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CHAPTER I 

INTRODUCTION 

Today, Robotics is one of the hottest topics in the United States. 

People, especially engineers and scientists, are talking about robots 

almost everywhere at any time. Economic experts believe that an indus

trial robot is one of the major advancements in improving the U.S. 

productivity and may provide an avenue to America to survive from 

current economic depression. 

The Robot Institute of America (RIA) defines a robot as a reprogram

mable multi-functional manipulator designed to move materials, parts, 

tools, or specialized devices through variable programmed motions for 

the performance of a variety of tasks [28]. 

Japan is the only country to officially define a robot as a 

mechanical system which has flexible motion functions analogous to the 

motion functions of living organisms or combines such motion functions 

with intelligent functions, and which acts in response to the human will. 

In this context, intelligent functions mean the ability to perfonn at 

least one of the following: judgement, recognition, adaptation or 

learning [34]. 

However, from the viewpoint of applied mechanics [24] a robot or 

manipulator is usually defined as an open-loop chain of binary links as 

shown in Figure 1, where every link has one degree-of-freedom (DOF) 

relative to each of its neighbors. One end of the chain is fixed to the 
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ground while the other end is free to move in the space. In this report, 

we will adopt this definition throughout this study. 

1.1 Background Review 

The origin of mechanical manipulators in America can be traced to 

the servoed electrical-powered teleoperator developed by Argonne National 

Laboratory in 1947 for the purpose of handling radio-active materials · 

[28]. This system is essentially a "master.;.slave" manipulator which 

could duplicate the hand motions of a person stationed at a remote site. 

Thirteen years later, in 1960, George Devol demonstrated the first indus

trial robot under the teaching mode. Since then the manipulator could 

be taught to perform any simple job by driving it by hand through the 

sequence of task positions, which were recorded in memory. Task 

execution consisted in replaying these recorded positions by servoing 

the individual joint axes of the robot. 

Pieper [19], in 1968, guided a programmable computer-controlled 

manipulator from an initial position to a final position through a· space 

containing obstacles by using a heuristic control algorithm and 4 x 4 

transformation matrix to map hand coordinates to joint coordinates. 

Almost at the same time of Pieper's finishing his work, Whitney [32] 

initiated the idea "resolved motion rate control" and found that the 

relatinship between the rate of hand coordinates and that of joint 

coordinates is linear. Through his work, an operator of a mechanical 

manipulator can, in real time, command motion control rates of the 

arm's hand along coordinates axes which are convenient and visible to 

the operator. 
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Paul [16}, in 1975, proposed a preplanned path control scheme: if 

the traveling path of a manipulator is preplanned, then one knows exact

ly the values of desired position, linear velocity, and linear accel

eration of the hand with respect to the fixed base coordinates on the 

entire path. In his scheme, paths were made up of straight line 

segments connected by smooth transitions with controlled acceleration. 

Luh [12] combined the idea of "resolved motion rate control 11 and "pre

planned path control" and proposed a "resolved acceleration control" 

algorithm in which acceleration program of an end-effector is specified 

along the path. 

However, in Paul's and Luh's control schemes, the hand passes 

approximately through the presecribed points with certain error. 

Milenkovic [14] proposed another path control scheme using a special 

interpolation technique in which the hand can be driven continuously 

and smoothly to pass exactly through those prescribed points. He also 

pointed out that real-time processing for a continuous path control is 

important due to the fact that far more control data will be generated 

and the necessary processing rate is higher than that called for in 

point-to-point operation. The "inverse problem", is encountered when

ever converting position, orientation, velocity, acceleration, or force 

in hand coordinates into local joint coordinates, and was a bottle-neck 

for real-time control of robots. In the past five years, many invest

igations were conducted by Paul, Luh, Walker, Vokubratovic, Hollerbach 

[8], and Silver [25] on the efficiency of solving the inverse problem. 

Finally, Silver concluded that the method (Newton-Euler formulation) 

presented by Luh, Walker and Paul [12], in practice, is the most 

efficient. Thus far, there seems to be little difficulty in guiding a 
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robot hand to move along a given, or preplanned path in real time. 

Furthennore, Luh [13] and Vokubratovic [31], respectively, presented the 

methodology of finding ·the optimal velocity distribution along a given 

path. Luh applied the modified 11method of approximate programming (MAP) 11 

to obtain a time schedule of velocity and accleration along the path 

such that the traveling time is minimal. On the other hand, Vokubrat

ovic indicated that due to the complexity and nonlinear dynamics of 

a robot system it is difficult to apply classical optimal theory to 

solve optimization problans for a robot. Hence, 11 Dynamic Programming 11 

was applied in his algorithm to detennine the optimal velocity distrib

ution along a given path for a 3R robot, under the criterion of minimal 

energy consumption. 

Presently, as we can see, from the foregoing review, both the theory 

and practice have been well developed for the problem of preplanned path 

control. In other words, as long as the user specifi.es the traveling 

path of the hand of any specific robot with no more than 6 DOF, there is 

little difficulty to drive the hand to move along the specified path. 

Besides, certain optimal criteria, such as the minimal traveling time or 

the minimal energy consumption, can be imposed onto the motion of the 

hand. Consequently, the next interesting question is: for given 

initial and final locations of the robot in a free working space (in 

which no obstacle exists), can we find an optimal trajectory as our 

preplanned path? This study attempts to conduct a preliminary invest

igation on this problem. 

Before answering the above question, a certain criterion of per

fonnance index should be selected in advance. From the standpoint of 

the efficiency of manipulator use, two aspects can be distinguished: 



augmentation of work speed and diminishing of energy consumption. 

Therefore, either of the following criteria can be considered as the 

perfonnance index for the optimal trajectory of manipulators: 

(1) minimum traveling time, 

(2) minimum energy consumption, 

(3) mixed criteria. 

In this study, the criterion of minimum energy consumption is used as 

the perfonnance index during the optimization procedure. 

6 

Thus far, three different expressions, listed below, are widely 

adapted to represent the energy dissipated by a robot or a mechanical 

manipulator. The first and the second expressions stand for the energy 

and power, respectively, which are very straightforward and common 

expressions. The third expression was used by Chow [6] in his research 

on the human locomotion to account for the fact that energy can be 

consumed even when no motion is executed in a human-limb. In his 

research, the quadratic criterion (a = 2) is used. In this study, the 

second and third expressions are used as the performance index in the 

illustrative examples. 

( l} JMd8 

( 2) JMde 

(3) JMadt 

In above expressions M is the generalized force, e is the generalized 

displacement and t is time. 

The configuration of most common industrial robots can be kinemat

ically decomposed into two sub-configurations: "regional structure" 

and 11 orientational structure 11 • "Regional structure" usually refers to 

the first three joints and dominates the position of the end-effector 
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and the energy dissipated during the motion of the robot. "Orientational 

structure11 refers to the last three joints and dominates the orientation 

of the end-effector, but has minor effect on the energy consumption. 

As a matter of fact, all the energy consumed by the robot is 

supplied by the actuators of the robot. It is very obvious that the 

energy consumption is a function of the characteristics of the actuators 

used in the robot system. Actuators are assumed to be ideal in this 

study, We assume that there is no energy loss during transmission from 

the power source of the actuator to the robot system. However, the 

viscous effect is considered during the modeling of actuators in this 

study, 

During the procedure of optimization, particular constraints as 

(1) reachability: the geometrical condition that confines 

the manipulator's ability of reaching some specific 

position or orientation, 

(2) durability: the condition that the stresses in the 

manipulator members do not exceed certain values, 

(3) driving ability of actuators: the condition that 

the driving forces or torques do not exceed the 

values which can be generated by the actuators. 

(4) stability: the condition that sustains the 

stability of a robot, especially for the robots 

having the ability of locomotion. 

may be imposed onto the optimization. The constraints of (1) and (3) 

are discussed in the sense of formulation of performance index and the 

solution procedure, however, in the illustrative example we consider 

only the unconstrainted cases. 



1.2 Proposed Research 

The overall aim of this research is to develop a methodology of 

obtaining the optimal trajectory for an end-effector of any n DOF 

manipulator which moves in a free space. Minimum energy consumption is 

used as the performance index during the optimization procedure. Two 

constraints, reachability and driving ability of actuators, are consid

ered along with the optimization procedure . 

8 

. A brief review and comparison is made for the methods of optimizing 

a functional, such as the variational calculus, Pontryagin 1 s maximum 

principle, Bellman's principle of optimality. A general methodology 

based on these methods is developed for the optimal trajectory of any 

n DOF robot. 

The most popular 3R robot as shown in Figure 2 is illustrated to 

demonstrate the methodology developed. Two forms of performance index 

are used and discussed in the illustrative example. It is intended to 

develop an algorithm and an efficient computer program coded in FORTRAN 

for the most popular 3R robot to find the path of the end-effector in the 

fixed base coordinate frames in terms of a series of discrete points, and 

determining the joint angles and actuating forces, or torques, in local 

joint coordinate frame, with the initial and the final displacements of 

each joint as inputs. SAS/GRAPH is applied to generate a 3-dimensional 

plot on an IBM 3279 graphic terminal or Tektronix 4662 digital plotter 

such that the optimal trajectory is visible to the user. 

The main purpose of this study is to conduct a preliminary invest

igation of the problem of optimal trajectory of a robot, and hopefully 

to provide some tools and fundamentals for future investigations. From 
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the viewpoint of practice, the results of this study probably will be 

helpful to the industry in the sense of energy conservation, especially 

in the applications of heavy-duty pick/place type of robots. 

1.3 Organization 

Some background material has been reviewed briefly and the scope 

of study has been declared in present chapter. In Chapter II, the 

affine transformation is introduced and some useful properties are de

rived. The Denavit and Hartenberg's method is applied in conjunction 

with the Newton-Euler fonnulation to derive the explicit fonn of the 

driving torques and forces for any n DOF robot. The complete equations 

of motion in addition to the viscous effect are involved in our modeling. 

Chapter III explains the fundamental theories of variational cal

culus, Pontryagin's maximum principle, Bellman's Principle of Optimality 

(Dynamic Programming) and Hooke and Jeeves pattern search. Two represen

tative examples are illustrated to expose the spirit of the principle 

of optimality. The maximum principle is well interpreted in terms of 

two important rules of itself. A general algorithm based on above 

theories and the pattern search is proposed to determine the optimal 

trajectory of any n DOF robot. 

In Chapter IV, the most popular 3R robot is illustrated to demon

strate the proposed algorithm. Two kinds of expressions are used as the 

performance index in the example, and three cases are investigated for 

this particular configuration of robot. 

The final chapter summarizes what has been presented, discusses the 

possible extention of the proposed algorithm, and makes suggestions for 

future study and research. 



CHAPTER II 

FORMULATION OF PERFORMANCE INDEX 

FOR AN N DOF ROBOT 

In deriving the general formulation of performance index, the first 

problem that we will encounter is how to obtain the explicit form of the 

driving force and toques at each joint. Several approaches, such as 

Newton-Euler method [12], Lagrange's method [8] and the quaternion 

method [18], have been investigated in the past few years. Among these 

approaches the Newton-Euler method is proven to be the most efficient 

in the sense of practical computation. However, we like to emphasize 

that the advantage of Newton-Euler metod is available only when applied 

in conjunction with the 3 x 3 rotation matrix instead of the 4 x 4 trans

formation matrix. 

In this chapter, the affine transformation [1] is introduced to 

express the general relationship between two coordinate frames, and 

some important properties of the affine transformation are derived. 

Denvait and Hartenberg's method (OHM) are applied to represent the 

geometry of a link in space. A general formulation of driving 

toques is derived using the method of moving coordinates, Newton-Euler 

equation and 3 x 3 rotation matrix. 

A notation {~v} or ~will be used, throughout this study, to 

represent a vector v which is expressed in frame r but measured from 

the origin of frame m. Sometimes m may be omitted if frame m is the 

11 
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base frame, i.e., m = 0. By using this notation, the kinematic 

relationships of moving coordinate systems may be expressed more concise

ly and precisely. For an easy understanding, we will use the most 

popular 3R robot as an illustrative example at proper situation. 

2.1 Affine Transformation 

An affine transformation is a general method describing the rela-

tionship between two coordinate systems related by a change of coord-

inates involving a translation of the origin and a rotation of axes. 

Let x1, y1, z1 and x2, y2, z2 be two sets of coordinates related by an 

affine transformation as shon in Figure 3. 

The position vector of any point p, referred to coordinates l and 

2, can be expressed as 

(2.1) 

~ 1 where {1r12} is the translation vector from o1 to o2 and [ Q2] is the 

rotation matrix from frame 2 to frame l, both are expressed with respect 

to frame 1 while {~p} is the position vector of point p measured in 

frame 2 and expressed in frame 2. Equation (2.1) indicates the general 

form of an affine transformation. Symbolically, the transformation of 

Equation (2.1) can~ written as 

(2.2) 

as 

(2.3) 
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1 1 1 . 
and [ r3J is given through {1r13} and [ Q3], correspondingly, as 

(2.4) 

Substitution of Equation (2.3) into (2.1) yields 

1 1 1 2 2 3 
{lp} · = {lrl2} + [ 02]({2r23} + [ 03J {3p} ) 

1 1 2 1 2 3 
=.{lrl2} + [ 02] {2r23} + [ 02] [ 03] {3p} (2.5) 

By comparing Equation (2.5) with (2.4) we obtain 

(2.6) 

which, alternatively, can be written as 

( 2. 7} 

Equation (2.7) is in agreement with the geometrical meaning, that 

is to say, the vector connecting the origin o1 to the origin o3 equals 

to the sum of that connecting o1 to o2 plus that connecting o2 to o3. 

Also, from Equation (2.5) we have 

(2.8) 

thereby showing that the composition of two affine transformations is 

also affine. 

Let the 11 identity affine transformation" [;T.] be defined as , 
i [; ] i {.x} = T. {.x} 
1 1 1 

(2.9) 

i.e., [iT.] is the coordinate transformation from coordinates i into 
. 1 

themselves. Clearly, its translation vector is the zero vector and 
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the rotation matrix is the identity matrix. 

Now, let's consider the 11 inverse transfonnation 11 [irjr1 such that 

where 

(2.11) 

and 

[ iT.]-1 {1 .. x} [j J i _ j [j J i = T. {.x} - {.r .. } + Q. {.x} J 1 l 1 J Jl 1 1 
(2. 12) 

Thus, 

- j [j J ; - {.r .. } + Q. {.r .. } J Jl 1 l lJ 

(2. 13) 

Substituting Equation (2.13) into (2.10) we obtain 

{~r .. } + [jQ.]{~r .. } = 0 
J Jl 1 1 lJ 

(2.14) 

and 

( 2. 15) 

Hence, 

(2.16) 

and 
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j _ i T i {.r .. } - -[ Q.] {.r .. } (2.17) 
J Jl J 1 lJ 

Note that the rotation matrix is orthonormal. This property is very 

useful while dealing with inverse problems. 

Next, a general composition law for n transformations is derived. 

Assuming that an expression similar to Equation (2.7) and (2.8) hold for 

k transformations, it will be shown that they hold also fork+ 1, 

thereby obtaining general relationships by induction. Thus, 

(2.18) 

(2.19) 

then, 

(2.20) 

and 

(2.21) 

k 
Introducing a similarity transformation to refer Qk,k+l to k-coordinates, 

1 1 k 1 T 1 
[ Qk+l] = ([ Qk][ Qk,k+l][ Qk] )[ Qk] 

1 . k 
= [ Qk][ Qk+l] 

hence, in general 
n-1 

1 1 
{lrln} = I {iri,i+l} 

i =l 

[lQn] = [1Q2][2Q3] ... 

(2.22) 

(2.23) 

(2.24) 
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which are very useful while formulating the kinematic equations for n 
1 OOF robots. Usually, however, {iri,i+l} will be more readily referred 

to coordinate system i instead of l, and th'e transformation to system 1 

is easily performed as 

{~f. ·+1} = [iQl] {'.r. '+l} 11,l 11,1 
(2.25) 

where [iQ1J can be obtained from Equation {2.24) with n = i. 
A practical application of affine transformation is the method of 

Denavit and Hartenburg (MOH), which is applied widely in the analysis 

and synthesis of rigid body motion. Essentially, MOH is based on the 

loop-closure equation 

1 n 3 . 2 [ T ] [ T ] . . . . . [ T2J [ T1] = I n n-1 (2.26) 

or, equivalently, 

• • • . . + {l r } + {1r } = 0 n-1 n-1,n n n ( 2. 27) 

together with 

where 
i 
Qi+l 

I 
I 
I 
I 
I 
I 
I 
I 

i 
. r. ·+1 ,_, '1 

----------~------------

0 

! 
I 
I 
I 
I 
I 

1 

(2.28) 

(z.zq) 

A general link in the space can be represented very easily and clearly 

in terms of Oenavit and Hartenberg's link parameters: a. ' e. ' s.' and 
l l l 



a. as shown in Figure 4; where 
1 

i number of particular joint or link 

zi characteristic axis of motion for the joint involved 

18 

xi+l axis formed by the common normal directed from z; to zi+l" 

y i ax is implicitly determined by xi and z; to form a right

handed Cartesian coordinate system x.y.z .. 
. 1 1 1 

a; link length measured positive along xi+l" 

e; angle between x1 and xi+l; measured positive counter~clockwise 

about z .. 
1 

s. offset distance measured along z .. 
l 1 

a; twist angle defining the relative orientation of z; and zi+l; 

measured positive counter-clockwise about xi+l" 

The link parameters of the most popular 3R robot are listed in Table I, 

and the transformation matrix then can be written as 

Cose; 

Sine1 

0 

0 0 

-Cose.Sina. 
1 1 

Cosa. 
1 

0 

a.Cose. 
1 1 

a.Sine. 
1 1 

s. 
1 

1 

(2.30) 

Comparing Equation (2.30) with (2.29); we have explicit forms of rota

tion matrix [iQ.+l] and translation vector {~r. ·+l} , in terms of MDH. 
1 -. 11,l 

Besides, the sum total of n transformations can be expressed as 
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Figure 4. Oenavit and Hartenberg's Link Param
eters. 
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( 2. 31 ) 

as 

2.2 A Systematic Approach to the Explicit 

Form of Driving Toques and Forces 

The general equation of motion for an n DOF robot can be expressed 

~(_g)_q + .Y.9. + _f(_§_igj'g_; i, j=l, 2, . , ... n) + _g_(g_) = T (2.32) 

where 

_g n x 1 vector defining the joint displacements 

~(g_) n x n inertia matrix 

V n x n viscous friction matrix 

f(qiqj,q) n x vector corresponding to Coriolis and centrifugal 

effects 

_g_(_g) n x vector defining the gravity terms 

T n x 1 vector of input generalized forces 

A systematic approach for deriving the explicit form of the generalized 

driving forces is stated as below. The same approach can also be 

implemented as a computer program for the kinematic analysis for any n 

DOF robot. 

The explicit form of driving forces or toques can be obtained by 

the successive transformation of velocities and accelerations from the 

base of the manipulator out to the end-effector, link by link, using 

the relationship of moving coordinate systems. Forces and torques are 

then transformed backwardly from the end-effector to the base. 
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Considering the coordinate systems as shown in Figure 5, the base 

frame (x0, y0, z0) attached to link 0, the frame (xi' yi, zi) attached 

to link i, and the frame (xi 1, y. 1, z. 1) attached to link i-1, thus 
- 1- 1-

the frames move together with the links. r Let .'!{i denote the angular 

velocity of link i, measured in base frame and represented in framer 

which is attached to link i. From the general applied mechanics [9], 

we have following recursive relationships to evaluate the angular 

velocity of link i with respect to the base frame. 

r-1 w. 
-1 

where 

z = 

= rw. _, 

= 

0, 0, 

r-1 

r-1 

1) T 

w. 1 -1-

w. l -1-

[rQr-1] 
r-1 w. 

-1 

+ zq., for revolute pairs 
- l 

' for prismatic pairs 

(2.33) 

(2.34) 

Based on the above equations, the following procedures can be written 

as the scheme of derivation or computation. 

Step l : set i = 1 and r = 1. 

Step 2: use Equation (2.33) to obtain r-1 wi · 

Step 3: use Equation (2.34) to obtain r w .• 
-1 

Step 4: if i = n then stop. 

Step 5: set i = i + 1 and r = r + 1, go to Step l. 

The angular velocity of each link for the most 3R robot can be obtained 
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by following the above procedures and is listed as below. 

Ow1 = ~q = r~J (2.35) 

1~1 = [ \i0~1 = [:J (2.36) 

=EJ ( 2. 37) 

(2.38) 

2 
w = -3 

(2.39) 

3 w = 
-3 

(2.40) 

wheres., c. denotes Sine., Cose., respectively, ands .. , C.J. denotes 
l l l l lJ l . 

Sin(e 1. + e.), Cos (e. + e.), respectively, and so on. Besides, e., e. 
J 1 J . l l 

and e. denote the angular displacement, velocity and acceleration, 
l 
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respectively, of link in terms of local coordinates. 

Similarly, let r~. denote the angular acceleration of link i, _, 
measured in the base frame and represented in frame r. By applying the 

similar procedures as used in the derivation of angular velocity and 

following recursive relationships we can obtain the angular acceleration 

of each link. 

r- 1 • r- 1 • ) ~i-1 +.£_qi + ~1 _ 1 x(.£_qi for revolute pairs 

r-1· w. 
-1 

= 

r-1· 
w. 1 -1-

r• [r ]r-1• w. = Q 1 w. 
-1 r- . -1 

(2.41) 

, for prismatic pairs 

(2.42) 

Followings are the angular accelerations of each link for the most 

popular 3R robot. 
0 

O· 
!Ql = .£_q 1 = 0 (2.43) 

61 

0 

1 • 
[ 1 OoJ o~, 61 wl = = (2.44) 

0 

. . 
el 62 

1 • 1 • 1 • ) 
!Q2 = w, + _:q2 + ~,x (_:q2 = el (2.45) 

62 



2· [2Ql]l • 
~2 = ~2 

2• 2· 
~3 = ~2 + El.3 

3. 
W3 = 

. • 
el e2 c2 + el s2 . 

62 s2 
.. 

= -e, + el c2 .. 
82 

C2(e2 + 83) 
2 

+ ~2 x (~q3) = S2(e2 + S3) 

(e2 + e3)C23 + 81523 

(e2 + e3)S23 + 81C23 

e2 + 83 
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(2.46) 

+ el s2 .. 
+ el 

(2.47) 

(2.48) 

The linear velocity of link i with respect to the base frame can 

also be obtained in the similar manner by using the following recursive 

relationships. 

r-1 v. = 
-1 

r * 
.Yi = 

r-1 

r-1 

v. l -1-

v. 1 -1-

r + w . 
-1 

+ 

+ 

r x. G. 
l -1 

r- 1 r-1 ) w. x(. 1 O., 
-1 1- -1 

for revolute pairs 

(2.49) 
r-1 r-lw. x 1._ 1 Q1. + zq., for prismatic 

-1 l 

pairs 

( 2. 50) 

(2.51) 
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where rv. is the linear velocity at the tip of link i while r:!._*,. is at 
-1 

the center of mass, and G. is the position vector of the center of mass -1 

* of link i while G; is a scalar describing the center of mass of link i 

measured from the origin of frame i-1. Followings are the linear 

velocities of each link for the most popular 3R robot. 

l * 1 l 1 
J_l = J_l + s:!.1 x 1§.1 = 

0 

0 

0 

0 

0 

0 

2 2 1 l 1 
:!_2 = [ Q 1 J ( J_ 1 + ~2 x 1 2-2 ) = 

2 * 2 2 2 
~2 = J._2 + ~2 x 2§.2 = 

0 

(2.52) 

(2.53) 

(2.54) 

. ( 2. 55) 

82 £2 S3 

£3 (e2 + S3) + 82 £2 c3 

-el £2 c2 - 81 £3 c23 

(2.56) 
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• 
62 R-2 53 

3 * 3 3 3 . * • . . 
~3 = :£.3 + ~3 x ~3 = G3 (62 + 63) + 62,Q,2 c3 ( 2. 57) 

The acceleration can also be obtained by using the following recur

sive relationships. 

r-1· v. = 
-1 

r-1· r-1· v. l + w. -1- _, 

r- l ( r-1 r-1 ) + w. x w. x . 10. , for revolute pairs 
-1 -1 1- -1 

r- 1 • r- 1 • r- 1 v. 1 + w. x . 10. + zq. 
-1 - -1 l - -1 - l 

r- l ( r- 1 ~- l 0 . ) + ~i x ~i x 1-l -1 

r- l • ) + 2 w. x (zq., for prismatic pairs 
-1 - l 

r•* r• r r r (r r ) v. = v. + w. x .G. + w. x w. x .G. 
-1 -1 -1 1-1 -1 -1 1-1 

(2.58) 

(2.59) 

(2.60) 

where ri; is the linear acceleration of each link at the tip of link i 
r•* while v. is at the center of mass. Followings are the expressions of 
-1 

linear acceleration of each link for the most popular 3R robot. 

0 

l· 1 O· O• 0 0 0 0 
~i = [ Q0J ( .Yo + ~1 x ~l + w1 x ( ~1 x ~1 ) ) - g (2.61) 

0 
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(2.62) 

. ~2 2 ·2 
- 92 £2 - i2c2 81 + 9 s2 

·2 
82£2 + 81£2 92S2 + gC2 (2.63) 

(2.64) 

.. .. 
2ele2£2S2 - 81£2C2 + 28,(82 + e3)£3S23 - 81£3C23 

(2.65) 



3·* 3· 3 3G 3 (3 3G ) 
.Y.3 = ~3 + ~3 x 3-3 x ~3 x !::!.3 x 3-3 = 

2 where g = 9.8 m/sec 
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(2.66) 

Now, we have obtained the angular velocity, accleration and the 

linear velocity, acceleration of each link. Following is the procedure 

to obtain the expression of the driving force or torque at each joint. 

With reference to Figure 6, by applying D1 Alembert 1 s principle and 

Newton-Euler fonnulation to link i of the manipulator we can obtain 

_f i = _f i + l + £i 

m. = _m1.+l + (s.z. + a.x.+1) x f.+l + G. x F. + M. 
-1 1-1 1-1 -1 -1 -1 -1 

where 

( 2. 67) 

(2.68) 

F. body force of link i with respect to the coordinate frame 
-1 

i + l 

G. position vector of the center of mass of link i with 
-1 

respect to the coordinate frame i+l 

f. force exerted on link i at joint i 
-1 

.f.i+l: force exerted on link i at joint i+l 

!!!.; moment exerted on link i at joint i 
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Xi+1 



!!!.i+l: moment exerted on link i at joint i 

Ii; external moment applied to link i 

In which F. and M. can be obtained from the Newton's and Euler's 
-1 -1 

equations as following. 

* F. = W.v. 
-1 1-1 

M. = [J.] i:i. + w. x ([J.] w.) 
-1 1 -1 -1 1 -1 

where 

W. the mass of link i 
1 

[J.] the 3 x 3 inertial matrix of link i 
1 
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(2.69) 

(2.70) 

Note that the off-diagonal terms of J matrix may be vanished if the link 

is assumed to be a circular column. 

Based on Equations (2.67) to (2.70) we can designate the following 

recursive relationships in terms of the same notation used as previous 

procedures for evaluating velocities and accelerations. 

r r·* F. = W. v. 
-1 1 -1 

rM. r· = [J .] W· 
-1 1 -1 

= 

r· + w. 
-1 

rf. rF. + rf 
-1 -1 -i+l 

r r r m. = ~i+l + .o.+1 -1 1-1 

r· r• + w. x ([J.] w.) 
-1 1 -1 

r r rF. rM. x f;+1 + .G. x + 
1-1 -1 -1 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

The procedure for evaluating the forces and moments at each joint can be 

stated as follows: 

Step 1: obtain 3~ by f = [3Q0] (£.W4), where w4 is the load on the 

end-effector. 
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Step 2: set i = n and r = n, where n is the number of DOF. 

Step 3: obtain rF. 
-1 

using Equation (2.71) 

Step 4: obtain rM. 
-1 

using Equation (2.72) 

Step 5: obtain rf. 
-1 

using Equation (2.73) 

Step 6: obtain r using Equation (2,74) m. _, 
Step 7: set i = i ;;. 1 and r = r - l. 

Step 8: if i = 0 then stop, otherwise go to Step 3. 

Once we have the joint force or moment at hands, the driving force 

and torque is the projection of that force or moment on the character-

istic axis, which is 

([r-1 Jr ) T. = z • Q m. , for revolute pairs 
i - r -1 

(2.75) 

or 

F. = z • ((-1Q ]rf.), for prismatic pairs 
1 - r -1 

(2.76) 

The damping effects of the actuators or joints may be included simply by 

adding one term, biei' in above equations, where bi is the viscous co

efficient at joint i. 

For the most popular 3R robot, the driving torques at each joint can 

be obtained by following the procedures stated above and are listed as 

below. Note that the links considered here are assumed to be circular 

columns. 

(2. 77) 
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(2.78) 

.. 
+ I3Yc23[e1c23 - 281 (e2 + 83) s23J + r2Yc2(e1 - 28 1e2s2) 

- w3(G;c23 + 12c2)[212e1e2s2 - e1i 2c2 + 2e1(e1 + e3)G; s23 

(2.79) 

where I .. is the principal moment of inertial about j-axis of 1 ink i. 
lJ 

2.3 Formulation of Performance Index 

Mathematical modeling of a robot system includes modelings of the 

mechanical part of the system (manipulator itself) and the actuators. 

In this study the actuators are assumed to be ideal, in other words, 

we consider only the mechanical part of the system. For the problem of 

optimal trajectory with the criterion of minimum energy consumption, 

the energy consumed during the entire motion can be devided into two 

parts: (1) the static portion, due to the potential energy change, 

and (3) the dynamic portion needed to drive the manipulator with certain 

velocity and acceleration within certain traveling or cycling time. In 

this study all dynamic effects in addition to the viscous effect are 

considered. As we mentioned in Chapter I, there are three expressions 

widely used to stand for the energy consumption in a robot system. 
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Here, two of them are used, One is the Chow's [6] quadratic criterion 

while the other is the actual energy dissipated. Let us denote the 

fonner one as J1 while the later one as J2, then we have 

tl 
(T2 + T2 Jl = f + . . . ) dt 

ta 
1 2 (2.80) 

tl 
J2 = f (r1e1 + T282 + . )dt (2.81) 

to 

For the most popular 3R robot, J1 and J2 ~an be written, respectively, 

as 

(2.81) 

(2.83) 

Consequently, the optimal trajectory problem can be stated as a 

problem of minimizing the performance index J1 or J2, as expressed in 

Equation (2.80) and (2.81) with respect to the trajectories of joint dis-

placement e;(t), i = 1, 2 ... , n, under the constraints of reachability, 

as expressed in Equation (2,84), and driving ability of actuators, as 

expressed in Equation (2.85). 

e,.,m,·n < e. < e. , for revolute joint i i i,max 
(2.84) 

s. < s < s. x' for prismatic joint j J,max j J,ma 



36 

T. <IT.I ,forrevolutejointi i,max i 
(2.85} 

where 

F., max< IF. I , for prismatic joint j 
J J 

e. . 
i ,m1 n 

s. . J,m1n 

8i ,max 
s. J,max 
T. 1,max 

F. 1,max 

the lower limit of motion of revolute joint i 

the lower limit of motion of prismatic joint j 

the upper limit of motion of revolute joint i 

the upper limit of motion of prismatic joint j 

the maximal allowable actuating torque 'at revolute 

joint i 

the maximal allowable actuating force at prismatic 

joint j 

The problem we stated above is a typical variational problem of optimiz-

ing a functional. The solution to this problem will be discussed and 

developed in the next chapter. 



CHAPTER III 

PROPOSED ALGORITHM OF OPTIMIZATION 

In the present chapter, we wi 11, first, take a brief review on the 

fundamental theories of variational calculus, Bellman's Principle of 

Optimality (Dynamic Programming), Pontryagin's maximum principle, and 

then Hooke and Jeeves pattern search technique. An algorithm based 

on the principle of optimality, the maximum principle and the pattern 

search is developed for finding the optimal trjaectory with the 

criterion of foregoing derived performance index as the objective 

function. 

3.1 Fundamental Theories of the 

Variational Calculus 

The basic problem that the variational calculus attempts to solve 

is the problem of finding a function e(t) which minimize the functional 

J 

tl 
J = f F(e(t), e(t), t)dt ( 3.1) 

ta 

subjected to two-end boundary conditions, i . e. , 

e(t0) = 80 {3.2) 

e( t 1) = el (3.3) 

37 
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As a matter of fact, the fundamental equation of the variational calculus 

was derived by Euler by means of a passage to the limit from the finite 

to the infinite. Some classical results derived by Euler may be stated 

as fa 11 ows. 

Let e(t) denote a minimizing function, which we consider to 

furnish a relative minimum. If z(t) is any "nearby" function, we must 

then have 

J(z) 2: J(e) (3.4) 

To represent the fact that z(t) is a nearby function, let us write 

z(t) = e(t) + Eg(t) (3.5) 

where E is a small parameter and g(t) may be any arbitrary function 

satisfying 

(3.6) 

' 
The inequality in Equation (3.4) then becomes 

J(e + Eg) ~ J(e) ( 3. 7) 

for a11 and g(t), or, in explicit terms, 

tl tl 
J F(e + sg, e + E:g,t)dt _2: J F(e, e, t)dt (3.8) 
to to 

From the condition that J has relative minimum, we have 

Ml = o 
dE E :::: Q 

( 3. 9) 
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Expanding Equation (3.9) and substituting Equations (3.2) and (3.3) 

into it, then using the technique of integral by parts, we obtain 

(3.10) 

for all admissible g(t). Were this true for all g{t), it would be 

trivial that the coefficient function must be zero i.e., 

(3.11) 

which is called the Euler equation of the variational problem and is a 

necessary condition completely analogous to that derived in the finite 

dimensional case by setting the first partial derivatives equal to 

zero. 

Since Equation (3.11) is a nonlinear partial differential equation, 

only in rare cases is an explicit analytical solution of this equation 

obtainable. Consequently, many attempts have been made to solve this 

variational problem by some other numerical approache:s instead of the 

analytical approach. Some of the famous methods are Rayleigh-Ritz 

method, the principle of optimality and the maximum principle. Since 

Rayleigh-Ritz method has, inherently, the problem of convergence, in 

this study we attempt to apply the principle of optimality and the 

maximum principle to solve the problem stated in the previous chapter. 

3.2 The Principle of Optimality 

The optimization of sequential systems can be considerably 

simplified by the use of the principle of optimality first formally 



stated by Bellman [3], who states the principle of optimality as ''an 

optimality policy has the property that, whatever the initial state 
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and the initial decisions are, the remaining decisions must constitute 

an optimal policty with regard to the state resulting from the first 

decision." Let us now sketch, mathematically, the dynamic programming 

approach to the variational problem. 

Consider the problem of minimizing the functional J, expressed as 

Equation (3.1), subjected to the initial condition 

(3.12) 

The minimum value will then be a function of the initial t-value t 0, 

and the initial e-value e0. · Let us introduce the function 

(3.13) 

What we are trying to do is to imbed the particular problem posed above 

where t 0 and e0 are constants within the family of problems generated 

by allowing t 0 and e0 to be parameters with the range of variation 

-oo < t < oo and -oo < 0 < oo • Since the integral has the requisite 

additivity property 

(3.14) 

the fundamental mathematical expression for the principle of optimality 

stated previously then may be written as 

to+l\ 

=min [ J F(e, 
ta 

e[t0,t0+l\J 

. e, t)dt + f(t0 + l\, e0(e) J (3.15) 



where the minimization is over all functions defined over 

t 0 < t < t0+~, with e(t0) = e0 and e0(e) = e(t0 + ~). Two examples 

known as "minimum chain problems 11 are investigated in order to expose 

the spirit behind the statement. 
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With reference to the chain network as shown in Figure 7, which 

consists of nodes and branches between nodes, a minimal length connected 

chain (or simply stated, a minimal chain) between A and B is desired. 

The 11 length 11 assigned to each branch could represent, say, a normalized 

cost of sending a message between nodes. Considering A as the origin 

and Bas the point (0,6), we have the recurrence relation 
:b' 0' 

f(x,y) = min[d(x,y:x+l, y+l) + f(x+l,Y+l), 
(3.16) 

d(x,y:x-l,y-1) + f(x-1, y-1)] 

.where d(x,y:x+l, y+l) represents the length on the branch between the 

points (x,y) and (x+l, y+l). To solve, we first note that f(5,1)=4 and 

f(5,-1)=3. Using these values for f(S,y) we determine f(4,y). Thus 

f(4,2) = 1+4=5, f(4,0)=min[5+4,2+3]=5 and f(4,-2)=6+3=9. We also note 

that from f(4,0) our optimal choice is to go diagonally down. In an 

analogous manner we compute f(3,y), f(2,y), f(l,y), and finally f(O,O). 

The solution, with arrows indicating the optimal direction, is so 

called "backward solution" and summarized by the chart of values 

appearing in Figure 8. If we start the iteration from the initial point 

A instead of the end point B, we can also obtain the same solution by 

applying the same algorithm and it is called "forward solution" as shown 

in Figure 9. 
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8 

Figure 7. The Chain Network #1 
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s 

A 17 
8 

Figure 8, The Backward Solution 

13 

A 17 B 

Figure 9. The Forward Solution 
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For the cases of both the initial and ending points are fixed either 

approach can be applied to find the optimal solution. However, if, for 

instance, the initial point is floating then only backward approach can 

be applied, and vice versa. 

Let's consider another similar but more straight forward and simpler 

case. Referring to Figure 10, there are many (may be infinitive) branches 

between two neighbor nodes. An optimal polciy of solution is easy to set 

up in this case. "Either starting from A or B find the minimum branch 

between any two neighbor stations" gives us the minimal chain indicated by 

arrows as shown in Figure 10. 

As we can see from the preceding example, the principle of 

optimality is suggestive of the fact that a given problem to be solved 

is placed in a dyn~mic frame work; the problem is imbedded in a class of 

similar problems, the situation of which are solvable by using dynamic 

programming. The phrase implies that a problem which is amenable to 

dynamic programming can be viewed as a succession of decision problems, 

each one building on the last, until the problem is solved. 

However, we have to mention here that Bellman's approach yields a 

good heuristic method rather than a mathematical solution to the problem 

and is very valid while dealing with discrete problems with finite 

decisions to be made at each stage. For amulti-variable continuous 

problem, like the one we are trying to solve in this study, this method 

will inevitably encounter the difficulty of dimentionality in addition 

to that a huge number of grids has to be assigned for an acceptable 

result with certain accuracy. Nevertheless, the huristic concept of 

solving the variation problem using the physical phenomenon imbedded in 

that problem is adapted in our proposed algorithm in section 3.5. 
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3.3 The Maximum Principle 

The maximum principle stated by Pontryagin [21] permits the 

solution of various problems of a mathematical and applied nature, 

problems which are variational but which do not fit into the classical 

arrangement of variational calculus. One may observe that this 

principle plays an important role on the theoretical basis for the 

algorithm we proposed in this study. The maximum principle, actually, 

is composed by two rules which we will introduce and interpret as below. 

Consider the functional given Equation (3.1), in which if F does 

not depend explicitly on the variable t, then Fis called autonomous. 

With reference to Figure 11, the first rule of the maximum principle can 

be stated in a following manner: for an autonomous system, the proper

ties of the trajectories e(t) do not change with displacment along t-axis. 

In other words, if the trajectory e(t) having an optimal value of J and 

satisfying the two-end boundary condition, then the trajectory e(t+h), 

t 0 -h < t < t 1 - h, also has the same optimal value J. If we turn our 

attention to our objective functional expressed by Equations (2.80) and 

(2.81), we find that the first rule of the maximum principle is 

applicable to our cases. Actually, in our case, we indeed care only 

about the total traveling time, which is the difference between the 

initial time t 0 and the final time t 1• instead of the real t 0 and t 1. 

As for the second rule of the maximum principle, let us denote the 

values of the integral as Equation (3.1), taken over the intervals 

t 0 < t <ta' ta< t < tb' tb < t < t 1, by J1, J 2 and J 3, respectively, 

as shown in Figure 12. The total functional then has the value 

J = J1 + J2 + J3. If the trajectory e(t) considered on the interval 
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ta< t < tb were not optimal, there would exist some other trajectory 

e'(t) having the value J' < J, which contradicts the optimality of the 

trajectory e(t), ta< t < tb. It readily follows what has been said 

above that every piece of an optimal trajectory is itself an optimal 

trajectory, which is the second rule of the maximum principle. 

3.4 Pattern Search 
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The pattern search technique devised by Hooke and Jeeves [5] is 

one of direct optimum searching methods, and is based on the hopeful 

conjecture that any set of moves; that is, adjustments of the independ

ent variables, which have been successful during early experiments will 

be worth trying again. The computation time was found empirically to 

be only the first power of the number of variables. 

In visualizing what is mean by a 11 pattern 11 it is helpful to think 

of an arrow, with reference to Figure 13, its base at one end and its 

head at the other. The search begins at a base point~ which may be 

chosen arbitrarily~ as yet the pattern has not been established. The 

experimenter chooses a step size for each independent variable 

\(i ;:1, 2, . . . , k). Let ~ be the vector whose i th component is ~i, 

all the rest being zero. After measuring the criterion at the initial 

base .Q.1 one takes an observation at .Q.1 + ~1 . If this new point is 

better than the base, we call .Q.1 + 2_1 the temporary head _!11 , where the 

double subscript shows that we are developing the first pattern and 

that we have already perturbed the first variable x1. Now .Q.1 + 2_1 may 

not be as good as .Q.1, in which case we discard .Q.1 + 2_1 and try .Q.1 - 2_1. 

If this new point is better than .Q.1, we make (.Q.1 - f 1) or (.Q.1 + f 1) the 

temporary head; otherwise .Q.1 is designated temporary head. In summary, 
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Figure 13. Pattern Search on a 2-Dimensional 
Plane 
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when we are minimizing, 

(3.17) 

(3.18) 

l?.1 (3.19) 

In Figure 13, Equation (3. 18) governs. 

Perturbation of x2, the next independent variable, is now carried 

out in a similar manner, this time about the temporary head !_11 instead 

of the original base .!?_1. In general, the jth temporary head !.lj is 

obtained from the preceeding one !i,j-l in the following manner: 

t .. = 
-1J 

(3.20) 

!.1,j-l -ij if y(!_l,j-1 - ij) < y(.!_l,j-1) 

< y(.!_l,j-1 + ij) (3.21) 

!1 'j-1 if y(.!_l,j-l) < min[y(_!.l,j-l + ij), 

y(.!_1,j-1 - ~)J (3.22) 

This expression covers all 1 < j < k if we adopt the convention that 

(3.23) 
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In Figure 13, Equation (3.20) applies for j=2. When all of the variables 

have been perturbed, the last temporary head point !lk is designated as 

the second base point .!?_2. That is, 

(3.24) 



The original base point E_1 and the newly determined base point 

E_2 together established the first pattern. Reasoning that if a 
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similar exploration were conducted from E_1 the results are likely to be 

the same, we skip the local excursions and extend the arrow from E.1 to 

E.2 immediately doubling its length. This establishes a new temporary 

head 120 for the second pattern based at E_2. This initial temporary head 

is given by 

= 2b - b -2 -1 ( 3. 25) 

The double subscript indicates that we are building a second pattern 

and that we not yet begun to perturb the variables. A local exploration 

about _!20 is now carried out to correct the tentative second pattern if 

necessary as shown in Figure 13. The logical equations governing 

establishment of the new temporary heads 121 , _!22 , ... , _!2k will be 

similar to Equations (3.20), (3.21) and (3.22) the only difference 

being that the first subscript will be 2 instead of 1. The recon-

naissance is completed when all of the variables have been perturbed, 

and the last temporary head ! 2 is designated the third base point E_3, 
' 

if, as in Figure 13, the outcome there is better than at E_2. 

As before, a new temporary head tis established by extrapolating 

(3.26) 

We keep on searching by the same a 1 gorithm stated above until the 

moment that none of the temporary heads 150 , 151 , or 152 are any better 
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than the fifth base E_5, as in Figure 13, Then~ = E.5 and the pattern 

is destroyed, By treating E.s as a new E.1 and reducing the step size, 

we repeat the preceding search procedures until the step size falls 

below a preselected minimum. In other words, the search tenninates 

and the last temporary head is the minimum we are searching for. The 

flowchart of the algorithm of pattern search is shownin Figure 14. 

3.5 Proposed Algorithm 

From the previous discussion on the approaches to the variational 

problem we can propose an algorithm to solve, numerically, the problem 

stated in Chapter II. Based on the theories of variational calculus, 

the principle of optimality, the maximum principle, and Hooke and Jeeves 

pattern search, the proposed algorithm can be stated as follows. 

First, let us assign an initial feasible solution ei(t), i = 

1, .. ,, n, which satisfy the two-end boundary condition expressed as 

Equatins (3.2) and (3.3). For the convenience of programming the 

sinsoidal function is chosen for the case of the most popular 3R robot, 

which is also proper for most cases. For the problems we are dealing 

with, we can always set the initial time at zero value, and the final 
• time at the total traveling time T. Considering the performance indices 

expressed as Equations (2.80) and (2.81), let us divide the whole time 

spectrum into N's small intervals as shown in Figure 15. The time 

span of each interval is ~T. According to the maximum principle, the 

total perfonnance index J equals to the sum of Jk's, which is the sub

performance index related to the ith interval, i.e., 

( 3. 27) 
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Let us assume that in each time interval the actuators conduct a constant 

acceleration motion, i.e., 

O; = constant, i = l, 2, ... ,n (3.28) 

From the basic kinematic equations of constant acceleration motion, and 

given the Values Of 8k-l' G~-l and 8K, we. ma~ have 
n (;' ()I ,! 

• 2 
8k = 2[(ek - 8k-l )- 8k-l 6 TJ /(t:,T) (3.29) 

(3.30) 

Now, let us start with the first interval by setting the initial 

angular velocities to zero (may be any value as desired), in addition 

to the values of 81 and e2 obtained from the initially guessed feasible 

solution. We can calculate the initial accelerations and velocities at 

t 1 and t 2. Then the sub-performance indices J1 and J2 taken over the 

first and the second time interval, respectively, can be evaluated from 

Equations (2.80) and (2.81). Then we have a sub-total performance index 

J 02 , taken over the interval t 0 < t < t 2, which is used as the performance 

index of the base for our pattern search. As aresult of the principle of 

optimality, we keep the e1 and 83 fixed and treat the e2 as a base, and 

then adjust the e2 by the technique of pattern search until an optimal 

* * e2 is located. This optimal e2 is recorded in the memory of computer 

* for the use of the next iteration. Then we take the 82 as a new e1 and 

e3 as a new e2, and proceed the same procedures until the whole time 

spectrum is completed. Thereafter, we repeat the iteration over the 

whole time spectrum until the criteria of convergence are satisfied. 

• 



During the process of optimization, if any constraint, such as 

reachability as Equation (2.84) or driving ability as Equation (2.85), 

needs to be considered, we need only to add several IF statements in 

the program of pattern search to check whether the constraints are 

satisfied. If any of the constraints is not satisfied, then we either 

artifical ly assign a very big number to the sub-performance index 

related to that interval, or skip this trial step. 
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As we can see, the algorithm stated above is very simple not only 

in the organization but also in the implementation on a computer. 

Besides, this algorithm can also be used for on-line real-time execution 

instead of off-line, since it has the nature of learning. In other 

words, as long as a feasible solution is assigned it will finally reach 

an optimal solution within a f1nite number of runs. Especially, if any 

obstacle, which might be very difficult to describe in mathematics, 

exists in the working space, the initial feasible solution may be 

assigned by means of teaching mode, which is available in most of the 

industrial robots. Figure 16 is the flow chart of the algorithm, 

in which k is the index of discrete time, n is the DOF of the robot 

system, N is the number of intervals divided, and i is the index of the 

joint. 
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CHAPTER IV 

AN ILLUSTRATIVE EXAMPLE 

In the present chapter, the 11 most popular 3R robot" as shown in 

Figure 2, is illustrated to demonstrate the methodology developed in 

the previous chapters. A computer program coded in FORTRAN is developed 

to find the optimal trajectory of this robot. The SAS/GRAPH is applied 

to show the trajectory in a 3-dimensional plot such that the user may 

have better feeling about the shape of the trajectory. 

Two expressions of objective function as Equation (2.80) and (2.81) 

are used as the performance index, in which T.'s may be computed from 
l 

Equations (2.77) ,(2.78) and (2.79). The tarapezoidal rule is applied 

to evaluate the integration numerically. Here, we like to call the 

first expression as J1 and the second expression as J 2. Three cases 

will be investigated and discussed. The case (A) uses J1 as the per

formance index, however, viscous effects are not considered. The case 

(B) also uses J1 as the performance index, in addition to that viscous 

effects are involved. The case (C) uses J 2 as the performance index, 

in which viscous effects must be included. Since J 2 is the actual 

energy dissipated during the motion, if the viscous effects are 

neglected, then the robot system would be in a conservative force field. 

In other words,the energy consumed will be equal to the change of po-

tential energy, which is a constant in all cases. Also, there is no 

physical meaning to the optimal trajectory, because any path will give 
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us the same value of perfonnance index. 

The initial and final joint angles in our cases are (O, 70, 210) 

and (60, 45, 315), respectively, which are arbitrarily assigned and 

measured in degrees. Correspondingly, the initial and final positions 

are (.314, .000, .582) and (.520, .901, 1.041), respectively, measured 

in meters. Other relevant data of this example are listed in Appendix. 

The results for the input data as shown in Appendix A are presented 

in Figure 17 to 29, Table II and Table III. From Table II we find that 

there are 58.7% improvement, compared with the initial guess, on the 

perfonnance index for case A, 58.2% for case B, and 59.9% for case C. 

The CPU time, on IBM 30810 computer, varies from 29.61 seconds, for 

case C, to 168.l seconds, for case B, and depends on, according our 

experience, the initial guessed trajectory, the number of interval 

divided, the increment of search angle, and the criteria of convergence. 

For all cases, as we can see from Figures 17 to 19 that no signif

icant change was made on the displacement profiles of the first and 

third joints, since the second joint has much higher average torque 

and dominates the value of J 1 and J 2. Comparing the profiles of joint 

displacements and torques of ca·se A with those of case B, as shown in 

Figures 17 to 25, we can find that they are almost the same. In other 

words, the viscous effects in this particular example have little impact 

to the performance index. Table III lists the peak values of torque 

IT; I , i = 1, 2, 3, at each joint for all cases. Besides, the profiles 

of torques for the cases A and B are more smooth than case C is. 

Figures 26 to 29 shows the true shapes of the initial guessed trajectory 

and the optimal trajectories in a manner of 3-dimensional plot. Compar

ing the optimal trajectory of case A with that of case B as shown in 



TABLE II. THE NUMERICAL RESULTS OF THE ILLUSTRATIVE EXAMPLE 

Initial Optimal CPU-- NO. at 
Case Obj. Obj. Time (sec) Interation 

A 23873 15042 169.41 70 

B 24085 15226 168.08 70 

c 236.6 148.0 29. 61 9 

O'> 



TABLE III. THE PEAK VALUES OF TORQUE OF EACH JOINT 

CASE 1st Joint 2nd Joint 3rd Joint 

A 85 205 80 

B 85 215 80 

c 120 250 140 

m 
N 



Figure 27 and 28, we find that they are almost the similar, since both 

have similar profiles of joint displacements. 
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Here, we like to emphasize that even though we can determine the 

profiles of joint displacements and torques, it is difficult to make any 

general conclusion on what profile we should use for a certain robot with 

a certain objective function as its performance index. The performance 

index of a robot system is affected by too many characteristic factors 

such as the link lengths, the moments of inertia, the viscous coefficient, 

the configuration of the robot, etc. Any change on these characteristic 

factors will probably result into different profiles of joint displace

ments and torques. 
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CHAPTER V 

SUMMARY AND DISCUSSION 

This research provides a general methodology for the synthesis 

problem of the optimal trajectory of n DOF robots. The problem was: 

Given the initial and the final joint angles of the robot, determine 

the optimal trajectory with certain criterion, such as the minimum 

energy consumption in this study, .and under certain constraints, such 

as reachability and driving ability of actuators in this study. 

A general algorithm based on the theories of variational calculus, 

Pontryagin 1 s maximum principle and Bellman's principle of optimality 

was developed for solving the problem stated as above. From the basis 

of affine transformation, the method of Denavit and Hartenberg and 

Newton-Euler method, a systematic approach was developed to derive 

the explicit form of driving torques or forces which may include all of 

the dynamics of the robot system in addition to the viscous effect. The 

same approach can also be applied to the kinematic analysis for any n DOF 

robot, and implemented on a computer in a very efficient manner. 

Essentially, the algorithm developed here is a kind of direct 

approach, or "brute force" approach. We broke the time spectrum into 

~small time intervals, and assumed that the joints moves with constant 

accelerations in each small interval of time. From the principle of 

optimality and the maximum principle, the pattern search technique was 

used to optimize the trajectory, interval by interval, in a recursive 
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manner until the criteria of convergence was satisfied. By applying 

the principle of optimality and the maximum principle. we found that the 

realistic equations of motion and the realistic constrains can be easily 

incorporated into the procedures of solution. 

The algorithm developed in this study is very simple, not only in 

the sense of algorithm itself but also in the sense of implementation 

on a computer. In addition, the problen of convergence is also avoided. 

Besides, it can also be implemented on-line, in real-time mode instead 

of off-line, since a learning of a new situation can be ihcorporated in 

arriving at a new trajectory. In the real cases, the initial feasible 

solution can be assigned by guiding the robot in the teaching mode, which 

is available for most of industrial robots. This feature is very helpful 

whenever the initial feasible solution such as obstacle avoidance is 

difficult to determine mathenatically. 

The most popular 3R robot was taken as an illustrated example to 

demonstrate the methodology developed. The results for this 

particular robot were presented and interpreted. The user could see 

the results in a manner of a 3-dimensional plot either on IBM 3279 

terminal or Tektronix 4662 digital plotter. It is quite helpful to the 

user to realize the shape of the trajectory and then compare it with the 

physical case. 

In this tudy, we consider only the characteristics of the robot 

itself. The characteristics of the actuators is beyond our scope, how

ever, it is believed that even though the characteristics of actuators 

are incorporated, the same algorithm is still applicable. However, 

further investigation in this area is highly desirable. 
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APPENDIX 

RELEVANT INFORMATION FOR THE 

ILLUSTRATED EXAMPLE 

Followings are the inputs to the computer program written for the 

illustrative example in Chapter IV. 

Initial Joint Angles (deg): (0, 70, 210) 

Final Joint Angles (deg): (60, 45, 315) 

Length of Each Link (m): (.610, .610, .610) 

Weight of Each Link (kg): (12.02, 12.02, 12.02) 

Radius of Each Joint (m): (.039, .039, .039) 

Viscous Coefficient of Each Joint: (.2, .2, .2) 

Center of Mass of Each Link (m): (.305, .305, .305) 

Load (kg); 10 

Number of Intervals: 30 

Increment of Search Angle (deg): 1 

No. of Reduction of Search Angle: 6 

Convergence Criteria: . 0001 
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