
A DEMAND DRIVEN DATA FLOW ENVIRONMENT

FOR A LOCALITY STUDY

By

ROBERT JEFFREY SCHNEIDER
~

Bachelor of Science

University of Vermont

Burlington, Vermont

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullf illment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1983

lhq_,~_, l ·::i
1L) e~·)

~~SC\ J.
top.~

. ~ . .

A DEMAND DRIVEN DATA FLOW ENVIRONMENT

FOR A LOCALITY STUDY

Thesis Approved:

ii

1161100 '

PREFACE

This study is an analysis of program behavior in a

demand driven data flow environment to determine the

existence of locality in such an environment. The motivation

for performing such an analysis is to determine if a memory

hierarchy is feasable for a demand driven data flow

computer. Initially, demand driven computation is

discussed, then a proposed model is covered in some detail.

The type of instructions used in such a system are discussed

with an explanation of each instruction's behavior. Finally,

a locality analysis is performed by tracing the behavior of

several executing programs in a demand driven data flow

environment.

I wish to express my appreciation to my major adviser,

Dr. Sharilyn A. Thoreson, for her assistance and patience

throughout this study. I also wish to thank the other

members of my committee, Dr. George E. Hedrick and Dr.

Mahir s. Ali, for their assistance and constructive

criticisms. I also wish to extend my thanks to John Kerns

for his comments and also for prov.iding the motivation to

finish this study on time.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Project Motivation • . • . . • • 1
Fundamentals of Demand Driven Data Flow

Computation . . . • • • . • • . . • • . • 5
Historical Development of Demand Driven

Computation • • • • • • . • • • 12
Summary • . • . . . • • • 16

II. A DEMAND DRIVEN DATA FLOW MODEL 17

A Demand Driven Data Flow Computer
with a Memory Hierarchy .••••

Software and Instruction Set
Considerations • • . • • •

Summary . . • • . . • •

III. LOCALITY

IV.

A Discussion on Locality .•••
Spatial Locality Analysis •
Temporal Locality Analysis .••
Summary • • . . • • • • • • • •

SUMMARY, CONCLUSIONS,
AND SUGGESTED FUTURE RESEARCH •

Summary • • • . • • • .
Conclusions • • • • • • • •
Suggested Future Research

SELECTED BIBLIOGRAPHY

APPENDIXES • • • • • •

APPENDIX A - ADDITIONAL TEST PROGRAMS

APPENDIX B - INSTRUCTION SET

iv

17

22
31

34

34
36
39
44

47

47
48
50

51

53

54

66

LIST OF TABLES

Table

I . Execution Trace of Figure 15

II. Execution Trace of Figure 15 with No
Loop Iterations

III. Rows l~ Through 18 from Table I

IV. Last Four Rows of Table I

v. Execution Trace of Figure 16

VI. Execution Trace of Figure 16 Demanding
One Loop Iteration ..•..•.•.

v

Page

72

74

76

77

80

82

Figure

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

LIST OF FIGURES

Demand Driven Data Flow Graph
for the Area of a Circle • • •

Continued

An Example of Program Trace Fringes •

Tree Structured Reduction Computer

An Example of an Outer-Most Reduction

A Demand Driven Data Flow Architecture
with a Secondary Memory • . • • • • •

Operational Flow Chart for the
Demand Propagation Box

Examples of Instruction Formats . -
High Level and Compiled Code with Associated

Graph Computing the Volume of a Cone ••.

Program to Calcµlate Sine using Taylor Series

Continued • • . •

Example of a Loop without Code Replication

Example of Physically Replicated Code • • • •

Example of a Compiled If Then Else Structure

Example of the Compilation Process
for a While Loop • • • • • . ••

Example of the Compilation Process
for a Repeat Loop • • • . • • • •

Vl

.

Page

6

7

9

14

14

19

23

32

38

40

41

45

46

69

71

78

CHAPTER I

INTRODUCTION

Project Motivation

For some time now von Neumann architectural principles

have been the dominant feature in the area of computer

architecture design. Within recent years however, research

in both the areas of effective computer languages [l] and

computer architecture [3,5,12,17,18,19] has suggested that

it may be desirable to consider new approaches to computer

architecture which abandon the von Neumann principles. It

has been suggested by these authors [l,3,5,12,18] that the

von Neumann principles may in fact have imposed restrictions

on the developments in the above mentioned areas.

One research motivation for new architectures is due to

the current school of thought that proposes that, in order

to gain significant performance increases in the next

generation of computers, massive parallelism must be

exploited. In order to exploit massive parallelism,

concurrency must be detected by the language translators

and/or the operating system. After concurrency has been

detected, it must then be translated to a form where it may

be exploited by the hardware. This implies an architectural

need for a machine to exploit concurrency.

1

2

Research groups for functional programming languages

have also been expressing a need for new architectures

capable of supporting functional programming languages

efficiently. According to Backus [l], computer languages

have become considerably larger and more complex without

yielding comparable benefits to the user. He further adds

that functional programming languages would yield

considerable benefits to the user, as well as making

programs more amenable to the detection of parallelism. It

has been noted by Backus and Treleaven [l,18] that despite

the benefits there has been little interest in functional

programming languages due to the fact that these are not

efficiently supported on von Neumann type computers.

Research in both the areas of computer architecture and

effective computer languages have pointed to several new

possible architectural candidates [3]. Two of these

candidates are data flow architecture [3,4,5] and demand

driven architecture [2,8,9,13,19]. From an architectural

point of view these types of architecture are capable of

supporting massive parallelism efficiently [5]. From a

language point of view these types of architecture are

capable of supporting functional programming languages

efficiently [l,18]. This is partially due to the idea of

using a global memory to store results from executing

instructions has been removed, thus removing history

sensitivity from the environment. This no storage, history

3

insensitive environment is the natural environment for

functional languages [l].

One method to improve performance in a von Neumann

machine is to introduce a faster memory. This will

generally result in a performance increase because processor

cycle times are generally much faster than memory cycle

times. Since a faster memory is in general considerably

more expensive than a similarly sized slower memory, it is

common to introduce a memory hierarchy into the system.

This involves adding a small amount of the faster memory and

a control mechanism to allow the small section of fast

memory to work in conjunction with the slower memory. This

is typically referred to as a cache memory in the

literature. In a von Neumann machine, this type of memory

hierarchy has been observed to yield performance very

similar to that of the same machine with only the faster

memory yet at a much lower cost increase.

A memory hierarchy can also be introduced allowing the

primary memory to be used in conjunction with a slow device

such as a drum or a disk drive~ This allows the system to

appear as if the primary memory were as large as the

combined memory of the fast and slow memories with

performance very nearly that of the primary memory itself.

For a memory hierarchy to be effective on a given machine,

programs (run in the computing environment of that machine)

must exhibit sufficient locality (Locality is discussed in

detail in Chapter 3). This is generally the case in a von

4

Neumann environment yet, with the radically different

styles of architecture proposed, the question must be raised

as to whether or not a memory hierarchy implementation would

prove to yield comparable results in new computing

environments.

In both a data flow and a demand driven data flow

environment, the order of instruction execution for the same

program run on a von Neumann type of computer will most

likely be very different since neither the data flow nor the

demand driven data flow machines use program counters to

trigger instruction execution. For this reason it may not

be taken for granted that locality will exist in a data flow

or a demand driven environment without an analysis of actual

program behavior under those environments. There have been

studies examining locality on data flow machines [16].

This paper addresses the problem of the existence of

locality in a demand driven data flow environment. A demand

driven data flow environment is specified to allow for an

analysis of program behavior. The analysis of program

behavior is performed in the specified environment to

determine the existence of locality.

Chapter II of this paper contains a specification for

a demand driven data flow environment. Chapter II also

includes a possible hardware model for a demand driven data

flow machine with a memory hierarchy.

Chapter III discusses locality. The results and

descriptions of the locality analyses for several programs

5

are given.

Chapter IV contains a summary of the work done and

conclusions concerning locality in a demand driven data flow

environment.

Fundamentals of Demand Driven

Data Flow Computation

Demand driven computation shares many similarities

with pure data flow computation. The main difference

between the two methods appears in the control mechanism for

beginning the execution of an instructio~. In the data flow

case an instruction's execution is begun when the operands

necessary for its execution become available. In a demand

driven -environment, an added condition is placed on the

triggering of an instruction's execution. Not only must the

necessary operands be available to the given instruction but

the instruction must also be demanded by one of its

successors. The motivation for this extra condition is to

prevent the execution of any instructions not necessary in

the computation of the final result. In order to start

execution in a demand driven machine, the environment must

demand the result of the last instruction in the computation

of the main result [9,10].

Figure la shows the initial state of a demand driven

data flow computation graph computing the area of a circle.

The operations appear .within circles. These circled

operations will be refered to as operation nodes. The data

1

1

*

a.) Initial Demand for Result

1

* *

b.) Execution of a.) c.) Execution of b.)

Figure 1. Demand Driven Data Flow Graph
for the Area of a Circle

6

1 1

* *

a.) Execution of Figure le.) b.) Execution of a.)

1

c.) Execution of b.)

Figure 2. Continued.

7

8

dependency paths between the nodes are represented by the

arrows connecting the nodes. These arrows are referred to

as arcs. To conform with the notation used in current

literature [7], an asterisk beside an arc will indicate that

the result from the preceding operator node has been

demanded. A solid circle on an arc is used to indicate the

flow of a result from an operator node to its immediate

successors. The instructions have been numbered, to the

left of each operation node in the graph, for reference.

Figure lb through Figure 2b indicate the intermediate steps

of the computation. Figure 2c shows the graph after the

computation has completed. The final result is on the

output arc of the lowest level node in the graph.

In a study on data flow computation, Thoreson [16]

introduced the idea of execution and reference fringes as

tools to trace program executions. An execution fringe is a

two dimensional table where time is represented along the

horizontal axis of the table and the degree of parallelism

(the instructions executing at a given time) is represented

along the vertical axis of the table. For example, Figure

3b illustrates that instruction one executes at time two and

that instruction two executes at time three. Similarly, a

reference fringe is a two dimensional table with the same

format as an execution fringe but with one dimension of time

and the other dimension representing the instructions

referenced at a given time. An instruction is referenced

when it receives a result from an executing instruction.

t I i

4

2

1
3

3 4 5 6

2

a.) Demand Fringe illustrating instructions
demanded versus time

t I i 2 3 4 5 6

1 2 3 4

b.) Execution Fringe illustrating instructions
executed versus time

t I i 2 3 4 5 6

3 4 3 4 ?

c.) Reference Fringe illustrating instructions
referenced versus time

Figure 3. An Example of Program Trace Fringes

9

10

Figure 3c shows an example of a reference fringe. An

example of a reference appears at time three in Figure 3c.

Instruction number four is referenced at time three by the

arrival of an operand. The actual execution of instruction

number four does not occur until time five. At time five,

instruction four receives its second operand and begins

execution. A demand for an instruction is a special type of

reference and do not appear in the reference fringe. The

Demands appear in a demand fringe discussed below.

The idea of both execution and reference fringes

carries over to a demand driven data flow environment as

tools to trace program execution. Another type of fringe,

the demand fringe, is also helpful. A demand fringe is a

two dimensional table in which the first dimension

represents time and the second dimension lists the

instructions being demanded at a given time. For example,

instructions one and three are demanded at time two in the

demand fringe illustrated in Figure 3c.

The demand and the reference fringes are aids in

determining when a given instruction will execute. Each

instruction that appears in the execution fringe must first

appear in the demand fringe. In addition to appearing in

the demand fringe, each instruction number appears in the

reference fringe once for each operand that it requires for

the instruction to execute since the last time it executed.

The only instruction that does not appear in the reference

fringe is the constant instruction which has no inputs in a

11

demand driven data flow environment and hence is not

referenced and needs only be demanded to execute at any

time. The constant operation is discussed in further detail

in chapter two. The demand fringe tends to appear as a

stack for the execution fringe since the demands tend to

propagate up the demand driven data flow graph until they

reach executable instructions. Once the instructions begin

executing, they tend to execute in the reverse order in

which they were demanded, giving the appearance of being

popped off a stack. This is not always the case, however.

Figure 3 shows the execution, reference, and demand fringes

for the combined execution of Figure 1 and Figure 2.

An outcome of the demand driven concept is that

conceptually infinite data structures may be implemented

efficiently [4,7,9,10]. Since only the elements needed are

demanded, there is no need for the structure to be

completely constructed prior to the demand for each element

used in computing the main result. Another benefit accrued

from the use of the demand driven concept is a very straight

forward approach to resource management [7]. In a demand

driven environment, sequencing control is automatic~ hence,

the merge operator used for sequencing control in a pure

data flow environment is not needed [4,9,10]. The

sequencing control in the demand driven approach is

automatic due to the fact that instructions are not executed

until they are demanded. Hence, only currently needed

inputs are ever provided. While the demand driven approach

12

has the added overhead of propagating demands that the

pure data flow environment does not have, this is balanced

somewhat by the fact that the demand driven machine will not

have any of the merge operators required in a pure data flow

machine [4].

Historical Development of Demand

Driven Computation

One motivation for demand driven computation stemmed

from a need for an environment to implement a functional

programming language efficiently [2]. An approach to

evaluating expressions in a functional language is similar

to that of the lambda calculus in that expressions are

driven through a series of reduction operations before the

final result is reached [2,12,13,14,19]. This was the

motivation for

could directly

the design of a c~mputer architecture that

implement a reduction scheme on the

functional language expressions with no initial translation

to an intermediate or machine code form [12,13,14]. The

base language for this machine was thus the functional

programming language itself. The processing elements of the

machine had the responsibility of reducing the initial

expressions into the final result for a given expression.

The processing elements work directly on the actual strings

of symbols making up the program.

Mago [12,13,14] proposed a tree structured architecture

implementing a reduction scheme. An example of a tree

13

4. In structured architecture is illustrated in Figure

this type of architecture, the lowest level

referred to as L cells for leaf cells. These L

cells are

cells are

used to hold elements of the expression being reduced. The

upper level cells are used to control communication within

the machine and are referred to as T cells for tree cells.

Tree cells are non-leaf cells. These types of computers are

generally referred to as reduction computers [2,12,17,18].

Demand driven computation is a sub-class of reduction

computation with the restriction that all reductions

performed at any step must be outermost reductions [18]. An

example of an outermost reduction is illustrated in Figure

5. Figure 5a shows a functional programming language

expression prior to a reduction. Figure 5b- shows the

outcome of one reduction applied to the expression in Figure

5a. The elements in both of the expressions illustrated in

Figure 5 are the typical contents of a leaf cell where each

cell would hold only one element.

Another research effort along similar lines led to a

demand driven approach. The work of Friedman and Wise [6]

as well as Kahn and Macqueen [8] illustrated the need for a

demand driven environment. Keller [9,10] was responsible

for an architectural proposal for a loosely coupled

applicative multi-processor system to directly support a

Lisp-like language. This Lisp-like language supports the

suspended cons operator discussed by Friedman and Wise [6].

The suspended cons is referred to as a lenient cons [9,10].

Figure 4. A Tree Structured Reduction Computer

(<AA,*>:<<3,21>,<15,11>,<7,13>,<4,14>>)

a.) Example of a Functional Expression

<(*:<3,21>),(*:<15,ll>),(*:<7,13>),(*:<4,l4>)>

b.) Reduction of Expression in a.)

Figure 5. An example of an Outer-Most Reduction

14

15

The lenient cons was included to enhance the machine's

ability to exploit concurrency as discussed by Friedman and

Wise [6]. The lenient cons allows data structures to be

created by joining two sublists into a new list. It does

not however evaluate its arguments when it executes. The

evaluation of any elements that are joined before they are

evaluated is performed when a reference is made explicitly

to them. These data structures can be accessed even though

parts of them may not be evaluated. This is opposed to the

strict cons that would demand the evaluation of its

arguments prior to completion of its execution. A side

benefit of this is that inclusion of the lenient cons allows

for the construction of potentially infinite data

structures.

it includes

profitable.

The proposed machine is of a hybrid type since

attempts to predemand operands when deemed

The predemanding ability allows their machine

to execute as a pure data flow machine at times.

As a final note in the historical development of the

demand driven concept, Treleaven, Brown, and Hopkins [17] as

well as Davis and Keller [4] mention that a demand driven

data flow machine can be considered an extension of a pure

data flow machine. This follows in the sense that, if each

instruction in the pure data flow machine were required to

have one more operand, with that operand being a demand

signal from an immediate successor of the instruction, then

the transition would have been made from a pure data flow

machine to a demand driven data flow machine. In other

16

words the demand signal could be treated as data. This is

generally agreed to be a poor approach to take [4,17).

Summary

A demand driven data flow architecture is a new style

of architecture that departs from some of the von Neumann

architectural principles. Demand driven computation is a

subclass of reduction computation. Demand driven data flow

computation can be traced using graphs representing the

computation. Demand, execution and reference fringes have

been introduced as tools to trace the execution of demand

driven data flow programs.

CHAPTER II

A DEMAND DRIVEN DATA FLOW MODEL

A Demand Driven Data Flow Computer

with a Memory Hierarchy

In this section, a possible architecture for a demand

driven data flow computer is discussed. The purpose of the

examination of a possible model is to allow for a discussion

of how a demand driven data flow environment might be

implemented and of how program execution progresses in such

an environment. A memory hierarchy is shown for

illustrative purposes. While the design serves as a useful

tool in this study, the feasibility of its actual

implementation is not considered here as it does not fall

within the scope of this study.

The approach to this design specification began with a

study of current data flow architectures. One of the main

considerations in examining current specifications is the

memory design. While systems have been proposed with

memories local to each processing element, this section only

examines a computer with a global memory equally accessible

to all processing elements. This is not meant to imply that

architectures with local memories could not be modified to

incorporate a memory hierarchy to further benefit from the

17

18

effects of program locality should it be found to exist in

this environment.

A possible architecture appears in Figure 6. The model

illustrated contains many components commonly found in

current data flow machines. The model is, in fact, a

modified version discussed by Thoreson [16]. The main

difference between this architecture and pure data flow

machines appears in the addition of an extra component

entitled a propagation box. This addition is to determine

when instructions are to be evaluated and when demands need

to be propagated. Its operation is discussed with its

internal components below.

The box entitled processing elements in Figure 6

represents a group of asynchronously executing processors

each capable of executing any instruction ready for

execution. A processor is selected for an instruction

packet by the arbitration network shown to the left of

primary memory. Thus the function of this specific

arbitration network is to direct an instruction packet from

one of its input lines stemming from primary memory to an

output line which terminates at a specific processing

element.

The distribution network routes results to specific

instruction packets in memory from a given input line. The

processing elements pass results to instruction packets

located in memory via the distribution network shown above

the primary memory module in Figure 6.

I • •

ANC

Processing
Elements

DN

Primary ~--::;;~
Memory

ADN

Secondary
Memory

DPB ~~~-Initial Demand
for Main Result

ADN - Combined Arbitration and Distribution Network
ANC - Arbitration Network Controller
C - Controller
DN - Distribution Network
DPB - Demand Propagation Box

Figure 6. A Demand Driven Data Flow Architecture
with a Secondary Memory

19

20

The memory scheme is of a cellular type as discussed by

Dennis [4] modified however to incorporate a hierarchical

concept as discussed by Thoreson [16]. The basic operation

of the memory module is that it may accept, update, and

transmit an instruction packet. Updates for an instruction

packet may arrive from either the processing elements as

results, or from the propagation box which can set the

demand bit in an instruction packet if it has been demanded

and the demand bit has not already been set. If an

instruction packet has its demand bit set and is waiting in

memory for the arrival of the operands it needs to execute,

a special check must be made by the memory. This check must

be made with each arriving operand for each instruction

packet with its demand bit set. The check is made to see if

the new arrival is the last operand needed for a specific

instruction to begin execution given the fact that it has

already been demanded. If the arrival is the last needed

operand then a copy of the instruction packet is passed on

to the arbitration network which transmits it to a

processing element. If the arrival is not the last needed,

then no action other than a normal update is performed.

An instruction packet is brought into primary memory

when it is referenced and when it is not currently resident

in primary memory. In such a case, a signal is sent to the

controller shown between the primary and secondary modules

in Figure 6. The function of the controller when called

21

upon is to fetch into primary memory the block of memory

containing the referenced instruction. In doing so, the

controller must resolve the common problems of placement and

replacement. No attempt will be made at this time to

discuss which of the strategies for placement and

replacement might be more appropriate for this design. The

size of the blocks transferred is also not taken into

account in this study. The main purpose of this memory

discussion is to illustrate a virtual memory scheme which

could be incorporated into the design should it be

warranted~ however, the management details of such a scheme

are not discussed here as they are not within the scope of

this study.

The operation of the propagation box illustrated in

Figure 6 is very similar to the propagation-evaluation box

proposed by Keller [9,10]. In this approach the demand

propagation hardware has been disassociated from the

evaluation hardware. The operation of the propagation box

for this proposal is as follows. When an instruction is

demanded, a copy of that instruction is passed from primary

memory to the propagation box through the combined

arbitration distribution network shown directly above the

propagation box. Upon receiving the instruction packet, the

propagation box determines whether the necessary operands

are available for the execution of that instruction to

begin. If they are, then the propagation box signals the

memory to send a copy of the instruction to a processing

22

element for evaluation. If the operands are not

available, then the propagation box propagates the demand

for the missing operands. The first step in this operation

is to determine if the missing operands have already been

demanded. This can easily be accomplished in a scheme that

adds a demand bit to each instruction packet. In such a

scheme, if the bit is set, then the result of that

instruction has already been demanded. If the demand bit is

not set then the result of that instruction has not been

demanded. The demand bit must now be set, and a copy of

that instruction is sent to the propagation box so that the

above process may be repeated for this new instruction.

Since instructions are executed only upon demand, the

question must be raised as to how a process is started. The

provision for starting a program is provided on the right

hand side of the propagation box in Figure 6. A copy of the

instruction that produces the final result for the task is

fed into the side of the propagation box to signal an

initial demand from the environment for the result of the

process. This will begin the execution cycle. For further

clarity a flow chart of the operation of the propagation box

is illustrated in Figure 7.

Software and Instruction Set Considerations

For the purpose of examining program locality in a

demand driven data flow environment, a hand trace execution

of the assembler code produced for such an environment is be

(Instruction Packet,. Packet Address)

-----~-------
I Get Next
Instruction

-----i-------
__________ i ___________ _

Has this Instruction Yes
Already been Demandedi--~~~~~~-3>1

(Demand Bit Set?)

----------1------------No

------- ----------
Set Demand

Bit for
this Instruction

Available? Copy of this

-------i---------- instruction to No a Processor
-------- -------

--------- -----------
I Have All Operands

been Demanded?

---------1-----------No

---------- ------------
Send a Copy of
the Instruction

Packet Producing
each Operand to

the Propagation Box

Yes

Figure 7. Operational Flow Chart for the Demand
Propagation Box

23

24

performed for several test programs. The compiler used in

an Iowa State data flow simulator project [16] is be used as

an aid to produce demand driven data flow assembler code. A

more detailed description of the instruction set may be

found in [16]. The purpose of using the compiler is to

generate assembler code, from the source code, that can be

examined for locality. The usage of the compiler for

translation purposes will prevent any bias, on the part of

the author, that might have an effect on locality. The

source code input to the compiler appears in a Pascal-like

form and has standard features for input, output,

assignment, and looping.

The assembler output from the compiler, while suitable

for a pure data flow machine, requires considerable manual

modification in places before an examination of locality can

proceed. The main point of trouble in the manual conversion

from data flow code'to demand driven data flow code centers

around the fact that logical structures are treated very

differently in both environments. When considering a loop

structure where initial values are fed into the body of a

loop and the loop calculates values that are fed back into

the body of the loop, immediately it is apparent that the

pure data flow code must include a mechanism to control

which values will be fed into a given iteration of the loop.

The demand driven environment tends to have the opposite

problem. In the demand driven environment, a mechanism must

be provided to determine what instructions to demand to get

25

the proper values fed into the loop for each iteration.

The instruction used in a pure data flow environment to

control what values are fed into a structure and what values

are released from a structure is called a merge instruction.

The merge instruction takes as one input the output of the

conditional statement controlling the structure. The type

of control a merge instruction offers is not needed in a

demand driven data flow environment. Therefore, all

occurrences of the merge instruction will be removed from

the code produced by the compiler.

Aside from removing the merge instructions, there is

still the problem of implementing a method to control the

demands in such a way that during one iteration of a loop

the initial values are demanded and on another iteration of

the loop values calculated on a previous iteration of the

loop may be either accepted or demanded. There are three

other problems that must also be addressed. The first

problem sterns again from the difference in the way code is

executed in the two different environments. The actual

problem is how to perform iterations in a demand driven data

flow environment. Iteration in a pure data flow environment

is controlled by feeding operand values to the instructions

comprising the loop body. In a demand driven environment

however, the results of a loop are only be demanded once;

hence, a mechanism must be added to provide repeated demands

to drive a loop through its successive iterations.

26

Another problem to be dealt with is an outcome of

removing the merge instructions from the data flow code

produced. There are cases where an initial value is

repeatedly cycled through a loop without being modified.

This is accomplished in the pure data flow environment by

having a merge instruction pass the desired value to the

instructions needing that value and also to an identity

instruction. The destination for the identity instruction

will in turn be the merge instruction that fed a value to

it. This allows for the cycling of values that are not

modified within the body of a loop but are needed

repeatedly. Since the merge instructions are to be removed,

a mechanism must be provided to allow non-modified values to

be cycled in a demand driven environment also. The removal

of these merge instructions, used for cycling values,

implies the need for removal of the identity instructions

used in conjunction with these merges for cycling values.

The last problem to be dealt with is how to handle if­

then-else structures in a demand driven data flow

environment. The if-then-else structure, when demanded,

must propagate demands to the instructions producing the

necessary results. Since both the then and the else

sections may produce results, a mechanism must be provided

to demand the instructions to produce the required results

selectively.

27

The last step in the modification of code process is to

update the addresses of the instructions and their

destination addresses. Since there are instructions which

are removed and which are added to the initial code obtained

as output from the compiler, the address fields for the

results computed by instructions that are to be kept from

the original compiler output must be updated to reflect the

removal and addition of other instructions.

The first of these problems, allowing for the ability

to be able to demand results from different instructions,

has an easy solution. The identity ·instruction has been

modified to create a new instruction. This new instruction

contains the addresses for the two different instructions

producing its operand. This instruction also takes the

output of a conditional operation as a control input. If

the control input to this newly modified instruction is

false, then the initial producer for the desired value is

demanded. If the control input is true, implying that the

body of the loop has executed once, then the second address

is demanded. The second address is the address of the

instruction that provides the modified value to be used in

the current iteration. This new instruction is referred to

as a 2aid (two address identity) instruction to distinguish

it from a standard identity instruction which has only one

address for the single instruction producing its operand.

28

To handle the problem of how to control iteration in a

demand driven environment, a new instruction has been added.

This instruction is called an invokeid instruction. This

instruction has three operands. The first operand is the

result of the conditional instruction controlling the loop

in question. The second operand is the result of the loop

for a given iteration should the value returned from the

conditional operation be true. The last operand is the

result to be passed on, should the conditional return a

false value.

The invokeid instruction's execution is as follows.

Once an invokeid instruction has been demanded, it

immediately demands a value from the conditional instruction

that controls the execution of the loop body. Upon

receiving the result of the conditional operation, the

invokeid instruction demands the result, computed in the

body of the loop, for its second operand if the value of the

conditional value

is false, then the

demanded. Upon

received is true.

value for the

If the value received

third input field is

receiving the value needed to complete its

execution, the invokeid instruction continues its execution.

If the value received from the conditional was true, then

the instruction will send its second operand as a result to

the third operand to the next invocation of this invokeid

instruction. The instruction then demands the next

invocation of itself, thereby allowing a mechanism for

29

another iteration of the loop should it be found to be

necessary. If the input from the conditional was false,

then the instruction will only pass the value in its third

input field on to the instruction that initially demanded

this invokeid instruction.

Keller's [9,10] method for performing iteration is to

invoke the loop recursively until the controlling condition

becomes false. Each recursive invocation of a loop was a

completely duplicated copy of the original. In this scheme,

there may be many copies of a loop existing at the same time

within the system. The effects of this scheme on locality

are examined in chapter three.

The next problem to be addressed is how to cycle values

within a loop. The problem stated more clearly is that once

a loop is demanded, there must be a mechanism to demand a

value from outside the loop so that it can be repeatedly

cycled through the loop until the conditional instruction

controlling the continuation of the loop becomes false.

While the body uses this value on each iteration, it is not

be modified in any iteration. To give the demand driven

environment this looping capability, the original identity

instruction of the pure data flow environment had to be

modified to create a new instruction, the cid or circular

identity instruction.

The execution of the cid instruction is such that, when

it has a false value, it demands a value from the only

producer of that value. If the control value is true, then

30

it uses whatever value it currently has stored. When the

instruction is executed, it passes the desired value not

only to the instruction that demanded it but also to itself.

The fact that it is capable of cycling values prompted the

term circular to be used as a pref ix to the name identity •

Thus the cid instruction allows a value to be available to

each iteration of a particular invocation of a loop and for

the entire life of that invocation of that loop.

The last problem to be addressed is how to handle an

if-then-else structure in a demand driven data flow

environment. In the demand driven environment, only

instructions that are necessary to the final result are to

be executed, so it must be insured that a mechanism be

provided that only allows one of the two blocks, either the

then block or the else block, to execute. This was handled

by adding a new instruction entitled ifthenel. Its operation

is very similar to the invokeid instruction with one most

notable exception that the ifthenel instruction does not

have the capability to demand itself. This feature is not

needed since an if then else structure is not a loop

structure, so no mechanism is needed to provide iteration.

To be more specific, when the ifthenel instruction is

demanded, it first demands the result of the conditional

statement controlling the outcome of the if-then-else. If

the conditional value is true, then the ifthenel instruction

demands the value calculated in the then section otherwise

the value calculated in the else section is demanded. When

31

the calculated value is received, it is passed on to the

instruction that demanded the ifthenel instruction,

completing its execution.

Figure 8 contrasts the format of an identity

instruction in a pure data flow environment to its format in

a demand driven data flow environment. Also shown is the

2aid instruction. All figures are shown with only 3

destination addresses just for illustrative purposes. Note

that, in this demand driven data flow scheme, there are two

fields within the instruction templates for each operand.

The first field contains the address of the instruction

producing the operand. The second field is used to hold the

actual operand itself. This is necessary for the

instruction to be reentrant. It would be possible to have

an instruction format where only one word is needed for each

input operand. Initially, the address of the instruction

producing that operand is placed in the input operand word.

When the result is passed to the instruction packet the

address is over-written with the result. This implies that,

the next time the instruction needs to be executed, a new

copy must be produced with the address of the instruction

producing the needed operand back in the location for the

result.

Summary

Conceptually, the hardware for a demand driven data

flow machine can appear very similar to a pure data flow

32

ID

operand

result address

result address

result address

a.) Pure Data Flow ID Instruction Format

ID

operand address

operand

result address

result address

result address

b.) Demand Driven ID Instruction Format

2AID

operand address

operand address

operand

result address

result address

result address

c.) Demand Driven 2AID Instruction Format

Figure 8. Examples of Instruction Formats

33

machine. A modification is necessary to provide for

demand propagation, however.

The assembler code provided by a data flow compiler had

to be modified to support demand driven data flow

computation. The merge instructions had to be removed, and

four new instructions had to be added. The invokeid

instruction was added to support iteration. The cid

instruction was added to support the cycling of unmodified

values through successive iterations of a loop. The 2aid

instruction was added and has the ability to demand two

different instructions to produce the same operand. Thus,

the 2aid instruction can pass an initial value to an

instruction and later provide a computed value as an

operand. An ifthenel instruction was added also. The

ifthenel instruction demands the instructions, within either

the then or the else sections of code, that produce the

demanded value from an if-then-else structure.

CHAPTER III

LOCALITY

A Discussion on Locality

Locality is the property (observed in programs) that

references to instructions and data tend to cluster into

specific groups both in space and in time. Furthermore,

this clustering effect has been observed to be non-uniform

in both time and space. Locality typically has been split

into two classes: spatial and temporal locality.

Spatial locality is the observed behavior in executing

programs that instruction reference patterns cluster in the

program space. Spirn [15] defines spatial locality as

follows:

If word w is referenced at time t, then words in
the range w-i to w+i for some small i are likely
to be referenced at times close to t, according to
the notion of spatial locality (p 49).

Put more simply, if a specific instruction within a program

is referenced, it is highly probable that an instruction

physically close to the instruction just referenced will

also be referenced in the near future. This type of

locality is normally produced by straight line sequential

code in a program in a von Neumann environment.

34

35

Temporal locality is the observed program behavior that

instruction reference patterns tend to cluster within time.

If a specific instruction is referenced within a specific

time interval, it is likely that that instruction will be

referenced again within the next time interval of equal

duration. Short loops in programs typically exhibit this

type of behavior.

System designers can capitalize on the property of

locality by utilizing software and hardware that attempt to

keep these clusters of referenced addresses close together.

If this can be done with a high degree of success, then,

during any time within the execution of a given program,

only that part of the program containing the current cluster

of references being accessed need be available for access.

This is the motivation for a memory hierarchy scheme. The

scheme most typically employed involves keeping only as much

of the executing program in primary memory or the highest

level of the memory hierarchy as is needed to satisfy the

current cluster of references.

It has been common to consider that locality is solely

the property of a program. A closer examination shows that

the environment in which a given program is executed can

have a considerable effect on locality. In a data flow or a

demand driven data flow environment, the order of

instruction reference is, in general, considerably different

from that of a typical von Neumann environment executing the

36

same program. This is due to the fact that the mechanism

for triggering instruction execution in the data flow and

demand driven data flow environment is considerably

different from that of the von Neumann environment. This

implies that a locality that might exist when a program is

run under one environment may not exist when run under

another environment.

Another important issue is spatial locality. In a von

Neumann machine with its program counter controlled

execution, spatial locality is a natural outcome, because

any section of code not containing some type of branch

instruction will be executed in sequential order. Thus,

these sections of code will exhibit spatial locality as a

natural outcome of the executing environment. However, this

property does not hold true in a demand driven data flow

environment. The natural mode of execution is not

sequential in a demand driven data flow environment and

hence sections of code that form spatial localities in a von

Neumann environment are by no means guaranteed to form

similar localities in a demand driven data flow environment.

Spatial Locality Analysis

Since straight-line code produces spatial locality in a

von Neumann type sequential environment, an examination of

the effects of straight line code in a demand driven data

flow environment is. It was noted by Thoreson [16] that

straight line code in a data flow environment may produce

37

spatial localities. She also noted that one section of

straight-line code in a data flow environment could in fact

result in more than one observed spatial locality. These

observations hold true for a demand driven data flow

environment as well. However, straight line code is not a

sufficient condition for spatial localities to exist in a

demand driven data flow environment. The existence of a

spatial locality can be guaranteed if the following two

conditions can be shown to be true. The first condition is

that a straight-line code segment exists and is compiled in

such a way that the compiled statements generated for that

straight-line segment are also grouped together in the

compiled output. The next condition is that at least one

data dependency exists such that, if one of the compiled

instructions from the straight-line code segment is fired at

time t, that instruction's execution also triggers the

execution of at least one other instruction within the group

of compiled instructions produced by the compiler for the

straight-line code segment at time t+l.

Illustrated in Figure 9 ts a program to calculate the

volume of a cone. The compiled code for the high level code

is shown in the middle of the page; in addition the demand

driven data flow graph, minus the input-output operations,

is shown at the bottom of the page. The operations in the

graph have been numbered to reflect the corresponding

instruct1on number in the compiled code. As noted by

Thoreson [16], each path in the graph represents a potential

PROC VOL
BEGIN

END

REAL V,R,H;
FILE INF,OUTF;
INPUT R,H FILE=INF FORMAT=F(6,3),F(6,3);
V = (1.0/3.0) * 3.14159 * R**2 * H;
OUTPUT V FILE=OUTF FORMAT=F(6,3)

a.) High Level Code

0 CONS INF;l
1 READ @0, ,F(6,3);2,3
2 SELECT @I, ,1;4
3 SELECT @1,-,2;7
4 READ @2, ,f(6,3);5
5 SELECT @4, ,2;9
6 I 1.0,3.0;8
7 ** @3, ,2;9
8 * @6, ~3.14159;10
9 * @5, ,@7, ;10

10 * @8, ,@9, ;12
11 CONS OUTF;l2
12 WRITE @ll,_,F(6,3),@10,_;

b.) Compiled Code

1. 0 3.0 PI H R 2

6

c.) Data Flow Graph

Figure 9. High Level and Compiled Code with Associated
Data Flow Graph Computing Volume of a Cone

38

39

spatial locality. An example of a path in Figure 9c would

be the path consisting of nodes 5, 8, and 9. Other paths

also exist. Figure 9 illustrates that this one straight

line code segment (instructions five through nine in the

compiled listing) produces three potential spatial

localities. The word potential is used here to point out

that, a data dependency in the graph, does not guarantee the

existence of a spatial locality. The instructions within

the path must be grouped together in the compiled version of

the program. This implies that the order the compiler

produces the compiled code may have a significant effect on

the spatial localities actually observed for a given

program.

Temporal Locality Analysis

The first step in determining if spatial locality

existed in a demand driv~n data flow environment was to

examine the behavior of several programs in execution under

just such an environment. Figure 10 illustrates the first

example considered. The program in Figure 10 calculates the

value of the sine of a given angle iteratively by means of a

Taylor series expansion of the sine function. The behavior

of the execution of the loop in the program is captured in

the execution fringe illustrated in Figure 11. Figure 11

illustrates an execution of the program that required three

iterations of the loop for this example.

PROC SINE
BEGIN

END

REAL SIN,X;
INTEGER I,J,N,IFACT;
FILE INF,OUTF;
INPUT·X,N FILE=INF FORMAT=F(6,4),I(3);
J : = 2;
SIN = 0.0;
I := l;
IFACT = l;
WHILE I <= N DO

END;

SIN := SIN + (-l)**J*X**I/IFACT;
I := I + 2;
!FACT := IFACT*(I-l)*I;
J := J + 1

OUTPUT SIN FILE=OUTF FORMAT=F(6,4)

a.) High Level Code

0 CONS INF;l
1 READ @0, ,F(6,4);2,3
2 SELECT @I, ,1;4
3 SELECT @1,-,2;14
4 READ @2, ,f(3);5
5 SELECT @4, ,2;26
6 CONS 2;11
7 CONS 0.0;19,28
8 CONS 1;13
9 CONS 1;17

10 NEG 1;12
11 2AID @6,@25, ;12,25
12 ** @10, ,@11:- ;16
13 2AID @8:-@21, Tl5,21,27
14 CID @3, ;14,15
15 ** @13, ,@14, ;16
16 * @12, :-@15, ;1a
17 2AID @9,@24,-;18,23
18 I @16, ,@17,-;20
19 2AID @7,@28 T20.
20 + @18, ,@19:- ;28
21 + @13, ,2;13:-22,24
22 - @21, ,1;23
23 * @17,-,@22, ;24
24 * @21,-,@23,-;17
25 + @ll,-,1;11-
26 CID @5:- ;26,27
27 <= @13,-,@26, ;11,13,14,17,19,28
28 INVOKEifi @27,-,@20, ,@7, ;19,28,30
29 CONS OUTF;30 - - -

b.) Compiled code

Figure 10. Program to Calculate Sine using Taylor Series

40

t I 2 3 4 5 6 1 0 9 10 11 12 13 14 15 16 11 10 19 20 21 22 23 24 25 26 21

29 8 13 0 2
3

4 5 26 27 7 9 10 6 11 12 16 18 20 28
19 17 15

14

t I 20 29 30 31 32 33 34 35 36 31 38 39 4o 41 42 43 44 45

26 21 13 27 19 10 15
14 22

25

11
23

12
24

16
17

18 20
28 I

t I 46 41 48 49 5o 51 52 53 54 55 56 51 58 59 60 61 62 63

26 21 13 27 19

t I 64 65 66 61 68 69 10 11

26 21 13 27 28 30

10
14

15
22
25

Figure 11.

11
23

12
24

16
17

18

Continued.

20
28 I

""' I-'

42

Upon examination of the execution fringe, it is

apparent that, during the first iteration of the loop (top

line of Figure 11), several instructions not within the body

of the loop are also executed. These instructions executed

outside the loop are the instructions that feed the

necessary initial values into the body of the loop. After

the completion of the first iteration of the loop, the

execution fringe takes on a very cyclic appearance with a

period of eighteen time units (second and third lines of

Figure 11). After the initial iteration of the loop, the

following iterations all fire the same instructions at the

same time-offset as the previous iterations. This cyclic

appearance continues until the condition controlling the

while loop becomes false (last line of Figure 11). Note,

that even then the instructions executed form a subset of

the instructions in the preceding cycles. These repeating

groups of executing instructions form a locality. This

locality exhibited is an example of a temporal locality.

The actual type of loop control used , while (test at

top) or repeat (test at bottom), has no effect on the

locality exhibited. The reason for this is due to the fact

that the only difference between a loop controlled by a

repeat statement and a loop controlled by a while statement

is that the body of the repeat loop is guaranteed to execute

at least once while this guarantee does not exist for the

while loop. If a repeat statement had been used in place of

43

the while statement in Figure 10, the only difference

detectable in the execution fringe would result in the first

line of Figure 11. The observed localities would remain the

same. Similar results were found to be true for the loops

in both programs listed in Appendix A.

Physical replication of code allows for a significant

decrease in program execution time provided that there are

enough processing elements to handle the extra work load due

to the added concurrency. The results of the halting

problem are useful in determining when code replication is

applicable. A conclusion that may be drawn from the halting

problem is that it is not possible to know, for the

case, how many iterations a loop will execute

exiting. Thus the use of physical replication

general

before

of code

limits itself to cases where the number of iterations can be

determined before the actual execution of the loop.

One example where code replication is applicable occurs

where a loop exists that uses a counter with constants used

for the initial value, the increment, and for an upper bound

as well. If, in this case, the counter is compared to the

constant upper bound to determine whether another iteration

is to be made, it is possible to determine how many

iterations are necessary at compile time and code

replication can be utilized. An example of this type of

condition is provided in Figures 12 and 13.

Figure 12 illustrates the code and execution fringe for

a loop that could have its body physically replicated while

44

Figure 13 shows the same high level code with the body of

the loop physically replicated to the extent that the loop

no longer exists. Temporal locality is not exploited when

physical replication is used to this degree, because

instructions are not reused. Temporal locality results when

the instructions that have already been used are reused and

an examination of the execution fringe in Figure 13 shows

this not the case. Physical replication of code also

increases memory requirements since there are more

instructions in the compiled code produced and, for those

added instructions to execute concurrently, they must all

reside in main memory concurrently.

Summary

Spatial locality is a clustering of memory references

in the program space. Temporal locality is a clustering of

memory references in time. Potential spatial localities

exist in a demand driven data flow environment. The actual

spatial localities observed are compiler dependent. Temporal

locality exists in a demand driven data flow environment

when the instructions are reused. Complete physical

replication of code prevents recurrent instruction usage and

usage results in a loss of all temporal locality.

t I 4 5

WHILE C <= 4.0 DO

END

6 . . .

D := SQRT(B**2 - 4.0 *A* C);
OUTPUT D FILE=OUTF FORMAT=F(6,3);
c := c + 1.0

a.) High Level Code

6 CID @3, ;6,12
7 CID @5, ;7,11
8 CONS 1. 0; 10
9 <= @10, ,4.0;6,7,8,10,17

10 2AID @8~@16, ;9,13,16
11 ** @7, ,2;14-
12 * 4.0,@6, ;13
13 * @10, ,@I2, ;14
14 - @11,-,@13,-;15
15 WRITE @14, ,OUTF,F(6,3);17
16 + @10, ,l.0;10
17 INVOKEID @9,_,@15,_,@4,_;-

b.) Compiled Code

14 15 16 17 18 19 20 21 22 23
--

8 10 9 0 1 2 4 5 7 11 14 15 17
3 6 12 13

t I 27 28 29 30 31 32 33 34 35 36 37 38 39
--

16 10 9 7 6 12 13 14 15 17
11

t I 43 44 45 46 47 48 49 50 51 52 53 54 55
--

16 10 9 7 6 12 13 14 15 17
11

c •) Execution Fringe for Three Iterations

Figure 12. Example without Physically Replicated Code

45

D := SQRT(B**2 - 4.0 *A* C);
OUTPUT 0 FILE=O FORMAT=F(6,3);
c := c + 1.0;
D := SQRT(B**2 - 4.0 *A* C);
OUTPUT D FILE=O FORMAT=F(6,3);
c := c + 1.0;
D := SQRT(B**2 - 4.0 *A* C);
OUTPUT D FILE=O FORMAT=F(6,3);
c := c + 1.0;
D := SQRT(B**2 - 4.0 *A* C);
OUTPUT D FILE=O FORMAT=F(6,3);
c := c + 1.0;

a.) High Level Code

t I 4 5 6 7 8 9

.
6 CONS l.0;9,12
7 ** @5, ,2;10
8 * 4. 0 ,@3, ; 9

46

9 * @6, ,@0-; ;10
10 - @7,-,@9,-;ll
11 WRITE-@10,-,0,F(6,3);
12 + @6, ,1.0T15,18
13 ** @5-; ,2;16
14 * 4.0,@3, ;15
15 * @12, ,@I4, ;16
16 - @13,-,@15,-;17
17 WRITE @16, ,O,F(6,3);
18 + @12, ,1.0;21,23
19 ** @5 - 2·22 '-' , 20 * 4.0,@3, ;21
21 * @18, ,@20, ;22
22 - @19,-,@21,-;23
23 WRITE @22, ,O,.F(6,3);
24 + @18, ,l.0;27
25 ** @5,-,2;28
26 * 4.0,@3, ;27
27 * @24, ,@26, ; 28
28 - @25,-,@27,-;29
29 WRITE @28_,o-;F(6,3);

b.) Compiled Code

10 11 12 13 14 15
--

I
6 0 1 2 4 5 7 10 11

I 3 8 9

I 12 4 15 13 16 17 I
--! 18 20 21 19 22 23 I

--
! 24 26 21 25 20 29 I

c.) Execution Fringe

Figure 13. Example of Physically Replicated Code

CHAPTER IV

SUMMARY, CONCLUSIONS, AND

SUGGESTED FUTURE

RESEARCH

Summary

Demand driven computation is a subclass of reduction

computation with the restriction that all reductions

performed must be outer-most reductions. Demand driven data

flow machines are capable of exploiting massive parallelism

and supporting functional programming languages efficiently.

A demand driven data flow machine has no global memory for

storing results and has no program counter. Execution,

reference, and demand fringes are introduced as tools that

aid in tracing the execution of a demand driven data flow

program.

A demand driven data flow model is presented that

resembles a data flow machine. The major difference between

the two is in the addition of a hardware component to

propagate demands in the demand driven data flow model. A

memory hierarchy is also illustrated in the model presented.

A data flow compiler is used to produce compiled code for a

program behavior analysis. The compiled code has to be

modified to support computation in a demand driven data flow

47

48

environment. Several new instructions are presented to

support iteration and program control structures.

A locality analysis is performed by examining program

execution behavior in a demand driven data flow environment.

The programs are executed by hand. Both spatial and

temporal locality are considered in this study.

Conclusions

To provide iteration in a demand driven environment, a

mechanism must be provided to repeatedly demand the body of

a loop. An instruction that provides repeated demands is

presented in this study.

An analysis of program behavior, under the environment

specified in the study, determined that spatial localities

do exist in a demand driven data flow environment. Spatial

locality in a demand driven data flow environment will be

dependent upon the ordering of the assembled instructions

comprising the paths of the data dependencies within the

program. It turns out that the paths for demand propagation

do not change the possible spatial localities. This is

because the demand paths form a subset of the data paths.

Continued program behavior analysis determined that

temporal locality also exists in a demand driven data flow

environment. To exploit temporal locality, it is necessary

that the instructions comprising the locality are

recurrently executed for each iteration of the loop.

49

To increase the amount of temporal locality

exploitable, a space concession had to be made in terms of

the instruction size. This situation occurs only in a

demand driven data flow environment and not in its pure data

flow counterpart. In a demand driven environment, the

address of the instruction producing the operand it needs

must be stored in the instruction needing that operand. For

each operand needed, the instruction will have two separate

locations. The first will be a location to hold the address

of the instruction producing the necessary operand. The

second location will be the location where the operand, once

available, will be stored. Thus, in this scheme, there will

be no need to periodically refresh the memory with a new

copy of the instruction since the essential parts of the

instruction, including the addresses to be demanded, will

never be modified. Since one of the main goals is recurrent

instruction usage, this feature enhances the demand driven

machine's ability to exploit temporal locality.

Suggested Future Research

The area of demand driven computation, as in any

relatively new area of study, has many openings for future

research. Future work along the lines of this study would

indicate that the writing of a simulator for a demand driven

data flow machine with a memory hierarchy would be in order.

Once such a simulator was available, then research work

50

could be done to determine what types of memory management

policies would be best in this type of environment.

Further research might also investigate the

possibilities of pipelining a demand driven data flow

machine and on the question of whether such a machine would

be capable of better exploiting concurrency than the non­

pipelined type discussed in this study.

[1]

[2]

SELECTED BIBLIOGRAPHY

Backus, J., "Can Programming be Liberated
von Neumann Style? A Functional Style
Algebra of Programs." Communications of
Vol. 21, No. 8 (August, 1978), 613-641-.-

from the
and its

the ACM,

Berkling, K.
Machines."
Symposium
133-138.

J., "Reduction Languages for Reduction
Proceedings of the Second Annual

on Computer -Xrchltecture (1975),

[3] Davis, A. L., "A Data Flow Evaluation System Based
on the Concept of Recursive Locality." AFIPS
Conference Proceedings (1979), 1079-1086.

[4] Davis, A.
Program
26-41.

L., and Keller, Robert M., "Data Flow
Graphs." Computer (February, 1982),

5] Dennis, Jack B., "Data Flow Supercomputers."
Computer (November, 1980), 48-56.

6] Friedman, D. P., and Wise, D. s. "CONS Should Not
Evaluate Its Arguements." Automata, Languages and
Programming, Edinburgh U. Press, 1976, 257-284-.~

[7] Jayarman, Bharadwaj, and Keller, Robert M.,
"Resource Control in a Demand-Driven Data-Flow
Model." Proceedings of the 1980 International
Conference on Parallel Processing (1980),
118-127.

[8] Kahn, Gilles, and Macqueen, David B., "Coroutines
and Networks of Parallel Processes." IFIPS
Conference Proceedings (August, 1977), 993-998.

[9] Keller, Robert M., Lindstrom, Gary, and Patil,
Suhas, "A Loosely-Coupled Applicative Multi­
Processing System." AFIPS Conference Proceedings,
Vol. 48 (June, 1979), 861-870.

[10] Keller, Robert M., Lindstrom, Gary, and Patil,
Suhas, "An Architecture for a Loosely-Coupled
Parallel Processor." University of Utah,
UUCS-78-105 (October, 1978), 1-64.

51

52

[11] Keller, Robert M., Lindstrom, Gary, and Patil,
Suhas, "Data Flow Concepts for Hardware Design."
Compcon 80, IEEE Computer Society Conference
Proceedings (1979), 105-111.

[12] Mago, Gyula A., "A Network of Microprocessors to
Execute Reduction Languages, Part I."
International Journal of Computer and Information
Sciences, Vol. 8, No. S-(October, 1979), 349-385.

[13] Mago, Gyula A., "A Network of Microprocessors to
Execute Reduction Languages, Part II."
International Journal of Computer and Information
Sciences, Vol. 8, No. ~(October, 1979), 435-471.

[14] Mago, Gyula A. "A Cellular Architecture for
Functional Programming." Compcom 80, IEEE
Computer Society Conference Proceedings (Spr~
1980), 179-187.

[15] Spirn, Jeffrey R., "Program Behavior:
Measurements. Ed. Peter J. Denning.
Elsevier North-Holland, 1977, 45-50.

Models and
New York:

[16] Thoreson, s. A., "A Study of Memory References in a
Data Flow Environment." Ph. D. dissertation, Iowa
State University at Ames, Iowa, 1979, 1-102.

[17] Treleaven, P. c., Brow~bridge, D., and Hopkins, R.,
"Data Driven and Demand Driven Computer
Architecture." Computing Surveys, Vol. 14, No. 1
(March, 1982), 94-144.

[18] Treleaven, P. c., Hopkins, Richard P., and
Rautenbach, Paul W., "Combining Data Flow and
Control tlow Computing." The Computer Journal
(May, 1982), 207-217.

[19] Treleaven, P. C., and Mole, Geoffrey F., "A Multi­
Processor Reduction Machine for User-Defined
Reduction Languages." Proceedinc;s · of the 7th
Annual Symposium on Computer Arch1tecture-rI980'T';"
121-130.

APPENDIXES

53

APPENDIX A

ADDITIONAL TEST PROGRAMS

54

Test Program Implementing Simpson's Rule

PROC SIMP
BEGIN

END

REAL SUM2,SUM4,H,K,ANS,A,H2,B;
REAL FOFA,FOFB,FVAL2,FOFBMH,FVAL1;
INTEGER I,N;
FILE INF,OUTF;
PROC FUNC(IN(K),OUT(F))
BEGIN

REAL K,F;
F := (-(K**2}) + 4.0

END;
INPUT A,B,N FILE=INF FORMAT=F(6,3),F(6,3),I(3);
SUM4 := 0.0;
SUM2 := 0.0;
H : = (B - A) /N ;
H2 := H + H;
X := A + H;
I := l;
REPEAT

FUNC(IN(X+H),OUT(FVALl);
SUM4 := SUM4 + FVALl;
FUNC(IN(X),OUT(FVAL2));
SUM2 := SUM2 + FVAL2;
I := I + 2;
X := X + H2

UNTIL I >= N-3;
FUNC(IN(A),OUT(FOFA));
FUNC(IN(B),OUT(FOFB));
FUNC(IN(B-H),OUT(FOFBMH));
ANS := (H/3.)*(4.*SUM4+2.*SUM2+FOFA+4.*FOFBMH+FOFB);
OUTPUT AND FILE=OUTF FORMAT=F(6,3)

55

Data Flow Code Produced for Simpson's Rule Program

PROC SIMP
0 ID (T=S,R='NIL')(T=S,D=l.1,79.1,63.1,55.1,48.1,17.1,

12.1,11.1)
1 CONS (T=S)(T=F,R='INF' ,C=C) (T=F,D=2.1)
2 READ (T=F)(R~F(6,3),T=C,C=C)(T=S,D=3.1,4.1)
3 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=5.1)
4 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=l3.2,52.l,16.1)
5 READ (T=F)(R=F(6,3),T=C,C=C)(T=S,D=6.1,7.1)
6 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=8.1)
7 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=13.1,62.1,59.1)
8 READ (T=F)(R~I(3),T=C,C=C)(T=S,D=9.1,10.1)
9 SELECT (T=S)(R=l,T=I,C=C)(T=F,D~)

10 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=14.2,25.1)
11 CONS (T=S)(T=R,R=0.0,C=C)(T=R,D=21.1)
12 CONS (T=S)(T=R,R=0.0,C=C)(T~R,D=22.1)
13 - (T=R)(T=R)(T=R,D=14.1)
14 I (T=R)(T=I)(T=R,D=15.l,70.l,62.2,20.1,16.2,15.2)
15 + (T=R)(T=R)(T=R,D=24.1)
16 + (T=R)(T=R)(T=R,D=19.1)
17 CONS (T=S)(T=I,R=l,C=C)(T=I,D=23.1)
19 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=26.l,44.1,39.1,

35.1,27.1)
20 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=20.2,26.2)
21 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=34.l)
22 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=42.l)
23 MERGE (T=I)(T=I,C=F)(G=T,@=18)(T=I,D=43.l)
24 MERGE (T=R) (T=R, C=F) (G=T ,.@=18) ('1'=R,D=24. 2, 44. 2)
25 MERGE (T=I)(T=I,C=F)(G=T,'@=18)(T=I,D=25.2,45.1)
26 + (T=R)(T=R)(T=R,D=31.l)
27 CONS (T=R)(T=I,C=C,R=l)(T=I,D=28.3)
28 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=29.1)
29 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=30.2)
30 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D=
31 SEND (T=R)(T=R,D=
32 REC (T=R)(T=R,D=33.l,34.2)
33 ACK (T=R)(T=I)(T=I)(T=I,D=
34 + (T=R)(T=R)(T=R,D=46.l,21.l)
35 CONS (T=R)(T=I,C=C,R=l)(T=I,D=36.3)
36 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=37.1)
37 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=38.2)
38 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D=
39 SEND (T=R)(T=R,D=
40 REC (T=R)(T=R,D=41.l,42.2)
41 ACK (T=R)(T=I)(T=I)(T=I,D=
42 + (T=R)(T=R)(T=R,D=47.1,22.1)
43 + (T=I)(T=I,R=2,C=C)(T=I,D=l8.l,23.2)
44 + (T=R)(T=R)(T=R,D=19.2)
45 - (T=I)(T=I,R=3,C=C)(T=I,D=18.2)
18 >= (T=I)(T=I)(C=7)(T=G,D=l9.0,47.1,46.1,25.2,25.0,24.2,

24.0,23.2,23.0,22.2,22.0,21.2,21.0,20.2,20.0,19.2)
46 ID (T=R,C=T)(T=R,D=71.2)

56

47 ID (T=R),C=T)(T=R,D=72.2)
48 CONS (T=S)(T=I,C=C,R=l)(T=I,D=49.3)
49 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=50.l)
50 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=51.2)
51 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D=
52 SEND (T=R)(T=R,D=
53 REC (T=R)(T=R,D=54~1,74.2)
54 ACK (T=R)(T=I)(T=I)(T=I,D=
55 CONS (T=S)(T=I,C=C,R=l)(T=I,D=56.3)
56 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=57.l)
57 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=58.2)
58 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D=
59 SEND (T=R)(T=R,D=
60 REC (T=R)(T=R,D=54.l,74.2)
61 ACK (T=R)(T=I)(T=I)(T=I,D=
62 - (T=R)(T=R)(T=R,D=67.l)
63 CONS (T=S)(T=I,C=C,R=l)(T=I,D=64.3)
64 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=65.l)
65 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=66.2)
66 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D=
67 SEND (T=R)(T=R,D=
68 REC (T=R)(T=R,D=69.l,75.2)
69 ACK (T=R)(T=I)(T=I)(T=I,D=
70 I (T=R)(T=R,R=3.0,C=C)(T=R,D=78.l)
71 * (T=R,R=4.0,C=C)(T=R)(T=R,D=73.l)
72 * (T=R,R=2.0,C=C)(T=R)(T=R,D=73.2)
73 + (T=R)(T=R)(T=R,D=74.l)
74 + (T=R)(T=R)(T=R,D=76.l)
75 * (T=R,R=4.0,C=C)(T=R)(T=R,D=76.2)
76 + (T=R)(T=R)(T=R,D=77.l)
77 + (T=R)(T=R)(T=R,D=78.2)
78 * (T=R)(T=R)(T=R,D=80.3)
79 CONS (T=S)(T=F,R='OUTF' ,C=C) (T=F,D=80.l)
80 WRITE (T=F)(R= ,T=C,C=C)(T=R)(T=F,D)

PROC FUNC
0 SEND (T=R)(T=R,D=
1 REC (T=R)(T=R,D=2.l,3.l)
2 ACK (T=R)(T=I)(T=I)(T=I,D=
3 ** (T=R)(T=I,R=2,C=C)(T=R,D=4.l)
4 NEGATE (T=R)(T=R,R=4.0,C=C)(T=R,D=O.l)

57

Demand Driven Data Flow Code for Simpson's Rule Program

PROC SIMP
0 CONS (T=F,R=INF,C=C) (T=F,D=l.l)
1 READ (T=F,@=O)(R=F(6,3),T=C,C=C)(T=S,D=2.l,3.l)
2 SELECT (T=S,@=l)(R=l,T=I,C;C)(T=F,D=4.l)
3 SELECT (T=S,@=l)(R=2,T=I,C=C)(T=R,D=ll.2,34.3,14.l)
4 READ (T=F,@=2)(R=F(6,3),T=C,C=C)(T=S,D=5.l,6.l)
5 SELECT (T=S,@=4)(R=l,T=I,C=C)(T=F,D=7.l)
6 SELECT (T=S,@=4)(R=2,T=I,C=C)(T=R,D=ll.l,37.3,40.l)
7 READ (T=F,@=5)(R=I(3),T=C,C=C)(T=S,D=8.l)
8 SELECT (T=S,@=7)(R=2,T=I,C=C)(T=R,D=l2.2,30.l)
9 CONS (T=R,R=0.0,C=C)(T=R,D=22.l)

10 CONS (T=R,R=0.0,C=C)(T=R,D=26.l)
11 - (T=R,@=6)(T=R,@=3)(T=R,D=l2.l)
12 I (T=R,@=ll)(T=I,@=8)(T=R,D=l3.l,44.l,40.2,18.2,

14.2,13.2)
13 + (T=R,@=12)(T=R,@=12)(T=R,D=28.l)
14 + (T=R,@=3)(T=R,@=12)(T=R,D=l7.l)
15 CONS (T=I,R=l,C=C)(T=I,D=27.l)
17 2AID (T=R,@=14,@=29)(T=R,D=l8.l,23.3,29.l)
18 + (T=R,@=17)(T=R,@=12)(T=R,D=l9.3)

58

19 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=l8)(T=S,D=20.2)
20 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=19)(T=S,D=21.l)
21 SELECT (T=S,@=20)(T=I,R=l,C=C)(T=R,D=22.2)
22 + (T=R,@=9)(T=R,@=2l)(T=R,D=32.2)
23 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=l7)(T=S,D=24.2)
24 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=23)(T=S,D=25.l)
25 SELECT (T=S,@=24)(T=I,R=l,C=C)(T=R,D=26.2)
26 + (T=R,@=lO)(T=R,@=25)(T=R,D=33.2)
27 + (T=I,@=15)(T=I,R=2,C=C)(T=I,D=l6.l,27.l)
28 CID (T=R,@=13)(T=R,D=29.2,28.l)
29 + (T=R,@=17)(T=R,@=28)(T=R,D=l7.l)
30 CID (T=I,@=8)(T=I,D=30.l,31.l)
31 - (T=I,@=30)(T=I,R=3,C=C)(T=I,D=l6.2)
16 >= (T=I,@=27)(T=I,@=3l)(T=G,D=33.l,32.l)
32 INVOKEID (T=G,@=16)(T=R,@=22)(T=R,@=22)(C=T,I=32)

(T=R,D=45.2,C=F) (T=R,C=T,D=22.l)
33 INVOKEID (T=G,@=16)(T=R,@=26)(T=R,@=26)(C=T,I=33)

(T=R,D=46.2,C=F) (T=R,L=T,D=26.l)
34 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=3)(T=S,D=35.3)
35 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=34)(T=S,D=36.l)
36 SELECT (T=S,@=35)(T=I,R=l,C=C)(T=R,D=48.2)
37 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=6)(T=S,D=38.3)
38 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=37)(T=S,D=39.l)
39 SELECT (T=S,@=38)(T=I,R=l,C=C)(T=R,D=51.2)
40 - (T=R,@=6)(T=R,@=12)(T=R,D=41.3)
41 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=40)(T=S,D=42.l)
42 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=41)(T=S,D=43.l)
43 SELECT (T=S,@=42)(T=I,R=l,C=C)(T=R,D=49.l)
44 I (T=R,@=12)(T=R,R=3.0,C=C)(T=R,D=52.l)
45 * (T=R,R=4.0,C=C)(T=R,@=32)(T=R,D=47.l)
46 * (T=R,R=2.0,C=C)(T=R,@=33)(T=R,D=47.2)

47 + (T=R,@=45)(T=R,@=46)(T=R,D=48.l)
48 + (T=R,@=47)(T=R,@=36)(T=R,D=50.l)
49 * (T=R,R=4.0,C=C)(T=R,@=43)(T=R,D=50.2)
50 + (T=R,@=48)(T=R,@=49)(T=R,D=51.l)
51 + (T=R,@=50)(T=R,@=39)(T=R,D=52.2)
52 * (T=R,@=44)(T=R,@=50)(T=R,D=54.3)
53 CONS (T=S)(T=F,R=OUTF,C=C) (T=F,D=54.l)
54 WRITE (T=F,@=53)(R=F(6,3),T=C,C=C)(T=R,@=52)(T=F,D)

PROC FUNC
0 SEND (T=R,@=4)(T=R,D=
1 SELECT (T=S)(T=I,R=l,C=C)(D=2.l)
2 ** (T=R,@=l)(T=I,R=2,C=C)(T=R,D=3.l)
3 NEGATE (T=R,@=2)(T=R,D=4.l)
4 + (T=R,@=3)(T=R,R=4.0,C=C)(T=R,D=O.l)

Initially Demanded Instructions: 54

59

Test Program Implementing a Shell Sort

PROC SHELL
BEGIN

INTEGER D,Kl,L,J,Ll,Jl,I,K,TEMP;
INTEGER ARRAY Z(l:50);
FILE INF,OUTF;
INPUT L FILE=INF FORMAT=I(2);
INPUT (Z(I) DO I=l TO L) FILE=INF FORMAT=I(3);
D := l;
WHILE D<=L DO

D := D + D
END;
D := (D - 1)/2;
WHILE D>O DO

Kl := L - D;
J : = 1;
WHILE J <= Kl DO

Jl : = J;
WHILE Jl > 0 DO

Ll := D + Jl;
IF Z(Ll)<Z(Jl) THEN BEGIN

TEMP:= Z(Ll);
Z (Ll) : = Z (Jl) ;
Z (J 1) : = TEMP

END;
Jl := Jl - D

END;
J := J + 1

END;
D := (D - 1)/2

END;
OUTPUT (Z(K) DO K=l TO L) FILE=OUTF FORMAT=I(3)

END

60

61

Data Flow Code Produced for Shell Sort Program

0 ID (T=S,R='NIL')(T=S,D=l.l,91.l,86.l,36.1,22.1,10.1,5.1)
1 CONS (T=S)(T=F,R='INF' ,C=C) (T=F,D=2.l)
2 READ (T=F)(R=I(2),T=C,C=C(T=S,D=3.l,4.l)
3 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=9.2)
4 SELECT (T=S)(R=2,T=I,C=C)(T=I,D=8.2,89.2,34.2,25.2)
5 CONS (T=S)(T=I,R=l,C=C)(T=I,D=7.2)
7 MERGE (T=I)(T=I)(G=F,@=6)(T=I,D=6.l,13.l)
8 MERGE (T=I)(T=I)(G=F,@=6)(T=I,D=6.2,14.l)
9 MERGE (T=F)(T=F)(G=F,@=6)(T=F,D=l5.l)

10 CONS (T=S)(T=S,R='NIL' ,C=C) (T=S,D=ll.2)
11 MERGE (T=S)(T=S)(G=F,@=6)(T=S,D=l2.l,21.l)
12 ID (T=S,C=T)(T=S,D=l9.l)

6 <= (T=I)(T=I)(C=4)(T=G,D=7.0,21.l,15.l,14.l,13.l,12.l,
11.0,9.0,8.0)

13 ID (T=I,C=T)(T=I,D=l9.2,20.l)
14 ID (T=I,C=T)(T=I,D=8.l)
15 ID (T=F,C=T)(T=F,D=l6.l)
16 READ (I(3),T=C,C=C)(T=S,D=l7.l,18.l)
17 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=9.l)
18 SELECT (T=S)(R=2,T=I,C=C)(T=I,D=l9.3)
19 APPEND (T=S)(T=I)(T=I)(T=S,D=ll.l)
20 + (T=I)(T=I,R=l,C=C)(T=I,D=7.l)
21 ID (T=S,C=F)(T=S,D=35.2)
22 CONS (T=S)(T=I,R=l,C=C)(T=I,D=24.2)
24 MERGE (T=I)(T=I)(G=F,@=23)(T=I,D=23.l,29.l,26.l)
25 MERGE (T=I)(T=I)(G=F,@=23)(T=I,D=23.2,27.l)
23 <= (T=I)(T=I)(C=2)(T=G,D=24.0,29.l,27.l,26.l,25.0)
26 ID (T=I,C=T)(T=I,D=28.l,28.2)
27 ID (T=I,C=T)(T=I,D=25.l)
28 + (T=I)(T=I)(T=I,D=24.l)
29 ID (T=I,C=F)(T=I,D=30.l)
30 - (T=I)(T=I,R=l,C=C)(T=I,D=31.l)
31 I (T=I)(T=I,R=2,C=C)(T=I,D=33.2)
33 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=32.l,39.l)
34 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=40.l)
35 MERGE (T=S)(T=S)(G=F,@=32)(T=S,D=41.l,85.l)
36 CONS (T=S)(T=I,R=O,C=C) (T=I,D=37.2)
37 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=38.l)
38 ID (T=I,C=T)(T=I,D=49.2)
32 > (T=I)(R=O,C=C,T=I)(C=4)(T=G,D=33.0,85.l,41.l,40.l,

39.1,38.1,37.0,35.0,34.0)
39 ID (T=I,C=T)(T=I,D=42.2,83.l,47.2,43.l)
40 ID (T=I,C=T)(T=I,D=34.l,42.l)
41 ID (T=S,C=T)(T=S,D=48.2)
42 - (T=I)(T=I)(T=I,D=46.2)
43 CONS (T=I)(T=I,R=l,C=C)(T=I,D=45.2)
45 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=44.l,51.l)
46 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=44.2,52.l)
47 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=53.l)
48 MERGE (T=S)(T=S)(G=F,@=44)(T=S,D=54.l,82.l)

49 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=50.l,81.l)
50 ID (T=I,C=T)(T=I,D=59.2)
44 <= (T=I)(T=I)(C=5)(T=G,D=45.0,82.l,81.l,54.l,53.l,

52.1,51.1,50.1,49.0,48.0,47.0,46.0)
51 ID (T=I,C=T)(T=I,D=56.2,80.l)
52 ID (T=I,C=T)(T=I,D=46.l)
53 ID (T=I,C=T)(T=I,D=47.l,57.2)
54 ID (T=S,C=T)(T=S,D=58.2)
56 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=55.l,61.l)
57 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=62.l)
58 MERGE (T=S)(T=S)(G=F,@=55)(T=S,D=63.l,79.l)
59 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=60.l,78.l)
60 IP (T=I,C=T)(T=I,D=75.2)
55 >. (T=I)(R=0,C=C,T=I)(C=4)(T=G,D=56.0,79.l,78.l,63.l,

62.1,61.1,60.1,59.0,~8.0,57.0)
61 ID (T=I,C=T)(T=I,D=64.2,77.l,70.l,66.2)
62 ID (T=I,C=T)(T=I,D=57.l,77.2,64.l)
63 ID (T=S,C=T)(T=S,D=65.l,76.l,69.l,66.l)
64 + (T=I)(T=I)(T=I,D=65.2,68.l)
65 SELECT (T=S)(T=I)(T=I,D=67.l)
66 SELECT (T=S)(T=I)(T=I,D=67.2)
67 < (T=I) (T~I)(C=O)(T=G,D=68.l,76.0,76.2,75.0,75.2,

70.1,69.1)
68 ID (C=T,T=I)(T=I,D=71.2,73.2)
69 ID (C=T,T=S)(T=S,D=7l.l;73.l,72.l)
70 ID (C=T,T=I)(T=I,D=72.2,74.2)
71 SELECT (T=S)(T=I)(T=I,D=74.3,75.l)
72 SELECT (T=S)(T=I)(T=I,D=73.3)
73 APPEND (T=S)(T=I)(T=I)(T=S,D=74.l)
74 APPEND (T=S)(T=I)(T=I)(T=S,D=76.l)
75 MERGE (T=I)(C=F,T=I)()(T=I,D=59.l)
76 MERGE (T=S)(C=F,T=S)()(T=S,D=58.l)
7 7 - (T= I) (T= I) (T= I , D= 5 6 • 1)
78 ID (T=I,C=F)(T=I,D=49.l)
79 ID (T=S,C=F)(T=S,D=48.l)
80 + (T=I)(T=I,R=l,C=C)(T=I,D=45.l)
81 ID (T=I,C=F)(T=I,D=37.l)
82 ID (T=S,C=F)(T=S,D=35.l)
83 - (T=I)(T=I,R=l,C=C)(T=I,D=84.l)
84 I (T=I)(T=I,R=2,C=C)(T=I,D=33.l)
85 ID (T=S,C=F)(T=S,D=90.2)
86 CONS (T=S)(T=I,R=l,C=C)(T=I,D=88.2)
88 MERGE (T=I)(T=I)(G=F,@=87)(T=I,D=87.l,93.l)
89 MERGE (T=I)(T=I)(G=F,@=87)(T=I,D=87.2,94.l)
90 MERGE (T=S)(T=S)(G=F,@=87)(T=S,D=95.l)
91 CONS (T=S)(T=F,R='OUTF' ,C=C)(T=F,D=92.2)
92 MERGE (T=F) (T=F) (G=F,@=87) (T=F,D=96.l)
87 <= (T=I)(T=I)(C=4)(T=G,D=88.0,96.l,95.l,94.l,93.l,

92.0,90.0,89.0)
93 ID (T=I,C=T)(T=I,D=97.2,99.l)
94 ID (T=I,C=T)(T=I,D=89.l)
95 ID (T=S,C=T)(T=S,D=90.l,97.l)
96 ID (T=F,C=T)(T=F,D=98.l)
97 SELECT (T=S)(T=I)(T=I,D=98.3)

62

98 WRITE (T=F)(R=I(3),T=C,C=C)(T=I)(T=F,D=92.l)
99 + (T=I)(T=I,R=l,C=C)(T=I,D=88.l)

63

64

Demand Driven Data Flow Code Produced for Shell Sort Program

0 CONS (T=F,R=INF,D=l.l)
1 READ (T=F,@=O)(T=S,D=2.l,3.l)
2 SELECT (T=S,@=l)(T=I,R=l)(T=F,D=lO.l)
3 SELECT (T=S,@=l)(T=I,D=7.1;14.l,22.l,49.l)
4 CONS (T=I,R=l,D=6.l,9.l,12.2)
5 CONS (T=S,R=NIL,C=C)(T=S,D=l2.l,13.3)
6 2AID (T=I,@=4,@=7),(T=I,D=7.l,9.l,12.l)
7 + (T=I,@=4)(T=I,R=l,C=C)(T=1,D=6.l)
8 CID (T=I,@=3)(T=I,D=8.l,9.2)
9 <= (T=I,@=6)(T=I,@=8)(T=G,D=6.0,8.0,13.l)

10 READ (T=F,@=2)(T=S,D=ll.l)
11 SELECT (T=S,@=10)(T=I,R=2,D=l2.3)
12 APPEND (T:S,@=5)(T=I,@=6)(T=I,@=ll)(T=S,D=l2.l,13.2,14.l)
13 INVOKEID (T=G,@=9)(T=S,@=12)(T=S,@=5)(C=T,I=l3)

(C=F,T=S,D=33.l)
14 CID (T=I,@=3)(T=I,D=l4.l,18.2)
15 CONS (R=l,T=I,D=l6.l,19.3) .
16 2AID (T=I,@=15,@=17)(T=I,D=l7.l,17.2,18.2,19.2)
17 + (T=I,@=16)(T=I,@=16)(T=I,D=l6.l)
18 <= (T=I,@=16)(T=I,@=14)(T=G,D=l4.0,16.0,19.l) ·
19 INVOKEID (T=I,@=16)(T=I,@=15)(C=T,I=l9)(T=F,D=20.l)
20 - (T=I,@=19)(T=I,R=l,C=C)(T=I,D=21.l)
21 I (T=I,@=20)(T=I,R=2,C=C)(T=I,D=23.l)
22 CID (T=I,@=3)(T=I,C=F,D=22.l,25.l)
23 2AID (T=I,@=21,@=46)(T=I,D=24.l,25.2,31.l,46.l)
24 > (T=I,@=23)(R=O,C=C,T=I)(T=G,D=48.l)
25 - (T=I,@=22)(T=I,@=23)(T=I,D=28.2)
26 CONS (T=I,R=l,C=C)(T=I,D:27.l)
27 2AID (T=I,@=26,@=44)(T=I,D=28.l,44.l)
28 <= (T=I,@=27)(T=I,@=25)(T=G,D=45.l)
29 2AID (T=I,@=27,@=4l)(T=I,D=30.l,32.2,35.2,38.2,40.2,42.l)
30 > (T=I,@=29)(T=I,R=0,C=C)(T=G,D=43.l)
31 CID(T=I,@=23)(T=I,D=31.l,32.l,42.2)
32 + (T=I,@=29)(T=I,@=3l)(T=I,D=34.2,37.2,39.2)
33 2AID(T=S,@=13,@=4l)(T=S,D=34.l,35.l,37.l,38.l,39.l,41.3)
34 SELECT (T=S,@=33)(T=I,@=32)(T=I,D=36.l)
35 SELECT (T=S,@=33)(T=I,@=29)(T=I,D=36.2)
36 < (T=I,@=34)(T=I,@=35)(T=G,D=41.0)
37 SELECT (T=S,@=33)(T=I,@=32)(T=I,D=39.3)
38 SELECT (T=S,@=33)(T=I,@=29)(T=I,D=40.3)
39 APPEND (T=S,@=33)(T=I,@=32)(T=I,@=37)(T=S,D=40.l)
40 APPEND (T=S,@=39)(T=I,@=29)(T=I,@=38)(T=S,D=41.l)
41 IFTHENEL (T=G,@=36)(T=S,@=40)(T=S,@=33)

(T=S,D=33.l,43.2,43.3)
42 - (T=I,@=29)(T=I,@=3l)(T=I,D=29.l)
43 INVOKEID (T=G,@=30)(T=S,@=4l)(T=S,@=4l)(C=T,I=43)

(C=F,T=S,D=45.2,45.3)
44 + (T=I,@=27)(T=I,R=l,C=C)(T=I,D=27.l)
45 INVOKEID (T=G,@=28)(T=S,@=43)(T=S,@=43)(C=T,I=45)

(C=F,T=S,D=48.2,48.3)
46 - (T=I,@=23)(T=I,R=l,C=C)(T=I,D=47.l)

47 I (T=I,@=46)(T=I,R=2,C=C)(T=I,D=23.l)
48 INVOKEID (T=G,@=24)(T=S,@=45)(T=S,@=45)(C=T,I=48)

(C=F,T=S,D=51.l)
49 CID (T=I,@=3)(D=49.l,53.2)
50 CONS (T=I,R=l,D=52.l)
51 CID (T=S,@=48)(T=S,D=51.l,54.l)
52 2AID (T=I,@=50,@=55)(T=I,D=53.l,54.2,56.l)
53 <= (T=I,@=52)(T=I,@=49)(T=G,D=57.l)
54 SELECT (T=S,@=5l)(T=I,@=52)(T=I,D=55.l)
55 WRITE (T=I,@=54)(R='I(3)' ,T=C)(T=F,R=OUTF)(T=F,D=57.2)
56 + (T=I,@=52)(T=I,R=l,C=C)(T=I,D=52.l)
57 INVOKEID (T=G,@=53)(T=S,@=55)(T=S,@=5l)(C=T,I=59)

Initially Demanded Instructions: 59

65

APPENDIX B

INSTRUCTION SET

66

67

The instruction set used in this study is almost a

duplicate of that used by Thoreson in [16]. This is due to

the fact that the compiler from that project was used to

make the first pass over all test programs in this study.

The following table therefore is a near duplicate of that

found in appendix A in Thor~son [16] with several

exceptions. The exceptions will be discussed below.

Arithmetic operations: +, =, *, /,

Absolute

Boolean operations: And, Or, Not

** , Negate,

Relational operations: <, >, <=, >=, - o_ -, -, Exists,

Element, Eos

Structure operations: Append, Select

Input/Output operations: Read, Readedit, Write,

Writedit

Procedure operations: Apply

Looping support operations: Id, Cid, 2aid, Invokeid

Functional operations: Sin, Cos, Tan, Sinh, Cosh,

Tanh, Arcsin, Arccos, Arctan, Log, Sqrt

Constant support operation: Constant

Logical support operation: Ifthenel

The function of most of the non-support operations are

straight-forward. Exceptions are discussed in Thoreson

[16]. The support operations, however, were added to

support various functions in a demand driven data flow

environment and will now be discussed in more detail.

68

The Ifthenel operation supports a machine

implementation of an If-then-else structure in a high level

program. The Ifthenel operation replaces the use of the

merge instruction in a pure data flow environment for

controlling what values are passed on from an if-then-else

structure. The control is different however. Upon demand,

the Ifthenel operation demands the value of the conditional

expression controlling the outcome of the if statement. If

the value returned is true, the Ifthenel will demand the

result produced in the then body of code; otherwise, the

result from the else section is demanded.

· Initially, it was thought that only one Ifthenel would

be needed per if-then-else structure since multiple results

could be appended to form a structure and the actual

structure itself could be passed on. It turns out that this

approach could result in a deviation from a true demand

driven environment. This is due to the fact ~hat if one or

more calculations were within the body of either the then or

the else sections that were not to be used in producing the

main result and that section was demanded, then these

calculations would be executed. This deviates from the

definition of program execution in a demand driven data flow

environment which guarantees that computation not necessary

for producing the main result will not be executed.

Therefore, one Ifthenel operation will be required for each

result passed on from the appropriate body of an if

structure. An example of an if structure and its compiled

69

code is shown in figure 15. This example contains only one

statement in either the then or the else body but is easily

extended to structures that produce more than one value.

PROC IFTEST
BEGIN

END

INTEGER I,ODD.,TEMP;
FILE INF,OUTF;
INPUT I FILE=INF FORMAT=I(3);
TEMP := I/2;
TEMP := I*2;
IF TEMP = I THEN ODD := 0

ELSE ODD := l;
OUTPUT ODD FILE=OUTF FORMAT=I(l)

a.) High Level Code

0 READ INF,I(3);1
1 SELECT @O , , 2; 2 , 4
2 I @1, ,2;3-
3 * @2, ,2;4
4 = @l, ,@3, ;7
5 CONS 0;7
6 CONS 1;7
7 IFTHENEL @4, ,@5, ,@6, ;8
8 WRITE @7, ,OUTF,ITl);

b.) Compiled Code

Figure 14. Example of a Compiled If Then Else Sructure

Although the Invokeid instruction is discussed in

chapter two, it will be discussed in further detail in this

appendix. The main purpose of this discussion will be to

verify that the Invokeid instruction, in conjunction with

70

the other support operations, can support the while-end and

the repeat-until constructs properly. Two examples will be

given to demonstrate its usage. In addition, two program

traces are illustrated to show how the Invokeid instruction

executes.

The Invokeid instruction

used for both while loops

controls iteration.

and repeat loops.

It is

The main

difference in its usage between these two different loops is

that the initial values fed into an Invokeid operation for a

repeat loop will differ from those initial values fed into

the Invokeid instruction controlling a while loop. For the

Invokeid instruction to control repeat loops properly the

compiler must negate the until condition controlling the

repeat-until loop.

Figure 15 is an example of a simple while loop and its

associated compiled code containing one Invoke id

instruction. Table I is an execution trace of the program

in Figure 15 for a run where the input data was the number

four causing three iterations of the loop. Table I lists

each instruction at the time it executes and shows the

current operands it has as well as the result it produces

and the location to which the result is sent.

The first column of the table lists the mneumonic name

of the instruction of each assembler instruction being

executed. To the left of each mneumonic is the number of

the instruction in Figure 15. The next three columns are

used for the operands of each instruction. The maximum

PROC TEST
BEGIN

END

INTEGER L,D,;
FILE INF,OUTF;
INPUT L FILE=INF FORMAT=I(2);
D := l;
WHILE D <= L DO

D := D + D
END;
OUTPUT D FILE=OUTF FORMAT=I(2)

a.) High Level Code

0 READ INF,I(2);1
1 SELECT @O, ,2;2
2 CID @l, ;6-;2
3 CONS 1;4
4 2AID @3,@5, ;5,5,6,7
5 + @5, ,©5, T4,7
6 <= @2-; ,@4-; ;7,2,4
7 INVOKElD @6-; ,@2, ,@4, ;7,8
8 WRITE @7, ,OUTF,IT2); -

Initially Demanded Instruction: 8

b.) Compiled Code

Figure 15. Example of the Compilation Process
for a While Loop

71

72

TABLE I

EXECUTION TRACE OF FIGURE 15

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST

3 CONS I 5 I 1 I 4 • 1
--

0 READ I 6 I STRUC I 1.1

4 2AID 1 I 6 I 1 I 5.1,5.2,6.1,7.3
--

1 SELECT ISTRUCI 2 I 7 I 4 I 2.1
--

2 CID 4 I 8 I 4 I 2 .1, 6. 2
--

6 < = 1 4 I 9 I TRUE I 7 • 1 , 2 • 0 , 4 • 0

5 + 1 1 I lo I 2 I 4.1,7.2
--

7 INVOKEID !TRUE I 2 1 I 11 I 2 I 7.3

2 CID 4 I 14 I 4 I 2 .1, 6. 2
--

4 2AID I 2 I 14 I 2 I 5.1,5.2,6.1,7.3
--

6 < = I 2 4 I 15 I TRUE I 7 • 1 , 2 • 0 , 4 • 0
--

5 + 2 2 I 16 I 4 I 4 .1, 7. 2
--

7 I NVOKEI D I TRUE I 4 2 I 1 7 I 4 I 7. 3
--

2 CID I 4 I 20 I 4 I 2 .1, 6. 2
--

4 2AID I 4 I I 20 I 4 I 5.1,5.2,6.1,7.3
--

6 < = 4 4 I I 21 I TRUE I 7 • 1 , 2 • 0 , 4 • 0

5 + 4 4 I 22 I 0 I 4 .1, 7. 2
--

7 INVOKEID !TRUE I 8 I 4 I 23 I 8 I 7.3
--

2 CID 4 I I 26 I 4 I 2 .1, 6. 2

4 2AID I 8 I 26 I 8 I 5.1,5.2,6.1,7.3
--

6 <= I 8 4 I 27 I FALSE I 7.1,2.0,4.0
--

7 INVOKEID IFALSEI 8 I 28 I 8 I 8.1

8 WRITE 8 I OUTF I I (3) I 2 9 I

73

number of operands that any instruction for the compiled

code in figure 16 will have is three; however, not all

instructions have three operands. The next column lists the

time unit each operation begins execution.

within the table are ordered by the

execution.

The instructions

time they begin

The next column lists the result produced by each

executing instruction. The last column lists the

destinations of the result produced for each instruction

executed. The numbers in this column require some

explanation however. The number listed to the left of each

period is the instruction number which comes from the number

for that instruction in the compiled listing in figure 16.

The number to the right of each period is the operand number

within the instruction where the result will actually be

placed.

Once an instruction packet in sent to a processor, the

new instruction template for that instruction currently

residing in memory will have no operands until it receives a

result from an executing instruction. Thus no instruction

may carry an operand from one execution to the next. An

instruction is allowed to pass a result to the next

invocation of itself however.

Referring to Table I, operation 2aid executes at time

six, sending a result of one to the third operand of the

Invokeid operation, to both operands of the addition

operation, and to the first operand of the less than or

74

equal to operation. At time unit nine, the less than or

equal to operation fires and sends a result of true to the

first operand of the Invokeid instruction. Since there were

two possibilitie~ here, operands of true or false, it is

instructive to examine both possibilities. If the value of

false had been received by the Invokeid instruction, then

the proper sequence of events requires that the body of the

loop does not get executed. Table II illustrates the

execution trace for this case.

TABLE II

EXECUTION TRACE OF FIGURE 15 WITH NO LOOP ITERATIONS

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST

3 CONS 5 I 1 I 4.1

0 READ 6 I STRUC I 1.1

4 2AID 1 I 6 I 1 I 5.1,5.2,6.1,7.3
--

1 SELECT ISTRUCI 2 I 7 I 0 I 2.1
--

2 CID I 0 8 I 0 I 2 .1, 6. 2
--

6 <= ! 1 o I 9 I FALSE I 7 • 1 I 2 • 0 I 4 • 0
--

7 INVOKEID IFALSEI ! 1 I lo I 2 I a.1

8 WRITE 1 I OUTF I I (3) I 11 I

75

As previously explained, upon receiving a false result

for its first operand, the Invokeid instruction passes as a

result its third operand to the instruction that demanded

it. At time six, the 2aid instruction passed the result of

one to the third operand of the Invokeid operation.

Therefore, if a false value were received by the Invokeid

operation at time nine, the value of one would be passed on

by the Invokeid instruction at its execution at time ten to

the instruction that demanded the Invoke operation. This

results in the correct execution since the body of the loop,

the addition operation, was never executed. Thus, if the

value of false were to have been received, the execution

observed would have been the desired one.

Currently, however, the Invokeid operation is holding a

true value for operand one. For the Invokeid instruction to

continue execution, it must have a value for its second

operand. Therefore, at time nine, the Invokeid operation

demands the value of the addition operation, the body of the

loop, so that it may proceed in its own execution. The

addition operation fires at time ten and passes the result

of two to the second operand of the Invokeid operation. The

Invokeid operation now has all the operands it needs to

fire. At time eleven, the Invokeid instruction fires and

sends the value of two as a result to operand three of the

Invokeid operation in control of the next iteration. The

last step in the execution of the Invokeid operation, when

it has a true value for operand one, is to demand the next

76

invocation of itself. This concludes the first iteration of

the loop in the program listed in figure 16. Continuing

iterations follow the same pattern with the exception of the

final attempted iteration discused below.

Resuming the trace at time 21, the less than or equal

to operation sends a true result to the first operand of the

Invokeid operation. The Invokeid operation demands the

result of the addition operation which fires at time 22,

passing the result of eight to operand number one of the

2aid operation as well as operand two of the Invokeid

operation. At time 23, the Invokeid operation fires,

demanding another invocation of the Invokeid operation as

well as passing a result of eight to the third operand of

the next invocation of the invokeid operation. Table III

shows the rows from Table I from time 21 until time 23.

TABLE III

ROWS 16 THROGH 18 FROM TABLE I

6 <= 4 4 I 21 I TRUE I 7 .1, 2. 0, 4. 0
--

5 + 4 4 I 22 I s I 4 .1, 7. 2
--

? INVOKEID ITRUE I 8 4 I 23 I 8 I 7.3

At time 26, the 2aid operation fires, passing a result

of 8 to operand three of the Invokeid operation and

77

overwrites the operand previously residing there. At time

27, the less then or equal to operation fires, passing a

result of false to operand number one of the Invokeid

instruction. This causes the firing of the Invokeid

instruction which passes its third operand as a result to

the write instruction. Since the first operand was false,

the Invokeid operation does not reinvoke itself. The write

operation fires at time 29, completing the execution of the

program for an initial input of four. Table IV shows the

last four rows of Table I illustrating the completion of

execution of the program.

TABLE IV

LAST FOUR ROWS OF TABLE I

4 2AID 8 I 26 I 8 I 5.1,5.2,6.1,7.3

6 <= 8 4 I 27 I FALSE I 7.1,2.0,4.0
--

7 INVOKEID IFALSEI 8 I 28 I 8 I 8.1

8 WRITE 8 IOUTF 1!(3) I 29 I

Figure 16 illustrates a similar example to that

illustrated in Figure 15 with the exception that the while­

end loop in Figure 15 has been replaced with a repeat-until

loop in Figure 16. Note that there exist important

PROC TEST
BEGIN

END

INTEGER L,D,;
FILE INF,OUTF;
INPUT L FILE=INF FORMAT=I(2);
D : = 1;
REPEAT

D := D + D
UNTIL D > L;
OUTPUT D FILE=OUTF FORMAT=I(2)

a.) High Level Code

0 READ INF,I(2);1
1 SELECT ,2;2
2 CID ; 6:-2
3 CONS-1;4
4 2AID ;5,5,6
5 + , ""'i4,7,7
6 <=- :- ;7,2,4
7 INVOKEID , , ;7,8
8 WRITE ,OUTF,l(2);

b.) Compiled Code

Figure 16. Example of the Compilation Process
for a Repeat Loop

78

79

differences in the compiled code. While the same compiled

instructions appear in both listings and in the same order

the destination addresses for two of the instructions have

been modified to reflect the change in the high level code.

The 2aid operation in Figure 16 does not include the

Invokeid instruction for a result destination as in Figure

15. The addition operation is the only operation other than

the Invokeid operation itself, that supplies values to

operands two and three in the Invokeid operation.

To verify that the given demand driven data flow code

works properly, two instruction traces are illustrated for

two given examples. The first example discussed inputs a

value of four into the program in Figure 16. Theoretically,

the result produced by the program in Figure 16 should

correspond to the result produced by the program in Figure

15 for the given input. A comparison of Table III to Table

I shows that, in fact, the same result will be produced.

This can be verified by comparing for equality the first

operand of the Write operation in both tables. Their

equality ensures that the same result will be output for

both. A close comparison of Table III and Table I

illustrates that, as long as the conditional operation

controlling the loops gives a true result for the first

demand, the output for both programs will be the same for

any number of iterations greater than or equal to one

iteration.

80

TABLE V

EXECUTION TRACE OF FIGURE 16

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST

3 CONS I 5 I 1 I 4 .1
--

0 READ I 6 I STRUC I 1.1

4 2AID 1 6 I 1 I 5.1,5.2,6.1

1 SELECT ISTRUCI 2 1 I 4 I 2.1

2 CID 4 I 8 I 4 I 2 .1, 6. 2
--

6 < = 1 I 4 I 9 I TRUE I 7 • 1 , 2 • 0 , 4 • 0
--

5 + 1 1 I I 10 I 2 I 4.1,1.2,1.3

7 INVOKEID !TRUE I 2 2 I 11 I 2 I 1. 3

2 CID 4 I I 14 I 4 I 2 .1, 6. 2
--

4 2AID 2 I I I 14 I 2 I 5.1,5.2,6.1
--

6 < = 2 4 I I 15 I TRUE I 7 • 1 , 2 • 0 , 4 • 0
--

5 + 2 2 I 16 I 4 I 4.1,1.2,7.3

7 INVOKEID !TRUE I 4 I 4 I 17 I 4 I 7.3
--

2 CID 4 I I 20 I 4 I 2 .1, 6. 2

4 2AID 4 I 20 I 4 I 5.1,5.2,6.1

6 < = 4 4 I 21 I TRUE I 7 • 1 , 2 • 0 , 4 • 0
--

5 + 4 4 I 22 I a I 4.1,1.2,7.3

7 INVOKEID !TRUE I 8 8 I 23 I 8 I 7.3
--

2 CID 4 I 26 I 4 I 2: 1, 6. 2

4 2AID 8 I I 26 I 8 I 5.1,5.2,6.1
--

6 <= 8 4 I I 27 I FALSE I 7.1,2.0,4.0
--

7 INVOKEID !FALSE! 8 I 28 I 8 I 8.1

8 WRITE 8 I OUTF I I (3) I 2 9 I

81

The major difference in program execution occurs when a

zero is used as input into both programs. Using a zero as

input into the code in Figure 15 results in the execution

trace illustrated in Table II while using a zero as input

into the code in Figure 16 results in the execution trace

illustrated in Table IV. Note that the addition operation

is executed in Table IV while it does not execute in Table

II, because a repeat loop will execute the body of the loop

it controls at least once even if the first time the

conditional operation is executed a false is produced, as in

this example. Thus, the execution trace in Table II

produces an output value of one as required, and the

execution trace in Table IV produces an output of two, also

as required. This demonstrates that the demand driven code

shown will execute a repeat loop in the proper manner.

82

TABLE VI

EXECUTION TRACE OF FIGURE 16 DEMANDING ONE LOOP ITERATION

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST

3 CONS s I 1 I 4.1

0 READ I 6 I STRUC I 1.1
--

4 2AID I 1 6 I 1 I 5.1,5.2,6.1,7.3

1 SELECT jSTRUCI 2 7 I 0 I 2.1
--

2 CID 0 I 8 I 0 I 2 .1, 6. 2
--

6 <= 1 0 I 9 I FALSE I 7.1,2.0,4.0

5 + 1 1 I lo I 2 I 4.1,7.2,7.3

7 INVOKEID jFALSEj 2 2 I 21 I 2 I a.1

8 WRITE 2 I OUTF I I (3) I 12 I

VITA

Robert Jeffrey Schneider

Candidate for the Degree of

Master of Science

Thesis: A DEMAND DRIVEN DATA FLOW ENVIRONMENT
FOR A STUDY ON LOCALITY

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Syracuse,
1956, the son of Dr. and Mrs.

New York, May
A. J. Schneider.

22,

Education: Graduated from William Nottingham High
School, Syracuse, New York, in June, 1974;
received Bachelor of Science degree in Computer
Science from the University of Vermont in
December, 1981; completed requirements for the
Master of Science degree at Oklahoma State
University in July, 1983.

Professional Experience: Programmer/Analyst at
Interactive Computing of Vermont; Burlington,
Vermont, May, 1980 to August, 1981. Graduate
Teaching Assistant, Department of Computing and
Information Sciences, Oklahoma State University,
Stillwater, Oklahoma, August, 1982 to May, 1983.

