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PREFACE 

This study examines the effect a split interval has 

on a simple pref ix B+-tree. A simple pref ix B+-tree is a 

cousin of the well-known B - tree indexing organization 

and a split interval is a proposed method to improve the 

performance of this organization. The purpose of this 

paper is to determine the usefulness of a split interval 

by empirically testing its effect on an experimental 

implementation of a simple pref ix B+-tree. 
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CHAPTER I 

INTRODUCTION 

A B-Tree is a well-known method for indexing a large 

collection of data. This indexing method is important 

because B-trees are dynamic and provide logarithmic search 

and update times. One popular variant of a B-tree is a B+­

tree. In a B+-tree, all records indexed by the tree reside 

in the leaf level nodes of the tree. A simple prefix B+­

tree is an extension on the idea of a B+-tree where the 

nonleaf nodes or index part of a B+-tree is replaced by a 

smaller but equivalent index made up of separators. 

Separators are strings derived from actual keys occurring in 

the leaf level of a B+-tree. The motivation for a simple 

pref ix B+-tree is the reduction in size and height of the 

index part of the tree gained by the introduction of 

separators to replace actual keys. A reduction in the 

height of the index part of the tree is important because 

the height of the index has a direct influence on the 

performance of the index. A reduction in the size of the 

index means that fewer nodes are required to make up the 

index and thus the entire tree. 

This paper examines a simple pref ix B+-tree with the 

added feature of a split interval. A split interval allows 
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a node to split in places other than the middle of the 

node. This is done to promote shorter separator strings 

into the index part of the tree and thereby further reduce 

the height and size of the index. 

The primary intent of this paper is to study 

empirically what effect a split interval has on the 

performance of a simple pref ix B+-tree and what improvements 

or consequences arise from its use. The reader should note 

that this paper was written with the assumption that the 

reader is familiar with B-trees and the nomenclature 

associated with B-trees. 

Chapter II of this paper contains a brief outline of 

B+-trees with an emphasis on the differences between B+­

trees and B-trees. This chapter may be skipped by the 

reader familiar with B+-trees. 

Chapter III introduces. a simple prefix B+-tree and the 

notion of a split interval. Descriptions of the algorithms 

for insertion and deletion into a simple prefix B+-tree with 

a split interval are given. Also the predicted effects of a 

split interval on a simple prefix B+-tree are given. 

Chapter IV contains the results of a study to 

empirically determine the effect a split interval has on a 

simple prefix B+-tree. Descriptions of test cases, the 

experimental implementation of simple pref ix B+-tree, and 

the results derived from the test cases are given. 

The final chapter contains a summary of the work done 

and conclusions concerning the use of a split interval. 



CHAPTER II 

AN OVERVIEW OF B+-TREES 

An important variant of a standard B-tree is a B+-tree 

suggested by Knuth (9, section 6.2.4) and described by Comer 

(4). In a B+-tree, the tree structure is separated into two 

distinct parts, a B+-index and a B+-file. This separation 

is possible because all records in the tree have been moved 

to the leaf level nodes. A B+-index consists of the upper 

level or nonleaf nodes and is used to direct searches to the 

leaf level nodes where records or pointers to records 

reside. A B•-file is an ordered set of leaf nodes which 

contain the records indexed by the B+-index. Figure 1 

illustrates the separation of a B•-index and a B•-f ile. 

An index or upper level node contains many elements 

known as entries. In a conventional B-tree, an entry is an 

ordered pair (k,r) where k is a key and r is a record or 

associated information. Entries in the nodes of a B•-index 

contain no records because all records have been moved to 

the B+-f ile. Keys occurring in a B+-index entry are copies 

of actual keys having been inserted at the leaf level of the 

tree. These key copies that comprise the B•-index are 

3 
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propagated 

level split. 

up into the B*-index when nodes at the leaf 

D 
DD 

DD D 

DD D D B+-File 

Figure 1. Separation of B+-Tree Components 

Because entries in the nodes of a B+-index contain no 

records, an entry in a B+-index is shorter than an entry of 

a conventional B-tree index node. A shorter entry means 

more entries may be packed into a node, thereby increasing 

the branching degree or order of the node. This increased 

branching degree of index nodes means the height of the 

index may be reduced. A reduction of tree height is 

important because a search of a tree must proceed in a path 

from the root node to a leaf node. Each node in the 

traversal path must be referenced or visited to determine 

the next node in the traversal path. When the nodes of the 

tree reside on external storage, a node visit means an 
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expensive disk access will take place. It has been shown 

that when indexing files where the file and the index reside 

on external storage, the primary performance bottleneck is 

the number of accesses to external storage (6). This is due 

to the seek time and rotational delay typically associated 

with external storage devices like a disk drive. Therefore, 

the performance of the indexing method will improve as the 

tree height is reduced. However, if a tree contains very 

large nodes, the time required to transfer the node may 

become a performance bottleneck. 

A B+-f ile is a logically ordered set of leaf nodes. 

The order of the leaf nodes is maintained by the index part 

of the tree. An entry in a leaf .node of a B+-f ile is an 

ordered pair, (k,r) where k is a key and r is a record or a 

pointer to the location of the record associated with k. 

The entries of a leaf node are in ascending order by key. 

Some implementations of a B+-tree have the leaf nodes 

linked together from left-to-right. In this case, each leaf 

node has a rightmost pointer that serves as the link from 

that node to the next leaf node in collating sequence order. 

These horizontal links may be traversed beginning at the 

leftmost leaf node and continuing to the rightmost leaf node 

to facilitate sequential processing of all records at the 

leaf level. The rightmost pointer of the rightmost leaf 

node contains a "null" pointer that signals the end of the 
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linked list of leaf nodes. In a standard B-tree, all 

nodes of the tree must be visited, possibly using a preorder 

traversal, to process the file sequentially. A preorder 

traversal of a B-tree would require additional main memory 

requirements for a stack. A stack is needed to store the 

nodes in the traversal path so they only have to be read 

once. 

An additional property of 

nodes is that finding the 

record already found is easy. 

access to external storage 

this linked list of leaf 

next or successor record of a 

At most, one additional 

is required to fulfill this 

query. In a conventional B-tree, finding the successor of a 

record may mean a traversal of one or more nodes. 

Properties of a B•-Tree 

A B•-tree is a balanced multiway search tree that 

retains the advantages of B-trees (1). These advantages may 

be enumerated as follows: 

1. Storage utilization is 

time and should be 

at least 50 percent at any 

considerably better on the 

average. 

2. The tree is a dynamic structure 

quested and released as the 

contracts. 

so storage is re­

file grows and 

3. The tree structure provides for both random and 

sequential processing. 

4. Logarithmic search and update times are guaranteed. 
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5. A dynamic B•-tree requires no periodic reorganiza­

tion. 

Searching and Updating a B•-Tree 

A search of a B•-tree begins at the root and proceeds 

down through the levels of the tree until a leaf node is 

reached. At each level of the search path an index node is 

referenced to find the pointer to the next node in the 

search path. If a key in an index node matches the search 

key, then the nearest pointer to the right is followed to 

continue the search. In a standard B-tree, a match of a key 

in the index part with the search key would cause the search 

algorithm to halt. 

All insertions into a B•-tree are done at the leaf 

level. Therefore, to insert into a B•-tree, the index must 

first be searched to find the proper leaf node for the 

insertion. If the leaf node has room in it for the 

insertion, the key and record pair are inserted into the 

leaf node and the insertion operation is complete. If the 

leaf node is full, then the leaf node must be split becoming 

two and a copy of the middle key of this leaf node is passed 

up to the parent node for insertion. If this parent node is 

also full, then the index node must split passing up its 

middle key to its parent node. This process may propagate 

all the way to the root node where a split of the root node 

causes the tree to increase in height by one. Thus, as leaf 
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nodes split, copies of keys existing at the leaf level are 

propagated up into the index to form a B+-index. 

An alternative to node splitting during an insertion 

operation is an overflow (1). An overflow is performed by 

moving entries from the node that is full to a sibling node 

to avoid the split or to balance storage utilization. When 

an overflow is performed, the key used to separate the two 

nodes participating in the overflow must be replaced by a 

new key that serves to separate the new configuration of the 

two nodes. 

Deletions from a B•-tree are always done at the leaf 

level. Therefore, a deletion operation involves searching 

the tree to locate the proper entry in a leaf node and 

removing it from the leaf node. If after the deletion the 

leaf node is at least half full, then the deletion operation 

is complete. Otherwise, a merge with a subling node is 

required. A merge is performed by moving entries from the 

node where the deletion occurred to a sibling node that has 

sufficient space for the entries. Also, the key in the 

index part of the tree that served to separate the two 

merged or concatenated nodes must be removed. This deletion 

of an index key will always be a deletion from a leaf node 

of a B•-index which is structured like a B-tree. Other keys 

in a B+-index are unaffected by such a deletion. Deletion 

of entries in a standard B-tree require the location of a 

predecessor or successor entry if the deletion occurs in a 

nonleaf node. If the deletion of an entry from an index 



9 

node causes that index node to be less than half full, a 

merge of that index node with a sibling is required. This 

means an index entry in the parent node of the index node 

that is less than half full must be deleted. This merging 

process may propagate to the root, possibly causing the tree 

to decrease in height by one level. 

A possible alternative to merging nodes during a 

deletion operation is to perform an underflow (1). An 

underflow is performed by moving entries from a sibling node 

into the node where the deletion occurred. This will return 

the storage utilization of the node where the deletion 

occurred to 50 percent or more. 

Summary 

In this chapter, B+-trees have been shown to be a 

superior variant of a conventional B-tree. B+-trees retain 

the significant advantages and properties of a B-tree, and 

because all insertions and deletions occur at the leaf 

level, the algorithms to perform these operations are 

simpler than their B-tree counterparts. A more thorough 

treatment of B+-trees is presented by Webster (16). 



CHAPTER· III 

SIMPLE PREFIX B+-TREES 

In 1977, Bayer and Unterauer (2) introduced two 

modifications to a B+-tree known as simple pref ix B-trees 

and pref ix B-trees. Their modifications are possible 

because they recognized the separation of a B+-index and a 

B+-file. In their paper, a B+~index is referred to as a 

B*-index and a B•-file is referred to as a B*-file. 

However, in this paper B•-index and B•-file will be used. 

This is in ac-cordance with the nomenclature used by Comer 

( 4) • 

Bayer and Unterauer made the important observation that 

the keys in a B+-index are used only to direct the search 

algorithm to the proper leaf node in a ~·-file. Therefore, 

they proposed replacing a B+-index made up of copies of 

actual keys from a ~+-file with an equivalent B•-index made 

up of shorter strings derived from actual keys in a B•-file. 

As an example of the derivation of shorter strings to 

comprise a B•-index, suppose the leaf node in Figure 2 is 

full and we wish to insert the key "Cards". This insertion 

will require the node to split into two nodes as shown in 

Figure 3. 

10 
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In a B•-tree this split would cause the key "Mets" to 

be propagated up to its parent node for insertion. However, 

Bayer and Unterauer realized that a shorter string derived 

from the key "Mets" could be used to separate the two leaf 

nodes. Therefore, the letter "M" could be used to replace 

the full key "Mets" in the index • 

. Cubs.Expos.Mets.Phillies.Pirates. 

Figure 2. A "Full" B•-File Leaf 
Node 

I .Cards.Cubs.Expos. I I .Mets.Phillies.Pirates. I 

Figure 3. Split of a s•-File Leaf Node After 
Insertion of the Key "Cards" 

They call such a string a "separator". In general, for 

the example above, any string s, such that 

Expos < s <= Mets 

could be used in the index to separate the two nodes. Note 

that the actual key "Mets" qualifies as a separator. 

However, it is more appropriate to select the shortest 
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separator possible because shorter separators reduce the 

height and size of the B+-index. 

A simple pref ix B+-tree is therefore defined as a B+­

tree in which the B+-index is replaced by a B-tree of 

variable length separators. Figure 4 is an example of a 

simple prefix B+-tree where it is assumed that a node of the 

tree may contain a maximum of two keys or separators. 

The determination of separators to replace actual keys 

in the B+-index relies heavily on the following property 

that will be assumed for the remainder of this paper. 

Assuming that the keys are words over some alphabet and 

the ordering of the keys is the alphabetic order, then 

the "pref ix property" given below holds ( 2, p.12): 

Let x and y be any two keys such that x < y. Then 

there is a unique pref ix y' of y such that (a) y' is a 

separator between x and y, and (b) no other separator 

between x and y is shorter than y'. 

The technique of determining separators is a form of 

rear compression of keys. This technique is similar to the 

techniques described in Chang (3) and Wagner (15), but does 

not require the computing overhead inherent in their 

schemes. 

Insertion Into a Simple Pref ix B+-Tree 

To insert into a simple pref ix B+-Tree, a path is 

traversed from the root node to the appropriate leaf node. 

If the leaf node has sufficient room for the insertion, it 



1.compu.1 

~ 
v v 

1.compr.1 1.con.concen.1 

v v v 

1.compe.1 1.compro.1 1.comr.1 

I 
v v I 
commune 
compare 

lcompromisel 

v v 

v 

1.conce.1 

I 
v 

con 
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I compress I I comrade I 
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I 
v 

I concept I 
v 
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I compel I compute 
computerite 
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Figure 4. A Simple Prefix B~-Tree 
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is done and the insertion is complete. However, if 

the leaf node is full, then the leaf node must split and a 

separator must be constructed and passed up to its parent 

node for insertion. If an index or branch node splits, the 

procedure of calculating a separator to be passed up is no 

longer useful. One of the separators in the index node must 

be passed up to its parent. The following example should 

illustrate why this is true. 

Assume the index node in Figure 5 has had the separator 

"abdc" inserted into it and the index node must split but 

has not yet done so. A search of this node with the key 

"aca" would indicate that the next pointer to be followed in 

the search path is "4". When the node splits using the 

conventional B-tree method, the nodes shown in Figure 6 

result. A search of this subtree of the index for the key 

"aca" results in pointer "4" being selected again as the 

next pointer to be followed in the search path. However, if 

a separator is derived from the separator "acda" during the 

index node split, the nodes shown in Figure 7 result. When 

this subtree is searched for the key "aca" pointer "5" is 

erroneously selected instead of pointer "4". Therefore, 

when an index node splits the derivation of separators to be 

passed up to the parent node is not useful because the 

search capability of the index is destroyed. When an index 

node is split, one of the separators in that node must be 

propagated up. 



.ab . abdc . abde • acba . acda • ade . 

v 
1 

v 
2 

v 
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6 

Figure 5. A "Full" B•-rndex Node 

acba 

I I 
v v 

v 
7 

• ab • abdc • abde • • acda • ade • 

v 
1 

v 
2 

v 
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v 
4 

v 
5 

v 
6 

v 
7 

Figure 6. Index Nodes Resulting From a B-Tree 
Type Split of the B•-rndex Node 
in Figure 5 

15 



ac 

I I 
v v 

. ab . abdc . abde . . acda . ~de . 

v v v v v v v 
1 2 3 4 5 6 7 

Figure 7. Incorrect Split of the B+-Index Node 
in Figure 5 

Effect of Separators on a B+-Index 

16 

The movement of separators into a B+-index instead of 

full keys has a couple of pleasing effects on a B+-index. 

First of all, the height of a B+-index may be reduced 

because the branching degree of index nodes has been 

increased due to the existence of shorter strings in the 

index. Second, because separators are usually shorter than 

full keys more separators may be packed into a node thereby 

reducing the total number of index nodes required to make up 

a B+-index. 
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Split Interval 

In an attempt to move shorter separators into the B+­

index of a simple prefix B+-tree, Bayer and Unterauer 

introduced the concept of a "split interval". Normally, 

when a node in the B+-file of a simple prefix B+-tree 

splits, the middle of the leaf node is found, a separator is 

constructed, and that separator is passed up to the parent 

node. However, when a split interval is used, the middle of 

the leaf node is found, separators are constructed for all 

keys within the interval, and the shortest separator within 

the interval is then passed up to the parent node. Thus, a 

split interval is merely the number of keys or separators 

around the middle of the node which are considered for 

choosing a suitable split point. 

The idea of a split interval can also be applied to an 

index node. In this case, the shortest separator within the 

split interval is propagated up to the parent. 

The question of finding the middle of a node is more 

complex in simple pref ix B+-trees than in conventional B­

trees. This is due to the variable length strings that 

occur in simple prefix B+-trees. In this paper, there are 

two ways to view the middle of a node, the logical and 

physical middle. The physical middle of a node is the point 

where a node is bisected into two equal halfs. The logical 

middle of a node is the split point nearest the physical 

middle of a node. 
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A split interval may be defined more precisely as a 

count of the number of "gaps" around, and including the 

logical middle of a node, that are candidate split points. 

A gap is the interval (x(i),x(i+l)], where x(i) are keys or 

separators in collating sequence order. Thus, a node of 

cardinality (n-1) defines n gaps. Note that a "]" indicates 

that the key or separator x(i+l) is included in the 

interval, while a "(" indicates that the key x(i) is not 

included in the interval. A separator s is said to "fill" a 

gap (x(i),x(i+l)] if and only if x(i) < s <= x(i+l). A 

split interval of three may now be defined as the three 

gaps, (x(i-2),x(i-l)], (x(i-1),x(i)], and (x(i),x(i+l)] 

where the gap (x(i-1),x(i)], is the logical middle of the 

node. For the remainder of this paper, .the logical middle 

of a node will be known simply as the "middle" gap. In 

general, a split interval of "k" means that (k-1)/2 gaps on 

either side of the middle gap will be examined to determine 

the best split point for the node. All split intervals in 

this paper are symmetrical around the middle gap and 

therefore all split intervals are required to take on odd 

values. Even numbered split intervals define non­

symmetrical split intervals. Note that a split interval of 

one is equivalent to the conventional split associated with 

simple pref ix B+-trees. 

For an example of a split interval defined using gaps, 

see Figure 8 below where it is assumed that the node is a 
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leaf node about to split and that all records or pointers 

to records have been removed. Also, assume that the middle 

gap of the node is gap number three. 

s De Der Derivativ Do Doubt 

K Data Deque Derivation Derivative Double Doubt 

G 1 2 3 4 5 

Figure 8. A B+-File Node and the Separators Derived 
From Each Gap 

In Figure 8, the first line is the separators derived 

at each gap, the second line is the keys residing in the 

node, and the third line is the gap numbers. If a split 

interval of one is used to split the node in Figure 8, the 

split point would be gap number three and the corresponding 

separator passed up would be "Derivativ". Recall that a 

split interval of one corresponds to the standard split 

associated with simple pref ix B+-trees. If a split interval 

of three is used, then separators to fill gaps 2, 3, and 4 

would be calculated and gap 4 would be chosen as the split 

point due to the length of the separator "Do". If a split 

interval of five is used, then separators to fill gaps 1, 2, 

3, 4, and 5 will be constructed. In this case, gap 4 will 

be chosen over gap 1 because gap 4 is closer to the middle 
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of the node. Note that gaps occurring off the end of the 

node are ignored since they do not define a suitable split 

point for the node. 

Bayer and Unterauer conjecture the following effects of 

SIL, split interval for leaf nodes, and SIB, split interval 

for branch or index nodes, on a simple prefix B+-tree (2, 

p.14): 

1. An increase of $IL should decrease the average 

length of separators in the B+-index, thereby 

reducing the number of nodes required for the index 

part of the tree. 

2. An increase of SIB should favor the shorter 

separators in the index to be located near the root, 

thereby increasing the the branching degree of nodes 

near the root, where a high branching degree is most 

beneficial. 

3. Increasing both SIB and SIL causes the height of the 

B+-index to decrease but also decreases the storage 

utilization because nodes may now be less than half 

full. 

A Difference of Opinion 

Part of point number two above 

questioned by Rosenberg and Snyder (13). 

has been seriously 

They object to the 

notion that a high branching degree is most beneficial near 

the root. They concede that a high branching degree of 

nodes near the root causes the tree height to decrease and 
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optimal". 
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trees that are as short as possible "visit­

This is because the shortest trees require the 

minimum number of accesses or "visits" to traverse the tree 

from root to leaf. Unfortunately, they point out that trees 

that are "visit-optimal" are also nearly "space-maximal". 

Space maximality means that more nodes than are actually 

required are used to construct the tree and many of these 

nodes have a low branching degree. These extra nodes are 

located in the lower levels of the tree and are caused by 

the high branching degree of nodes located above them. 

Rosenberg and Snyder (13) conclude that a high 

branching degree is actually most beneficial in the lower 

levels of the tree. Their study indicates that trees with a 

high branching degree in the lower level nodes are "space­

optimal". Space optimality means that the tree was 

constructed from a minimum number of nodes. Furthermore, 

trees that are "space-optimal" are nearly "visit-optimal". 

Therefore, "space-optimal" trees are not only compact, 

meaning that a minimum of nodes were used to construct them, 

but also short enough to provide good performance when 

searching them. 

In order to make B-tree type structures "space­

optimal", Rosenberg and Snyder (13) provide a linear time, 

in place compaction algorithm for B-tree type structures. 

This scheme may be executed when B-tree type files are 

"backed up" for error recovery or archival purposes. After 

a tree "backup" is done, the compaction algorithm may be 
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executed to restore the tree to a compacted form. 

They also mention that very large trees in compacted 

"space-optimal" form will not degenerate considerably from 

this compacted form due to insertions and deletions if the 

tree is relatively static between backup reorganizations. 

Relatively static here means that there is no more than a 

2.5 percent change in the tree between "backup" 

reorganizations. The authors feel that this rate is not 

unreasonable for very large data bases. This matter will be 

addressed again in chapter four when the effect of split 

intervals on simple pref ix B+-trees is analyzed. 

Insertion Utilizing a Split Interval 

Insertion into a simple prefix B+-tree where a split 

interval is utilized begins by searching the B+-index to 

find the proper leaf node. If the leaf node must be split, 

choose the gap within the split interval yielding the 

shortest separator and split the node at that gap 

propagating the separator to the parent. If insertion into 

an index or branch node causes a split, then choose the 

shortest separator within the split interval and pass it up 

to the parent node. 

One way to postpone a split and increase storage 

utilization is the use of an overflow. However, because 

separators are variable in length, a separator in the parent 

node may now be replaced by either a longer or shorter 

separator. Therefore, overflows may now propagate and cause 
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further splits or overflows if a separator is replaced by 

a longer separator. Such propagation is expected to be 

infrequent. Note also that split intervals may also be 

applied to overflows. 

Deletion Utilizing a Split Interval 

Deletion from a simple pref ix B+-tree always occurs in 

a leaf node. If a deletion causes two leaves to be merged 

then the corresponding separator in the parent node must be 

deleted. This deletion will always be a deletion from a 

leaf node of the B+-index, which is organized as a B-tree. 

Thus, these deletions are simpler than general deletions 

from B-trees and other separators in the B+-index are not 

affected by such a deletion. If an index node must be 

merged with a sibling due to a deletion, then the separator 

separating the two nodes to be merged must be deleted from 

the parent node. 

Underflows are another way to handle deletions. In 

this case, keys and records or separators are moved from a 

sibling to the node where the deletion occurred. This 

movement of keys or separators may then cause a separator in 

the parent node to be replaced by either a longer or shorter 

separator. The problem of replacing separators in the 

parent node during underflows is analogous to the situation 

associated with overflows. Split intervals may also be 

applied to underflows. 
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Pref ix B+-Trees 

In many practical applications, like textual databases, 

sets of keys that arise are often clustered together. 

Clustering means that the collating sequence "distance" 

between successive separators is small. Therefore, all 

separators in a given subtree of a simple pref ix B+-tree may 

share a common prefix. Bayer and Unterauer (2) propose 

removing this common pref ix from separators in a simple 

pref ix B+-tree in order to further reduce the height and 

size of the B+-index. They suggest that the common pref ix 

be kept in the predecessor nodes rather than repeatedly 

stored in the subtree itself. 

Figure 9 is a partial subtree of a simple pref ix B+­

tree. Consider node T. The parent of node T contains LL(T) 

and SU(T) which are the largest lower bound and the smallest 

upper bound of node T. For all keys, k, and separators, s, 

which are or might be stored in node T or the subtree with 

node T as the root, the following holds: 

LL(T) <= k < SU(T) 

LL(T) <= s < SU(T) 

In node T, p(O), p(l), p(j) are pointers to the 

successors of node T and s(l), s(2), s(j) are 

separators. 



parent --- LL(T) . SU(T) ---
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children D D D 
Figure 9. A Partial Subtree of a Simple 

Pref ix B+-Tree 
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LL(p(i)) and SU(p(i)) are the largest lower bound and 

the smallest upper bound of the subtree pointed to by p(i). 

Therefore, to find the largest lower bound and smallest 

upper bound of a given subtree of node T, the following 

should be used. 

LL ( p ( i ) ) = s ( i ) for i = 1,2, •.• ,j. 

= LL(T) for i = o. 

SU ( p ( i ) ) = s ( i ) for i = 0,1, ••. ,j-1. 

= SU(T) for l = j. 

Therefore, if a subtree of node T contains a nonempty 

common prefix k(i), it must be defined as follows: Let k(i) 

be the longest common pref ix (possibly the "null" or "empty" 
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string) of LL(p(i)) and SU(p(i)), then the common prefix 

k(i) of the subtree rooted at p(i) is defined as follows: 

k(i)l(j) if LL ( p ( i)) = k(i)l(j)z and 

SU ( p ( i) ) = k(i)l(j+l), where 1 ( j) 

proceeds l(j+l) immediately in the 

k ( i) = collating sequence and z is an 

arbitrary string. 

k ( i) otherwise. 

The reader should note that in the definition of the common 

pref ix k ( i) above, k(i)l(j)z and k(i)l(j+l) are 

concatenations of characters derived from separators. 

Now reconsider the simple prefix B+-tree of Figure 4. 

When common prefixes are factored out of the tree, the 

pref ix B+-tree that results is shown in Figure 10. 

Separators appearing in the B+-index of a pref ix B+-tree are 

known as partial separators because the common pref ix has 

been removed. 

Algorithms for search, insertion and deletion in prefix 

B+-trees are given in the article by Bayer and Unterauer but 

not repeated here because pref ix B+-trees are not the main 

concern of this paper. However, it should be noted that the 

algorithms for these operations are more complex than their 

simple prefix B+-tree counterparts. For instance, suppose 

that an insertion into the parent node of T in Figure 9 

changes the common pref ix for node T. This change may then 

cause the partial separators appearing in node T to shrink 

or expand. A reduction in the length of partial separators 
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may now cause the node T to be less than 50 percent full 

and require a merge or underflow operation. Expansion of 

partial separators may now cause the node T to be full 

and therefore require a node split or overflow. Deletion 

from the parent of node T may cause an analogous situation 

to arise. 

Summary 

The introduction of shorter strings into the B+-index 

of simple prefix B+-trees serves to increase the branching 

factor of index nodes and thereby decrease the height of the 

B+-index. The reduction of height in the B+-index is 

important because it reduces the number of external storage 

accesses required to traverse the tree. 

However, additional complexity is introduced in some 

areas when this type of indexing is used. They are: 

1. Algorithms for search, insertion, and deletion must 

be capable of handling variable length strings. 

2. Additional time is required to search a node due to 

the variable length of separators occurring in the 

node. A node containing fixed length keys or 

separators could be searched using a binary search 

(9, section 6.2.4). This is not possible with 

variable length strings. 

3. If prefix B+-trees are utilized, additional 

processing may be required for some insertions or 

deletions where the common pref ix of a given subtree 
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is altered. 

Bayer and Unterauer (2 ,p.16) provide some experimental 

results concerning computing time and disk accesses when a 

B+-tree, a simple prefix B+-tree, and a prefix B+-tree are 

compared. 

Computing Time - The time to execute algorithms for a 

simple prefix B+-tree is almost identical to the 

time for B+-trees, while prefix B+-trees require 

50-100 percent more time. 

Savings of Disk Accesses - If trees have less than 200 

pages, no savings is achieved. For trees having 

between 400 and 800 pages, simple prefix B+-trees 

require 20-25 percent fewer disk accesses than a 

B+-tree. Prefix B+-trees need about 2 percent fewer 

disk accesses than simple prefix B+-trees. 

Feng (5) suggests that the above results indicate that 

simple pref ix B+-trees are more cost effective than pref ix 

B+-trees in a dynamic environment. However, in a static 

environment a pref ix B+-tree may be superior to a simple 

pref ix B+-tree because minimizing the search time of a 

static index is more important than minimizing its initial 

construction time. A more thorough analysis of pref ix B+­

trees may be found in the paper by Feng. 



CHAPTER IV 

EMPIRICAL MEASUREMENT CONCERNING THE 

EFFECT A SPLIT INTERVAL HAS ON 

SIMPLE PREFIX B•-TREES 

Bayer and Unterauer (2, p.12) introduce the concept of 

a split interval for both the index or branch and leaf 

nodes. Their motivation for using a split interval is that 

shorter separators will be moved up into the index part of 

the tree thereby increasing the branching degree of upper 

level nodes and decreasing the height and size of the B•­

index. In their paper, they have implemented and tested 

both a simple pref ix B+-tree and a pref ix B+-tree but do not 

include the concept of a split interval in their analysis. 

Therefore, the primary focus of this paper is an empirical 

examination of the effect of split intervals on a simple 

prefix B+-tree. In particular, the following four areas 

will be studied to see how a split interval effects them. 

The four areas are: 

1. Average length of separators occurring in the B+­

index. 

2. Height of the B+-index. 

3. Storage utilization of nodes at each level of the 

30 
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tree. 

4. Total storage requirement for the tree. 

After studying the effect of a split interval on these four 

areas, an attempt to determine the value of a split interval 

for both branch and leaf nodes will be made. 

Test Cases 

To facilitate empirical measurement, a simple prefix 

B+-tree was implemented and a set of test cases was designed 

to determine the effect a split interval has on a simple 

pref ix B+-tree. The experimental implementation of a simple 

prefix B+-tree is described later in this chapter. 

Each test case consisted of inserting 20,000 randomly 

selected keys into an initially empty tree. The source for 

all keys inserted in all test cases was the "inwrds" file. 

This file consisted of a wide variety of words from the 

English language. Words from the "inwrds" file were 

randomly selected for insertion by using an algorithm from 

Knuth (8). The "inwrds" file and the method of random 

selection will be discussed in more detail later in this 

chapter. 

All nodes of the experimental simple pref ix B+-tree had 

a node size of 128 locations, where a location may store an 

integer or character. This node size is probably too small 

for practical applications but was set to 128 to force the 

index part of the tree to be larger than if a greater node 

size had been chosen. 
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Split intervals for both branch and leaf nodes were 

allowed to take on the values one, three, and five. The set 

of test cases used consisted of every possible combination 

of split intervals for branch and leaf nodes. In other 

words, the first test case was (SIB=l, SIL=l) and the last 

test case was (SIB=5, SIL=5) and there were nine total test 

cases. Split intervals greater than five are generally too 

large for the node size of 128 because they define split 

points that may be off the end of a node. 

Each test case was replicated ten times to provide a 

body of data substantial enough to provide valid empirical 

data when averaged. Replications across test cases 

consisted of the same sequence of keys being selected from 

the "inwrds" file for insertion. In other words, 

replication "n" of test case (SIB=l, SIL=l) consisted of the 

same sequence of keys to be inserted as did replication "n" 

of test case (SIB=3, SIL=l). This was necessary to allow a 

valid comparison of test cases. 

Implementation of a Simple Pref ix B+-Tree 

All test cases were run on an experimental 

implementation of a simple pref ix B+-tree. This 

implementation was written in the programming language "C" 

and was executed on a Perkin Elmer 3230 running the UNIX 

(14) operating system. High-level Program Design Language 

(PDL) descriptions of the algorithms used in the 
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experimental implementation are provided at the end of this 

paper in the Appendix. The purpose of this section is to 

provide the reader with a description of the pertinent parts 

of the implementation. 

Node Organization 

Separators appearing in a simple pref ix B•-tree are 

variable in length. Thus, nodes used to construct a simple 

pref ix B•-tree must have a different organization than nodes 

used to construct B-trees or B•-trees where fixed length 

keys are utilized. 

The node organization used for the simple pref ix B•-

trees constructed for this paper is shown in Figure 11. L/B 

is an integer value which is set to one if the node is a 

leaf or is set.to zei;o if the node is a branch node. L/B 

was used primarily by the tree search algorithm to determine 

when the leaf level of the tree had been reached. NL is a 

count of the number of locations used in the node. NL could 

be a count of the number of bytes used in the node but, in 

this implementation the node is conceptualized as an array 

of storage locations, where each location is capable of 

storing a two byte integer or a one byte character. This 

matter will be discussed further in the next section. NS is 

an integer value which is a count- of the number of 

separators or keys in the node. Separator length l(i), is 

the length in characters of separator s(i). All separator 

lengths l(i), are integer values which are packed together 
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into the left end of the node. Separators and pointers 

are shown as s(i) and p(i), respectively. 

LIB I NL I N s 11 ( 1 ) I . . . 11 ( j ) I p ( 0 ) I s ( 1 ) I • • • I s ( j ) I p ( j ) I - - -

Figure 11. Node Organization 

All nodes used in the experimental implementation were 

identical in structure. An entry in a node consisted of a 

key or separator and pointer pair. Pointers in index or 

branch nodes are integers containing the node number of a 

child node, while pointers at the leaf level contained the 

"null" value, integer -1. 

Searching a node organized like the node shown in 

Figure 11 requires a linear search because the location of 

separators within the node is not previously known. In 

contrast to nodes containing fixed length strings, where a 

binary search of the node is possible, a linear search means 

additional computing time to locate the string in question. 

This may develop into a performance bottleneck if the nodes 

are very large. 

The node organization described here is not 

feasible organization. In a paper by Lomet 

the only 

( 10) , he 

describes a node organization for such a node in which 
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separators of equal length are organized into tables 

within the node. The motivation for this type of 

organization is that a majority of the storage allocated 1n 

the node for separator lengths can be eliminated and thereby 

free more space for storage of separators. Each table 

within the node implicitly supplies the length of all 

separators in that table. 

The Structure of a Node 

The node organization presented in the previous section 

was implemented using the "C" programming language structure 

shown in Figure 12. This structure served as a page buffer 

in the experimental implementation and was dimensioned to 

allow four pages or nodes of the tree to be present 

simultaneously in main memory. Note that a page is 

equivalent to a node of a tree in this discussion. 

struct node { 
short leaf; 
int num locs used; 
int num-of seps; 
union { - -

short ival; 
char cval; 

} store[ ]; 
} page[4]; 

Figure 12. The Page Buffer 
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Recall from the previous section that a node was 

conceptualized as an array of locations where each location 

was capable of storing a two byte integer or a one byte 

character. This is due to the "union" data type used in the 

page buffer declaration shown in Figure 12. The "union" 

data type was used to simplify the implementation of a node 

and the algorithms used to modify it. The "union" data type 

causes storage to be allocated for the largest data type 

present in the union. In this case, each element in the 

array "store" of Figure 12 has two bytes allocated to it. 

This allocation corresponds to the allocation for a short 

integer. The array "store" is used to store separator 

lengths, separators, and pointers. 

In this study, if a node is said to have size "x" it 

means that the array "store" has been dimensioned to "x". 

Note that a node of size "x" does not correspond to "x" 

contiguous bytes of memory. This is because a character 

stored in the array "store" only utilizes one byte of the 

two bytes allocated to each element of the array. However, 

the "union" data type does allow "x" contiguous bytes to be 

simulated. 

Page Replacement Method 

In an attempt to reduce the number of I/O transactions 

required to perform operations such as insertion and 

preorder traversal, the "least recently used" or "LRU" page 

replacement algorithm was utilized (9). This algorithm 
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requires the page in the page buffer that was referenced 

the longest time ago to be replaced when a page is requested 

from external storage. This page replacement policy was 

used because simple pref ix B+-tree restructuring frequently 

requires that three nodes (two siblings and a parent) be in 

memory simultaneously. The LRU algorithm guarantees that 

these nodes will stay in memory during the restructuring. 

The LRU method was implemented using two data 

structures, a page buffer and a page queue. The page buffer 

is shown in Figure 12 and is capable of storing four pages 

in main memory simultaneously. The page queue was used to 

store the page numbers of the pages currently present in the 

page buffer. An entry in the page queue consisted of not 

only a page number but also a pointer to the location of 

that page in the page buffer. The page queue was also used 

to retain the relative order in which the pages in the page 

buffer were referenced. 

The LRU page replacement policy worked well for the 

experimental implementation. Most trees studied had a 

height of four or less and because the page buffer was 

dimensioned to four, the root page was nearly always 

resident in the page buffer. This is important because any 

search of the tree begins with the root and if the root page 

is present in the page buffer, at least one fewer I/O 

transaction is required to search the tree. 
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Implementation of a Split Interval 

To split a node where a split interval is utilized, one 

must first find the "middle" gap of a node. After finding 

the "middle" gap, other gaps on either side of the "middle" 

gap that are part of the split interval are considered as 

possible split points. 

The problem of finding the middle gap of a node is more 

complex in simple pref ix B+-trees than in conventional B­

trees because of the variable length strings that occur in 

simple prefix B+-trees. In this implementation, the 

following procedure was used to locate the middle gap of a 

node. 

1. Subtract the number of separators 

number of locations used in the node. 

physical middle of the node. 

from 

This 

the total 

is the 

2. Find the first gap immediately to the right of the 

physical middle found in step 1. This gap then 

qualifies as the "middle" gap. 

Although the two step procedure given above does not always 

find the gap nearest the physical middle of a node, the 

procedure was easy to implement and no doubt found the 

"proper" middle gap at least half the time. 

After locating the middle gap, the split interval, SIB 

or SIL, is referenced to determine how many gaps on either 

side of the middle gap should be split point candidates. 
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Recall that the criterion for determining the best split 

point within the split interval is the gap that provides the 

shortest separator to propagate up. However, in this 

implementation, an additional constraint has been placed on 

this selection process. If two or more gaps within the 

split interval determine separators of equal length, then 

the gap closest to the middle gap is chosen. This was done 

in hope of reducing the number of nodes whose storage 

utilization is far below 50 percent due to the split 

interval. 

"Words" File and Random Sampling 

The source of all keys inserted into the trees studied 

in this paper was the "words" file used by the UNIX (14) 

operating system to facilitate the checking of spelling in 

documents. The file is made up of a great variety of words 

from the English language, including technical words, 

abbreviations, numbers, and proper nouns. It is sorted by 

ASCII collating sequence and consists of 24001 variable 

length strings. 

The "words" file described above is not a good source 

for random insertions into a tree structure. Because it is 

sorted, any random selection algorithm that proceeds from 

one end of the file to the other will insert an ordered 

partition of the file. The insertion of this ordered 

partition will force the tree to take a worst-case form 

where most nodes have a storage utilization of only 50 



40 

percent. In order to avoid this situation, an algorithm 

from Knuth (8) was used to "shuffle" the file randomly. 

The algorithm used to shuffle the file required the 

file to be in a relative record format to facilitate 

addressing. The transformation to a relative record format 

was done by transforming each variable length string in the 

"words" file to a fixed length record stored in the "inwrds" 

file. The shuffling algorithm makes one complete pass over 

the "inwrds" file swapping the current record with a 

randomly chosen second record located somewhere below the 

current record in the file. Initially, the current record 

is the first record in the file. 

Another algorithm from Knuth (8) was used to do random 

selecting of words from the "inwrds" file. This algorithm 

made a single pass over the file conditionally selecting 

words using a random number generator. Each record may be 

selected with probability, p/n, where p is the number of 

words to be selected and n is the cardinality of the file. 

Before the nine test cases of this study were executed 

on the experimental implementation, the "inwrds" file was 

shuffled. This gave the "inwrds" file an order that was 

retained for each replication of all nine test cases. After 

shuffling, the random selection algorithm was executed for 

each replication of each test case. To insure that the same 

sequence of keys was selected for each replication across 

the test cases, the same random number generator seed was 

used to initialize the random selection algorithm for each 



replication across test cases. In other 

replication "n" of test case "x" had the same random 

seed as replication "n" of test case "y". 
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words, 

number 

Using a file like the "inwrds" file to build simple 

pref ix B•-trees, represents a real application of simple 

pref ix B•-trees. Words in the "inwrds" file are variable in 

length and many intervals within the file contain clusters 

of words whose collating sequence distance is small. Thus, 

the simple pref ix B•-trees built for this study correspond 

to a word index like the ones used for a document database 

or dictionary. 

Statistics Module 

As a part of the experimental implementation, a module 

was written to collect statistics concerning the structure 

of the tree. The statistics were collected by traversing 

the tree in preorder. The following statistics concerning 

separator length were compiled for each iteration of each 

test case: 1) mean, 2) standard deviation, 3) minimum 

length, 4) maximum length, and 5) count of the total number 

of keys or separators. These statistics were compiled for 

each level of the tree. 

Additionally, the following statistics were compiled 

for each level of the tree concerning storage utilization: 

1) mean, 2) standard deviation, 3) minimum storage 

utilization, 4) maximum storage utilization, and 5) count of 

the total number of nodes at each level. Also, a count of 
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the total number of nodes used in the construction of the 

tree was calculated. 

The calculation of storage utilization requires a 

special note. Only the elements of the array "store" in 

Figure 12 were considered in the calculation of storage 

utilization. Thus, storage utilization was calculated by 

dividing the number of locations of array "store" used by 

the dimension of the array. Other overhead elements of the 

node such as the number of separators stored were ignored in 

the calculation because these overhead elements were ignored 

in past studies involving average storage utilization in B­

trees. 

Results and Analysis of Empirical Testing 

The nine test cases outlined earlier in this chapter 

were run and the information derived from these test cases 

was compiled for analysis. The data used to represent each 

test case was compiled by averaging the ten replications of 

each test case. Tables appearing in this section were 

derived from this compiled data and are presented to provide 

empirical evidence of the effect a split interval has on a 

simple pref ix B+-tree. 

All trees produced by the nine test cases had a height 

of four. In the discussion that follows, the levels of a 

tree are numbered from zer-0 to three where level zero is the 

root level and level three is the leaf level. Also, the 

reader should recall that SIB is the split interval for 
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branch or index nodes and that SIL is the split interval 

for leaf nodes. 

Effect on Separator Length 

Table I shows the effect of SIL on the length of the 

separators occurring in level two. The data in Table I is 

derived from the test cases where SIL took on the values 

one, three, and five while SIB was held constant at one. 

The reduction in separator length shown in Table I is quite 

significant as the average length of a key inserted into the 

tree was 7.19 characters. 

TABLE I 

AVERAGE LENGTH OF SEPARATORS AT LEVEL TWO 
(SIB CONSTANT AT ONE} 

SIL AVE LEN NODES L2 

1 4.47 151 
3 3.65 134 
5 3.46 132 

NODES LEAF 

2131 
2139 
2173 

BD 

14.1 
16.0 
16.5 

Table I also illustrates the reduction in the number of 

nodes required to make up level two and the increased 

branching degree achieved from the propagation of shorter 
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separators. However, note that the number of nodes 

required for the leaf level increases as SIL increases. 

This is due to the increased probability that a leaf node in 

the tree will split due to the uneven manner in which nodes 

split. As SIL increases, so does the difference between the 

storage utilization of the two nodes participating in the 

split. No analytical evidence that a highly uneven split of 

a node increases the probability that a node will split is 

provided here. However, it should be intuitively clear 

because the number of splits occurring at a level of the 

tree is always one less than the number of nodes making up 

that level of the tree. 

Another consequence of highly uneven splits and the 

corresponding increased probability that a node will split 

is that additional separators are propagated up into the 

next level of the tree. Thus, as a split interval increases 

in size it selects shorter separators to propagate up, but 

it also increases the number of separators being propagated 

up due to the highly uneven splits. Therefore, the 

reduction in the size of the index part of the tree is not 

as significant as desired because the index now contains a 

greater number of separators. 

Table II shows the effect SIB has on the length of 

separators occurring at level one of the tree. The data in 

this table comes from the test cases where SIB was varied 

but SIL was always one. Since SIL was constant, the average 

length of all separators entering the B+-index was 4.47 
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characters as shown in Table I for test case (SIB=l, 

SIL=l). 

TABLE II 

AVERAGE LENGTH OF SEPARATORS AT LEVEL ONE 
(SIL CONSTANT AT ONE) 

SIB 

1 
3 
5 

AVE LEN 

4.00 
3.44 
2.75 

NODES Ll 

9.7 
9.6 
8.0 

NODES L2 

151 
152 
153 

BD 

15.5 
15.8 
19.1 

Table II clearly indicates that shorter separators were 

propagated into the upper levels of the index as SIB 

increased. Also shown are the average number of nodes at 

level one and two and the increased branching degree 

achieved f rorn propagating shorter separators into the upper 

levels of the index via an increase in SIB. 

Effect on Storage Utilization 

Table III presents storage characteristics for the leaf 

level where SIL was allowed to vary. Note that as SIL 

increases the average storage utilization does not decrease 

with any significance. However, an increase in SIL does 
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cause a decrease in the minimum storage utilization and an 

increase in the number of nodes comprising the leaf level. 

Evidence of highly uneven splits is shown by the reduction 

in minimum storage utilization. As mentioned earlier, these 

highly uneven splits cause an increase in the probability 

that a node at that level will split and therefore increase 

the storage requirement for that level. 

TABLE III 

STORAGE UTILIZATION AT THE LEAF LEVEL 
(SIB HELD CONSTANT AT ONE) 

SIL 

1 
3 
5 

AVE 

68.14 
67.88 
66.86 

MIN 

39.14 
31.17 
21.03 

NODES LEAF 

2131 
2139 
2173 

All trees constructed for this study were created by 

random insertions into an initially empty tree. B-trees 

constructed by random insertions into an initially empty 

tree achieve an average storage utilization of 69 percent as 

shown by Yao (18). Interestingly, this average storage 

utilization was also achieved by the trees in this study. 
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This result is interesting because B-trees utilize fixed 

length keys and nodes with preset maximimurn and minimum 

branching degree, while simple prefix B+-trees utilize 

variable length keys and nodes with a variable branching 

degree. Thus, one would not expect the same result 

concerning storage utilization because of the variable 

branching degree of nodes in a simple pref ix B+-tree. Also, 

overhead elements in the node were ignored in the 

calculation of average storage utilization just as Yao (18) 

did in his study on B-trees. 

Effect on Tree Height 

The data from the test cases used in this study did not 

provide any direct evidence that the use of a split interval 

caused a reduction in tree height. This is because the 

height of all trees studied was four. However, Table IV was 

constructed to show that conditions favorable to height 

reduction were present. Table IV shows the increased 

branching degree of nodes occurring at level one of the 

trees in test case (SIB=5, SIL=5) in comparison to the 

branching degree achieved by the trees in test case (SIB=l, 

SIL=l). It has been shown by Rosenberg and Snyder (13) that 

the shortest trees occur when the branching degree of nodes 

near the root is as high as possible. 



TABLE IV 

INCREASED BRANCHING DEGREE AT LEVEL ONE 
DUE TO INCREASED SIB AND SIL 

SIB 

1 
5 

SIL 

1 
5 

NODES Ll NODES L2 

9.7 
6.5 

151 
131 

BD 

15.5 
20.2 

Effect on Storage Requirements 
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In general, an increase of a split interval at level x 

tends to decrease the storage requirement for level (x-1) 

but increase the storage requirement for level x. Empirical 

evidence of this can be seen in Table I where the number of 

nodes required for level two and the leaf level is shown. 

This general effect is due to the propagation of shorter 

separators into level (x-1) thereby decreasing the number of 

nodes required to build level (x-1) and due to the increase 

of highly uneven splits at level x causing the number of 

nodes required for level x to increase. An increase in the 

number of node splits also means that more separators will 
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be propagated into the index part of the tree thereby 

reducing the significance of the reduction in index size. 

Table V shows the storage requirement for a B+-f ile or 

leaf level and B+-index. Also the total storage requirement 

for the entire tree is shown. Note that the B+-index 

decreases in size as SIL increases and the leaf level or 

B+-file increases in size as SIL increases. Also note that 

SIB has virtually no effect on the size of the index. 

Unfortunately, as SIL increases the total storage 

requirement of the tree seems to increase. The reduction in 

size of the B+-index is offset by the increase in the size 

of the B+-f ile and thereby increases the total storage 

requirement for the tree. However, the data in Table V does 

include a possible exception to the increase in total 

storage requirement. The data for the test cases where SIL 

= 3 shows an actual reduction in total storage requirement 

for the tree. This exception may indicate an argument for a 

small split interval at the leaf level. 

"Student's" t-Test 

The analysis associated with this study has been 

primarily a comparison of means provided by averaging the 

ten replications of each test case. However, to provide 

some assurance that these means are statistically 

significant and not the result of random fluctuations, the 

"Student's" t-test (17) was applied to the data. The 

"Student's" t-test makes the assumption that the parent 
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population is the normal distribution and is used when the 

sample size is very small (less than 50). In this study, 

the sample size was ten for each test case. 

TABLE V 

TOTAL STORAGE REQUIREMENT FOR B+-FILE, 
B+-INDEX, AND ENTIRE TREE 

SIB SIL B+-FILE B+-INDEX TOTAL 

1 1 2131.2 161.4 2292.6 
1 3 2139.4 143.1 2282.5 
1 5 2172.6 140.7 2313.3 

3 1 2131.2 162.2 2293.4 
3 3 2139.4 143.0 2282.4 
3 5 2172.6 137.4 2310.0 

5 1 2131.2 160.9 2292.1 
5 3 2139.4 144.5 2283.9 
5 5 2172.6 138.0 2310.6 

In particular, a 95 percent confidence interval for the 

difference in storage requirement means was calculated. In 

doing this, it was assumed that the test cases were "paired" 

samples. This was assumed because each sample or 

replication across each test case consisted of an identical 

sequence of keys to be inserted. In calculating a 

confidence interval for a difference in storage requirement 

means, the test case (SIB=l, SIL=l) was used as a reference 
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point or control because it corresponds to the 

conventional split at the "middle" of a node. The reader 

should note that the assumptions concerning the normal 

distribution as the parent population and paired samples may 

be questionable. 

Table VI shows the result of calculating a 95 percent 

confidence interval for the difference in storage 

requirement means utilizing the "Student's" t-test. The 

results presented in Table VI involve the total storage 

requirement for the index part of the tree, leaf level, and 

the entire tree. A difference in means is considered to be 

statistically significant if the data point 0.0 does not 

appear within the interval. Thus, for the test case (SIB=l, 

SIL=3) the average reduction in the storage requirement for 

the index part of the tree was statistically significant 

while the average increase in the storage requirement for 

the leaf level was not. Table VI serves to verify the 

results shown in Table V and the discussion in the previous 

section concerning storage requirement. 

One consequence of using SIL is that more nodes are 

required to make up the leaf level. This is shown in Table 

VI. The introduction of more nodes at the leaf level means 

that the average branching degree of nodes at the leaf level 

is reduced. This is unfortunate because the paper by 

Rosenberg and Snyder (13) points out that a high branching 

degree is most beneficial at the lowest levels of the tree. 



TABLE VI 

95% CONFIDENCE INTERVAL FOR THE DIFFERENCE IN STORAGE 
REQUIREMENT MEANS 

SIB SIL LEAF LEVEL INDEX TOTAL 

1 3 +8.2 ± 12.4 -18.2 ± 3.5 -10.1 ± 12.3 
1 5 +41.4 ± 10.3 -20.6 ± 3.2 +20.7 ± 10.7 

3 1 +O.O ± o.o +0.9 ± 2.6 +0.8 ± 2.6 
3 3 +8.2 ± 12.4 -18.3 ± 5.5 -10.2 ± 12.9 
3 5 +41.4 ± 10.3 -24.2 ± 4.3 +17.2 ± 10.8 

5 1 +O.O ± o.o -0.4 ± 2.9 +0.8 ± 2.8 
5 3 +8.2 ± 12.4 -18.7 ± 3.1 -10.6 ± 12.8 
5 5 +41.4 ± 10.3 -21. 0 ± 2.7 +20.3 ± 11.0 
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The specification of which level of the tree is the 

leaf level may be a source of some confusion here. This is 

because the leaf level of the simple pref ix B+-trees used in 

this study contains pointers to hypothetical records instead 

of full records. In the analysis of Rosenberg and Snyder 

(13), they consider the records themselves to be the leaf 

level and the B+-f ile level of a simple pref ix B•-tree to be 

part of the tree index. Therefore, a high branching degree 

in simple pref ix B•-trees is most beneficial at the B+-f ile 

or leaf level. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND SUGGESTED 

FURTHER RESEARCH 

Summary 

A simple pref ix B+-tree is a B+-tree where the index or 

nonleaf part of a B+-tree has been replaced by an equivalent 

index made up of shorter strings known as separators. 

Separators are derived from the actual keys residing in the 

leaf level of the tree and are used in the index part of the 

tree instead of actual keys to decrease the height and size 

of the index part of the tree. 

A split interval permits a node in a simple prefix B+­

tree to split in other places besides the middle of a node. 

This is done to promote even shorter separators into the 

index part of a simple pref ix B+-tree and thereby further 

reduce the height and size of the index part of the tree. 

Split intervals may be applied to leaf and branch nodes of a 

simple pref ix B+-tree. 

This paper is an empirical study concerning the effect 

a split interval has on the performance of a simple prefix 

B+-tree. To facilitate this study, a simple prefix B+-tree 
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utilizing the concept of a split interval was implemented 

and a set of test cases were executed on this implementation 

to derive information concerning the effect a split interval 

has on the performance of the tree. Data from these test 

cases were compiled and organized into tables to illustrate 

the effect of a split interval on a simple prefix B+-tree. 

The general effect of a split interval at level x of a 

simple pref ix B+-tree is to decrease the storage requirement 

for level (x-1) and increase the storage requirement for 

level x. The storage requirement for level (x-1) is reduced 

because shorter separators are selected by the split 

interval. However, the storage requirement for level x is 

increased because as a split interval increases in size so 

does the difference in storage utilization between the two 

nodes that result from the split. Highly uneven splits at 

level x causes the probability that a node at that level 

will split to increase and thereby increases the number of 

nodes required to make up level x. Highly uneven splits 

also increase the number of separators being propagated up 

into the index part of the tree and thereby reduce the 

significance of the reduction in total storage requirement 

for the tree. 

Conclusions 

The use of a split interval at the leaf level promotes 

shorter separators into the index part of the tree and 

thereby reduces the size and possibly the height of the 
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index part of the tree. However, the data derived from 

the test cases used in this study show that the increase in 

the total storage requirement for the leaf level due to the 

split interval tends to offset the reduction in size of the 

index part of the tree. In most cases, the total storage 

requirement for the tree increased as the split interval at 

the leaf level increased. However, the test cases where the 

split interval at the leaf level was three showed an actual 

reduction in the total storage requirement for the tree. 

Therefore, the use of a small split interval at the leaf 

level may be worthwhile. This matter needs to be studied 

further before any concrete conclusions can be drawn, 

however. 

The use of a split interval in the index part of the 

tree promotes shorter separators into the upper levels of 

the tree and increases the branching degree of the upper 

level nodes. However, the use of a split interval in the 

index part of the tree is not recommended because it has 

been shown by Rosenberg and Snyder (13) that a high 

branching degree in upper level nodes is not a desirable 

property. 

Suggested Further Research 

The data derived from the test cases used in his study 

show that a small split interval at the leaf level of the 

tree may be useful. This matter needs further research to 

make any solid conclusions, however. Also the paper by 

f Of. 
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Rosenberg and Snyder (13) concerning where in a B-tree 

type index a high branching degree of nodes is most 

beneficial needs further study including the compaction 

algorithm given there. 
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SYMBOL LEGEND: 

ancest stk - ancestor stack used to store ancestory 
during a search. 

buf_ptr - pointer to a page(node) in the page buffer. 
file name - character array containing the name of the 

tree storage file. 
in str - input string or input key. 
in-strlen - length of input string, in str. 
key file - file containing keys to insert into a tree. 
match - flag indicating a key to be inserted is already 

present. 
new page ptr - pointer to a new page in the page buffer 

- - that is required for a split. 
nn_ptr - pointer to a new page in the page buff er that 

is required for a split. 
node - a structure with the following parts: 

1. leaf - flag that is set if node is a leaf. 
2. number of separators. 
3. number of locations used in the array store. 
4. store - array containing separator lengths. 

pointers, and separator characters. 
node ptr - pointer to a location in the array "store" 

- of a node. 
num of pages - initial number of pages on the available 

- - page list. 
on ptr - pointer to a node in the page buffer currently 

- a part of a tree. 
page buffer - buffer that is used to store nodes of the 

- tree in main memory. 
page_num - page number. 
page_queue - queue containing page numbers and pointers 

to the location of a page in the page 
buffer. used to retain order of page ref­
erences. 

ptr - child pointer to be inserted. 
root - contains the page number for the root. 
sample size - number of keys to insert. 
sep - character array containing a separator. 
sep len - length of sep. 
sib-- split interval for branch or index nodes. 
sil - split interval for leaf nodes. 
sl ptr - pointer to a location in the array "store" of 

- a node containing a separator length. 
separator length. 

split_ptr - pointer to the location in the array store 
of a node where a split will occur. 
will occur. 

ssl_ptr - pointer to the location in the array store of 
a node containing the separator length of the 
separator to the right of split ptr. 

success - flag indicating whether or not-an insertion 
was successful. 



up_ptr - child pointer propagated up due to a split. 
up str - separator propagated up due to a split. 
up:strlen - separator length associated with up_str. 
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main () 

{ 

} 

open key_file; 

request file name, sample size, sil, sib, and 
num of pages from the user; 

init_tree(file_name, num_of_pages); 

select_sample(sample_size, key_file, sil, sib); 

close key file; 

exit; 

select_sample(sample_size, key_f ile, sil, sib) 

{ 

} 

t = m = O; 
while (m < sample size) { 

} 

read a word from key file; 

if((size of key file - t)*ranf(O) < sample_size) { 
in strlen = length of word just read; 
tree insert(in str, in strlen, sil, sib); 
m = iii' + l; - -

} 
t = t + l; 

return; 
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tree_insert(in_str, in_strlen, sil, sib) 

{ 

} 

if (root = -1) { /* empty tree */ 

} 

root = the next available page number; 
buf_ptr = lru buffer(root); 
success = node_insert(in_str, in_strlen, buf_ptr, -1); 

else { 

} 

fetch the pages in the traversal path using lru buffer 
and stack their page numbers on ancest stk until a 
leaf node is reached; 

success= node_insert(in_str, in strlen, buf_ptr, -1); 

while (!success) { /*while insertion is unsuccessful*/ 

} 

if (ancest stk is empty) { /* split the root */ 
page num-= the next avaiable page number; 
new page ptr = lru buffer(page num); 

} 

splTt ptr = get split point(buf ptr,up str, 
- - -up strlen~ssl ptr,sil,sib); 

split(split ptr, new page ptr, buf ptr, ssl ptr); 
page num = the next available page-number; -
buf ptr = lru buffer(page num); 
success = node insert(up str,up strlen,buf ptr, 

- up=ptr); - -
root = page_num; 

else { /* split a node other than the root */ 
up ptr = the next available page number; 
new page ptr = lru buffer(up ptr); 
splTt ptr = get split point(buf ptr,up str, 

- - up strlen,ssl ptr~sil,sib); 
split(split ptr,new page ptr,buf ptr,ssl ptr); 
page num = pop the ancest stk; - -
buf ptr = lru buffer(page-num); 
success = node insert(up str,up strlen,buf ptr, 

- up=ptr); - -
} 

return; 
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get split point(buf ptr,sep,sep len,ssl ptr,sil,sib) - - - - -
{ 

} 

find the middle gap of the node pointed to by buf_ptr; 

derive a separator for the middle gap and save it and 
its length in sep and sep_len respectively; 

examine the gaps to the left of the middle gap that 
are within sil or sib for a shorter separator. If a 
shorter separator is found, save it and its length 
in sep and sep_len; 

examine the gaps to the right of the middle gap that 
are within sil or sib for a shorter separator. Save 
in sep and sep_len if found; 

/* split_ptr is pointer to the gap where split will */ 
/* occur. Also ssl ptr is pointer to location of */ 
/* separator length, sep len. *I 

return(split_ptr); 

init_tree(file_name, num_of_pages) 

{ 

} 

initialize the page queue; 

create and open the tree storage file, file_name; 

initialize the tree storage file to all leaf nodes. 
The number of pages initialized is num_of_pages; 

initialize the available page list; 

set the root to -1 to indicate an empty tree; 

return; 



lru buffer(page num) - -
{ 

} 

search the page queue to see if the requested page, 
page_num is present; 

if (page_num is not present in the page queue ) { 

/* page to be paged out is at front of page */ 
/* queue. */ 

} 

if (page to be paged out has been altered) 
write it to the page storage file; 

read the requested page, page_num from the 
storage file; 

place the requested page in the available space 
in the page buffer vacated by the page that 
was paged out; 

insert page num at the rear of the page queue; 

else 
move the page queue 

page num from its 
of the page queue 
referenced page; 

entry associated with 
current position to the rear 
making it the most recently 

/* buf ptr points to the location in the page */ 
/* buffer where the page associated with */ 
/* page num is located. */ 

return(buf ptr); 
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node_search(in_str,in_strlen,match,sl_ptr,buf_ptr) 

{ 

} 

if (node pointed to by buf ptr is empty) 
return(-1); /* signals-empty tree*/ 

else { 

} 

sequentially search the node pointed to by buf_ptr 
for the proper position for insertion or the 
proper pointer to follow in the traversal path. 

/* node ptr is position for insertion or pointer to */ 
/* next-pointer in traversal path. */ 

return(node ptr); 

put in node(node ptr,sl ptr,in str,in strlen,ptr,buf ptr) -- - - - - -
{ 

} 

calculate the number of locations needed for the 
insertion; 

set success to false if node will be overfull due 
to the insertion. set to true otherwise; 

shift the separators and pointers to the right of 
node ptr to the right to allow room for the 
insertion; 

insert in str into the node; 

shift the contents of the node between node ptr and 
sl ptr to the right to allow room for the-inser­
tion of in_strlen; 

insert in_strlen; 

update the number of locations used and the number 
of separators for the node pointed to by buf_ptr; 

return(success); 



node_insert(in_str, in_strlen, buf_ptr, ptr) 

{ 

} 

node_ptr = node search(in str,in strlen,match, 
- ,sl:ptr,buf_ptr); 

if (node_ptr = -1) { /* empty tree */ 

} 

set the following variables in the node: 
1. number of locations used. 
2. number of separators. 

insert the following into the node: 
1. in strlen. 
2~ "n~ll" pointer, -1. 
3. in str. 
4. "n~ll" link pointer, -1. 

success = true; 

else { 

} 

if (match) { /* key already present */ 
= true; success 

} 
else 

success = put in node(node ptr,sl ptr,in str, 
- - in_strlen,ptr,buf_ptr); 

return( success); 
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split(split ptr, nn_ptr, on_ptr, ssl_ptr) 

{ 

} 

move separator lengths to the right of ssl ptr 
(ssl ptr + 1 for branch nodes) from the node 
pointed to by on_ptr to the node pointed to by 
nn_ptr; 

if (node pointed to by on ptr = leaf) { 
move separators and pointers to the right of 

split ptr from the node pointed to by on ptr 
to the node pointed to by nn ptr; -

link the two nodes together; 
} 
else { 

do the same as above except move all separators 
and pointers one gap to the right of split ptr 
to the node pointed to by nn ptr; -

} 
shift the separators 

node pointed to by 
the node; 

and pointers remaining in the 
on_ptr to the left to compact 

calculate the number of separators and locations used 
for the nodes pointed to by on_ptr and nn_ptr; 

return; 
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