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INTRODUCTION 

Each of the two parts of this thesis is a separate manuscript to be 

submitted for publication in Weed Science, the journal of the Weed 

Science Society of America. 
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PART I 

THE INFLUENCE OF HERBICIDE CONCENTRATION ON THE 

STIMULATION OF BASIPETAL HERBICIDE TRANSLOCATION 

BY GAF 141 IN FIELD BINDWEED 
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THE INFLUENCE OF HERBICIDE CONCENTRATION ON THE 

STIMULATION OF· BASIPETAL HERBICIDE TRANSLOCATION 

BY GAF 141 IN FIELD BINDWEED 

Abstract. Foliar applications of GAF 141 [(2-chloro-ethyl)phosphonic 

acid plus N-methylpyrrolidone], an ethylene-releasing agent, improved 

the control of field bindweed (Convolvulus arvensis L.) obtained with 

dicamba (3,6-dichloro-o-anisic acid) at two of five locations, but had 

no influence on the efficacy of glyphosate [~.-(phosphonomethyl)glycine] 

or 2,4-D [(2,4-dichlorophenoxy)acetic acid] under field conditions. In 

laboratory studies, GAF 141 was used as a foliar treatment 24 h prior to 

application of various concentrations of the same herbicides to the 

foliage of field bindweed plants. Basipetal translocation of dicamba 

and glyphosate was enhanced by GAF 141 when only the 14c-labelled herbi­

cides were used, but were not significantly affected by GAF 141 at 

herbicide concentrations more comparable to field application rates. 

GAF 141 had no influence on translocation of 2,4-D at any 2,4-D concen­

tration used in this study. 

INTRODUCTION 

Programs for control of deep-rooted perennial weed species such as 

field bindweed with herbicides such as dicamba, glyphosate, and 2,4-D 

have been expensive and have provided inconsistent control (3,7). Good 

control can be observed in the year of application, but follow-up treat-· 

ments are required to maintain control over time (10,13). Low efficacy 
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appears to result from insufficient basipetal herbicide translocation to 

control regrowth from roots (6). Sandberg et al. (12) found that field 

bindweed translocated 3.5% of applied glyphosate from treated foliage in 

three days, whereas hedge bindweed (Convolvulus sepium 1.), Canada 

thistle (Cirsium arvense (1.) Scop.), and wild buckwheat (Polygonum 

convolvulus 1,) translocated 22, 8, and 5% respectively. Ogg (10) 

reported that two applications of 2,4-D or dicamba at 1.1 and 0.6 kg/ha 

gave 97% control of Canada thistle, whereas a third application was re­

quired to give similar control of field bindweed, 

Many chemicals affect herbicide translocation, but few have a 

stimulatory effect on basipetal translocation. Goss (4) found that 

ethephon [(2-chloro-ethyl)phosphonic acid] foliarly applied prior to 

application of 2,4-D increased penetration and translocation of 14c-

2 ,4-D to roots of field bindweed plants, and enhanced herbicidal activity 

on regrowing shoots. Similarly, ethephon was found to enhance basipetal 

translocation of dicamba in field bindweed (9). Chykaliuk et al, (2) 

reported that GAF 141, an experimental ethylene-releasing agent, in­

creased basipetal translocation of dicamba, glyphosate, and acifluorfen 

{5-[2-chloro-4-(trifluoromethyl)-phenoxy]-2-nitro-benzoic acid} in bean 

(Phaseolus vulgaris 1,) plants when applied 24 h prior to herbicide 

application. Chykaliuk (1), however, found that basipetal translocation 

of 14c-2,4-D was not affected by GAF 141 in beans. Harrison et al. (5) 

found that GAF 141 at 2000 ppm foliarly applied prior to application of 

dicamba and glyphosate increased basipetal translocation of these herbi­

cides by 197 and 80%, respectively, Shaw et al, (14) also found that 

GAF 141 applied simultaneously or 24 h prior to herbicide application 

increased the accumulation of 1 4 c-dicamba in roots of field bindweed, 
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In the field, addition of ethephon to glyphosate applied for field bind­

weed control did not increase control except when glyphosate rates were 

less than 0.8 kg/ha (11). These results raised the question of whether 

herbicide concentration would affect the stimulatory action of GAF 141 

seen under laboratory conditions. 

The objectives of this research were to determine how GAF 141 in­

fluenced the control of field bindweed obtained with dicamba, glyphosate 

and 2,4-D in established field bindweed, and to determine the influence 

herbicide concentration has on the stimulation of basipetal herbicide 

translocation by GAF 141 in field bindweed. 

MATERIALS AND METHODS 

Field Experiments. Five field experiments were established in 

north-central Oklahoma from 1980 through 1982 to determine whether appli­

cations of GAF 141 would improve the efficacy of dicamba, glyphosate, 

and 2,4-D in controlling established field bindweed (Table 1). A ran­

domized complete block design was used in each experiment, and all 

treatments were replicated four times. Field bindweed populations of 

20 to 25 plants/m2 were present at each location. All treatments were 

applied in early fall when the field bindweed plants were in a vegeta­

tive stage, with stems 15 to 30 cm in length. Compressed air type plot 

sprayers were used to apply all treatments. GAF 141 was applied either 

as a tank mixture with the herbicide, or applied 48 h prior at the Enid 

location or 24 h prior at the Carrier location. Application rates at 

the Carrier location for all herbicides and GAF 141 were one-half that 

for all other locations reported, Payne and Carrier locations were 

seeded with hard red winter wheat 43 and 7 days after herbicide 
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application, respectively. All other locations were on fallow wheat 

land. All locations were tilled 7 to 10 cm deep in late June or early 

July of the following year to control emerging seedling field bindweed. 

The Enid location was also tilled on April 1, 1982, for the control of 

early emerging seedlings. Control was determined at the Enid and Car­

rier locations by counting the number of stems present in 0.3 by 3 m 

quadrats. Control at the other locations was determined by visual 

ratings approximately nine months after herbicide application. The 

herbicide rates utilized in these studies were less than those recom­

mended for field bindweed control programs in order to evaluate the 

effect of GAF 141 on the control given by these herbicides. All herbi­

cides used were formulated as amine salts. 

Laboratory Experiments. Field bindweed plants were germinated and 

grown in 500 ml half strength Hoaglands (8) nutrient solution for 28 

days. GAF 141 was applied 24 h prior to herbicide application by momen­

tarily immersing the foliage of field bindweed plants into a solution 

containing 2000 ppmw of the material in distilled water with 0.5% v/v 

alkylaryl polyether alcohol 1 • The plants were treated 24 h later with 

1 µg dicamba (17.06 Ci/mole, ring-14C-UL), 8.7 µg glyphosate (1.95 Ci/ 

mole, methyl-1 4c), or 1 µg 2,4-D (57 Ci/mole, carboxyl-14c). The gly­

phosate was formulated into the isopropylamine salt by adding an equi­

molar amount of isopropylamine to 2.17 mg 14C-glyphosate plus nonionic 

polyethoxylated tallow amine2 at 15.2% v/v, plus 84.3% distilled water 

to equal the commercial formulation. The dicamba and 2,4-D were in 95% 

1Triton X-100. 

2MON 0818. 
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ethanol. All 14c-herbicides were applied with a 10 µl microsyringe 

pipette by placing a total of four 2.5 µl drops on the adaxial leaf sur­

face of the second and third expanded leaves above the cotyledons. 

Various concentrations of each herbicide were applied just prior to 14c­

herbicide application by completely wetting the foliage of field bind­

weed plants with solutions containing o, 1500, 3000, 6000, or 12000 ppmw 

of commercially formulated dimethylamine salts of dicamba or 2,4-D, or 

O, 3000, 6000, 12000, or 24000 ppmw of the isopropylamine salt of gly­

phosate, Plants were harvested 24 h after herbicide treatment and 

sectioned into the foliage above the treated area, the treated area, the 

cotyledons and stem between the treated area and roots, and the roots. 

A sample of the nutrient solution was also retained for analysis. 

The treatments were replicated seven or eight times and each exper­

iment was repeated. The field bindweed plants were arranged in a 

randomized complete block design within the growth chamber, and a 

factorial arrangement of treatments was employed. Plants were grown in 

growth chambers adjusted to provide a 14 h, 30 C day and a 10 h, 25 C 

night, Relative humidity was 80±5%, and light intensity was 300±50 

µE·m-2•sec-1 • The plant parts were freeze dried after sampling and then 

oxidized3, The 14co2 gas was trapped in a cocktail solution4 and was 

quantified using liquid scintillation spectrophotometry. 

RESULTS AND DISCUSSION 

Field Experiments. A tank mix application of GAF 141 plus dicamba 

3R.J, Harvey Instrument Corp. 

4C02unt Sorb, Research Products International Corp. 
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at the Kay location increased control of established field bindweed com­

pared to that obtained with dicamba alone (Table 2). At Carrier, when 

GAF 141 was applied 24 prior to application of dicamba, field bindweed 

regrowth was reduced from 196 stems/m2 with dicamba alone to 87 stems/m2 

with GAF 141 pretreatment to dicamba. A tank mix of GAF 141 and dicamba 

did not improve the control obtained with dicamba at this location. 

Also, GAF 141 had no effect on field bindweed control provided by dicam­

ba at Logan, Payne, or Enid locations. 

Efficacy of glyphosate and 2,4-D was not affected by tank mixing or 

pretreatment with GAF 141 at any location nine to eleven months after 

herbicide application. It should be noted, however, that ten months 

after treatment, none of the treatments at the Logan location were con­

trolling over 15% of the field bindweed. 

Laboratory Experiments. Averaged over all dicamba concentrations, 

GAF 141 significantly decreased acropetal translocation of 14C-dicamba 

from 16.1% to 8.5% of that applied, and increased the percent of 14 c­

dicamba remaining in the treated area from 72.3% to 79.3% of applied 

(Table 3). However, as dicamba concentration increased, the effects of 

GAF 141 became less evident. GAF 141 had no effect on the percent of 

applied 14 c-dicamba recovered in the lower stem. In field bindweed 

roots and their nutrient solution, a significant interaction between GAF 

141 concentration and dicamba concentration occurred. When only four 

droplets of 14 c-dicamba were applied 24 h after application of GAF 141, 

a significant increase occurred in the amount of 14c recovered in both 

the roots and nutrient solution. However, when higher dicamba concen­

trations were used in addition to the 14c-dicamba, this effect was no 

longer significant. A maximum of 5,9% of applied 14C-dicamba was 
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recovered in the roots when GAF 141 was applied prior to 14c-labelled 

dicamba only, compared to 2.7% without the use of GAF 141. Maximum 14c 

recovery in the nutrient solution (13.3%) also occurred when GAF 141 was 

applied prior to application of only 14C-dicamba, compared to 6.4% when 

GAF 141 was not applied. With dicamba concentrations of 3000 ppm or 

more, 1.1% or less of recovered 14c was found in the roots or nutrient 

solution. 

When all glyphosate and GAF 141 concentrations are considered, no 

significant differences in 14c-glyphosate translocation to the upper 

foliage were observed (Table 4). However, when the 14c-glyphosate and 

the 14c plus 3000 ppm glyphosate are analyzed individually, GAF 141 

significantly inhibited acropetal translocation of glyphosate. GAF 141 

had no influence on translocation of 14c-glyphosate from the treated 

area or into the lower stem. When only 14c-glyphosate was applied, GAF 

141 increased 14c accumulation in the roots. However, as higher glypho­

sate concentrations were used, GAF 141 no longer significantly affected 

14C-glyphosate accumulation in field bindweed roots. Higher concentra­

tions of glyphosate did, however, result in lower percent of recovered 

14c-glyphosate found in the roots. 

GAF 141 had no significant effect on the translocation of 2,4-D 

into or from any plant part. However, 2,4-D concentration affected 

translocation patterns (Table 5). Concentration of 2,4-D had no signi­

ficant effect on the percent of 14c recovered from the upper foliage. 

However, as 2,4-D concentration increased, the percent of 14c-2,4-D 

accumulating in the lower stem, roots, and nutrient solution decreased 

sharply. Lower percent recovery in the roots and nutrient solution 

occurred when higher concentrations were applied, whereas highest 



recovery occurred when only the 14c-2,4-D was applied. In the treated 

area, the opposite was true. The use of only the 14C-labelled 2,4-D 

resulted in more movement of 14C-2,4-D from the treated area than did 

the two highest 2,4-D concentrations. 

10 

Thus, GAF 141 treatments stimulated basipetal translocation of 

dicamba and glyphosate, but not 2,4-D, when only the 14c-labelled herbi­

cides were used. However, when herbicide concentrations which simulated 

field application rates for control of perennial weeds were used, GAF 

141 did not significantly alter basipetal translocation. Previous work 

(1) indicated that basipetal translocation of glyphosate, dicamba, aci­

fluorfen, and 2,4,5-T [(2,4,5-trichlorophenoxy)acetic acid] is enhanced 

by the use of GAF 141. However, in that research, only small quantities 

of these herbicides were applied. Our research indicates that the mech­

anism by which this enhancement occurs is influenced by herbicide rate. 

Apparently as herbicide concentration increases, the ability of GAF 141 

to stimulate basipetal translocation decreases. Therefore, rates re­

quired for the control of perennial weed species may be too high for the 

stimulatory effects of GAF 141 to be observed. However, GAF 141 may 

prove beneficial in.control of annual weeds with lower rates of some 

translocated herbicides than those required for the control of perennial 

species. 
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Table _l_~ Soil characteristics and treatment information for the field bindweed control exEeriments. 
Soil characteristics 

Location Classification EH O.M. Treatment date Carrier vol. Plot size Evaluation date 
(%) (l/ha) (m2) 

1. Kay Kirkland silt loam 6.8 1.4 Oct. 8, 1980 187 24 July 6, 1981 

2. Logan Kirkland silt loam 5.4 1.2 Oct, 14, 1980 187 24 Aug. 4, 1981 

3. Payne Grainola-Lucien clay 5.8 0.5 Oct. 21, 1980 187 20 July 6, 1981 
loam 

4. Enid Bethany silt loam 5.9 1.2 Sept. 2, 1981 140 36 July 12, 1981 

5. Carrier Shellabarger-Carwile 5.3 1.3 Nov. 17, 1981 93 36 July 13, 1981 
fine sandy loam 

...... 
w 



Table 2. Effect of GAF 141 on field bindweed control with dicamba, glyphosate and 2,4-D 9 to 11 months 
after fall treatment at five locations. 

Location 
Kay Logan Paine Enid Carrier 

Chemical a Rate Control 
(kg/ha) (%) -( stems/m )-

Dicamba 1.1 25 10 73 69 
Dicamba + GAF 141 1.1+0.3 76 4 95 48 
GAF 14l;dicamba 0.3;1.1 -- -- -- 48 
Dicamba 0.6 -- -- -- -- 196 
Dicamba + GAF 141 0.6+0.1 -- -- -- -- 168 
GAF 14l;dicamba 0.1;0.6 -- -- -- -- 87 

Glyphosate 3.3 72 9 78 22 
Glyphosate + GAF 141 3.3+0.3 85 15 76 15 
GAF llfl ;glyphosate 0.3;3.3 -- -- -- 18 
Glyphosate 1. 7 -- -- -- -- 17 
Glyphosate + GAF 141 1.7+0.1 -- -- -- -- 10 
GAF 141;glyphosate 0.1;1.7 -- -- -- -- 33 

2,4-D 1.1 35 8 78 78 
2,4-D + GAF 141 1. l+O .3 30 8 84 84 
GAF 141; 2 ,4-D 0.3;1.1 -- -- -- 79 
2,4-D 0.6 -- -- -- -- 208 
2,4-D + GAF 141 0.6+0.1 -- -- -- -- 226 
GAF 141;2,4-D 0.1;0.6 -- -- -- -- 170 

GAF 141 0.3 0 0 0 76 
GAF 141 0 .1 -- -- -- --- 248 
Untreated check - 0 0 0 104 202 

LSD (0.05) 27 14 32 32 79 

aA "+" indicates a tank mix, whereas a ";" designates sequential applications. 

...... 
~ 



Table 3. Effects of dicamba concentration and GAF 141 on distribution of 14c recovered 24 h after foliar 
application of 14c-dicamba. 

----nistribu ti on -or-r-ecovere<l T~ c 
Upper Treated Lower Nutrient 

Dicamba concentrationa GAF 141 concentration folia~e area stem Root solution 
(ppm) (ppm) (%) 

0 0 32.2 40. 7 18.0 2.7 6.4 
0 2000 20.9 43.5 16.4 5.9 13.3 

1500 0 14.8 69.8 12.9 1.7 0.8 
1500 2000 8.5 76.4 10.9 2.6 1.6 

3000 0 15.0 79.9 3.6 1.1 0.5 
3000 2000 3.8 91. 7 3.6 0.5 0.4 

6000 0 10.9 83.0 4.3 0.9 0.9 
6000 2000 4.6 92.4 2.0 0.3 0.7 

12000 0 7.7 87.9 3.8 0.1 0.5 
12000 2000 4.7 92.4 2.4 0 .1 0.4 

LSD (0.05) 8.2 10.3 6.6 1. 7 2.3 

aNot including 14c-dicamba. 

I-' 
VI 



Table 4. Effects of glyphosate concentration and GAF 141 on distribution of 14c recovered 24 h after foliar 
application of _I.~=gJ..yp}lo13at~. ______ . 

Distribution of recovered I4c 
Upper Treated Lower Nutrient 

Gl~phosate concentrationa GAF 141 concentration foliage area stem Root solution 
(ppm) (ppm) (%) 

0 0 2.4 89.0 3.4 4.7 0.2 
0 2000 ·o.5 84.8 4 .1 10.5 0.2 

3000 0 2.1 84.4 6.4 6.8 0.2 
3000 2000 0.2 84.0 7.5 8.0 0.3 

6000 0 1.7 90.4 3.3 4.3 0.3 
6000 2000 2.6 81.0 9.7 6.5 0.2 

12000 0 2.8 87.9 6 .1 3.0 0.3 
12000 2000 1.9 88.9 5.6 3.3 0.3 

24000 0 2.0 91.6 5.0 1.2 0.5 
24000 2000 3.5 90.1 4.6 1.6 0.1 

LSD (0.05) NSD NSD NSD 4 .1 NSD 

aNot including 14c-glyphosate. 

...... 
Cl' 



Table 5. Effect of 2,4-D concentration on distribution of 14c recovered 24 h after foliar 
application of l'+c-2,4-D. 

Distribution of recovered iqc 
Upper Treated Lower Nutrient 

2,4-D concentrationa folia8e area stem Root solution 
(ppm) (%) 

0 2.2 70.5 15.8 8.0 3.7 

1500 8.7 80.6 7.0 2.5 1.3 

3000 8.2 79.5 9.9 1.6 0.9 

6000 3.5 86.6 9.1 0.4 0.5 

12000 6.8 87.1 5.4 0.5 0.3 

LSD (0.05~ NSD 10.2 7.3 1.5 1.0 

aNot including 14c-2,4-D. 

...... 
-....J 



PART II 

RELATION OF NITROGEN AND PHOSPHORUS NUTRITION TO 

THE TRANSLOCATION OF THREE HERBICIDES 
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RELATION OF NITROGEN AND PHOSPHORUS NUTRITION TO 

THE TRANSLOCATION OF THREE HERBICIDES 

IN FIELD BINDWEED 

Abstract. Twenty-eight day old field bindweed (Convolvulus arvensis L.) 

plants grown in culture solutions deficient in nitrogen or phosphorus 

for the last seven days of growth translocated significantly less foli­

arly applied dicamba (3,6-dichloro-£_-anisic acid) and 2,4-D [2,4-

dichlorophenoxy)acetic acid] to their roots than did plants grown in 

complete nutrient solutions. In contrast, nitrogen deficiency stimu­

lated basipetal translocation of glyphosate [.!!_-(phosphonomethyl)glycine] 

and inhibited its acropetal translocation in field bindweed. Deficien­

cies of both nitrogen and phosphorus decreased translocation of dicamba 

from the treated area, but had no influence on glyphosate or 2,4-D 

translocation from the treated area. 

INTRODUCTION 

Most research conducted on the impact of environmental factors on 

herbicide translocation and efficacy has emphasized the effects of temp­

erature, light, rainfall, soil moisture, and relative humidity, with 

little work done on the influence of nutrient availability. Doll (5) 

found that the phytotoxicity of amiben (3-amino-2,5-dichlorobenzoic 

acid), atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-~-triazine], 

and linuron [3-(3,4-dichlorophenyl)-1-methoxy-l-methylurea] was greatly < 

enhanced by nitrogen fertilization of oats (Avena sativa L.), whereas 

19 
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phosphorus and potassium had no interaction with herbicidal toxicity to 

oats. However, Doll et al. (6) found that higher phosphorus levels did 

increase the suppression of corn (Zea mays L.) and cucumber (Cucurbita 

maxima Duchesne) by these herbicides. Soil fertilization was found to 

have an effect on barban [4-chloro-2-butynyl-N-(3-chlorophenyl)carbam­

ate] effectiveness through both increases in wild oat (Avena fatua L.) 

control and competition from wheat (Triticum aestivum L.) (17). 

Nutrient status of various annual species has proven to influence 

the efficacy of some foliar-applied herbicides. Rohrbaugh and Rice (19) 

found less stem curvature and accumulation of 14c-2,4-D in roots of to­

mato (Lycopersicon esculentum Mill.) plants deficient in phosphorus than 

in plants grown with adequate phosphorus. Baird et al. (1) reported 

that application of nitrogen to quackgrass (Agropyron repens L.) 30 days 

prior to treatment with glyphosate significantly improved control by 

increasing vegetative growth. High nitrogen levels increased control of 

seven cultivars or species in the Gramineae family with paraquat (1,1'­

bipyridlium ion) (15). McCarty and Scifres (16) reported that picloram 

(4-amino-3,5,6-trichloropicolinic acid) and dicamba at 0.14 and 2.2 

kg/ha, respectively, reduced regrowth of smooth bromegrass (Bromus 

inermis Leyss.) only when nitrogen fertilizer was applied. 

Field bindweed is a significant perennial weed species in many 

wheat producing regions. Nutrient levels in many of these areas are 

depleted during the time of active field bindweed growth by crop uptake 

and subsequent harvesting of the grain, and by immobilization due to 

organic decomposition of wheat residues (21). Therefore, the control 

of field bindweed by herbicides is typically undertaken when the nu­

trient status of the field is low. The objective of this research 
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was to determine the influence of nitrogen and phosphorus deficiencies 

on the translocation of dicamba, glyphosate, and 2,4-D in field bindweed. 

MATERIALS AND METHODS 

Field bindweed plants were germinated and grown in aerated bottles 

filled with 500 ml half strength Hoaglands (10) nutrient solution for 21 

days. Plants were grown in growth chambers which were adjusted to pro­

vide a 14 h, 30 C day and a 10 h, 25 C night. Relative humidity was 

80±5%, and light intensity was 300±50 µE·m- 2·sec-1 . The plants were 

then transferred to one half strength Hoaglands nutrient solutions which 

contained (a) K2co3 and Caco3 to replace KN03 and Ca(N03) 2 , (b) K2co3 

to replace KH2Po4, or (c) normal quantities of nitrogen as KN03 and 

Ca(N03) 2 and phosphorus as KHlo4• Plants were then returned to the 

growth chamber and maintained for 6 days. The plants were then treated 

with 1 µg dicamba (17.06 Ci/mole, ring- 14C-UL), 8.7 µg glyphosate (1.95 

Ci/mole, methyl- 14c), or 1 µg 2,4-D (57 Ci/mole, carboxyl- 14c). The 

glyphosate was formulated as an isopropylamine salt by adding equimolar 

isopropylamine to 2.17 mg 14C-glyphosate plus nonionic polyethoxylated 

tallow amine1 at 15.2% v/v, plus 84.3% distilled water to equal the 

commercial formulation. The dicamba and 2,4-D were in 95% ethanol. 

All 14c-herbicides were applied with a 10 µ1 microsyringe pipette by 

placing a total of four 2.5 µ1 drops on the adaxial leaf surface of the 

second and third expanded leaves from the cotyledons of the field bind-

weed plants. Plants were then replaced in the growth chamber for a 

24 h period. Plant size at this time was 8 to 12 expanded leaves, 

1MON 0818. 
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with stems 15 to 25 cm in length. After this time, plants were individ-

ually harvested and sectioned into the foliage above the treated area, 

the treated area, the cotyledons and stem between the treated area and 

the roots, and the roots. A sample of the nutrient solution was also 

retained for analysis. 

The treatments were replicated eight times and each experiment was 

repeated four times. The field bindweed plants were arranged in a ran-

domized complete block design within the growth chamber. The plant 

2 
parts were freeze dried after sampling, weighed, and oxidized • The 

14co2 gas was trapped in a cocktail solution3 and quantified by liquid 

scintillation spectrophotometry. 

RESULTS AND DISCUSSION 

Nitrogen deficiency inhibited both acropetal and basipetal trans­

location of 14C-dicamba (Table 1). Compared to normal nutrient levels, 

both nitrogen and phosphorus deficiencies reduced 14c accumulation in 

the roots and nutrient solution by more than 50%. Nitrogen stress also 

decreased 14C-dicamba movement into the upper foliage, where only 21.5% 

of applied 14c was recovered in nitrogen stressed plants compared to 

27.9% in plants with adequate nitrogen. Phosphorus deficiency had no 

significant effect on acropetal translocation of dicamba, with no sig-

nificance compared to either nitrogen deficient or normal solutions. 

When either nutrient was deficient, 56% or more of the applied 14c-

dicamba remained in the treated area after 24 h, whereas only 47.5% 

2R.J. Harvey Instrument Corp. 

3co2~nt Sorb, Research Products International Corp. 
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remained when the nutrients were present in adequate amounts. 

In contrast to the effect of nitrogen levels on dicamba transloca­

tion to roots, inadequate nitrogen stimulated basipetal movement of 

14C-glyphosate into field bindweed roots (Table 2). Phosphorus status 

had no significant effect on basipetal movement of 14C-glyphosate. As 

with dicamba, translocation of glyphosate acropetally was inhibited by 

inadequate nitrogen, but not by inadequate phosphorus. Nutrient status 

had no effect on the amount of 14C-glyphosate recovered in the treated 

area. 

As was the case with dicamba, basipetal movement of 14C-2,4-D into 

both field bindweed roots and their nutrient solution was inhibited 

by nitrogen deficiency (Table 3). In contrast, phosphorus deficiency 

did not significantly affect accumulation of 14c-2,4-D in roots, but 

did decrease 14c levels in the nutrient solution, compared to plants 

grown with normal nitrogen and phosphorus levels. Thus, it would 

appear that lack of phosphorus also inhibited basipetal 2,4-D transloca­

tion. 

In comparing the influence of nutrient status on 14C-dicamba (Table 

1), 14c-glyphosate (Table 2), and 14C-2,4-D (Table 3), different results 

were observed. Nitrogen deficiency resulted in a decrease in basipetal 

translocation of dicamba and 2,4-D, but an increase with glyphosate. 

Nutrient deficiencies reduced the quantities of dicamba translocated 

from the treated area, but did not affect the level of glyphosate or 

2,4-D remaining there. Acropetal translocation of dicamba and glypho­

sate, but not 2,4-D, was inhibited by nitrogen deficiency. 

To isolate the effect of nitrogen and phosphorus status on plant 

growth from nutrient status effects on herbicide translocation, it is 
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necessary to examine the ratio of 14c accumulating in the upper foliage 

to that recovered in the roots and nutrient solution and the upper foli­

age to roots dry weight ratios (Table 4). Total 14c recovered in the 

roots plus nutrient solution is considered the total of basipetal trans­

location. The data are presented in terms of the percent of the normal 

solution ratio for each nutrient deficiency. With dicamba, no signifi­

cant change was noted in the ratio of acropetal to basipetal herbicide 

translocation when either nitrogen or phosphorus was absent, compared 

to the normal solution. Therefore, even though a significant increase 

in the amount of dicamba remaining in the treated area occurred when 

either nutrient was not available to the plant, no effect was observed 

upon the relative proportion of dicamba moving acropetally and ba­

sipetally. 

The ratio of 14c accumulating in the upper foliage versus the roots 

plus nutrient solution changed with both glyphosate and 2,4-D when 

nitrogen was deficient. Phosphorus, however, had no significant influ­

ence on this proportion with either herbicide. A significant reduction 

occurred in the amount of 14C-glyphosate accumulating in the upper 

foliage compared to the amount found in the roots plus nutrient solution 

when nitrogen was absent. Lack of nitrogen caused the opposite response 

with 2,4-D. A five-fold increase in the relative amount of 14C-2,4-D 

recovered in the upper foliage versus that found in the roots plus 

nutrient solution was found when nitrogen-stressed plants were compared 

with those grown in one half strength Hoaglands nutrient solution. 

Nutrient status also affected the ratio of the dry weight of the 

upper foliage to that of the roots (Table 4). In all cases, withholdin~ 

nitrogen from the culture solution caused a significant decrease in 
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the relative growth of the upper foliage in relation to the root growth. 

Phosphorus also reduced the proportion of upper foliage growth compared 

to growth of the roots of plants used for all herbicides except dicamba. 

Relative decreases in this ratio were similar with all three herbicides 

for both deficient nutrients. This indicates that the herbicide itself 

had little effect on the differences observed due to nutrient status. 

With dicamba, movement from the treated area was slowed substan­

tially by lack of nutrients. Thus, less 14C-dicamba moved both acro­

petally and basipetally in field bindweed. Hay (9) noted that dicamba 

is one of the more mobile herbicides, with movement both apoplastically 

and symplastically toward the growing tips. Chykaliuk et al. (3) found 

that much more dicamba moved from the treated area than did glyphosate 

or acifluorfen {5-[2~chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic 

acid}. Hay (9) also concluded that a supply of carbohydrates is neces­

sary for the movement of herbicides from the leaves, both to develop 

an assimilate flow and to supply energy for phloem loading. Therefore, 

if nutrient deficiencies result in reduced metabolic activity within 

the plant, either suggested mechanism could be slowed, resulting in 

less dicamba movement. 

Increases in basipetal translocation of 14c-glyphosate may be due 

to a relative increase in root growth compared to growth of the foliage. 

Various studies have shown that nitrogen deficient conditions decrease 

the relative amount of top growth compared to root growth (8, 23, 24). 

This research has also found this trend to occur. Hoagland and Duke 

(11) note that the primary means of glyphosate translocation is sym­

plastic, with accumulation in areas of most active growth. Since 

movement from the treated area was not affected, glyphosate may simply 
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be moving to the area in which the most active growth is occurring under 

nutrient deficient conditions. 

Basipetal movement of 14c-2,4-D was inhibited by nitrogen deficien­

cy in the roots, and by both nitrogen and phosphorus deficiencies in 

the nutrient solution. Previous work found that nitrogen deficiency 

(4, 12, 20, 22) or phosphorus deficiency (2, 7) reduced protein levels 

in various species. Researchers have suggested the involvement of a 

carrier protein with auxin transport (13, 18). Long and Basler (14) 

reported that cyclohexamide, a protein synthesis inhibitor, signifi­

cantly decreased basipetal accumulation of 2,4,5-T [(2,4-5-trichloro­

phenoxy)acetic acid] in bean (Phaseolus vulgaris ~.) roots. Therefore, 

data in the present study suggest that deficiencies of nitrogen or 

phosphorus which would limit protein synthesis in field bindweed 

plants would also be limiting the carrier protein-mediated uptake and 

basipetal movement of 2,4-D. A decrease in vein loading could allow 

an increase in apoplastic translocation of 2,4-D to the upper foliage. 

An explanation of the decreased basipetal translocation of 2,4-D with 

nitrogen deficiency based on a decrease in vein loading rather than 

a decrease in mass flow was substantiated by the fact that nitrogen 

deficiency actually increased basipetal translocation of glyphosate, 

indicating that mass flow was not decreased by nitrogen deficiency. 

However, an increase in vein loading of glyphosate could account for 

the increase in basipetal glyphosate translocation with nitrogen de­

ficiency. 

Much of the data of this study indicate that deficiencies of 

nitrogen and phosphorus have a significant impact on the translocation 

patterns of dicamba, glyphosate, and 2,4-D in field bindweed. 



Reports in the past have shown that nutrient deficiencies influence 

the efficacy of these herbicides in annual species (1, 16, 19). Data 

from this study indicate that this is also true in perennial species. 
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Table 1. Effect of nitrogen and phosphorus nutrition on distribution of 14c recovered 24 h 
after foliar aEplication of 14 c-dicamba. 

Distribution of recovered I 4 c 
Nutrient level during Upper Treated Lower Nutrient 
last 7 da~s of growth foliage area stem Root solution 

(%) 

No nitrogen 21.5 57.4 17.1 2.1 1.9 

No phosphorus 24 .o 56.0 15.3 2.2 2.5 

Normal N and P 27. 9 47.5 15.6 4.6 4.4 

LSD (0.05) 5.3 6.7 NSD 1.2 1.4 

w 
I-" 



Table 2. Effect of nitrogen and phosphorus nutrition on distribution of 14 c recovered 24 h 
after foliar apElication of 14C-gllEhosate. 

Distribution of recovered 14c 
Nutrient level during Upper Treated Lower · - Nufr1.ent 
last 7 dals of growth foliage area stem Root solution 

(%) 

No nitrogen 1.2 86.4 1.8 10.1 0.5 

No phosphorus 3.4 86.0 1.9 8.4 0.3 

Normal N and P 3.4 87.1 1.9 7.3 0.3 

LSD (0.05) 1.8 NSD NSD 2.3 0.1 

w 
N 



Table 3. Effect of nitrogen and phosphorus nutrition on distribution of 14c recovered 24 h 
after foliar application of 1 4 c-2,4~D. 

Distribution of recovered Jqc 
Nutrient level during Upper Treated Lower Nutrient 
last 7 da~s of ~rowth foliage area stem Root solution 

(%) 

No nitrogen 9.0 63.2 17.7 7.4 2.7 

No phosphorus 7.9 65.0 12.7 9.3 5.1 

Normal N and P 3.9 66.5 12.4 10.1 7.1 

LSD (0.05) NSD NSD NSD 1.8 1.5 

w 
w 



Table 4. Effect of nitrogen and phosphorus status on the ratio 
recovered in the upper foliage vs. that recovered in roots plus 
on the ratio of upper foliage to roots dry weight. 
Deficient Upper foliage:roots 
nutrienta + nutrient solution 14c ratiob 

of foliar applied 14c 
nutrient solution, and 

Upper foliage:roots 
dry weight ratiob 

dicamba gll'.:phosate 2 24-D dicamba glyphosate 
(%) (%) 

Nitrogen 102 39 439 57 61 

Phosphorus 71 83 199 79 82 

LSD (0.05) NSD 42 344 22 17 

2,4-D 

55 

81 

17 

aDeficient nutrient=nutrient absent from culture solution for last seven days of plant growth. 

bRatios presented as percent of ratios for plants grown in 1/2 strength Hoaglands solution. 

w 
.!:--
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