
THE EFFECT OF A SPLIT INTERVAL ON

SIMPLE PREFIX B+-TREES

By

TIMOTHY L. TOWNS
~

Bachelor of Science

Harding University

Searcy, Arkansas

1979

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullf illment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1983

THE EFFECT OF A SPLIT INTERVAL ON

SIMPLE PREFIX B+-TREES

Thesis Approved:

ii

1161125 t

PREFACE

This study examines the effect a split interval has

on a simple pref ix B+-tree. A simple pref ix B+-tree is a

cousin of the well-known B - tree indexing organization

and a split interval is a proposed method to improve the

performance of this organization. The purpose of this

paper is to determine the usefulness of a split interval

by empirically testing its effect on an experimental

implementation of a simple pref ix B+-tree.

I would like to express my gratitude to my major

adviser, Dr. James R. Van Doren for his guidance and

instruction in this study. I would also like to thank Dr.

Sharilyn Thoreson and Dr. Mike Folk for serving on my

graduate committee.

I would also like to thank John

Schneider, and Mike Bates for their

motivation in completing this paper.

Kerns, Robert

assistance and

Finally, I would like to express my appreciation for

the support, money, and patience my parents so gladly

offerred during my studies.

111

Chapter

I.

I I.

I I I.

TABLE OF CONTENTS

INTRODUCTION .

AN OVERVIEW OF B+-TREES

B+-Index
B+-File •
Properties of
Searching and
Summary • . •

a B+-Tree ..••..
Updating a B+-Tree

SIMPLE PREFIX B+-TREES .

Page

1

3

3
5
6
7
9

10

Insertion Into a Simple Pref ix B+-Tree 12
Effect of Separators on a B+-Index • • . 16
Split Interval • • . . • • . • . • • 17
A Difference of Opinion . • • . • • . 20
Insertion Utilizing a Split Interval 22
Deletion Utilizing a Split Interval • 23
Pref ix B+-Trees • • • • • . • . • • • . . 24
Summary 28

IV. EMPIRICAL MEASUREMENT CONCERNING THE EFFECT A
SPLIT INTERVAL HAS ON SIMPLE PREFIX B+-TREES • 30

v.

Test Cases . • • • • • • • • • • • • • • 31
Implementation of a Simple Pref ix B+-Tree 32

Node Organization • • . . • • • • • 33
The Structure of a Node • • . • 35
Page Replacement Method • • • • 36
Implementation of a Split Interval • 38
"Words" File and Random Sampling • • 39
Statistics Module • • • • • • • • • 41

Results and Analysis of Empirical Testing 42
Effect on Separator Length • • • • • 43
Effect on Storage Utilization • • • 45
Effect on Tree Height • • • • • • • 47
Effect on Storage Requirements • 48
"Student's t-Test •••••.••. 49

SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE
RESEARCH • • • . • • . • • • • • . • • 53

Summary 5 3

iv

Chapter Page

Conclusions • • 54
Suggested Future Research • 55

SELECTED BIBLIOGRAPHY 57

59 APPENDIX ~ . .

v

LIST OF TABLES

Table Page

I. Average Length of Separators at Level Two
(SIB Constant at One) • • • • . . • 43

II. Average Length of Separators at Level One
(SIL Constant at One) • 45

III. Storage Utilization at the Leaf Level (SIB
Held Constant at One) • • • • • 46

IV. Increased Branching Degree at Level One Due to
Increased SIB and SIL • • 48

v.

VI.

Total Storage Requirement for B+-File,
B+-Index, and Entire Tree .•....

95% Confidence Interval for the Difference
in Storage Requirement Means ...•.••

vi

50

52

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

LIST OF FIGURES

Separation of B+-Tree Components

A "Full" B+-File Leaf Node

Split of a B+-File Leaf Node After Insertion
of the Key "Cards" • • . • • •

A Simple Pref ix B+-Tree •

A "Full" B+-Index Node

Index Nodes Resulting From a B-Tree Type
Split of the B+-Index Node in Figure 5

Incorrect Split of the B+-Index Node in
Figure 5

A B+-File Node and the Separators Derived
From Each Gap

A Partial Subtree of a Simple Pref ix B+-Tree

A Pref ix B+-Tree Derived From the Simple
B+-Tree in Figure 4

Node Organization
The Page Buffer

Vll

.

.

Page

4

11

11

13

15

15

16

19

25

27

34

35

CHAPTER I

INTRODUCTION

A B-Tree is a well-known method for indexing a large

collection of data. This indexing method is important

because B-trees are dynamic and provide logarithmic search

and update times. One popular variant of a B-tree is a B+­

tree. In a B+-tree, all records indexed by the tree reside

in the leaf level nodes of the tree. A simple prefix B+­

tree is an extension on the idea of a B+-tree where the

nonleaf nodes or index part of a B+-tree is replaced by a

smaller but equivalent index made up of separators.

Separators are strings derived from actual keys occurring in

the leaf level of a B+-tree. The motivation for a simple

pref ix B+-tree is the reduction in size and height of the

index part of the tree gained by the introduction of

separators to replace actual keys. A reduction in the

height of the index part of the tree is important because

the height of the index has a direct influence on the

performance of the index. A reduction in the size of the

index means that fewer nodes are required to make up the

index and thus the entire tree.

This paper examines a simple pref ix B+-tree with the

added feature of a split interval. A split interval allows

1

2

a node to split in places other than the middle of the

node. This is done to promote shorter separator strings

into the index part of the tree and thereby further reduce

the height and size of the index.

The primary intent of this paper is to study

empirically what effect a split interval has on the

performance of a simple pref ix B+-tree and what improvements

or consequences arise from its use. The reader should note

that this paper was written with the assumption that the

reader is familiar with B-trees and the nomenclature

associated with B-trees.

Chapter II of this paper contains a brief outline of

B+-trees with an emphasis on the differences between B+­

trees and B-trees. This chapter may be skipped by the

reader familiar with B+-trees.

Chapter III introduces. a simple prefix B+-tree and the

notion of a split interval. Descriptions of the algorithms

for insertion and deletion into a simple prefix B+-tree with

a split interval are given. Also the predicted effects of a

split interval on a simple prefix B+-tree are given.

Chapter IV contains the results of a study to

empirically determine the effect a split interval has on a

simple prefix B+-tree. Descriptions of test cases, the

experimental implementation of simple pref ix B+-tree, and

the results derived from the test cases are given.

The final chapter contains a summary of the work done

and conclusions concerning the use of a split interval.

CHAPTER II

AN OVERVIEW OF B+-TREES

An important variant of a standard B-tree is a B+-tree

suggested by Knuth (9, section 6.2.4) and described by Comer

(4). In a B+-tree, the tree structure is separated into two

distinct parts, a B+-index and a B+-file. This separation

is possible because all records in the tree have been moved

to the leaf level nodes. A B+-index consists of the upper

level or nonleaf nodes and is used to direct searches to the

leaf level nodes where records or pointers to records

reside. A B•-file is an ordered set of leaf nodes which

contain the records indexed by the B+-index. Figure 1

illustrates the separation of a B•-index and a B•-f ile.

An index or upper level node contains many elements

known as entries. In a conventional B-tree, an entry is an

ordered pair (k,r) where k is a key and r is a record or

associated information. Entries in the nodes of a B•-index

contain no records because all records have been moved to

the B+-f ile. Keys occurring in a B+-index entry are copies

of actual keys having been inserted at the leaf level of the

tree. These key copies that comprise the B•-index are

3

4

propagated

level split.

up into the B*-index when nodes at the leaf

D
DD

DD D

DD D D B+-File

Figure 1. Separation of B+-Tree Components

Because entries in the nodes of a B+-index contain no

records, an entry in a B+-index is shorter than an entry of

a conventional B-tree index node. A shorter entry means

more entries may be packed into a node, thereby increasing

the branching degree or order of the node. This increased

branching degree of index nodes means the height of the

index may be reduced. A reduction of tree height is

important because a search of a tree must proceed in a path

from the root node to a leaf node. Each node in the

traversal path must be referenced or visited to determine

the next node in the traversal path. When the nodes of the

tree reside on external storage, a node visit means an

5

expensive disk access will take place. It has been shown

that when indexing files where the file and the index reside

on external storage, the primary performance bottleneck is

the number of accesses to external storage (6). This is due

to the seek time and rotational delay typically associated

with external storage devices like a disk drive. Therefore,

the performance of the indexing method will improve as the

tree height is reduced. However, if a tree contains very

large nodes, the time required to transfer the node may

become a performance bottleneck.

A B+-f ile is a logically ordered set of leaf nodes.

The order of the leaf nodes is maintained by the index part

of the tree. An entry in a leaf .node of a B+-f ile is an

ordered pair, (k,r) where k is a key and r is a record or a

pointer to the location of the record associated with k.

The entries of a leaf node are in ascending order by key.

Some implementations of a B+-tree have the leaf nodes

linked together from left-to-right. In this case, each leaf

node has a rightmost pointer that serves as the link from

that node to the next leaf node in collating sequence order.

These horizontal links may be traversed beginning at the

leftmost leaf node and continuing to the rightmost leaf node

to facilitate sequential processing of all records at the

leaf level. The rightmost pointer of the rightmost leaf

node contains a "null" pointer that signals the end of the

6

linked list of leaf nodes. In a standard B-tree, all

nodes of the tree must be visited, possibly using a preorder

traversal, to process the file sequentially. A preorder

traversal of a B-tree would require additional main memory

requirements for a stack. A stack is needed to store the

nodes in the traversal path so they only have to be read

once.

An additional property of

nodes is that finding the

record already found is easy.

access to external storage

this linked list of leaf

next or successor record of a

At most, one additional

is required to fulfill this

query. In a conventional B-tree, finding the successor of a

record may mean a traversal of one or more nodes.

Properties of a B•-Tree

A B•-tree is a balanced multiway search tree that

retains the advantages of B-trees (1). These advantages may

be enumerated as follows:

1. Storage utilization is

time and should be

at least 50 percent at any

considerably better on the

average.

2. The tree is a dynamic structure

quested and released as the

contracts.

so storage is re­

file grows and

3. The tree structure provides for both random and

sequential processing.

4. Logarithmic search and update times are guaranteed.

7

5. A dynamic B•-tree requires no periodic reorganiza­

tion.

Searching and Updating a B•-Tree

A search of a B•-tree begins at the root and proceeds

down through the levels of the tree until a leaf node is

reached. At each level of the search path an index node is

referenced to find the pointer to the next node in the

search path. If a key in an index node matches the search

key, then the nearest pointer to the right is followed to

continue the search. In a standard B-tree, a match of a key

in the index part with the search key would cause the search

algorithm to halt.

All insertions into a B•-tree are done at the leaf

level. Therefore, to insert into a B•-tree, the index must

first be searched to find the proper leaf node for the

insertion. If the leaf node has room in it for the

insertion, the key and record pair are inserted into the

leaf node and the insertion operation is complete. If the

leaf node is full, then the leaf node must be split becoming

two and a copy of the middle key of this leaf node is passed

up to the parent node for insertion. If this parent node is

also full, then the index node must split passing up its

middle key to its parent node. This process may propagate

all the way to the root node where a split of the root node

causes the tree to increase in height by one. Thus, as leaf

8

nodes split, copies of keys existing at the leaf level are

propagated up into the index to form a B+-index.

An alternative to node splitting during an insertion

operation is an overflow (1). An overflow is performed by

moving entries from the node that is full to a sibling node

to avoid the split or to balance storage utilization. When

an overflow is performed, the key used to separate the two

nodes participating in the overflow must be replaced by a

new key that serves to separate the new configuration of the

two nodes.

Deletions from a B•-tree are always done at the leaf

level. Therefore, a deletion operation involves searching

the tree to locate the proper entry in a leaf node and

removing it from the leaf node. If after the deletion the

leaf node is at least half full, then the deletion operation

is complete. Otherwise, a merge with a subling node is

required. A merge is performed by moving entries from the

node where the deletion occurred to a sibling node that has

sufficient space for the entries. Also, the key in the

index part of the tree that served to separate the two

merged or concatenated nodes must be removed. This deletion

of an index key will always be a deletion from a leaf node

of a B•-index which is structured like a B-tree. Other keys

in a B+-index are unaffected by such a deletion. Deletion

of entries in a standard B-tree require the location of a

predecessor or successor entry if the deletion occurs in a

nonleaf node. If the deletion of an entry from an index

9

node causes that index node to be less than half full, a

merge of that index node with a sibling is required. This

means an index entry in the parent node of the index node

that is less than half full must be deleted. This merging

process may propagate to the root, possibly causing the tree

to decrease in height by one level.

A possible alternative to merging nodes during a

deletion operation is to perform an underflow (1). An

underflow is performed by moving entries from a sibling node

into the node where the deletion occurred. This will return

the storage utilization of the node where the deletion

occurred to 50 percent or more.

Summary

In this chapter, B+-trees have been shown to be a

superior variant of a conventional B-tree. B+-trees retain

the significant advantages and properties of a B-tree, and

because all insertions and deletions occur at the leaf

level, the algorithms to perform these operations are

simpler than their B-tree counterparts. A more thorough

treatment of B+-trees is presented by Webster (16).

CHAPTER· III

SIMPLE PREFIX B+-TREES

In 1977, Bayer and Unterauer (2) introduced two

modifications to a B+-tree known as simple pref ix B-trees

and pref ix B-trees. Their modifications are possible

because they recognized the separation of a B+-index and a

B+-file. In their paper, a B+~index is referred to as a

B*-index and a B•-file is referred to as a B*-file.

However, in this paper B•-index and B•-file will be used.

This is in ac-cordance with the nomenclature used by Comer

(4) •

Bayer and Unterauer made the important observation that

the keys in a B+-index are used only to direct the search

algorithm to the proper leaf node in a ~·-file. Therefore,

they proposed replacing a B+-index made up of copies of

actual keys from a ~+-file with an equivalent B•-index made

up of shorter strings derived from actual keys in a B•-file.

As an example of the derivation of shorter strings to

comprise a B•-index, suppose the leaf node in Figure 2 is

full and we wish to insert the key "Cards". This insertion

will require the node to split into two nodes as shown in

Figure 3.

10

11

In a B•-tree this split would cause the key "Mets" to

be propagated up to its parent node for insertion. However,

Bayer and Unterauer realized that a shorter string derived

from the key "Mets" could be used to separate the two leaf

nodes. Therefore, the letter "M" could be used to replace

the full key "Mets" in the index •

. Cubs.Expos.Mets.Phillies.Pirates.

Figure 2. A "Full" B•-File Leaf
Node

I .Cards.Cubs.Expos. I I .Mets.Phillies.Pirates. I

Figure 3. Split of a s•-File Leaf Node After
Insertion of the Key "Cards"

They call such a string a "separator". In general, for

the example above, any string s, such that

Expos < s <= Mets

could be used in the index to separate the two nodes. Note

that the actual key "Mets" qualifies as a separator.

However, it is more appropriate to select the shortest

12

separator possible because shorter separators reduce the

height and size of the B+-index.

A simple pref ix B+-tree is therefore defined as a B+­

tree in which the B+-index is replaced by a B-tree of

variable length separators. Figure 4 is an example of a

simple prefix B+-tree where it is assumed that a node of the

tree may contain a maximum of two keys or separators.

The determination of separators to replace actual keys

in the B+-index relies heavily on the following property

that will be assumed for the remainder of this paper.

Assuming that the keys are words over some alphabet and

the ordering of the keys is the alphabetic order, then

the "pref ix property" given below holds (2, p.12):

Let x and y be any two keys such that x < y. Then

there is a unique pref ix y' of y such that (a) y' is a

separator between x and y, and (b) no other separator

between x and y is shorter than y'.

The technique of determining separators is a form of

rear compression of keys. This technique is similar to the

techniques described in Chang (3) and Wagner (15), but does

not require the computing overhead inherent in their

schemes.

Insertion Into a Simple Pref ix B+-Tree

To insert into a simple pref ix B+-Tree, a path is

traversed from the root node to the appropriate leaf node.

If the leaf node has sufficient room for the insertion, it

1.compu.1

~
v v

1.compr.1 1.con.concen.1

v v v

1.compe.1 1.compro.1 1.comr.1

I
v v I
commune
compare

lcompromisel

v v

v

1.conce.1

I
v

con
concave

I compress I I comrade I
v v v

v

, .concep.1

I
v

I concept I
v

lconcentl

I compel I compute
computerite

jconcedel

Figure 4. A Simple Prefix B~-Tree

13

14

is done and the insertion is complete. However, if

the leaf node is full, then the leaf node must split and a

separator must be constructed and passed up to its parent

node for insertion. If an index or branch node splits, the

procedure of calculating a separator to be passed up is no

longer useful. One of the separators in the index node must

be passed up to its parent. The following example should

illustrate why this is true.

Assume the index node in Figure 5 has had the separator

"abdc" inserted into it and the index node must split but

has not yet done so. A search of this node with the key

"aca" would indicate that the next pointer to be followed in

the search path is "4". When the node splits using the

conventional B-tree method, the nodes shown in Figure 6

result. A search of this subtree of the index for the key

"aca" results in pointer "4" being selected again as the

next pointer to be followed in the search path. However, if

a separator is derived from the separator "acda" during the

index node split, the nodes shown in Figure 7 result. When

this subtree is searched for the key "aca" pointer "5" is

erroneously selected instead of pointer "4". Therefore,

when an index node splits the derivation of separators to be

passed up to the parent node is not useful because the

search capability of the index is destroyed. When an index

node is split, one of the separators in that node must be

propagated up.

.ab . abdc . abde • acba . acda • ade .

v
1

v
2

v
3

v
4

v
5

v
6

Figure 5. A "Full" B•-rndex Node

acba

I I
v v

v
7

• ab • abdc • abde • • acda • ade •

v
1

v
2

v
3

v
4

v
5

v
6

v
7

Figure 6. Index Nodes Resulting From a B-Tree
Type Split of the B•-rndex Node
in Figure 5

15

ac

I I
v v

. ab . abdc . abde . . acda . ~de .

v v v v v v v
1 2 3 4 5 6 7

Figure 7. Incorrect Split of the B+-Index Node
in Figure 5

Effect of Separators on a B+-Index

16

The movement of separators into a B+-index instead of

full keys has a couple of pleasing effects on a B+-index.

First of all, the height of a B+-index may be reduced

because the branching degree of index nodes has been

increased due to the existence of shorter strings in the

index. Second, because separators are usually shorter than

full keys more separators may be packed into a node thereby

reducing the total number of index nodes required to make up

a B+-index.

17

Split Interval

In an attempt to move shorter separators into the B+­

index of a simple prefix B+-tree, Bayer and Unterauer

introduced the concept of a "split interval". Normally,

when a node in the B+-file of a simple prefix B+-tree

splits, the middle of the leaf node is found, a separator is

constructed, and that separator is passed up to the parent

node. However, when a split interval is used, the middle of

the leaf node is found, separators are constructed for all

keys within the interval, and the shortest separator within

the interval is then passed up to the parent node. Thus, a

split interval is merely the number of keys or separators

around the middle of the node which are considered for

choosing a suitable split point.

The idea of a split interval can also be applied to an

index node. In this case, the shortest separator within the

split interval is propagated up to the parent.

The question of finding the middle of a node is more

complex in simple pref ix B+-trees than in conventional B­

trees. This is due to the variable length strings that

occur in simple prefix B+-trees. In this paper, there are

two ways to view the middle of a node, the logical and

physical middle. The physical middle of a node is the point

where a node is bisected into two equal halfs. The logical

middle of a node is the split point nearest the physical

middle of a node.

18

A split interval may be defined more precisely as a

count of the number of "gaps" around, and including the

logical middle of a node, that are candidate split points.

A gap is the interval (x(i),x(i+l)], where x(i) are keys or

separators in collating sequence order. Thus, a node of

cardinality (n-1) defines n gaps. Note that a "]" indicates

that the key or separator x(i+l) is included in the

interval, while a "(" indicates that the key x(i) is not

included in the interval. A separator s is said to "fill" a

gap (x(i),x(i+l)] if and only if x(i) < s <= x(i+l). A

split interval of three may now be defined as the three

gaps, (x(i-2),x(i-l)], (x(i-1),x(i)], and (x(i),x(i+l)]

where the gap (x(i-1),x(i)], is the logical middle of the

node. For the remainder of this paper, .the logical middle

of a node will be known simply as the "middle" gap. In

general, a split interval of "k" means that (k-1)/2 gaps on

either side of the middle gap will be examined to determine

the best split point for the node. All split intervals in

this paper are symmetrical around the middle gap and

therefore all split intervals are required to take on odd

values. Even numbered split intervals define non­

symmetrical split intervals. Note that a split interval of

one is equivalent to the conventional split associated with

simple pref ix B+-trees.

For an example of a split interval defined using gaps,

see Figure 8 below where it is assumed that the node is a

19

leaf node about to split and that all records or pointers

to records have been removed. Also, assume that the middle

gap of the node is gap number three.

s De Der Derivativ Do Doubt

K Data Deque Derivation Derivative Double Doubt

G 1 2 3 4 5

Figure 8. A B+-File Node and the Separators Derived
From Each Gap

In Figure 8, the first line is the separators derived

at each gap, the second line is the keys residing in the

node, and the third line is the gap numbers. If a split

interval of one is used to split the node in Figure 8, the

split point would be gap number three and the corresponding

separator passed up would be "Derivativ". Recall that a

split interval of one corresponds to the standard split

associated with simple pref ix B+-trees. If a split interval

of three is used, then separators to fill gaps 2, 3, and 4

would be calculated and gap 4 would be chosen as the split

point due to the length of the separator "Do". If a split

interval of five is used, then separators to fill gaps 1, 2,

3, 4, and 5 will be constructed. In this case, gap 4 will

be chosen over gap 1 because gap 4 is closer to the middle

20

of the node. Note that gaps occurring off the end of the

node are ignored since they do not define a suitable split

point for the node.

Bayer and Unterauer conjecture the following effects of

SIL, split interval for leaf nodes, and SIB, split interval

for branch or index nodes, on a simple prefix B+-tree (2,

p.14):

1. An increase of $IL should decrease the average

length of separators in the B+-index, thereby

reducing the number of nodes required for the index

part of the tree.

2. An increase of SIB should favor the shorter

separators in the index to be located near the root,

thereby increasing the the branching degree of nodes

near the root, where a high branching degree is most

beneficial.

3. Increasing both SIB and SIL causes the height of the

B+-index to decrease but also decreases the storage

utilization because nodes may now be less than half

full.

A Difference of Opinion

Part of point number two above

questioned by Rosenberg and Snyder (13).

has been seriously

They object to the

notion that a high branching degree is most beneficial near

the root. They concede that a high branching degree of

nodes near the root causes the tree height to decrease and

they call

optimal".

21

trees that are as short as possible "visit­

This is because the shortest trees require the

minimum number of accesses or "visits" to traverse the tree

from root to leaf. Unfortunately, they point out that trees

that are "visit-optimal" are also nearly "space-maximal".

Space maximality means that more nodes than are actually

required are used to construct the tree and many of these

nodes have a low branching degree. These extra nodes are

located in the lower levels of the tree and are caused by

the high branching degree of nodes located above them.

Rosenberg and Snyder (13) conclude that a high

branching degree is actually most beneficial in the lower

levels of the tree. Their study indicates that trees with a

high branching degree in the lower level nodes are "space­

optimal". Space optimality means that the tree was

constructed from a minimum number of nodes. Furthermore,

trees that are "space-optimal" are nearly "visit-optimal".

Therefore, "space-optimal" trees are not only compact,

meaning that a minimum of nodes were used to construct them,

but also short enough to provide good performance when

searching them.

In order to make B-tree type structures "space­

optimal", Rosenberg and Snyder (13) provide a linear time,

in place compaction algorithm for B-tree type structures.

This scheme may be executed when B-tree type files are

"backed up" for error recovery or archival purposes. After

a tree "backup" is done, the compaction algorithm may be

22

executed to restore the tree to a compacted form.

They also mention that very large trees in compacted

"space-optimal" form will not degenerate considerably from

this compacted form due to insertions and deletions if the

tree is relatively static between backup reorganizations.

Relatively static here means that there is no more than a

2.5 percent change in the tree between "backup"

reorganizations. The authors feel that this rate is not

unreasonable for very large data bases. This matter will be

addressed again in chapter four when the effect of split

intervals on simple pref ix B+-trees is analyzed.

Insertion Utilizing a Split Interval

Insertion into a simple prefix B+-tree where a split

interval is utilized begins by searching the B+-index to

find the proper leaf node. If the leaf node must be split,

choose the gap within the split interval yielding the

shortest separator and split the node at that gap

propagating the separator to the parent. If insertion into

an index or branch node causes a split, then choose the

shortest separator within the split interval and pass it up

to the parent node.

One way to postpone a split and increase storage

utilization is the use of an overflow. However, because

separators are variable in length, a separator in the parent

node may now be replaced by either a longer or shorter

separator. Therefore, overflows may now propagate and cause

23

further splits or overflows if a separator is replaced by

a longer separator. Such propagation is expected to be

infrequent. Note also that split intervals may also be

applied to overflows.

Deletion Utilizing a Split Interval

Deletion from a simple pref ix B+-tree always occurs in

a leaf node. If a deletion causes two leaves to be merged

then the corresponding separator in the parent node must be

deleted. This deletion will always be a deletion from a

leaf node of the B+-index, which is organized as a B-tree.

Thus, these deletions are simpler than general deletions

from B-trees and other separators in the B+-index are not

affected by such a deletion. If an index node must be

merged with a sibling due to a deletion, then the separator

separating the two nodes to be merged must be deleted from

the parent node.

Underflows are another way to handle deletions. In

this case, keys and records or separators are moved from a

sibling to the node where the deletion occurred. This

movement of keys or separators may then cause a separator in

the parent node to be replaced by either a longer or shorter

separator. The problem of replacing separators in the

parent node during underflows is analogous to the situation

associated with overflows. Split intervals may also be

applied to underflows.

24

Pref ix B+-Trees

In many practical applications, like textual databases,

sets of keys that arise are often clustered together.

Clustering means that the collating sequence "distance"

between successive separators is small. Therefore, all

separators in a given subtree of a simple pref ix B+-tree may

share a common prefix. Bayer and Unterauer (2) propose

removing this common pref ix from separators in a simple

pref ix B+-tree in order to further reduce the height and

size of the B+-index. They suggest that the common pref ix

be kept in the predecessor nodes rather than repeatedly

stored in the subtree itself.

Figure 9 is a partial subtree of a simple pref ix B+­

tree. Consider node T. The parent of node T contains LL(T)

and SU(T) which are the largest lower bound and the smallest

upper bound of node T. For all keys, k, and separators, s,

which are or might be stored in node T or the subtree with

node T as the root, the following holds:

LL(T) <= k < SU(T)

LL(T) <= s < SU(T)

In node T, p(O), p(l), p(j) are pointers to the

successors of node T and s(l), s(2), s(j) are

separators.

parent --- LL(T) . SU(T) ---

I
v

node T lp(O) s(l) p(l) s(j) p (j) I
I I
v v v

children D D D
Figure 9. A Partial Subtree of a Simple

Pref ix B+-Tree

25

LL(p(i)) and SU(p(i)) are the largest lower bound and

the smallest upper bound of the subtree pointed to by p(i).

Therefore, to find the largest lower bound and smallest

upper bound of a given subtree of node T, the following

should be used.

LL (p (i)) = s (i) for i = 1,2, •.• ,j.

= LL(T) for i = o.

SU (p (i)) = s (i) for i = 0,1, ••. ,j-1.

= SU(T) for l = j.

Therefore, if a subtree of node T contains a nonempty

common prefix k(i), it must be defined as follows: Let k(i)

be the longest common pref ix (possibly the "null" or "empty"

26

string) of LL(p(i)) and SU(p(i)), then the common prefix

k(i) of the subtree rooted at p(i) is defined as follows:

k(i)l(j) if LL (p (i)) = k(i)l(j)z and

SU (p (i)) = k(i)l(j+l), where 1 (j)

proceeds l(j+l) immediately in the

k (i) = collating sequence and z is an

arbitrary string.

k (i) otherwise.

The reader should note that in the definition of the common

pref ix k (i) above, k(i)l(j)z and k(i)l(j+l) are

concatenations of characters derived from separators.

Now reconsider the simple prefix B+-tree of Figure 4.

When common prefixes are factored out of the tree, the

pref ix B+-tree that results is shown in Figure 10.

Separators appearing in the B+-index of a pref ix B+-tree are

known as partial separators because the common pref ix has

been removed.

Algorithms for search, insertion and deletion in prefix

B+-trees are given in the article by Bayer and Unterauer but

not repeated here because pref ix B+-trees are not the main

concern of this paper. However, it should be noted that the

algorithms for these operations are more complex than their

simple prefix B+-tree counterparts. For instance, suppose

that an insertion into the parent node of T in Figure 9

changes the common pref ix for node T. This change may then

cause the partial separators appearing in node T to shrink

or expand. A reduction in the length of partial separators

I · compu · I

v v

,.compr.11.con.concen.1

v v v v v

I · compe • I G j .concep.,

v
I I I
v v

commune I compress I
compare

con
concave

jconceptl

I I
v v v

I compel I I compute jconcedel

I
v v v

lcompromisel lcomradel jconcentl

Figure 10. A Prefix B+-Tree Derived From the
Simple Pref ix B+-Tree in Figure
4

27

28

may now cause the node T to be less than 50 percent full

and require a merge or underflow operation. Expansion of

partial separators may now cause the node T to be full

and therefore require a node split or overflow. Deletion

from the parent of node T may cause an analogous situation

to arise.

Summary

The introduction of shorter strings into the B+-index

of simple prefix B+-trees serves to increase the branching

factor of index nodes and thereby decrease the height of the

B+-index. The reduction of height in the B+-index is

important because it reduces the number of external storage

accesses required to traverse the tree.

However, additional complexity is introduced in some

areas when this type of indexing is used. They are:

1. Algorithms for search, insertion, and deletion must

be capable of handling variable length strings.

2. Additional time is required to search a node due to

the variable length of separators occurring in the

node. A node containing fixed length keys or

separators could be searched using a binary search

(9, section 6.2.4). This is not possible with

variable length strings.

3. If prefix B+-trees are utilized, additional

processing may be required for some insertions or

deletions where the common pref ix of a given subtree

29

is altered.

Bayer and Unterauer (2 ,p.16) provide some experimental

results concerning computing time and disk accesses when a

B+-tree, a simple prefix B+-tree, and a prefix B+-tree are

compared.

Computing Time - The time to execute algorithms for a

simple prefix B+-tree is almost identical to the

time for B+-trees, while prefix B+-trees require

50-100 percent more time.

Savings of Disk Accesses - If trees have less than 200

pages, no savings is achieved. For trees having

between 400 and 800 pages, simple prefix B+-trees

require 20-25 percent fewer disk accesses than a

B+-tree. Prefix B+-trees need about 2 percent fewer

disk accesses than simple prefix B+-trees.

Feng (5) suggests that the above results indicate that

simple pref ix B+-trees are more cost effective than pref ix

B+-trees in a dynamic environment. However, in a static

environment a pref ix B+-tree may be superior to a simple

pref ix B+-tree because minimizing the search time of a

static index is more important than minimizing its initial

construction time. A more thorough analysis of pref ix B+­

trees may be found in the paper by Feng.

CHAPTER IV

EMPIRICAL MEASUREMENT CONCERNING THE

EFFECT A SPLIT INTERVAL HAS ON

SIMPLE PREFIX B•-TREES

Bayer and Unterauer (2, p.12) introduce the concept of

a split interval for both the index or branch and leaf

nodes. Their motivation for using a split interval is that

shorter separators will be moved up into the index part of

the tree thereby increasing the branching degree of upper

level nodes and decreasing the height and size of the B•­

index. In their paper, they have implemented and tested

both a simple pref ix B+-tree and a pref ix B+-tree but do not

include the concept of a split interval in their analysis.

Therefore, the primary focus of this paper is an empirical

examination of the effect of split intervals on a simple

prefix B+-tree. In particular, the following four areas

will be studied to see how a split interval effects them.

The four areas are:

1. Average length of separators occurring in the B+­

index.

2. Height of the B+-index.

3. Storage utilization of nodes at each level of the

30

31

tree.

4. Total storage requirement for the tree.

After studying the effect of a split interval on these four

areas, an attempt to determine the value of a split interval

for both branch and leaf nodes will be made.

Test Cases

To facilitate empirical measurement, a simple prefix

B+-tree was implemented and a set of test cases was designed

to determine the effect a split interval has on a simple

pref ix B+-tree. The experimental implementation of a simple

prefix B+-tree is described later in this chapter.

Each test case consisted of inserting 20,000 randomly

selected keys into an initially empty tree. The source for

all keys inserted in all test cases was the "inwrds" file.

This file consisted of a wide variety of words from the

English language. Words from the "inwrds" file were

randomly selected for insertion by using an algorithm from

Knuth (8). The "inwrds" file and the method of random

selection will be discussed in more detail later in this

chapter.

All nodes of the experimental simple pref ix B+-tree had

a node size of 128 locations, where a location may store an

integer or character. This node size is probably too small

for practical applications but was set to 128 to force the

index part of the tree to be larger than if a greater node

size had been chosen.

32

Split intervals for both branch and leaf nodes were

allowed to take on the values one, three, and five. The set

of test cases used consisted of every possible combination

of split intervals for branch and leaf nodes. In other

words, the first test case was (SIB=l, SIL=l) and the last

test case was (SIB=5, SIL=5) and there were nine total test

cases. Split intervals greater than five are generally too

large for the node size of 128 because they define split

points that may be off the end of a node.

Each test case was replicated ten times to provide a

body of data substantial enough to provide valid empirical

data when averaged. Replications across test cases

consisted of the same sequence of keys being selected from

the "inwrds" file for insertion. In other words,

replication "n" of test case (SIB=l, SIL=l) consisted of the

same sequence of keys to be inserted as did replication "n"

of test case (SIB=3, SIL=l). This was necessary to allow a

valid comparison of test cases.

Implementation of a Simple Pref ix B+-Tree

All test cases were run on an experimental

implementation of a simple pref ix B+-tree. This

implementation was written in the programming language "C"

and was executed on a Perkin Elmer 3230 running the UNIX

(14) operating system. High-level Program Design Language

(PDL) descriptions of the algorithms used in the

33

experimental implementation are provided at the end of this

paper in the Appendix. The purpose of this section is to

provide the reader with a description of the pertinent parts

of the implementation.

Node Organization

Separators appearing in a simple pref ix B•-tree are

variable in length. Thus, nodes used to construct a simple

pref ix B•-tree must have a different organization than nodes

used to construct B-trees or B•-trees where fixed length

keys are utilized.

The node organization used for the simple pref ix B•-

trees constructed for this paper is shown in Figure 11. L/B

is an integer value which is set to one if the node is a

leaf or is set.to zei;o if the node is a branch node. L/B

was used primarily by the tree search algorithm to determine

when the leaf level of the tree had been reached. NL is a

count of the number of locations used in the node. NL could

be a count of the number of bytes used in the node but, in

this implementation the node is conceptualized as an array

of storage locations, where each location is capable of

storing a two byte integer or a one byte character. This

matter will be discussed further in the next section. NS is

an integer value which is a count- of the number of

separators or keys in the node. Separator length l(i), is

the length in characters of separator s(i). All separator

lengths l(i), are integer values which are packed together

34

into the left end of the node. Separators and pointers

are shown as s(i) and p(i), respectively.

LIB I NL I N s 11 (1) I . . . 11 (j) I p (0) I s (1) I • • • I s (j) I p (j) I - - -

Figure 11. Node Organization

All nodes used in the experimental implementation were

identical in structure. An entry in a node consisted of a

key or separator and pointer pair. Pointers in index or

branch nodes are integers containing the node number of a

child node, while pointers at the leaf level contained the

"null" value, integer -1.

Searching a node organized like the node shown in

Figure 11 requires a linear search because the location of

separators within the node is not previously known. In

contrast to nodes containing fixed length strings, where a

binary search of the node is possible, a linear search means

additional computing time to locate the string in question.

This may develop into a performance bottleneck if the nodes

are very large.

The node organization described here is not

feasible organization. In a paper by Lomet

the only

(10) , he

describes a node organization for such a node in which

35

separators of equal length are organized into tables

within the node. The motivation for this type of

organization is that a majority of the storage allocated 1n

the node for separator lengths can be eliminated and thereby

free more space for storage of separators. Each table

within the node implicitly supplies the length of all

separators in that table.

The Structure of a Node

The node organization presented in the previous section

was implemented using the "C" programming language structure

shown in Figure 12. This structure served as a page buffer

in the experimental implementation and was dimensioned to

allow four pages or nodes of the tree to be present

simultaneously in main memory. Note that a page is

equivalent to a node of a tree in this discussion.

struct node {
short leaf;
int num locs used;
int num-of seps;
union { - -

short ival;
char cval;

} store[];
} page[4];

Figure 12. The Page Buffer

36

Recall from the previous section that a node was

conceptualized as an array of locations where each location

was capable of storing a two byte integer or a one byte

character. This is due to the "union" data type used in the

page buffer declaration shown in Figure 12. The "union"

data type was used to simplify the implementation of a node

and the algorithms used to modify it. The "union" data type

causes storage to be allocated for the largest data type

present in the union. In this case, each element in the

array "store" of Figure 12 has two bytes allocated to it.

This allocation corresponds to the allocation for a short

integer. The array "store" is used to store separator

lengths, separators, and pointers.

In this study, if a node is said to have size "x" it

means that the array "store" has been dimensioned to "x".

Note that a node of size "x" does not correspond to "x"

contiguous bytes of memory. This is because a character

stored in the array "store" only utilizes one byte of the

two bytes allocated to each element of the array. However,

the "union" data type does allow "x" contiguous bytes to be

simulated.

Page Replacement Method

In an attempt to reduce the number of I/O transactions

required to perform operations such as insertion and

preorder traversal, the "least recently used" or "LRU" page

replacement algorithm was utilized (9). This algorithm

37

requires the page in the page buffer that was referenced

the longest time ago to be replaced when a page is requested

from external storage. This page replacement policy was

used because simple pref ix B+-tree restructuring frequently

requires that three nodes (two siblings and a parent) be in

memory simultaneously. The LRU algorithm guarantees that

these nodes will stay in memory during the restructuring.

The LRU method was implemented using two data

structures, a page buffer and a page queue. The page buffer

is shown in Figure 12 and is capable of storing four pages

in main memory simultaneously. The page queue was used to

store the page numbers of the pages currently present in the

page buffer. An entry in the page queue consisted of not

only a page number but also a pointer to the location of

that page in the page buffer. The page queue was also used

to retain the relative order in which the pages in the page

buffer were referenced.

The LRU page replacement policy worked well for the

experimental implementation. Most trees studied had a

height of four or less and because the page buffer was

dimensioned to four, the root page was nearly always

resident in the page buffer. This is important because any

search of the tree begins with the root and if the root page

is present in the page buffer, at least one fewer I/O

transaction is required to search the tree.

38

Implementation of a Split Interval

To split a node where a split interval is utilized, one

must first find the "middle" gap of a node. After finding

the "middle" gap, other gaps on either side of the "middle"

gap that are part of the split interval are considered as

possible split points.

The problem of finding the middle gap of a node is more

complex in simple pref ix B+-trees than in conventional B­

trees because of the variable length strings that occur in

simple prefix B+-trees. In this implementation, the

following procedure was used to locate the middle gap of a

node.

1. Subtract the number of separators

number of locations used in the node.

physical middle of the node.

from

This

the total

is the

2. Find the first gap immediately to the right of the

physical middle found in step 1. This gap then

qualifies as the "middle" gap.

Although the two step procedure given above does not always

find the gap nearest the physical middle of a node, the

procedure was easy to implement and no doubt found the

"proper" middle gap at least half the time.

After locating the middle gap, the split interval, SIB

or SIL, is referenced to determine how many gaps on either

side of the middle gap should be split point candidates.

39

Recall that the criterion for determining the best split

point within the split interval is the gap that provides the

shortest separator to propagate up. However, in this

implementation, an additional constraint has been placed on

this selection process. If two or more gaps within the

split interval determine separators of equal length, then

the gap closest to the middle gap is chosen. This was done

in hope of reducing the number of nodes whose storage

utilization is far below 50 percent due to the split

interval.

"Words" File and Random Sampling

The source of all keys inserted into the trees studied

in this paper was the "words" file used by the UNIX (14)

operating system to facilitate the checking of spelling in

documents. The file is made up of a great variety of words

from the English language, including technical words,

abbreviations, numbers, and proper nouns. It is sorted by

ASCII collating sequence and consists of 24001 variable

length strings.

The "words" file described above is not a good source

for random insertions into a tree structure. Because it is

sorted, any random selection algorithm that proceeds from

one end of the file to the other will insert an ordered

partition of the file. The insertion of this ordered

partition will force the tree to take a worst-case form

where most nodes have a storage utilization of only 50

40

percent. In order to avoid this situation, an algorithm

from Knuth (8) was used to "shuffle" the file randomly.

The algorithm used to shuffle the file required the

file to be in a relative record format to facilitate

addressing. The transformation to a relative record format

was done by transforming each variable length string in the

"words" file to a fixed length record stored in the "inwrds"

file. The shuffling algorithm makes one complete pass over

the "inwrds" file swapping the current record with a

randomly chosen second record located somewhere below the

current record in the file. Initially, the current record

is the first record in the file.

Another algorithm from Knuth (8) was used to do random

selecting of words from the "inwrds" file. This algorithm

made a single pass over the file conditionally selecting

words using a random number generator. Each record may be

selected with probability, p/n, where p is the number of

words to be selected and n is the cardinality of the file.

Before the nine test cases of this study were executed

on the experimental implementation, the "inwrds" file was

shuffled. This gave the "inwrds" file an order that was

retained for each replication of all nine test cases. After

shuffling, the random selection algorithm was executed for

each replication of each test case. To insure that the same

sequence of keys was selected for each replication across

the test cases, the same random number generator seed was

used to initialize the random selection algorithm for each

replication across test cases. In other

replication "n" of test case "x" had the same random

seed as replication "n" of test case "y".

41

words,

number

Using a file like the "inwrds" file to build simple

pref ix B•-trees, represents a real application of simple

pref ix B•-trees. Words in the "inwrds" file are variable in

length and many intervals within the file contain clusters

of words whose collating sequence distance is small. Thus,

the simple pref ix B•-trees built for this study correspond

to a word index like the ones used for a document database

or dictionary.

Statistics Module

As a part of the experimental implementation, a module

was written to collect statistics concerning the structure

of the tree. The statistics were collected by traversing

the tree in preorder. The following statistics concerning

separator length were compiled for each iteration of each

test case: 1) mean, 2) standard deviation, 3) minimum

length, 4) maximum length, and 5) count of the total number

of keys or separators. These statistics were compiled for

each level of the tree.

Additionally, the following statistics were compiled

for each level of the tree concerning storage utilization:

1) mean, 2) standard deviation, 3) minimum storage

utilization, 4) maximum storage utilization, and 5) count of

the total number of nodes at each level. Also, a count of

42

the total number of nodes used in the construction of the

tree was calculated.

The calculation of storage utilization requires a

special note. Only the elements of the array "store" in

Figure 12 were considered in the calculation of storage

utilization. Thus, storage utilization was calculated by

dividing the number of locations of array "store" used by

the dimension of the array. Other overhead elements of the

node such as the number of separators stored were ignored in

the calculation because these overhead elements were ignored

in past studies involving average storage utilization in B­

trees.

Results and Analysis of Empirical Testing

The nine test cases outlined earlier in this chapter

were run and the information derived from these test cases

was compiled for analysis. The data used to represent each

test case was compiled by averaging the ten replications of

each test case. Tables appearing in this section were

derived from this compiled data and are presented to provide

empirical evidence of the effect a split interval has on a

simple pref ix B+-tree.

All trees produced by the nine test cases had a height

of four. In the discussion that follows, the levels of a

tree are numbered from zer-0 to three where level zero is the

root level and level three is the leaf level. Also, the

reader should recall that SIB is the split interval for

43

branch or index nodes and that SIL is the split interval

for leaf nodes.

Effect on Separator Length

Table I shows the effect of SIL on the length of the

separators occurring in level two. The data in Table I is

derived from the test cases where SIL took on the values

one, three, and five while SIB was held constant at one.

The reduction in separator length shown in Table I is quite

significant as the average length of a key inserted into the

tree was 7.19 characters.

TABLE I

AVERAGE LENGTH OF SEPARATORS AT LEVEL TWO
(SIB CONSTANT AT ONE}

SIL AVE LEN NODES L2

1 4.47 151
3 3.65 134
5 3.46 132

NODES LEAF

2131
2139
2173

BD

14.1
16.0
16.5

Table I also illustrates the reduction in the number of

nodes required to make up level two and the increased

branching degree achieved from the propagation of shorter

44

separators. However, note that the number of nodes

required for the leaf level increases as SIL increases.

This is due to the increased probability that a leaf node in

the tree will split due to the uneven manner in which nodes

split. As SIL increases, so does the difference between the

storage utilization of the two nodes participating in the

split. No analytical evidence that a highly uneven split of

a node increases the probability that a node will split is

provided here. However, it should be intuitively clear

because the number of splits occurring at a level of the

tree is always one less than the number of nodes making up

that level of the tree.

Another consequence of highly uneven splits and the

corresponding increased probability that a node will split

is that additional separators are propagated up into the

next level of the tree. Thus, as a split interval increases

in size it selects shorter separators to propagate up, but

it also increases the number of separators being propagated

up due to the highly uneven splits. Therefore, the

reduction in the size of the index part of the tree is not

as significant as desired because the index now contains a

greater number of separators.

Table II shows the effect SIB has on the length of

separators occurring at level one of the tree. The data in

this table comes from the test cases where SIB was varied

but SIL was always one. Since SIL was constant, the average

length of all separators entering the B+-index was 4.47

45

characters as shown in Table I for test case (SIB=l,

SIL=l).

TABLE II

AVERAGE LENGTH OF SEPARATORS AT LEVEL ONE
(SIL CONSTANT AT ONE)

SIB

1
3
5

AVE LEN

4.00
3.44
2.75

NODES Ll

9.7
9.6
8.0

NODES L2

151
152
153

BD

15.5
15.8
19.1

Table II clearly indicates that shorter separators were

propagated into the upper levels of the index as SIB

increased. Also shown are the average number of nodes at

level one and two and the increased branching degree

achieved f rorn propagating shorter separators into the upper

levels of the index via an increase in SIB.

Effect on Storage Utilization

Table III presents storage characteristics for the leaf

level where SIL was allowed to vary. Note that as SIL

increases the average storage utilization does not decrease

with any significance. However, an increase in SIL does

46

cause a decrease in the minimum storage utilization and an

increase in the number of nodes comprising the leaf level.

Evidence of highly uneven splits is shown by the reduction

in minimum storage utilization. As mentioned earlier, these

highly uneven splits cause an increase in the probability

that a node at that level will split and therefore increase

the storage requirement for that level.

TABLE III

STORAGE UTILIZATION AT THE LEAF LEVEL
(SIB HELD CONSTANT AT ONE)

SIL

1
3
5

AVE

68.14
67.88
66.86

MIN

39.14
31.17
21.03

NODES LEAF

2131
2139
2173

All trees constructed for this study were created by

random insertions into an initially empty tree. B-trees

constructed by random insertions into an initially empty

tree achieve an average storage utilization of 69 percent as

shown by Yao (18). Interestingly, this average storage

utilization was also achieved by the trees in this study.

47

This result is interesting because B-trees utilize fixed

length keys and nodes with preset maximimurn and minimum

branching degree, while simple prefix B+-trees utilize

variable length keys and nodes with a variable branching

degree. Thus, one would not expect the same result

concerning storage utilization because of the variable

branching degree of nodes in a simple pref ix B+-tree. Also,

overhead elements in the node were ignored in the

calculation of average storage utilization just as Yao (18)

did in his study on B-trees.

Effect on Tree Height

The data from the test cases used in this study did not

provide any direct evidence that the use of a split interval

caused a reduction in tree height. This is because the

height of all trees studied was four. However, Table IV was

constructed to show that conditions favorable to height

reduction were present. Table IV shows the increased

branching degree of nodes occurring at level one of the

trees in test case (SIB=5, SIL=5) in comparison to the

branching degree achieved by the trees in test case (SIB=l,

SIL=l). It has been shown by Rosenberg and Snyder (13) that

the shortest trees occur when the branching degree of nodes

near the root is as high as possible.

TABLE IV

INCREASED BRANCHING DEGREE AT LEVEL ONE
DUE TO INCREASED SIB AND SIL

SIB

1
5

SIL

1
5

NODES Ll NODES L2

9.7
6.5

151
131

BD

15.5
20.2

Effect on Storage Requirements

48

In general, an increase of a split interval at level x

tends to decrease the storage requirement for level (x-1)

but increase the storage requirement for level x. Empirical

evidence of this can be seen in Table I where the number of

nodes required for level two and the leaf level is shown.

This general effect is due to the propagation of shorter

separators into level (x-1) thereby decreasing the number of

nodes required to build level (x-1) and due to the increase

of highly uneven splits at level x causing the number of

nodes required for level x to increase. An increase in the

number of node splits also means that more separators will

49

be propagated into the index part of the tree thereby

reducing the significance of the reduction in index size.

Table V shows the storage requirement for a B+-f ile or

leaf level and B+-index. Also the total storage requirement

for the entire tree is shown. Note that the B+-index

decreases in size as SIL increases and the leaf level or

B+-file increases in size as SIL increases. Also note that

SIB has virtually no effect on the size of the index.

Unfortunately, as SIL increases the total storage

requirement of the tree seems to increase. The reduction in

size of the B+-index is offset by the increase in the size

of the B+-f ile and thereby increases the total storage

requirement for the tree. However, the data in Table V does

include a possible exception to the increase in total

storage requirement. The data for the test cases where SIL

= 3 shows an actual reduction in total storage requirement

for the tree. This exception may indicate an argument for a

small split interval at the leaf level.

"Student's" t-Test

The analysis associated with this study has been

primarily a comparison of means provided by averaging the

ten replications of each test case. However, to provide

some assurance that these means are statistically

significant and not the result of random fluctuations, the

"Student's" t-test (17) was applied to the data. The

"Student's" t-test makes the assumption that the parent

50

population is the normal distribution and is used when the

sample size is very small (less than 50). In this study,

the sample size was ten for each test case.

TABLE V

TOTAL STORAGE REQUIREMENT FOR B+-FILE,
B+-INDEX, AND ENTIRE TREE

SIB SIL B+-FILE B+-INDEX TOTAL

1 1 2131.2 161.4 2292.6
1 3 2139.4 143.1 2282.5
1 5 2172.6 140.7 2313.3

3 1 2131.2 162.2 2293.4
3 3 2139.4 143.0 2282.4
3 5 2172.6 137.4 2310.0

5 1 2131.2 160.9 2292.1
5 3 2139.4 144.5 2283.9
5 5 2172.6 138.0 2310.6

In particular, a 95 percent confidence interval for the

difference in storage requirement means was calculated. In

doing this, it was assumed that the test cases were "paired"

samples. This was assumed because each sample or

replication across each test case consisted of an identical

sequence of keys to be inserted. In calculating a

confidence interval for a difference in storage requirement

means, the test case (SIB=l, SIL=l) was used as a reference

51

point or control because it corresponds to the

conventional split at the "middle" of a node. The reader

should note that the assumptions concerning the normal

distribution as the parent population and paired samples may

be questionable.

Table VI shows the result of calculating a 95 percent

confidence interval for the difference in storage

requirement means utilizing the "Student's" t-test. The

results presented in Table VI involve the total storage

requirement for the index part of the tree, leaf level, and

the entire tree. A difference in means is considered to be

statistically significant if the data point 0.0 does not

appear within the interval. Thus, for the test case (SIB=l,

SIL=3) the average reduction in the storage requirement for

the index part of the tree was statistically significant

while the average increase in the storage requirement for

the leaf level was not. Table VI serves to verify the

results shown in Table V and the discussion in the previous

section concerning storage requirement.

One consequence of using SIL is that more nodes are

required to make up the leaf level. This is shown in Table

VI. The introduction of more nodes at the leaf level means

that the average branching degree of nodes at the leaf level

is reduced. This is unfortunate because the paper by

Rosenberg and Snyder (13) points out that a high branching

degree is most beneficial at the lowest levels of the tree.

TABLE VI

95% CONFIDENCE INTERVAL FOR THE DIFFERENCE IN STORAGE
REQUIREMENT MEANS

SIB SIL LEAF LEVEL INDEX TOTAL

1 3 +8.2 ± 12.4 -18.2 ± 3.5 -10.1 ± 12.3
1 5 +41.4 ± 10.3 -20.6 ± 3.2 +20.7 ± 10.7

3 1 +O.O ± o.o +0.9 ± 2.6 +0.8 ± 2.6
3 3 +8.2 ± 12.4 -18.3 ± 5.5 -10.2 ± 12.9
3 5 +41.4 ± 10.3 -24.2 ± 4.3 +17.2 ± 10.8

5 1 +O.O ± o.o -0.4 ± 2.9 +0.8 ± 2.8
5 3 +8.2 ± 12.4 -18.7 ± 3.1 -10.6 ± 12.8
5 5 +41.4 ± 10.3 -21. 0 ± 2.7 +20.3 ± 11.0

52

The specification of which level of the tree is the

leaf level may be a source of some confusion here. This is

because the leaf level of the simple pref ix B+-trees used in

this study contains pointers to hypothetical records instead

of full records. In the analysis of Rosenberg and Snyder

(13), they consider the records themselves to be the leaf

level and the B+-f ile level of a simple pref ix B•-tree to be

part of the tree index. Therefore, a high branching degree

in simple pref ix B•-trees is most beneficial at the B+-f ile

or leaf level.

CHAPTER V

SUMMARY, CONCLUSIONS, AND SUGGESTED

FURTHER RESEARCH

Summary

A simple pref ix B+-tree is a B+-tree where the index or

nonleaf part of a B+-tree has been replaced by an equivalent

index made up of shorter strings known as separators.

Separators are derived from the actual keys residing in the

leaf level of the tree and are used in the index part of the

tree instead of actual keys to decrease the height and size

of the index part of the tree.

A split interval permits a node in a simple prefix B+­

tree to split in other places besides the middle of a node.

This is done to promote even shorter separators into the

index part of a simple pref ix B+-tree and thereby further

reduce the height and size of the index part of the tree.

Split intervals may be applied to leaf and branch nodes of a

simple pref ix B+-tree.

This paper is an empirical study concerning the effect

a split interval has on the performance of a simple prefix

B+-tree. To facilitate this study, a simple prefix B+-tree

53

54

utilizing the concept of a split interval was implemented

and a set of test cases were executed on this implementation

to derive information concerning the effect a split interval

has on the performance of the tree. Data from these test

cases were compiled and organized into tables to illustrate

the effect of a split interval on a simple prefix B+-tree.

The general effect of a split interval at level x of a

simple pref ix B+-tree is to decrease the storage requirement

for level (x-1) and increase the storage requirement for

level x. The storage requirement for level (x-1) is reduced

because shorter separators are selected by the split

interval. However, the storage requirement for level x is

increased because as a split interval increases in size so

does the difference in storage utilization between the two

nodes that result from the split. Highly uneven splits at

level x causes the probability that a node at that level

will split to increase and thereby increases the number of

nodes required to make up level x. Highly uneven splits

also increase the number of separators being propagated up

into the index part of the tree and thereby reduce the

significance of the reduction in total storage requirement

for the tree.

Conclusions

The use of a split interval at the leaf level promotes

shorter separators into the index part of the tree and

thereby reduces the size and possibly the height of the

55

index part of the tree. However, the data derived from

the test cases used in this study show that the increase in

the total storage requirement for the leaf level due to the

split interval tends to offset the reduction in size of the

index part of the tree. In most cases, the total storage

requirement for the tree increased as the split interval at

the leaf level increased. However, the test cases where the

split interval at the leaf level was three showed an actual

reduction in the total storage requirement for the tree.

Therefore, the use of a small split interval at the leaf

level may be worthwhile. This matter needs to be studied

further before any concrete conclusions can be drawn,

however.

The use of a split interval in the index part of the

tree promotes shorter separators into the upper levels of

the tree and increases the branching degree of the upper

level nodes. However, the use of a split interval in the

index part of the tree is not recommended because it has

been shown by Rosenberg and Snyder (13) that a high

branching degree in upper level nodes is not a desirable

property.

Suggested Further Research

The data derived from the test cases used in his study

show that a small split interval at the leaf level of the

tree may be useful. This matter needs further research to

make any solid conclusions, however. Also the paper by

f Of.

56

Rosenberg and Snyder (13) concerning where in a B-tree

type index a high branching degree of nodes is most

beneficial needs further study including the compaction

algorithm given there.

SELECTED BIBLIOGRAPHY

(1) Bayer, R. and Mccreight, E. "Organization and
Maintenance of Large Ordered Indexes." Acta
Informatica, Vol. 1 (1972), 173-189.

(2) Bayer, R. and Unterauer, K. "Prefix B-Trees." ACM
Transactions on Database Systems, Vol. 2 (March,
1977), 11-16.~

(3) Chang, H. K. "Compressed Indexing Method." IBM
Technical Disclosure Bulletin, Vol. 11, No. -rI
(April, 1969), 1400.

(4) Comer, D. "The Ubiquitous B - Tree." Computing
Surveys, Vol. 11, No. 2 (June 1979). 121-137.

(5) Feng, A. L. "A Study of Two Competing Index
Mechanisms: Prefix B•-Tree and Trie Structures."
(Unpub. M.S. Thesis, Oklahoma State University,
1982.)

(6) Grimson, J.B. and Stacey, G.M. "A Performance Study
of Some Directory Structures For Large Files."
Information Storage and Retrieval, Vol. 10
(1974), 357-364.

(7) Held, G. and Stonebraker, M. "B-Tree Re-examined."
Communicatins of the ACM, Vol. 21, No. 2 (Feb.,
1978), 139-143~. ----

(8) Knuth, D. E. The Art of Computer Programming Vol. 2:
SeminumericaI AI§orTthms, Addison Wesley PubI.
Co., Reading Mass., 1973.

(9) Knuth, ~· E. The Art s,!_ Computer Programming Vol. l:
Sorting and Searching, Addison Wesley Publ. Co.,
Reading Mass., 1973.

(10) Lomet, D.B. "Multi - Table Search for B - Tree
Files." IBM Technical Disclosure Bulletin Vol.
22, No. 6---rNov. 1979), 2565-2570.

(11) Bays, C. and Durham, S.D. ACM Transactions of Math.
Software, Vol. 2 (1976),--s-9-64.

57

(12)

(13)

Mccreight, E.M. "Pagination of B* - Trees
Variable-Length Records." Communications of
ACM, Vol. 20, No. 9 (Sept. 1977), 670-674.~

58

with
the

Rosenberg, A.L. and Snyder,
Optimality in B - Trees."
Database Systems, Vol. 6,
174-183.

L. "Time and Space
ACM Transactions on
No. 1 (March 1981~

(14) UNIX is a Trademark of Bell Laboratories.

(15) Wagner, R. E. "Indexing Design Considerations." IBM
Syst. ~.,Vol. 12, No. 4(1973), 351-367.

(16) Webster, R. E. 11 B•-Trees." (Unpub. M.S. Report,
Oklahoma State University, 1980.)

(17) Wonnacott, T.H. and Wonnacott, R.J. Introductory
Statistics, John Wiley and Sons, New York, 1972,
166-173.

(18) Yao, A.C. "On Random 2,3 Trees." Acta Informatica,
Vol. 9, No. 3 (1978), 159-170.

APPENDIXES

60

SYMBOL LEGEND:

ancest stk - ancestor stack used to store ancestory
during a search.

buf_ptr - pointer to a page(node) in the page buffer.
file name - character array containing the name of the

tree storage file.
in str - input string or input key.
in-strlen - length of input string, in str.
key file - file containing keys to insert into a tree.
match - flag indicating a key to be inserted is already

present.
new page ptr - pointer to a new page in the page buffer

- - that is required for a split.
nn_ptr - pointer to a new page in the page buff er that

is required for a split.
node - a structure with the following parts:

1. leaf - flag that is set if node is a leaf.
2. number of separators.
3. number of locations used in the array store.
4. store - array containing separator lengths.

pointers, and separator characters.
node ptr - pointer to a location in the array "store"

- of a node.
num of pages - initial number of pages on the available

- - page list.
on ptr - pointer to a node in the page buffer currently

- a part of a tree.
page buffer - buffer that is used to store nodes of the

- tree in main memory.
page_num - page number.
page_queue - queue containing page numbers and pointers

to the location of a page in the page
buffer. used to retain order of page ref­
erences.

ptr - child pointer to be inserted.
root - contains the page number for the root.
sample size - number of keys to insert.
sep - character array containing a separator.
sep len - length of sep.
sib-- split interval for branch or index nodes.
sil - split interval for leaf nodes.
sl ptr - pointer to a location in the array "store" of

- a node containing a separator length.
separator length.

split_ptr - pointer to the location in the array store
of a node where a split will occur.
will occur.

ssl_ptr - pointer to the location in the array store of
a node containing the separator length of the
separator to the right of split ptr.

success - flag indicating whether or not-an insertion
was successful.

up_ptr - child pointer propagated up due to a split.
up str - separator propagated up due to a split.
up:strlen - separator length associated with up_str.

61

main ()

{

}

open key_file;

request file name, sample size, sil, sib, and
num of pages from the user;

init_tree(file_name, num_of_pages);

select_sample(sample_size, key_file, sil, sib);

close key file;

exit;

select_sample(sample_size, key_f ile, sil, sib)

{

}

t = m = O;
while (m < sample size) {

}

read a word from key file;

if((size of key file - t)*ranf(O) < sample_size) {
in strlen = length of word just read;
tree insert(in str, in strlen, sil, sib);
m = iii' + l; - -

}
t = t + l;

return;

62

63

tree_insert(in_str, in_strlen, sil, sib)

{

}

if (root = -1) { /* empty tree */

}

root = the next available page number;
buf_ptr = lru buffer(root);
success = node_insert(in_str, in_strlen, buf_ptr, -1);

else {

}

fetch the pages in the traversal path using lru buffer
and stack their page numbers on ancest stk until a
leaf node is reached;

success= node_insert(in_str, in strlen, buf_ptr, -1);

while (!success) { /*while insertion is unsuccessful*/

}

if (ancest stk is empty) { /* split the root */
page num-= the next avaiable page number;
new page ptr = lru buffer(page num);

}

splTt ptr = get split point(buf ptr,up str,
- - -up strlen~ssl ptr,sil,sib);

split(split ptr, new page ptr, buf ptr, ssl ptr);
page num = the next available page-number; -
buf ptr = lru buffer(page num);
success = node insert(up str,up strlen,buf ptr,

- up=ptr); - -
root = page_num;

else { /* split a node other than the root */
up ptr = the next available page number;
new page ptr = lru buffer(up ptr);
splTt ptr = get split point(buf ptr,up str,

- - up strlen,ssl ptr~sil,sib);
split(split ptr,new page ptr,buf ptr,ssl ptr);
page num = pop the ancest stk; - -
buf ptr = lru buffer(page-num);
success = node insert(up str,up strlen,buf ptr,

- up=ptr); - -
}

return;

64

get split point(buf ptr,sep,sep len,ssl ptr,sil,sib) - - - - -
{

}

find the middle gap of the node pointed to by buf_ptr;

derive a separator for the middle gap and save it and
its length in sep and sep_len respectively;

examine the gaps to the left of the middle gap that
are within sil or sib for a shorter separator. If a
shorter separator is found, save it and its length
in sep and sep_len;

examine the gaps to the right of the middle gap that
are within sil or sib for a shorter separator. Save
in sep and sep_len if found;

/* split_ptr is pointer to the gap where split will */
/* occur. Also ssl ptr is pointer to location of */
/* separator length, sep len. *I

return(split_ptr);

init_tree(file_name, num_of_pages)

{

}

initialize the page queue;

create and open the tree storage file, file_name;

initialize the tree storage file to all leaf nodes.
The number of pages initialized is num_of_pages;

initialize the available page list;

set the root to -1 to indicate an empty tree;

return;

lru buffer(page num) - -
{

}

search the page queue to see if the requested page,
page_num is present;

if (page_num is not present in the page queue) {

/* page to be paged out is at front of page */
/* queue. */

}

if (page to be paged out has been altered)
write it to the page storage file;

read the requested page, page_num from the
storage file;

place the requested page in the available space
in the page buffer vacated by the page that
was paged out;

insert page num at the rear of the page queue;

else
move the page queue

page num from its
of the page queue
referenced page;

entry associated with
current position to the rear
making it the most recently

/* buf ptr points to the location in the page */
/* buffer where the page associated with */
/* page num is located. */

return(buf ptr);

65

66

node_search(in_str,in_strlen,match,sl_ptr,buf_ptr)

{

}

if (node pointed to by buf ptr is empty)
return(-1); /* signals-empty tree*/

else {

}

sequentially search the node pointed to by buf_ptr
for the proper position for insertion or the
proper pointer to follow in the traversal path.

/* node ptr is position for insertion or pointer to */
/* next-pointer in traversal path. */

return(node ptr);

put in node(node ptr,sl ptr,in str,in strlen,ptr,buf ptr) -- - - - - -
{

}

calculate the number of locations needed for the
insertion;

set success to false if node will be overfull due
to the insertion. set to true otherwise;

shift the separators and pointers to the right of
node ptr to the right to allow room for the
insertion;

insert in str into the node;

shift the contents of the node between node ptr and
sl ptr to the right to allow room for the-inser­
tion of in_strlen;

insert in_strlen;

update the number of locations used and the number
of separators for the node pointed to by buf_ptr;

return(success);

node_insert(in_str, in_strlen, buf_ptr, ptr)

{

}

node_ptr = node search(in str,in strlen,match,
- ,sl:ptr,buf_ptr);

if (node_ptr = -1) { /* empty tree */

}

set the following variables in the node:
1. number of locations used.
2. number of separators.

insert the following into the node:
1. in strlen.
2~ "n~ll" pointer, -1.
3. in str.
4. "n~ll" link pointer, -1.

success = true;

else {

}

if (match) { /* key already present */
= true; success

}
else

success = put in node(node ptr,sl ptr,in str,
- - in_strlen,ptr,buf_ptr);

return(success);

67

split(split ptr, nn_ptr, on_ptr, ssl_ptr)

{

}

move separator lengths to the right of ssl ptr
(ssl ptr + 1 for branch nodes) from the node
pointed to by on_ptr to the node pointed to by
nn_ptr;

if (node pointed to by on ptr = leaf) {
move separators and pointers to the right of

split ptr from the node pointed to by on ptr
to the node pointed to by nn ptr; -

link the two nodes together;
}
else {

do the same as above except move all separators
and pointers one gap to the right of split ptr
to the node pointed to by nn ptr; -

}
shift the separators

node pointed to by
the node;

and pointers remaining in the
on_ptr to the left to compact

calculate the number of separators and locations used
for the nodes pointed to by on_ptr and nn_ptr;

return;

68

'l.­
VI TA

Timothy L. Towns

Candidate for the Degree of

Master of Science

Thesis: THE EFFECT OF A SPLIT INTERVAL ON SIMPLE
SIMPLE PREFIX B+-TREES

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Lyons, Kansas, July 1, 1957,
the son of Marion L. Towns and Patrica R. Towns.

Education: Graduated from Putnam City West High
School, Bethany, Oklahoma, in May, 1975;
recieved Bachelor of Science degree in
Mathematics ~rom Harding University, Searcy,
Arkansas, in December, 1979; completed
requirements for the Master of Science degree at
Oklahoma State University, Stillwater, Oklahoma,
in July, 1983.

Professional Experience: Graduate Assistant,
Oklahoma State University, Computing and
Information Sciences Department, 1980 - 1983.

