterauer's (1, P.17) definition. 

for i = 1,2, ••• ,n, 
LL(P(i))= 

f s ( i) 

LL(p) for i = 0, 

for i = 0,1, •.. ,n-l, 
SU( P (i)) = 

["( i) 

SU(p) for l = n. 

Obviously, for any keys and separators in son p ( i) 

there must be a common prefix c(P(i)) which can be derived 

by following two steps: 

1. Obtain the longest common ·pref ix c(P( i)) (possibly 
the empty string ) of the bound pair LL(P(i)) and 
SU(P(i)) by the front compression technique. 

2. Determine the final common pref ix by Bayer and 
Unterauter's (1, P.17} definition. 

c(P(i)) = 

E(P(i))l(j) if LL(P(i)) = ~(P(i))l(j)z 
SU(P(i)) = c(P(i))l(J+l), where 
l(j) preceed l(j+l) immediately 
in the collating sequence and z 
is an arbitary string. 

c(P(i)) otherwise. 

The largest lower bound and/or the smallest upper bound 

may be changed while performing insertions or deletions. As 

a result, the partial separators must be recomputed. Thus, 

the basic operations performed on a pref ix B-tree are much 

m~re complicated than those of the other B-tree schemes. 

As an example, again consider the tree in Figure 3. 

The common prefixes, shown in Figure 5, can be derived and 
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pruned off to yield a pref ix B-tree which is illustrated in 

Figure 6. 

parent SU(P) 

node P p(O) s(l) p(l) s(n) p(n) unused 

--r,·; son son P(O) son p(l) 

Figure 4. Partial Index Structure of a Simple 
Pref ix B-Tree 

bound pair front common 
compression pref ix 

suppr,supre sup sup 
supre,sus SU SU 

sus,t empty string s 

Figure 5. Common Prefix in Simple Prefix B-Tree 
of Figure 5 



~ 
~ 

v 

v 

suppr.supre 

v 

v 

I supra I 

SUS 

11 
v 

0-

v 

suspect 
suspicion 

I 
v 

jsupportj 
I supreme I 

v 

v 

v 

suppress 
suppressing 

jsustainj 

v 

surely 
surrounding 

v 

tamper 
taylor 

Figure 6. Prefix B-Tree Derived from the Simple 
Pref ix B-Tree of Figure 3 
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Evaluation of Pref ix B-Tree Indices 

Since both simple pref ix B-tree and prefix B-tree are 

variations of a B+-tree, the main advantages of the B+-tree, 

such as , guaranteeing good worst-case performance, good 

storage utilization, and easy sequential processing, are 

preserved. The techniques of choosing the shortest 

separators, pruning off prefixes, and constructing prefixes 

during a search are applied on both trees. Therefore, the 

number of index levels, the number of disc accesses, the 

retrieval time, and the space required by both trees are 

less than those of B+-tree. However, the index building and 

maintenance processes are quite complicated and time 

consuming, especially for the prefix B-tree. 

The separators in the index nodes are of variable 

length, so that the branching degree of each node depends 

heavily on the internal organization of a node. Thus, 

during the index building and maintenance process, the 

number of separators that can be packed into a node will not 

be known until the predetermining tests have been performed. 

Additional internal searching time is required due to the 

varying location of separators within a node. For a prefix 

B-tree, additional computation time is required for both (1) 

recalculating partial separators for some insertions or 

deletions which may alter the common pref ix and (2) 

constructing prefixes while traversing the prefix B-tree 

during a search. 



CHAPTER III 

GENERALIZED FIBONACCI BUDDY SYSTEM 

In pratical applications, various amounts of memory 

space are required for accommodating many requested sets of 

information (data arrays, programs, etc.) concurrently in 

main memory or for storing information on secondary storage. 

However, the capacity of the computer is limited. Poor 

storage management may cause the available memory to be 

scattered throughout the memory pool so that the computer 

can not allocate space for larger contiguous memory 

requests. Therefore, managing or utilizing computer 

storage, both internally and externally, in an efficient 

manner is one main aspect of modern computing. 

Basically, there are two types of management methods: 

static storage management and dynamic storage management. 

Static storage management allocates the storage blocks in 

fixed sizes while dynamic storage management allocates the 

storage blocks in varying sizes. This chapter discusses 

dynamic storage management, which is the better method for 

storing variable-length lists. It focuses on one particular 

category of this management -- the buddy-system method. 

15 
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Dynamic Storage Allocation 

Many applications need blocks of varying sizes that 

share a common memory area. Dynamic storage allocation 

techniques are required for dynamically allocating 

(reserving) and deallocating (releasing or freeing) 

variable-size blocks of contiguous memory cells from a 

common storage pool. 

Obviously, storage blocks are divided into two classes: 

free and reserved. When an area of n consecutive free space 

is requested, a block of the appropriate size is selected 

from the common storage pool and becomes a reserved block. 

When a reserved block is released, this block is returned to 

the common storage pool and becomes a free block. These 

processes are the fundamental concepts of allocation and 

deallocation. Based upon these ideas, several methods for 

dynamic storage allocation have been published. The various 

methods follow different procedures for gaining an available 

block and returning the excess storage of this block. Some 

common methods are given in this section. It is intended 

that this section explains why the buddy system is chosen to 

manage a separate memory space for information associated 

with words in the Pref ix B-Tree experimental implementation. 

First-Fit 

In the first-fit policy, the free blocks are linked 

into a circular list in some order, such as in ascending or 

descending order of block addresses, in order of block size, 



or in random order. 
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When a r~quest for a block of size n 

words is serviced, a search is made along the free ring 

until the first block of size m ~ n encountered. This block 

is then detached from the list. The starting search point 

can be the beginning of a free list, or it can circulate to 

the right around the ring. If m >> n, the block is split 

into two small blocks, one of size n, which is marked as 

reserved and satisfies the request, and one of size m-n, 

which is marked as free and is put back on the available 

list. When a block is liberated, an attempt to coalesce 

this block with its neighbors is made to form a larger free 

block. The resulting, and possibly enlarged, free block is 

put back on the free list. Sufficient information, such as 

block size and block class (free or reserved), must be 

carried in each block for the operation of coalescence (15). 

Best-Fit 

The best-fit method, like the previous method, employs 

a circular list of all available blocks. When a block is 

requested, a search of the entire list is performed to find 

the smallest block that is large enough to fulfill the 

request. The excess part of the block, if any, is put back 

on the free list. When a block is liberated, the same 

coalescing technique as used in the first-fit method is 

applied. 
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Buddy-System 

This scheme breaks memory into blocks of prescribed 

sizes, such as blocks whose sizes are powers of two or 

blocks whose sizes are numbers in the Fibonacci sequence. 

Blocks with sizes in these sequence schemes can be split 

into two smaller blocks, namely buddies, whose sizes are 

also numbers in the sequence. schemes and also can be 

reconstituted if and when both buddies are simultaneously 

free. Additionally, the free blocks of the various sizes 

are placed on the doubly linked lists of blocks of the same 

size. Therefore, when a block is allocated, only the 

available list containing blocks of sizes equal to the 

requested size is examined. If this list is not found, then 

list with the next larger block size is examined. As stated 

in Hinds' (11, p.221) article, the following actions are 

performed when the operation of allocation or deallocation 

is encountered. 

A: To satisfy a storage request 

1. The smallest block of storage that is at 
big as the request is selected as the 
block. 

least as 
candidate 

2. The candidate is checked for size and, if large 
enough, is split into two smaller blocks (buddies)~ 
otherwise the candidate block is returned as the 
block satisfying the request and the algorithm 
terminates. 

3. One of the buddies (the smaller of the two, if 
possible) is selected as the new candidate and the 
other is inserted into the free storage pool. The 
algorithm then proceeds from A.2. 

B: To return a block to the storage pool 
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1. The buddy of the newly returned block is located. 

2. The buddy is inspected to see that it is whole (not 
split into subbuddies) and free. if both conditions 
are met, the the buddy is removed from free storage 
and merged with the newly returned block to create 
a larger block. This larger block is then taken as 
the newly returned block and execution proceeds 
with B.l. 

3. If it is impossible to merge, then the newly 
returned block is returned to the free storage area 
and the algorithm terminates. 

Since the buddy system manages blocks of storage on 

separate availability lists rather than managing a single 

availability list as the other methods do, the number of 

searches per request of the buddy system is less than those 

of other dynamic storage methods. Thus, use of the buddy 

system on secondary storage is motivated by the speed of 

finding a block and by 

deallocating a block. 

the speed of allocating and 

Characteristics of Buddy System 

The buddy system was first published by Knowlton (14) 

in 1965. It was used for the storage bookkeeping method in 

the Bell Telephone Laboratories Low Level List Language. 

Since that time, there have been evolutionary systems 

developed from Knowlton's original buddy system. Such 

systems differ to some extent but all are similiar in many 

features. Such features are as follows: 

1. Memory is broken into many sizes of blocks that are 
fixed in size and location. 

2. Each block size has its own separate availability 
list. 
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3. The basic structures for the allocation and 
deallocation algorithms are the same. 

The major differences are the sizes of the memory blocks 

provided and the consequent address calculation for locating 

the buddy of a released block. 

As stated in the preceeding section, the buddy system 

has a time performance advantage over other dynamic methods. 

This advantage, however, is achieved at the e~pense of low 

level storage utilization due to internal fragmentation and 

external fragmentation. The other dynamic methods are 

subject to external fragmentation alone. Internal 

fragmentation refers to unused storage that dwells inside 

the reserved blocks, whereas external fragmentation refers 

to free blocks that are unable to service requests because 

they are of insufficient size. 

Original Buddy System 

In Knowlton's original buddy system, namely the binary 

buddy system, the lengths of the blocks are of powers of two 

and contain two control fields and/or two link fields, 

forward links and backward links. One control field, TAG, 

is used to indicate if the block is free or in use. If the 

block is free the two links are provided to link free blocks 

into a ring. Otherwise, the space for the links is used for 

storing information. The other control field, ISIZE, used 

to contain the base 2 logarithm of the block size. When a 

block is requested or liberated, the algoritms presented in 

the preceeding section are used. 



21 

The buddy location process is relatively simple. 

Suppose the entire pool of memory space consists of 2m 

words, which are assumed to have relative addresses 0 

through 2m - 1. ~ The block address for a block of size 2 is 

a binary number in which the last k bits are zero. For 

example, a block of size 16 has an address of the form 

bb ••• bOOOO (where the b's represent either 0 or 1). If it is 

split, the newly formed buddies of size 8 have the addresses 

bb ••• bOOOO and bb ..• blOOO. Hence, given the address 

bb ••• bOOO of a block of size 8, the address of its binary 

buddy can be obtained by complementing the fourth bit from 

the last bit. In general, given the address of a block of 

the address of its buddy is obtained by 

complementing the (k+l)st bit from the last. 

Since storage is allocated in blocks of fixed, uniform 

size by the buddy system, a request for memory is forced to 

be rounded up to nearest block size. Therefore, unusable 

memory occurs in fragments both internal and external to the 

allocated blocks. Internal fragmentation, however, poses a 

larger problem than external fragmentation (19). Generally 

speaking, the more different-size blocks there are 

available, the less internal fragmentation there should be. 

Hence, this leads to investigations into methods that allow 

more block sizes, such as the Fibonacci system by Hirschberg 

(12), the weighted buddy system by Shen and Peterson (22), 

and the generalized Fibonacci buddy· system by Hinds (11). 
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Fibonacci System 

The sequence 

0, 1, 1, 2, 3, -5, 8, 13, 21, 34, ... , 

in which each number is the sum of the preceeding two, was 

originated in 1202 by Leonardo Fibonacci. The numbers in 

the sequence are denoted by F(n), and are formally defined 

as 

F(O) = 0, F(l) = 1, 

F(n+2) = F(n+l) + F(n) n <::. 0. 

This sequence was given the name "Fibonacci Numbers" by a 

mathematician named E. Lucas during the 19th century. The 

name has been used ever since (15). 

Based upon the Fibonacci number, a new system, namely 

the Fibonacci system, was introduced by Hirschberg (12) in 

1973. This system possesses the basic characteristics of 

the buddy system. It has, however, its own set of 

permissible block sizes, which are based on the numbers in 

the Fibonacci sequence, and its own buddy locating process. 

Since the calculation of the possible starting addresses of 

the buddies needs three extra auxiliary lists and is a time-

consuming computation, the buddy locating process is not 

addressed 1n this thesis. 

Weighted Buddy System 

The weighted buddy system, introduced by Shen and 

Peterson (22) in 1974, permits block sizes of 2K, O $ k $ m, 
K and 3·2 , 0 $ k $ m-2. In this system there are nearly 
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twice as many block sizes as there are available in a binary 

buddy system. As suggested by Shen and Peterson (22), the 

blocks are split in two different ways depending on the size 

of the block to be split: (1) a block of size 2~+ 2 is split 

into two blocks of sizes 3·2K and 2K, or (2) a block of size 

3·2k is split into two blocks of sizes 2~· 1 and 2K. 

To distinguish these different kinds of splits, a two

bit TYPE field is encoded in each block: 

TYPE(P) = 11 if the block with address p is split from 
a 21< size bl,ock, 

= 01 if the block with address p is the left 
split from a 3. 2" block, 

= 10 if the block with address p is the right 
split from a 3 · 2 K block. 

Given the size k and the address x of the block, the 

address calculation for the buddy of this block is defined 

as: (22, p.560) 

buddy (x) = x + 3·2K if x mod 2~+ 2 =0 and TYPE(x)=ll, 

= x + 2~ if TYPE(x)=Ol, 

= x - 2K+l if TYPE(x)=lO. 

;;; 
=3·2 and TYPE(x)=ll, 

Generalized Fibonacci Buddy System 

In 1975, a generalized Fibonacci buddy system was 

published by Hinds (11). There are two innovations in this 

system. The first is that block sizes are allowed to be 

elements of an arbitrary (but fixed) generalized Fibonacci 

sequence. The sequence has the form 

F(n) = F(n-1) + F(n-k) 
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Thus, any. sequence for a buddy system can be completely 

generalized by choosing k and F(i) (0 sis k-1). For 

instance, k=l and F(O)=l yield the original buddy block 

sizes: 

1, 2, 4, 8, 16, 32, 

K=2, F(0)=3, and F(l)=S yield the Hirschberg's Fibonacci 

buddy block sizes: 

3, 5, 8, 13, 21, 34, •.• 

The second innovation is a very simple and efficient 

technique for locating buddies by using the concept of Left

Buddy-Count (LBC). 

The LBC can be described as follows. Suppose that an 

arbitrary Fibonacci sequence has been picked and is to be 

used on a storage pool. After a period of time in which 
. 

allocations and liberations have taken place, the pool may 

be broken up and the resulting storage block with the LBC 

field would appear as shown in Figure 7. As stated by Hinds 

(10), each vertical line indicates the start of a block, 

each horizontal line indicates a split and also points to 

the right-hand buddy. Additionally, this diagram indicates 

exactly what merges would have to take place and what blocks 

are to be inspected to achieve the merges. Thus, to make 

the merging process easy, the number of splits a block has 

undergone, since it was created, 

blocks at the time of a split. 

Left-Buddy-Count (LBC). 

must be encoded into the 

This number is called the 

The LBC is utilized with the other attributes of a 
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block, such as FREE, ISIZE, and K. The FREE field is a 

boolean value indicating the availability of a block. The 

ISIZE field is an index into a vector SIZE containing the 

actual size of the block. K is a constant used to locate 

buddies and assign proper sizes during a split. When a 

block of size F(n) is split, the block of size F(n-1) is the 

left buddy and the block of size F(n-k) is the right buddy. 

0 

I I 
v 1 v 0 

h v 2 v 0 v 0 

Highest 
address 

Figure 7. Hinds' Fibonacci System Storage Layout 
with Left Buddy Count 

According to Hinds' (11, P.222) definition, to assign 

the proper LBC to a block, let the LBC of the entire storage 

pool be 0 at the beginning. During any split of a parent 

block, assign to the newly created blocks: 
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LBC(right) = 0 

LBC(left) = LBC(parent) - 1 

For a merge the reverse relation is used: 

LBC(parent)= LBC(left) - 1 

Therefore, the determination of the relative location of a 

buddy is easily done by testing the LBC. If LBC=O it is a 

right buddy; otherwise, it is a left buddy. To locate 

buddies, the following formules are used: 

For the left-handed buddy 

ISIZE = liberated block's ISIZE + K - 1 
address = liberated block's address -

SIZE(left-handed buddy's ISIZE) 

For the right-handed buddy 

ISIZE = liberated block's ISIZE - K + 1 
address= liberated block's address + 

SIZE(liberated block's ISIZE) 

For example, as shown in Figure 8, if block A whose 

address, ISIZE, and LBC are 50, 3, and 0, respectively, is 

liberated the following steps are performed: 

1. Test LBC(A) to determine if its buddy is a left
handed buddy. 

2. Compute ISIZE for the left-handed buddy 
ISIZE = 3 + k - 1 = 4 

3. Compute address for the left-handed buddy 
address = 50 - SIZE(4) = 0 

On the other hand, if block C whose address, ISIZE, and LBC 

are 0, 3, and 2, respectively, is liberated, the address and 

ISIZE of its buddy are computed as follows: 

1. Since LBC(C) > 0, its buddy is right-handed. 

2. ISIZE of C's buddy = 3 - k + 1 = 2 

3. address of C's buddy= 0 + SIZE(3) = 30 
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c B A 

2 v 0 v 0 

0 30 50 80 

SIZE = 10, 20, 30, 50, 80 
k = 2 

Figure 8. An Example of Hinds' Buddy System Buddy 
Locating Process. 

When merging two buddies together, two conditions 

should be confirmed: both buddies are simultaneously free, 

and both are not subdivided. As an example consider the 

storage layout in Figure 8. Block A can not be merged with 

its buddy because its buddy is already divided into block B 

and block c. 
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Buddy System's Variation for Disk Allocation 

Secondary storage has traditionally been managed with a 

static storage technique. The buddy system has been proven 

effective in internal storage (15). Therefore, Burton (3) 

was interested in the buddy system for possible application 

on secondary storage. However, in Hinds' buddy system the 

block sizes are the form F(n) = F(n-1) + F(n-k) where k is- a 

simple constant. This method tends to be unsuitable for disc 

storage ailocation since logical blocks often overlap the 

boundaries of physical blocks, such as sectors, tracks, 

cylinders, and disc packs. Hence, in 1975, Burton (3) 

improved this method by selecting a meaningful integral

value function k, so that the set of permitted block sizes 

are the form F(n) = F(n-1) + F(n-k(n)). 

The merits of Burton's (3, P.416) improvement are as 

follows: 

1. It is possible to prevent any logical block from 
overlapping the boundary of any physical block 
which is larger than the logical block. 

2. Any sequence of block sizes may be allowed. 

These merits can be illustrated by Burton's (3, P.417) 

examples. Suppose that some ICL discs have 128 words per 

sector, 1024 words per track, and 10,240 words per cylinder. 

Table I shows one sequence of block sizes which insures that 

every physical block is also a logical block. Table II 

illustrates how, if need be, blocks of size 50 and 150 could 

be provided while using the ICL discs. 

The splitting and coalescing processes can be performed 
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in the usual manner. However, the k in this new variation 

of the buddy system is a function rather than a constant. 

Thus, a new problem of determining the size of the buddy of 

a right block occurs during coalescing. To solve this 

problem, Burton (3) introduces a new field, called the I-

field, to the control word of each block. The information 

contained in the I-field concerns the sizes of the buddies 

of the right blocks. For a right block, the I-field 

contains the index of the size of the block's buddy. For a 

left block, the I-field contains the value of the I-field of 

its parent block. Consequently, the size of a right block's 

buddy can be preserved when the block is split. 

TABLE I 

A FIBONACCI-LIKE SCHEME ( k (i) OFTEN 2) 

i SIZE ( i) k ( i) 

0 16 
1 32 1 
2 48 2 
3 80 2 
4 128 2 
5 256 1 
6 384 2 
7 640 2 
8 1024 2 
9 2048 1 
10 4096 1 
11 6144 2 
12 10240 2 
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TABLE II 

AN IRREGULAR SCHEME 

i SIZE(i) k ( i) 

0 22 
1 28 
2 50 2 
3 78 2 
4 106 3 
5 128 5 
6 150 6 
7 256 3 
8 384 3 
9 640 2 

10 1024 2 
11 2048 l 
12 4096 l 
13 6144 2 
14 10240 2 

Comparison of Buddy Systems 

There are two properties, running time and storage 

utilization effectiveness, which are important for a buddy 

system. The running time is determined by the number of 

blocks which are split and recombined. The efficiency of 

storage management is analyzed in terms of internal and 

external fragmentation. When a requested block size is not 

equal to one of the provided block sizes, it is necessary to 
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allocate the next larger block size for this request. The 

sum of unusable memory due to this overallocation over all 

allocated blocks is referred to as internal fragmentation. 

Memory overflow occurs when the requests can not be 

satisfied because the available blocks are of insufficient 

sizes. The ratio of the amount of unallocatable memory to 

the total memory size is ref erred to as external 

fragmentation. Since the external fiagmentation is a 

proportion of total memory and the internal fragmentation is 

a proportion of allocated memory, total fragmentation should 

be computed as follows: 

total = (1-external) * internal + external 

According to these measures, a simulation of four buddy 

systems (binary, Fibonacci, weighted, and tha F-2 buddy __ 

system based on the recurrence relation F(n+l)=F(n)+F(n-2}) 

was conducted by Peterson (18) in 1977 to obtain comparative 

values of internal, external, and total fragmentation as 

well as the average numbers of splits and recombinations. 

Note that two kinds of distributions,· uniform and 

exponential, were used to generate the sequence of requests 

in this simulation. The comparative simulation results show 

that as internal fragmentation decreases, external 

fragmentation increases. This occurs because an increased 

number of different block sizes, such as those in the 

weighted and F-2 buddy systems, will result in a smaller 

intrablock difference (F(n) - F(n-1)). Therefore, a better 

fit to the requested block size can be made to yield lower 
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internal fragmentation. This also tends to increase the 

number of smaller available blocks which are less useful 

than the larger blocks provided by the binary and Fibonacci 

buddy systems. These small and unusable but available 

blocks contribute to higher external. fragmentation. 

However, the total fragmentation for those buddy systems is 

relatively constant, resulting in 25 to 40 percent of the 

memory being wasted. The running time increases with an 

increase in external fragmentation. 

The amount of internal and external fragmentation in a 

buddy system depends heavily on the distribution of requests 

for memory and the block sizes provided. 

to change the memory distribution to match 

method. But, it wculd be possible for a 

generate a sequence of numbers more closely 

storage allocation requirement. 

It is impossible 

the allocation 

buddy system to 

matched to the 



CHAPTER IV 

PREFIX B-TREE INDEX AND ASSOCIATED 

DYNAMIC LISTS IMPLEMENTATION 

An experimental implementation 

tree and a dynamic storage method 

chapter. A simple prefix B-tree 

storing the variable-length words. 

for a simple pref ix B

is presented in this 

structure is set up for 

One extension of Hinds' 

and Burton's generalized Fibonacci buddy system is the 

system used to deal with inverted lists which are associated 

with words. Program Design Language (PDL) descriptions of 

this implementation are available in the appendices. 

The implementation language for this project is PL/I. 

In PL/I, a REGIONAL organization of a data set divides the 

data set into regions and permits the users to control the 

physical placement of regions in the data set. Because of 

these features, 

implementation. 

relative address files are used in this 

Each physical region will be treated as 

either one leaf node or index node in the tree structure or 

one common storage pool in the buddy system. The efficiency 

of storage utilization, data transmission time, and internal 

searching time depend on the region size. This thesis will 

not study th~ topic of region size any futher and fixes the 

size to 1024 bytes. 

33 
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Implementation for Simple Pref ix B-Tree 

Data Structure Design 

The PL/I relative address file used for the tree 

structure portion is called TREE. Since both the actual 

keys in the index nodes and the separators in the leaf nodes 

are variable in length, some additional information must be 

kept in each node so that the fields and key values can be 

located correctly. The data structures of the leaf nodes 

and the index nodes are shown in Figure 9. Figure 10 

presents the declarations of major data structures. 

IUB NPW p(O)l(l)pw(l)p(l)l(2)pw(2) ... l(i)pw(i)p(i) unuse 

INDEX 
PART 

LEAF PART 

/ 

/ 

HORI LUB NW l(l)w(l)p(l)l(2)w(2)p(2) .•• l(j)w(j)p(j) unuse 

Figure 9. Data Structures for a Simple Pref ix B-Tree 
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The index node and leaf node are called I REG and 

L_REG, respectively. Both I REG and L REG are vectors of 

bytes that hold regions of information stored in the TREE. 

The additional information kept in I_REG includes IUB, NPW, 

and l(i), which represent the number of bytes unused, the 

number of separators stored within this index node, and the 

length of separators pw(i), respectively. Likewise, LUB, 

NW, and l(j) in the leaf node represent the number of bytes 

unused, the number of actual words stored within the leaf 

node, and the length of w(j), respectively. In the index 

nodes, p(i) is a pointer to a descendant node as usual. 

However, in the leaf node, p(j) is a pointer to the inverted 

list associated with w(j). Since each physical region in 

the relative address file is identified by a region number, 

IREG NUM or LREG NUM is used to represent the region number, 

depending on whether this region is used as an index node or 

leaf node. IREG DISP and LREG DISP are the offset within 

I REG and L REG, respectively. - - Except when a node is being 

searched and updated, I_INFO, L_INFO, RPOINT, and APOINT are 

dynamically based on I_REG(IREG_DISP), L_REG(LREG_DISP), 

I_REG(IREG_DISP+2+PW_LEN), and L_REG(LREG_DISP+2+WORD_LEN) 

accordingly. 

Logical Design 

This implementation centers on the random insertion 

process of building and maintaining a simple pref ix B-tree 

structure. Therefore, only the insertion algorithm is 
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designed. The overflow condition is handled by simply 

splitting the overflow node into two or by attempting to 

share the overflow node with one of its brothers. When a 

node shares with its brother, the right brother is used 

unless it is full, in which case the left brother is used. 

TREE FILE RECORD ENVIRONMENT(REGIONAL(l),RECSIZE(l024)); 

I REG(l024) 
L=REG(l024) 

CHAR(l); 
CHAR(l); 

1 I HEAD BASED(I REG(l)), - 2 I UNUSE BYTE FIXED BIN(l5,0), 
2 NUM PW FIXED BIN(l5,0); 

1 L HEAD BASED(L_REG(l)), - 2 HORIZONTAL FIXED BIN(l5,0), 
2 L UNUSE BYTE FIXED BIN(l5,0), 
2 NUM WORD FIXED BIN(l5,0); 

1 I INFO BASED(I REG(IREG DISP)), 
-2 LPOINT - -FIXED BIN(l5,0), 

2 PW LEN FIXED BIN(l5,0), 
2 PART WORD CHAR(200); 

RPO INT BASED(I_REG(IREG_DISP+2+PW LEN))FIXED BIN(l5,0); 

1 L INFO BASED(L REG(LREG DISP)), 
2 WORD LEN - -FIXED BIN ( 15 I 0), 
2 WORD- CHAR(200); 

1 APOINT BASED(L REG(LREG DISP+2+WORD LEN)), 
2 REG - -BIT(B), -
2 DISP BIT(B); 

!REG NUM,LREG NUM 
IREG=DISP,LREG_DISP 

FIXED BIN(l5,0); 
FIXED BIN(l5,0); 

Figure 10. Declaration of Major data Structures for 
a Simple Pref ix B-Tree 
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Refer to Figure 11 for the following discussion. Since 

the technique of choosing the shortest separator is used 

only for splitting leaves, the split and equalization 

procedures of a lowest level node are different from those 

of an upper level node. When an index node is being split, 

one of the separators in that node is moved up one level in 

the tree. Consequently, the split and equalization 

procedures of an index node are more complicated than those 

of a leaf node. 

Since the separators are of variable length, overflows 

may trigger further splits, merges, or overflows if a 

separator in the parent node is replaced by a longer or 

shorter separator. However, such a condition occurs 

infrequently. Thus, for simplification, such a condition is 

treated as a equalization failure if it is detected. 

Implementation for Dynamic Lists 

Data Structure Design 

The separate space for inverted lists is a relative 

address file named ADRS. The physical region in ADRS is 

called ADDR_REG, which is a vector of words that hold the 

inverted lists stored in ADRS. For simplification, this 

implementation uses four bytes for each address. Since the 

inverted lists are variable in length, several inverted 

lists may share an ADDR REG or one inverted list may cross 

one or more ADDR REGs. Therefore, the starting point of 

each inverted list in ADDR REG is not fixed. As shown in 



INDX UPDATE: PROCEDURE; 
IF OVERFLOW NODE HAS RIGHT BROTHER 

THEN CALL EQUAL LEAF, IF SUCCEEDS THEN RETURN; 
IF OVERFLOW NODE HAS-LEFT BROTHER 

THEN CALL EQUAL LEAF, IF SUCCEEDS THEN RETURN; 
CALL SPLIT LEAF; -
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DO WHILE(CURRENT OVERFLOW NODE IS NOT ROOT NODE); 
PROPAGATE THE SHORTEST SEPARATOR INTO PARENT NODE; 
IF PARENT NODE IS NOT FULL THEN RETURN; 

END; 

SET PARENT NODE TO OVERFLOW NODE; 
IF OVERFLOW NODE HAS RIGHT BROTHER 

THEN CALL EQUAL INDX, IF SUCCEEDS THEN RETURN; 
IF OVERFLOW NODE HAS LEFT BROTHER 

THEN CALL EQUAL INDX, IF SUCCEEDS THEN RETURN; 
CALL SPLIT_INDX; -

CREATE A NEW ROOT NODE; 
END INDX_UPDATE; 

SPLIT LEAF: PREOCEDURE; 
FIND THE SPLIT POINT WITHIN A CERTAIN INTERVAL; 
SPLIT OVERFLOW NODE INTO TWO LEAF NODES; 
COMPUTE THE SHORTEST SEPARATOR BETWEEN THESE NEW 

CREATED LEAF NODES: 
END SPLIT_LEAF; 

SPLIT.INDX: PRQC~DURE; 
FIND THE SPLIT POINT WITHIN A CERTAIN INTERVAL; 
PUT SEPARATORS BEFORE SPLIT POINT IN ONE INDEX NODE; 
SET THE SEPARATOR ON THE SPLIT POINT TO THE SHORTEST 

SEPARATOR TO BE PROPAGATED; 
PUT THE REST SEPARATORS IN ANOTHER INDEX NODE; 

END SPLIT_INDX; 

EQUAL LEAF: PROCEDURE; 
IF TOTAL LENGTH OF OVERFLOW NODE AND ITS BROTHER IS 

GREATER THAN TWO TIMES OF REGION SIZE THEN RETURN; 
COMBINE OVERFLOW NODE AND ITS BROTHER I~TO TOTAL NODE; 
FIND SPLIT POINT AND SPLIT TOTAL NODE INTO TWO LEAVES; 
COMPUTE AND UPDATE THE SHORTEST SEPARATOR BETWEEN THESE 

NEW CREATED LEAF NODES; 
END EQUAL_LEAF; 

EQUAL INDX: PROCEDURE; 
IF TOTAL LENGTH OF OVERFLOW NODE AND ITS BROTHER IS 

GREATER THAN TWO TIMES OF REGION SIZE THEN RETURN; 
COMBINE OVERFLOW NODE, ITS BROTHER, AND THEIR SEPARATOR 

INTO TOTAL NODE; 
FIND SPLIT POINT, SPLIT TOTAL NODE INTO TWO INDEX NODES, 

AND UPDATE THE SEPARATOR IN THE PARENT NODE; 
END EQUAL_INDX; 

Figure 11. Logic of Handling Overflow Condition for 
a Simple Pref ix B-Tree 



39 

Figure 9, the pointer, p(j), in the leaf nodes consists of 

the relative region number REG and the offset within the 

region named DISP. Ref er to Figure 12 for more details 

concerning inverted lists. 

LEAF NODE 

HORI LUB NW 1(1)w(~)l(2)w(2)p(2~)-·_·_· __ l_(J-·)_w_(_j_)p--(J-·) __ u......,nuse 

v 

con-!linkl free 
trol I block Icon-, NA I 

trol 
inverted 
list 

(unspanned record) 

I 
v 

con-1 NA I inverted I SP 
jtrol list (continued) 
.______ _____ 11 

(spanned record) . 

I 
v 

con-,NAI i~verted I 
trol list lcon-,NAI 

trol 
inverted 
list(end) I ... 

Figure 12. Data Structure for Managing Fragment Space in 
Using Portions of Blocks 

The major data structure of the dynamic lists is HEADER 



and is stored in the first region of ADRS. 
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It is a 

structure that contains all pertinent run information that 

must be saved for future reuse. It contains SIZE_NUM, which 

is the number of different block sizes allowed in a common 

storage pool, and an available space list (SIZE_TABLE), 

which keeps t~ack of all available blocks of storage. SIZE 

contains the various allowable block sizes in increasing 

order. K is the corresponding generalized Fibonacci factor. 

SLLINK and SRLINK are the left and right links for the 

headers of the availability lists. With respect to the 

particular application, additional information, such as 

ROOT, NEXT_TREE_REG, and NEXT ADDR_REG, must be kept to 

indicate the region number of the root node, of the next 

available region for the tree structure, and of the next 

available region for the inverted lists. The declarations 

for the data structures used in the dynamic lists 

implementation are listed in Figure 13. 

Each block needs one word for control purpose. 

Moreover, the free blocks need one more word for left and 

right links which link the blocks to the doubly linked 

available lists. Therefore, two based arrays, CONTROL_FIELD 

and LINK_FIELD, are used to redefine the control field 

and/or link field for a particular purpose. CONTROL_FIELD, 

which is based on ADDR_REG(O), has four elementary items. 

FREE, LBC, and !SIZE have the same purpose as in Hinds' (11) 

article. 

article. 

!FIELD corresponds to the I-field in Burton's (3) 

LINK_FIELD, based on ADDR_REG(O), contains the 



ADRS FILE RECORD ENVIRONMENT(REGIONAL(l),RECSIZE(1024)); 

ADDR REG(0:255) 
ADDR-REGB(0:255) 
ADDR-REGS(0:255) 

1 HEADER, 

FIXED BIN(31,0); 
FIXED BIN(31,0); 
FIXED BIN(31,0); 

2 ROOT FIXED BIN(l5,0), 
2 NEXT TREE REG FIXED BIN(lS,O), 
2 NEXT-ADDR-REG FIXED BIN(l5,0), 
2 SIZE-NUM - FIXED BIN(lS,0), 
2 SIZE-TABLE(-1:-SIZE NUM), 

3 SIZE FIXED BIN(lS,0), 
3 K FIXED BIN(lS,0), 
3 SLLINK, 

4 SL REG BI T ( 8 ) , 
4 SLDISP BIT(8), 

3 SRLINK, -
4 SRREG BIT(8), 
4 SRDISP BIT(8); 

1 CONTROL FIELD(0:255) 
2 FREE-
2 · IFIELD 
2 LBC 
2 I SIZE 

1 LINK FIELD(0:255) 
2 LLINK, 

3 LREG 
3 LDISP 

2 RLINK, 
3 RREG 
3 RDISP 

1 LINK FIELDB(0:255) 
2 LLINKB, 

3 LREGB 
3 LDISPB 

2 RLINKB, 
3 RREGB 
3 RDISPB 

1 SPAN PT 
2 DUMMY 
2 AREG REGS 
2 AREG-DISPS 

1 ADDR FIELD 
2 NUM ADDR 
2 ADDRESS(254) 

BASED(ADDR_REG(O)), 
BIT(l), 
BIT(7), 
BIT(8), 
FIXED BIN(lS,0); 

BASED(ADDR_REG(O)), 

BIT(8), 
BIT(8), 

BIT(8), 
BIT(8); 

BASED(ADDR_REGB(O)), 

BIT(8), 
BIT(8), 

BIT(8), 
BIT(8); 

BASED(ADDR REGS(255)), 
CHAR(2), -
BIT(8), 
BIT(8); 

BASED(ADDR REG(AREG DISP+l)), 
FIXED BIN(lS,0), -
FIXED BIN(31,0); 

Figure 13. Declaractions of Data Structures for Managing 
Fragment Space in Using Portions of Blocks 
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left link and the right link, LLINK and RLINK, respectively. 

The other major data structure is ADDR_INFO, which is 

dynamically based on ADDR REG(AREG_DISP+l) and has two 

elementary items. NUM ADDR indicates the number of 

addresses contained in the block. ADDRESS is a vector of 

words that hold the addresses in the block. The purpose of 

ADDR INFO is to allow the access of a inverted list. 

With the exception of inserting and deleting blocks 

from the avaialability lists, the link fields of the 

processed block and its forward or backward block which 

links or will be linked to the processed block need to be in 

internal memory simulanteously. If both blocks are not in 

the same region another vector, ADDR REGB, is needed to hold 

the forward or backward block. . ·--Likewise, ADDR REGB has a 

based array named LINK FIELDB serving the same linking 

function as LINK FIELD. Additionally, the vector ADDR REGS 

is needed for holding the portions of a spanned record (a 

record which crosses more than one ADDR_REGs). SPAN PT is a 

pointer based oh ADDR REGS(255) and pointing to the next 

additional blocki· 

Implementation Design 

This implementation will allow no more than 64 physical 

regions for the inverted lists. The NEXT ADDR REG keeps 

track of all available physical regions. One of these 

regions is used for HEADER and is kept in internal memory 

until all requests are processed. Initially, there is only 
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one block of size 210 attached to the availabl~ space list 

at the bottom. As requests for blocks arrive, a block 

sufficiently large is split. If this split block is the 

block of size 210 the next available region is attached to 

the list header; New available blocks and blocks desired 

for satisfying requests are attached to and removed from the 

front of the appropriate list, as in a stack. Since each 

block contains four bytes for the control word, two bytes 

for the number of addresses included in the block, and four 

bytes for each address, the block size is at least ten 

bytes. It is impossible to start a block at the last word 

of a region. Therefore the purpose for setting a link to 

the last word of a region is to distinguish whether this 

link points to a list header or a free block. 

When an address is desired for adding to an existing 

inverted list and the current address block containing this 

list does not have enough room for the new address, the 

current address block is returned to the memory pool and the 

next larger block is fetched. Figure 14 shows the logic of 

releasing and allocating a block. The largest block can 

only contain 254 addresses. If an inverted list has more 

than 254 addresses, the excess addresses are spanned to 

additional regions and pointers are planted to these 

regions. The NA field of the first region of a spanned 

record contains the total number of addresses in the 

inverted list while the NA fields of the additional regions 

contain the number of addresses in the individual region or 
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block. Therefore spanned and unspanned records can be 

identified by testing the NA of the blocks pointed to by the 

pointers associated with words. 

ALLOCATE:PROCEDURE; 
SEARCH THE AVAILABILITY LISTS FOR A CANDIDATE BLOCK; 
IF THERE IS NO CANDIDATE BLOCK THEN STOP; 
DELETE THE CANDIDATE FROM THE AVAILABILITY LIST; 
DO FOREVER; 

IF CANDIDATE CAN NOT BE SPLIT INTO BUDDIES THEN RETURN; 
IF REQUEST SIZE IS GREATER THAN THE BUDDIES CREATED BY 

SPLITTING CANDIDATE BLOCK THEN RETURN; 
SPLIT CANDIDATE INTO BUDDIES; 
IF ONE OF BUDDIES CAN SATISFY THE REQUEST 

END; 
END ALLOCATE; 

THEN MAKE IT AS THE NEW CANDIDATE AND PUT THE 
OTHER ON ITS AVAILABILITY LIST; 

RELEASE:PROCEDURE; 
DO FOREVER; 

IF CANDIDATE IS THE LARGEST BLOCK THE PUT IT ON ITS 
AVAILABILITY LIST, RETURN; 

FIND THE BUDDY OF CANDIDATE; 
IF BUDDY IS FREE AND WHOLE 

END; 
END RELEASE; 

THEN DELETE BUDDY FROM THE AVAILABILITY LIST 
AND COALESCE WITH CANDIDATE; 

ELSE RETURN; 

Figure 14. Logic for Allocating and Releasing a Block 
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Major Logic Design 

Both low and high level PDL of the logic used with this 

implementation are contained in Appendices A and B. An 

invocation diagram for the important modules is displayed in 

Figure 15. 

j I NIT-TREE j <;----[ s_rMP_LE l~J _____ S> j sEARCH-INnx j 

- £>-I SEARCH-LEAF I 

v v 

l'INSETADDRI I I IINSETWORDI l 
v V v ~1 --~NDX-UPDATE,1 

§LEAS~ ~LLOCi~ I v v 
SPLIT- EQUAL-
INDX INDX 

v 

DELETE
BUDDY 

v v 

I INSERT I 

v 

DELETE
CAND 

v v 

SPLIT
LEAF 

EQUAL
LEAF 

Figure 15. Diagram for Major Logic Models 

The SIMPLE routine is responsible for setting up or 
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maintaining a simple prefix B-tree. If it is to build a new 

tree the INIT_TREE routine is invoked; otherwise, the SIMPLE 

routine reads the information concerning the existing tree 

into HEADER. The SEARCH INDX and SEARCH LEAF routines are 

used to find the position of the search word. If the search 

word is a new word the INSERT WORD routine is invoked; 

otherwise, the INSERT ADDR routine is performed. The 

INDX UPDATE routine is responsible for handling overflow 

conditions. The ALLOCATE routine allocates a block of 

storage large enough to satisfy the request size. The 

RELEASE routine coalesces the buddies if possible and then 

liberates blocks of storge that have been allocated. 

The block allocated for a requested size is always 

removed from the front of the availability list while the 

buddy of the released block is deleted from any location in 

the list. Therefore, the ALLOCATE and RELEASE routines have 

their own deletion routines, DELETE CAND and DELETE BUDDY. 

The INSERT routine invoked by both ALLOCATE and RELEASE 

attaches a free block to the front of the appropriate list. 

Measure of Buddy System 

The performance of buddy systems depends upon execution 

time and memory utilization. Since this implementation only 

inserts new words or addresses into the tree, recombinations 

are seldom encountered. The measure of execution time is 

the number of blocks aJlocated and released, instead of the 

number of splits and recombinations. Two arrays, ALLOC and 
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DEALL, are used to keep this information. ALLOC will be 

incremented by one when a requested block is allocated by 

invoking ALLOCATE. Likewise, DEALL will be incremented by 

one when the RELEASE routine is performed to release a 

block. 

The measures of memory utilization are the same as in 

Peterson's (18) article. The INTERNAL routine traverses the 

simple pref ix B-tree in sequential order and computes the 

overallocated space of the inverted lists. The EXTERNAL 

routine searches the available space list to find all the 

available blocks on the separate availability lists. The 

PDL of these two routines is contained in the Appendix c. 
This implementation addresses memory utilization in a 

staged fashion. Initially, the number of available physical 

regions is set to ten. When these regions have been 

depleted, SIMPLE invokes both INTERNAL and EXTERNAL routines 

to compute and report the internal and external 

fragmentation, then increases the available regions by 

increments of ten. The fragmentation-measuring procedures 

execute recursively until all the test data is processed. 

Finally, SIMPLE reports the total number of blocks allocated 

and released. 

For a comparison of the buddy systems' performances, 

seven different size tables, shown in Appendix D, are used. 

Four are generalized Fibonacci buddy sequences, namely GF-1, 

GF-2, GF-3, and GF-4. The others are the binary, Fibonacci, 

and weighted buddy systems. The test data contains fourteen 
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and bytes for each word, two bytes for the document number, 

five bytes for the word number within the document. 

sorted on word number to scramble the word order 

It is 

for the 

purpose of random insertion. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND SUGGESTIONS 

FOR FURTHER WORK 

Among the several B-tree implementation techniques, the 

Pref ix B-Tree indices provide enhanced performance while 

indexing a large database with variable length keys. The 

buddy system is used as the alternate treatment of the 

variable-length inverted lists so as to increase storage 

utilization. A summary of the experimental results, 

advantages, disadvantages, practicability, and suggestions 

for further research of this implementation follows. 

Summary of Pref ix B-Tree Indices 

Bayer and Unterauer (1) have conducted an 

implementation comparing the performance of B•-trees, simple 

pref ix B-trees, and pref ix B-trees. The following main 

results are obtained (1, p.24). First, the time to perform 

the algorithms for simple prefix B-trees is nearly identical 

to the time for B•-trees, while prefix B-trees need 50-100 

percent more time. Second, there is no difference in the 

number of disc accesses when the trees have less than 200 

pages. For trees having between 400 and 800 pages, simple 

pref ix B-trees require 20-25 percent fewer disc accesses 
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than B*-trees. 
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Pref ix B-trees need about 2 percent fewer 

disc accesses than simple pref ix B-trees. 

Compared to B+-trees, the Prefix B-Tree indices have 

the advantages of less storage requirements for the index 

part and fast retrieval time from secondary storage, but 

have the disadvantages of more complex index-building and 

maintenance algorithms and much higher computing times. For 

indexing large textual databases in which the words are 

variable in length, occur in clusters, and reside on 

secondary storage for external searching, Prefix B-Tree 

indices are very suitable. 

Summary of Dynamic Lists 

The purpose of buddy systems is to keep track of the 

common memory pools used to satisfy storage requires. Two 

aspects of buddy systems are important: execution time and 

memory utilization. The experimental results are classified 

into four categories for performance analysis, namely 

internal fragmentation, external fragmentation, total 

fragmentation, and execution time. 

These results, presented in Tables III - VI, are almost 

identical to the results, mentioned in page 30, in 

Peterson's (18) article. The following general conclusions 

can be made from the Table III - VI. The weighted buddy 

system has the best performance among all the systems in 

terms of internal fragmentation, but can be recommended only 

when the distribution of block sizes is skewed towards small 
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TABLE III 

PERCENTAGE INTERNAL FRAGMENTATION 
FOR BUDDY SYSTEMS 

Regions Used 
Systems 

10 20 30 40 50 

Binary 32.36 33.18 31.84 30.75 31.28 
Weighted 26.43 24.36 22.96 21.79 21.66 
Fibonacci 44.69 39.28 37.64 36.09 34.50 
GF-1 39.77 35.96 34.24 32.06 32.39 
GF-2 38.02 33.59 33.15 32.06 29.37 
GF-3 43.06 38.43 37.81 36.45 34.10 
GF-4 29.50 27.07 26.61 27.05 25.01 

TABLE IV 

PERCENTAGE EXTERNAL FRAGMENTATION 
FOR BUDDY SYSTEMS 

Regions Used 
Systems 

10 20 30 40 50 

Binary 0.78 o.oo 1.30 0.19 3.09 
Weighted 22.65 18.12 17.53 15.74 15.00 
Fibonacci 2.42 0.93 1.64 1.17 3.02 
GF-1 1.25 1.99 0.36 0.00 0.75 
GF-2 o.oo 0.23 4.74 6.58 1.29 
GF-3 0.00 o.oo 3.12 4.64 .2 .10 
GF-4 2.96 1.25 4.01 9.49 0.90 



TABLE V 

PERCENTAGE TOTAL FRAGMENTATION 
FOR BUDDY SYSTEMS 

Regions Used 
Systems 

10 20 30 40 

Binary 32.88 33.18 32.72 30.88 
Weighted 43.09 38.06 36.36 34.10 
Fibonacci 46.03 39.84 38.66 37.19 
GF-1 40.52 37.23 34.47 32.06 
GF-2 38.02 33.74 36.31 36.53 
GF-3 43.06 38.43 39.75 39.39 
GF-4 31.58 27.98 29.54 33.97 

TABLE VI 

TOTAL NUMBER OF ALLOCATED AND RELEASED 
BLOCKS FOR BUDDY SYSTEMS 

50 

33.40 
33.41 
36.07 
32.89 
30.83 
35.48 
25.68 

Systems Allocated Released 

Binary 2611 977 
Weighted 3146 1512 
Fibonacci 2323 1289 
GF-1 2564 920 
GF-2 2580 946 
GF-3 2507 873 
GF-4 . 2740 1106 
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In most cases it can not be recommended 

because its execution time and external fragmentation are 

worse than those of any other system. The performance of 

Fibonacci system is worse in this implementation than in 

Peterson's implementation. No ideal Fibonacci sequence can 

be found to fit this physical region size with a fullword 

alignment of block sizes. 

For a real request distribution, fragmentations may be 

considerably different depending upon the "fit" of the 

provided block sizes to the requested block sizes. 

Obviously, GF-4 fits quite closely to the storage 

requirements and has the best performance among all the 

systems. If the information concerning the distribution of 

requests that will be serviced by the memory management 

system is absent, the binary buddy system is recommended due 

to its average performance. However, when statistics are 

available on the distribution of requests, the generalized 

Fibonacci buddy system proposed by Burton (3) is a good 

buddy system that can be tailored to any storage allocation 

requirement. 

Conclusions and Suggested Further Work 

If the inverted lists are stored immediately after the 

words B-tree schemes only guarantee 50 percent storage 

utilization. Furthermore, a significant portion of the leaf 

node may be used to store the inverted lists, instead of the 

words, so as to increase the tree levels and decrease the 
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storage utilization. Compared to B-tree schemes, the buddy 

systems used to manage the separate space for variable 

length inverted listes can save a considerable amount of 

space and simplify the inverted lists' management. These 

buddy systems are worthwile to implement, especially for 

relatively large textual databases when there is knowledge 

of the storage request distribution. However, some futher 

studies still can be made. 

As Bayer and Unterauer (1) suggested, choosing a 

suitable split point within a split interval can reduce the 

length of shortest separators and save more space for the 

index nodes. But, unfortunately, this technique might lead 

to worse storage utilization because the split point might 

not be in the middle of the splitting node, therefore 

causing some nodes to be less than half full. More 

experimental implementations can be made to find the 

efficiency, in terms of height and the average storage 

utilization, in split intervals. 

Furthermore, it is necessary to perform empirical 

studies to provide adequate block sizes and efficient region 

sizes for actual use. Further experimentation should be 

conducted to determine the fewest number of regions required 

to minimize the time and space costs. Such investigation is 

very useful in determining th~ practicality of combining a 

B-tree scheme and a buddy system for future use. 
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APPENDIX A 

HIGH LEVEL PDL FOR PREFIB B-TREE STRUCTURE 

AND ASSOCIATED DYNAMIC LISTS 

SIMPLE:PROCEDURE(MAIN); 
READ OPTIONS CARD; 
IF THIS RUN IS A NEW TREE THEN CALL INIT TREE; 
ELSE READ ADDRESS REG(O) INTO HEADER; -
READ A INSERT WORD; 
DO WHILE(MORE INSERT WORDS); 

SET WORD FOUND = FALSE; 
SET THE STARTING SEARCH POINT = ROOT NODE; 
DO WHILE(INDEX PART); 

CALL SEARCH INDX; 
PUT THE SEARCH PATH ON STACK; 

END; 
IF TREE IS NOT EMPTY THEN CALL SEARCH_LEAF; 
IF WORD FOUND THEN CALL INSERT ADDR; 

ELSE CALL INSERT-WORD; 
READ NEXT INSERT WORD; -

END; 
WRITE HEADER; 

END SIMPLE; 

INIT TREE:PROCEDURE; 
READ IN THE SIZE NUMBER; 
IF THE SIZE NUMBER EXCEEDS THE MAXINUM THEN PRINT ERROR; 
INITIALIZE THE TREE EMPTY; 
READ IN THE TABLE OF SIZES; 
INITIALIZE THE AVAILABILITY LISTS EMPTY; 
PUT ADDRESS REG(l) ON THE PROPER LIST; 
PERFORMAT THE FILES; 
INITIALIZE THE CONTROL FIELD FOR ADDRES REG(l); 
INITIALIZE THE LINK FIELD FOR ADDRES REG(l); 
WRITE ADDRESS REG(l); 

END INIT_TREE; 

SEARCH INDX:PROCEDURE; 
READ INDEX REGION; 
SET DISPLACEMENT = THE POSITION OF THE FIRST SEPARATOR; 
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DO N = 1 TO NUMBER OF SEPARATOR; 
IF INSERT WORD < SEPARATOR 

THEN DO; 
SET REGION NUMBER = LEFT POINTER; 
SET RIGHT BROTHER REGION = RIGHT POINTER; 
SET RIGHT SEPARATOR = SEPARATOR; 
RETURN; 

END; 
ELSE DO; 

END; 
END; 

SET LEFT BROTHER REGION = LEFT POINTER; 
SET LEFT SEPARATOR = SEPARATOR; 
INCREMENT DISPLACEMENT TO THE POSITION OF THE 

NEXT SEPARATOR; 

SET DISPLACEMENT TO THE FIRST UNUSED BYTE; 
SET REGION NUMBER = RIGHT POINTER; 

END SEARCH_INDX; 

SEARCH LEAF:PROCEDURE; 
READ LEAF REGION; 
SET DISPLACEMENT = THE POSITION OF THE FIRST WORD; 
DO N = 1 TO NUMBER OF WORD; 

IF INSERT WORD = WORD; 
THEN DO; 

END; 

SET WORD FOUND = TRUE; 
SET ADDRESS BLOCK LOCATION = RIGHT POINTER; 
RETURN; 

ELSE IF INSERT WORD > WORD 
THEN INCREMENT DISPLACEMENT TO THE POSITION 

OF THE NEXT WORD; 
ELSE RETURN; 

END; 
END SEARCH_LEAF; 

INSERT ADDR:PROCEDURE; 
READ ADDRESS REGION POINTED BY LEAF NODE; 
IF IT IS A SPANNED RECORD THEN 
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FIND THE LAST ADDRESS BLOCK OF THIS SPANND RECORD; 
MOVE ADDRESS BLOCK TO TEMP ADDRESS BLOCK; 
READ NEW ADDRESS INTO TEMP ADDRESS BLOCK; 
COMPUTE REQUEST SIZE; 
IF REQUEST SIZE > ORIGINAL ADDRESS BLOCK SIZE 

THEN DO; 
CALL RELEASE; 
CALL ALLOCATE; 
IF IT IS NOT A SPANNED RECORD THEN UPDATE THE 

POINTER ASSOCIATED WITH THE INSERT WORD 
IN THE LEAF NODE; 



END; 
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK; 
DO WHILE(MORE ADDRESSES); 

READ IN ADDRESSES TO TEMP ADDRESS BLOCK; 
COMPUTE REQUEST SIZE; 
CALL ALLOCATE; 
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK; 
UPDATE THE POINTER ON THE SPANNED REGION; 
WRITE SPANNED REGION; 

END; 
WRITE THE AVAILABLE REGION; 
UPDATE TOTAL NUMBER OF ADDRESSES; 

END INSERT_ADDR; 

INSERT WORD:PROCEDURE; 
READ IN ADDRESSES TO TEMP ADDRESS BLOCK; 
COMPUTE REQUEST SIZE; 
CALL ALLOCATE; 
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK; 
PUT THE INSERT WORD AND ADDRESS BLOCK LOCATION INTO 

LEAF NODE ON PROPER POSITION; 
IF TOO MANY WORDS TO FIT ON ONE LEAF NODE 

THEN CALL INDX UPDATE; 
ELSE WRITE LEAF NODE; 

DO WHILE(MORE ADDRESSES); 
READ IN ADDRESSES TO TEMP ADDRESS BLOCK; 
COMPUTE REQUEST SIZE; 
CALL ALLOCATE; 
MOVE TEMP ADDRESS BLOCK TO THE AVAILABLE BLOCK; 
UPDATE THE POINTER ON THE SPANNED REGION; 
WRITE SPANNED REGION; 

END; 
WRITE THE AVAILABLE REGION; 
UPDATE THE TOTAL NUMBER OF ADDRESSES; 

END INSERT_WORD; 

ALLOCATE:PROCEDURE; 
IF REQUEST SIZE > REGION SIZE THEN PRINT ERROR; 
SEARCH AVAILABILITY SPACE LIST FOR A CANDIDATE BLOCK; 
IF THERE IS NOT A BLOCK LARGE ENOUGH THEN PRINT ERROR; 
STARTING LOCATION = ADDRESS OF CANDIDATE; 
READ CANDIDATE REGION INTO ADDRESS REGION; 
CALL DELETE CAND; 
DO FOREVER;-

MARK CANDIDATE USED; 
IF THE CANDIDATE CAN NOT BE SPLIT INTO BUDDIES 
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THEN RETURN; 
IF REQUEST SIZE > THE BUDDIES CREATED BY SPLITTING 

THE CANDIDATE THEN RETURN; 
SPLIT THE CANDIDATE INTO LEFT AND RIGHT BUDDY; 



SET CONTROL FIELDS FOR BOTH BUDDIES; 
IF REQUEST SIZE > RIGHT BUDDY 

THEN DO; 

END; 
ELSE DO; 

MARK RIGHT BUDDY FREE; 
MARK LEFT BUDDY USED; 
CALL INSERT(RIGHT BUDDY, LIST); 
MARK LEFT BUDDY THE NEW CANDIDATE BLOCK; 

MARK RIGHT BUDDY USED; 
MARK LEFT BUDDY FREE; 

END; 
END; 

CALL INSERT(LEFT BUDDY, LIST); 
MARK RIGHT BUDDY THE NEW CANDIDATE BLOCK; 

END ALLOCATE; 

DELETE CAND:PROCEDURE; 
INCREMENT DISPLACEMENT BY ONE; 
SET RLINK OF THE LIST = RLINK OF CANDIDATE; 
IF ONLY ONE BLOCK ON THE LIST 

THEN DO; 
IF CANDIDATE SIZE = REGION SIZE 

THEN DO; 
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SET THE LINKS FOR NEXT ADDRESS REGION = LIST; 
SET THE LINKS FOR THE LIST = 

THE NEXT ADDRESS REGION; 
INCREMENT NEXT ADDRESS REGION BY ONE; 

END; 
ELSE SET LLINK OF THE LIST = RLINK OF THE LIST; 
DECREMENT DISPLACEMENT BY ONE; 
RETURN; 

END; 
IF CANDIDATE AND RLINK OF CANDIDATE ARE IN THE SAME 

REGION THEN DO; 
SET LLINK(RLINK OF CANDIDATE) = LLINK OF CANDIDATE; 
DECREMENT DISPLACEMENT BY ONE; 
RETURN; 

END; 
READ RLINK OF CANDIDATE INTO ADDR REGB; 
SET LLINK(RLINK OF CANDIDATE) = LLINK OF CANDIDATE; 
WRITE RLINK OF CANDIDATE FROM ADDR REGB; 
DECREMENT DISPLACEMENT BY ONE; -

END DELETE_CAND; 

RELEASE:PROCEDURE; 
DO FOREVER; 

IF THE CANDIDATE IS THE LARGEST ALLOWABLE SPACE 
THEN DO; 

MARK IT FREE; 



END; 

CALL INSERT(CANDIDATE LOC, LIST); 
WRITE CANDIDATE REGION FROM ADDR_REG; 
RETURN; 

FIND THE ADDRESS OF THE CANDIDATE'S BUDDY; 
IF (BUDDY IS USED) OR (BUDDY IS SPLIT) 

THEN DO; 

END; 

MARK CANDIDATE FREE; 
CALL INSERT(CANDIDATE LOC, LIST); 
WRITE CANDIDATE REGION FROM ADDR REG; 
~ru~; -

CALL DELETE BUDDY; 
IF BUDDY ADDRESS < CANDIDATE ADDRESS 
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THEN MARK BUDDY THE NEW CANDIDATE; 
COALESCE THE BUDDIES; 

END; 
END RELEASE; 

DELETE BUDDY:PROCEDURE; 
INCREMENT DISPLACEMENT BY ONE; 
IF ONLY ONE BLOCK ON THE LIST 

THEN DO; 

END; 

LINKS OF LIST = RLINK OF BUDDY; 
DECREMENT DISPLACEMENT BY ONE; 
RETURN; 

IF LLINK OF THE BUDDY POINTS TO A LIST HEADER 
THEN RLINK OF THE LIST = RLINK OF BUDDY; 
ELSE DO; 

END; 

IF BUDDY AND LLINK OF BUDDY ARE IN THE SAME 
REGION THEN RLINK(LLINK OF BUDDY) = 

RLINK OF BUDDY; 
ELSE DOj 

END; 

READ LLINK OF BUDDY INTO ADDR REGB; 
SET RLINK(LLINK OF BUDDY) = RLINK OF BUDDY; 
WRITE LLINK OF BUDDY FROM ADDR_REGB; 

IF RLINK OF THE BUDDY POINTERS TO A. LIST HEADER 
THEN LLINK OF LIST = LLINK OF BUDDY; 
ELSE DO; 

END; 

IF BUDDY AND RLINK OF BUDDY ARE IN THE SAME 
REGION THEN LLINK(RLINK OF BUDDY) = 

LLINK OF BUDDY; 
ELSE DO; 

END; 

READ RLINK OF BUDDY INTO ADDR REGB; 
SET LLINK(RLINK OF BUDDY) = LLINK OF BUDDY; 
WRITE RLINK OF BUDDY FROM ADDR_REGB; 

DECREMENT DISPLACEMENT BY ONE; 



END DELETE_BUDDY; 

INSERT:PROCEDURE(BUDDY LOC, LIST); 
INCREMENT DISPLACEMENT BY ONE; 
IF THE LIST IS EMPTY 

THEN DO; 

END; 

SET THE LINKS FOR THE BUDDY = LIST; 
SET THE LINKS FOR THE LIST = BUDDY; 
DECREMENT DISPLACEMENT BY ONE; 
RETURN; 

SET LLINK OF BUDDY = LIST; 
SET RLINK OF BUDDY = RLINK OF THE LIST; 
IF BUDDY AND RLINK OF LIST ARE NOT IN THE SAME REGION 

THEN DO; 

END; 

READ RLINK OF LIST INTO ADDR REGB; 
LLINK(RLINK OF LIST) = BUDDYT 
RLINK OF LIST = BUDDY; 
WRITE RLINK OF LIST FROM ADDR REGB; 
DECREMENT DISPLACEMENT BY ONET 
RETURN; 

LLINK(RLINK OF LIST), RLINK OF LIST= BUDDY; 
DECREMENT DISPLACEMENT BY ONE; 

... _ END INSERT; 

INDX UPDATE:PROCEDURE; 
ONLY ONE LEVEL THEN DO; 

END; 

CALL SPLIT LEAF; 
CREATE A NEW ROOT; 
RETURN; 

READ PARENT OF LEAF REGION INTO P REG; 
IF LEAF REGION IS NOT THE RIGHTMOST BROTHER 

THEN DO; 
READ RIGHT BROTHER INTO B REG; 
CALL EQUAL_LEAF(TEMP_REG,B_REG,RIGHT); 

END; 
IF LEAF REGION IS NOT THE LEAFMOST BROTHER AND 

RIGHT EQUALIZATION FAIL THEN DO; 
READ LEAF BROTHER INTO B REG; 
CALL EQUAL_LEAF(B_REG,TEMP_REG,LEFT); 

END; 
IF EQUALIZATION SUCCEEDS THEN RETURN; 
CALL SPLIT LEAF; 
DO WHILE(INDEX PART); 

PUT PROPAGATED SEPARATOR AND PARENT REGION INTO 
TEMP REG ON PROPER POSITION; 

IF USED BYTES IN TEMP REG ~ REGION SIZE 
THEN DO; 
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END; 

SET I REG = TEMP REG; 
WRITE-INDEX REGION FROM I_REG; 
RETURN; 

READ PARENT OF P REG INTO P REG; 
IF INDEX REGION Is NOT THE RIGHTMOST BROTHER 

THEN DO; 
READ RIGHT BORTHER INTO B REG; 
CALL EQUAL_INDX(TEMP_REG,B_REG,RIGHT}; 

END; 
IF INDEX REGION IS NOT LEFTMOST BROTHER AND 

RIGHT EQUALIZATION FAIL THEN DO; 
READ LEFT BROTHER INTO B REG; 
CALL EQUAL_INDX(B_REG,TEMP_REG,LEFT}; 

END; 
IF EQUALIZATION SUCCEEDS THEN RETURN; 
CALL SPLIT INDX; 

END; -
CREATE A NEW ROOT; 

END INDX_UPDATE; 

SPLIT LEAF:PROCEDURE; 
FIND THE SPLIT POINT WITHIN A CERTAIN SPLIT INTERVAL; 
SPLIT THE TEMP REG INTO L REG AND B REG; 
SET LEAF HEADERS FOR BOTH-L REG AND-B REG; 
WRITE LEAF REGION FROM L REG; -
WRITE LEAF REGION FROM B-REG; 
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COMPUTE THE SHORTEST SEPARATOR BETWEEN L REG AND B_REG; 
END SPLIT_LEAF; 

SPLIT INDX:PROCEDURE; 
FIND THE SPLIT POINT WITHIN A CERTAIN SPLIT INTERVAL; 
SET THE PROPAGATED SEPARATOR = THE SEPARTOR ON THE 

SPLIT POINT; 
SPLIT THE TEMP REG INTO I REG AND B REG; 
SET INDEX HEADERS FOR BOTH I REG AND B REG; 
WRITE INDEX REGION FROM I REG; -
WRITE INDEX REGION FROM B-REG; 

END SPLIT_INDX; -

EQUAL LEAF:PROCEDURE(FRONT,REAR,DIRECT); 
IF THE TOTAL LENGTH OF FRONT AND REAR > 2048 

THEN RETURN; 
COMBINE FRONT AND REAR INTO TOTAL REGION; 
FIND THE SPLIT POINT OF TOTAL REGION; 
IF DIRECT = RIGHT 

THEN SPLIT TOTAL REGION INTO L REG AND B REG; 
ELSE SPLIT TOTAL REGION INTO B-REG AND L=REG; 
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COMPUTE THE SHORTEST SEOARATOR BETWEEN L REG AND B_REG; 
SET LEAF HEADERS FOR BOTH L REG AND B REG; 
WRITE LEAF REGION FROM L REG; -
WRITE LEAF REGION FROM B-REG; 
UPADTE THE SHORTEST SEPARATOR; 
WRITE PARENT REGION FROM P REG; 

END EQUAL_LEAF; -

EQUAL INDX:PROCEDURE(FRONT,REAR,DIRECT); 
IF THE TOTAL LENGTH OF FRONT AND REAR > 2048 

THEN RETURN; 
COMBINE FRONT, PROPAGATED SEPARATOR FOR FRONT AND REAR, 

AND REAR INTO TOTAL REGION; 
FIND THE SPLIT POINT OF TOTAL REGION; 
SET PROPAGATED SEPARATOR = SEPARATOR ON THE SPLIT POINT; 
IF DIRECT = RIGHT 

THEN SPLIT TOTAL REGION INTO I REG AND B REG; 
ELSE SPLIT TOTAL REGION INTO B-REG AND I-REG; 

SET INDEX HEADERS FOR BOTH I REG AND B REG;-
WRITE INDEX REGION FROM I REG; -
WRITE INDEX REGION FROM B-REG; 
UPADTE THE PROPAGATED SEPARATOR; 
WRITE PARENT REGION FROM P REG; 

END EQUAL_INDX; -



APPENDIX B 

LOW LEVEL PDL DESCRIPTION FOR PREFIX B-TREE 

AND DYNAMIC LISTS 

Description of Variables for 

Low Level PDL 

TREE - REGIONAL(l) file that contains the available space 
for the index of words. 

ADRS - REGIONAL(l) file that contains the available space 
for inverted lists. 

TBSZ - sequential file that contains the size table. 

INFL - sequential file that contains words and addresses. 

I REG - vector of bytes that represents an index node. 

L REG - vector of bytes that represents a leaf node. 

B REG - vector of bytes that is the brother of a full node. 

P REG - vector of bytes that is the parent of a full node. 

ADDR REG - vector of words that contains inverted lists. 

ADDR REGB - vector of words that is the brother of ADDR REG. 

ADDR REGS - vector of words that contains the portion of a 
- spanned record. 

TOTAL REG - vector of bytes that contains a full node and 
its brother node. 

TEMP_REG - vector of bytes that contains a full node and the 
inserted key or propagated separator. 

HEADER - the first region of ADRS. It contains the 
information of a tree. It has ten elementary items. 
ROOT - root node of the tree. 
LEVEL - number of levels of the tree. 
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NEXT TREE REG - next available region in TREE. 
NEXT-ADDR-REG - next available region in ADRS. 
SIZE NUM - number of block sizes. 
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SIZE-TABLE - structure that contains the block sizes, 
Fibonacci factor, and the headers of available 
lists. It has four elementary items. 

SIZE - the size of a block 
K - the Fibonacci factor. 
SLLINK - the left link used for linkage to 

availability lists. It contains region number, 
SLREG, and offset, SLDISP. 

SRLINK - the right link used for linkage to 
availability lists. It contains region number, 
SRREG, and offset, SRDISP. 

CONTROL FIELD - structure that contains all 
about a block. It has four elementary 
based on ADDR REG(O). 
IFIELD - represents the I-field in 

article. See Chapter III. 
FREE,LBC,ISIZE - represent FREE, LBC, 

Hinds' (11) article. see Chapter VI. 

information 
items and is 

Burton's (3) 

and SIZE in 

LINK FIELD - structure that contains the link fields for the 
linked lists. It has two elementary items, LLINK and 
RLINK, and is based on ADDR_REG(O). 

LINK FIELDB - same as LINK FIELD but based on ADDR_REGB(O). 

SPAN_POINT - structure that is a pointer and points to 
additional address block. It has two elementary items, 
AREG_NUM and AREG_DISP, is based on ADDR_REGS(255). 

ADDR FIELD - structure that contains the information of a 
- inverted list. It has two elementary items, NUM ADDR 

and ADDRESS, is dynamically based on 
ADDR_REG(AREG_DISP+l). 

I HEAD - structure that contains the information about an 
- index node. It has two items as follows and is based 

on I REG(l). 
I UNUSE BYTE - unused bytes in index node. 
NUM PW= number of separators in the index node. 

L HEAD - structure that contains the information about a 
leaf node. It has three items as follows and is based 
on L REG(l). 
HORIZONTAL - Horizontal pointer points to the next 

leaf node in order. 
L_UNUSE_BYTE - unused bytes in the leaf node. 
NUM WORD - number of words in the leaf node. 

P HEAD - same as I HEAD but based on P_REG(l). 



BI HEAD - same as I HEAD but based on B_REG(l). 

BL HEAD - same as L HEAD but based on B_REG(l); 
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I INFO - structure that contains the information about a 
separator. It has three items and is dynamically 
based on I REG(IREG DISP). 
LPOINT - Pointer poTnts to the left descendant. 
PW LEN - length of separator. 
PART WORD - separator 

RPOINT - Pointer points to the right descendant and is 
dynamically based on I_REG(IREG_DISP+2+PW_LEN). 

L INFO - structure that contains the information about a 
word. It has two items and is dynamically based on 
L REG(LREG DISP). 
LPOINT - Pointer points to left descendant. 
WORD LEN - length of word. 
WRD = word 

APOINT - Pointer points to a inverted list and is 
dynamically based on L_REG(LREG_DISP+2+WORD_LEN). 

IREG NUM,LREG NUM,BREG NUM,PREG NUM,AREG NUM,AREG NUMB, 
AREG=NUMS - the region-number of an index node, -leaf node, 

brother node, parent node, address region, buddy 
region, and spanned region, respectively. 

IREG DISP,LREG DISP,BREG DISP,PREG DISP,AREG DISP, 
ADDR-DISPS - offset within the Index node, leaf node, 

brother node, parent node, address region, and spanned 
region, respectively. 

TEMP ADDR BLK - vector of words that contains the input 
addresses. 

MORE WORD - indicates if there is more words to be inserted. 

BUDDY FLAG - indicates if the buddy is whole, or subdivided. 

WORD FOUND - indicates if the inserted word exists. 

TREE_STATUS - 'NEW' starts from a new tree. 

EQUAL - If equalization succeeds. 

FINISH - indicates if the input addresses belongs to the 
same word. 

FIRST_WORD - the first word of the right leaf node. 

LAST WORD - the last word of the left leaf node. 



PROP_SS - propagated separator. 

SS - separator that separates two leaf nodes. 

WRDADDR - structure that has three items as follows. 
INS WORD - the word to be inserted. 
CDOCN - document number where the INS WORD exists. 
CWRDN - word number within CDOCN. -

START PT - the starting 
-TEMP ADDR BLK. 

point to put addresses 
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into 

END PT - the ending point of the last address in the 
TEMP ADDR BLK. - -

REQ_SIZE - a size for an allocation. 

PATH - structure that contains the information about search 
path. It has six items. 
PATH REG - region number of the region that has been 

searched. 
PATH DISP - offset within the searched region. 
PATH-L BRO - reg~on number of the left brother of the 

searched region. 
PATH R BRO - region number of the right brother of the 

searched region. 
PATH L WORD - the separator in the . left handside of 

PATH DISP. 
PATH R WORD - the separator in the right handside of 

PATH DISP. 



Low Level PDL Description 

SIMPLE:PROCEDURE(MAIN); 
BASE I HEAD ON I REG(O); 
BASEL-HEAD ON L-REG(O); 
BASE BI HEAD ON B REG(O); 
BASE BL-HEAD ON B-REG(O); 
BASE P HEAD ON P REG(O); 
BASE CONTROL FIELD ON ADDR REG(O); 
BASE LINK FIELD ON ADDR REG(O); 
BASE CONTROL FIELDB ON ADDR REGB(O); 
BASE SPAN POINT ON ADDR REGS(O); 
ON ENDFILE(INFL) MORE WORD=FALSE; 
READ OPTIONS CARD; -
IF TREE STATUS= 'NEW' THEN.CALL INIT_TREE; 
ELSE DOT 

END; 

OPEN FILE(ADRS) DIRECT UPDATE; 
OPEN FILE(TREE) DIRECT UPDATE; 
READ FILE(ADRS) INTO(HEADER) KEY(O); 

/* INPUT THE FIRST INSERT WORD */ 
OPEN FILE(INFL) INPUT SEQUENTIAL; 
READ FILE(INFL) INTO(WRDADDR); 
DO WHILE(MORE WORD); 

WORD FOuND=FALSE; 

END; 

IREG~NUM=ROOT; /* SEARCH FROM ROOT */ 
L = LEVEL; 
DO WHILE( L > 1 ); /*SEARCH INDEX PART*/ 

PATH REG(L) = IREG NUM; 
CALL-SEARCH INDX; -
PATH DISP(LT = IREG DISP; 
L = L-1; -

END; 
IF LEVEL=O THEN DO; /* INSERT INTO A NEW TREE */ 

NEXT TREE REG,LEVEL = l; 
READ-FILETTREE) INTO(L REG) KEY(O); 
LREG NUM = O; -
LREG-DISP= 7; 
L UNUSE BYTE = 1018; 
NUM WORD = O; 
HORIZONTAL = -1; 

END; 
ELSE CALL SEARCH LEAF; 
IF WORD FOUND THEN CALL INSERT ADDR; 

- ELSE CALL INSERT=WORD; 

WRITE FILE(ADRS) FROM(HEADER) KEYFROM(O); 
CLOSE FILE(ADRS),FILE(TREE),FILE(INFL); 

END SIMPLE; 

INIT_TREE:PROCEDURE; 
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OPEN FILE(TBSZ) INPUT; 
READ FILE(TBSZ) INTO(SIZE NUM); 
IF SIZE NUM > 63 -

THEN DO; 
PRINT 'THE NUMBER OF SIZES EXCEEDS THE LIMIT'; 
STOP; 

END; 
ROOT,LEVEL,NEXT TREE REG = O; 
NEXT ADDR REG =-2; -
DO I-= -1-TO -SIZE NUM BY -1; 

READ FILE(TBSZ) INTO(SIZE(I)); 
READ FILE(TBSZ) INTO(K(I)); 
SLREG(I),SRREG(I) =I; 
SLDISP(I),SRDISP(I) = -1; 

END; 
OPEN FILE(ADRS) DIRECT OUTPUT; 
OPEN FILE(TREE) DIRECT OUTPUT; 
CLOSE FILE(ADRS),FILE(TREE); 
OPEN FILE(ADRS) DIRECT UPDATE; 
OPEN FILE(TREE) DIRECT UPDATE; 
AREG NUM = l; 
FREETO) = TRUE; 
IFIELD(O) = -1; 
LBC(O) = O; 
ISIZE(O} = -SIZE NUM; 
LLINK(l),RLINK(lT=SLLINK(-SIZE NUM); 
SLREG(-SIZE NUM),SRREG(-SIZE NUM)=l; 
SLDISP(-SIZE NUM),SRDISP(-SIZE NUM)=O; 
WRITE FILE(ADRS) FROM(ADDR REGT KEYFROM(AREG NUM); 
CLOSE FILE(TBSZ); - -

END INIT_TREE; 

SEARCH INDX:PROCEDURE; 
READ FILE(TREE) INTO(I REG) KEY(IREG NUM); 
IREG DISP = 5; -
BASE-I INFO ON I REG(IREG DISP); 
PART SS=SUBSTR(PART WORD,l,PW LEN); 
DO N-= 1 TO NUM PW;- - . 

IF INS WORD < PART SS 
THEN DO; -

IREG NUM=LPOINT; 
BASE-RPOINT ON I REG(IREG DISP+4+PW LEN); 
PATH R BRO(L) = RPOINT; - -
PATH-R-WORD(L)= PART SS; 
RETURNT -

END; 
ELSE DO; 

PATH L BRO(L) = LPOINT; 
PATH-L-WORD(L)= PART SS; 
IREG-DISP = IREG DISP + 4 + PW LEN; 
BASE-I INFO ON I-REG(IREG DISPT; 
PART_SS=SUBSTR(PART_WORD,l,PW_LEN); 
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END; 
END; 
IREG DISP = IREG DISP + 4 + PW LEN; 
BASE-RPOINR ON I-REG(IREG DISPT; 
IREG NUM=RPOINT; 

END SEARCH_INDX; 

SEARCH LEAF:PROCEDURE; 
LREG DISP = 7; 
LREG-NUM = IREG NUM; 
READ-FILE(TREE}-INTO(L REG} KEY(LREG NUM); 
BASEL INFO ON L REG(LREG DISP); -
WORD=SUBSTR(WRD,l,WORD LEN); 
DO N = 1 TO NUM WORD; -

IF INS WORD ~ WORD 
THEN DO; 

END; 

WORD FOUND = TRUE; 
BASE-APOINT ON L_REG(LREG_DISP+2+WORD_LEN); 
RETURN; 

ELSE IF INS WORD > WORD 
THEN no; 

LREG DISP = LREG DISP + 4 + WORD LEN; 
BASE-L INFO ON L-REG(LREG DISP);
WORD=SUBSTR(WRD,l,WORD_LEN); 

END; 
ELSE RETURN; 

END; 
END SEARCH_LEAF; 

INSERT ADDR:PROCEDURE; 
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUM); 
FINISH = FALSE; - -
BASE ADDR FIELD ON ADDR REG(AREG DISP+l); 
TEMP NUM,TOTAL ADDR = NUM ADDR; -
IF NUM ADDR > 254 -

THEN DO; 
ADDR REGS = ADDR REG; 
P AREG NUMS=AREG-NUM; 
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DON= I TO (NUM ADDR/254-1); 
P AREG NUMS=AREG NUMS; 
READ FILE(ADRS) INTO(ADDR REGS) KEY(P AREG_NUMS}; 

END; - -
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUMS); 
BASE ADDR FIELD ON ADDR REG(AREG DISP+lT; 
AREG NUM ~ AREG NUMS; - -
AREG-DISP = AREG DISPS; 

END; - -
/* MOVE ADDRESS BLOCK TO TEMP ADDRESS BLOCK */ 
DO N = 1 TO NUM_ADDR; 



TEMP_ADDR_BLK(N)=ADDRESS(N); 
END; 
START PT = NUM ADDR + l; 
CALL INPUT ADDR; 
REQ SIZE =-6 + 4*END PT; 
IF REQ SIZE> SIZE(ISIZE(AREG DISP)) 

THEN DO; -
CALL RELEASE; 
CALL ALLOCATE; 
IF TEMP NUM < 254 /* NOT A SPANNED RECORD */ 

THEN-DO; 

72 

REG = AREG NUM; 
DISP= AREG-DISP; 
WRITE FILETTREE) FROM(L_REG} KEYFROM(LREG_NUM}; 

END; 
ELSE DO; /* SPANNED RECORD */ 

AREG NUMS=AREG NUM; 
AREG-DISPS=AREG DISP; 
WRITE FILE(ADRST FROM(ADDR REGS} 

KEYFROM{P=AREG_NUMS); 
END; 
BASE ADDR FIELD ON ADDR REG(AREG DISP+l); 
NUM ADDR=END PT; 

END; - -
/* MOVE TEMP ADDRESS BLOCK TO ADDRESS BLOCK */ 
DO N = 1 TO NUM ADDR; 

ADDRESS(N) =-TEMP ADDR BLK(N); 
DD; - -
CALL REINPUT ADDR; 
WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM}; 
READ FILE(ADRS) INTO(ADDR REG) KEY(REG); -
BASE ADDR FIELD ON ADDR REG(DISP+l); 
NUM ADDR ~ TOTAL ADDR; -
WRITE FILE(ADRS)-FROM(ADDR REG) KEYFROM(REG); 

END INSERT_ADDR; -

INSERT WORD:PROCEDURE; 
FINISH = FALSE; 
START PT = l; 
TOTAL-ADDR = O; 
CALL INPUT ADDR; 
REQ SIZE =-6 +4*END PT; 
CALL ALLOCATE; -
TEMP_REG=SUBSTR(L REG,l,LREG_DISP-l)j jLENGTH(INS_WORD)j I 

INS_WORDTISUBSTR(L_REG,LREG_DISP,); 
IF LENGTH(TEMP REG} > 1024 

THEN CALL-INDX UPDATE; 
ELSE DO; -

L REG = TEMP REG; 
NUM WORD = NUM WORD + l; 
L UNUSE BYTE =-1024 - LENGTH(TEMP REG); 
WRITE FILE(TREE) FROM(L_REG) KEYFROM(LREG_NUM); 



END; 
BASE ADDR FIELD ON ADDR REG(AREG DISP+l); 
/* MOVE FROM TEMP ADDRESS BLOCK TO ADDRESS BLOCK */ 
DO N = 1 TO END PT; 

TEMP ADDR BLK(N)=ADDRESS(N); 
END; - -
TEMP NUM=AREG NUM; 
CALL-REINPUT ADDR; 
WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM); 
READ FILE(ADRS) INTO(ADDR REG) KEY(REG NUM);
BASE ADDR FIELD ON ADDR REG(AREG DISP+l); 
NUM ADDR ; TOTAL ADDR; - -
WRITE FILE(ADRS)-FROM(ADDR REG) KEYFROM(TEMP_NUM); 

END INSERT_WORD; -

INPUT ADDR:PROCEDURE; 
TEMP WORD=INS WORD; 
IF START PT <~ 254 

THEN DO; 
DON= START PT TO 254 UNTIL(FINISH=TRUE); 

TOTAL ADDR = TOTAL_ADDR +l; 
END PT = N; 
TEMP ADDR BLK{N)=BDOCN*65536+BWRDN; 
READ-FILETINFL) INTO(WRDADDR); 
IF(NOT MORE_WORD) I (INS_WORD NOT = TEMP_WORD} 

THEN FINISH=TRUE; 
END; 

END; 
ELSE END PT = 254; 

END INPUT_ADDR; 

REINPUT ADDR:PROCEDURE; 
DO WHILE(NOT FINISH); 

ADDR REGS = ADDR REG; 
TEMP-NUM = AREG NUM; 
START PT = l; -
CALL INPUT ADDR; 
REQ SIZE =-6 + 4*END PT; 
CALL ALLOCATE; -
AREG NUMS = AREG NUM; 
AREG-DISPS= AREG-DISP; 
WRITE FILE(ADRS)-FROM(ADDR REGS) KEYFROM(TEMP); 
BASE ADDR FIELD ON ADDR REG(AREG DISP+l); 
NUM ADDR=END PT; - -
DO N = 1 TO NUM ADDR; 

ADDRESS(N) =-TEMP ADDR BLK(N); 
END; - -

END; 
END REINPUT_ADDR; 
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ALLOCATE:PROCEDURE; 
IF REQ SIZE > 1024 

THEN DO; 
PRINT 'REQUEST SIZE EXCEEDS THE REGION SIZE'; 
STOP; 

END; 
SEARCH AVAILABILITY SPACE LIST FOR A CANDIDATE BLOCK; 
IF SEARCH FAILS 

THEN DO; 

END; 

PRINT 'NO LARGE ENOUGH BLOCK'; 
STOP; 

/* THE CANDIDATE BLOCK IS ON THE LIST *./ 
AREG NUM = SRREG{I); 
AREG-DISP= SRDISP(I); 
READ-FILE{ADRS) INTO(ADDR REG) KEY(AREG_NUM); 
CALL DELETE CAND{I}; -
DO WHILE ( 'l'B); 

FREE{AREG DISP} = FALSE; 
IF K{I) =-0 THEN RETURN; /* CANNOT SPLIT AGAIN */ 
IF REQ SIZE> SIZE(I+K(I)) 

REQ-SIZE > SIZE(I+l) THEN RETURN; 
ISIZE{AREG DISP} = I+l; 
LBC{AREG DfSP) = LBC(AREG DISP)+l; 
AREG DIS'B = AREG DISP + SIZE{I+l)/4; 
ISIZE(AREG DISPB)-= I + K(I); 
IFIELD{AREG DISPB)=I+l; 
LBC{AREG DISPB) = O~ 
IF REQ SfZE > SIZE(I+K(I}) 

THEN DO; 
FREE{AREG DISPB) = TRUE; 
FREE(AREG-DISP) = FALSE; 
CALL INSERT{ISIZE{AREG DISPB)}; 
I = I + l; -

END; 
ELSE DO; 

END; 
END; 

FREE{AREG DISPB)= FALSE; 
FREE(AREG-DISP) = TRUE; 
CALL INSERT{ISIZE{AREG DISP)); 
I = I + K(I); -
AREG_DISP = AREG_DISPB; 

END ALLOCATE; 

DELETE CAND:PROCEDURE(LIST); 
AREG DISP = AREG DISP + l; 
SRLINK(LIST) = RLINK(AREG DISP); 
/* ONLY ONE BLOCK ON LIST-*/ 
IF LDISP{AREG DISP) = RDISP{AREG DISP) 

LREG(AREG DISP) = RREG(AREG DISP) 
/* ON THE-LARGEST AVAILABLE-LIST */ 
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THEN DO; 
IF SIZE(ISIZE(AREG DISP-1)) = 1024 

THEN DO; -
SRREG(LIST),SLREG(LIST)=NEXT ADDR REG; 
SRDISP(LIST},SLDISP(LIST) = O; -
ADDR REGB = ADDR REG; 
FREETO) = TRUE; -
IFIELD(O)=LIST; 
LBC(O} =O; 
ISIZE(O)= LIST; 
LREG(l),RREG(l) =LIST; 
LDISP(l),RDISP(l) = -1; 
WRITE FILE(ADRS) FROM(ADDR REG) 

KEYFROM(NEXT-ADDR REG); 
NEXT ADDR REG = NEXT ADDR REG +-1; 
ADDR-REG ; ADDR REGBT -

END; - -
ELSE SLLINK(LIST)=SRLINK(LIST); 
AREG DISP=AREG DISP-1; 
RETURN; -

END; 
/* THE CANDIDATE AND RLINK OF CANDIDATE ARE IN THE */ 
/* SAME REGION */ 
IF FIXED(RREG(AREG DISP)} = AREG NUM 

THEN DO; - -
LLINK(RDISP(AREG DISP))+l)=LLINK((AREG DISP); 
AREG DISP = AREG-DISP - l; -
RETURN; -

END; 
AREG NUMB=RREG(AREG DISP); 
READ-FILE(ADRS) INTO(ADDR REGB) KEY(AREG NUMB); 
LLINKB(RDISP(AREG DISP)}+l)=LLINK(AREG DlSP); 
WRITE FILE(ADRS) FROM(ADDR REGB) KEYFROM(AREG NUMB); 
AREG DISP = AREG DISP - l;- -

END DELETE_CAND; -

RELEASE:PROCEDURE; 
DO WHILE('l'B}; 

IF SIZE(ISIZE(AREG DISP)) = 1024 
THEN DO; -

FREE(AREG DISP) = TRUE; 
LBC(AREG DISP) = O; 
CALL INSERT(ISIZE(AREG DISP)); 
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WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM(AREG NUM); 
KEYFROM(AREG_NUM); -

RETURN; 
END; 

IF LBC(AREG DISP) = 0 /* RIGHT BUDDY */ 
THEN DO;-

AREG DISPB=AREG DISP- SIZE(ISIZE(AREG DISP})/4; 
IF AREG DISP=SIZE(ISIZE(AREG DISPB})+AREG DISPB; 

THEN BUDDY FLAG ; WHOLE; -



·ELSE BUDDY FLAG = SPLIT; 
END; 

ELSE DO; /* LEFT BUDDY */ 

END; 

AREG DISPB=AREG DISP+SIZE(ISIZE(AREG_DISP))/4; 
IF LBC(AREG DISP) = 0 

-THEN BUDDY FLAG = WHOLE; 
ELSE BUDDY FLAG = SPLIT; 

IF (BUDDY IS SPLIT BUDDY IS INUSE) 
THEN DO; 

FREE(AREG DISP)=TRUE; 
CALL INSERT(ISIZE(AREG DISP)); 
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WRITE FILE(ADRS) FROM(ADDR REG) KEYFROM{AREG_NUM); 
RETURN; -

END; 
tALL DELETE BUDDY; /* COMBINE BUDDIES */ 
IF AREG DISPB < AREG DISP THEN AGRE DISP=AREG_DISPB; 
ISIZE(AREG DISP)=ISIZE(AREG DISP)-lT 
LBC{AREG DlSP)=LBC(AREG DISP)-1; 
FREE(AREG DISP)=TRUE; -

END• -
' END RELEASE; 

DELETE BUDDY:PROCEDURE; 
AREG DISPB=AREG DISPB+l; 
/* ONLY ONE BLOCK ON LIST */ 
IF LDISP(AREG DISPB)=RDISP(AREG DISPB) 

LREG(AREG DISPB)= RREG(AREG DISPB) 
THEN DO; - -

END; 

SLREG(LREG(AREG DISPB)), 
SRREG(LREG(AREG-DISPB))=LREG(AREG DISPB); 
SLDISP(LREG(AREG DISPB)), -
SRDISP(LREG{AREG-DISPB))=LDISP{AREG DISPB); 
AREG_DISPB=AREG_DISPB-1; -

/* LEFT LINK OF BUDDY POINTS TO LIST */ 
IF LDISP(AREG DISPB)=-1 

THEN SRLINK(LREG(AREG DISPB))=RLINK(AREG DISPB); 
ELSE DO; - -

IF LREG(AREG DISPB)=AREG NUM 
THEN RLINK(LDISP(AREG-DISPB)+l)=RLINK(AREG DISPB); 

=RLINK{AREG DISPB); -
ELSE DO; -

READ FILE(ADRS) INTO{ADDR REGB) 
KEY(LREG(AREG DISPB)); 

RLINKB(LDISP(AREG DISPB)+l)=RLINK(AREG DISPB); 
WRITE FILE(ADRS) FROM{ADDR REGB) -

END; 
END; 

KEYFROM(LREG{AREG_DISPB)); 

/* RIGHT LINK OF BUDDY POINTS TO LIST */ 
IF RDISP{AREG_DISPB) = -1 



THEN SLLINK(RREG(AREG DISPB))=LLINK(AREG DISPB); 
ELSE DO; - -

IF RREG(AREG DISPB)=AREG NUM THEN 
LLINK(RDISP(AREG DISPB)+l)=LLINK(AREG DISPB); 

ELSE DO; - -
READ FILE(ADRS) INTO(ADDR REGB) 

KEY(RREG(AREG DISPB)); 
LLINKB(RDISP(AREG DISPB)+l)=LLINK(AREG DISPB); 

·WRITE FILE(ADRS) FROM(ADDR REGB) -

END; 
END; 

AREG DISPB=AREG_DISPB-1; 
END DELETE_BUDDY; 

INSERT:PROCEDURE(LIST); 
AREG DISP=AREG DISP+l; 
/* LIST IS EMPTY */ 

KEYFROM(RREG(AREG_DISPB)); 

IF SLDISP(LIST)= -1 SRDISP(LIST)= -1 
THEN DO; 
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LLINK(AREG DISP),RLINK(AREG DISP)=SRLINK(LIST); 
SLREG(LISTT,SRREG(LIST)=AREG NUM; 
SLDISP(LIST),SRDISP(LIST)=AREG DISP; 
RETURN; · -

END; 
LREG(AREG DISP)=LIST; 
LDISP(AREG DISP)=-1; 
RLINK(AREG-DISP)=SRLINK(LIST}; 
/* THE BUDDY AND RLINK OF LIST ARE NOT IN THE SAME */ 
/* REGION */ 
IF AREG NUM>=SRREG(LIST) 

THEN-DO; 
AREG NUMB=SRREG(LIST); 
READ-FILE(ADRS) INTO(ADDR REGB) KEY(AREG NUMB); 
LREGB(SRDISP(LIST)+l),SRREG(LIST)=AREG NUM; 
LDISPB(SRDISP(LIST)+l),SRDISP(LIST)=AREG DISP; 
WRITE FILE(ADRS) FROM(ADDR REGB) KEYFROMTAREG NUMB); 
RETURN; - -

END; 
LREG(SRDISP(LIST)+l),SRREG(LIST)=AREG NUM; 
LDISP(SRDISP(LIST))+l),SRDISP(LIST)=AREG DISP; 

END INSERT; -

INDX UPDATE:PROCEDURE; 
EQUAL=FALSE; 
L=L+l; 
IF LEVEL=l THEN DO; 

CALL SPLIT_LEAF; 
CALL CREAT NEW ROOT;· 
RETURN; - -



END; 
PREG NUM=PATH REG(L); 
READ-FILE(TREE) INTO(P REG) KEY(PREG NUM); 
/* LEAF REGION IS NOT THE RIGHTMOST SIBLING */ 
IF PATH R BRO(L) >= -1 

THEN-DO; 

END; 

BREG NUM=PATH R BRO(L); 
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM); 
CALL EQUAL_LEAF(TEMP_REG,B_REG,RIGHTT; 

/* LEAF REGION IS NOT THE LEFTMOST SIBLING AND LAST */ 
/* EQUALIZATION IS FAIL */ 
IF PATH L BRO(L) >= -1 NOT EQUAL 

THEN-DO; 

END; 

BREG NUM=PATH L BRO(L); 
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM); 
CALL EQUAL_LEAF(B_REG,TEMP_REG,LEFT)T 

IF EQUAL THEN RETURN; 
CALL SPLIT LEAF; 
DO WHILE(L-<= LEVEL); 

TEMP REG=SUBSTR(P REG,l,(PATH DISP(L)-1)) I I 
- LPOINTI ILENGTH(PROP_SS)I IPROP_SS! IRPOINTI I 

SUBSTR{P REG,PATH DISP(L}+2); 
IF LENGTH(TEMP REG) <= 1024 

THEN DO; -
P REG=TEMP REG; 
NUM PWP=NuM PWP+l; 
P uNUSE BYTE=l024-LENGTH(TEMP REG); 
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WRITE FILE(TREE) FROM(P REG) KEYFROM(PREG NUM); 
RETURN; - -

END; 
L=L+l; 
IF L > LEVEL THEN DO; 

END; 

CALL SPLIT_INDX; 
CALL CREAT NEW ROOT; 
RETURN; -

IREG NUM=PREG NUM; 
PREG-NUM=PATH-REG(L); 
READ-FILE(TREE) INTO(P REG) KEY(PREG NUM); 
/* LEAF REGION IS NOT THE RIGHTMOST SIBLING */ 
IF PATH R BRO(L) >= -1 

THEN:-Do; 

END; 

BREG NUM=PATH R BRO(L); 
READ-FILE(TREE)-INTO(B REG) KEY(BREG NUM); 
CALL EQUAL_INDX(TEMP_REG,B_REG,RIGHTT; 

/*LEAF REGION IS NOT THE LEFTMOST SIBLING AND LAST*/ 
/*EQUALIZATION IS FAIL */ 
IF PATH L BRO(L) >= -1 NOT EQUAL 

THEN-DO; 
BREG NUM=PATH L BRO(L); 
READ-FILE(TREE)-INTO(B_REG) KEY(BREG_NUM); 



END; 

CALL EQUAL_INDX(B_REG,TEMP_REG,LEFT); 
END; 

IF EQUAL THEN RETURN; 
CALL SPLIT_INDX; 

CALL CREAT NEW ROOT; 
END INDX_UPDATE; -

SPLIT LEAF:PROCEDURE; 
LREG DISP=7; 
BASE-L INFO ON TEMP REG(LREG DISP); 
/* FIND SPLIT POINT-BETWEEN 490 AND 540 */ 
DO N=l TO (NUM WORD+l); 

END; 

IF (LREG DISP > 490) THEN GO TO EXITl; 
LAST WORD=SUBSTR(WRD,l,WORD LEN); 
LREG-DISP=LREG DISP+4+NUM; -
BASE-L_INFO ON-TEMP_REG(LREG_DISP); 

EXITl: TEMP NUM=N-1; 
FIRST WORD=SUBSTR(WRD,l,WORD LEN); 
CALL COMPUT SS(LAST WORD,FIRST WORD); 
PROP SS=SS;- - -
SPLIT PT=LREG DISP; 
DO I=TTEMP NuMw+l) TO (NUM WORD+l}; 

END; 

LAST WORD=FIRST WORD;
LREG-DISP=LREG DISP+4+WORD LEN; 
BASE-L INFO ON-TEMP REG(LREG DISP); 
FIRST WORD=SUBSTR(WRD,l,WORD-LEN); 
CALL COMPUT SS(LAST WORD,FIRST WORD); 
IF LENGTH(PROP SS) >= LENGTH(SS) 

-THEN DO; 

END; 

PROP SS=SS; 
SPLIT PT=LREG_DISP; 
TEMP_NUM=I; 

IF LREG DISP > 540 THEN GO TO EXIT2; 

/* SPLIT OVERFLOW LEAF REGION INTO LEAF REGION AND */ 
/* BROTHER REGION */ 
EXIT2: READ FILE(TREE) INTO(B REG) KEY(NEXT TREE REG); 
SUBSTR(B REG,7)=SUBSTR(TEMP REG,SPLIT PT); - -
L REG=SUBSTR(TEMP REG,l,SPLlT PT-1); -
NUM WORDB=NUM WORD+l-TEMP NUMT 
NUM-WORD=TEMP-NUM; -
L UNUSE BYTE=l025-SPLIT PT; 
L-UNUSE-BYTEB=l017-LENGTH(TEMP REG)+SPLIT PT; 
HORIZONTAL PTB=HORIZONTAL; - -
RPOINT,HORlZONTAL,BREG NUM=NEXT TREE REG; 
LPOINT=LREG DISP; - - -
WRITE FILE(TREE) FROM(L REG) KEYFROM(LREG NUM); 
WRITE FILE(TREE) FROM(B-REG) KEYFROM(BREG-NUM); 
NEXT_TREE_REG=NEXT_TREE=REG+l; -
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END SPLIT_LEAF; 

SPLIT INDX:PROCEDURE; 
IREG DISP=7; 
/* FIND SPLIT POINT BETWEEN 490 AND 540 */ 
DO N=l TO (NUM PW+l); 

END; 

IF (IREG DISP > 490) THEN GO TO EXIT3; 
BASE I INFO ON TEMP REG(IREG DISP); 
IREG_DISP=IREG_DISP+4+NUM; -

EXIT3: TEMP NUM=N-1; 
BASE I INFO-ON TEMP REG(IREG DISP); 
SPLIT PT=IREG DISP;- -
PROP SS=SUBSTR(PART WORD,l,PW LEN); 
IREG-DISP=IREG DISP+4+NUM; -
DO N~(TEMP NUM+l) TO (NUM PW+l); 

BASEL INFO ON TEMP REG(LREG DISP); 
SS=SUBSTR(PART WORD~l,PW LENT; 
IF (LENGTH(PROP SS) >= LENGTH(SS)) 

THEN DO;-

END; 

PROP SS=SS; 
SPLIT PT=IREG DISP; 
TEMP_NOMW=N; -

IREG DISP=IREG DISP+4+NUM; 
IF IREG DISP >-540 THEN GO TO EXIT4; 

END; 
/* SPLIT INTO TWO INDEX NODES */ 
EXIT4: I REG=SUBSTR(TEMP REG,l,SPLIT PT-1); 
LPOINT=IREG DISP; - -
RPOINT,BREG-NUM=NEXT TREE REG; 
NEXT TREE REG=NEXT TREE REG+l; 
READ-FILETTREE) INTO(B REG) KEY(BREG NUM); 
SUBSTR(B REG,5)=SUBSTRTTEMP REG, -
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- - SPLIT_PT+2+LENGTH(PROP_SS); 
NUM PWB=NUM PW+l-TEMP NUM; 
NUM-PW=TEMP-NUM; -
I UNUSE BYTE=1025-SPLIT PT; 
I=UNUSE=BYTEB=1021-LENGTH(TEMP_REG)+SPLIT PT+ 

LENGTH(PROP SS); 
WRITE FILE(TREE) FROM(I REG) KEYFROM(IREG NUM}; -
WRITE FILE(TREE) FROM(B=REG) KEYFROM(BREG=NUM); 

END SPLIT_INDX; 

CREAT NEW ROOT:PROCEDURE; 
ROOT=NEXT TREE REG; 
NEXT TREE-REG=NEXT TREE REG+l; 
READ-FILETTREE) INTO(! REG) KEY(ROOT); 
SUBSTR(I_REG,5)=LPOINTTILENGTH(PROP_SS) I IPROP_SSI IRPOINT; 
I_UNUSE_BYTE= 1014-LENGTH(PROP_SS); 



NUM PW=l; 
LEVEL=LEVEL+l; 
WRITE FILE(TREE) FROM(I_REG) KEYFROM(ROOT); 

END CREAT_NEW_ROOT; 
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EQUAL LEAF:PROCEDURE(FRONT REG,REAR REG,DIRECT); 
IF-(LENGTH(FRONT REG)+LENGTH(REAR REG))>2048 THEN RETURN; 
LREG DISP=7; - -
TOTAL_REG=FRONT_REG 11 SUBSTR(REAR_REG, 7); 
/* FIND NEW PARTIAL SEPARATOR */ 
DO N=l TO (NUM WORD+NUM WORD+l); 

TEMP NUM=TEMP NUM+l; -
BASE-L INFO ON TOTAL REG(LREG DISP); 
LAST WORD=SUBSTR(WRD~l,WORD LEN); 
LREG-DISP=LREG DISP+4+WORD LEN; 
IF LREG DISP>(TLENGTH(TOTAL REG)/2)+3) THEN GO TO OUTl; 

END; - -
OUTl: BASEL INFO ON TOTAL REG(LREG DISP); 
FIRST WORD=SUBSTR(WRD,l,WORD LEN); -
SPLIT-PT=LREG DISP; -
IF SPLIT PT >-1024 I 

LENGTH(TOTAL REG)-SPLIT PT > 1017 THEN RETURN; 
CALL COMPUT SS(LAST WORD,FIRST WORD); 
IF DIRECT='RIGHT' - -

THEN IF(P UNUSE BYTE+LENGTH(PATH R WORD(L))) >= 
- - - - LENGTH ( SS ) 

THEN DO; 
L REG=SUBSTR(TOTAL REG,l,SPLIT PT-1); 
L-UNUSE BYTE=l025-SPLIT PT; -
NUM WORD=TEMP NUM; -
WRITE FILE(TREE) FROM(L REG) KEYFROM(LREG NUM); 
SUBSTR(B REG,7)=SUBSTR(TOTAL REG,SPLIT PTT; 
L UNUSE BYTEB=l017-LENGTH(TOTAL REG)+SPLIT PT; 
NUM WORDB=NUM WORD+NUM WORDB+l-TEMP NUM; -
WRITE FILE(TREE) FROM(B REG) KEYFROM(BREG NUM); 
P_REG=SUBSTR(P_REG,l,(PATH_DISP(L)+l)) I,-

LENGTH(SS) I 1ss11suBSTR(P REG, 
(PATH DISP{L)+4+LENGTH(PATH R WORD(L)))); 

P UNUSE BYTE=P UNUSE BYTE+LENGTH(- -
- - PATH R WORD(L))-LENGTH(SS); 

WRITE FILE(TREE) FROM(P_REG) KEYFROM(PREG_NUM); 
EQUAL=TRUE; 
RETURN; 

END; 
ELSE RETURN; 

ELSE IF(P UNUSE BYTE+LENGTH(PATH L WORD(L))) >= 
- - LENGTH(SS); 

THEN DO; 
B REG=SUBSTR(TOTAL REG,l,SPLIT PT-1); 
L-UNUSE BYTEB=l02s=sPLIT PT; -
NUM WORDB=TEMP NUM; -
WRITE FILE(TREE) FROM(B_REG) KEYFROM(BREG_NUM); 



SUBSTR(L REG,7)=SUBSTR(TOTAL REG,SPLIT PT); 
L UNUSE BYTE=1017-LENGTH(TOTAL REG)+SPLIT PT; 
NUM WORD=NUM WORD+NUM WORDB+l-TEMP NUM; -
WRITE FILE(TREE) FROMTL REG) KEYFROM(LREG NUM); 

82 

P REG=SUBSTR(P REG,l,(PATH DISP(L)-3- -
- LENGTH(PATH L WORD(L)))) I ILENGTH(SS) 

I 1ss11suBSTR(P_REG,PATH_DISP(L)); 
P UNUSE BYTE=P UNUSE BYTE+LENGTH(PATH L WORD(L)) 
- - - - -LENGTH(SS); 

WRITE FILE(TREE) FROM(P_REG) KEYFROM(PREG_NUM); 
EQUAL=TRUE; 
RETURN; 

END; 
ELSE RETURN; 

END EQUAL_LEAF; 

EQUAL INDX:PROCEDURE(FRONT REG,REAR REG,DIRECT); 
TEMP NUM=NUM PW+NUM PWB+2; -
LREG-DISP=7;- -
IF DIRECT='RIGHT' 

THEN DO; 
NUM=LENGTH(PATH R WORD(L)); 
TOTAL_REG=FRONT=REG I I NUM I I PATH_R_WORD(L) I I 

SUBSTR(REAR_REG,5); 
END; 
ELSE DO; 

NUM=LENGTH(PATH L WORD(L)); 
TOTAL_REG=FRONT=REG I I NUM I! PATH_L_WORD(L) I I 

SUBSTR(REAR_REG,5); 
END; 

/* FIND NEW PARTIAL SEPARATOR */ 
DO N=l TO TEMP NUM/2; 

BASE I INFO ON TOTAL REG(IREG DISP); 
!REG DISP=IREG DISP+4+NUM; -

END; - -
BASE I INFO ON TOTAL REG(IREG DISP); 
PROP SS=SUBSTR(PART WORD,1,PW-LEN); 
/* PREDETERMINE PARENT REGION-*/ 
IF p UNUSE BYTE+NUM < LENGTH(ss) THEN RETURN; 
ELSE-DO; -

SUBSTR(FRONT REG,l,LREG DISP-1)= 
- SUBSTR(TOTAL REG,1,LREG DISP-1); 

SUBSTR(REAR REG,5)= - -
- SUBSTR(TOTAL REG,LREG DISP+2+PW LEN); 

IF (LENGTH(FRONT_REG)>l024-I LENGTHTREAR_REG)>l024) 

/* RIGHT EQUALIZATION */ 
IF DIRECT='RIGHT' 

THEN DO; 
I REG=FRONT REG; 

THEN RETURN; 

SUBSTR(B REG,5)=SUBSTR(REAR REG,5); 
NUM_PW=TEMP_NUM/2; -



NUM PWB=TEMP NUM-1-NUM PW; 
I UNUSE BYTE;l024-LENGTH(FRONT REG); 
I-UNUSE-BYTEB=l024-LENGTH(REAR-REG); 
SUBSTR(P REG,(PATH DISP(L)+2)); 

-LENGTH(PROP_SS) I IPROP_SSI I 
SUBSTR(P REG,(PATH DISP(L)-2-NUM)); 
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P UNUSE BYTE=P UNUSE BYTE-LENGTH(PROP SS)+NUM; 
END°i" - - - -

END~ 

ELSE DO; /* LEFT EQUALIZATION */ 
B REG=FRONT REG; 
SUBSTR(I REG,S)=SUBSTR(REAR REG,5); 
NUM PWB=TEMP NUM/2; ~ 
NUM-PW=TEMP NUM-1-NUM PWB; 
I UNUSE BYTE=1024-LENGTH(REAR REG); 
I-UNUSE-BYTEB=1024-LENGTH(FRONT REG); 
SUBSTR(P REG,(PATH DISP(L)-2-NuM))= 

-LENGTH(PROP SS) I !PROP SSI I 
· SUBSTR(P REG,PATH DISP(L)); 
P UNUSE BYTE=P UNUSE BYTE+NUM-LENGTH{PROP SS); 

END;- - - - -
WRITE FILE(TREE) FROM( I REG) KEYFROM(IREG NUM); 
WRITE FILE(TREE) FROM(B-REG) KEYFROM(BREG-NUM); 
WRITE FILE(TREE) FROM(P-REG) KEYFROM(PATH=REG(L)); 
EQUAL= TRUE; -

END EQUAL_INDX; 

COMPUT SS:PROCEDURE(FRONT WORD,REAR WORD); 
IF FRONT WORD >= REAR WORD -

THEN DO; 

END; 

PUT SKIP LIST('THE ORDER OF WORD IS WRONG'); 
STOP; 

DO J = 1 TO 20; /* COMPUTE SHORTEST SEPARATOR */ 
IF SUBSTR(FRONT WORD,J,1) NOT= SUBSTR(REAR WORD,J,1) 

THEN DO; - -
SS= SUBSTR(REAR WORD,1,J); 
RETURN; -

END; 
END; 

END COMPUT_SS; 



APPENDIX C 

PDL DESCRIPTION FOR MEASURE ROUTINE 

EXTERN:PROCEDURE; 
DO N= -1 TO (-SIZE NUM+l) BY -1; 

AREG NUM=SRREGTN); 
AREG-DISP=SRDISP(N); 
NUM BLOCK = O; 
DO WHILE(AREG DISP < -1); 

NUM BLOCK~NUM BLOCK+l; 
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG_NUM); 
AREG NUM=RREG(AREG DISP+lT; 
AREG-DISP=RDISP(AREG DISP+l); 

END; - -
END; 
EXT RATE=TOTAL EXT*100/(l024*REGION USED); 

END EXTERN; - -

INTERN:PROCEDURE; 
/* SEARCH THE SMALLEST WORD */ 
!REG NUM=ROOT; 
L = LEVEL; 
DO WHILE(L>l); 

READ FILE(TREE) INTO(! REG) KEY(IREG_NOM); 
!REG NUM=SUBSTR(I REG,S,2); 
L=L-I; -

END; 
LREG NUM=IREG NUM; 
/* SEQUENTIAL-TRAVERSAL LEAF NODES */ 
DO WHILE(LREG NUM>-1); 

READ FILE(TREE) INTO(L REG) KEY(LREG NUM); 
LREG DISP=7; - -
/* COMPUTE UNUSABLE BYTES IN EACH ALLOCATED BLOCK */ 
DO N=l TO NUM WORD; 

BASE APOINT ON L REG(LREG DISP+2+WORD LEN); 
LREG DISP=LREG DlSP+4+WORD LEN; -
CALL-DISPLAY; ~ -

END; 
LREG NUM=HORIZONTAL; 

END; -
RATE=(IN BYTE*lOO)/TOTAL BYTE; 
PRINT 'INTERNAL FRAGMENTATION'; 

END INTERN; 
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DISPLAY:PROCEDURE; 
READ FILE(ADRS) INTO(ADDR REG) KEY(AREG NUM); 
BASE ADDR FIELD ON ADDR_REG(AREG_DISP+lT; 
IF NUM ADDR < 0 THEN RETURN; 
INDX=ISIZE(AREG DISP); 
NUM BLK(INDX)=NUM BLK(INDX)+l; 
IF SIZE(INDX)=l024 THEN TEMP BYTE=8+4*NUM ADDR; 

ELSE· TEMP-BYTE=6+4*NUM-ADDR; 
INT BLK(INDX)=INT BLK(INDX)+SIZE(INDX)-TEMP BYTE; 
TOTAL BYTE=TOTAL BYTE+ SIZE(INDX); -
IN BYTE=SIZE(INDX)+IN BYTE-TEMP BYTE; 
IF-NUM ADDR > 254 THEN DO; /* SPANNED RECORD */ 

J;-NUM ADDR/254; 
DO I=-1 TO J; 

ADDR REGS=ADDR REG; 
READ-FILE(ADRST INTO(ADDR REG) 

KEY(AREG NUMS); 
BASE ADDR FIELD ON ADDR REG(AREG-DISP+l); 
INDX=ISIZE(AREG DISP); - -
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NUM BLK(INDX)=NUM BLK(INDX)+l; 
IF SIZE(INDX)=l024 THEN TEMP BYTE=8+4*NUM ADDR; 

END; 
END; 

END DISPLAY; 

ELSE TEMP-BYTE=6+4*NUM-ADDR; 
INT BLK(INDX)=INT BLK(INDX)+SIZE(INDX)-TEMP BYTE; 
TOTAL BYTE=TOTAL BYTE+ SIZE(INDX); -
IN_BYTE=SIZE(INDX)+IN_BYTE-TEMP_BYTE; 



APPENDIX D 

TEST CASE SIZE TABLES 

TABLE VII 

SIZE TABLES FOR BINARY, FIBONACCI, AND 
WEIGHTED BUDDY SYSTEMS 

BINARY FIBONACCI WEIGHTED 
SIZE K SIZE K SIZE K 

16 0 12 0 8 0 
32 1 12 0 12 0 
64 1 40 0 16 0 

128 1 52 3 24 3 
256 l 64 3 32 4 
512 1 104 3 48 3 

1024 1 156 3 64 4 
220 3 96 3 
324 3 128 4 
480 3 192 3 
700 3 256 4 

1024 3 384 3 
512 4 
768 3 

1024 4 
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TABLE VIII 

SIZE TABLES FOR GENERALIZED FIBONACCI BUDDY SYSTEMS 

1 2 3 4 
SIZE K SIZE K SIZE K SIZE K 

16 0 16 0 16 0 16 0 
24 0 24 0 28 0 32 1 
40 2 40 2 44 2 48 2 
64 2 64 2 72 2 80 2 
88 3 104 2 100 3 112 3 

128 3 168 2 116 5 160 3 
256 1 272 2 160 4 208 4 
384 2 376 3 276 2 320 3 
640 2 480 4 348 5 432 4 

1024 2 584 5 464 4 544 5 
752 5 624 4 704 5 
920 6 724 7 864 6 

1024 8 824 8 944 9 
9·24 9 1024 10 

1024 10 
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