
A SOFTWARE DEVELOPMENT SUPPORT

SYSTEM FOR A MICROCOMPUTER

ENVIRONMENT

By

JOHN CHARLES WARREN
~

Bachelor of Music Education
University of Oklahoma

Norman, Oklahoma
1975

Bachelor of Science
University of Oklahoma

Norman, Oklahoma
1976

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullf illment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1983

A SOFTWARE DEVELOPMENT SUPPORT

SYSTEM FOR A MICROCOMPUTER

ENVIRONMENT

Thesis Approved:

Dean of the Graduate College

ii

1161139

PREFACE

This study examines some existing software development

support systems with the intent of adapting some of the

techniques found to a microcomputer software development

environment. The motivation for doing this study arose from

experiences gained as a part of a microcomputer software

development project.

During the course of this project, a number of very

annoying events plagued us. Parallel updates and

modifications to out-of-date copies of source code

necessitated the redoing of work previously thought to be

finished. In addition, these events caused much confusion.

Another difficulty which was encountered was that on

occasion, changes were made which were not propagated into

the executable system. As the project grew more complex,

the process of linking the system also grew to be a

burdensome chore. Procedures were established to deal with

these problems as they arose; however, these procedures

depended on fallible humans, and mistakes still occurred far

too often.

This paper looks at what has been done in regard to

these problems and presents an adaptation of some of the

previous work to the type of environment in which these

experiences took place. The result is intended as a

iii

specification for a system to deal with a number of the

above-mentioned difficulties automatically. I hope that

this work will serve as a guideline for anyone interested in

producing such a microcomputer software development support

system.

I would like to express my gratitude to my major

adviser, Dr. Sharilyn A. Thoreson, for her valuable

guidance and advice throughout my thesis research. I also

acknowledge my other committee members, Dr. George E.

Hedrick and Dr. Michael J. Folk, for their many helpful

suggestions. My appreciation also goes to my supervisor on

the above-mentioned project, Mr. Arlen Long, for numerous

ideas, encouragement, and a healthy dose of good humor.

I would like to thank the Department of Computing and

Information Sciences for financial support during my

graduate studies. I also gratefully acknowledge financial

support received from the AMOCO Foundation. In addition, I

am extremely indebted to my wife's parents and grandparents,

Mr. and Mrs. Bill South, Mr. and Mrs. Joe Robinson and Mrs.

Ruby South, for their generous support during this time.

The friendship of fellow students has meant a great

deal to me, especially that of Mr. Jack Lucas. The faithful

support given by my parents, Mr. and Mrs. James D. Warren,

has been a constant source of encouragement to me. Finally,

I would like to express my appreciation to my wife for her

love, patience, understanding, and most of all, just for

being there.

iv

Chapter

I.

I I.

I I I.

IV.

v.

TABLE OF CONTENTS

Page

INTRODUCTION • • 1

Motivation •.•••.•.....•.• 1
Problems in Software Production • • • • . 3
Survey of the Literature • . . • • . • • 7
Capabilities of Existing Tools • • • 17

SYSTEM OVERVIEW
Approach to the Development Task
Additional Environment Assumptions
Functional Description ...•..

SOURCE FILE ACCESS CONTROL SUBSYSTEM • .

Use of Check-out Keys
Provisional Check-in
Location of Source Files

.
New Files • • • . •
Interaction with

Error Report Subsystem • • • • • • • •
Change History and Summary Reports
Data Summary • • • • . • • • ••

RECOMPILATION AND RELINKING SUBSYSTEM

Compilation and Linking .
Recompilation ••..•.•
Drive Usage •••..•
The Linking Process • • •
Data Summary ..••.

.
.

ERROR REPORTING AND TRACKING SUBSYSTEM .

Identifying Error

23

23
26
31

44

44
50
51
51

52
53
54

56

57
59
61
63
74

77

Report Responsibility • • • 77
Status Transitions • • • . • 80
History of Error Reports • • 84
Summary Reports . • • • . • • • • . • • • 85
Additional Aspects of the System . • • • 86
Data Summary . . . • . • . • . • • • 90

v

Chapter

v. SUMMARY, CONCLUSIONS,
AND SUGGESTIONS FOR FUTURE WORK

Summary and Conclusions . . .
Suggestions for Future Work

SELECTED BIBLIOGRAPHY .

APPENDIX

vi

Page

93

93
95

99

• 103

LIST OF TABLES

Table

I. Summary of Automated Tools

II. Entity Sets in the System Database

III. Relationships in the System Database

vii

Page

18

107

108

LIST OF FIGURES

Figure

1. Operating Environment

2.

3.

4.

5.

6~

7.

8.

9.

10.

11.

12.

13.

14.

15.

Source File Access Control Functions .

Recompilation and Relinking Functions

Error Reporting and Tracking Functions

Other System Functions . .

Source File Access Control Data

A Simple Overlay Scheme . • • •

Use of -Multiple Overlay Areas

A More Complex Overlay Scheme

Potential Overlay Problem

Recompilation and Relinking Data

Error Report Status Transitions

Error Reporting Subsystem Data

Other Data Used by the System

Entity-Relationship Diagram

viii

Page

28

37

37

43

43

55

66

66

67

72

76

81

92

92

106

CHAPTER I

INTRODUCTION

Motivation

The need for programming has existed since the

inception of the electronic computer. In the years since

the introduction of the first computer, there has been

significant progress both in making the programming task

easier and in increasing the productivity of programmers.

The initial laborious production of machine language in

absolute form soon gave way to the use of assemblers, macro

assemblers and linkers to produce executable machine code.

Operating systems assumed the burdens of input and output

operations (along with many other tasks). High level

languages have allowed yet another step away from the

intricate details of machine-level coding. Punched cards

and batch programming systems are being replaced by online

text editing and interactive programming systems. Tools

such as full screen editors, debugging compilers, and

interactive debugging systems all aid in furthering the

timely development of a functionally correct program.

However, despite this progress, the production of a

software product is often more costly and time-consuming

1

2

than it might be. Early awareness of the difficulties of

producing a large-scale software system came from both

governmment and commercial operations. One notable learning

experience was the production of IBM's OS/360 operating

system. Brooks [5] reports both the problems encountered

and some of the lessons learned.

Many have contrasted the remarkable decline in hardware

costs with the lack of such a decline in software costs.

Regarding hardware and software embedded in weapons systems,

Stuebing [31] says:

There is an optimism concerning hardware system
costs because technological breakthroughs are
continually reducing the component costs.
However, the recurring software problems of late
deliveries, poor quality, and especially
increasing life-cycle costs have created a
somewhat pessimistic attitude regarding software
(p. 408).

The term "software crisis" has been used in connection

with the current state of affairs in the software industry.

Gillett and Pollack [14] have this to say about the

situation:

The present level of concern about the software
crisis does not mean that there was a better time,
a 'golden age' for programming, programmers, and
programs. We have always had problems with
software, but most of these eventually were
removed or reduced to minor irritants. . . . Now
the situation has changed dramatically. The
tremendous increase in the amount of 'computing
power' that can be bought for a given amount of
money has not been paralleled by anything even
remotely similar in the way of software
productivity. In many instances the software
trend is going in the opposite direction.
Consequently, the fraction of a system's cost
attributable to software has been rising steadily.
For example, the U.S. Department of D~fense
figured that its software costs in the early 1960s

were about 20 percent of its total computer system
costs. In the 1980s the fraction is expected to
exceed 90 percent. Findings in a variety of
industries and businesses indicate that this is
not peculiar to the Defense Department (p. 3).

3

Because of these factors, much attention is currently

directed at means by which more useful software can be

provided with the available resources. Of course a part of

the means to this end is to enhance the productivity of

programmers. The need for a means of producing reliable

software at a reasonable cost cuts across all dividing lines

in the computer industry. This topic is relevant for

mainframe systems, minicomputers and micros; for real time

systems as well as data processing systems; and for systems

programming as well as applications programming.

Because of the broad scope of this issue, no single

solution will work in every situation. Work which has been

done until now has for the most part been directed at

development activities which take place on the larger

systems. However, the power and increasing usage of

relatively low-cost microcomputers is bringing about a

corresponding need for suitable software for such machines.

This paper is oriented towards support for the development

of software for microcomputer systems.

Problems in Software Production

When the computer solution to a particular problem is

small enough to be written by an individual, there is little

difficulty in understanding the total program product being

4

produced. There are no surprises for the programmer when

certain aspects of the system are forced to evolve--he knows

the program well enough that ramifications of changes are

apparent and can be considered before modifications are

made. Even in the initial phases of development (the

requirements and design phases) the fact that this is a

small, one-man project comes into play. It may be that the

program is being written for the programmer's personal use,

in which case there is no need for the user-designer

interaction necessary for requirements specification. There

is no need for communication between designers and

implementors concerning modular functions, interfaces, and

operation of the system. The programmer himself determines

these things.

However, a medium to large size project is another

matter. The project may involve a few people or it may

involve a few hundred, but while the potential problems

differ in magnitude, the nature of those problems remains

essentially the same. Of course, some of the problems may

be technical problems concerned with the actual process of

defining the operation of the system and implementing it.

These types of problems are as relevant for the one-man

project as they are for the team project. But other

problems arise from the dynamics of the group situation.

These problems may be either communications difficulties or

management difficulties.

5

Communication must take place in a number of different

ways. The requirements must be clearly communicated by the

user to the system designer. If there is a breakdown here,

the programming team may find that they have done a superb

job in solving the wrong problem. The designer (or design

team) must in turn communicate with the programmers who will

actually implement the system. To the degree that their

work interrelates, the programmers must communicate among

themselves during the actual implementation process. A

potential problem if this intercommunication does not occur

is that one programmer may make an intentional modification

to code which has unintended side effects. The side effects

may arise because of conflicting use of common data or

because of some other miscommunication between programmers.

When errors in the evolving system are discovered, the

testers must communicate with the programmers. Probably

most important is the communication of the development team

with those who will use and maintain the system by means of

documentation.

Management tasks are many and varied. Just a few of

the areas in which problems may arise are mentioned here.

One area is that of coordinating programmers' activities,

i.e., ensuring that all necessary tasks are covered with a

minumum of overlap. A second is the management of the code

itself. One particular need in this regard is to avoid the

poss ibi 1 i ty of "parallel" updates to source code. A

parallel update occurs when two programmers modify distinct

6

copies of the same module at the same time, resulting in two

parallel versions. The two versions cannot both be

incorporated into the developing system. Another part of

the management of code is version control and configuration

management. A third area in which potential problems may

arise is the management of error reports. When a deficiency

is discovered in the developing system, there must be some

means of guaranteeing that the deficiency is corrected. A

fourth area is management of the integration task. When

modifications are made to source code, action must be taken

to incorporate these changes into the executable system. If

this does not take place, the source and the executable code

becomes inconsistent. Such inconsistency can cause a great

deal of confusion.

An interesting aspect of computers is that they

themselves function under the control of automated tools to

make their own use easier for humans. This has been

described as a "bootstrapping" operation [18]. Assemblers,

compilers, text editors, operating systems, and interactive

debugging systems are all examples of such automated tools.

Similarly, many of the problems mentioned above can be

solved or at least alleviated by appropriate automated

tools. Recently the focus has been shifted away from the

use of individual software tools

programming support environments.

to the use of integrated

An integrated environment

to the task of' software

to support the entire

takes a more comprehensive approach

development and provides facilities

7

software life-cycle. In the survey that follows, both

collections of tools and true integrated programming

environments are examined.

Survey of the Literature

A number of different approaches to improved

programming environments are found in the literature. The

presentation of the systems is based on the type of help

that is provided.

Support for Specification and Design

The Information System Design and Optimization System

(ISDOS) described by Teichroew and Hershey [32] consists of

two parts. The first is the Problem Statement Language

(PSL). The second is the Problem Statement Analyzer (PSA).

PSL/PSA is an automated system which supports the

requirements specification phase of software development.

It is specifically targeted for information processing

systems. A proposed system is described with the problem

statement language. The problem statement analyzer records

this description in a database and on demand can perform

analysis

recorded

proposed,

and produce various reports. The information

contains not only data about the system being

but also project management descriptions as well.

Reports include a record of changes that have been made to

the specifications, properties of particular "objects" of

the system, system hierarchy, as well as others. PSL/PSA

8

currently operates on a variety of larger computers, such as

the IBM 370, UNIVAC 1100, and CDC 6000/7000 systems.

PSL/PSA has been incorporated into more comprehensive

systems such as the Design Analysis System [37].

Another system which has been developed specifically to

aid in the requirements specification task is called the

Requirements Engineering and Validation System or REVS [2].

It, too, includes a specification language called the

Requirements Statement Language (RSL). The two other major

components of the system are a centralized database (which

stores the requirements in relational form) and a set of

automated tools for processing information in the database.

One tool is a graphics package which allows display and

editing of flow path information. This editor provides an

alternative to the use of RSL for specification. There are

several different static consistency checkers which analyze

structure, data flow, and check for proper hierarchy in the

specification. In addition, a simulator generator provides

the means for dynamic checking of requirements. A final

tool is a generalized reporting system which provides for

both user-defined special reports and ad-hoc inquiries of

the database. REVS is implemented on a Texas Instruments

ASC computer.

A somewhat different approach is reported by Lemaitre,

Lemoine, and Zanon [23]. The aim of the SPRAC system is "to

extend the assistance given by software work bench, such as

UNIX-PWB, to the initial phases of program design (p. 333}."

9

The system is restricted to the design of tranlators,

compilers, and interpreters. The underlying idea of SPRAC

is to give the designer "active assistance" in the design

process. This is possible because of a well-developed

knowledge base in the field of compiler design.

Support for Program Implementation

Several systems exist which provide support for the

implementation process beyond that normally available via

stand-alone editors and compilers. The Programmer's

Apprentice (PA) is one such system [36]. A unique type of

program representation called a plan provides the basis for

the programmer's apprentice. A plan is a graphical

representation of a program which shows both control flow

and data flow by explicit arcs. There are five parts to the

system: an analyzer, a coder, a drawer, a library of plans,

and a plan editor. The analyzer operates on an existing

FORTRAN, COBOL or LISP program and produces the

corresponding plan. The coder generates a LISP program from

a plan. The drawer produces a graphic representation of a

plan. The library of plans contains common algorithmic

fragments which can be combined and modified to produce a

new program. Finally, the plan editor allow a program to be

modified by modifying its plan. The greatest advantage of

the system is reportedly the ability to quickly build up a

program from the algorithmic fragments in the library, edit

these, and produce the desired new program.

10

Another approach is taken by the IDEAL system [28].

IDEAL stands for Interactive Development Environment for an

Application's Life-cycle. The design and development

facility uses both a high-level design language (Procedure

Definition Language) and special purpose fill-in-the-blank

forms for data definition, report specification and screen

format definition. The support environment includes special

purpose editors for the procedure definition language as

well as for the various forms used by the system. An

integrated database sublanguage provides convenient

manipulation capabilities for data objects. A centralized

data dictionary is also maintained. This system is intended

for the production of data processing business applications.

The Interlisp programming environment is described by

Teitelman and Masinter (34]. This system integrates a

version of LISP with several very interesting tools. A file

package underlies the other portions of the system, keeping

track of the location of data within files and noting

references and changes to that data. Masterscope performs

analysis and cross-referencing of programs and allows

interactive querying of the derived information. DWIM (Do

What I Mean) attempts to ensure that the system operates

reasonably (based on context) when unrecognized input is

given it. One facet of DWIM is the spelling corrector. The

Programmer's Assistant records a history of the user's

interaction with the system and allows the user to REDO,

FIX, and UNDO previously performed commands. The user is

11

able with these facilities to edit, test and debug a

developing system interactively.

Another integrated edit/test/debug environment is the

Cornell Program Synthesizer [33]. The Synthesizer contains

a "smart" editor for a version of PL/I called PL/CS. The

editor enforces a top-down approach to

with its syntax-based approach to

program development

editing. Templates

corresponding

placeholders

to language constructs are manipulated

within the templates are filled in as

and

the

program takes shape. Semantic checking for problems such as

missing declarations is performed duiing the editing

process. Debugging is supported by the use of a visual

display as the program is executing, by allowing the user to

step through the program execution, and by providing for

"reverse execution" (a history of execution makes this

possible).

Support for Management

MONSTR (for MONitors Software Trouble Reports) is an

error reporting system described by Knobe [20]. Emphasis is

placed on the communication flow of error reports within the

organization. This flow is controlled by a protocol. The

access to the information contained in the reports is also

strictly controlled based on the same protocol. The system

keeps track of the status of the trouble reports as well.

When put in place at the National Software Works, the system

reportedly greatly enhanced the ability of managers to

12

monitor what the programmers were doing. In addition, many

programmers indicated that their work environment improved

as a result (most had previously been inundated with trouble

reports which were redundant, inconsequential, or simply not

their responsibility).

A more comprehensive approach to management of the

production of software is found in the SAGA system [6].

SAGA uses a management grammar to specify acceptable

sequences of programmer action. A similar grammar is used

to define a development sequence. An automated system

ensures that programmers stay within the quidelines

specified by the grammars. The authors suggest this system

as a vehicle for experimentation with different management

policies.

Integrated Management and Development Support

A number of systems attempt to integrate the total

development process, and join the facilities for an improved

programming environment with those for manage~ent of the

project.

A system known as CADES (Computer Aided Development and

Evaluation Systems) is one of the earliest attempts at a

comprehensive programming environment [26]. CADES was

initially developed between 1970 and 1972 by International

Computers, Ltd. The approach is based on a methodology

called ~structural modeling". Emphasis is placed on strict

control of the connectivity of a system. A design language

13

called SDL (System Descriptive Language) is used in a top

down approach to define the software being developed.

Consistency checks are made on successive refinements, and

when a suitably detailed level of design is reached, high

level language code is automatically generated. The system

is organized around a central product database. A more

recent version of the system includes tools for

configuration management. This latter version runs on ICL's

2900 computers.

The Software Factory is an integrated system developed

by the System Development Corporation [4]. There are four

facets of the system. The Factory Access and Control

Executive (FACE) provides the user with a consistent control

interface. The Integrated Management, Project Analysis, and

Control Technique (IMPACT) provides project planning and

monitoring aids. The third facet is the project development

database which is divided into a software development

database and a project control database. The latter

contains both system and program descriptions as well as

management data. The final facet is a set of tools to aid

design and development of a system. These tools are:

AUTODOC, a so-called "automatic" documentation facility~

Program Analysis and Test Host (PATH), which instruments

code for program flow analysis; Test Case Generator (TCG);

and TOPS, a top-down system developer which provides a

design verification facility. The Software Factory has been

implemented on an IBM 370 computer system.

14

The programmer's workbench (PWB) grew from the desire

to use the UNIX operating system for program development at

Bell Laboratories [3, 12, 21, 29]. Rather than being

developed around a specific language or particular

methodology, the programmer's workbench is a collection of

useful tools for programmers. Besides UNIX itself,

facilities include a Remote Job Entry (RJE) system, the

Source Code Control System (SCCS), the Modification Request

Control System (MRCS), document preparation facilities, and

test drivers for program testing and validation. The RJE

facility handles job submission to remote computer systems.

The Source Code Control System manages source code and

maintains a history of changes to that source. Any version

of a source file, from the initial version to the most

recent, can be recovered by SCCS. The Modification Request

Control System provides an online error reporting and

tracking mechanism. Another tool available on the UNIX

system which is of interest is called MAKE [13]. Although

not described as a part of the programmer's workbench in the

referenced articles, it interacts with PWB tools and forms a

significant addition to the programming environment. MAKE

allows the user to specify the sequence of commands needed

to rebuild a system after particular changes. MAKE can then

determine the correct sequence of actions needed to produce

the updated executable form of a system. It will also allow

the user to specify which versions of the source modules to

use. This in conjunction with SCCS pr~vide powerful

Gonfiguration management capabilities.

15

Several systems have been reported in the literature

which are either based on the programmer's workbench or are

extensions to it. One of these is SMS--the Software

Manufacturing System [8]. The primary extension used in SMS

is that each source file has a label consisting of name and

version number embedded in it. Labels are propagated by the

compilers and linkers so that derived files contain the

combined labels of all files used in the derivation process.

This allows better configuration control and consistency

checking. A second system which includes tools that are

based on the workbench is called the Communications Software

Development Package [24]. This is a JOVIAL support

environment which includes tools

documentation production, file

for text manipulation,

management, software

implementation, version control, and file revision

statistics gathering. A third reported derivation adds a

management database along with extensions to SCCS, and

provides a standard interface to other tools. This is the

Change Control System (CCS) reported by Bauer and

Birchall [l]. The three primary extensions to SCCS are

(1) to allow multiple views of the system change level;

(2) to provide for the management of object code; and (3) to

add a finite state change model to control the progress of a

change through the system.

A system geared to the development

software is described by Stuebing [31].

Automated Software Production (FASP)

of weapon system

The Facility for

is built around a

16

project database which contains source, object, test cases,

interface information, modification histories, and

management information. The support software includes a

source program librarian, system generators (these generate

load tapes for the target computers), software emulators, an

automated test analyzer, and software management tools.

This last category include tools to produce various

management reports such as summaries of cost data, use of

host computer resources, and details of FASP operations.

The Gandalf system is described by Haberman [16]. The

Gandalf system is a "generic" one which can

produce specialized Gandalf environments.

be used to

A Gandalf

environment is tailored to a specific development language.

It has tools for (1) incremental program construction;

(2) system version control; and (3) project management. The

incremental program construction subsystem consists of a

language-oriented editor (LOE) and an "incremental"

relinker/reloader. The editor, rather than producing a

textual representation of a program, produces a syntax tree.

This means that there is no need for parsing and the syntax

tree can be processed to generate code. The incremental

relinker/reloader allows a module to be recompiled and

relinked when a breakpoint occurs during program execution.

The version control subsystem maintains version and revision

number information, records the construction process and

automates the task of generating system versions. The

project management subsystem tracks development status and

controls changes to modules.

17

A summary of the various types of tools forming the

systems reported on is found in Table I. The tools have

been grouped into six different categories: specification

and design aids, graphical aids, language-specific aids,

testing aids, management aids, and other tools.

While all of these tools are very useful, a completely

integrated environment containing all or even a large

portion of these tools is beyond the scope of this paper.

The focus must be narrowed substantially. We choose to

examine the area of software management tools, particularly

those applicable to implementation and use in a

microcomputer environment. There are at least two reasons

for this choice. Some relatively sophisticated traditional

program development tools already exist for the more common

microcomputers (tools such as high-level language compilers,

text editors, and interactive debugging systems). Rather

than these tools being replaced, they can be augmented by

the addition of management tools. Furthermore, in the

author's experience, some of the more frustrating problems

in a development project arise because of the lack of such

management tools.

Capabilities of Existing Tools

The facilities of the existing software management

tools are examined in more detail, focusing particularly on

those which are applicable to a microcomputer development

environment. From these are drawn the ones which are to be

included in a development support system.

TABLE I

SUMMARY OF AUTOMATED TOOLS

Tools Examples

Specification/design aids

Requirements language
Static requirements checking
Dynamic requirements checking
Knowledge-based design aid

PSL, RSL
PSA, REVS
REVS
SPRAC

Graphical aids

Graphical representation
Coding in graphical form

REVS, PA
PA

Language-specific aids

Smart editors
Program generation

Cornell PS, Gandalf
PA, CADES

Testing aids

Interactive debugging
Test drivers/generators
Program flow instrumentation

Interlisp, Cornell PS
Software Factory, PWB
Software Factory, FASP

Management tools

Source code management
Error report tracking
Automated system generators
Management policy automation

Other

Documentation aids

SCCS, Gandalf
MRCS, MONSTR
MAKE, FASP, Gandalf
SAGA

Software Factory, PWB

18

19

Source Code Management

The Source Code Control System has three main

functions. Source code is stored and managed by SCCS, and

all changes to the source code are monitored by the system.

This provides the means to eliminate parallel updates. In

addition, all versions of each source file are implicitly

stored and can be reconstructed by the application of the

proper sequence of deltas or changes. Similar functions are

found in the source management capabilities of Gandalf.

Storage space is substantially more limited on a

microcomputer system than it is on a larger system. While

the capability to maintain all versions of a module is

undoubtably nice, most of those multiple versions are not

useful at all. Perhaps only two or three actually form part

of any production configuration. Consequently, this is one

capability which is not included in the development support

system. However, management of source code and monitoring

of changes is provided.

Error Report Tracking

The Modification Request Control System provides the

ability to maintain error report information as an online

data processing task. In addition, it provides a means of

tracking progress in correcting the problems. A third

aspect of the system gives the ability to classify the error

20

reports as to severity and type of action to be taken. The

system also allows for the simple, straightforward

generation of various summary reports. An additional

function is found in the MONS TR system. MONSTR provides

precise control of the communication flow of error reports.

The size of a software development group developing a

product for a microcomputer will probably be relatively

small. While communication is essential no matter what the

size of the group, automated control seems superfluous in a

group of only a few people. This is why we choose to

include no facility such as that provided by MONSTR. The

other types of error report tracking capabilities are

included.

Automated System Generators

The MAKE system provides several functions.

Information previously recorded is used to allow the system

to issue the commands needed to rebuild the executable

product when requested to do so. A macro substitution

facility is provided to allow additional flexibility. In

conjunction with SCCS, MAKE allows the generation of

multiple versions of the system being developed. This

combination of SCCS and MAKE provide configuration

management facilities. Similar features are found in the

Gandalf version control subsystem.

There are two primary benefits expected from the

automatic system generation facility. One is simply to

21

relieve the programmers of the burdensome task of relinking

the system following modifications. The other is to ensure

consistency between source and executable code. These

benefits both follow from the ability to automatically issue

commands needed to rebuild the product, which we include in

our system.

The provision for producing

versions cannot be included because

provision in source management.

facility is not included, either.

Management Policy Automation

multiple

of the

The macro

executable

lack of such

substitution

The SAGA system uses a formal management specification

along with an automated enforcement mechanism to ensure that

only "valid sequences" of activities can occur. The formal

specification of management policies and procedures is an

excellent idea. However, in the opinion of the author, the

rigid enforcement of a set of management procedures

indicates a dictatorial and somewhat untrusting approach

towards team members. Such a scheme does not form a part of

this system.

The balance of this paper presents a detailed

description of a system which contains the capabilities

indicated above. This is the Software Management System.

Chapter two contains an overview of the system, along with a

statement of the underlying assumptions made. Chapters

.three, four, and five each contain details concerning one of

22

the three major components of the system. A final chapter

summarizes the discussion and presents suggestions for

future work.

CHAPTER II

SYSTEM OVERVIEW

Approach to the Development Task

As mentioned previously, the Software Management System

presented in. this paper is intended to support the

development of

are (at least)

task and thus

software for microcomputer systems. There

two possible approaches to the development

two approaches to providing software

management tools for the development team.

The first approach is to perform the bulk of the

development work on a larger timesharing computer system and

download the end result to the target machine. Assuming

that an appropriate choice is made for the larger system,

existing software management tools could be used. If, for

instance, the development team works on a minicomputer with

the UNIX operating system and the Programmer's Workbench

tools, they would then be able to use the Source Code

Control System to manage the source code, and to use the

Modification Request Control System to monitor change

requests. However, were the team to download the source

code to the microcomputer and compile and link on the

smaller machine, an important ability would be lost. They

23

could no longer insure consistency

executable image by automatically

24

between source files and

propagating changes. To

overcome this shortcoming, the team would need to produce or

otherwise obtain a special purpose cross-compiler and linker

which would execute on the larger system but produce code

for the microcomputer. Then this executable image could be

moved to the smaller machine for testing. MAKE would

provide the facilities to automate the system rebuilding and

integration tasks.

The second approach is to do the development work at

independent microcomputer workstations. These workstations

would either be identical to or compatible with the target

microcomputer system. In this case, software management

tools must be produced which will execute on these machines.

This second approach has several advantages. Access to

the larger system could be provided either by purchasing the

system or by buying time on a commercial timesharing system.

In using the workstation approach there is no need for the

relatively large capital investment required to purchase

such a system, and no extra costs associated with its

operation. The alternative of purchase of time on a remote

computer implies that proprietary information (i.e. the

source code of the program product) would have to be stored

at the remote site with no direct control over it. This

increased security risk is eliminated by using local

microcomputer systems. The needs for specialized cross

compilers and linkers and for communications links between'

25

the development system and the target system are also

eliminated by this choice.

In addition, Gutz et al. [15] mention several other

advantages of a local workstation as compared to a

timesharing system. Among these advantages are 1) improved

reliability, 2) improved performance, and 3) private

storage. Reliability is improved because the multiple

microcomputers provide redundant capability so that

productive work can proceed even if one machine is

inoperable. With a centralized approach to development,

failure of the primary system would essentally bring work to

a halt. Performance is improved, or at least made more

predictable, because response time ·is not dependent on the

amount of other work being performed simultaneously. The

private storage enhances security and makes the use of

experimental versions of programs more feasible.

The main disadvantage of the workstation approach

arises because the microcomputers are single-user systems.

This means that shared data cannot be accessed by more tpan

one team member at a time, and that time may be lost because

of waiting. This does not seem to be a serious drawback as

long as the team remains relatively small. Because the

advantages seem to outweigh the disadvantages,

workstation environment is the basis of

Management System.

the multiple

the Software

26

Additional Environment Assumptions

The author's experiences that have motivated this study

took place in the context of a small programming team,

developing a fairly complex application system for the

microcomputer market. Much of what is said is based on that

team environment and on the characteristics of the small,

single-user systems which were used in that project. While

the system is intended for a similar environment, projects

with differing characteristics could also benefit from its

use. A single-programmer project could profit from the

automation of tasks which is provided. A project developed

in a multi-user environment could benefit from most of the

facilities if they were appropriately modified.

Nevertheless, the specifics of the primary target

environment should be kept in mind.

There are several assumptions about the way the team

interacts which need to be mentioned. As was indicated

above, the team members work at individual microcomputer

workstations. At each workstation are copies of editors,

compilers, linkers, and other software needed for program

development. In order to provide a common location for

source files and allow better coordination of the team's

activities, there is a central machine which contains

"official" copies of the source. For a team member to

modify a sourc~ file, he must obtain a working copy from the

central machine ("check out"), edit the copy at one of the

27

workstations, and then transfer the updated source back to

the central machine ("check in"). Figure 1 illustrates this

physical operating environment.

Several reasons for the strategy of modifying copies of

the official source can be given. Because the

microcomputers are single-user systems, shared access to

data in the central file system is not possible. Editing

copies of the official source file (rather than the central

copies themselves) is needed to make the workstation concept

viable. In this way, the team members can all be working

productively. In addition, this allows changes to be made

without overwriting the current copy so that it can be used

as a backup.

Probably the nicest way to handle transferring files

between workstations would be to have the machines connected

in a network. However, for the purposes of the Software

Management System, any means of moving the files is

sufficient. One straightforward means of doing so is to use

flexible diskettes (floppy disks) as both work storage and

as a means of file transfer. The programmers merely insert

a diskette into a disk drive and obtain the working copy,

remove the diskette and take it to another machine. The use

of floppy disks as a removable and transportable storage

medium is common practice on microcomputers.

The central machine requires some special

consideration. This machine must be able to store all of

the source files for the team as well as information

o~ \
\

\
\

Workstation

\

flexible
diskettes

Central Machine

Workstation

o~ o~
Workstation Workstation

Figure 1. Operating Environment

28

29

necessary to the operation of the Software Management

System. This could quite easily be more data than could fit

on one or even several diskettes, and so floppy disks are

not an adequate storage medium. Thus secondary storage is

provided by a winchester hard disk drive. An additional

benefit derived from using a hard disk is the faster access

time which is possible. Printed output will be needed for

reports of several kinds. For this reason a printer must be

connected to the central machine. It should be mentioned

that the central· machine (and especially the hard disk)

represents a weak link in the workstation approach~ but with

the multiple CPUs, another system could substitute for the

central one in case it went down.

The operating system used is a significant factor in

any computing environment. For the eight bit micro-

computers, one of the more common operating systems is the

CP/M operating system. 1 Because of its popularity, this

operating system is a likely choice for the software being

developed. This is also an appropriate choice for the

Software Management System. A CP/M operating system is

assumed in what follows. There are two main advantages to

this choice. First, there are a large number of small

machines which support CP/M. Secondly, there is a great

deal of existing software which will run under CP/M. Of

particular interest are the basic software development tools

such as compilers, linkers, editors, and debugging aids.

1 CP/M is a registered trademark of Digital Research,
Incorporated.

There are also some limitations of CP/M

particularly affect the Software Management System.

limitation is the comparatively unsophisticated

directory structure. For one thing, there

30

which

One

file

is no

hierarchical directory structure. In addition, file name

and location are the only information contained in the

directory: all other information such as organization,

creation date, version number, and access date must be

maintained by the application program. Another limitation

is the lack of a virtual memory management scheme which

means that any memory management necessary is the

responsibility of the applications programmer. A final

limitation is the fact that CP/M is a single-user system,

which, as mentioned, eliminates the possibility of shared

access to data.

Another assumption concerns the type of language used

by the development team. A language which supports modular

program development through separate compilation and linking

is fundamental to much of what is done. Because of the lack

of virtual memory capability, the language is also assumed

to support the use of overlays as a memory man~gement

technique.

As is evident from the survey of existing

chapter one, most of these systems include

information database. This is in keeping

systems in

a project

with the

requirements for ADA programming support environments as

specified in the Stoneman report [30]. This ~pecifies that

31

a database is to be a central feature in the kernel of the

environment, and that all communication between tools is to

take place via the database. Several advantages are gained

by the use of a central database management system for

storing, organizing, and retrieving project data. The

central database gives the system a logical view of the data

independent of its actual organization, and information

about the state of the system is recorded at each step of

the way on a relatively stable medium. This should

facilitate recovery should some unexpected event occur such

as sudden power failure. Another motivation for this is

that by communicating only through the data base, the

various subsystems gain a certain independence from each

other. This means that modifications and enhancements to

the system are easier, because one need not worry about

restructuring the communication paths between the various

portions of the system.

Functional Description

The Software Management System consists of three basic

subsystems: the source file access control subsystem, the

recompilation and relinking subsystem, and the error

reporting and tracking subsystem. These will be discussed

in that order, followed by discussion of some additional

aspects of the system which don't fit into a single

subsystem.

32

Source File Access Control Subsystem

The source file access control subsystem has the

overall task of maintaining the integrity of source files.

This is done by placing restrictions on the ability to gain

access to those files. This does not mean that its purpose

is to provide security against malicious tampering. The

intent is to provide a disciplined approach to change as an

aid to the programmers.

As with access to any information, access to the source

files can be classified either as read-only or as update.

There need be no restrictions on team members concerning

reading the source files. The potential problems arise in

the area of update access to those files. The system needs

to insure first of all that any team member wishing to

modify a particular file does so . to an up-to-date copy of

the file. In addition, the system must prevent any other

modifications from being made to that file until the first

is complete. This is done by having users "check out" any

file which they intend to change by requesting a copy with

update rights. If the file is not already checked out, the

system grants the request and makes the copy. If the file

is already checked out, the request is denied. The user at

this point may wish to know who has the file out, and so the

system provides this information. The user who has

completed a modification returns the file to the system

through a "check in" procedure. The system now needs to

33

guarantee that the file is indeed a modified version of the

up-to-date copy which was checked out.

As a part of ensuring the integrity of these source

files, it is important to determine that they are in some

sense correct. As a minimum requirement, the system should

ensure that program source files are syntactically correct

by seeing that they compile without errors. If the user has

several files to check in at the same time, it would not be

desirable to force him to wait as each is compiled. So

modules are placed in a provisional status until compilation

either succeeds or fails. If the module compiles correctly,

the check-in process is completed, but if it does not, the

check-in attempt is rejected. If compilation fails, the

user is notified of the fact so that the module can be

corrected.

Another aspect to be covered is the need for a way to

cancel a check-out. There are a number of events which can

destroy data in this kind of microcomputer environment.

Static electricity or an unexpected power failure can ruin

the data on a diskette; a hardware or software failure may

cause the destruction of a file; and the medium itself is

prone to error, so that data can be lost. 2 After such an

occurrence, one needs a way to recover by cancelling the

previous check-out.

2 Because of the possibility of data loss on the hard
disk as well, it should also be backed up frequently. While
such backup is important to the system, it is peripheral to
the main task, and so is not discussed further.

34

The information gathered when a file is checked out is

useful beyond the time when

checked in. A history

that file has been successfully

of check-out information is

maintained by the Software Management System. A significant

motivation for keeping this information available is to

provide it to the programming team in accessible and useful

form. The history of modifications provided by this

subsystem is particularly useful when unexpected side

effects occur as a result

reports can be produced

since a particular date,

of some change.

indicati~g changes

or changes to a

Various summary

to the system

specific module

since a particular date. These reports can aid the team in

locating the source of the unexpected trouble.

Figure 2 summarizes the functions performed by the

source file access control subsystem.

Recompilation and Relinking Subsystem

When changes are made to a source file, these changes

must be integrated into the executable system~ The task of

the recompilation and relinking subsystem is to automate

this and to ensure that it is done consistently. The

operation of this subsystem is based on the fact that source

files are used to derive other files, which may in turn be

used to derive others. Commands must be issued to invoke

the programs which perform these derivations. Thus there

exist derivation relationships among files.

corresponding commands which invoke the

There are also

appropriate

35

routines. The relationship among source, object, and

executable image files is the primary example of this. A

program object file is derived from the source code file by

issuing a command to invoke the compiler (or assembler).

Similarly, an executable file is derived from the component

object files by issuing a command to invoke the linker.

Other examples of this type of relationship can be

given. For instance, consider a program which uses a

table-driven parser to interpret commands issued by the

user. If the file containing the grammar for the command

language is changed, a table-building routine must be

invoked to produce a new parsing table. The relationship

here is between a grammar file and the parse table file.

Another example is the relationship between several object

files and the derived library of object files. We need to

be able to deal with all of these types of relationships.

In addition, there may be other relationships which are

unique to a specific project.

is stored in the data base.

The relationship information

The actions taken by the recompilation and relinking

subsystem are straightforward. The system first determines

which files have been modified. It then draws upon the

derivation information in the database to determine what

commands must be issued to make the derived files once again

consistent with the source. These newly derived files may

in turn be the source for other derivations,

entire ~equence of actions may be initiated.

and so an

When all

36

derivation operations have been performed, the production of

the new executable system should be complete.

Most compilers and linkers have a variety of options

which can be used. It would not be desirable to limit users

to a single set of options, so provision is made to allow

the users to specify options with which to invoke the

compiler or linker. For instance, the user may wish to

suppress or enable the production of a printed listing.

Figure 3 contains a summary of the functions of the

recompilation and relinking subsystem.

Error Reporting and Tracking

In any software development process it is necessary to

test the results to determine if certain criteria are

met--does the system meet the requirements? Do the

requirements really match the needs of the intended users?

Is the performance acceptable? There will almost invariably

be areas in which the observed system behavior falls short

of that desired. The system must then be modified to bring

it into line with the test criteria. The programmer on a

one-man project could probably keep track of necessary

modifications by memory aided with brief notes, but as the

number of people working on a project grows, the need for a

formal means of reporting observed shortcomings and tracking

progress on them becomes apparent.

of

Changes to a software system may be

errors in its operation; they may

requested because

also be requested

1. Maintains module check-out status.

2. Obtains name of person checking out a file and a
description of the reason for the check-out.

3. Grants or denies request for check-out based upon
check-out status.

4. If a request is denied, indicates who has the file.

5. Verifies that proper file is checked in.

6. Performs the copy functions for check-out, check
in, and read-only access.

7. Allows cancellation of a check-out.

8. Maintains history of check-out
provides for summary reports
information.

occurrences and
of check-out

Figure 2. Source File Access Control Functions

1. Guarantees correct source-object
performing the compilation (or
operation) of modified source.

relationship by
other derivation

2. Either rejects any source file which cannot be
compiled correctly and notifies the programmer, or
completes the check-in of files which compile
successfully.

3. Determines the minimal subset of commands necessary
to rebuild the executable system.

4. Performs the system rebuilding task.

5. Allows the specification of
options.

compile and link

Figure 3. Recompilation and Relinking Functions

37

38

simply to alter the method of handling a task. Enhancements

to the system form a third category of change requests. The

term "error report" includes requests for enhancements and

modifications as well as reports of erroneous behaviour.

A straightforward method of tracking errors is to

provide forms to be filled out with a description of the

error encountered or change requested. The~e forms can then

be referred to the appropriate team member for action. When

modifications or corrections are completed, the programmer

can indicate the nature of the correction and the form sent

to the tester with an indication that this is ready for

testing. The success or failure of testing can be noted and

the report either closed and filed away or returned to the

programmer for further action. However, this type of

treatment means that the team members must manage additional

paperwork. The error reporting and tracking subsystem

reduces the amount of paperwork by performing the same job

with electronic forms, treating this

data processing task.

The basic items of information

recorded are the name of the module or

much like any other

which need to be

subsystem affected

and a description of the error or of the change requested.

In addition, an estimation of the severity of the error is

recorded to aid the team members in assigning priorities to

the tasks which must be done. Another necessary item is the

name of the team member to whom to refer this report. This

will allow this individual to be notified upon his next use

39

of the system. Additional items kept are the date the

report was made and the name of the reporting party. This

last item is saved so that the receiving team member can

know whom to contact for additional information.

The error reports can be placed into four categories:

those upon which no action has yet been taken (pending),

those which are currently being dealt with (in progress),

those which have been corrected and are ready for testing

(completed), and those which have successfully passed the

testing stage (closed). An error report is "opened" when it

is entered on the system. These newly opened reports

initially have the status pending. When a programmer checks

out a file or files and indicates the purpose is to correct

this error, the report moves to the in progress status.

Upon check-in of those files, the status can be changed to

completed, and after testing is finished successfully, the

request is closed.

In some instances it is useful to move a report

directly from the pending status to the closed status. For

instance, this is the case when an error report is made

which the team chooses to deal with by altering or relaxing

the requirements. Or perhaps a change request may be made

and, after examining the task, the project leader decides

that the benefit is not worth the cost involved, so the

request is denied. A third reason might be that a situation

is reported as erroneous when in fact it is not.

40

Another special case occurs when a tester determines

that a change did not correct the error which was supposedly

fixed. In this case, the report is moved from the completed

status back into the pending status.

A summary of the functions of the error reporting and

tracking subsystem is found in Figure 4.

Other System Functions

There are a few other aspects of the Software

Management System which have not yet been described. First

of all, there is the matter of the overall operation of the

system. As was mentioned earlier, this system resides on a

central machine which is essentially dedicated to the task

of maintaining the code library and of performing the

software management functions. The system will probably be

accessed frequently throughout the workday for information,

for error reporting, for check-out and check-in, and will in

addition perform recompilation and relinking. Because all

of these operations are implemented by the Software

Management System, the system controls the central machine

as long as the machine is operating.

One of the items of information used at several times

in the operation of the system is the date. In addition,

there will sometimes be the need for the time as well.

Unlike larger systems which generally operate around the

clock, microcomputer systems are turned on and off as

needed. On most microcomputers there is no way to keep

track of time and date when the machine is off.

initialize the internal

item of business when

time and date.

clock and set the date,

the system is started is

41

In order to

the first

to obtain

Another item which is needed often is the name of the

individual using the system. ·The user would be annoyed if

he were asked to enter his name every time this information

is needed, and so the system obtains identification from the

user when he begins using the system. Now in order to know

when to ask for a new user name, the team members are asked

to indicate when they are finished using the system. This

also allows the system to proceed with recompilation of

files which are in the provisional check-in status. This is

somewhat comparable to logon and logof f of users on a multi

user system.

The notification mechanism is another aspect of the

system which needs further description. This includes

notification of error reports, notification of rejected

check-in attempts, notification of cancelled check-outs (if

not performed by the team member who had the file checked

out), and

corrected

individual

notification for testers that errors have been

and are now ready for further testing. The

subsystems place information in the database

concerning these types of events. When a team member logs

on, this mechanism is invoked to check for notices for that

user. If any are found, they are displayed before

proceeding.

42

When a new project is to be started, information about

it must be placed in the database. One possible means of

performing this initialization task is to independently use

the access provided by the underlying database management

system. However, setting up the database in this way would

require not only knowledge of the database system, but also

of the details of how the Software Management System expects

the data to be organized. To facilitate project

initialization, the system includes an interface to the

database management system for entering new information.

This facility is also useful when modifications to the

information in the database must be made.

There are several system parameters which control its

operation. These include such things as the location of the

various types of files, the default compiler options and the

default link options. The system provides convenient

facilities to examine and modify these parameters as needed.

A summary of these other aspects of the Software

Management System is found in Figure 5.

1. Obtains the name of the module or
affected, information about the nature of
encountered or change being requested,
indication of the severity of the problem.

subsystem
the error

and an

2. Records the reporting person's name and the date.

3. Obtains the name of the team member to whom to
ref er this report.

4. Tracks the status of the change; is it pending, is
work in progress, is work completed, is it closed?

5. Records the date closed.

6. Provides a list of untested changes and corrections
to the team member or members responsible for
performing the tests.

7. Maintains a history of error reports and provides
for various summary reports.

Figure 4. Error Reporting and Tracking Functions

1. Obtains date and time upon initial startup.

2. Obtains user name with a "logon" process and
requests "logoff" upon completion.

3. Notifies team members of new error reports,
corrected reports, a rejected check-in attempts.

4. Produces summary reports by team member and by
project.

5. Provides interface with database system for
initialization and modification.

6. Allows examination and
parameters.

alteration of

Figure 5. Other System Functions

system

43

CHAPTER III

SOURCE FILE ACCESS CONTROL SUBSYSTEM

The term source file is used to mean any file which is

directly modifiable by the user. Some examples of possible

types of source files are program source files, included

files (i.e., files which are included during the compilation

of program source files), data files read during execution

of the system being produced, and text files (e.g.,

documentation files). As was mentioned earlier, this

subsystem has the task of maintaining the integrity of the

source. This is done in part by restricting access to the

files. This means that users are required to check out and

check in files. Source file check-out and check-in thus

are the primary functions of this subsystem from the user's

point of view; others are check-out cancellation, production

of reports, and read access to files.

Use of Check-out Keys

Requiring check-out of a source file in order to modify

it allows the system to prohibit parallel updates and to

ensure that the user has an up-to-date copy to modify. When

a file is checked in, the system must verify that it is

indeed a modified version of the copy which was checked out.

44

45

Obviously, an attempt to check in a file which has not first

been checked out must be prohibited. Assuming the file has

been checked out, the system must have some means of

matching the copy being checked in with the one which was

checked out. First, consider the use of a simple test of

team member's name. If the system verifies merely that the

same individual is checking the file in as checked it out,

the crucial question of whether or not the copy of the file

is the correct one remains unanswered. For suppose that

when this team member checked out this particular file he

also had an old copy of the same file on a separate

diskette. The simple mistake of switching diskettes could

cause an incorrect version to be checked in. A better

solution is to issue a key value for each file upon check-

out. This value is then stored in the central database.

When the file is checked in, the key of the copy to be

checked in is compared with the value stored in the

database. If the values do not match, the check-in attempt

is rejected.

One attribute which a key value requires is that of

uniqueness. Two possible candidates for use as key values

come to mind. The first is a simple numeric value. Each

successive check-out would take the next value in sequence.

This is certainly straightforward to implement. One problem

with this approach is the possibility of overflow; that is,

of exceeding the maximum number size. However, by choosing

a representation with a sufficiently large maximum, this can

46

be prevented. A second candidate is a time/date stamp.

This certainly provides uniqueness (as long as the time and

date are properly initialized); and there is no problem with

overflow. An advantage of this type of key is that the

system also uses the date a file is checked out for the

check-out history, and so the key can serve a dual purpose.

Aside from this, either type of key seems perfectly

suitable, so the choice is somewhat arbitrary. This system

uses the time/date stamp as the key.

There must also be a means of associating the time/date

key value with the file as it is checked out. One

possibility is to embed the key in the text of the source

file. For most source files, a text editor will be used to

make modifications. The user will thus have access to the

embedded key just as he does to the rest of the file. It is

reasonable to assume that the

attempt to thwart the check-out

user will not intentionally

mechanism by modifying this

value. A more likely occurrence is an unintentional action

which deletes, overwrites, or otherwise modifies the key.

As the file cannot be checked in without the proper value,

the user would need to cancel the check-out and begin the

modification sequence again if this happens. Furthermore,

this method of associating the key with the file places the

user in contact with a detail of the check-out/check-in

process which would be better hidden from view. One means

of handling these objections would be to configure the text

editor to pull the key value from the file as it is read in,

47

save it, and replace it when the modified file is written

back to the diskette. In this way the user couldn't

inadvertently destroy the key and the existence of the key

would be hidden. But modifying a text editor may present

some difficulties. If one can gain access to the source

code for an editor, then it may be fairly straightforward to

make appropriate changes. However, if the source code

cannot be obtained, the only choices are to write an editor

from scratch or to attempt to "patch" the object for the

editor. The potential cost of performing this configuration

makes it unattractive as an option.

Another item to consider is how the use of an embedded

key is affected by constraints imposed on us by other tools.

Specifically, the key value could be placed within a comment

for program source files so that it would be ignored during

compilation. As the method of delimiting comments varies

from language to language, the system would need to be

flexible about precisely how the embedding is done. Again,

an alternative to embedding in comments would be to produce

or obtain compilers which could recognize the key value. If

all compilers and the linker were appropriately modified,

the key values could be propagated to the derived object

files. This would allow the object files to be checked in

as the source is checked in, with the system verifying that

the object module as well as the source module has a correct

key.

48

Such a method of propagating embedded file

identification was reported by Cristofor, Wendt, and

Wonsiewicz [8] in their description of a Software

Manufacturing System. In this report, the values embedded

were version and release number, but the use of these was

supported by integrated editors, compilers, and linkers.

Again, the principle disadvantage to this approach is the

potential difficulty of configuring the tools to match the

Software Management System. This also makes the system

dependent on the specific tools which have been so

configured. Greater flexibility can be achieved by choosing

to use existing tools as they are and to the degree

possible, design the system to work independently of

specific tools.

Rather than embed the check-out key in the source file,

the system uses a separate "key" file to store the key

values. The user of course has access to the key file

through the normal file handling operations. The file

appears in the directory listing and can be edited, renamed,

or erased. For this reason, the user must be aware of the

use of these files. However, the chance of inadvertently

destroying the key while editing is decreased with this

method of. handling the keys. The chance of problems can be

further reduced if the file is protected against writing or

erasure. This can be done under CP/M by indicating that the

file is "read only".

49

Another choice which arises in considering the use of

key files concerns the number of such files. When several

files are checked out at the same time, it would be possible

to have one key file with a set of file names and keys or to

have a separate key file associated with each source file.

The first would be more economical in terms of disk space

and directory space. This may be especially important

because under CP/M the number of directory entries is

limited and each key file, besides requiring a new directory

entry, occupies a fairly large amount of space relative to

the amount of space required for a key. On the other hand,

the diskettes are used primarily as temporary workspace and

so space constraints are not all that critical. One can

simply use a second diskette if space is too limited on the

first.

This second approach to key files gives a one-to-one

correspondence between source files and key files. If for

some reason a user desires to move a source file to another

diskette, it is a simple matter to carry along the key by

moving the associated file. Were the first approach to be

taken, the entire set of keys would have to be copied, which

does not seem very tidy. In addition, when checking out a

new file or checking in a modified file, the system has to

deal with updating the key file rather than creating or

erasing the corresponding file. The choice again seems

somewhat arbitrary, but because of the savings in space, the

use of a single key file is the method employed.

50

Provisional Check-in

When a program source file is to be checked in, we

would like to verify its syntactic correctness by seeing

whether or not it compiles succe.ssfully. As long as it

compiles correctly, the check-in can be completed, making

this copy the new "official" copy of the file. If

compilation fails, the check-in is aborted and the previous

version remains the official copy. So the system must keep

the previous version in addition to the new version at least

until the compilation succeeds or fails. CP/M does not have

facilities to maintain multiple versions of the source files

in a single directory. A solution to this problem is to

make use of the "type" portion of the file name. The three

character suffix of the file name is the file type, and

although certain type-naming conventions are generally

followed under CP/M, there is no limitation to certain

predefined types. So, for example, when the PL/I-80 1

program source file "PROG.PLI" is checked in after

modifications, the old version of the file is renamed

"PROG.OLD" and the new version entered in the directory

under the original name.

Fundamental to the idea of having a provisional check

in is the ability to determine success or failure of

compilation. The recompilation and relinking subsystem

actually invokes the compiler and determines the success or

failure of the process. This information must be

1 PL/I-80 is a trademark of Digital Research, Inc.

51

communicated to the source file access subsystem. A

compilation status flag is used to indicate one of three

states: either the compilation has not yet been performed,

the compilation was successful, or the compilation failed.

This information will allow the check-in to be completed or

rejected as appropriate.

Location of Source Files

To this point the simplifying assumption has been made

that all files used by the system are on a single disk drive

unit. This seems to follow from the requirement that the

central machine use a hard disk for storage. However, a

single hard disk unit may be divided into two or more

logical drives. The smaller space available on each logical

drive may require that files be divided between the drives.

If we allow the user to specify where particular types of

files or even where individual files are to be stored, there

is a great increase in flexibility. The additional

flexibility adds complexity, however. If a file is to be

compiled which includes other files, those files need to be

available. This necessitates extra checking and perhaps

some movement of files between drives prior to compilations.

New Files

When a project is first started and from time to time

during the development process, new files will be added to

the system. These files have never been checked out, so

52

they cannot be treated in the manner described earlier. The

first step in adding a new file to a project must be to

place information about it in the database. The file can

then be checked in as usual except that there is no key to

be matched and there are no old files to rename. This then

can be compiled by the system as usual.

Interaction with Error Report Subsystem

A large proportion of modifications to a system under

development are made in response to a particular report of

an error or problem. Others are made to satisfy requests

for alterations or enhancements to the system. These error

reports and change requests are to be recorded by another

subsystem, and we wish to record the relationship between

modifications and error reports. The user is asked to

specify the connection by providing the error report numbers

which identify the corresponding error reports. There may

be a single error which is to be corrected: and it may be

that there are multiple errors which the programmer intends

to correct at the same time. It may also be that the

modification has no corresponding report. 2 This might occur

because the programmer wants to "clean up" some code, which

although correct, is not well-structured and would be

2 This relationship between error reports and check-out
occurrences is in general a many-to-many relationship. It
may be that there are several files which must be modified
to correct a single reported error. On the other hand it
may be that a programmer can correct several errors within a
source file at one time. In this case there would be only
one check-out occurrence and several error reports which are
to be corrected by this check-out.

53

difficult to modify in the future.

error which has not been recorded.

Or perhaps there is an

Change History and Summary Reports

Changes to a complex system are sometimes accompanied

by unintended side effects. These may appear in code which

previously worked correctly, and may be in a portion of the

system not clearly related to the code which was modified.

These kinds of errors can be very difficult to locate. One

piece of information needed to solve such a puzzle is a

listing of recent changes. This can indicate possible

places to begin looking for the problem. Maintaining a

history of check-out/check-in information provides us with

the data needed. When a file is checked in, we can record

the date, and store this information along with the

information obtained when the file was checked out. Of

course, depending on the size of the project, it may not be

feasible to keep all of the history records in the database.

Periodically records

date can

database.

be moved to

of changes made prior to some cutoff

a backup medium and purged from the

When one of the team members wishes to examine the

history of changes made, he requests a "recent changes"

report and gives a date from which to start it. The system

compares the date entered here with the date recorded as

files were checked in and retrieves the information. This

report can be further refined by limiting the scope to a

particular subsystem, module, or programmer.

54

Another report which should prove valuable is a summary

of files checked out. A particular programmer may want a

reminder about what work he has begun, and so this report

can be restricted in scope to the files checked out by a

single programmer. The team leader may desire to see

information about files checked out for the entire project,

and so the report can be generated for the project as a

whole. These reports, along with those produced by the

error reporting subsystem, provide better "visibility" for

the work being done on the project and provide valuable help

for its management.

Data Summary

A listing of the information which must be maintained

in the database in order to support the functions of this

portion of the system is found in Figure 6.

The files each have a corresponding modification flag

which is used to indicate to the recompilation and relinking

subsystem whether they have been changed. The ·check-out

record actually indicates a relationship between a source

file, a team member, and perhaps one or more error reports.

The reason for check-out is a textual description of what

must be changed; however, instead of such a description, the

connection with the error report which prompted the change

should be sufficient. All of the information but the check

in date is obtained during the check-out process.

General Information

File names
Modification flags
Compilation status flags

Check-out record

Check-out key
File name
Name of programmer
Reason for check-out
Error report number(s)
Date checked out
Date checked in

Cancellation record

Check-out key
Name of cancelling programmer
Reason for cancellation
Date cancelled

55

Figure 6. Source File Access Control Data

The cancellation record contains information needed if

a check-out does need to be overridden. The one who cancels

may be the same person who had the file checked out; or it

may be that one programmer cancels the check-out of another.

In the latter case, the one whose check-out was cancelled

should be informed and provided the name of the one

responsible and the reason.

will be rare.

Hopefully, such occurrences

CHAPTER IV

RECOMPILATION AND RELINKING SUBSYSTEM

The task of the recompilation and relinking subsystem

is to automate the rebuilding of a system after

modifications are made at the source level. The term

"compilation" refers to the process of taking a high-level

language program and producing the corresponding machine

language program, usually in relocatable object form. The

use of this term is not intended to imply that only high

level language source code can be used; for some functions

it may be advantageous to use assembly language. In

addition, as was pointed out earlier, there may well be

source files which are not program files and derived files

other than program object files. The terms compilation and

linking are used because these derivations are py far the

most common. However, while relinking is used to refer

specifically to the process of resolving external references

and producing an executable image from a set of relocatable

object files, recompilation is used rather loosely to refer

to any other type of derivation.

In order to know what portions of the total system must

be rebuilt to regain a consistent state, the system must be

able to determine which files have been modified since the

56

57

last recompile/relink processing was done. Some operating

system directory structures are helpful in this regard as

they provide information about the creation date of a file.

MAKE, for instance, compares the time/date stamp of derived

files with that of those upon which they are dependent to

determine if the dependent files must be derived again [13].

CP/M does not provide us with this feature. This means that

the system must maintain a modification flag to indicate if

a file has been modified since the last recompile and relink

sequence.

Compilation and Linking

The two processes--the recompilation process and the

relinking process--are handled in significantly different

ways. A link requires many or all of the object files of

the system as input. In addition, relinking an entire

system may be quite time consuming, especially on a

microcomputer. Because of these factors, there is a real

advantage in "batching" the link processing in order to

avoid the overhead of performing the same work repeatedly.

To illustrat~ this, suppose the system under production

contains thirty object files which are linked to obtain the

executable image file. Suppose then that two of these

files, FILEA and FILEB, have been modified. If batching is

not used, immediately after FILEA is checked in and compiled

the link command is issued (processing all thirty files).

Subsequently, FILEB is checked in and compiled. The same

58

linking command is then issued again, processing twenty-nine

files which are precisely identical to those for the link

just completed. If, on the other hand, the system were to

defer linking and batch the processing, a single link

command would suffice.

In contrast to this, a compilation requires only one

primary input file, with ~econdary input possible from any

included files. This means that each modified source file

usually corresponds to a distinct compile command. This is

not strictly the case because of included files, but because

of the way in which included files are likely to be used it

is generally true. Included files often contain information

such as global data declarations and syntactically replaced

constants which are common to a number of files. As such,

included files are much less likely to require corrections

and alterations than the program source files themselves.

It is possible that files included during compilation of

another file be changed one at a time and that the primary

file be repeatedly compiled. However, such an occurrence

would be quite unusual. So, in general, there is no

advantage to be gained in batching compilations. Thus they

can be performed incrementally, as each modified file is

returned to the system.

An additional distincton between the compile and link

portions of the rebuilding process is the way commands are

determined. Because of the essentially one-to-one

relationship between source files and recompile commands,

59

these commands can be stored directly in the database and

retrieved as needed. The link process presents a more

interesting situation, particularly when the use of overlays

is involved. A complex sequence of commands, each dependent

on previous ones, may

which overlays are used.

be required to

Depending on

relink a system in

the circumstances,

some subset of this entire sequence may be adequate to

restore a system to a correct state. In order to allow the

system to determine the minimum

each circumstance, the link

command sequence needed for

commands are not stored

directly; information about the system (i.e.

overlay structure) is used to construct the

command sequence. This will become clearer as

overlays is described in more detail later.

Recompilation

Before proceeding into the discussion

about the

necessary

the use of

of the

recompilation process, perhaps it would be useful to

elaborate on a choice which has not yet been explained. The

question is, why is it necessary for the system, to perform

recompilation? Why not have the users compile source files

at their workstations and check in the object code as well

as the modified source? The users will want to recoi:npile

the modules anyway to make sure that they did ~not

inadvertently introduce any syntax errors as they made thei~

changes, so there would be no extra burden on them. This

would also relieve the central machine of a time-consuming

60

task. The answer, of course, is that the system has no way

of verifying that source and object really match each other

without actually compiling the source. Maintaining

consistency between source and object in this way is an

essential part of the task of maintaining the integrity of

the system being produced.

Compilations are performed as files are checked in.

Several source files may be returned by the user at one

time, and so there may be several files waiting to be

compiled at any given time. The user will have to indicate

when he is finished so that the system can proceed with

compilations. Now even though the one team member has

indicated that he is through using the system, other team

members may need to have access to it. A potential problem

arises because the system is going to be compiling while a

team member is forced to wait. As each compile may take

several minutes (depending on the size of the module being

compiled), this could prove to be quite frustrating. One of

the underlying goals of the Software Management System is to

be helpful to the programming team. Making a user wait for

an entire series of compilations would be a hindrance rather

than a help. For this reason the compilation sequence can

be "interrupted" by a user who wishes to access the system.

On a single-user system, only one process has control

at a time. Thus when the compiler is operating, it has

complete control of the CPU. The recompilation and

relinking subsystem cannot control what takes place while

61

the compiler has the CPU. However, most microcomputers

buffer input from the keyboard. This means that one

possible way to allow interruption of the compilation

sequence is to check for keyboard input between the

individual compilations. The user would still have to wait,

but only for the completion of a sirigle compile, rather than

the entire sequence. 1

Drive Usage

Before a compilation command is issued the

recompilation and relinking subsystem needs to determine

that all necessary files are available for processing. The

drive which contains the primary input file can be specified

in the command itself, but the included files may cause

difficulty. The included files will need to be copied to

the drives where they will be expected by the compiler.

The include statement within the program source file may

contain a drive specification which indicates on which drive

the included file is to be found. If no drive specification

is given, the compiler assumes the included file is on the

current default disk drive (called the "logged" drive).

It might be convenient to store all included files on a

particular drive, and to require that all the include

statements reference this particular drive. This avoids the

1 Actually, one microcomputer compiler which the author
has used has the annoying habit of aborting if any key is
pressed. This being the case, any time the sequence is
aborted, the system is forced to restart the compilation.
Besides being somewhat inefficient, this also complicates
checking for correct compilation.

62

necessity of moving the included files prior to compilation,

but there is a signf icant drawback. The workstations used

may not have the same drives as the central system. Because

the user will want to compile modified source prior to

checking it in, the choices for the drive to be used for

included files would be limited to one which would be found

on the workstations as well as on the central machine. An

alternative is to require that the programmers always omit

the drive specification in the include statement. This

means that the currently logged drive must contain any

included files. In this way the individual can be

responsible for obtaining copies of any included files

needed to compile at the workstation, and the system can

easily make sure that needed files are available on the

logged drive before issuing the compile command. If the

system is configured so that all included files are on the

same drive, this should be the logged drive during

compilation. In this way no copying or moving of files

would be required.

Once the compilation has been completed, the system

needs to determine its success or failure. Unlike compilers

which are set up to run in a batched environment, there is

no "return code" as such from those which operate under

CP/M. They usually display messages on the console screen

for the programmer which note any errors present. These

messages can usually be directed to a disk file. So a scan

of this file can be used to determine whether or not the

63

compilation was completed successfully. The form of these

messages will of course be dependent on the compiler used,

and so the system must know what to look for. A simpler way

to achieve the same end is to determine whether or not the

compiler has produced an object module. This of course

assumes that no code will be generated if there are errors

in the compilation process. In order to be able to find out

if an object file is produced, the system must know that no

copy of the object file was present before the compilation

attempt. This can be guaranteed by erasing the old object

file before proceeding, but then if the compilation fails,

we would need to recompile the old program source file to

restore the -system to a consistent state. By renaming the

old object file, we can determine if a new object file is

produced and restore the old one easily if it is not.

The Linking Process

Options

The various options available for the link process

cover a wide variety of features. Options are used to

indicate specific modes of operation for the linker, to

indicate characteristics of the code generated, and to

redirect information produced by the linker. Some options

may be necessary for the success of the link, such as one

instructing the linker to use the disk for workspace when

available primary memory is not sufficient. Others may only_

64

be used occasionally to obtain details of the link process

not normally produced. Other options may normally be set in

one way, but may sometimes need to be changed. Thus there

are some options which will be used always, some which will

be "defaults" that may be changed, and some which are used

for a single link. Options in the last two categories can

be entered by the user when the link process is initiated.

These are then used in the link commands which are

subsequently generated.

Use of Overlay Techniques

The operating systems of many large scale general

purpose computers now have virtual memory capabilities,

freeing the applications programmer from any concern with

memory management. However, there are also a large number

of small systems without such capabilities. One memory

management technique used on such systems is that of

overlaying portions of memory with different code when

needed during the course of program execution [22, 25].

This technique is considered obsolete on most larger

systems, but is quite necessary as long as there are systems

with real storage management only.

generally as A program which uses overlays works

follows. There is some portion of memory

code that must be resident throughout the

which contains

execution of the

program. This portion, sometimes referred to as the "root",

contains common data structures and common routines as well

65

as the code necessary to drive the rest of the system. The

memory not occupied by the root or by the operating system

is used for "overlays", code segments which are read from

secondary storage as needed.

Figure 7 illustrates the organization of memory for a

simple overlay scheme. The root contains the driver and all

common data. The first phase of processing is performed by

overlay 1. When this phase is complete, overlay 2 is loaded

at the same address (overwriting overlay 1), and the second

phase of processing is performed.

A more complicated overlay scheme may use several

overlay areas, each of which is used for several program

segments. This allows one overlay to invoke any other which

does not use the same region of memory. In Figure 8,

overlay 1 can invoke overlays 3, 4, or 5 but not overlay 2.

A further increase in memory space utilization can be

achieved by allowing the relaxation of divisions between

separate "areas". For instance, suppose that overlay 1 of

Figure 8 uses only overlays 3 and 4, while overlay 2 uses

only overlay 5. This means that overlay 2 may be allowed to

extend into the memory space used by overlays 3 and 4,

provided that overlay 5 is loaded above overlay 2. This

type of arrangement is shown in Figure 9.

The motivation for supporting the use of overlays is

quite simple--the program being developed may be larger than

will fit into memory otherwise. Again, if virtual memory

were available, the use of overlays would be unnecessary.

Overlay area-
shared by two or
more program segments

Root area--
common code and data

(Operating System)

Overlay 1 Overlay 2

Root

Figure 7. A Simple Overlay Scheme

Second
Overlay
Area

First
Overlay
Area

(Operating System)

Overlay 3 Overlay 4 Overlay 5

Overlay 1 Overlay 2

Root

Figure 8. Use of Multiple Overlay Areas

66

67

Without virtual memory, overlay techniques allow tasks to be

performed which would not otherwise be feasible. Two

linkers which support overlays for CP/M programs are LINK-80

by Digital Research [9] and PLINK-II by Phoenix Software

Associates [18].

(Operating System)

Overlay 5 Second
Overlay
Area

Overlay 3 Overlay 4

First
Overlay
Area

Overlay 1 Overlay 2

Root

Figure 9. A More Complex Overlay Scheme

Stages in the Link Process

It can be seen from the above illustrations that the

location of an overlay in memory is dependent upon the use

of that overlay by other overlays. Overlays which are used

by another may not occupy

overlay which uses them.

use relationships between

same overlay area.

68

the same memory space as the

As long as there are no further

these files, they may share the

Any given code segment has a lower bound and an upper

bound in memory. The lower bound is the address at which

the first instruction is placed when loaded (that is, when

it is read in from disk). This is where execution begins

when the segment is invoked. This is referred to as the

load address of the segment. The upper bound is known as

the module !£E.. The linker generally requires the load

address as input and provides module tops as output as each

overlay is linked. The module tops of all segments which

use a particular overlay are used to derive the load address

for that overlay. Thus information necessary for the

linking of one overlay area is not available until the

completion of the link for the previous overlay area. So

for any overlay scheme using multiple areas, the link

process is divided into stages. . The module top information

obtained from one stage becomes input to the next. The

number of stages is of course dependent on the number of

overlay areas.

Full Links and Partial Links

For an overlay scheme such as we have been describing,

the linker does not produce a single executable file but

multiple files. There is a file for the root and one for

each overlay in the system.

69

As was mentioned, common data structures and common

code are found in the root of the overlay structure.

Individual overlays may access any of these common data

structures or routines. Thus the overlays must have correct

addresses for these. For this reason the entire system is

dependent upon the root addresses and the complete link

process must be performed if these addresses change. Such a

complete link is referred to as a "full" link.

On the other hand, when changes are made to individual

overlay routines, these changes do not necessarily affect

other portions of the system. Overlays used by the routine

may be affected if a change in its module top occurs;

otherwise, the only output file needing relinking is the one

which was rnodif ied. This type of link is known as a

"partial" link.

A full link is, with the exception of the load

addresses used, a fairly static set of commands. There is

no "minimum command sequence." However, a partial link may

be quite short compared with the full link process. This is

where the ability to determine a minimal set of commands

pays off. If the system being produced uses ten overlay

files, and only one has changed, only that one must be

relinked (assuming that its module top does not affect the

load addresses of other overlays).

70

Construction of the Link Commands

The overlay structure is stored in the database by

means of the uses relationship. Although similar to the

calling relationship between modules, the two are not

identical. For one thing, any of the overlays may call

routines found in the root, but this information is not

needed during the construction of the link commands. In

addition, an overlay may consist of several external

procedures linked together. The calling relationships

within the overlay aren't relevant to the link. process.

Only the use by one executable segment of other overlays is

recorded by this relationship. The term executable segment

is used to encompass the root as well as the overlays.

The determination of the link commands necessary is

governed by three "rules". The fundamental rule is that an

overlay used by other executable segments must be loaded in

memory above those segments which use it. The second rule

has already been mentioned--if the root segment changes, a

full link must be performed regardless of whether or not

other segments have been modified. The third rule is

dependent upon the particular overlay manager being used and

is difficult to automatically enforce. There is sometimes a

maximum number of "active" overlays permitted by the overlay

manager. An active overlay is one which is currently

resident in memory. In the LINK-80 system with which the

author has worked, this maximum was five.

This limitation has some

breakdown of the system into

71

implications. First, the

overlays must take the limit

into account. The programmers must see to it that no more

than five overlays need to be active at one time. Second,

the following problem must be handled. For illustrative

purposes, let us assume a maximum of three active overlays.

Say that at a particular point in the system execution,

exactly three overlays are active. Say further that there

is an unused portion of memory between OVL2 and OVL3 (this

can arise because OVL3 is used

a higher module top than does

illustrated in Figure lO(a).

by other segments which have

OVL2). This situation is

Now suppose a new overlay is loaded that is logically

supposed to replace OVL3, and that it is used only by OVL2.

This allows the load address to be the top of OVL2. The new

overlay is small enough that its top is still at or below

the load address of OVL3. This is illustrated in Figure

lO(b). The overlay manager considers an overlay "active"

until it has been displaced by another overlay, so there

are apparently four active overlay areas. This event may

cause abnormal termination of program execution.

Automatic detection and correction of this problem is

not incorporated into the command construction process. As

a means to solve this problem, the system allows the user to

specify an explicit load address for an overlay. If this is

present and is higher than that derived from the module tops

of the segments which use the overlay, it is used as the

72

load address. This allows the load addresses to be set so

that the intended overlay is displaced.

Load addr
of overla

Top of
overlay 2

ess
y 3

' ,

(OS)

OVL3

(unused)

OVL2

OVLl

Root

(a)

Top of
overlay

new

(OS)

OVL3
-

new OVL

OVL2

OVLl

Root

(b)

Figure 10. Potential Overlay Problem

A preliminary step in the relinking process is thus to

determine if the root will change.

dictate that a full link be done.

If so, this fact will

Otherwise a partial link

is sufficient. The root of the program under CP/M is a file

of type "COM". If any of the object files which are used to

derive this file have changed, the roo~ will change. If a

full link is needed, stage one of the process is to link the

73

root and all overlays used only by the root. The derives

relationship is used to determine names of object files to

be linked into the root. The uses relationship is used to

determine which overlays are used by the root. Then any

overlays which are also used by other overlays are removed

from the list of overlays to be linked in stage one. Then

the command is generated in the proper form and the linker

invoked with this command. Upon completion of stage one,

the module tops are updated.

Commands for the subsequent stages are determined as

follows. The system lists all unlinked overlays which have

been used by segments linked thus far. It then eliminates

those overlays used by as yet unlinked segments. The. load

address of each overlay is then determined by taking the

maximum of the module tops of all those segments which use

that overlay. Again, if a higher load address is explicitly

specified,

method.

it overrides that determined by the preceeding

Now the command can be generated and subsequently

executed. Upon completion of each state, the module tops

are appropriately updated. This repeats until all overlays

have been linked. Upon conclusion of this process, the

highest of any of the module tops becomes the system module

top.

A partial link proceeds somewhat similarly. The root

modules must be linked with each command, so that all

overlays have access to global data and routines. In

addition, all overlays which will change (corresponding to

74

modified object files) are listed. Based upon the uses

relationships, all overlays which are directly or indirectly

used by others being linked are eliminated from the list.

This means that overlays from the lowest area are linked

first. Module tops are determined based upon information

from prior links. Now the command is produced and executed.

Upon completion of each stage, module tops are updated

and at the same time a check is made for changes which will

affect the load addresses of any unmodified overlays. If

any.load addresses are changed, the affected files must be

added to the list of files to be relinked. The process is

repeated until all modified files have been linked. One

additional consideration is necessary for a language such as

PLI-80. This language uses available memory for a run-time

stack and for dynamically allocated storage. Because of

this, the root module is "backpatched" with the system

module top by the linker. Consequently, the last link

operation performed must contain the module with the highest

top of any in the system. This is true anyway for full

links; the system must ensure that it is done for partial

links.

Data Summary

In conclusion, a summary of the data required to

support the functions of the recompilation and relinking

subsystem is presented. Figure 11 lists this information.

The modification flags are used to determine which files

75

have changed. The module top information is collected and

used during the link process. The load addresses are those

explicitly specified by the user as described earlier. In

most cases, no explicit load address will be present. The

derives relationships each have a corresponding command.

The exceptions are relationships associated with the link

process. For these, an indication that relinking must be

performed is stored in place of a command. The uses

relationship was described earlier. Default compiler and

linker options are also stored. A final type of information

is the compilation status flag, which is used to communicate

with the source file access subsystem.

General Information

File names
Modification flags
Compilation status flags

Derivation Information

Derives relationship
Derivation commands

Overlay Structure

Uses relationship
Explicit load addresses
Module tops
System module top

Other Data

Default compile and link options

Figure 11. Recompilation and Relinking Data

76

CHAPTER V

ERROR REPORTING AND TRACKING SUBSYSTEM

Identifying Error Report Responsibility

The job of recording and tracking error reports and

change requests is handled by the error reporting and

tracking subsystem. The primary purpose of this subsystem

is to see that when an error is reported or a change is

requested, one of the team members follows through to make

the necessary modifications or corrections. So when an

error report is entered on the system, one of the team

members must be notified so that he can take action upon it.

A key question which must first be answered is how should

the job of identifying the proper person to whom to refer

each report be done.

One approach which could be taken is to require that

the individual entering the report supply the name of the

team member who should be responsible for dealing with the

error. This is certainly straightforward as far as the

Software Management System is concerned. The team member

indicated can be notified when he next uses the system.

However, an assumption is made with this approach which may

not always be valid. That is the assumption that the

77

78

testers will be able to identify the correct individual.

This may be the case if the tester is a team member who has

been with the project for some time; this will probably not

be the case if the tester is an outside party brought in for

the purpose of finding errors. It may be possible to

provide testers with a list of module names or functional

areas and the names of team members responsible for each.

This, along with the name of a person to whom to give all

reports which don't fit into one of the specified

categories, will allow the testers to provide the

information the system needs. Another possible approach is

to give all error reports to a single individual (such as

the team leader) who can then divide the work appropriately.

This is a flexible approach but means added work for this

one person.

of progress

ability to

However, it also provides better "visibility"

to the project leader. This can aid in the

see if the project is on schedule and to

determine if productivity goals are being met.

Given the proper information as input, it is possible

to automate the identification of the team member

responsible for each error report. The team may be

organized so that each module is "owned" by a particular

team member. That is, the owner of a module has primary

responsibility for that portion of code. If this

"ownership" information is available in the system database,

the one making an error report can identify a module and the

system can associate the report with the responsible person.

79

Of course, the tester may not be familiar with the

underlying modular organization of the project, and even if

he is, it may not be clear which module to identify as the

culprit. In fact an error may be caused as the result of

some complex interaction between a number of modules, so

that there is no single module responsible.

Another difficulty with this approach is that the

tester's view of a system may be quite different than the

actual modular organization. The user sees various

functions which may or may not correspond to particular

divisions in the code. A possibility that is used by some

groups is to assign functional responsibilities to team

members. The system then obtains information which

indicates the location of the problem in terms of function

when the error report is entered. This seems to be a more

natural approach for those entering the reports. Even this

does not solve all difficulties, however. Even in a well

structured system, there is room for a great deal of

confusion as to how to classify a. problem. For instance,

suppose the project being developed has three primary

functional areas. In addition, there are several "utility"

functions, such as one to obtain user input, one to display

information, and perhaps a set of editing functions. If an

error is noted which occurs as the user is providing input

for the first functional area, does that error originate in

the user input utility or in functional area one? Perhaps

only further investigation by one of the team members can

really answer the question.

80

This latter approach to the problem--that of

maintaining information on functional areas of

responsibility and having the tester specify the location of

the problem in terms of function--seems to give the best

balance of practicality and useability. The tester

indicates the area to whic·h the error report applies, and

the system determines the individual to whom to give the

report. This is the method used by the error reporting

subsystem.

Whatever the approach to this problem, there will most

probably be times that a user decides either that a

particular error report does not "belong" to him (it is not

in his area of responsibility) or that for some reason the

problem should be handled by another person. This could be

due to the need to balance

or due to the abilities

the work load among team members

of the individuals involved.

Because of this, there needs to be some way of "forwarding"

an error report to a new person. In this way, even if the

initial decision about assigning a report to a person is

incorrect, there is a means of getting the report to the

right person.

Tracking

accomplished

The pending

Status Transitions

of error

by placing

reports

them in

within the

four different

status indicates that no action has

system is

statuses.

yet been

taken on the report. l!! progress means that the error is

81

currently being dealt with. Once the programmer is

satisfied that the problem has been fixed and is ready for

testing, the error report is moves to the completed status.

Closed indicates that the testing was indeed successful and

that no further action is required on this particular

problem. A report is initially placed in the pending

status, and from there usually moves successively to in

progress, then to completed, and finally, to closed. Three

other special transitions may also occur.

transition from in progress back to pending,

These are a

a transition

from completed back to pending, and a transition from

pending to closed. Figure 12 illustrates the transitions

possible between the various statuses.

~e·
(pendinit:.__€ progress)-b~ completed d~(closed)

~~~~~f ~ 

a. Check-out for correction 
b. Report ready for testing 
c. Report referred to another team member 
d. Successful completion of testing 
e. Test failure 
f. Decision to take no action 

Figure 12. Error Report Status Transitions 



82 

The transition from pending to in progress can be 

handled in one of two ways; either the status can be 

changed as soon as the first file is checked out in order to 

satisfy a particular error report, or upon explicit 

indication by the user. In the first case, the user must 

specifically state when checking out a file which error 

reports are to be corrected. This approach has the 

advantage that it is automatic and it can be implemented 

fairly easily. The latter approach would allow the system 

to reflect the state of the project more accurately, because 

there is usually examination, testing, analysis and redesign 

work done well in advance of any actual change. So work on 

an error report actually begins prior to the modification of 

files. However, saying that a correction is not in progress 

until a file is actually being modified seems a satisfactory 

choice and does allow an automatic transition. 

the error reporting subsystem handles it. 

This is how 

The transition from in progress to completed could 

similarly be made when all files which were checked out to 

satisfy this particular report have been checked in. 

However, files which have not yet been checked out may also 

need modification, and so the system cannot really know that 

the change is complete. This transition must be indicated 

by the user. It is possible that the user has checked out a 

file or files intending to correct a certain error report 

but for one reason or another has decided that another team 

member could better handle the job. He ma·y either cancel 



83 

the check-out or check in the modified file with other 

corrections he has made. In either case he can then specify 

that the report be moved back into the pending status. 

Once an error report has reached the completed status, 

it must be tested. When the tester is satisfied that a 

particular error has been corrected, he can indicate that 

the corresponding report is now closed. But what if the 

tests are not successful? It is possible that the observed 

shortcoming is still present, and that the modification had 

no effect on it. It is also possible that in correcting one 

problem, another problem has been created. In the first 

case, the tester can indicate that the original report is to 

be moved back to the pending status. In the second case a 

more reasonable action is to close the first error report 

and open a new error report on the new problem. So two 

conditions indicate a transition from completed to closed: 

successful results from testing and unsuccessful test 

results which point to a new problem. Only in the case in 

which the original error has not been corrected should the 

transition from completed back to pending be made. In this 

situation, the programmer responsible is informed of this 

change in status when he next uses the system. 

A final special case arises when for some reason the 

decision is made to ignore a particular error report. In 

this case we wish to bypass the intermediate statuses and 

move the report directly from pending to closed. This may 

be because the error report itself is incorrect; it may also 



84 

be that the solution to the discrepancy between requirements 

and operation is to change the requirements. Another 

possible reason for moving a report directly from pending to 

closed is that a request for a change has been made but the 

group (or team leader) decides that the change should not be 

made now. 

History of Error Reports 

Once error reports have been moved to the closed 

status, no further action need be taken to deal with them. 

They no longer play an active role in the development 

process. For this reason it may seem at first that they 

should be purged from the system database. However, there 

are good reasons for keeping this information available. 

Information from one project indicating the types of errors 

found and their frequency could prove helpful in learning 

what types of problems to guard against in a second project. 

Information about the length of time between opening and 

closing of error reports may suggest need for changes in 

team organization or in the management of the project. 

Other uses can no doubt be suggested for this data as well. 

So closed error reports are kept for these historical 

purposes. 

While such information should be saved for later 

analysis, its accumulation is somewhat peripheral to the 

main task of the Software Management System. In addition, 

the volume of data represented by the error reports and 



85 

change requests for a lengthy project may be very 

substantial. Consequently, some means of archiving the data 

is needed. That is, the system must provide a way to move 

"old" data to a backup medium of storage and clear the 

records from the database. Any available backup medium· 

could be used for this purpose. One possible choice is to 

use floppy diskettes, as the system is assumed to have 

floppy disk drives; a better choice if available is digital 

magnetic tape because of its reliability compared to the 

diskettes. Another possible archival medium is that of 

printed listings. This choice has the disadvantage that it 

is no longer in machine readable form; but if the reports 

are not likely to be needed in this form, this is not a 

serious drawback. 

Archiving may remove all closed reports to the backup 

medium, or it may remove only those reports which have been 

closed for a certain length of time. The date closed is 

compared with a cutoff date to determine which reports 

should be archived. The choice of the cutoff date is left 

to the user. 

Summary Reports 

Easy access to the error reporting subsystem 

information is provided by means of the summary reports. A 

programmer may wish to know what future tasks need to be 

done, and for this he may wish a listing of all pending 

error reports which "belong" to him. Or perhaps he wishes a 



86 

reminder of what corrections are currently being made, and 

so desires a list of his error reports which are in 

progress. Reports may be requested for the completed and 

closed statuses as well (the report for closed error reports 

is of course dependent on whether or not these have been 

archived yet). So one parameter for generation of summary 

reports is the status indicator for the error reports 

desired. 

A second parameter used in narrowing the scope of these 

reports is whether the report is for a single team member or 

for the whole project. Reports for the whole project can be 

used to give the team leader a feel for the progress being 

made, possible problem areas, and other information useful 

for managing the team. These reports also help give 

"visibility" to the work being done. The third parameter 

useful for specializing the reports is a functional area 

parameter. This can be used to gather all reports 

pertaining to a particular portion of the system so that the 

necessary corrections can be made at the same time. 

Additional Aspects of the System 

Notification Mechanism 

The system communicates to the users via the 

notification mechanism, so it is a quite important portion 

of the system. There are four types of notification items: 

rejected check-in attempts, cancelled check-outs, new error 



87 

reports, and completed error reports. A rejected check-in 

needs to be dealt with by the individual who last modified 

the file, and so this person is the one informed of the 

rejection. Each file modification is associated with a 

particular check-out record, and it is this record which 

must be uniquely identified. The check-out key performs 

this identification function. The check-out record then 

indicates the individual to be informed of the problem. 

Similarly, a cancelled check-out is associated with a unique 

check-out record which then points to the individual to be 

notified. However, there is no need for notification if the 

individual who cancelled the check-out is the same as the 

one who had the file out. 

The error reports are each uniquely identified by an 

error report number. The error report contains an 

indication of the functional area to which it applies. The 

database holds information which links these areas with the 

individuals responsible. This information is used to 

determine whom to notify. 

The final type of item, notification of completed error 

reports, may be handled in at least two ways. If one 

individual is responsible for testing, he can of course be 

notified automatically. It may ba though that all of the 

team members share some responsibility for testing. If each 

one has a particular subset of the project to examine, we 

could ask for the name of the team member to notify as each 

error report is completed, and notify that individual of 



88 

just the reports which affect his particular subset. On the 

other hand, it might be that the responsibility is not 

divided and that the team members choose what to test; in 

this case we could allow the users to request a listing of 

all error reports ready for testing. This last possibility 

seems an undesirable way to organize the team, as there 

would undoubtably be portions of the project which would not 

be tested as thoroughly as one would like. We will assume 

that there is a specific team member to notify for each 

error report. 

The system may have to notify a user of several error 

reports at one time. In order to make the information 

manageable, the system displays only the unique report 

identification number, the name of the module or subsystem 

in question, and a summary of the error. The user can later 

retrieve a complete error report, probably producing a 

printed copy. The notifications of corrected errors also 

reference error reports, and so the same type of summary 

display is used for them as well. The notification of 

check-in problems has only one item of information for each 

message, and that is the name of the file rejected. The 

only reason thi~ can occur is that the compilation attempt 

failed so the check-in was not completed. 

Another item to consider concerning the notification 

mechanism is how to control its display. That is, how many 

times should the person see these items? A simple choice 

would be to say that he is notified only once, and that 



89 

thereafter he must explicitly request the information. 

Perhaps a better method is to have a "reminder" for him 

until he actually looks at the complete report or takes 

action for a rejected check-in. No action is necessary for 

cancelled check-outs, and the user can be reminded of the 

cancellation if he does try to check in the file without 

rechecking it. 

There is a certain amount of indirection necessary in 

determining whom to notify, especially for the error 

reports. Because a search for notices will need to be made 

each time someone logs onto the system, it is important that 

excessive search time be avoided. To lessen search time, 

each notification item could ·contain the name of the team 

member to be notified. The question of whether to store 

team member name is an implementation detail which will not 

be addressed further in this thesis. 

System Utilities 

The system provides convenient access to project 

information contained in the database. This access is set 

up with the structure of the information used by the 

Software Management System in mind. The fundamental project 

information can be initialized and modified. This includes 

such items as: project name, file names, the uses 

relationships, the derivation relationships, the derivation 

commands, and explicit load addresses. Of course, the 

information used only internally by the system is not 

accessible through this utility. 



90 

The other "utility" function is that which provides 

access to system parameters. These are such things as: 

location of files (by type): default compiler and linker 

options, and rename types (e.g. "OLD" source files, and 

"ORL" for old relocatable object files). 

Data Summary 

Figure 13 contains a summary of data used by the error 

reporting and tracking subsystem. The error report number 

is assigned by the system to new error reports as they are 

entered. An integral number is used in this case because 

the users will need to reference these in order to identify 

error reports as reasons for checking out files. For this 

reason, ascending numbers seem preferable to something like 

a time/date identifier. 

The name of the team member to whom to forward the 

report can be filled in initially by the system, based on 

functional responsibilities. If the report needs to be 

forwarded, the user can then change this field. When this 

occurs, a notification item is entered as for a new report. 

The status field is used to track progress in correcting the 

error. When a team member indicates that a particular error 

report is completed, he eriters the description of the 

correction made. The date closed is recorded by the system 

when the tester indicates that a report is to be closed. 

Figure 14 lists other data used by the system. The 

notification items a~e triples consisting of type, person, 



91 

and either error report number or check-out key depending on 

notification type. General project information needed 

includes project name, team member names, and functional 

responsibility information. File location information 

consists of file type/drive name pairs. The remaining 

information should be self-explanatory. 



Error Reoort Record 

Error report number 
Summary of error 
Description of error 
Functional area 
Severity level 
Date of report 
Reporter 
Team member to whom to forward report 
Status 
Description of correction 
Date closed 

Figure 13. Error Reporting Subsystem Data 

Notification Items 

Error report notices 
Check-out notices 

General Project Data 

Project name 
Team member names 
Functional area responsibilities 

System Parameters 

File locations 
Old so~rce rename type 
Old object rename type 
Root file type 
Default compile options 
Default link options 

Figure 14. Other Data Used by the System 

92 



CHAPTER VI 

SUMMARY, CONCLUSIONS, AND 

SUGGESTIONS FOR 

FUTURE WORK 

Summary and Conclusions 

Programming tools and programming environments aid in 

the process of software development. A number of systems 

have addressed the problems of development of software for 

medium and large computer systems; similar solutions are 

needed for microcomputer software development. Software 

development using microcomputer workstations is a viable 

approach to the task of developing program products for 

microcomputer systems. There is a need for software 

management aids suitable for such an environment. A 

Software Management System has been presented which 

incorporates aids for the management of source files, for 

the management of the integration task, and for recording 

and tracking of error reports. 

The source file access control subsystem has the job of 

maintaining the integrity of the source files. Parallel 

updates to code are prevented by requiring check-out of 

files prior to modification. A check-out key is used to 

93 



94 

ensure that the file being checked in is an updated version 

of the copy which was checked out. Syntactic correctness of 

program source files is assured by placing modified files in 

a provisional status until compilation has been successfully 

completed. 

maintained. 

information 

In addition, a history of check-outs is 

Useful reports can be produced from the 

gathered by this subsystem. 

The recompilation and relinking subsystem uses the 

derivation relationships to determine what action is to be 

taken when a source file changes. By performing the 

derivation of object code by compiling the source, it 

ensures consistency between these. Success or failure of 

this is then determined and communicated with the source 

file access control subsystem, so that files can be removed 

from the provisional check-in status. These types of 

derivations are performed incrementally, as the files are 

checked in. In contrast, the relinking of the system is 

"batched" to avoid redundant operations. The automation of 

this task frees the programmers of a burdensome task and 

also guarantees that it is done in a consistent, accurate 

manner. An additional advantage of the automation is that 

it provides a convenient way to manage the linking of a 

system with a complex overlay structure. The overlay 

structure is recorded in the database by means of the uses 

relationship. 

The error reporting and tracking facility provides a 

structured communications medium between product developers 



95 

and product testers. It supports the idea of functional 

areas of responsibility and uses this information to aid in 

directing error reports to the right person. In addition, 

the ability to track progress in dealing with the reports 

provides the team leadership with information very useful 

for the management of the project. The system also 

maintains a history of errors reported and of the time taken 

to correct them. The reporting capabilities of this 

subsystem and those of the source file access subsystem also 

provide useful help to programmers as well as management. 

Suggestions for Future Work 

The implementation of the Software Management S~stem is 

a starting point for future work. Several questions must be 

addressed as it is implemented. 

that of how to issue commands 

One interesting question is 

from within the program and 

then regain control after the completion 

(such a facility is needed for the 

relinking subsystem). 

of an operation 

recompilation and 

Another question is what sort of shape should the user 

interface take? A fundamental issue concerns the method by 

which the user indicates what operations the system is to 

perform. The two principle alternatives are to make the 

system menu driven or to make it command driven. The menu 

approach makes all possible options visible to the user, but 

he may need to traverse a hierarchy of menus to get to the 

desired option. In a command driven system, the user must 



96 

be able to remember the available options and the syntax for 

the commands. On the other hand, the user can directly 

enter his commands and can shift from one type of action to 

another quite readily. The menu-driven approach seems more 

suitable for novice users, and perhaps also for experienced 

users when they desire to invoke a seldom-used feature of 

the system. The command-driven approach seems most suitable 

for those who are experienced in the use of the system. By 

adding the ability to move directly between options to the 

menu approach, we can have both the ease of use for the 

experienced user and the information needed for the novice. 

This approach sounds promising. Perhaps additional insight 

can be gained from the field of human factors engineering. 

Once this decision is made, additional details must be 

worked out. For instance, if a menu-driven approach is 

taken, what options are available from each menu and what 

sort of menu hierarchy is to be used? Alternatively, for 

the command driven approach, what are the commands? What is 

the syntax to be used? 

Additional details of the man-machine interaction must 

be determined as well. 

request several items 

At various points 

from the user at 

the system will 

one time. For 

instance, when entering an error report, the user is asked 

for a summary, a full description of the error, the severity 

of the error, the functional area, and so forth. It would 

be extremely frustrating to enter one field and proceed to 

the next, then realize that a mistake was made in the first 



97 

if no means were available for backing up and correcting the 

error. So in any situation in which multiple fields are 

entered on the screen, the user should be allowed to edit 

any of them until the information is correct. Another type 

of situation to avoid is that of requiring the user to 

repeatedly select a certain option in order to perform that 

task on different entities. So, for instance, when the user 

elects to check out files, it would be nice to allow him to 

check out as many as desired before proceeding to another 

option. 

Another implementation detail is the selection of a 

database system to be embedded. Existing systems could be 

evaluated for suitability for this application. Some 

microcomputer database products are intended to be self

contained. They have an internal language and lack ability 

to interface with existing 

to be embedded within other 

languages. Others are intended 

program products. The systems 

could then be evaluated for efficiency and performance as 

well. 

There are several ideas for enhancements to the system 

which come to mind. According to Pearson [26], provision 

for multiple version handling and configuration management 

is one of the more important facilities for any large-scale 

software development task. Providing such facilities would 

involve fairly extensive changes to both the source file 

access control and the recompilation and relinking 

subsystem. 



98 

Another enhancement which should prove very useful to a 

software development team is to expand the database to 

include information on calling structure of the program, the 

variable usage within the routines, and cross-reference 

information. Such a facility along with a corresponding 

question answering ability would aid not only the 

development group but would also provide useful 

documentation for the maintenance phase. 

A third possible enhancement could take a number of 

forms. This extension would be to provide support for the 

early phases of software development. A requirements 

language or some type of design support tool would be a step 

in this direction .. 

This paper has presented a description of a system to 

support software development activities for a microcomputer 

environment. It is hoped that this work will stimulate 

other investigation in this area, and that the developers of 

microcomputer software will be provided with a more 

productive environment in which to operate. 



SELECTED BIBLIOGRAPHY 

[ l] Bauer, H. A. and Birchall, R. H. "Managing Large Scale 
Software Development with an Automated Change 
Control System." Proceedings of the Second 
International Computer Software and Apprications 
Conference (Nov. 13-16, 1978), 13-18. 

[ 2] Bell, T. E., Bixler, D. C., and Dyer, M. E. "An 
Extendable Approach to Computer-Aided Software 
Requirements Engineering." IEEE Transactions on 
Software Engineering, Vol. SE-3, No.-Y 
(Jan. 1977), 49-60. 

[ 3] Bianchi, M. H. and Wood, J. L. "A User's Viewpoint on 
the Programmer's.workbench." Proceedings of the 
Second International Conference on Software 
Engineering (Oct. 13-15, 1976), 193-199. 

[ 4] Bratman, H. and Court, T. "The Software Factory." 
Computer, Vol. 8, No. 5 (May 1975), 28-37. 

[ 5] Brooks, F. P. The Mythical Man-Month: Essays on 
Software Engineering, Addison-Wesley Publishing 
Co., Reading, Massachusetts (1975). 

[ 6] Campbell, R. H. and Richards, P. G. "SAGA: A System to 
Automate the Management of Software Production." 
AFIPS Conference Proceedings (May 4-7, 1981), 
231-234. 

[ 7] Chen, P. P. 
Unified 
Database 
9-36. 

"The Entity-Relationship Model--Towards a 
View of Data." ACM Transactions on 
Systems, Vol. 1, No. 1 (March 1976}, 

[ 8] Cristofor, E., Wendt, T. A., and Wonsiewicz, B. C. 
"Source Control + Tools = Stable Systems." 
Proceedings of ~ Fourth International Computer 
Software and Applications Conference (Oct. 27-31, 
1980), 527-532. 

[ 9] Digital Research. LINK-80 Operator's Guide, Pacific 
Grove, California (1980). 

99 



100 

[10] Digital Research. PL/I-80 ATplications Guide, Pacific 
Grove, California (1980 . 

[11] Digital Research. PL/I-80 Language Manual, Pacific 
Grove, California (1980). 

[12] Dolotta, T. A. and Mashey, J. R. "An Introduction to 
the Programmer's.Workbench." Proceedings of the 
Second International Conference on Software 
Engineering (Oct. 13-15, 1976), 164-168. 

[ 13] Feldman, S. I. "MAKE - A Program for Maintaining 
Computer Programs." Software Practice and 
Experience, Vol. 9, No. 4 (April I979), 255-265:""""" 

[14] Gillett, W. D. and Pollack, S. v. An Introduction to 
Engineered Software, Holt, Rinehart, and Winsto~ 
New York (1982), 3. 

[15] Gutz, S., Wasserman, A. I., and Spier, M. 
Development Systems for the 
Programmer." Computer, Vol. 
(April 1981) 1 45-53. 

J. "Personal 
Professional 

14, No. 4 

[16] Haberman, A. N. "System Development Environments." in 
Tools and Notions for Program Construction, Neel, 
D. (ea:-J, Cambridge University Press, New York 
(1982)' 247-272. 

[17] Herschman, D. PLINK-II User's Manual, Li f.eboa t 
Associates, New York (1981), 21-27. 

[18] IEEE. "Tools Working Group." Proceedings of the 23rd 
IEEE Computer Society International Conference 
(Sept. 15-17, 1981), 353-359. 

[19] Kernigan, B. w. and Mashey, J. R. "The UNIX Programming 
Environment." Software Practice and 
Experience, Vol. 9, No. 1 (Ja~. 1979), 1-15. 

[20] Knobe, K. "Early Experience with MONSTR: a Software 
Maintenance Management Tool." Proceedings of the 
23rd IEEE Computer Society InternatTonaI 
Conference (Sept. 15-17, 1981), 214-218. 

[21] Knudsen, D. B., Barofsky, A., and Satz, L. R. "A 
Modification Request Control System." 
Proceedings of the Second International 
Conference on Software Engineering 
(Oct. 13-15, 19761", 187-192. 

[22] Lanzano, B. C. "Loader Standardization for Overlay 
Programs." Communications of the ACM, Vol. 12, 
No. 10 (Oct. 1969), 541-550-. - -



101 

[23] Lemaitre, M., Lemoine, M., and Zanon, G. "SPRAC: A 
Computer Assisted Software Development System." 
in Tools and Notions for Program Construction, 
Neel, D. (ed.), Cambridge University Press, New 
York (1982), 329-345. 

[24] McMahon, E. M. "A JOVIAL Programming Support 
Environment." AFIPS Conference Proceedings (June 
7-10, 1982), 319-325. 

[25] Pankhurst, R. J. "Program Overlay Techniques." 
Communications of the ACM, Vol. 11, No. 2 (Feb. 
1968)' 119-125 .- -- -

[26] Pearson, D. J. "The Use and Abuse of a Software 
Engineering System." AFIPS Conference 
Proceedings (June 4-7, 1979), 1029-1035. 

[27] Reifer, D. J. and Trattner, S. "A Glossary of Software 
Tools and T'echniques." Computer, Vol. 10, No. 7 
(July 1977), 52-60. 

[28] Rin, R. A. "An Interactive Applications Development 
System and Support Environment." in Automated 
·Tools for Information System Design, 
Schneider, H.-J., and Wasserman, A. I. (eds.), 
North-Holland Publishing Co., Amsterdam (1982}, 
177-213. 

[29] Rochkind, M. J. "The Source Code Control System." IEEE 
Transactions on Software Engineering, Vol. SE-1, 
No. 4 (Dec. 1975), 364-370. 

[30] STONEMAN. "Requirements for ADA Programming Support 
Environments", Defense Advanced Research Projects 
Agency, Arlington, Virginia (1980}. 

[31] Stuebing, H. G. "A Modern Facility for Software 
Production and Maintenance." Proceedings of the 
Fourth International Computer Software- and 
Applications Conference (Oct. 27-31, 198~ 
407-418. 

[32] Teichroew, D. and Hershey, E. A. "PSL/PSA: A Computer 
Aided Technique for Structured Documentation and 
Analysis of Information Processing Systems." 
IEEE Transactions on Software Engineering, 
Vol. SE-3, No. 1 (Jan. 1977), 41-48. 

[33] Teitelbaum, T. and Reps, T. "The Cornell Program 
Synthesizer: a Syntax Directed Programming 
Environment." Communications of the ACM, Vol. 
24, No. 9 {Sept. 1981), 563-573-. --



[34] Teitelman, w. and Masinter, 
Programming Environment." 
No. 4 (April 1981), 25-33. 

L. ''The 
Computer, 

102 

Interlisp 
Vol. 14, 

[35] Ullman, J. D. Principles of Database Slstems, Computer 
Science Press, Potomac, Maryland 1980), 3,10-17. 

[36] Waters, R. c. "The Programmer's Apprentice: Knowledge 
Based Program Editing." IEEE Transactions £!}_ 
Software Engineering, Vol. SE-8, No. 1 
(Jan. 1982), 1-12. 

[37] Willis, R. "DAS - An Automated System to Support Design 
Analysis." in Tutorial: Automated Tools for 
Software Engineering, Miller, E. (ed.), IEEE 
Computer Society Press, New York (1979), 105-111. 



I 

APPENDIX 

SCHEME FOR THE SOFTWARE MANAGEMENT 

SYSTEM DATABASE 

A brief discussion of the scheme for the system 

database is found in what follows. The term scheme is used 

here to mean the conceptual plan for the organization of the 

information (see Ullman [35]). An entity-relationship 

diagram (ERD) is used to illustrate that organization. 

The entity-relationship diagram is a graphical 

representation of the organization of a database. It was 

first used by Chen [7]. An entity is something which can be 

uniquely identified. A relationship is an association 

between entities. In an ERD, it is not particular entities 

which are represented but rather entity sets. Similarly, 

the diagram illustrates relationship sets which exist 

between the entity sets. Rectangles are used to indicate 

entity sets; attributes of the entities are shown as ovals 

connected to those rectangles. The relationships are 

represented by diamond-shaped figures with edges connecting 

them with the associated entity sets. 

For the sake of clarity, a somewhat simplified 

entity-relationship diagram of the system database is shown 

in Figure 15. The primary si~plif ication is the omission of 

most of the attributes. 

103 



104 

The meaning of the contains relationship is hopefully 

obvious. The developers relationship is intended to include 

testers as well as the designers and programmers for the 

project. It should be mentioned that in the case in which 

there is only one project using the Software Management 

System, both of these relationships can be implicit. Each 

of the team members is responsible for various functional 

areas. 

The files entity set includes both source files and 

intermediate files derived from the source (such as object 

files). Now while ideally the actual contents of the files 

would form a part of the database, the most likely way to 

implement this would be to store only the filenames and 

types in the database. The contents would be stored using 

the normal CP/M file mechanisms. This allows the system the 

freedom to use existing compilers and other tools without 

modification. The executable segments are also files but 

are represented by a different entity set because we wish to 

store slightly different information regarding them. In 

addition, the uses relationship applies only to executable 

segments. The derives relationship is used both as a 

recursive relationship within the files entity set and to 

connect the file and executable segment sets. 

A number of the relationships illustrated in the 

diagram are not actually considered as separate items but as 

one of the fields of an entity set. For both the file out 

and user out relationships, a field is found in the 



check-out record which indicates the 

member of the corresponding entity set. 

105 

association with a 

The reason for this 

is that when these records are archived, this information 

should be stored as well, and we wish to keep it together in 

the database. Similarly, the cancels relationship is stored 

in the cancellation record, and both the reported and the 

deficiency relationships are indicated by fields found in 

the error report. 

The notification items are not illustrated in the 

diagram. These items connect either an error report or a 

check-out with a team member who is to be notified of some 

event. Nor are the system parameters shown. These 

parameters form a rather diverse group of individual items. 

Because of their nature, there may be some question as to 

whether they should be located in the system database or 

stored in some other way. Table II lists the entities and 

the corresponding fields; Table III lists the relationships, 

the entity sets connected, and fields for those which are to 

be represented separately from the associated entity sets. 



/~ fxecutahle 
segment 

---------

Cancellation 
record 

Figure 15. 

Project 

Entity-Relationship Diagram 

r-----tfunctional 
area 

I-' 
0 
O"\ 



107 

TABLE II 

ENTITY SETS IN THE SYSTEM DATABASE 

Entity sets 

Project 

Team member 

Functional area 

File 

Executable_segment 

Check-out record 

Cancellation record 

Error report 

Error report notice 

Check-out notice 

Fields 

(project_name) 

(member_name) 

(area_name) 

(filename,type,modification flag, 
compilation_status) -

(segment name,type,load address, 
module top) -

(check-out key,filename,type, 
member_name,reason,date_out,date_in) 

(check-out key,canceller,reason,date) 

(report number,summary,description, 
area-name,severity,reporter,date, 
correction,status,date_closed) 

(type,member_name,report_number) 

(type,member_name,check-out_key) 



Relationships 

Contains 

Developers 

File out 

User out 

Corrects 

Cancels 

Reported 

Referred 

Deficiency 

Derives. 

[Derives] 

Uses 

TABLE III 

RELATIONSHIPS IN THE SYSTEM DATABASE 

Related Entities 

Project ++ files 

Project ++ team members 

Check-out ++ file 

Check-out ++ team 

Check-out ++ error report 

Cancellation ++ check-out 

Error report ++ team member 

Error report ++ team member 

Error report ++ functional area 

File ++ file 

File ++ executable segment 

Executable segment ++ execut
able segment 

Fields 

(Project_name, file_name, type) 

(Project_name, member name) 

(Check-out_key, report_number) 

(Report_number, member name) 

(Source name, source type, derived name, 
derived_type, command) -

(Source name, source type, derived name, 
derived_type, [link]) -

(File name, type, used name, type) 
I-' 
0 
CX> 



VITA""2-

John Charles Warren 

Candidate for the Degree of 

Master of Science 

Thesis: A SOFTWARE DEVELOPMENT SUPPORT 
SYSTEM FOR A MICROCOMPUTER 
ENVIRONMENT 

Major Field: Computing and Information Sciences 

Biographical: 

Personal Data: Born in Dallas, Texas, January 18, 
1953, the son of Mr. and Mrs. James D. Warren. 

Education·: Graduated from Norman High School, Norman, 
Oklahoma, in May, 1971; received Bachelor of Music 
Education degree from the University of Oklahoma, 
Norman, Oklahoma, in December, 1975; received 
Bachelor of Science degree in Mathematics from the 
University of Oklahoma in July, 1976; completed 
requirements for the Master of Science degree at 
Oklahoma State University, Stillwater, Oklahoma, 
in July, 1983. 

Professional Experience: Graduate teaching assistant, 
Department of Computing and Information Sciences; 
Oklahoma State University, Stillwater, Oklahoma, 
August, 1980 to May, 1981. Applications 
Programmer, Time Management Software, Stillwater, 
Oklahoma, May 1981 to May 1983. Member of ACM 
since 1981. 


