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PREFACE 

A numerical ~odel for predicting breakthrough curves of general 

fixed-bed ion exchange processes was developed. In the model, the 

column operated under local equilibrium, and hydrodynamic dispersion was 

included as a transport mechanism. A numerical dispersion coefficient 

was introduced to account for truncation error in the numerical approxi-. 
mation. The model is capable of predicting breakthrough data for 

systems whose equilibria are described by linear, Langmuir, or 

Freundlich isotherms. 

An interactive computer program was developed to implement the 

numerical solution algorithm. Test calculations were performed to check 

the validity of the numerical approximation technique, and to compare 

predicted data with experimental data from the literature. 
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CHAPTER I 

I NTROOUCTI ON 

The purpose of the herein described research was to develop a 

numerical model to simulate the performance of fixed-bed ion exchange 

columns for general ion exchange systems. The systems of interest were 

those which involved gel-type ion exchange resins and two exchanging 

ions which exhibited linear, Langmuir, or Freundlich equilibrium 

relationships. 

The objective was to develop a model which would require a minimum 

of experimental data for evaluation. Since solution-resin equilibrium 

is one of the first properties to be evaluated for a proposed ion 

exchange system, the model was developed on the basis of equilibrium 

theory which neglects all mass transfer inefficiencies in the solution 

and resin phases, describes the rate of exchange as infinite, and 

describes the solution to be in equilibrium with the resin at all times 

and at all points in the fixed bed. The rate term in the material 

balance equation was replaced by a function of the equilibrium 

relationship. 

Industrial applications of ion exchange include the purification of 

water sources, separation of rare earth metals, and decontamination of 

nuclear reactor cooling water. A common process arrangement consists of 

vertical fixed-bed columns which are used to contact the solution and 
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the ion exchange material. The effect of changes in operating 

conditions on the performance of ion exchange processes is needed to 

determine the optimum process configuration, operating conditions, and 

column design. Most process development requires scale-up due to the 

complexity of ion exchange processes. Considerable effort would be 

saved if optimum operating conditions could be determined, through the 

use of a rating program on a pilot-scale operation, and then included in 

the scaled-up process. Therefore, a reliable mathematical model, which 

requires a minimum of experimental data, could be used by engineers to 

avoid extensive experimentatioh with actual columns in the determination 

of optimum process operating conditions. 

As discussed in Chapter 2, determination of the parameters 

necessary for a kinetic treatment of ion exchange requires extensive 

experimentation. Equilibrium theory, which requires only column 

characteristics and equilibrium data for evaluation, has been 

successfully used in the isolation of potential ion exchange systems. 

The convection-dispersion (C-D) equation, which governs the 

transient behavior of an ion exchange column with both convective and 

dispersive material transport accounted for, was derived. The solution 

of the C-D equation, which has historically been difficult to 

approximate numerically, was then approximated by an implicit finite

difference technique. A numerical dispersion correction term was 

included to account for truncation error inherent in the approximation 

of the partial derivatives. 

The approximation was developed from a two-point temporal, three

point spatial finite-difference grid network, which insured consistent 

orders of truncation error in both time and space. The numerical 



approximation was validated by comparison with closed-form analytical 

solutions for the linear form of the C-D equation. 

3 

The model was evaluated by comparing predicted column performance 

with the corresponding experimental data for both linear and nonlinear 

systems. Parameters of the model were adjusted to give agreement in the 
I 

breakthrough times for all systems studied at1tl the entire breakthrough 

curve for the linear-equilibrium system. Sensitivity tests on four 

system parameters were conducted to aid in further model development. 



CHAPTER II 

LITERATURE REVIEW 

This chapter gives a review of past work in three areas which the 

present work combines. The characteristics of ion exchange are briefly 

discussed with an aim to justify the assumption of local equilibrium, 

between solution and resin, used in the present model. Applications of 

equilibrium theory are then discussed. The final section concerns the 

numerical solution of the convection-dispersion equation which is the 

foundation of the present study. 

Characteristics of Ion Exchange 

Solid ion-exchange materials consist of a matrix, held together 

(cross-linked) by chemical and physical bonding, and of chemically 

functional groups which are bonded to the matrix. The matrix is 

absorbent to suitable solvents. When this sorption occurs, the 

functional groups dissociate to form two types of ions. The first type, 

of either positive or negative charge, is immobile and remains bonded to 

the matrix. The second type of ion is oppositely charged to the first 

type. This ion is mobile and free to move through the solvent-matrix 

system and into the external solution. 

Most solid ion-exchange materials, the majority of which are 

addition copolymers prepared from vinyl monomers, consist of a 

hydrocarbon matrix to which the functional groups are bonded. An 

4 



example of this type of resin is cross-linked polystyrene which has 

functional groups introduced after polymerization, by treating the 

polymer with sulfuric acid to produce sulfonic groups. 

5 

Ion exchange occurs when the mobile ions, originally in the 

solvent-matrix system, move into the external solution and different 

ions of similar charge move from the external solution into the solvent

matrix system. The exchanging ions are termed counter ions, while the 

ions originally in the external solution, of opposite charge to the 

counter ions, are called co-ions. The ion exchange is termed cation 

exchange if the counter ions are positively charged, and anion exchange 

if the counter ions are negatively charged. 

For the condition of electroneutrality to be met, the exchange of 

counter ions must be stoichiometric. Also, exchange of counter ions is 

usually reversible in that conditions can be found under which the same 

counter ion is exchanged into and out of the solvent-matrix system. The 

solvent-matrix system will preferably sorb certain counter ions. This 

property, termed selectivity, has given ion exchange its potential as a 

separation technique in industrial and laboratory applications. 

Since the exchange reaction occurs extremely rapjdly, the rate of 

exchange is controlled by diffusion of ions in the resin pores and 

through the external solution. Either of these diffusional mechanisms, 

or some combination of both, may be rate limiting. 

A rigorous quantitative theory for the general kinetics of fixed

bed ion-exchange processes is not feasible owing to the complexity of 

both ion exchange and the hydrodynamics of porous media. Even the much 

simpler problem of batch ion exchange kinetics has been solved only for 

certain limiting cases (Helfferich, 1962). For this reason, the 



assumption of local equilibrium, where mass-transfer inefficiencies are 

neglected, is appealing for the general model under consideration. 

Two basic varieties of equilibrium are found in column exchange 

operations. Favorable exchange equilibrium occurs when the counter ion 

in the feed is preferred by the ion exchanger. Any spread in the 

exchange front is counteracted by delay of preferred ions ahead of the 

front and displacement of nonpreferred ions behind the front. A sharp 

boundary between converted solution and unconverted solution results. 

The sharpness of the boundary is proportional to the strength of 

preference. 

In unfavorable exchange equilibrium, the ion initially present in 

the resin is preferred by the resin. Feed ions which are ahead of the 

exchange boundary are held less strongly than the favored ions, while 

resin ions behind the boundary are delayed. The boundary becomes 

increasingly diffuse through the length of the column. 

At breakthrough, when the effluent concentration rises above some 

critical level, the bottom layers of resin are not completely 

6 

converted. Therefore, the breakthrough capacity is less than the total 

column capacity. A measure of column efficiency is given by the degree 

of column utilization, which is defined as the ratio of the breakthrough 

to the overall capacities and is high when the exchange front is 

sharp. In addition, a system which exhibits a sharp boundary allows for 

a greater flow rate and a smaller column due to higher exchange 

efficiency. 

On the macroscopic level, some equilibrium theories involve the 

concept of "effective plates," the solution in a vertical section of the 

column attaining equilibrium before moving to the next section 
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(Helfferich, 1962). Deviations from local equilibrium are accounted for 

by assigning each section a finite height, called the effective plate 

height, which must be determined experimentally. These theories then 

assume mixing in the plates to cause boundary spreading. Other 

equilibrium theories, such as that of DeVault (1943), assume that 

equilibrium is attained by each resin particle. These theories are 

especially useful for unfavorable equilibrium since the boundary rapidly 

diffuses and approaches the pattern in which local equilibrium 

prevails. The process then becomes independent of the location in the 

column. These theories are well suited to multicomponent systems and 

systems whose isotherms are partly favorable and partly unfavorable. 

On the microscopic level, ion exchange rates are controlled by film 

and particle diffusion. Equilibrium theories neglect these mechanisms, 

as the exchange rate is infinite. Film diffusion control can usually be 

eliminated in fixed beds of spherical resin beads by using small beads 

and low flow rates. For spherical ion-exchange beads, Gilliland (1953) 

gives an empirical relation for the Nernst film thickness as a function 

of r0 , the bead radius. r0 dereases with decreasing particle size, so 

that film thickness and the importance of film diffusion decrease in the 

same manner. Helfferich (1962) reported typical film thicknesses on the 

order of 10-2 to 10-3 cm. 

Particle diffusion control is somewhat more complex because it 

involves such parameters as the degree of cross-linking in the resin, 

ionic diffusivities, and intraparticle electrical effects. The 

evaluation of resin-side parameters requires extensive experimental 

work. 
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High rates of exchange are favored by a low degree of cross

linking, which is accompanied by increased swelling of the resin. In 

this condition, the resin matrix interferes with ionic diffusion to a 

lesser extent than with higher cross-linking in an unswollen resin, and 

the diffusing ions are able to move through the resin more rapidly. 

Ionic fluxes are coupled by the imposed condition of electroneutral

ity. The electric field generated by the diffusion of the ions produces 

an electric transference of counter ions in the direction of the slower 

diffusing ion. This electric transference is superimposed on the 

diffision. The resulting net fluxes, but not necessarily velocities, of 

the counter ions are equal, while the purely diffusional fluxes, as a 

rule, are not. The Nernst-Plank equation, which expresses the net flux 

as the sum of diffusional and electrical fluxes, must be solved for each 

species present (Helfferich, 1962). In light of the necessity of 

electroneutrality and the strength of the electric potential which 

develops under even slight deviations from neutrality, the electrical 

transference could overshadow the purely diffusional transference. 

Another factor which influences particle diffusion of ions is 

convection conductivity. When diffusion begins, there are more counter 

ions, than co-ions, in the particle. Momentum is transferred to the 

solvent molecules by the diffusing counter ions, and convection occurs 

in the direction of counter-ion transfer. The convection of pore liquid 

is superimposed on the migration of the ions relative to the pore 

liquid. The ions move faster, relative to the matrix, than they would 

during ordinary diffusion. In usual resins, the pore width is smaller 

than the Debye-Huckel ionic cloud, so that convection occurs through the 



entire pore cross section rather than at the walls only (Bjerrum and 

Manegold, 1928). 
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Complete description of the electrical effects in the exchanger can 

be given in terms of irreversible thermodynamics, but the treatment is 

rather abstract. Therefore, a model is proposed (Helfferich, 1962). 

The ion exchanger is considered as a porous system which is 

homogeneous on a macroscopic scale. Transference relative to the matrix 

results from superposition of transference relative to the pore liquid 

and transport by convection of the pore liquid. Some fundamental 

limitations exist even for this simple model. The Nernst-Einstein 

relation for ionic mobility disregards coupling of fluxes other than by 

induced convection. The model also implies that pore liquid ions travel 

at the same rate through the pore cross section, disregarding ionic 

interactions with the matrix (Spiegler and Coryell, 1953). Individual 

ionic-interaction parameters would be required for improvement of the 

model, but the mathematics would be greatly complicated. 

The parameters needed for evaluation of the model include the 

intraparticle electric potential gradient, ionic diffusivities, specific 

flow resistance, and specific conductivity of the resin. These 

parameters are determined, for a particular system, through extensive 

experimentation. This approach is in appropriate for general 

considerations. 

The assumption of local equilibrium, due to its simplicity, is the 

most useful way of treating the kinetics of fixed-bed ion-exchange 

processes for general systems. Rigorous mathematical treatment of the 

equilibrium theory in fixed beds can be found in the literature; see, 
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for example, Goldstein {1953). However, the solutions presented are 

valid for linear isotherms only. 

In summary, equilibrium theory, which requires only column 

characteristics and equilibrium data for evaluation, is based on the 

following assumptions: 

1. Equilibrium between solution and exchange resin exists at all 

times, and at all points within the exchanger bed; 

2. The bed is homogeneous. A random distribution of void spaces 

exists within the resin; 

3. Flow is in the axial direction only; 

10 

4. Secondary processes, such as neutralization, precipitation, and 

complex formation are neglected. Furthermore, in the absence of 

chemical reactions, ion exchange usually evolves or consumes little 

heat. Enthalpy changes during exchange are usually less than 2 

kcal/mole {Helfferich, 1962). Therefore, the ion-exchange column is 

assumed to operate isothermally. Additionally, for the dilute solutions 

of primary interest, any changes in solution density or viscosity, 

during the exchange process, are small. So, for isothermal operation 

with dilute solutions, the density and viscosity of the solution are 

constant. 

Equilibrium Theory of Ion Exchange 

The performance of an ion exchange operation is governed by 

exchange stoichiometry, solution-exchanger equilibrium, and exchange 

rate, as well as the process arrangement used. Equilibrium theory 

involves consideration of stoichiometry and equilibrium only. 
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Although calculations based on equilibrium theory may yield 

concentrations in the bed, or effluent histories, quite different from 

those obtained physically, these calculations represent the optimum 

performance of the exchange operation. The calculations may be 

extremely useful in the prediction of the behavior of new systems and in 

the interpretation of experimental results. 

Equilibrium theory calculations can be useful in the exclusion of a 

proposed process on the basis of equilibrium data alone. The deter

mination of additional process parameters is not necessary. The effect 

of changes in process variables, such as solution flow rate, column 

size, and operating temperature, can also be predicted. Equilibrium 

theory accurately predicts any periods of constant-effluent 

concentration which may occur, which is especially important for 

multi component exchange. Under certain operating conditions, namely 1 ow 

flow rate, unfavorable equilibrium, and high diffusivities in the 

exchanger phase, equilibrium theory calculations may provide a good 

approximation to actual column performance. 

The first equilibrium theories pertained to chromatography. Wilson 

(1940) qualitatively described chromatographic analysis by neglecting 

intraparticle diffusion and establishing instantaneous equilibrium 

between the solution and the sorbent. The width of the adsorption band 

was also assumed to remain constant during the chromatographic 

development. Observed widening of the adsorption band was attributed to 

lack of equilibrium between sorbent and solution phases. 

Devault (1943) treated single component sorption rigorously, and 

discussed multicomponent sorption qualitatively, in terms of equilibrium 

operation and a general isotherm. Wilson (1940) had shown that solid-



phase concentration was a discontinuous function of distance along the 

bed, while DeVault's study indicated that this was true if the solute 

was strongly adsorbed. Weiss (1943) extended DeVault's work to linear, 

Langmuir, and Freundlich isotherms, with results similar to those of 

Devault. 

Walter (1945) used the equilibrium theory and developed equations 

for two-component adsorption. As with Devault (1943) and Weiss (1943), 

the diffuse nature of the exchange-front boundaries was investigated. 

A chromatographic column, if operated at equilibrium conditions, 

could be used to determine the equilibrium isotherm of a system of 

interest. An obvious advantage of this method is that a single 

experiment gives an almost unlimited number of points of the isotherm. 

Glueckauf (1947) has investigated this experimental use of equilibrium 

theory. 

The an~logy between the mode of operation of a distillation column 

and that of an ion-exchange column allowed modification of local 

equilibrium theory. The ion-exchange column was treated as a series of 

11 plates. 11 As solution flowed through each plate, equilibrium between 

the solution and the exchanger occurred. The plate was of sufficient 

length, referred to as the "height equivalent of one theoretical plate 

(HETP), 11 to accomplish this equilibration. 
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Martin and Synge {1941) found that, under the limited conditions of 

constant equilibrium coefficient, the width of the adsorption band 

predicted by their HETP theory was similar to the experimentally 

observed band width. By using solution volume and resin mass, rather 

than theoretical plate area and height, respectively, Mayer and Tompkins 

{1947) simplified the theory of Martin and Synge (1941). The approach 



of Mayer and Tompkins (1947) was directly applicable to determining 

eluate composition, as well as to predicting the distribution of the 

various substances in the column. Application of their method to rare

earth separations at near-equilibrium conditions showed good agreement 

with experimental data. 

Glueckauf (1955) reported that the theoretical-plate approach was 

important in improving the efficiency of ion-exchange operations. He 

found that the column efficiency was improved by makfng the HETP suf

ficiently small and the total number of plates sufficiently large. 
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Pandya et al. (1965) applied stagewise calculations to the 

equilibrium-performance evaluation of ion-exchange columns for the 

prevention of scale formation during sea water evaporation. The work of 

Martin and Synge (1941) and Mayer and Tompkins (1947) was ~xtended to 

yield approximate results for multicomponent systems with nonlinear 

equilibrium iso.therms. 

Local-equilibrium theory was applied to process design calculations 

by Frisch and McGarvey (1959). Axial dispersion was neglected, and the 

work of Walter (1945) was extended to predict the effects of 

regeneration level and regenerant purity on maximum regenerated 

capacity, equilibrium leakage during the exhaustion cycle, and elute 

composition. Good estimation of column performance was accomplished 

even with extrapolated data. 

The University of California's Sea Water Conversion Laboratory used 

the equilibrium model extensively in the design of a sea-water-softening 

process, in the analysis of different schemes for saline-water 

pretreatment or desalination, and for studying the dynamics of 

multicomponent ion-exchange systems. Of particular importance in a 



desalination process was the removal of constituents, from the brine, 

which deposited as boiler.scale in an evaporator. 

Klein et al. (1963) used the equilibrium model to select suitable 

ion-exchang~ resins for the sea-water-treatment process. Optimum values 

of the product of selectivity coefficient and resin exchange capacity 

were used to eliminate undesirable exchange materials. Within the 

useful group of resins, marked trends with cross-linking, total and 

individual ionic concentrations, and temperature were not apparent. 

Klein et al. (1965) used the equilibrium model to develop rules for 

outlining the overall concentration profiles for multicomponent 

systems. The rules were used to determine the number of constant-

composition zones, the signs of the slopes of the concentration 

profiles, and the order of points at which the component concentrations 

could become zero. The concentration profiles could then be converted 

to effluent concentration histories. Klein et al. (1968) performed a 

design and cost analysis of the process which was recommended by the 

equilibrium studies. 

Klein and Vermeulen (1974) summarized the theoretical aspects of 

the equilibrium operation of pure ion exchange that had been used in the 

previous studies. Column dynamics and ion exchange accompanied by 

chemical reaction, as we 11 as design applications in eye 1 i c operation, 

were considered. 

Solution of the Convection-Dispersion Equation. The parabolic 

partial differential equation which describes one-dimensional flow in 

porous media is 

ac a2c ac 
F - = Dz ---,.; - V -at - c.. z az az 

( 1) 
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where 

and 

C = solution phase concentration, lb/ft3, 

F = isotherm proportionality function, F(C,e), 

Dz = dispersion coefficient, ft 2/sec, 

Vz = average intersitital velocity, ft/sec. 

The solution to this parabolic equation has been historically difficult 

to approximate numerically. 

Standard implicit finite-difference techniques, such as the method 

of Crank and Nicolson (1947), developed oscillations and frontal 

smearing due to truncation of a Taylor series in the numerical 

approximation. Von Neumann and Richtmeyer (1950) attributed these 

difficulties to shock fronts which manifested themselves mathematically 

as discontinuities in system properties. The shocks occurred when the 

value of Dz was zero or much smaller than the value of Vz. Equation 1 

became more hyperbolic, than parabolic, under these circumstances. 
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These authors proposed that the difficulties could be decreased by using 

an artificially large value of Dz, which restored some of the parabolic 

character of Equation 1. The effect on the numerical solution was to 

give the shock fronts a thickness on the order of the numerical-grid 

spacing and smear out the discontinuities so that the dependent variable 

varied rapidly, but continuously. 

Peaceman and Rachford (1962) developed a difference analogue to 

Equation 1 by replacing the spatial derivatives with difference 

quotients evaluated at tj and tj+l· The resulting equation was referred 

to as a "time-centered'' difference equation and was given as 



Dz j 2cJ.· j _._.,2 ( c . 1- + c . 1 (1iz) ,_ , ,_ 
2cj+l + cj+l) 

i+l i+l 

vz (?!'" j ..,... j+l ..,... j ..,... j+l ) = ~tF (cJi·+1_ cJi.) 
+ fl z I,, i -1 /2 + I,, i -1· /2 - I,, i + 1 /2 - I,, i + 1 /2 l.l 

where C was a representation of concentration at the spatial node, 

i+l/2. 

Two choices of C were considered: 

1. Distance-Centered 

C;+l/2 = (Ci+l + Ci)/2; 

2. Backward-in-Distance 

Ci +1/2 = Ci. 

(2) 

(3) 

( 4) 

Substitution of Equation 4 into Equation 2 gave "off-centering" in the 

direction opposite to flow. Calculations with Equation 2 showed 

overshoot for the distance-centered difference equation, and frontal 

smearing for the backward-in-distance difference equation. 

To avoid these characteristics, any overshoot was added ahead of 
j+l j+l 

the front to Ci+l' and Ci was decreased by the same amount of 

overshoot. Results were improved with this "transfer of overshoot" 

method. However, application of this method to the two-dimensional 

problem with zero dispersion indicated that the method contained a 

numerical dispersion of the same order of magnitude as the hydrodynamic 

dispersion. 
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Stone and Brian (1963) developed a rigorous method to determine the 

accuracy of various finite-difference approximations of the linear form 

of Equation 1. Their analysis was based on the adjustment of arbitrary 

weighting parameters to obtain a finite-difference approximation which 



17 

traveled the low-frequency harmonics of the analytical solution to the 

C-0 equation at velocities close to the convection velocity, Vz· Cyclic 

use of weighting parameter values was also observed to enhance the 

convection properties of the finite-difference approximations to the C-0 

equation. This treatment succeeded in reducing the oscillation and 

numerical dispersion, but some oscillatory behavior was still present in 

steep-front regions. 

Garder, Peaceman, and Pozzi {1964) proposed a method of numerical 

solution of the C-0 equation based on characteristic paths. The method 

involved moving points, applied to multiple dimensions, accounted for 

any amount of hydrodynamic dispersion, and introduced no numerical 

dispersion. The equations of the characteristic paths for the one

dimensional problem were 

and 

(5) 

( 6) 

A stationary finite-difference grid was defined, and a random set of 

moving points was introduced into the grid intervals. New positions of 

the points were calculated from Equation 5. The concentration change 

due to dispersion was calculated from Equation 6, and each moving point 

was assigned an updated concentration. This procedure was repeated for 

each time step. The dispersive contribution was calculated explicitly, 

which imposed a stability limitation on the time increment size. 



Price et al. (1968) presented numerical approximations of the C-D 

equation based on variational methods. Galerkin's method, with Chapeau 
.. • 

basis functions, was used to obtain difference approximations of the 

form 

where 

and 

2 dC ( e ) + .!_ ( dC i ( 0 ) + dC i -1 ( 8 ) ) 
1de 6 de de 

= 

= 

8 = 

V L z 
o;-

Dzt 
-2' 
el 

h = mesh spacing, 

L = system length. 

(7) 
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Calculations based on this method were compared to calculations based on 

the methods of Price et al •. (1966), and Garder et al. (1964). Increased 

accuracy and decreased computer time were observed. A variable 

interpolation method, which used two types of basis functions depending 

upon the proximity to the front, was also presented. 

Laumbach (1975) canceled some of the error in the approximation of 

the convection term with that of the accumulation term. Spatial 

truncation error was introduced in the approximation of the accumulation 

term, aC/at, and an arbitrary parameter, w, was used to give the 

approximation of the C-D equation as 



where 

and 

= 0z (cj+l 2cj+.1 cj+l + c j -2cJ.· + c j ) · 
2 (~z)2 i+l l + i+l i+l l i+l 

~t 
r = I:Z· 

(8) 

As ~t + 0, Equation 8 reduced to a form identical to that of Stone and 

Brian {1963) and Price et al. (1968). This discretization was of the 
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semi-implicit type and resulted in a set of linear equations which could 

be solved by Gaussian elimination. 

Larson {1982) presented a method which reduced numerical dispersion 

by updating the component fluxes from adjacent finite-difference grid 

blocks. The treatment was analogous to the method of characteristics in 

that the equations explicitly expressed the velocities at which fixed 

values of concentration were propagated through the system. 

Fanchi {1983) has presented a truncation error analysis which 

outlined equations for a numerical dispersion coefficient, the form of 

which depended upon the difference· techniques used in the numerical 

approximation. Total dispersion consisted of a physical contribution 

and a numerical contribution. Numerical dispersion was reduced by 

subtracting the numerical dispersion coefficient from the hydrodynamic 



dispersion coefficient which appeared in the numerical model. 

Improvement in the accuracy of the numerical solution was observed. 

The above studies used exact solutions, where possible, for 

comparative purposes. Analytical solutions to the one-dimensional C-D 

equation have been reported by Brenner (1962) and Hunt (1978). Brenner 

(1962) considered beds of finite length, while Hunt (1978) gave 

solutions for semi-finite beds for both instantaneous and continuous 

sources. The solution of interest is 
. zVZ 
M exp(10) 

lzlVz I zl - v t 
C(z,t) = z [exp(- 2D ) erfc ( 2 o/) 2 e: v z z z 

(9) 

lzlVz lzl+Vt 
- exp( 2D ) erfc( 2 D tz )J, 

z z 

where M = solution flow rate, ft 3/sec. Equation 9 will be used for 

comparative purposes in the present work. 
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CHAPTER III 

PROPOSED MODEL FOR FIXED-BED ION EXCHANGE 

This chapter has two primary functions. The first is to define the 

ion-exchange system being modeled, with an emphasis on basic 

assumptions. The second is to develop the mathematical model for the 

defined system. 

Definition of the Ion-Exchange System Being Modeled 

The specific system being defined is shown in Figure 1 and is 

described by the following. A solution having constant volumetric flow 

rate, V , and constant inlet concentration, Cin• is fed downward to a 

fixed-bed, cylindrical, vertical column having inside dimeter, De, and 

inside cross-sectional area, A. The solution contains a single ionic 

species of interest and may also contain small amounts of nonelectrolyte 

components. The concentration of the solution leaving the bottom of the 

column is Cout· Bulk average flow is in the z-direction only, with 

constant interstitial velocity, Vz. Concentrations of the solid and 

solution phases are indepedent of the r-direction. The column is packed 

to a height, L, with a spherical ion-exchange resin. Resin shrinkage 

and expansion is neglected. The resin bed is homogeneous, with a 

constant porosity, E, throughout. The initial concentration in the bed, 

Cinitial, applies to all parcels of solution in the bed. The rate of 

ion exchange is infinite, i.e. mass transfer resistances in the resin 
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Figure 1. Schematic Diagram of Ion Exchange Column 
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particles, and in the solution layer surrounding the resin particles, 

are neglected. This implies that the solution and resin are in 

equilibrium at all times. The column operates approximately iso

thermally and at relatively low ionic concentrations. Therefore, the 

solution density and viscosity remain essentially constant throughout 

the column. As solution flows through the bed the exchange front is 

spread in the z-direction. This phenomena is described by a Fickian 

diffusion model and dispersive flux is given by Q = D2 ~~, where Dz is a 

constant dispersion coefficient. However, dispersion in the r-direction 

is neglected. Also, bulk convection overshadows transport by ionic 

diffusion, and the latter mechanism is neglected. 

Basic Elements of the Model 

The four basic elements of the proposed model are listed below. 

{l) The column is divided axially into a number of cylindrical volume 

elements. The concentrations of the solution and resin phases are 

constant across the diameter of an infinitesimally thin slice of an 

element. {2) A general mass balance is derived, based on applicable 

transport mechanisms, and applies to all volume elements. (3) The 

terms of the mass balance equation are approximated for numerical 

evaluation. Any empirical parameters are defined from available 

literature, or are obtainable experimentally. (4) The set of 

simultaneous equations, which arises from application of the 

approximated material balance to all spatial increments of the column, 

is put into a form for numerical solution with time. 
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Development of the Model 

Consider the volume element, of thickness ~z. shown in Figure 1. A 

mass balance equation of the form 

mass in - mass out = mass accumulated + mass produced {10) 

can be written for the element over any time increment, ~t • Mass 

enters and exits the element by convective and dispersive fluxes. Mass 

is accumulated by ionic transfer during the ion-exchange process. No 

mass is created or destroyed, so the production term is eliminated. 

Defining these quantities in terms of system parameters and 

substituting into Equation 10 gives 

( 11) 

= ~z A{C5+ C)Jt - ~zA(C5 + C)it+~t ••• Accumulation, 

where 

Q _ 0 ac 
L - z az• 
C = liquid phase concentration, lb ion/ft3 solution, 

Cs = solid phase concentration, lb ion/ft3 solid, 

and 

lz = "evaulatedatz. 11 

Rearranging Equation 11, dividing by A~t~z. and taking the limit as ~z 

and ~t approach zero gives 
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(12) 

lim (Cs+ C)lt+llt - (Cs+ C)lt 
= llt +O ( llt ) • 

The differences in Equation 12, divided by the incremental values, 

define the first derivatives of VzC and QL with respect to z, and of (Cs 

+ C) with respect to t. Substitution of the derivatives into Equation 

12 gives, upon rearrangement, 

(13) 

Since Dz and V2 are constants, subsitution for QL gives 

(14) 

where Cr is the total concentration, in lb ion/ft3 total, of ions in 

both phases of any increment of the resin bed, given by (Cs + C). 

The mass of ions in the liquid phase, ML, is 

(15) 

where 

VT = total volume of bed, 

and 

s = bed porosity. 

Likewise the mass in the resin phase, Ms, is 



{16) 

The total mass of ions in the bed, or any incremental volume thereof, 

Mr, is given by the sum of the solid and liquid phase masses 

(17) 

Equation 14 is now written in terms of masses as 

(18) 

Substituting Equations 15 and 17 into Equation 18 gives 

(19) 

Since Vr and s are constants, they can be brought out of the partial 

derivatives of Equation 19 to give 

Dividing Equation 20 by VT s gives 

(21) 
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According to equilibrium theory, the resin phase accumulation 
acs c 

term, ""at, is related to the liquid pase accumulation term, ~t , by the 

equilibrium isotherm. 

The isotherms to be considered in this study are the linear, 

Langmuir, and Freundlich isotherms. The equations of these isotherms, 

along with their time derivatives, are summarized in Table I. 

TABLE I 

EXCHANGE ISOTHERMS 

Linear Langmuir Freundlich 

C = KC c = KC 
CSmax c = Ken s s 1 + kc s 

ac 5 K~ 
ac5 KCsmax ac ac 5 KCn-1 lf at - at a-r- -

(1 + KC) 2 at ar- n at 

Inserting the time derivative of the solid phase concentration into 

Equation 21 gives 

"C 1 '"" "C D "2C _ V _"C _a + ( - c) f(C) _a = a a 
at 2 at z az2 z az (22) 



where f(C) is the proportionality factor from the isotherm equation. 

Factoring ~~ out of Equation 22 gives the final form of the one

dimensional C-D equation to be studied 

[l + f(C) (1 - i::)JE.f= o a2c - v E.f. 
i:: at z az2 z az (23) 

Initial and Boundary Conditions 

Equation 23 contains two spatial derivatives and one ti me 

derivative. Therefore, two boundary conditions and one initial 

condition are required for its solution. 

The most realistic initial condition defines the solution 

concentration at all points within the bed at time t = O. 

Mathematically, this is written as 

C(z,o) = Cinitial" (24) 

The first boundary condition states that the liquid concentration 

at the top of the resin bed is constant and. equal to the inlet solution 

concentration. This is written as 

C(o,t) = C0 • (25) 
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The second boundary condition concerns the concentration gradient at the 

bottom of the column. Physically, it requires that after a parcel of 

solution flows out of the bed, the exchange process is complete, and the 

concentration does not change further •. This condition is written as 



aC(L,t) = 
az 0 . (26) 

Danckwerts (1953) indicated that this was the proper boundary condition 

to avoid the unacceptable conclusion that the solution concentration 

passes through a maximum or minimum somewhere in the column. 

Additional Parameters of the Model 

Solution Interstitial Velocity 

The average interstitial velocity of the solution, which is 

constant with time and di stance, is given by 

where 

V = solution volumetric flow rate, ft 3/sec, 

A = column cross-sectional area, ft 2 , 

and 

E = resin bed porosity. 

Axial Hydrodynamic Dispersion Coefficient 

(27) 

Harleman et al. (1963) reportea the empirical relation for axial 

hydrodynamic dispersion coefficient, in beds of spherical particles, 

given by 

0 zhydro 
= .66 µf Re 1. 2 

pf p 
(28) 
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where 

µf = fluid viscosity, lb/ft/sec, 

Pf .;.· fluid density, lb/ft3, 

and 

Rep = DP Vz pf/µf' 

where 

DP = resin particle diameter. 

Numerical Dispersion Coefficient 

Fanchi (1983) reported equations for a numerical dispersion 

coefficient, Dznum , for use with finite-difference methods, which were 

based on the type of numerical represer:itations used to approximate the 

partial derivatives of the equation of interest. For a centered

difference in space, explicit-in-time representation, the numerical 

dispersion coefficient is given by 

where 

Vz = average interstitial velocity, ft/sec, 

~t = time increment, sec, 

and 

e: = porosity. 

{29) 

A summary of the truncation error analysis is included in Appendix D. 

The overall dispersion coefficient, Dz, in Equation 23 is given by 

Dz = 0zhydro - Dznum (30) 
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where Dznum is subtracted to eliminate the effect of numerical 

dispersion on the numerical solution. 
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Column Pressure Drop. An expression for total pressure drop across 

the entire resin bed was reported by Ergun (1952) as 

(31) 

where 

Vo = superficial column velocity, ft/sec, 

Pf = fluid density, lb/ft3, 

µf = fluid viscosity, lb/ft/sec, 

DP ;::: particle diameter, ft' 

L ;::: bed length, ft' 

E = bed porosity, 

and 

9c = 32.2 ft l bm 
sec2lbf • 



CHAPTER IV 

NUMERICAL SOLUTION OF THE 

CONVECTION-DISPERSION EQUATION 

This chapter has three prima~ functions. First, a qualitative 

discussion of finite-difference approximations of partial differential 

equations is given. Secondly, the finite-difference equations are 

developed based on a grid network in space and time. Finally, the 

solution algorithm for the system of algebraic equations generated by 

the implicit finite-difference method is outlined. 

Description of the Finite-Difference Technique 

When using a finite-difference technique, the system is first 

divided into a network of grid points. The distances between grid 

points are incremental values of the independent variables. The 

derivatives of the partial differential equation of interest are then 

written as difference equations involving the incremental values of the 

independent variables~ Solution of the equation(s) gives the value(s) 

of the dependent variable at the grid points of interest. By reducing 

the size of the independent-variable increments, the approximation of 

the dependent variable approaches the true value of this variable at any 

grid point. 

The two basic finite-difference methods are the explicit and 

implicit methods. The explicit finite-difference method uses known 
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values of the dependent variable, at previous. increments of the 

independent variables, to predict dependent-variable values at 

succeeding increments. The implicit finite-difference method uses 

unknown values of the dependent variable, at subsequent increments of 

independent variables, to predict dependent-variable values at sue-

ceeding increments. The equations generated for the entire incremental 

level must be solved simultaneously by solving a matrix of 

coefficients. This matrix solution yields an entire incremental level 

of dependent~variable values. 

The method used in the present work is the implicit method. This 

insures numerical stability at all values of 8z and 8t. 

Formulation of the Finite-Difference Equations. Derivation of the 

finite-difference equations requires division of the ion-exchange resin 

bed into spatial increments of thickness 8z. Figure 2 is a 

representation of the discrete element system. Distance increments are 

subscripted i, and the distance increment 8z, is equal 

to (zi+l - Zi) Time, subscripted j, is the other coordinate of the 

grid, and the temporal increment 8t is equal to (tj+l - tj) • 

Following the development of Laumbach (1975), finite-difference 

approximations for the partial derivatives in Equation 14 are obtained 

by Taylor series expansion of concentration about the ith spatial node, 

and any temporal node, such that 

2 2 3 3 
c,·+i = c. + 8z aac211. + (tiz) a c1 + (8~) a c1.+ l ~;;zi -n-;?1 (32) 

and 
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+ 2 2 ¥3 a3c C. = C. - t:.z ~I . + {t:.z) a CI . - -""'}I . + • • • • 
1-l 1 az 1 2 ~ 1 • az,) 1 

(33) 

Adding Equ~tions 32 and 33 gives 

Equation 34 is now differentiated once with respect to time to give 

(35) 

1 C is now expanded about the j + 2 temporal node to give the 

approximations 

{36) 

j+.1 j-+l. 2 2 j+.!. 3 3 j+l. 
cl'.1 = c .2 + t:.t ~I . 2 + (t:.t } .. a c 1 . 2 + (t:.t }"' a c 1 . ~ + ••• 

1 1 2 at 1 --S- ;-? 1 ~ ~ 1 

and 

(37) 

. 1 ·+l 2 2 . 1 3 3 . 1 
j _ J~ t:.t ac J 2 ~t) a c J~ ~t a c J~ c. - c . -~ -;:;--t I . + -,,I . - ~1 . + • • • • 
1 1 c. a 1 a tc. 1 at,) 1 

Subtracting Equation 37 from Equation 36 gives, upon rearrangement, 

· 1 cj + 1 cj 2 3 · 1 ac J~ _ i - i (t:.t )'" a c J~ 
arl i - t:.t + ~ ~I i + • • • • (38) 



Neglecting derivatives of order two and higher gives an approximation 

for the accumulation term in Equation 23. 
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(39) v 

where 

c., = cJ:1 
l l 

Ci = C~ 
and 

e = "order of error." 

The approximation of the first-order spatial derivative is formed 

by subtracting Equation 33 from Equation 32 to give 

( 40) 

Equations 36 and 37 are added to give 

~ (C. 1 + C.) 
c. 1 1 

·+l 2 2 ·+l 
CJ 2 (~ t ) a c J 2 + 

= + 8 -:-:zl . 
at · 1 

( 41) 

Substituting Equation 39 into the appropriate derivatives of Equation 

41, and neglecting derivatives of order two and higher, gives the 

approximation for the convection term of Equation 23, 

. 1 
ac J+2 1 ' 
az-I ; = %Z (ci+l c'. 1 + c.+1 - c. 1) + e(~z 2 ),) 

1- 1 1-

The approximation of the second-order spatial derivative is 

developed from the sum of Equations 32 and 33, given by 



+ • • • • ( 43) 

Differentiating Equation 41 twice with respect to z, and 

rearranging the results, gives 

2 ·+!. 2 2 2 4 . 1 
a c J 2 1 (a c

1
j+l +a c

1
J.·) (~t)~ a c 

1
J""2 

~I · = 2 ~ · -:-7 , - ---a- 2 2 + • • • • 
az 1 az 1 az· azat 

( 44) 

Substituting Equation 43 into the appropriate derivatives of Equation 

44, and neglecting derivatives of order two and higher, gives the 

aproximation for the dispersion term of Equation 23, 

37 

( 45.) ~1 / 

" 2C j+.l 1 /~ ··2--.._., 
a I ~ = (CI 2C '. + c '. 1 + c. 1 - 2C. + c . 1) +( e (~z J'' 
~ i 2 (~z)2 i+l - 1 1- 1+ 1 1- \---..... j 

The order of truncation error in Equation 45 is consistent with the 

orders of error in the other two approximating equations, namely 

Equations 39 and 42. 

Substituting Equations 45, 39, and 42 into the appropriate terms of 

Equation 23 gives the finite-difference approximation of the C-D 

equation 

( 46) 

Dz 
= (CI 2C .1 + c I + c 2C + c ) 

2 (~z)2 i+l - 1 i-1 i+l - i i-1 



Defining parameters 

Q = ~t [1 + f(C)(l ~ e:)], 

R = 

and 

and substituting these parameters into Equation 46 gives, after 

rearranging, the general difference analogue to Equation 23 

(-R-S) C~ l + (Q + 2R) C'. + (-R + S) C'.+l 
1- 1 1 

(47) 

= (R + S) Ci-l + (Q - 2R) Ci+ (R - S) Ci+l· 

Equation 47 is written for every spatial node at each time step. The 

system of equations which is generated for the time step is given, in 

Table II, by Equation 48. 
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TABLE II 

FINITE-DIFFERENCE EQUATIONS 

(Q +-2R) C1 1 + (-R - S) C1 2 
(-R - S) C1 1 + (Q + 2R) C1 2 + (-R + S) C1 3 

(-R - S) C1 2 + (Q + 2R) C1 3 + (-R + S) C14 

= Tl 
= T2 
= T3 

(-R - S) C'N-2 + (Q + 2R) C'N-1 + (-R - S) C'N = TN-1 
(-R - S) C'N-1 + (Q + R + S) C'N = TN, 

where 

Ti = (-R - S) C ' 0 + (R + S) C0 + (Q - 2R) c1 + (R - s) C2, i =l, 
Ti = (R + S) Ci-1 + (Q - 2R) Ci + (R - S) Ci+l• 2 < i < N-1, 
Ti= (R+S)Ci-1+ (Q-R-S)Ci, i =N. 

(48) 

w 
~ 



When nonlinear isotherms are used in evaluation of the model, f(C) 

is not a constant. This difficulty is avoided by assuming f(C) to be 

constant over any spatial increment, and evaluating f(C) based on 

solution concentration within the increment. This procedure linearizes 

Equation 23 over any incremental slice of the column. 

The individual equations of Equation 48 are of the form 

= D .• 
l 

(49) 
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The Gaussian elimination algorithm used to solve the diagonally-dominant 

system of equations of the form of Equation 49 is summarized below. 

Ci 5;+1 
Si = Y; - 13 . , 1 .;;; .;;; N-1, 

l 

(50) . 

where 

131 - B1, 

01 
Yl = • e 1 

A. c. 1 
13 . B. l 1-

2 " i .;;; N, = - ' l 1 13 . 1 l -

and 
D. - A. yi-1 = l 1 2 .;;; ~ N. Y; f3 • 

l 



CHAPTER V 

RESULTS 

This chapter presents an evaluation of the model proposed in 

Chapters III and IV. Calculations using the model are compared to a 

closed-form analytical solution and ~o experimental data involving both 

linear and nonlinear equilibrium isotherms. 

Model Evaluation 

The finite-difference algorithm, the core of which was given by 

Equation 48 and the solution algorithm of Chapter IV has been 

incorporated into an interactive computer program, a listing of which is 

given in Appendix A. The program was developed on a Radio Shack TRS 80 

Model II Microcomputer, and tested on the VAX 11/780 of the Oklahoma 

State University Computer Center Network. 

The validity of the numerical solution was verified by test runs 

with data for a systE7m which was described by a 1 i near equilibrium 

isotherm. The results from these runs were compared with .the results of 

evaluation of the analytical solution given by Equation 9. The 

parameters of the model were then adjusted to match experimental 

breakthrough data for several systems which were described by linear and 

nonlinear equilibria. 

Finally, sensitivity tests were conducted to determine the effect 

of changes in four system parameters on the numerical solution. The 
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parameters chosen for this analysis were spatial increment size, 

temporal increment size, bed porosity, and equilibrium constant. 

A material balance check calculation was performed for the linear 

system described above. In 800 seconds of simulation time, the error in 

total mass balance was 0.0227 lb/ft3• This gives a percentage error of 

approximately 1.0%. Pressure drop calculations matched the values of 

Dow Chemical Company (1964), for their ion exchange resins, to within 

0.5 psi. 

Discussion of Results 

Figure 3 is a plot of the analytical and numerical solutions of 

Equation 23. Partial removal of numerical dispersion from the numerical 

solution is evidenced by improvement in the agreement between the 

analytical and numerical solutions upon the inclusion of Dznum in the 

model. 

For the data of Appendix C, the experimentally determined column 

performance data from the literature and the numerical data predicted by 

the proposed model are compared graphically in Figures 4, 5, and 6. 

These figures represent the best agreement, obtained from model 

parameter adjustment, of predicted data with experimental data for a 

linear system, an unfavorable nonlinear system, and a favorable 
,. 

nonlinear system, respectively. 

Adjustment of s produced the best agreement between predicted and 

experimental data for all three systems studied. Since s affects the 

value of both convective and dispersive parameters, a change in its 

value changes both the breakthrough time and the shape of the 

breakthrough curve. Additionally, adjustment of s is reasonable since 
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local porosities within the resin bed cover a range of values due to the 

randomness of the particle arrangement. The typical range of porosity 

for beds of spherical particles is 0.2 - 0.4. 

Subtraction of additional numerical dispersion, through a larger 

value of 8t, produced an additional benefit. The value of Dz was 

increased, through subtraction of the increased negative value of Dznum• 

so that overshoot and oscillation were eliminated from the predicted 

breakthrough curve. ·The increased value of Dz also improved the 

agreement between predicted and experimental data. 

Figure 4 shows agreement between predicted and experimental data 

over the entire breakthrough curve. Figures 5 and 6 show that the 

predicted breakthrough time matches the experimental breakthrough time 

for favorable and unfavorable systems. However, the curve is more 

closely approached for the unfavorable equilibrium system. 

Ion exchange under low solution flow rate conditions is more 

closely approximated by equilibrium theory than is exchange under 

conditions of high solution flow· rate. The flow rates of the nonlinear 

systems are over 100 times greater than the linear system flow rate. 

Therefore, the closer agreement with the linear data is primarily due to 

a lower solution flow rate. The closer approach of the unfavorable 

exchange system is due to the nonsharpening boundary observed under 
, 

unfavorable exchange conditions. The column operates closer to 

equilibrium under thes~ conditions. 

The four parameters chosen for sensitivity tests were spatial 

increment, 8z, temporal increment, 8t, porosity, s, and linear 

equilibrium constant, Fk. Table III gives the values of each parameter 

used in the numerical sensitivity tests, the graphical results of which 



are presented in Figures 7 through 14. For comparative purposes, the 

tests were run both with and without the inclusion of the numerical 

dispersion coefficient, Dznum· 

Fig. 

7 

8 

9 

10 

11 

12 

13 

14 

# t:,.z {ft) 

0.008-0.023 

0.008-0.023 

0.023 

0.23 

0.023 

0.023 

0.023 

0.023 

TABLE II I 

SENSITIVITY TESTS 

At {sec} E: 

1.0 0.4 

1.0 0.4 

0.01-1.0 0.4 

o. 01-1.0 0.4 

1.0 0.3-0.4 

1.0 0.3-0.4 

1.0 0.4 

1.0 0.4 

Dependence of Predicted Data on t:,.z 

_fL 0zi::ium 

0.58 yes 

0.58 no 

0.58 yes 

0.58 no 

0.58 yes 

0.58 no 

0.55-0.65 yes 

0.55-0.65 no 
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Comparison of Figures 7 and 8 shows well how the inclusion of the 

numerical dispersion coefficient eliminated the dependence of predicted 

data on t:,.z. Without the numerical dispersion coefficient, Vz was 

approximately 100 times larger than Dz. The increased hyperbolic nature 

of the C-D equation under this condition explains the overshoot observed 
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in Figure 8. With numerical dis_perison subtracted from the model, Vz 

was approximately 10 times larger than Dz, which caused the C-D equation 

to become more parabolic and eliminated overshoot in the predicted 

breakthrough curve. From Figure 8, a decreased 8z, which corresponded 

to more spatial increments, lessened the overshoot and sharpened the 

curve. 

Dependence of Predicted Data on 8t 

Figures 9 and 10 show the effect of changes in the value of 8t on 

the numerical solution with and without numerical dispersion accounted 

for. Opposite to the dependence of 8z, subtraction of Dznum from the 

model resulted in sensitivity to the value of 8t, while exclusion of 

Dznum from the model resulted in no appreciable effect of 8t. This 

result was due to the fact that Dznum is directly proportional to the 

value of 8t (see Equation 29). Therefore, a decrease in 8t caused a 

decrease in Dznum• with an increase in the difference between V2 and 

Dz· Increased hyperbolic character of the C-D equation appears, in 

Figure 9, as sharpened the breakthrough curve, due to a smaller 

dispersive term in the C-D equation. 

Dependence of Predicted Data on E 

This parameter was chosen for sensitivity tests because of the 

questionable, but unavoidable, assumption of a homogeneous resin bed 

with constant porosity throughout. The effective porosity will probably 

be lower than the normally reported of 0.35 - 0.40, due to the presence 

of dead pore volume which contains stagnant solution, and nonhomo

geneities resulting f~om the randomness of the packing. 
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Figure 12 shows that, for the model without Dznum' a decrease in s 

shifted the breakthrough curve ahead in time. The shape of the curve, 

however, was essentially unchanged. 

Figure 11 shows that, with Dznum included in the model, the shape 

of the predicted curve, as well as the breakthrough time, was changed 

with a change in the value of s. This was due to the fact that s 

affects several parameters of the model. 
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From Equation 27, Vz is inversely proportional to s. From Equation 

29, Dznum is proportional to Vz, and inversely proportional to s. 

Equation 28 indicates that Dzhydro' which is a function of Vz, is 

affected by s. Therefore, as s decreases, Vz, Dznum, and Dzhydro 

increase. Increased velocity was shown as decreased breakthrough time, 

while the shape of the breakthrough curve was changed due to a larger 

dispersive term. 

Dependence of Predicted Data on Fk. This parameter was chosen for 

sensitivity tests due to the potential difficulties encountered in 

describing a set of equi 1 i bri um data by a unique constant. 

Figures 13 and 14 show that a lower value of Fk shifted the 

breakthrough curve ahead in time. This is because the lower value of Fk 

effectively put more solute in the solution phase than a higher Fk value 

(see Table I: linear isotherm). The exchange can be said to occur more 

quickly throughout the column. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

The proposed model has several favorable features which justify its 

use for making operational and design decisions. 

(1) . Subtraction of Dznum' which represents error in the solution 

introduced by numerical dispersion, improves agreement between the 

numerically approximated and exact solutions. Additionally, 

increased subtraction of numerical dispersion eliminates overshoot 

from the solution and allows prediction of breakthrough curves 

which match actual systems. 

(2) The usefulness of equilibrium theory of ion exchange is exhibited 

by the accuracy of breakthrough data prediction obtained without 

determination of the kinetic parameters of ion exchange, which can 

be done only through extensive experimentation for a particular 

system. 

(3) The proposed model is applicable to general ion exchange systems 

with only equilibrium and column data needed for evaluation. 

(4) The primary model sensitivities lie in ~t and €. 

(5) Adjustment of model parameters gave agreement with the breakthrough 

curve in certain systems and with breakthrough time in all systems 

studied. 
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(6) The computer program, which is based on an implicit finite-

difference technique, is not prohibitively expensive in execution 

time or storage. 

(7). Closure of the material balance calculation indicates lack of 

significant roundoff or machine errors. 

Recommendations 

The proposed model appears to have merit in applicability to a wide 

variety of ion exchange systems with a minimum of experimental data 

required for evaluation. The following recommendations are presented. 

(1) For the systems studied in the present work, base values of 100 

spatial increments, 6t = 1.0 second, and a value of porosity 

somewhat less than the reported values· of 0.35 - 0.40 produced the 

best results. 

(2) Although the finite-difference algorithm is stable at all values of 

~t and ~z, reduction in 6t below 0.1 second and spatial increments 

below 50 resulted in overshoot and oscillation in the solution due 

to increased hyperbolic behavior of the C-D equation. 

(3) Porosity, E, is recommended as the best parameter for adjustment, 

since a change in e changes the breakthrough time as well as the 

sh~pe of the breakthrough curve. 
, 

(4) Parameters should be adjusted independently. Base values should be 

chosen for all parameters, with single parameter variations made 

holding other values constant. 
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C************************************************************** 
c 
C THIS PROGRAM APPROXIMATES THE SOLUTION TO THE 
C ONE-DIMENSIONAL, TRANSIENT CONVECTION-DISPERSION 
C EQUATION APPLIED TO AN EQUILIBRIUM ION EXCHANGE PROCESS. 
c 
C************************************************************** 
C *NOMENCLATURE 
c 
C A,B,C,D: Overall coefficients of finite difference 
C equation for use in recursive solution of tridiagonal 
C matrix. 
C AEMPTY: Total cross-sectional area of column. 
C AFNM1: Absolute value of FNM1. 
C AX,ALP: Accumulation coefficients in finite difference 
C equation. 
C BEDDIA: Resin bed diameter. 
C BET: Dispersive coefficient in finite-difference equation. 
C BETA,GAMMA: Factors in matrix solution routine. 
C CON: Array of ionic concentrations. 
C CPRIME: Inlet solution concentration. 
C CSMAX: Maximum attainable resin concentration. 
C CZERO: Initial resin concentration. 
C DEL: Convective coefficient in finite-difference equation. 
C DELTAM: Absolute value of difference between actual mass 
C input and numerically calculated input, at time T. 
C DELTAP: Pressure drop over entire column. 
C DELTAT: Temporal increment~ 
C DELTAV: Volume increment. 
C DELTAZ: Spatial increment. 
C DMBAR: Averaged value of material balance closure. 
C DMBARO: Material balance closure over entire simulation. 
C DP: Resin particle diameter. 
C DSUBZ: Hydrodynamic dispersion coefficient. 
C DZNUM: Numerical dispersion coefficient. 
C D1 ,D2,D3: Components of coefficient D. 
C FK: Equilibrium constant in isotherm equation. 
C FN: Exponent in isotherm equation. 
C IF,L: First and last increment subscripts in matrix solution. 
C ISO: Isotherm selection number. 
C KI: Input device number. 
C KO: Output device number. 
C KT,J: Time loop counters. 
C L,M,N: Increment numbers of Z1Q,Z1H,Z3Q respectively. 
C NEWDAT: Interactive data-change parameter. 
C NEWSEL: Interactive data-change parameter. 
C N2SEL: Interactive data-change parameter. 
C NEXT: End-of-simulation operation selection parameter. 
C NINC: Number of spatial increments. 
C NP1: Number of last spatial increment. 
C PIN: Inlet pressure. 
C POROS: Resin bed porosity. 
C POUT: Outlet pressure. 
C REP: Particle Reynolds number. 
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C RHOL: Solution density. 
C T: Time. 
C TEST: Interstitial flow regime determination factor. 
C TITLE: Optional simulation output title. 
C TMAX: Total simulation time. 
C TOUT: Desired time incremen.t for output. 
C V: Solution array from matrix solution routine. 
C VEL: Average interstitial solution velocity. 
C VISC: Solution viscosity. 
C VOLFLO: Solution volumetric flow rate. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

WS: Superficial velocity •• 
XINCL,XL: Height of resin bed. 
Z1Q,Z1H,Z3Q: One fourth, one half, 

of XL, respectively. 

**SUBROUTHJES 
*BEDPAR 

and three fourths 

Arguments: AEMPTY,BEDDIA,DELTAT,DELTAZ,DP,DSUBZ,IT,KI,KO, 
NEXT,NINC,POROS,RHOL,TOUT, VEL, VISC, VOLFLO 

*DATA 
Arguments: BEDDIA,CPRIME,CZERO,KI,KO,NEXT,NINC,PIN,POROS, 

RHOL,TMAX, VISC, VOLFLO,XL 
*DELP 

Ar gum en ts: BEDDIA,DELTAP,DP,KO,POROS,RHOL,TEST, VISC, VOLFLO, 
XINCL 

C *DETISO 
C Arguments: CSMAX,FK,FN,ISO,KI,KO 
C *TR ID AG 
C Arguments: A,B,BETA,C,D,GAMMA,IF,L,NP1 ,VC 
C***************************************************************** 
c 

IMPLICIT REAL*8(A-H, 0-Z) 
DIMENSION CON(501 ),A(501 ),B(501 ),C(501),D(501 ),AX(501), 

1 BETA(501),GAMMA(501),ALP(501),I0(12) 
K0=6 
KI=5 

c 
C INITIALIZE TIME AND TIME COUNTERS. 

60 T=O. 

c 

KT=O 
J=1 

C INPUT SYSTEM DATA. 

c 

CALL DATA( NI NC, DP,RHOL, VOLFLO,XL,BEDDIA,POROS, VISC, 
1 PIN, CZERO, CPRIME, TMAX, KO ,KI,NEXT ,NEW DAT, NEW SEL) 

C SPECIFY ISOTHERM TYPE. 

c 

IF(NEXT.EQ.3)WRITE(K0,8) 
IF(NEXT.EQ.3)READ(KI,1)NEWISO 
IF(NEXT.EQ.3.AND.NEWISO.EQ.O)GO TO 15 
CALL DETISO(KO,KI,FK,FN,CSMAX, ISO) 

15 CONTINUE 

C DEFINE SPATIAL INCREMENT, DELTAZ(FT). 
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DELTAZ=XL/FLOAT(NINC) 
c 
C COMPUTE INTERSTITIAL VELOCITY AND DISPERSION COEFFICIENT 
C IN SUBROUTINE BEDPAR. 

c 

CALL BEDPAR(DELTAT,AEMPTY ,DELTAZ,NINC,DP,RHOL,IT, VOLFLO, 
1 BEDDIA,POROS,VISC,VZ,DZ,KO,KI,NEXT) 

C CALCULATE VOLUME INCREMENT, DELTAV 
DELTAV=AEMPTY*POROS*DELTAZ 
NP1=NINC+1 

c 
C INITIALIZE CONCENTRATIONS AT ALL SPATIAL NODES. 

c 

c 

DO 10 I=1 ,NP1 
1 0 CON(I)=CZERO 

WRITE(K0,2)VZ,DZ 

C DETERMINE DELTAP FOR ENTIRE COLUMN IN SUBROUTINE DELP. 
CALL DELP(DP,RHOL, VOLFLO,BEDDIA,POROS, XL, VISC, TEST, DELTAP, KO) 

C CORRECT UNITS OF DELTAP. 

c 

DELTAP=DELTAP/144· 
WRITE(K0,3)DELTAP 

C CALCULATE OUTLET PRESSURE. 

c 

POUT=PIN-DELTAP 
WRITE(K0,4)POUT 

C CALCULATE FRACTIONAL COLUMN LENGTHS, Z1Q, Z1H, AND Z3Q. 

c 

Z1Q=.25*XL 
Z1H=. 5*XL 
Z3Q=.75*XL 
WRITE(K0,5)Z1Q,Z1H,Z3Q 
L=INT(Z1Q/DELTAZ) 
M=INT(Z1H/DELTAZ) 
N=INT(Z3Q/DELTAZ) 

C PRINT INITIAL BED CONCENTRATIONS AT TOP, 1/4-1/2-3/4 COLUMN 
C LENGTH,. AND BOTTOM OF COLUMN. 

WRITE(K0,6)T,CON(1),CON(L),CON(M),CON(N),CON(NP1) 
c 
C DEFINE DISPERSIVE AND CONVECTIVE TERMS, BET AND DEL, 
C RESPECTIVELY, IN DIFFERENCE EQUATIONS. 

c 

BET=DZ/2./DELTAZ/DELTAZ 
DEL=VZ/4./DELTAZ 

C CALCULATE ACCUMULATION TERM, AX, FOR USE IN DIFFERENCE EQUATIONS, 
C BASED ON ISOTHERM TYPE. 

70 DO 20 I=2,NP1 
IF(ISO.EQ.1)AX(I)=(1.+FK*(1.-POROS)/POROS) 
IF(ISO.EQ.2). 

1 AX(I)=( 1.+FK*CSMAX*(1.-POROS)/POROS)/(( 1. 
2 +FK*CON(I))**2) 

FNM1=FN-1. 
AFNM1=ABS(FNM1) 
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c 

IF(ISO.EQ.3.AND.FNM1.GE.O .• AND.CON(I).NE.O.) 
1 AX(I)=(1.+FN*FK*(CON(I)**FNM1 )*(1.-POROS)/POROS) 
IF(ISO.EQ.3.AND.FNM1.LT.O •• AND.CON(I).NE.O.) 

1 AX(I)=( 1.+(1.-POROS)*FN*FK*( 1 ./CON( I)** AFNM 1 ) /POROS) 
IF(ISO.EQ.3.AND.CON(I).EQ.O.) 

1 AX( I)= 1 • . 
20 CONTINUE 

C SET UP MATRICES OF FINITE-DIFFERENCE COEFFICIENTS FOR USE IN 
C SOLUTION OF THE TRIDIAGONAL MATRIX. 

c 

DO 30 I=2,NP1 
ALP(I)=AX(I)/DELTAT 
A(I)=-BET-DEL 
B(I)=ALP(I)+2.*BET 
C(I)=-BET+DEL 
D1=BET+DEL 
D2=ALP(I)-2.*BET 
D3=BET-DEL 

30 D(I)=D1 *CON(I-1 )+D2*CON(I)+D3*CON(I+1) 
D(2)=(BET+DEL)*CPRIME+D(2) 
B(NP1)=ALP(NP1)+BET+DEL 
D(NP1)=(D2+D3)*CON(NP1)+D1*CON(NINC) 

C CALCULATE NEW CONCENTRATIONS AT T=T+DELTAT; CONCENTRATION AT 
C TOP OF COLUMN IS CONSTANT(CPRIME) BY BOUNDARY CONDITION. 

CON(1)=CPRIME 
CALL TRIDAG(NP1 ,2,NP1 ,A,B,C,D,BETA,GAMMA,CON) 

c 
C CHECK MATERIAL BALANCE 

IF(T.EQ.O.)GO TO 80 
TMASS1=VOLFLO*CPRIME*T 
TMASS3=0. 

c 

DO 90 I=1 ,NP1 
TMASS2=CON(I)*DELTAV 

90 TMASS3=TMASS3+TMASS2 
DELTAM=ABS(TMASS1-TMASS2) 
DMBAR=DMBAR+DELTAM 

80 T=T+DELTAT 
IF((J/IT)*IT.NE.J)GO TO 40 

C PRINT UPDATED CONCENTRATIONS AT TOP, 1/4-1/2-3/4 COLUMN LENGTH, 
C AND BOTTOM OF COLUMN. 

WRITE(K0,6)T,CON(1),CON(L),CON(M),CON(N),CON(NP1) 
c 
C INCREMENT TIME COUNTERS AND TIME 

40 J=J+1 
KT=KT+1 
T=DELTAT*FLOAT(KT) 
DMBARO=DMBAR/FLOAT(KT) 
IF(T.EQ.TMAX)WRITE(K0,9)DMBARO 
IF(T.LT.TMAX) GO TO 70 
WRITE(K0,7) 
READ(KI,1)NEXT 

1 FORMAT(I5) 
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GO TO (50,60,60),NEXT 
2 FORMAT(1X,'AVERAGE INTERSTITIAL VELOCITY=',E15·5,1X,'FT/SEC' 

1 ,//, 1 X, 'DISPERSION COEFFICIENT(HYDRODYNAMIC - NUMERICAL)=' 
2 ,E15.5,1 X, 'FT2/SEC' ,/) 

3 FORMAT( 1 X, 'DELTAP=' ,E15.5, 1 X, 'PSI',/) 
4 FORMAT(1X,'OUTLET PRESSURE=',E15.5,1X, 1PSI',/) 
5 FORMAT(//, 1 X, 'CONCENTRATION AS FUNCTION OF TIME AND DISTANCE',//, 

1 2 x' IT I ME( SEC) I' 5X' 'TOP'' 6X' F7 .2' 1x'IFT''4X ,F7. 2' 1x'IFT''3X' F7 .2' 
2 1 X, 'FT', 6X, 'BOTTOM',/) 

6 FORMAT(3X,F7.2,5E13.5) 
7 FORMAT(1X,'SIMULATION COMPLETE--WHAT NEXT?',//,1X,'1-STOP', 

1 /,1X,'2-NEW PROBLEM',/,1X,'3-ALTER PARAMETERS OF PREVIOUS 
2 PROBLEM',//, 1 X, 'ENTER SELECTION NUMBER',/) 

8 FORMAT( 1 X, 'WOULD YOU LIKE TO CHANGE ISOTHERM DATA?' 
1 ,/,5X,'1-YES',5X,'O-NO',/) 

9 FORMAT(/,1X,'AVERAGE ERROR IN TOTAL MATERIAL BALANCE =',E15.5, 
1 1X,'LB/FT3',//) 

50 END 
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SUBROUTINE BEDPAR(DELTAT,AEMPTY,DELTAZ,NINC,DP,RHOL, 
1 IT,VOLFLO,BEDDIA,POROS,VISC,VEL,DSUBZ,KO,KI,NEXT) 

C***************************************** 
C SUBROUTINE TO CALCULATE BED PARAMETERS 
C***************************************** 

c 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION IO( 12) 
DATA IO I 1 00 ' 1000' 1 0000' 1 00000 ' 1 0 , 1 00 ' 1000 , 1 0000 , 1 , 10, 1 00 ' 1000 I 

C CALCULATE PARTICLE REYNOLDS NUMBER 
AEMPTY=3.1416*(BEDDIA**2)/4. 
VEL=VOLFLO/AEMPTY/POROS 
IF(NEXT.EQ.3)WRITE(K0,4) 
IF(NEXT.EQ.3)READ(KI,2)NEWTEM 
IF(NEXT.EQ.3.AND.NEWTEM.EQ.O)GO TO 6 
WRITE(K0,1) 

c 

READ(KI,2)IT 
IF(IT.EQ.1)DELTAT=.01 
IF(IT.EQ.2)DELTAT=.1 
IF(IT.EQ.3)DELTAT=1. 
WRITE(K0,3) 
READ(KI,2)IOUT 
IT=IO( IOUT) 

6 REP=DP*RHOL*VEL/VISC 

C CALCULATE DISPERSION COEFFICIENT BASED ON HARLEMAN(1963) 
C INCLUDE NUMERICAL DISPERSION COEFFICIENT 

c 

DSUBZ=.66*VISC*(REP**1.2)/RHOL 
DZNUM=.5*VEL*VEL*DELTAT/POROS 
DSUBZ=DSUBZ+DZNUM 

1 FORMAT(1X,'ENTER THIE INCREMENT, SEC',/,2X,'1-.01', 
1 4X, I 2-. 1 ' '4X, I 3-1 • 0' 'I) 

2 FORMAT(I4) 
3 FORMAT(1X,'HOW OFTEN WOULD YOU LIKE TO READ THE CONCENT 

1RATION PROFILE?',/,1X,'ENTER SELECTION NUMBER FROM BELOW' 
2 , I I, 2X' 'DELTAT=. 01 SEC' '5X, I DELTAT=. 1 . SEC I , 5X' I DELTAT= 
31 SEC I 'I, 3X, I 1 - ' , 3X, ' 1 SEC I '9X' I 5- I '3X, I 1 SEC I , 9X, I 9-' '3X 
4, '1 SEC' , /, 3x, '2-' , 2x, ' 1 o SEC' , gx, '6-' , 2x, ' 1 o sEc' , ax, ' 1 o-
5' , 2X, ' 10 SEC' , I, 3X' '3-' '1 x, ' 100 SEC' '9X, '7-' , 1 x' '1 00 SEC' ' 
6 8X,'11-',1X,'100 SEC',/,3X,'4-1000 SEC',gX,'8-1000 SEC' 
7 ,SX,'12-1000 SEC',/) 

4 FORMAT(1X,'WOULD YOU LIKE TO CHANGE TIME INCREMENT 
1 OR OUTPUT INTERVAL?',/,5X,'1-YES' ,5X,'O-NO',/) 

RETURN 
END 
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SUBROUTINE DATA (NINC,DP,RHOL,VOLFLO,XL,BEDDIA,POROS, 
1 VISC,PIN,CZERO,CPRIME,TMAX,KO,KI,NEXT,NEWDAT,NEWSEL) 

C*************************** 
C SUBROUTINE TO INPUT DATA 
C***************************· 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION TITLE(15) 
IF(NEXT.EQ.3)NEWDAT=1 
IF(NEXT.EQ.3)GO TO 55 

40 WRITE(K0,2) 
READ(KI,3)(TITLE(I),I=1,15) 
IF(NEWDAT.EQ.1)GO TO 53 
WRITE(K0,1) 

41 WRITE(K0,4) 
READ(KI,5)XL 
IF(NEWDAT.EQ.1)GO TO 53 

42 WRITE(K0,6) 
READ(KI,5)BEDDIA 
IF(NEWDAT.EQ.1)GO TO 53 

43 WRITE(K0,20) 
READ(KI,21)NINC 
IF(NEWDAT.EQ.1)GO TO 53 

44 WRITE(K0,7) 
READ(KI,5)VOLFLO 
IF(NEWDAT.EQ.1)GO TO 53 

45 WRITE(K0,8) 
READ(KI,5)RHOL 
IF(NEWDAT.EQ.1)GO TO 53 

46 WRITE(K0,9) 
READ(KI,5)VISC 
IF(NEWDAT.EQ.1)GO TO 53 

47 WRITE(K0,10) 
READ(KI,5)DP 
IF(NEWDAT.EQ.1)GO TO 53 

48 WRITE(K0,11) 
READ(KI,5)POROS 
IF(NEWDAT.EQ.1)GO TO 53 

49 WRITE(K0,12) 
.READ(KI,5)PIN 
IF(NEWDAT.EQ.1)GO TO 53 

50 WRITE(K0,13) 
READ(KI,5)CZERO 
IF(NEWDAT.EQ.1)GO TO 53 

51 WRITE(K0,14) 
READ(KI,5)CPRIME 
IF(NEWDAT.EQ.1)GO TO 53 

52 WRITE(K0,24) 
READ(KI,5)TMAX 
IF(NEWDAT.EQ.1)GO TO 53 

C PRINT SUMMARY OF INPUT DATA 
WRITE(K0,15)(TITLE(I),I=1 ,15),XL,BEDDIA,NINC,VOLFLO,RHOL, 

1VISC,DP,POROS,PIN,CZERO,CPRIME 
WRITE(K0,23) 
WRITE(K0,16) 
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c 

READ(KI,21)NEWDAT 
55 IF(NEWDAT.EQ.1)WRITE(K0,19) 

IF(NEWDAT.EQ.O)GO TO 22 
54 READ(KI,21)NEWSEL 

GO TO (40,41,42,43,44,45,46,47,48,49,50,51 ,52),NEWSEL 
53 WRITE(K0,17) 

READ(KI,21)N2SEL 
IF(N2SEL.EQ.1)WRITE(K0,18) 
IF(N2SEL.EQ.1)GO TO 54 
IF(NEWDAT. EQ.1.AND.N2SEL.EQ.O)WRITE(KO,15) , 

1 (TITLE(I),I=1 ,15),XL,BEDDIA,NINC,VOLFLO,RHOL,VISC, 
2 DP,POROS,PIN,CZERO,CPRIME 

GO TO 22 

C INTERACTIVE FORMATS 
1 FORMAT(1X,'------INPUT DATA------',//) 
2 FORMAT(1X,'ENTER TITLE, 60 CHARACTERS MAXIMUM',/) 
3 FORMAT(15A4) 
4 FORMAT(1X, 'ENTER COLUMN HEIGHT, FT',/) 
5 FORMAT(F15.0) 
6 FORMAT(1X,'ENTER COLUMN DIAMETER, FT',/) 
7 FORMAT(1X,'ENTER SOLUTION VOLUMETRIC FLOW RATE, FT3/SEC',/) 
8 FORMAT(1X,'ENTER SOLUTION DENSITY, LB/FT3',/) 
9 FORMAT(1X,'ENTER SOLUTION VISCOSITY, LB/FT/SEC',/) 

10 FORMAT(1X, 'ENTER RESIN PARTICLE DIAMETER, FT',/) 
11 FORMAT(1X, 'ENTER RESIN POROSITY',/) 
12 FORMAT(1X, 'ENTER INLET PRESSURE, PSI',/) 
13 FORMAT(1X,'ENTER INITIAL RESIN CONCENTRATION, LB/FT3',/) 
14 FORMAT(1X,'ENTER INLET SOLUTION CONCENTRATION, LB/FT3',/) 
15 FORMAT(1X,52('*')/,3X,'DATA SUMMARY FOR:', 

1 1X,15A4,/,4X,'COLUMN HEIGHT(FT):',31X,E10.4,1X,/, 
2 4x,•coLUMN DIAMETER(FT):',29x,E10.4,1x,/,4x,•NUMBER OF' 
3 'SPATIAL INCREMENTS:',22X,I4,/,4X,'SOLUTION VOLUMETRIC ' 
4 'FLOW RATE(FT3/SEC):',10X,E10.4,1X,/,4X, 
5 'SOLUTION DENSITY(LB/FT3):' 
6 ,24x,E10.4,1x,/,4x,'soLUTION VISCOSITY(LB/FT/SEC):',19X, 
7 E10.4,1x,/,4x,'RESIN PARTICLE DIAMETER(FT):', 
8 21x,E10.4,1x,/,4x,'RESIN POROSITY:' ,34x,E10.4,/,4x, 
9 'INLET PRESSURE(PSI):' ,29x,E10.4,1x,/,4x,•INITIAL BED' 
A 'CONCENTRATION(LB/FT3):',15X,E10.4,1X,/,4X,'INLET ', 
B 'SOLUTION CONCENTRATION(LB/FT3):' ,12X,E10.4,/ 
C , 1X, 52( '*' )/) 

16 FORMAT(1X,'WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES?'/ 
1 5X,'1-YES',5X,'O-NO',/) 

17 FORMAT(1X,'WOULD YOU LIKE TO CHANGE ANY OTHER VALUES?',/ 
1 5X, '1-YES' ,5X, '0-NO' ,/) 

18 FORMAT(1X,'ENTER NUMBER OF QUANTITY TO BE CHANGED',/) 
19 FORMAT(1X,'DATA CHANGE MENU',/1X,31('*') 

1,/,2X,'1-TITLE',/,2X,'2-COLUMN HEIGHT' ,/,2X,'3-COLUMN DIAMETER' 
2 ,/,2X,'4-NUMBER OF INCREMENTS' ,/,2X,'5-VOLUMETRIC FLOW', 
3 'RATE',/,2X,'6-SOLUTION DENSITY',/,2X,'7-SOLUTION VISCOSITY' 
4 ,/,2X,'8-RESIN PARTICLE DIAMETER' ,/,2X,'9-RESIN POROSITY',/, 
5 1X,'10-INLET PRESSURE',/,1X,'11-INITIAL RESIN CONCENTRATION' 
6 ,/,1X,'12-INLET SOLUTION CONCENTRATION',/,1X,'13-MAXIMUM ', 
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7 'SIMULATION TIME',/,1X,31('*') 
8 //,1X,'ENTER NUMBER OF QUANTITY TO BE CHANGED',/) 

20 FORMAT(1X,'ENTER NUMBER OF SPATIAL INCREMENTS,500 MAX',/) 
21 FORMAT(I4) 
23 FORMAT(1X,52('*')/) 
24 FORMAT(1X,'ENTER MAXIMUM SIMULATION TIME, SEC',/) 
22 RETURN 

END 
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SUBROUTINE DELP(DP,RHOL,VOLFLO,BEDDIA,POROS,XINCL,VISC,TEST, 
1 DELTAP,KO) 

C****************************************** 
C SUBROUTINE FOR- PRESSURE DROP CALCULATION 
C****************************************** 

IMPLICIT REAL*8(A-H,0-Z) 
c 
C CALCULATE SUPERFICIAL VELOCITY, WS(FT/SEC) 

AEMPTY=3.1416*(BEDDIA**2)/4. 
WS=VOLFLO/AEMPTY 

c 
c- DETERMINE FLOW REGIME 

TEST=DP*RHOL*WS/VISC/(1.-POROS) 
IF(TEST.GT.1000.)GO TO 5 
IF(TEST.GT.10 .• AND.TEST.LT.1000.)GO TO 6 

c 
C PRESSURE DROP FOR LAMINAR FLOW(BLAKE-KOZENY EQUATION) 

DELTAP=WS*XINCL*150.*VISC*((1.-POROS)**2)/(DP**2)/(POROS**3)/32.2 
WRITE(K0,1) 
GO TO 4 

c 
C PRESSURE DROP FOR TURBULENT FLOW(BURKE-PLUMMER EQUATION) 

c 

5 DELTAP=1.75*XINCL*RHOL*(WS**2)*(1.-POROS)/DP/(POROS**3)/32.2 
WRITE(K0,2) 
GO TO 4 

C PRESSURE DROP FOR TRANSITION FLOW(ERGUN EQUATION) 

c 

6 DELTAP=WS*XINCL*150.*VISC*((1.-POROS)**2)/(DP**2)/(POROS**3)/32.2 
1+1.75*XINCL*RHOL*(W**2)*(1.-POROS)/DP/(POROS**3)/32.2 
WRITE(K0,3) 

4 CONTINUE 

1 FORMAT(1X,'LAMINAR FLOW REGIME',//) 
2 FORMAT(1X,'TURBULENT FLOW REGIME',//) 
3 FORMAT(1X,'TRANSITION FLOW REGIME',//) 

RETURN 
END 
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SUBROUTINE DETISO(KO,KI,FK,FN,CSMAX,ISO) 
C************************************* 
C SUBROUTINE TO SPECIFY ISOTHERM TYPE 
C************************************* 

IMPLICIT REAL*8(A-H,O-Z) 
WRITE(K0,1) 
READ(KI,2)ISO 
IF(ISO.NE.1)GO TO 9 
WRITE(K0,3) 
READ(KI,5)FK 
FN=O. 
CSMAX=O. 
GO TO 11 

9 IF(ISO.NE.2)GO TO 10 
WRITE(K0,4) 
READ(KI,5)FK 
WRITE(K0,6) 
READ(KI,5)CSMAX 
FN=O. 
GO TO 11 

10 IF(ISO.EQ.3)WRITE(K0,7) 
READ(KI,5)FK 
WRITE(K0,8) 
READ(KI,5)FN 
CSMAX=O. 

11 . CONTINUE 
1 FORMAT( 1 x' I ENTER ISOTHERM TYPE I , I I' 1 x, I 1 -LINEAR I , 10X, I 2 

1-LANGMUIR',10X,'3-FREUNDLICH',//) 
2 FORMAT(I1) 
3 FORMAT(1X,'LINEAR ISOTHERM',//,1X,'ENTER EQUILIBRIUM CON 

1 STANT I , I I) 
4 FORMAT ( 1 x, I LANGMUIR ISOTHERM I , I I, 1 x, I ENTER EQUILIBRIUJ.'11 CONSTANT I 

1 , I/) 
5 FORMAT(F15.5) 
6 FORMAT(1X,'ENTER MAXIMUM RESIN CONCENTRATION',//) 
7 FORMAT( 1 X, I FREUNDLICH ISOTHERM'' 11, 1 X, I ENTER EQUILIBRIUM 

1 CONSTANT I 'I) 
8 FORMAT(1X,'ENTER EXPONENT FOR SOLUTION CONCENTRATION',/) 

RETURN 
END 
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SUBROUTINE TRIDAG(NP1,IF,L,A,B,C,D,BETA,GAMMA,V) 
C**************************************** 
C SUBROUTINE TO SOLVE TRIDIAGONAL SYSTEM 
C**************************************** 

IMPLICIT REAL*S(A-H,0-Z) 
DIMENSION A(NP1),B(NP1),C(NP1),D(NP1),V(NP1),BETA(NP1), 

1 GAMMA(NP1) 
BETA(IF)=B(IF) 
GAMMA(IF)=D(IF)/BETA(IF) 
IFP1=IF+1 
DO 1 I=IFP1,L 
BETA(I)=B(I)-A(I)*C(I-1)/BETA(I-1) 
GAMMA(I)=(D(I)~A(I)*GAMMA(I-1))/BETA(I) 
V(L)=GAMMA(L) 
LAST=L-IF 
DO 2 K=1,LAST 
I=L-K 

2 V(I)=GAMMA(I)-C(I)*V(I+1)/BETA(I) 
RETURN 
END 
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APPENDIX B 

SAMPLE INPUT DIALOG/OUTPUT FORMAT 
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ENTER TITLE, 60 CHARACTERS MAXIMUM 

SAMPLE INPUT DIALOG/OUTPUT FORMA~ 
------INPUT DATA------

ENTER COLUMN HEIGHT, FT 

2.297 
ENTER COLUMN DIAMETER, FT 

.0446 
ENTER NUMBER OF SPATIAL INCREMENTS,500 MAX 

100 
ENTER SOLUTION VOLUMETRIC FLOW RATE, FT3/SEC 

5.916E-06 
ENTER SOLUTION DENSITY, LB/FT3 

62.94 
ENTER SOLUTION VISCOSITY, LB/FT/SEC 

.0008 
ENTER RESIN PARTICLE DIAMETER, FT 

.00.17 
ENTER RESIN POROSITY 

.4 
ENTER INLET PRESSURE, PSI 

20 
ENTER INITIAL RESIN CONCENTRATION, LB/FT3 

0 
ENTER INLET SOLUTION CONCENTRATION, LB/FT3 

2.56 
ENTER MAXIMUM SIMULATION TIME, SEC 

100 
******************** •••• ll *************************** 

DATA SUMMARY FOR: SAMPLE INPUT DIALOG/OUTPUT FORMAT 
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COLUMN HEIGHT(FT}-: . Q.2297E+01 
COLUMN DIAMETER(FT): 0.4460E-01 
NUMBER OF SPATIAL INCREMENTS: 100 
SOLUTION VOLUMETRIC FLOW RATE(FT3/SEC): 0.5916E-05 
SOLUTION DENSITY(LB/FT3): 0.6294E+02 
SOLUTION VISCOSITY(LB/FT/SEC): 0.8000E-03 
RESIN PARTICLE DIAMETER(FT): 0.1700E-02 
RESIN POROSITY: Q.4000E+OO 
INLET PRESSURE(PSI): 0.2QOOE+02 
INITIAL BED CONCENTRATION(LB/FT3): O.OOOOE+OO 
INLET SOLUTION CONCENTRATION(LB/FT3): 0.2560E+01 

• 11111 •• lltl ••****• 111111 It******************************* 



WOULD YOU LIKE TO CHANGE ANY OF THESE VALUES? 
1-YES 0-NO 

1 
DATA CHANGE MENU 

**********************•••*•**** 
1-TITLE 
2-COLUMN HEIGHT 
3-COLUMN DIAMETER 
4-NUMBER OF INCREMENTS 
5-VOLUMETRIC FLOW RATE 
6-SOLUTION DENSITY 
1~soLUTION VISCOSITY 
8-RESIN PARTICLE DIAMETER 
9-RESIN POROSITY 

10-INLET PRESSURE 
11-INITIAL RESIN CONCENTRATION 
12-INLET SOLUTION CONCENTRATION 
13-MAXIMUM SIMULATION TIME 
••••*******••••••••••***••••••• 
ENTER NUMBER OF QUANTITY TO BE CHANGED 

1 
ENTER TITLE, 60 C.HARACTERS MAXIMUM 

SAME TEST- SAMPLE DIALOG/FORMAT 
WOULD YOU LIKE TO CHANGE ANY OTHER VALUES? 

1-YES 0-NO 

0 
·········•*******•···············•********••••••**** 

DATA SUMMARY FOR: SAME TEST- SAMPLE DIALOG/FORMAT 
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COLUMN HEIGHT(FT): Q.2297E+01 
COLUMN DIAMETER(FT): 0.4460E-01 
NUMBER OF SPATIAL INCREMENTS: 100 
SOLUTION VOLUMETRIC FLOW RATE(FT3/SEC): o.5916E-05 
SOLUTION DENSITY(LB/FT3): Q.6294E+02 
SOLUTION VISCOSITY(LB/FT/SEC): 0.8000E-03 
RESIN PARTICLE DIAMETER(FT): . 0.1700E-02 
RESIN POROSITY: 0.4000E+OO 
INLET PRESSURE(PSI): 0.2000E+02 
INITIAL BED CONCENTRATION(LB/FT3): O.OOOOE+OO 
INLET SOLUTION CONCENTRATION(LB/FT3): Q.2560E+01 

········•****•••••••*****************••••••********* 



ENTER ISOTHERM TYPE 

1-LINEAR 2-LANGMUIR 3-FREUNDLICH 

1 
LINEAR ISOTHERM 

ENTER EQUILIBRIUM CONSTANT 

.5a 
ENTER TIME INCREMENT, SEC 

1-.01 2-.1 3-1.0 

3 
HOW OFTEN WOULD YOU LIKE TO READ THE CONCENTRATION PROFILE? 
ENTER SELECTION NUMBER FROM BELOW 

DELTAT=.01 SEC 
1- 1 SEC 
2- 10 SEC 
3- 100 SEC 
4-1000 SEC 

10 

DELTAT=. 1 SEC 
5- 1 SEC 
6- 10 SEC 
7- 100 SEC 
8-1000 SEC 

DELTAT=1 SEC 
9- 1 SEC 

10- 10 SEC 
11- 100 SEC 
12-1000 SEC 
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AVERAGE INTERSTITIAL VELOCITY= 0.94669E-02 FT/SEC 

DISPERSION COEFFICIENT(HYDRODYNAMIC - NUMERICAL)= 0.12316E-03 FT2/SEC 

LAMINAR FLOW REGIME 

DELTAP= o.43a14E+OO PSI 

OUTLET PRESSUREs 0.19562E+02 PSI 

CONCENTRATION AS FUNCTION OF TIME AND DISTANCE 

TIME( SEC) TOP 0.57 FT 1.15 FT 1. 72 FT BOTTOM 

o.oo O.OOOOOE+OO O.OOOOOE+OO o.oooooE+oo o.oooooE+oo o.oooooE+oo 
10.00 0.25600E+01 0.11012E-13 0.18859E-35 O.OOOOOE+OO O.OOOOOE+OO 
20.00 0.25600E+01 0°97093E-09 0.14194E-27 o.oooooE+oo O.OOOOOE+OO 
30.00 0.25600E+01 0.91213E-06 0.56319E-22 o.oooooE+oo o.oooooE+oo 
40.00 0.25600E+01 0.81733E-04 0.95578E-18 0.15078E-35 O.OOOOOE+OO 
50.00 0.25600E+01 0.18132E-02 Q.19264E-14 o.99s11E-31 O.OOOOOE+OO 
60.00 0.25600E+01 0.16279E-01 0.84292E-12 0.10890E-26 O.OOOOOE+OO 
70.00 0.25600E+01 0.78479E-01 0.11811E-09 0.29239E-23 O.OOOOOE+OO 
so.oo 0.25600E+01 0.24250E+OO 0.68987E-08 0.25597E-20 0.28804E-36 
90.00 0.25600E+01 o.54os4E+oo 0.20234E-06 0.89962E-18 o.99s14E-33 

100.00 0.25600E+01 o.94719E+OO 0-34122E-05 0.14864E-15 0.13923E-29 

AVERAGE ERROR IN TOTAL MATERIAL BALANCE s 0.74968E-03 LB/FT3 

SIMULATION COMPLETE--WHAT NEXT? 

1-STOP 
2-NEW' PROBLEM 
3-ALTER PARAMETERS OF PREVIOUS PROBLEM 

ENTER SELECTION NUMBER 



APPENDIX C 

EXPERIMENTAL DATA FROM THE LITERATURE 
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Linear Isotherm System 

Vassiliou and Dranoff (1962) reported experiments on the exclusion 

of glycerol from aqueous solutions using a. small fixed-bed columns of a 

hydrogen form ion exchange resin. The reported data is summarized below 

in appropriate units for use in the computer program of Appendix A. 

Column Characteristics: L = 2.297 ft. 
De = 0.0446 ft. 

Solution Characteristics: V = 5.916e-06 f53/sec 
p = 62.94 lb/ft 

. c.µ = 0.0008 lb/~t/sec 
in = 2.56 lb/ft 

Resin Characteristics: DP = 0.0017 ft. 

Breakthrough Data: 

e: = 0.4 
Fk = 0.58 

t, sec 

257 
269 
292 
306 
333 
365 
393 
424 
483 
543 
603 
660 

Freundlich Isotherm System 

C/Co 

0.030 
0.045 
0.100 
0.160 
0.300 
0.470 
0.600 
0.701 
0.850 
0.930 
0.980 
1.000 

Erickson (1979) reported experiments performed on the 

ethylenediamine dihydrochloride and ammonium chloride system. The ion 

exchange equilibrium was described by a Freundlich isotherm for 



favorable and unfavorable exchange. The reported data are summarized 

below for use in the computer program of Appendix A. 

Favorable Exchange 

Column Characteristics: L = 1.732 ft. 
De = 0.1306 ft. 

Solution Characteristics: V = 0.812e-03 f~ 3 /sec 
p = 62.22 lb/ft 
µ = 0.0006 lb/f~/sec 

Cin = 1.985 lb/ft 

Resin Characteristics: DP = 0.0013 ft. 

Breakthrough Data: 

E: = 0.352 
Fk = 1.117 
Fn = 0.4447 

t, sec 

20.0 
30.0 
40.0 
50.0 
65.0 
75.0 
85.0 
95.0 
115.0 
135.0 
155.0 

Unfavorable Exchange 

Column Characteristics: L = 1.657 ft. 
De = 0.1306 ft. 

Solution Characteristics: V = 0.77e-03 ft~/sec 
p = 62.22 lb/ft 

µ = 0.0006 lb/f~/sec 
Cin = 1.979 kb/ft 

C/Co 

0.022 
0.169 
0.387 
0.510 
0.643 
0.705 
0.760 
0.800 
0.836 
0.'870 
0.892 
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Resin Characteristics: DP = 0.0012 ft. 

Breakthrough Data: 

E: = 0.352 
Fk = 1.0985 
Fn = 0.38414 

t, sec 

9.8 
10.1 
10.8 
11.8 
12.8 
13.8 
14.8 
15.8 
16.B 
17.8 
18.8 
19.8 
20.8 
21.8 
22.8 
42.8 
62.8 
82.8 

102.8 

C/Co 

0.001 
0.004 

. o. 020 
0.064 
0.150 
0.227 
0.296 
0.348 
0.395 
0.447 
0.456 
0.488 
0.503 
0.534 
0.543 
0.700 
0.780 
0.833 
0.858 
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APPENDIX D 

TRUNCATION ERROR ANALYSIS 
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Truncation Error Analysis 

.• 
The general one-dimensional convection-dispersion equation is given 

by 

{51) 

The explicit, centered-difference representation of Equation 51 is given 

by 

~t [C(z, t+l\t) - C(z,t)] 

Dz 
- ---=- [C(z+l\z,t) - 2 C(z,t) + C(z-£\z,t)] 

(l\z )2 

vz 
- 2£\z [C(z+l\z,t) - C{z-£\z,t)] 

{52) 

Truncation is inherent in the solution of Equation 52. This error is 

quantified by subtracting the exact equation (Equation 51) from the 

approximated equation (Equation 52). 

where 

Er = truncation error, 

SA = approximated equation, 

and 

SE = exact equation. 

(53) 
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Expressing the finite-difference terms as Taylor series expansions, 

and keeping terms up to second order in the increments, gives 

C(z,t+&t) - C(z,t) = &t ~ + (&t) 2 32c 
at 2 at2 ' 

(54) 

and 

C(z+&z,t) - C(z-&z,t) = 2&z ~ a z • (55) 

Substitution of Equations 54 and 55 into Equation 52 gives 

2 a2c 
SA = E [~ + ~ ~] - { D --,, - v ~} 

at '- at'" z az'" z az 
(56) 

2 
S ac { o U - v 3-f} 
E = E: IT - z 3 z2 z ~ • 

~c 

(57) 

Subtracting Equation 57 from Equation 56 gives the expression for Er, · 

(58) 

The error can be converted to a more revealing form by rewriting 
2. 2 

the a C/at term. 

Equation 51 is the first differentiated with respect to t: 

(59) 

Neglect third-order iterated partial derivatives to obtain 

(60) 
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Expressions for the second-order derivatives are obtained by 

differentiating Equation 51 with respect to z: 

(61) 

Again, third-order derivatives are neglected to give 

a2c 
E:--=-azat (62) 

From Equations 60 and 62, 

(63) 

and 

(64) 

Then 

(65) 

Substituting Equation 65 into Equation 58 yields 

(66) 

From Equation 53, 



· Therefore, from Equations 57 and 58, 

2 2 
S ac 0 a c + ~ ~t a c ~ v ~ • 
A = e at - z ~ " 2 ~ z az 

. \ 1::: I ~ ~~ ) 
,,-- ,{;; G' . 

Now, Equation 65 is inserted to give 

2 2 
S = e ~ - [D + Y.3_ ~ t] a C + V ~ • 
A at z e 2 ~ z az 

The solution of SA = 0 is the desired solution. Therefore, 

Equation 69 is rewritten 

{67) 

{68) 

{69) 

(70) 

The above truncation error analysis shows that the solution of the 

difference equation SA = 0 corresponds to Equation 70, not the original 

Equation 51. The difference is due to Er, which appears as an 

alteration of the dispersion coefficient. This alteration is given by 

0ztot = 0z - 0znum {71) 

where 
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