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PREFACE 

This study is an analysis of program behavior in a 

demand driven data flow environment to determine the 

existence of locality in such an environment. The motivation 

for performing such an analysis is to determine if a memory 

hierarchy is feasable for a demand driven data flow 

computer. Initially, demand driven computation is 

discussed, then a proposed model is covered in some detail. 

The type of instructions used in such a system are discussed 

with an explanation of each instruction's behavior. Finally, 

a locality analysis is performed by tracing the behavior of 

several executing programs in a demand driven data flow 

environment. 
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CHAPTER I 

INTRODUCTION 

Project Motivation 

For some time now von Neumann architectural principles 

have been the dominant feature in the area of computer 

architecture design. Within recent years however, research 

in both the areas of effective computer languages [l] and 

computer architecture [3,5,12,17,18,19] has suggested that 

it may be desirable to consider new approaches to computer 

architecture which abandon the von Neumann principles. It 

has been suggested by these authors [l,3,5,12,18] that the 

von Neumann principles may in fact have imposed restrictions 

on the developments in the above mentioned areas. 

One research motivation for new architectures is due to 

the current school of thought that proposes that, in order 

to gain significant performance increases in the next 

generation of computers, massive parallelism must be 

exploited. In order to exploit massive parallelism, 

concurrency must be detected by the language translators 

and/or the operating system. After concurrency has been 

detected, it must then be translated to a form where it may 

be exploited by the hardware. This implies an architectural 

need for a machine to exploit concurrency. 

1 
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Research groups for functional programming languages 

have also been expressing a need for new architectures 

capable of supporting functional programming languages 

efficiently. According to Backus [l], computer languages 

have become considerably larger and more complex without 

yielding comparable benefits to the user. He further adds 

that functional programming languages would yield 

considerable benefits to the user, as well as making 

programs more amenable to the detection of parallelism. It 

has been noted by Backus and Treleaven [l,18] that despite 

the benefits there has been little interest in functional 

programming languages due to the fact that these are not 

efficiently supported on von Neumann type computers. 

Research in both the areas of computer architecture and 

effective computer languages have pointed to several new 

possible architectural candidates [3]. Two of these 

candidates are data flow architecture [3,4,5] and demand 

driven architecture [2,8,9,13,19]. From an architectural 

point of view these types of architecture are capable of 

supporting massive parallelism efficiently [5]. From a 

language point of view these types of architecture are 

capable of supporting functional programming languages 

efficiently [l,18]. This is partially due to the idea of 

using a global memory to store results from executing 

instructions has been removed, thus removing history 

sensitivity from the environment. This no storage, history 
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insensitive environment is the natural environment for 

functional languages [l]. 

One method to improve performance in a von Neumann 

machine is to introduce a faster memory. This will 

generally result in a performance increase because processor 

cycle times are generally much faster than memory cycle 

times. Since a faster memory is in general considerably 

more expensive than a similarly sized slower memory, it is 

common to introduce a memory hierarchy into the system. 

This involves adding a small amount of the faster memory and 

a control mechanism to allow the small section of fast 

memory to work in conjunction with the slower memory. This 

is typically referred to as a cache memory in the 

literature. In a von Neumann machine, this type of memory 

hierarchy has been observed to yield performance very 

similar to that of the same machine with only the faster 

memory yet at a much lower cost increase. 

A memory hierarchy can also be introduced allowing the 

primary memory to be used in conjunction with a slow device 

such as a drum or a disk drive~ This allows the system to 

appear as if the primary memory were as large as the 

combined memory of the fast and slow memories with 

performance very nearly that of the primary memory itself. 

For a memory hierarchy to be effective on a given machine, 

programs (run in the computing environment of that machine) 

must exhibit sufficient locality (Locality is discussed in 

detail in Chapter 3). This is generally the case in a von 
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Neumann environment yet, with the radically different 

styles of architecture proposed, the question must be raised 

as to whether or not a memory hierarchy implementation would 

prove to yield comparable results in new computing 

environments. 

In both a data flow and a demand driven data flow 

environment, the order of instruction execution for the same 

program run on a von Neumann type of computer will most 

likely be very different since neither the data flow nor the 

demand driven data flow machines use program counters to 

trigger instruction execution. For this reason it may not 

be taken for granted that locality will exist in a data flow 

or a demand driven environment without an analysis of actual 

program behavior under those environments. There have been 

studies examining locality on data flow machines [16]. 

This paper addresses the problem of the existence of 

locality in a demand driven data flow environment. A demand 

driven data flow environment is specified to allow for an 

analysis of program behavior. The analysis of program 

behavior is performed in the specified environment to 

determine the existence of locality. 

Chapter II of this paper contains a specification for 

a demand driven data flow environment. Chapter II also 

includes a possible hardware model for a demand driven data 

flow machine with a memory hierarchy. 

Chapter III discusses locality. The results and 

descriptions of the locality analyses for several programs 



5 

are given. 

Chapter IV contains a summary of the work done and 

conclusions concerning locality in a demand driven data flow 

environment. 

Fundamentals of Demand Driven 

Data Flow Computation 

Demand driven computation shares many similarities 

with pure data flow computation. The main difference 

between the two methods appears in the control mechanism for 

beginning the execution of an instructio~. In the data flow 

case an instruction's execution is begun when the operands 

necessary for its execution become available. In a demand 

driven -environment, an added condition is placed on the 

triggering of an instruction's execution. Not only must the 

necessary operands be available to the given instruction but 

the instruction must also be demanded by one of its 

successors. The motivation for this extra condition is to 

prevent the execution of any instructions not necessary in 

the computation of the final result. In order to start 

execution in a demand driven machine, the environment must 

demand the result of the last instruction in the computation 

of the main result [9,10]. 

Figure la shows the initial state of a demand driven 

data flow computation graph computing the area of a circle. 

The operations appear .within circles. These circled 

operations will be refered to as operation nodes. The data 
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1 

* 

a.) Initial Demand for Result 

1 

* * 

b.) Execution of a.) c.) Execution of b.) 

Figure 1. Demand Driven Data Flow Graph 
for the Area of a Circle 
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* * 

a.) Execution of Figure le.) b.) Execution of a.) 

1 

c.) Execution of b.) 

Figure 2. Continued. 

7 



8 

dependency paths between the nodes are represented by the 

arrows connecting the nodes. These arrows are referred to 

as arcs. To conform with the notation used in current 

literature [7], an asterisk beside an arc will indicate that 

the result from the preceding operator node has been 

demanded. A solid circle on an arc is used to indicate the 

flow of a result from an operator node to its immediate 

successors. The instructions have been numbered, to the 

left of each operation node in the graph, for reference. 

Figure lb through Figure 2b indicate the intermediate steps 

of the computation. Figure 2c shows the graph after the 

computation has completed. The final result is on the 

output arc of the lowest level node in the graph. 

In a study on data flow computation, Thoreson [16] 

introduced the idea of execution and reference fringes as 

tools to trace program executions. An execution fringe is a 

two dimensional table where time is represented along the 

horizontal axis of the table and the degree of parallelism 

(the instructions executing at a given time) is represented 

along the vertical axis of the table. For example, Figure 

3b illustrates that instruction one executes at time two and 

that instruction two executes at time three. Similarly, a 

reference fringe is a two dimensional table with the same 

format as an execution fringe but with one dimension of time 

and the other dimension representing the instructions 

referenced at a given time. An instruction is referenced 

when it receives a result from an executing instruction. 



t I i 

4 

2 

1 
3 

3 4 5 6 

2 

a.) Demand Fringe illustrating instructions 
demanded versus time 

t I i 2 3 4 5 6 

1 2 3 4 

b.) Execution Fringe illustrating instructions 
executed versus time 

t I i 2 3 4 5 6 

3 4 3 4 ? 

c.) Reference Fringe illustrating instructions 
referenced versus time 

Figure 3. An Example of Program Trace Fringes 
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Figure 3c shows an example of a reference fringe. An 

example of a reference appears at time three in Figure 3c. 

Instruction number four is referenced at time three by the 

arrival of an operand. The actual execution of instruction 

number four does not occur until time five. At time five, 

instruction four receives its second operand and begins 

execution. A demand for an instruction is a special type of 

reference and do not appear in the reference fringe. The 

Demands appear in a demand fringe discussed below. 

The idea of both execution and reference fringes 

carries over to a demand driven data flow environment as 

tools to trace program execution. Another type of fringe, 

the demand fringe, is also helpful. A demand fringe is a 

two dimensional table in which the first dimension 

represents time and the second dimension lists the 

instructions being demanded at a given time. For example, 

instructions one and three are demanded at time two in the 

demand fringe illustrated in Figure 3c. 

The demand and the reference fringes are aids in 

determining when a given instruction will execute. Each 

instruction that appears in the execution fringe must first 

appear in the demand fringe. In addition to appearing in 

the demand fringe, each instruction number appears in the 

reference fringe once for each operand that it requires for 

the instruction to execute since the last time it executed. 

The only instruction that does not appear in the reference 

fringe is the constant instruction which has no inputs in a 
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demand driven data flow environment and hence is not 

referenced and needs only be demanded to execute at any 

time. The constant operation is discussed in further detail 

in chapter two. The demand fringe tends to appear as a 

stack for the execution fringe since the demands tend to 

propagate up the demand driven data flow graph until they 

reach executable instructions. Once the instructions begin 

executing, they tend to execute in the reverse order in 

which they were demanded, giving the appearance of being 

popped off a stack. This is not always the case, however. 

Figure 3 shows the execution, reference, and demand fringes 

for the combined execution of Figure 1 and Figure 2. 

An outcome of the demand driven concept is that 

conceptually infinite data structures may be implemented 

efficiently [4,7,9,10]. Since only the elements needed are 

demanded, there is no need for the structure to be 

completely constructed prior to the demand for each element 

used in computing the main result. Another benefit accrued 

from the use of the demand driven concept is a very straight 

forward approach to resource management [7]. In a demand 

driven environment, sequencing control is automatic~ hence, 

the merge operator used for sequencing control in a pure 

data flow environment is not needed [4,9,10]. The 

sequencing control in the demand driven approach is 

automatic due to the fact that instructions are not executed 

until they are demanded. Hence, only currently needed 

inputs are ever provided. While the demand driven approach 
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has the added overhead of propagating demands that the 

pure data flow environment does not have, this is balanced 

somewhat by the fact that the demand driven machine will not 

have any of the merge operators required in a pure data flow 

machine [4]. 

Historical Development of Demand 

Driven Computation 

One motivation for demand driven computation stemmed 

from a need for an environment to implement a functional 

programming language efficiently [2]. An approach to 

evaluating expressions in a functional language is similar 

to that of the lambda calculus in that expressions are 

driven through a series of reduction operations before the 

final result is reached [2,12,13,14,19]. This was the 

motivation for 

could directly 

the design of a c~mputer architecture that 

implement a reduction scheme on the 

functional language expressions with no initial translation 

to an intermediate or machine code form [12,13,14]. The 

base language for this machine was thus the functional 

programming language itself. The processing elements of the 

machine had the responsibility of reducing the initial 

expressions into the final result for a given expression. 

The processing elements work directly on the actual strings 

of symbols making up the program. 

Mago [12,13,14] proposed a tree structured architecture 

implementing a reduction scheme. An example of a tree 
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4. In structured architecture is illustrated in Figure 

this type of architecture, the lowest level 

referred to as L cells for leaf cells. These L 

cells are 

cells are 

used to hold elements of the expression being reduced. The 

upper level cells are used to control communication within 

the machine and are referred to as T cells for tree cells. 

Tree cells are non-leaf cells. These types of computers are 

generally referred to as reduction computers [2,12,17,18]. 

Demand driven computation is a sub-class of reduction 

computation with the restriction that all reductions 

performed at any step must be outermost reductions [18]. An 

example of an outermost reduction is illustrated in Figure 

5. Figure 5a shows a functional programming language 

expression prior to a reduction. Figure 5b- shows the 

outcome of one reduction applied to the expression in Figure 

5a. The elements in both of the expressions illustrated in 

Figure 5 are the typical contents of a leaf cell where each 

cell would hold only one element. 

Another research effort along similar lines led to a 

demand driven approach. The work of Friedman and Wise [6] 

as well as Kahn and Macqueen [8] illustrated the need for a 

demand driven environment. Keller [9,10] was responsible 

for an architectural proposal for a loosely coupled 

applicative multi-processor system to directly support a 

Lisp-like language. This Lisp-like language supports the 

suspended cons operator discussed by Friedman and Wise [6]. 

The suspended cons is referred to as a lenient cons [9,10]. 



Figure 4. A Tree Structured Reduction Computer 

(<AA,*>:<<3,21>,<15,11>,<7,13>,<4,14>>) 

a.) Example of a Functional Expression 

<(*:<3,21>),(*:<15,ll>),(*:<7,13>),(*:<4,l4>)> 

b.) Reduction of Expression in a.) 

Figure 5. An example of an Outer-Most Reduction 

14 
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The lenient cons was included to enhance the machine's 

ability to exploit concurrency as discussed by Friedman and 

Wise [6]. The lenient cons allows data structures to be 

created by joining two sublists into a new list. It does 

not however evaluate its arguments when it executes. The 

evaluation of any elements that are joined before they are 

evaluated is performed when a reference is made explicitly 

to them. These data structures can be accessed even though 

parts of them may not be evaluated. This is opposed to the 

strict cons that would demand the evaluation of its 

arguments prior to completion of its execution. A side 

benefit of this is that inclusion of the lenient cons allows 

for the construction of potentially infinite data 

structures. 

it includes 

profitable. 

The proposed machine is of a hybrid type since 

attempts to predemand operands when deemed 

The predemanding ability allows their machine 

to execute as a pure data flow machine at times. 

As a final note in the historical development of the 

demand driven concept, Treleaven, Brown, and Hopkins [17] as 

well as Davis and Keller [4] mention that a demand driven 

data flow machine can be considered an extension of a pure 

data flow machine. This follows in the sense that, if each 

instruction in the pure data flow machine were required to 

have one more operand, with that operand being a demand 

signal from an immediate successor of the instruction, then 

the transition would have been made from a pure data flow 

machine to a demand driven data flow machine. In other 
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words the demand signal could be treated as data. This is 

generally agreed to be a poor approach to take [4,17). 

Summary 

A demand driven data flow architecture is a new style 

of architecture that departs from some of the von Neumann 

architectural principles. Demand driven computation is a 

subclass of reduction computation. Demand driven data flow 

computation can be traced using graphs representing the 

computation. Demand, execution and reference fringes have 

been introduced as tools to trace the execution of demand 

driven data flow programs. 



CHAPTER II 

A DEMAND DRIVEN DATA FLOW MODEL 

A Demand Driven Data Flow Computer 

with a Memory Hierarchy 

In this section, a possible architecture for a demand 

driven data flow computer is discussed. The purpose of the 

examination of a possible model is to allow for a discussion 

of how a demand driven data flow environment might be 

implemented and of how program execution progresses in such 

an environment. A memory hierarchy is shown for 

illustrative purposes. While the design serves as a useful 

tool in this study, the feasibility of its actual 

implementation is not considered here as it does not fall 

within the scope of this study. 

The approach to this design specification began with a 

study of current data flow architectures. One of the main 

considerations in examining current specifications is the 

memory design. While systems have been proposed with 

memories local to each processing element, this section only 

examines a computer with a global memory equally accessible 

to all processing elements. This is not meant to imply that 

architectures with local memories could not be modified to 

incorporate a memory hierarchy to further benefit from the 

17 
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effects of program locality should it be found to exist in 

this environment. 

A possible architecture appears in Figure 6. The model 

illustrated contains many components commonly found in 

current data flow machines. The model is, in fact, a 

modified version discussed by Thoreson [16]. The main 

difference between this architecture and pure data flow 

machines appears in the addition of an extra component 

entitled a propagation box. This addition is to determine 

when instructions are to be evaluated and when demands need 

to be propagated. Its operation is discussed with its 

internal components below. 

The box entitled processing elements in Figure 6 

represents a group of asynchronously executing processors 

each capable of executing any instruction ready for 

execution. A processor is selected for an instruction 

packet by the arbitration network shown to the left of 

primary memory. Thus the function of this specific 

arbitration network is to direct an instruction packet from 

one of its input lines stemming from primary memory to an 

output line which terminates at a specific processing 

element. 

The distribution network routes results to specific 

instruction packets in memory from a given input line. The 

processing elements pass results to instruction packets 

located in memory via the distribution network shown above 

the primary memory module in Figure 6. 



I • • 

ANC 

Processing 
Elements 

DN 

Primary ~--::;;~ 
Memory 

ADN 

Secondary 
Memory 

DPB ~~~-Initial Demand 
for Main Result 

ADN - Combined Arbitration and Distribution Network 
ANC - Arbitration Network Controller 
C - Controller 
DN - Distribution Network 
DPB - Demand Propagation Box 

Figure 6. A Demand Driven Data Flow Architecture 
with a Secondary Memory 
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The memory scheme is of a cellular type as discussed by 

Dennis [4] modified however to incorporate a hierarchical 

concept as discussed by Thoreson [16]. The basic operation 

of the memory module is that it may accept, update, and 

transmit an instruction packet. Updates for an instruction 

packet may arrive from either the processing elements as 

results, or from the propagation box which can set the 

demand bit in an instruction packet if it has been demanded 

and the demand bit has not already been set. If an 

instruction packet has its demand bit set and is waiting in 

memory for the arrival of the operands it needs to execute, 

a special check must be made by the memory. This check must 

be made with each arriving operand for each instruction 

packet with its demand bit set. The check is made to see if 

the new arrival is the last operand needed for a specific 

instruction to begin execution given the fact that it has 

already been demanded. If the arrival is the last needed 

operand then a copy of the instruction packet is passed on 

to the arbitration network which transmits it to a 

processing element. If the arrival is not the last needed, 

then no action other than a normal update is performed. 

An instruction packet is brought into primary memory 

when it is referenced and when it is not currently resident 

in primary memory. In such a case, a signal is sent to the 

controller shown between the primary and secondary modules 

in Figure 6. The function of the controller when called 
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upon is to fetch into primary memory the block of memory 

containing the referenced instruction. In doing so, the 

controller must resolve the common problems of placement and 

replacement. No attempt will be made at this time to 

discuss which of the strategies for placement and 

replacement might be more appropriate for this design. The 

size of the blocks transferred is also not taken into 

account in this study. The main purpose of this memory 

discussion is to illustrate a virtual memory scheme which 

could be incorporated into the design should it be 

warranted~ however, the management details of such a scheme 

are not discussed here as they are not within the scope of 

this study. 

The operation of the propagation box illustrated in 

Figure 6 is very similar to the propagation-evaluation box 

proposed by Keller [9,10]. In this approach the demand 

propagation hardware has been disassociated from the 

evaluation hardware. The operation of the propagation box 

for this proposal is as follows. When an instruction is 

demanded, a copy of that instruction is passed from primary 

memory to the propagation box through the combined 

arbitration distribution network shown directly above the 

propagation box. Upon receiving the instruction packet, the 

propagation box determines whether the necessary operands 

are available for the execution of that instruction to 

begin. If they are, then the propagation box signals the 

memory to send a copy of the instruction to a processing 
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element for evaluation. If the operands are not 

available, then the propagation box propagates the demand 

for the missing operands. The first step in this operation 

is to determine if the missing operands have already been 

demanded. This can easily be accomplished in a scheme that 

adds a demand bit to each instruction packet. In such a 

scheme, if the bit is set, then the result of that 

instruction has already been demanded. If the demand bit is 

not set then the result of that instruction has not been 

demanded. The demand bit must now be set, and a copy of 

that instruction is sent to the propagation box so that the 

above process may be repeated for this new instruction. 

Since instructions are executed only upon demand, the 

question must be raised as to how a process is started. The 

provision for starting a program is provided on the right 

hand side of the propagation box in Figure 6. A copy of the 

instruction that produces the final result for the task is 

fed into the side of the propagation box to signal an 

initial demand from the environment for the result of the 

process. This will begin the execution cycle. For further 

clarity a flow chart of the operation of the propagation box 

is illustrated in Figure 7. 

Software and Instruction Set Considerations 

For the purpose of examining program locality in a 

demand driven data flow environment, a hand trace execution 

of the assembler code produced for such an environment is be 



(Instruction Packet,. Packet Address) 

-----~-------
I Get Next 
Instruction 

-----i-------
__________ i ___________ _ 

Has this Instruction Yes 
Already been Demandedi--~~~~~~-3>1 

(Demand Bit Set?) 

----------1------------No 

------- ----------
Set Demand 

Bit for 
this Instruction 

Available? Copy of this 

-------i---------- instruction to No a Processor 
-------- -------

--------- -----------
I Have All Operands 

been Demanded? 

---------1-----------No 

---------- ------------
Send a Copy of 
the Instruction 

Packet Producing 
each Operand to 

the Propagation Box 

Yes 

Figure 7. Operational Flow Chart for the Demand 
Propagation Box 
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performed for several test programs. The compiler used in 

an Iowa State data flow simulator project [16] is be used as 

an aid to produce demand driven data flow assembler code. A 

more detailed description of the instruction set may be 

found in [16]. The purpose of using the compiler is to 

generate assembler code, from the source code, that can be 

examined for locality. The usage of the compiler for 

translation purposes will prevent any bias, on the part of 

the author, that might have an effect on locality. The 

source code input to the compiler appears in a Pascal-like 

form and has standard features for input, output, 

assignment, and looping. 

The assembler output from the compiler, while suitable 

for a pure data flow machine, requires considerable manual 

modification in places before an examination of locality can 

proceed. The main point of trouble in the manual conversion 

from data flow code'to demand driven data flow code centers 

around the fact that logical structures are treated very 

differently in both environments. When considering a loop 

structure where initial values are fed into the body of a 

loop and the loop calculates values that are fed back into 

the body of the loop, immediately it is apparent that the 

pure data flow code must include a mechanism to control 

which values will be fed into a given iteration of the loop. 

The demand driven environment tends to have the opposite 

problem. In the demand driven environment, a mechanism must 

be provided to determine what instructions to demand to get 
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the proper values fed into the loop for each iteration. 

The instruction used in a pure data flow environment to 

control what values are fed into a structure and what values 

are released from a structure is called a merge instruction. 

The merge instruction takes as one input the output of the 

conditional statement controlling the structure. The type 

of control a merge instruction offers is not needed in a 

demand driven data flow environment. Therefore, all 

occurrences of the merge instruction will be removed from 

the code produced by the compiler. 

Aside from removing the merge instructions, there is 

still the problem of implementing a method to control the 

demands in such a way that during one iteration of a loop 

the initial values are demanded and on another iteration of 

the loop values calculated on a previous iteration of the 

loop may be either accepted or demanded. There are three 

other problems that must also be addressed. The first 

problem sterns again from the difference in the way code is 

executed in the two different environments. The actual 

problem is how to perform iterations in a demand driven data 

flow environment. Iteration in a pure data flow environment 

is controlled by feeding operand values to the instructions 

comprising the loop body. In a demand driven environment 

however, the results of a loop are only be demanded once; 

hence, a mechanism must be added to provide repeated demands 

to drive a loop through its successive iterations. 
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Another problem to be dealt with is an outcome of 

removing the merge instructions from the data flow code 

produced. There are cases where an initial value is 

repeatedly cycled through a loop without being modified. 

This is accomplished in the pure data flow environment by 

having a merge instruction pass the desired value to the 

instructions needing that value and also to an identity 

instruction. The destination for the identity instruction 

will in turn be the merge instruction that fed a value to 

it. This allows for the cycling of values that are not 

modified within the body of a loop but are needed 

repeatedly. Since the merge instructions are to be removed, 

a mechanism must be provided to allow non-modified values to 

be cycled in a demand driven environment also. The removal 

of these merge instructions, used for cycling values, 

implies the need for removal of the identity instructions 

used in conjunction with these merges for cycling values. 

The last problem to be dealt with is how to handle if­

then-else structures in a demand driven data flow 

environment. The if-then-else structure, when demanded, 

must propagate demands to the instructions producing the 

necessary results. Since both the then and the else 

sections may produce results, a mechanism must be provided 

to demand the instructions to produce the required results 

selectively. 
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The last step in the modification of code process is to 

update the addresses of the instructions and their 

destination addresses. Since there are instructions which 

are removed and which are added to the initial code obtained 

as output from the compiler, the address fields for the 

results computed by instructions that are to be kept from 

the original compiler output must be updated to reflect the 

removal and addition of other instructions. 

The first of these problems, allowing for the ability 

to be able to demand results from different instructions, 

has an easy solution. The identity ·instruction has been 

modified to create a new instruction. This new instruction 

contains the addresses for the two different instructions 

producing its operand. This instruction also takes the 

output of a conditional operation as a control input. If 

the control input to this newly modified instruction is 

false, then the initial producer for the desired value is 

demanded. If the control input is true, implying that the 

body of the loop has executed once, then the second address 

is demanded. The second address is the address of the 

instruction that provides the modified value to be used in 

the current iteration. This new instruction is referred to 

as a 2aid (two address identity) instruction to distinguish 

it from a standard identity instruction which has only one 

address for the single instruction producing its operand. 
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To handle the problem of how to control iteration in a 

demand driven environment, a new instruction has been added. 

This instruction is called an invokeid instruction. This 

instruction has three operands. The first operand is the 

result of the conditional instruction controlling the loop 

in question. The second operand is the result of the loop 

for a given iteration should the value returned from the 

conditional operation be true. The last operand is the 

result to be passed on, should the conditional return a 

false value. 

The invokeid instruction's execution is as follows. 

Once an invokeid instruction has been demanded, it 

immediately demands a value from the conditional instruction 

that controls the execution of the loop body. Upon 

receiving the result of the conditional operation, the 

invokeid instruction demands the result, computed in the 

body of the loop, for its second operand if the value of the 

conditional value 

is false, then the 

demanded. Upon 

received is true. 

value for the 

If the value received 

third input field is 

receiving the value needed to complete its 

execution, the invokeid instruction continues its execution. 

If the value received from the conditional was true, then 

the instruction will send its second operand as a result to 

the third operand to the next invocation of this invokeid 

instruction. The instruction then demands the next 

invocation of itself, thereby allowing a mechanism for 
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another iteration of the loop should it be found to be 

necessary. If the input from the conditional was false, 

then the instruction will only pass the value in its third 

input field on to the instruction that initially demanded 

this invokeid instruction. 

Keller's [9,10] method for performing iteration is to 

invoke the loop recursively until the controlling condition 

becomes false. Each recursive invocation of a loop was a 

completely duplicated copy of the original. In this scheme, 

there may be many copies of a loop existing at the same time 

within the system. The effects of this scheme on locality 

are examined in chapter three. 

The next problem to be addressed is how to cycle values 

within a loop. The problem stated more clearly is that once 

a loop is demanded, there must be a mechanism to demand a 

value from outside the loop so that it can be repeatedly 

cycled through the loop until the conditional instruction 

controlling the continuation of the loop becomes false. 

While the body uses this value on each iteration, it is not 

be modified in any iteration. To give the demand driven 

environment this looping capability, the original identity 

instruction of the pure data flow environment had to be 

modified to create a new instruction, the cid or circular 

identity instruction. 

The execution of the cid instruction is such that, when 

it has a false value, it demands a value from the only 

producer of that value. If the control value is true, then 
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it uses whatever value it currently has stored. When the 

instruction is executed, it passes the desired value not 

only to the instruction that demanded it but also to itself. 

The fact that it is capable of cycling values prompted the 

term circular to be used as a pref ix to the name identity • 

Thus the cid instruction allows a value to be available to 

each iteration of a particular invocation of a loop and for 

the entire life of that invocation of that loop. 

The last problem to be addressed is how to handle an 

if-then-else structure in a demand driven data flow 

environment. In the demand driven environment, only 

instructions that are necessary to the final result are to 

be executed, so it must be insured that a mechanism be 

provided that only allows one of the two blocks, either the 

then block or the else block, to execute. This was handled 

by adding a new instruction entitled ifthenel. Its operation 

is very similar to the invokeid instruction with one most 

notable exception that the ifthenel instruction does not 

have the capability to demand itself. This feature is not 

needed since an if then else structure is not a loop 

structure, so no mechanism is needed to provide iteration. 

To be more specific, when the ifthenel instruction is 

demanded, it first demands the result of the conditional 

statement controlling the outcome of the if-then-else. If 

the conditional value is true, then the ifthenel instruction 

demands the value calculated in the then section otherwise 

the value calculated in the else section is demanded. When 
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the calculated value is received, it is passed on to the 

instruction that demanded the ifthenel instruction, 

completing its execution. 

Figure 8 contrasts the format of an identity 

instruction in a pure data flow environment to its format in 

a demand driven data flow environment. Also shown is the 

2aid instruction. All figures are shown with only 3 

destination addresses just for illustrative purposes. Note 

that, in this demand driven data flow scheme, there are two 

fields within the instruction templates for each operand. 

The first field contains the address of the instruction 

producing the operand. The second field is used to hold the 

actual operand itself. This is necessary for the 

instruction to be reentrant. It would be possible to have 

an instruction format where only one word is needed for each 

input operand. Initially, the address of the instruction 

producing that operand is placed in the input operand word. 

When the result is passed to the instruction packet the 

address is over-written with the result. This implies that, 

the next time the instruction needs to be executed, a new 

copy must be produced with the address of the instruction 

producing the needed operand back in the location for the 

result. 

Summary 

Conceptually, the hardware for a demand driven data 

flow machine can appear very similar to a pure data flow 
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ID 

operand 

result address 

result address 

result address 

a.) Pure Data Flow ID Instruction Format 

ID 

operand address 

operand 

result address 

result address 

result address 

b.) Demand Driven ID Instruction Format 

2AID 

operand address 

operand address 

operand 

result address 

result address 

result address 

c.) Demand Driven 2AID Instruction Format 

Figure 8. Examples of Instruction Formats 



33 

machine. A modification is necessary to provide for 

demand propagation, however. 

The assembler code provided by a data flow compiler had 

to be modified to support demand driven data flow 

computation. The merge instructions had to be removed, and 

four new instructions had to be added. The invokeid 

instruction was added to support iteration. The cid 

instruction was added to support the cycling of unmodified 

values through successive iterations of a loop. The 2aid 

instruction was added and has the ability to demand two 

different instructions to produce the same operand. Thus, 

the 2aid instruction can pass an initial value to an 

instruction and later provide a computed value as an 

operand. An ifthenel instruction was added also. The 

ifthenel instruction demands the instructions, within either 

the then or the else sections of code, that produce the 

demanded value from an if-then-else structure. 



CHAPTER III 

LOCALITY 

A Discussion on Locality 

Locality is the property (observed in programs) that 

references to instructions and data tend to cluster into 

specific groups both in space and in time. Furthermore, 

this clustering effect has been observed to be non-uniform 

in both time and space. Locality typically has been split 

into two classes: spatial and temporal locality. 

Spatial locality is the observed behavior in executing 

programs that instruction reference patterns cluster in the 

program space. Spirn [15] defines spatial locality as 

follows: 

If word w is referenced at time t, then words in 
the range w-i to w+i for some small i are likely 
to be referenced at times close to t, according to 
the notion of spatial locality (p 49). 

Put more simply, if a specific instruction within a program 

is referenced, it is highly probable that an instruction 

physically close to the instruction just referenced will 

also be referenced in the near future. This type of 

locality is normally produced by straight line sequential 

code in a program in a von Neumann environment. 

34 
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Temporal locality is the observed program behavior that 

instruction reference patterns tend to cluster within time. 

If a specific instruction is referenced within a specific 

time interval, it is likely that that instruction will be 

referenced again within the next time interval of equal 

duration. Short loops in programs typically exhibit this 

type of behavior. 

System designers can capitalize on the property of 

locality by utilizing software and hardware that attempt to 

keep these clusters of referenced addresses close together. 

If this can be done with a high degree of success, then, 

during any time within the execution of a given program, 

only that part of the program containing the current cluster 

of references being accessed need be available for access. 

This is the motivation for a memory hierarchy scheme. The 

scheme most typically employed involves keeping only as much 

of the executing program in primary memory or the highest 

level of the memory hierarchy as is needed to satisfy the 

current cluster of references. 

It has been common to consider that locality is solely 

the property of a program. A closer examination shows that 

the environment in which a given program is executed can 

have a considerable effect on locality. In a data flow or a 

demand driven data flow environment, the order of 

instruction reference is, in general, considerably different 

from that of a typical von Neumann environment executing the 
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same program. This is due to the fact that the mechanism 

for triggering instruction execution in the data flow and 

demand driven data flow environment is considerably 

different from that of the von Neumann environment. This 

implies that a locality that might exist when a program is 

run under one environment may not exist when run under 

another environment. 

Another important issue is spatial locality. In a von 

Neumann machine with its program counter controlled 

execution, spatial locality is a natural outcome, because 

any section of code not containing some type of branch 

instruction will be executed in sequential order. Thus, 

these sections of code will exhibit spatial locality as a 

natural outcome of the executing environment. However, this 

property does not hold true in a demand driven data flow 

environment. The natural mode of execution is not 

sequential in a demand driven data flow environment and 

hence sections of code that form spatial localities in a von 

Neumann environment are by no means guaranteed to form 

similar localities in a demand driven data flow environment. 

Spatial Locality Analysis 

Since straight-line code produces spatial locality in a 

von Neumann type sequential environment, an examination of 

the effects of straight line code in a demand driven data 

flow environment is. It was noted by Thoreson [16] that 

straight line code in a data flow environment may produce 
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spatial localities. She also noted that one section of 

straight-line code in a data flow environment could in fact 

result in more than one observed spatial locality. These 

observations hold true for a demand driven data flow 

environment as well. However, straight line code is not a 

sufficient condition for spatial localities to exist in a 

demand driven data flow environment. The existence of a 

spatial locality can be guaranteed if the following two 

conditions can be shown to be true. The first condition is 

that a straight-line code segment exists and is compiled in 

such a way that the compiled statements generated for that 

straight-line segment are also grouped together in the 

compiled output. The next condition is that at least one 

data dependency exists such that, if one of the compiled 

instructions from the straight-line code segment is fired at 

time t, that instruction's execution also triggers the 

execution of at least one other instruction within the group 

of compiled instructions produced by the compiler for the 

straight-line code segment at time t+l. 

Illustrated in Figure 9 ts a program to calculate the 

volume of a cone. The compiled code for the high level code 

is shown in the middle of the page; in addition the demand 

driven data flow graph, minus the input-output operations, 

is shown at the bottom of the page. The operations in the 

graph have been numbered to reflect the corresponding 

instruct1on number in the compiled code. As noted by 

Thoreson [16], each path in the graph represents a potential 



PROC VOL 
BEGIN 

END 

REAL V,R,H; 
FILE INF,OUTF; 
INPUT R,H FILE=INF FORMAT=F(6,3),F(6,3); 
V = (1.0/3.0) * 3.14159 * R**2 * H; 
OUTPUT V FILE=OUTF FORMAT=F(6,3) 

a.) High Level Code 

0 CONS INF;l 
1 READ @0, ,F(6,3);2,3 
2 SELECT @I, ,1;4 
3 SELECT @1,-,2;7 
4 READ @2, ,f(6,3);5 
5 SELECT @4, ,2;9 
6 I 1.0,3.0;8 
7 ** @3, ,2;9 
8 * @6, ~3.14159;10 
9 * @5, ,@7, ;10 

10 * @8, ,@9, ;12 
11 CONS OUTF;l2 
12 WRITE @ll,_,F(6,3),@10,_; 

b.) Compiled Code 

1. 0 3.0 PI H R 2 

6 

c.) Data Flow Graph 

Figure 9. High Level and Compiled Code with Associated 
Data Flow Graph Computing Volume of a Cone 

38 



39 

spatial locality. An example of a path in Figure 9c would 

be the path consisting of nodes 5, 8, and 9. Other paths 

also exist. Figure 9 illustrates that this one straight 

line code segment (instructions five through nine in the 

compiled listing) produces three potential spatial 

localities. The word potential is used here to point out 

that, a data dependency in the graph, does not guarantee the 

existence of a spatial locality. The instructions within 

the path must be grouped together in the compiled version of 

the program. This implies that the order the compiler 

produces the compiled code may have a significant effect on 

the spatial localities actually observed for a given 

program. 

Temporal Locality Analysis 

The first step in determining if spatial locality 

existed in a demand driv~n data flow environment was to 

examine the behavior of several programs in execution under 

just such an environment. Figure 10 illustrates the first 

example considered. The program in Figure 10 calculates the 

value of the sine of a given angle iteratively by means of a 

Taylor series expansion of the sine function. The behavior 

of the execution of the loop in the program is captured in 

the execution fringe illustrated in Figure 11. Figure 11 

illustrates an execution of the program that required three 

iterations of the loop for this example. 



PROC SINE 
BEGIN 

END 

REAL SIN,X; 
INTEGER I,J,N,IFACT; 
FILE INF,OUTF; 
INPUT·X,N FILE=INF FORMAT=F(6,4),I(3); 
J : = 2; 
SIN = 0.0; 
I := l; 
IFACT = l; 
WHILE I <= N DO 

END; 

SIN := SIN + (-l)**J*X**I/IFACT; 
I := I + 2; 
!FACT := IFACT*(I-l)*I; 
J := J + 1 

OUTPUT SIN FILE=OUTF FORMAT=F(6,4) 

a.) High Level Code 

0 CONS INF;l 
1 READ @0, ,F(6,4);2,3 
2 SELECT @I, ,1;4 
3 SELECT @1,-,2;14 
4 READ @2, ,f(3);5 
5 SELECT @4, ,2;26 
6 CONS 2;11 
7 CONS 0.0;19,28 
8 CONS 1;13 
9 CONS 1;17 

10 NEG 1;12 
11 2AID @6,@25, ;12,25 
12 ** @10, ,@11:- ;16 
13 2AID @8:-@21, Tl5,21,27 
14 CID @3, ;14,15 
15 ** @13, ,@14, ;16 
16 * @12, :-@15, ;1a 
17 2AID @9,@24,-;18,23 
18 I @16, ,@17,-;20 
19 2AID @7,@28 T20. 
20 + @18, ,@19:- ;28 
21 + @13, ,2;13:-22,24 
22 - @21, ,1;23 
23 * @17,-,@22, ;24 
24 * @21,-,@23,-;17 
25 + @ll,-,1;11-
26 CID @5:- ;26,27 
27 <= @13,-,@26, ;11,13,14,17,19,28 
28 INVOKEifi @27,-,@20, ,@7, ;19,28,30 
29 CONS OUTF;30 - - -

b.) Compiled code 

Figure 10. Program to Calculate Sine using Taylor Series 
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t I 2 3 4 5 6 1 0 9 10 11 12 13 14 15 16 11 10 19 20 21 22 23 24 25 26 21 

29 8 13 0 2 
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4 5 26 27 7 9 10 6 11 12 16 18 20 28 
19 17 15 

14 

t I 20 29 30 31 32 33 34 35 36 31 38 39 4o 41 42 43 44 45 

26 21 13 27 19 10 15 
14 22 

25 

11 
23 

12 
24 

16 
17 

18 20 
28 I 

t I 46 41 48 49 5o 51 52 53 54 55 56 51 58 59 60 61 62 63 

26 21 13 27 19 

t I 64 65 66 61 68 69 10 11 

26 21 13 27 28 30 

10 
14 

15 
22 
25 

Figure 11. 
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24 
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17 

18 

Continued. 
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Upon examination of the execution fringe, it is 

apparent that, during the first iteration of the loop (top 

line of Figure 11), several instructions not within the body 

of the loop are also executed. These instructions executed 

outside the loop are the instructions that feed the 

necessary initial values into the body of the loop. After 

the completion of the first iteration of the loop, the 

execution fringe takes on a very cyclic appearance with a 

period of eighteen time units (second and third lines of 

Figure 11). After the initial iteration of the loop, the 

following iterations all fire the same instructions at the 

same time-offset as the previous iterations. This cyclic 

appearance continues until the condition controlling the 

while loop becomes false (last line of Figure 11). Note, 

that even then the instructions executed form a subset of 

the instructions in the preceding cycles. These repeating 

groups of executing instructions form a locality. This 

locality exhibited is an example of a temporal locality. 

The actual type of loop control used , while (test at 

top) or repeat (test at bottom), has no effect on the 

locality exhibited. The reason for this is due to the fact 

that the only difference between a loop controlled by a 

repeat statement and a loop controlled by a while statement 

is that the body of the repeat loop is guaranteed to execute 

at least once while this guarantee does not exist for the 

while loop. If a repeat statement had been used in place of 
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the while statement in Figure 10, the only difference 

detectable in the execution fringe would result in the first 

line of Figure 11. The observed localities would remain the 

same. Similar results were found to be true for the loops 

in both programs listed in Appendix A. 

Physical replication of code allows for a significant 

decrease in program execution time provided that there are 

enough processing elements to handle the extra work load due 

to the added concurrency. The results of the halting 

problem are useful in determining when code replication is 

applicable. A conclusion that may be drawn from the halting 

problem is that it is not possible to know, for the 

case, how many iterations a loop will execute 

exiting. Thus the use of physical replication 

general 

before 

of code 

limits itself to cases where the number of iterations can be 

determined before the actual execution of the loop. 

One example where code replication is applicable occurs 

where a loop exists that uses a counter with constants used 

for the initial value, the increment, and for an upper bound 

as well. If, in this case, the counter is compared to the 

constant upper bound to determine whether another iteration 

is to be made, it is possible to determine how many 

iterations are necessary at compile time and code 

replication can be utilized. An example of this type of 

condition is provided in Figures 12 and 13. 

Figure 12 illustrates the code and execution fringe for 

a loop that could have its body physically replicated while 
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Figure 13 shows the same high level code with the body of 

the loop physically replicated to the extent that the loop 

no longer exists. Temporal locality is not exploited when 

physical replication is used to this degree, because 

instructions are not reused. Temporal locality results when 

the instructions that have already been used are reused and 

an examination of the execution fringe in Figure 13 shows 

this not the case. Physical replication of code also 

increases memory requirements since there are more 

instructions in the compiled code produced and, for those 

added instructions to execute concurrently, they must all 

reside in main memory concurrently. 

Summary 

Spatial locality is a clustering of memory references 

in the program space. Temporal locality is a clustering of 

memory references in time. Potential spatial localities 

exist in a demand driven data flow environment. The actual 

spatial localities observed are compiler dependent. Temporal 

locality exists in a demand driven data flow environment 

when the instructions are reused. Complete physical 

replication of code prevents recurrent instruction usage and 

usage results in a loss of all temporal locality. 



t I 4 5 

WHILE C <= 4.0 DO 

END 

6 . . . 

D := SQRT(B**2 - 4.0 *A* C); 
OUTPUT D FILE=OUTF FORMAT=F(6,3); 
c := c + 1.0 

a.) High Level Code 

6 CID @3, ;6,12 
7 CID @5, ;7,11 
8 CONS 1. 0; 10 
9 <= @10, ,4.0;6,7,8,10,17 

10 2AID @8~@16, ;9,13,16 
11 ** @7, ,2;14-
12 * 4.0,@6, ;13 
13 * @10, ,@I2, ;14 
14 - @11,-,@13,-;15 
15 WRITE @14, ,OUTF,F(6,3);17 
16 + @10, ,l.0;10 
17 INVOKEID @9,_,@15,_,@4,_;-

b. ) Compiled Code 

14 15 16 17 18 19 20 21 22 23 
----------------------------------------------------------

8 10 9 0 1 2 4 5 7 11 14 15 17 
3 6 12 13 

t I 27 28 29 30 31 32 33 34 35 36 37 38 39 
------------------------------------------------------

16 10 9 7 6 12 13 14 15 17 
11 

t I 43 44 45 46 47 48 49 50 51 52 53 54 55 
------------------------------------------------------

16 10 9 7 6 12 13 14 15 17 
11 

c • ) Execution Fringe for Three Iterations 

Figure 12. Example without Physically Replicated Code 
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D := SQRT(B**2 - 4.0 *A* C); 
OUTPUT 0 FILE=O FORMAT=F(6,3); 
c := c + 1.0; 
D := SQRT(B**2 - 4.0 *A* C); 
OUTPUT D FILE=O FORMAT=F(6,3); 
c := c + 1.0; 
D := SQRT(B**2 - 4.0 *A* C); 
OUTPUT D FILE=O FORMAT=F(6,3); 
c := c + 1.0; 
D := SQRT(B**2 - 4.0 *A* C); 
OUTPUT D FILE=O FORMAT=F(6,3); 
c := c + 1.0; 

a.) High Level Code 

t I 4 5 6 7 8 9 

. 
6 CONS l.0;9,12 
7 ** @5, ,2;10 
8 * 4. 0 ,@3, ; 9 
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9 * @6, ,@0-; ;10 
10 - @7,-,@9,-;ll 
11 WRITE-@10,-,0,F(6,3); 
12 + @6, ,1.0T15,18 
13 ** @5-; ,2;16 
14 * 4.0,@3, ;15 
15 * @12, ,@I4, ;16 
16 - @13,-,@15,-;17 
17 WRITE @16, ,O,F(6,3); 
18 + @12, ,1.0;21,23 
19 ** @5 - 2·22 '-' , 20 * 4.0,@3, ;21 
21 * @18, ,@20, ;22 
22 - @19,-,@21,-;23 
23 WRITE @22, ,O,.F(6,3); 
24 + @18, ,l.0;27 
25 ** @5,-,2;28 
26 * 4.0,@3, ;27 
27 * @24, ,@26, ; 28 
28 - @25,-,@27,-;29 
29 WRITE @28_,o-;F(6,3); 

b.) Compiled Code 

10 11 12 13 14 15 
----------------------------------------------------

I 
6 0 1 2 4 5 7 10 11 

I 3 8 9 

I 12 4 15 13 16 17 I 
----------------------------------------------! 18 20 21 19 22 23 I 

------------------------------------------
! 24 26 21 25 20 29 I 

c.) Execution Fringe 

Figure 13. Example of Physically Replicated Code 



CHAPTER IV 

SUMMARY, CONCLUSIONS, AND 

SUGGESTED FUTURE 

RESEARCH 

Summary 

Demand driven computation is a subclass of reduction 

computation with the restriction that all reductions 

performed must be outer-most reductions. Demand driven data 

flow machines are capable of exploiting massive parallelism 

and supporting functional programming languages efficiently. 

A demand driven data flow machine has no global memory for 

storing results and has no program counter. Execution, 

reference, and demand fringes are introduced as tools that 

aid in tracing the execution of a demand driven data flow 

program. 

A demand driven data flow model is presented that 

resembles a data flow machine. The major difference between 

the two is in the addition of a hardware component to 

propagate demands in the demand driven data flow model. A 

memory hierarchy is also illustrated in the model presented. 

A data flow compiler is used to produce compiled code for a 

program behavior analysis. The compiled code has to be 

modified to support computation in a demand driven data flow 
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environment. Several new instructions are presented to 

support iteration and program control structures. 

A locality analysis is performed by examining program 

execution behavior in a demand driven data flow environment. 

The programs are executed by hand. Both spatial and 

temporal locality are considered in this study. 

Conclusions 

To provide iteration in a demand driven environment, a 

mechanism must be provided to repeatedly demand the body of 

a loop. An instruction that provides repeated demands is 

presented in this study. 

An analysis of program behavior, under the environment 

specified in the study, determined that spatial localities 

do exist in a demand driven data flow environment. Spatial 

locality in a demand driven data flow environment will be 

dependent upon the ordering of the assembled instructions 

comprising the paths of the data dependencies within the 

program. It turns out that the paths for demand propagation 

do not change the possible spatial localities. This is 

because the demand paths form a subset of the data paths. 

Continued program behavior analysis determined that 

temporal locality also exists in a demand driven data flow 

environment. To exploit temporal locality, it is necessary 

that the instructions comprising the locality are 

recurrently executed for each iteration of the loop. 
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To increase the amount of temporal locality 

exploitable, a space concession had to be made in terms of 

the instruction size. This situation occurs only in a 

demand driven data flow environment and not in its pure data 

flow counterpart. In a demand driven environment, the 

address of the instruction producing the operand it needs 

must be stored in the instruction needing that operand. For 

each operand needed, the instruction will have two separate 

locations. The first will be a location to hold the address 

of the instruction producing the necessary operand. The 

second location will be the location where the operand, once 

available, will be stored. Thus, in this scheme, there will 

be no need to periodically refresh the memory with a new 

copy of the instruction since the essential parts of the 

instruction, including the addresses to be demanded, will 

never be modified. Since one of the main goals is recurrent 

instruction usage, this feature enhances the demand driven 

machine's ability to exploit temporal locality. 

Suggested Future Research 

The area of demand driven computation, as in any 

relatively new area of study, has many openings for future 

research. Future work along the lines of this study would 

indicate that the writing of a simulator for a demand driven 

data flow machine with a memory hierarchy would be in order. 

Once such a simulator was available, then research work 
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could be done to determine what types of memory management 

policies would be best in this type of environment. 

Further research might also investigate the 

possibilities of pipelining a demand driven data flow 

machine and on the question of whether such a machine would 

be capable of better exploiting concurrency than the non­

pipelined type discussed in this study. 
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Test Program Implementing Simpson's Rule 

PROC SIMP 
BEGIN 

END 

REAL SUM2,SUM4,H,K,ANS,A,H2,B; 
REAL FOFA,FOFB,FVAL2,FOFBMH,FVAL1; 
INTEGER I,N; 
FILE INF,OUTF; 
PROC FUNC(IN(K),OUT(F)) 
BEGIN 

REAL K,F; 
F := (-(K**2}) + 4.0 

END; 
INPUT A,B,N FILE=INF FORMAT=F(6,3),F(6,3),I(3); 
SUM4 := 0.0; 
SUM2 := 0.0; 
H : = ( B - A ) /N ; 
H2 := H + H; 
X := A + H; 
I := l; 
REPEAT 

FUNC(IN(X+H),OUT(FVALl); 
SUM4 := SUM4 + FVALl; 
FUNC(IN(X),OUT(FVAL2)); 
SUM2 := SUM2 + FVAL2; 
I := I + 2; 
X := X + H2 

UNTIL I >= N-3; 
FUNC(IN(A),OUT(FOFA)); 
FUNC(IN(B),OUT(FOFB)); 
FUNC(IN(B-H),OUT(FOFBMH)); 
ANS := (H/3.)*(4.*SUM4+2.*SUM2+FOFA+4.*FOFBMH+FOFB); 
OUTPUT AND FILE=OUTF FORMAT=F(6,3) 

55 



Data Flow Code Produced for Simpson's Rule Program 

PROC SIMP 
0 ID (T=S,R='NIL' )(T=S,D=l.1,79.1,63.1,55.1,48.1,17.1, 

12.1,11.1) 
1 CONS (T=S)(T=F,R='INF' ,C=C) (T=F,D=2.1) 
2 READ (T=F)(R~F(6,3),T=C,C=C)(T=S,D=3.1,4.1) 
3 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=5.1) 
4 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=l3.2,52.l,16.1) 
5 READ (T=F)(R=F(6,3),T=C,C=C)(T=S,D=6.1,7.1) 
6 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=8.1) 
7 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=13.1,62.1,59.1) 
8 READ (T=F)(R~I(3),T=C,C=C)(T=S,D=9.1,10.1) 
9 SELECT (T=S)(R=l,T=I,C=C)(T=F,D~ ) 

10 SELECT (T=S)(R=2,T=I,C=C)(T=R,D=14.2,25.1) 
11 CONS (T=S)(T=R,R=0.0,C=C)(T=R,D=21.1) 
12 CONS (T=S)(T=R,R=0.0,C=C)(T~R,D=22.1) 
13 - (T=R)(T=R)(T=R,D=14.1) 
14 I (T=R)(T=I)(T=R,D=15.l,70.l,62.2,20.1,16.2,15.2) 
15 + (T=R)(T=R)(T=R,D=24.1) 
16 + (T=R)(T=R)(T=R,D=19.1) 
17 CONS (T=S)(T=I,R=l,C=C)(T=I,D=23.1) 
19 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=26.l,44.1,39.1, 

35.1,27.1) 
20 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=20.2,26.2) 
21 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=34.l) 
22 MERGE (T=R)(T=R,C=F)(G=T,@=18)(T=R,D=42.l) 
23 MERGE (T=I)(T=I,C=F)(G=T,@=18)(T=I,D=43.l) 
24 MERGE (T=R) (T=R, C=F) (G=T ,.@=18) ('1'=R,D=24. 2, 44. 2) 
25 MERGE (T=I)(T=I,C=F)(G=T,'@=18)(T=I,D=25.2,45.1) 
26 + (T=R)(T=R)(T=R,D=31.l) 
27 CONS (T=R)(T=I,C=C,R=l)(T=I,D=28.3) 
28 APPEND (T=S,C=C,R='NIL' )(T=I,R=l,C=C)(T=I)(T=S,D=29.1) 
29 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=30.2) 
30 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D= 
31 SEND (T=R)(T=R,D= 
32 REC (T=R)(T=R,D=33.l,34.2) 
33 ACK (T=R)(T=I)(T=I)(T=I,D= 
34 + (T=R)(T=R)(T=R,D=46.l,21.l) 
35 CONS (T=R)(T=I,C=C,R=l)(T=I,D=36.3) 
36 APPEND (T=S,C=C,R='NIL')(T=I,R=l,C=C)(T=I)(T=S,D=37.1) 
37 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=38.2) 
38 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D= 
39 SEND (T=R)(T=R,D= 
40 REC (T=R)(T=R,D=41.l,42.2) 
41 ACK (T=R)(T=I)(T=I)(T=I,D= 
42 + (T=R)(T=R)(T=R,D=47.1,22.1) 
43 + (T=I)(T=I,R=2,C=C)(T=I,D=l8.l,23.2) 
44 + (T=R)(T=R)(T=R,D=19.2) 
45 - (T=I)(T=I,R=3,C=C)(T=I,D=18.2) 
18 >= (T=I)(T=I)(C=7)(T=G,D=l9.0,47.1,46.1,25.2,25.0,24.2, 

24.0,23.2,23.0,22.2,22.0,21.2,21.0,20.2,20.0,19.2) 
46 ID (T=R,C=T)(T=R,D=71.2) 
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47 ID (T=R),C=T)(T=R,D=72.2) 
48 CONS (T=S)(T=I,C=C,R=l)(T=I,D=49.3) 
49 APPEND (T=S,C=C,R='NIL' )(T=I,R=l,C=C)(T=I)(T=S,D=50.l) 
50 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=51.2) 
51 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D= 
52 SEND (T=R)(T=R,D= 
53 REC (T=R)(T=R,D=54~1,74.2) 
54 ACK (T=R)(T=I)(T=I)(T=I,D= 
55 CONS (T=S)(T=I,C=C,R=l)(T=I,D=56.3) 
56 APPEND (T=S,C=C,R='NIL' )(T=I,R=l,C=C)(T=I)(T=S,D=57.l) 
57 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=58.2) 
58 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D= 
59 SEND (T=R)(T=R,D= 
60 REC (T=R)(T=R,D=54.l,74.2) 
61 ACK (T=R)(T=I)(T=I)(T=I,D= 
62 - (T=R)(T=R)(T=R,D=67.l) 
63 CONS (T=S)(T=I,C=C,R=l)(T=I,D=64.3) 
64 APPEND (T=S,C=C,R='NIL' )(T=I,R=l,C=C)(T=I)(T=S,D=65.l) 
65 APPEND (T=S)(T=I,R=2,C=C)(T=I,C=C,R=l)(T=S,D=66.2) 
66 APPLY* (R='FUNC' ,T=P,C=C)(T=S)(T=I,C=C,R=2)(T=S,D= 
67 SEND (T=R)(T=R,D= 
68 REC (T=R)(T=R,D=69.l,75.2) 
69 ACK (T=R)(T=I)(T=I)(T=I,D= 
70 I (T=R)(T=R,R=3.0,C=C)(T=R,D=78.l) 
71 * (T=R,R=4.0,C=C)(T=R)(T=R,D=73.l) 
72 * (T=R,R=2.0,C=C)(T=R)(T=R,D=73.2) 
73 + (T=R)(T=R)(T=R,D=74.l) 
74 + (T=R)(T=R)(T=R,D=76.l) 
75 * (T=R,R=4.0,C=C)(T=R)(T=R,D=76.2) 
76 + (T=R)(T=R)(T=R,D=77.l) 
77 + (T=R)(T=R)(T=R,D=78.2) 
78 * (T=R)(T=R)(T=R,D=80.3) 
79 CONS (T=S)(T=F,R='OUTF' ,C=C) (T=F,D=80.l) 
80 WRITE (T=F)(R= ,T=C,C=C)(T=R)(T=F,D) 

PROC FUNC 
0 SEND (T=R)(T=R,D= 
1 REC (T=R)(T=R,D=2.l,3.l) 
2 ACK (T=R)(T=I)(T=I)(T=I,D= 
3 ** (T=R)(T=I,R=2,C=C)(T=R,D=4.l) 
4 NEGATE (T=R)(T=R,R=4.0,C=C)(T=R,D=O.l) 
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Demand Driven Data Flow Code for Simpson's Rule Program 

PROC SIMP 
0 CONS (T=F,R=INF,C=C) (T=F,D=l.l) 
1 READ (T=F,@=O)(R=F(6,3),T=C,C=C)(T=S,D=2.l,3.l) 
2 SELECT (T=S,@=l)(R=l,T=I,C;C)(T=F,D=4.l) 
3 SELECT (T=S,@=l)(R=2,T=I,C=C)(T=R,D=ll.2,34.3,14.l) 
4 READ (T=F,@=2)(R=F(6,3),T=C,C=C)(T=S,D=5.l,6.l) 
5 SELECT (T=S,@=4)(R=l,T=I,C=C)(T=F,D=7.l) 
6 SELECT (T=S,@=4)(R=2,T=I,C=C)(T=R,D=ll.l,37.3,40.l) 
7 READ (T=F,@=5)(R=I(3),T=C,C=C)(T=S,D=8.l) 
8 SELECT (T=S,@=7)(R=2,T=I,C=C)(T=R,D=l2.2,30.l) 
9 CONS (T=R,R=0.0,C=C)(T=R,D=22.l) 

10 CONS (T=R,R=0.0,C=C)(T=R,D=26.l) 
11 - (T=R,@=6)(T=R,@=3)(T=R,D=l2.l) 
12 I (T=R,@=ll)(T=I,@=8)(T=R,D=l3.l,44.l,40.2,18.2, 

14.2,13.2) 
13 + (T=R,@=12)(T=R,@=12)(T=R,D=28.l) 
14 + (T=R,@=3)(T=R,@=12)(T=R,D=l7.l) 
15 CONS (T=I,R=l,C=C)(T=I,D=27.l) 
17 2AID (T=R,@=14,@=29)(T=R,D=l8.l,23.3,29.l) 
18 + (T=R,@=17)(T=R,@=12)(T=R,D=l9.3) 
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19 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=l8)(T=S,D=20.2) 
20 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=19)(T=S,D=21.l) 
21 SELECT (T=S,@=20)(T=I,R=l,C=C)(T=R,D=22.2) 
22 + (T=R,@=9)(T=R,@=2l)(T=R,D=32.2) 
23 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=l7)(T=S,D=24.2) 
24 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=23)(T=S,D=25.l) 
25 SELECT (T=S,@=24)(T=I,R=l,C=C)(T=R,D=26.2) 
26 + (T=R,@=lO)(T=R,@=25)(T=R,D=33.2) 
27 + (T=I,@=15)(T=I,R=2,C=C)(T=I,D=l6.l,27.l) 
28 CID (T=R,@=13)(T=R,D=29.2,28.l) 
29 + (T=R,@=17)(T=R,@=28)(T=R,D=l7.l) 
30 CID (T=I,@=8)(T=I,D=30.l,31.l) 
31 - (T=I,@=30)(T=I,R=3,C=C)(T=I,D=l6.2) 
16 >= (T=I,@=27)(T=I,@=3l)(T=G,D=33.l,32.l) 
32 INVOKEID (T=G,@=16)(T=R,@=22)(T=R,@=22)(C=T,I=32) 

(T=R,D=45.2,C=F) (T=R,C=T,D=22.l) 
33 INVOKEID (T=G,@=16)(T=R,@=26)(T=R,@=26)(C=T,I=33) 

(T=R,D=46.2,C=F) (T=R,L=T,D=26.l) 
34 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=3)(T=S,D=35.3) 
35 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=34)(T=S,D=36.l) 
36 SELECT (T=S,@=35)(T=I,R=l,C=C)(T=R,D=48.2) 
37 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=6)(T=S,D=38.3) 
38 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=37)(T=S,D=39.l) 
39 SELECT (T=S,@=38)(T=I,R=l,C=C)(T=R,D=51.2) 
40 - (T=R,@=6)(T=R,@=12)(T=R,D=41.3) 
41 APPEND (T=S,C=C,R=NIL)(T=I,R=l,C=C)(T=R,@=40)(T=S,D=42.l) 
42 APPLY (R='FUNC' ,T=P,C=C)(T=S,@=41)(T=S,D=43.l) 
43 SELECT (T=S,@=42)(T=I,R=l,C=C)(T=R,D=49.l) 
44 I (T=R,@=12)(T=R,R=3.0,C=C)(T=R,D=52.l) 
45 * (T=R,R=4.0,C=C)(T=R,@=32)(T=R,D=47.l) 
46 * (T=R,R=2.0,C=C)(T=R,@=33)(T=R,D=47.2) 



47 + (T=R,@=45)(T=R,@=46)(T=R,D=48.l) 
48 + (T=R,@=47)(T=R,@=36)(T=R,D=50.l) 
49 * (T=R,R=4.0,C=C)(T=R,@=43)(T=R,D=50.2) 
50 + (T=R,@=48)(T=R,@=49)(T=R,D=51.l) 
51 + (T=R,@=50)(T=R,@=39)(T=R,D=52.2) 
52 * (T=R,@=44)(T=R,@=50)(T=R,D=54.3) 
53 CONS (T=S)(T=F,R=OUTF,C=C) (T=F,D=54.l) 
54 WRITE (T=F,@=53)(R=F(6,3),T=C,C=C)(T=R,@=52)(T=F,D) 

PROC FUNC 
0 SEND (T=R,@=4)(T=R,D= 
1 SELECT (T=S)(T=I,R=l,C=C)(D=2.l) 
2 ** (T=R,@=l)(T=I,R=2,C=C)(T=R,D=3.l) 
3 NEGATE (T=R,@=2)(T=R,D=4.l) 
4 + (T=R,@=3)(T=R,R=4.0,C=C)(T=R,D=O.l) 

Initially Demanded Instructions: 54 
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Test Program Implementing a Shell Sort 

PROC SHELL 
BEGIN 

INTEGER D,Kl,L,J,Ll,Jl,I,K,TEMP; 
INTEGER ARRAY Z(l:50); 
FILE INF,OUTF; 
INPUT L FILE=INF FORMAT=I(2); 
INPUT (Z(I) DO I=l TO L) FILE=INF FORMAT=I(3); 
D := l; 
WHILE D<=L DO 

D := D + D 
END; 
D := (D - 1)/2; 
WHILE D>O DO 

Kl := L - D; 
J : = 1; 
WHILE J <= Kl DO 

Jl : = J; 
WHILE Jl > 0 DO 

Ll := D + Jl; 
IF Z(Ll)<Z(Jl) THEN BEGIN 

TEMP:= Z(Ll); 
Z ( Ll) : = Z ( Jl) ; 
Z ( J 1 ) : = TEMP 

END; 
Jl := Jl - D 

END; 
J := J + 1 

END; 
D := (D - 1)/2 

END; 
OUTPUT (Z(K) DO K=l TO L) FILE=OUTF FORMAT=I(3) 

END 
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Data Flow Code Produced for Shell Sort Program 

0 ID (T=S,R='NIL')(T=S,D=l.l,91.l,86.l,36.1,22.1,10.1,5.1) 
1 CONS (T=S)(T=F,R='INF' ,C=C) (T=F,D=2.l) 
2 READ (T=F)(R=I(2),T=C,C=C(T=S,D=3.l,4.l) 
3 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=9.2) 
4 SELECT (T=S)(R=2,T=I,C=C)(T=I,D=8.2,89.2,34.2,25.2) 
5 CONS (T=S)(T=I,R=l,C=C)(T=I,D=7.2) 
7 MERGE (T=I)(T=I)(G=F,@=6)(T=I,D=6.l,13.l) 
8 MERGE (T=I)(T=I)(G=F,@=6)(T=I,D=6.2,14.l) 
9 MERGE (T=F)(T=F)(G=F,@=6)(T=F,D=l5.l) 

10 CONS (T=S)(T=S,R='NIL' ,C=C) (T=S,D=ll.2) 
11 MERGE (T=S)(T=S)(G=F,@=6)(T=S,D=l2.l,21.l) 
12 ID (T=S,C=T)(T=S,D=l9.l) 

6 <= (T=I)(T=I)(C=4)(T=G,D=7.0,21.l,15.l,14.l,13.l,12.l, 
11.0,9.0,8.0) 

13 ID (T=I,C=T)(T=I,D=l9.2,20.l) 
14 ID (T=I,C=T)(T=I,D=8.l) 
15 ID (T=F,C=T)(T=F,D=l6.l) 
16 READ (I(3),T=C,C=C)(T=S,D=l7.l,18.l) 
17 SELECT (T=S)(R=l,T=I,C=C)(T=F,D=9.l) 
18 SELECT (T=S)(R=2,T=I,C=C)(T=I,D=l9.3) 
19 APPEND (T=S)(T=I)(T=I)(T=S,D=ll.l) 
20 + (T=I)(T=I,R=l,C=C)(T=I,D=7.l) 
21 ID (T=S,C=F)(T=S,D=35.2) 
22 CONS (T=S)(T=I,R=l,C=C)(T=I,D=24.2) 
24 MERGE (T=I)(T=I)(G=F,@=23)(T=I,D=23.l,29.l,26.l) 
25 MERGE (T=I)(T=I)(G=F,@=23)(T=I,D=23.2,27.l) 
23 <= (T=I)(T=I)(C=2)(T=G,D=24.0,29.l,27.l,26.l,25.0) 
26 ID (T=I,C=T)(T=I,D=28.l,28.2) 
27 ID (T=I,C=T)(T=I,D=25.l) 
28 + (T=I)(T=I)(T=I,D=24.l) 
29 ID (T=I,C=F)(T=I,D=30.l) 
30 - (T=I)(T=I,R=l,C=C)(T=I,D=31.l) 
31 I (T=I)(T=I,R=2,C=C)(T=I,D=33.2) 
33 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=32.l,39.l) 
34 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=40.l) 
35 MERGE (T=S)(T=S)(G=F,@=32)(T=S,D=41.l,85.l) 
36 CONS (T=S)(T=I,R=O,C=C) (T=I,D=37.2) 
37 MERGE (T=I)(T=I)(G=F,@=32)(T=I,D=38.l) 
38 ID (T=I,C=T)(T=I,D=49.2) 
32 > (T=I)(R=O,C=C,T=I)(C=4)(T=G,D=33.0,85.l,41.l,40.l, 

39.1,38.1,37.0,35.0,34.0) 
39 ID (T=I,C=T)(T=I,D=42.2,83.l,47.2,43.l) 
40 ID (T=I,C=T)(T=I,D=34.l,42.l) 
41 ID (T=S,C=T)(T=S,D=48.2) 
42 - (T=I)(T=I)(T=I,D=46.2) 
43 CONS (T=I)(T=I,R=l,C=C)(T=I,D=45.2) 
45 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=44.l,51.l) 
46 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=44.2,52.l) 
47 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=53.l) 
48 MERGE (T=S)(T=S)(G=F,@=44)(T=S,D=54.l,82.l) 



49 MERGE (T=I)(T=I)(G=F,@=44)(T=I,D=50.l,81.l) 
50 ID (T=I,C=T)(T=I,D=59.2) 
44 <= (T=I)(T=I)(C=5)(T=G,D=45.0,82.l,81.l,54.l,53.l, 

52.1,51.1,50.1,49.0,48.0,47.0,46.0) 
51 ID (T=I,C=T)(T=I,D=56.2,80.l) 
52 ID (T=I,C=T)(T=I,D=46.l) 
53 ID (T=I,C=T)(T=I,D=47.l,57.2) 
54 ID (T=S,C=T)(T=S,D=58.2) 
56 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=55.l,61.l) 
57 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=62.l) 
58 MERGE (T=S)(T=S)(G=F,@=55)(T=S,D=63.l,79.l) 
59 MERGE (T=I)(T=I)(G=F,@=55)(T=I,D=60.l,78.l) 
60 IP (T=I,C=T)(T=I,D=75.2) 
55 >. (T=I)(R=0,C=C,T=I)(C=4)(T=G,D=56.0,79.l,78.l,63.l, 

62.1,61.1,60.1,59.0,~8.0,57.0) 
61 ID (T=I,C=T)(T=I,D=64.2,77.l,70.l,66.2) 
62 ID (T=I,C=T)(T=I,D=57.l,77.2,64.l) 
63 ID (T=S,C=T)(T=S,D=65.l,76.l,69.l,66.l) 
64 + (T=I)(T=I)(T=I,D=65.2,68.l) 
65 SELECT (T=S)(T=I)(T=I,D=67.l) 
66 SELECT (T=S)(T=I)(T=I,D=67.2) 
67 < (T=I) (T~I)(C=O)(T=G,D=68.l,76.0,76.2,75.0,75.2, 

70.1,69.1) 
68 ID (C=T,T=I)(T=I,D=71.2,73.2) 
69 ID (C=T,T=S)(T=S,D=7l.l;73.l,72.l) 
70 ID (C=T,T=I)(T=I,D=72.2,74.2) 
71 SELECT (T=S)(T=I)(T=I,D=74.3,75.l) 
72 SELECT (T=S)(T=I)(T=I,D=73.3) 
73 APPEND (T=S)(T=I)(T=I)(T=S,D=74.l) 
74 APPEND (T=S)(T=I)(T=I)(T=S,D=76.l) 
75 MERGE (T=I)(C=F,T=I)()(T=I,D=59.l) 
76 MERGE (T=S)(C=F,T=S)()(T=S,D=58.l) 
7 7 - ( T= I ) ( T= I ) ( T= I , D= 5 6 • 1 ) 
78 ID (T=I,C=F)(T=I,D=49.l) 
79 ID (T=S,C=F)(T=S,D=48.l) 
80 + (T=I)(T=I,R=l,C=C)(T=I,D=45.l) 
81 ID (T=I,C=F)(T=I,D=37.l) 
82 ID (T=S,C=F)(T=S,D=35.l) 
83 - (T=I)(T=I,R=l,C=C)(T=I,D=84.l) 
84 I (T=I)(T=I,R=2,C=C)(T=I,D=33.l) 
85 ID (T=S,C=F)(T=S,D=90.2) 
86 CONS (T=S)(T=I,R=l,C=C)(T=I,D=88.2) 
88 MERGE (T=I)(T=I)(G=F,@=87)(T=I,D=87.l,93.l) 
89 MERGE (T=I)(T=I)(G=F,@=87)(T=I,D=87.2,94.l) 
90 MERGE (T=S)(T=S)(G=F,@=87)(T=S,D=95.l) 
91 CONS (T=S)(T=F,R='OUTF' ,C=C)(T=F,D=92.2) 
92 MERGE (T=F) (T=F) (G=F,@=87) (T=F,D=96.l) 
87 <= (T=I)(T=I)(C=4)(T=G,D=88.0,96.l,95.l,94.l,93.l, 

92.0,90.0,89.0) 
93 ID (T=I,C=T)(T=I,D=97.2,99.l) 
94 ID (T=I,C=T)(T=I,D=89.l) 
95 ID (T=S,C=T)(T=S,D=90.l,97.l) 
96 ID (T=F,C=T)(T=F,D=98.l) 
97 SELECT (T=S)(T=I)(T=I,D=98.3) 
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98 WRITE (T=F)(R=I(3),T=C,C=C)(T=I)(T=F,D=92.l) 
99 + (T=I)(T=I,R=l,C=C)(T=I,D=88.l) 
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Demand Driven Data Flow Code Produced for Shell Sort Program 

0 CONS (T=F,R=INF,D=l.l) 
1 READ (T=F,@=O)(T=S,D=2.l,3.l) 
2 SELECT (T=S,@=l)(T=I,R=l)(T=F,D=lO.l) 
3 SELECT (T=S,@=l)(T=I,D=7.1;14.l,22.l,49.l) 
4 CONS (T=I,R=l,D=6.l,9.l,12.2) 
5 CONS (T=S,R=NIL,C=C)(T=S,D=l2.l,13.3) 
6 2AID (T=I,@=4,@=7),(T=I,D=7.l,9.l,12.l) 
7 + (T=I,@=4)(T=I,R=l,C=C)(T=1,D=6.l) 
8 CID (T=I,@=3)(T=I,D=8.l,9.2) 
9 <= (T=I,@=6)(T=I,@=8)(T=G,D=6.0,8.0,13.l) 

10 READ (T=F,@=2)(T=S,D=ll.l) 
11 SELECT (T=S,@=10)(T=I,R=2,D=l2.3) 
12 APPEND (T:S,@=5)(T=I,@=6)(T=I,@=ll)(T=S,D=l2.l,13.2,14.l) 
13 INVOKEID (T=G,@=9)(T=S,@=12)(T=S,@=5)(C=T,I=l3) 

(C=F,T=S,D=33.l) 
14 CID (T=I,@=3)(T=I,D=l4.l,18.2) 
15 CONS (R=l,T=I,D=l6.l,19.3) . 
16 2AID (T=I,@=15,@=17)(T=I,D=l7.l,17.2,18.2,19.2) 
17 + (T=I,@=16)(T=I,@=16)(T=I,D=l6.l) 
18 <= (T=I,@=16)(T=I,@=14)(T=G,D=l4.0,16.0,19.l) · 
19 INVOKEID (T=I,@=16)(T=I,@=15)(C=T,I=l9)(T=F,D=20.l) 
20 - (T=I,@=19)(T=I,R=l,C=C)(T=I,D=21.l) 
21 I (T=I,@=20)(T=I,R=2,C=C)(T=I,D=23.l) 
22 CID (T=I,@=3)(T=I,C=F,D=22.l,25.l) 
23 2AID (T=I,@=21,@=46)(T=I,D=24.l,25.2,31.l,46.l) 
24 > (T=I,@=23)(R=O,C=C,T=I)(T=G,D=48.l) 
25 - (T=I,@=22)(T=I,@=23)(T=I,D=28.2) 
26 CONS (T=I,R=l,C=C)(T=I,D:27.l) 
27 2AID (T=I,@=26,@=44)(T=I,D=28.l,44.l) 
28 <= (T=I,@=27)(T=I,@=25)(T=G,D=45.l) 
29 2AID (T=I,@=27,@=4l)(T=I,D=30.l,32.2,35.2,38.2,40.2,42.l) 
30 > (T=I,@=29)(T=I,R=0,C=C)(T=G,D=43.l) 
31 CID(T=I,@=23)(T=I,D=31.l,32.l,42.2) 
32 + (T=I,@=29)(T=I,@=3l)(T=I,D=34.2,37.2,39.2) 
33 2AID(T=S,@=13,@=4l)(T=S,D=34.l,35.l,37.l,38.l,39.l,41.3) 
34 SELECT (T=S,@=33)(T=I,@=32)(T=I,D=36.l) 
35 SELECT (T=S,@=33)(T=I,@=29)(T=I,D=36.2) 
36 < (T=I,@=34)(T=I,@=35)(T=G,D=41.0) 
37 SELECT (T=S,@=33)(T=I,@=32)(T=I,D=39.3) 
38 SELECT (T=S,@=33)(T=I,@=29)(T=I,D=40.3) 
39 APPEND (T=S,@=33)(T=I,@=32)(T=I,@=37)(T=S,D=40.l) 
40 APPEND (T=S,@=39)(T=I,@=29)(T=I,@=38)(T=S,D=41.l) 
41 IFTHENEL (T=G,@=36)(T=S,@=40)(T=S,@=33) 

(T=S,D=33.l,43.2,43.3) 
42 - (T=I,@=29)(T=I,@=3l)(T=I,D=29.l) 
43 INVOKEID (T=G,@=30)(T=S,@=4l)(T=S,@=4l)(C=T,I=43) 

(C=F,T=S,D=45.2,45.3) 
44 + (T=I,@=27)(T=I,R=l,C=C)(T=I,D=27.l) 
45 INVOKEID (T=G,@=28)(T=S,@=43)(T=S,@=43)(C=T,I=45) 

(C=F,T=S,D=48.2,48.3) 
46 - (T=I,@=23)(T=I,R=l,C=C)(T=I,D=47.l) 



47 I (T=I,@=46)(T=I,R=2,C=C)(T=I,D=23.l) 
48 INVOKEID (T=G,@=24)(T=S,@=45)(T=S,@=45)(C=T,I=48) 

(C=F,T=S,D=51.l) 
49 CID (T=I,@=3)(D=49.l,53.2) 
50 CONS (T=I,R=l,D=52.l) 
51 CID (T=S,@=48)(T=S,D=51.l,54.l) 
52 2AID (T=I,@=50,@=55)(T=I,D=53.l,54.2,56.l) 
53 <= (T=I,@=52)(T=I,@=49)(T=G,D=57.l) 
54 SELECT (T=S,@=5l)(T=I,@=52)(T=I,D=55.l) 
55 WRITE (T=I,@=54)(R='I(3)' ,T=C)(T=F,R=OUTF)(T=F,D=57.2) 
56 + (T=I,@=52)(T=I,R=l,C=C)(T=I,D=52.l) 
57 INVOKEID (T=G,@=53)(T=S,@=55)(T=S,@=5l)(C=T,I=59) 

Initially Demanded Instructions: 59 
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The instruction set used in this study is almost a 

duplicate of that used by Thoreson in [16]. This is due to 

the fact that the compiler from that project was used to 

make the first pass over all test programs in this study. 

The following table therefore is a near duplicate of that 

found in appendix A in Thor~son [16] with several 

exceptions. The exceptions will be discussed below. 

Arithmetic operations: +, =, *, /, 

Absolute 

Boolean operations: And, Or, Not 

** , Negate, 

Relational operations: <, >, <=, >=, - o_ -, -, Exists, 

Element, Eos 

Structure operations: Append, Select 

Input/Output operations: Read, Readedit, Write, 

Writedit 

Procedure operations: Apply 

Looping support operations: Id, Cid, 2aid, Invokeid 

Functional operations: Sin, Cos, Tan, Sinh, Cosh, 

Tanh, Arcsin, Arccos, Arctan, Log, Sqrt 

Constant support operation: Constant 

Logical support operation: Ifthenel 

The function of most of the non-support operations are 

straight-forward. Exceptions are discussed in Thoreson 

[16]. The support operations, however, were added to 

support various functions in a demand driven data flow 

environment and will now be discussed in more detail. 
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The Ifthenel operation supports a machine 

implementation of an If-then-else structure in a high level 

program. The Ifthenel operation replaces the use of the 

merge instruction in a pure data flow environment for 

controlling what values are passed on from an if-then-else 

structure. The control is different however. Upon demand, 

the Ifthenel operation demands the value of the conditional 

expression controlling the outcome of the if statement. If 

the value returned is true, the Ifthenel will demand the 

result produced in the then body of code; otherwise, the 

result from the else section is demanded. 

· Initially, it was thought that only one Ifthenel would 

be needed per if-then-else structure since multiple results 

could be appended to form a structure and the actual 

structure itself could be passed on. It turns out that this 

approach could result in a deviation from a true demand 

driven environment. This is due to the fact ~hat if one or 

more calculations were within the body of either the then or 

the else sections that were not to be used in producing the 

main result and that section was demanded, then these 

calculations would be executed. This deviates from the 

definition of program execution in a demand driven data flow 

environment which guarantees that computation not necessary 

for producing the main result will not be executed. 

Therefore, one Ifthenel operation will be required for each 

result passed on from the appropriate body of an if 

structure. An example of an if structure and its compiled 
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code is shown in figure 15. This example contains only one 

statement in either the then or the else body but is easily 

extended to structures that produce more than one value. 

PROC IFTEST 
BEGIN 

END 

INTEGER I,ODD.,TEMP; 
FILE INF,OUTF; 
INPUT I FILE=INF FORMAT=I(3); 
TEMP := I/2; 
TEMP := I*2; 
IF TEMP = I THEN ODD := 0 

ELSE ODD := l; 
OUTPUT ODD FILE=OUTF FORMAT=I(l) 

a.) High Level Code 

0 READ INF,I(3);1 
1 SELECT @O , , 2; 2 , 4 
2 I @1, ,2;3-
3 * @2, ,2;4 
4 = @l, ,@3, ;7 
5 CONS 0;7 
6 CONS 1;7 
7 IFTHENEL @4, ,@5, ,@6, ;8 
8 WRITE @7, ,OUTF,ITl); 

b.) Compiled Code 

Figure 14. Example of a Compiled If Then Else Sructure 

Although the Invokeid instruction is discussed in 

chapter two, it will be discussed in further detail in this 

appendix. The main purpose of this discussion will be to 

verify that the Invokeid instruction, in conjunction with 
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the other support operations, can support the while-end and 

the repeat-until constructs properly. Two examples will be 

given to demonstrate its usage. In addition, two program 

traces are illustrated to show how the Invokeid instruction 

executes. 

The Invokeid instruction 

used for both while loops 

controls iteration. 

and repeat loops. 

It is 

The main 

difference in its usage between these two different loops is 

that the initial values fed into an Invokeid operation for a 

repeat loop will differ from those initial values fed into 

the Invokeid instruction controlling a while loop. For the 

Invokeid instruction to control repeat loops properly the 

compiler must negate the until condition controlling the 

repeat-until loop. 

Figure 15 is an example of a simple while loop and its 

associated compiled code containing one Invoke id 

instruction. Table I is an execution trace of the program 

in Figure 15 for a run where the input data was the number 

four causing three iterations of the loop. Table I lists 

each instruction at the time it executes and shows the 

current operands it has as well as the result it produces 

and the location to which the result is sent. 

The first column of the table lists the mneumonic name 

of the instruction of each assembler instruction being 

executed. To the left of each mneumonic is the number of 

the instruction in Figure 15. The next three columns are 

used for the operands of each instruction. The maximum 



PROC TEST 
BEGIN 

END 

INTEGER L,D,; 
FILE INF,OUTF; 
INPUT L FILE=INF FORMAT=I(2); 
D := l; 
WHILE D <= L DO 

D := D + D 
END; 
OUTPUT D FILE=OUTF FORMAT=I(2) 

a.) High Level Code 

0 READ INF,I(2);1 
1 SELECT @O, ,2;2 
2 CID @l, ;6-;2 
3 CONS 1;4 
4 2AID @3,@5, ;5,5,6,7 
5 + @5, ,©5, T4,7 
6 <= @2-; ,@4-; ;7,2,4 
7 INVOKElD @6-; ,@2, ,@4, ;7,8 
8 WRITE @7, ,OUTF,IT2); -

Initially Demanded Instruction: 8 

b.) Compiled Code 

Figure 15. Example of the Compilation Process 
for a While Loop 

71 
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TABLE I 

EXECUTION TRACE OF FIGURE 15 

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST 

3 CONS I 5 I 1 I 4 • 1 
------------------------------------------------------------

0 READ I 6 I STRUC I 1.1 

4 2AID 1 I 6 I 1 I 5.1,5.2,6.1,7.3 
------------------------------------------------------------

1 SELECT ISTRUCI 2 I 7 I 4 I 2.1 
------------------------------------------------------------

2 CID 4 I 8 I 4 I 2 .1, 6. 2 
------------------------------------------------------------

6 < = 1 4 I 9 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 

5 + 1 1 I lo I 2 I 4.1,7.2 
------------------------------------------------------------

7 INVOKEID !TRUE I 2 1 I 11 I 2 I 7.3 

2 CID 4 I 14 I 4 I 2 .1, 6. 2 
------------------------------------------------------------

4 2AID I 2 I 14 I 2 I 5.1,5.2,6.1,7.3 
------------------------------------------------------------

6 < = I 2 4 I 15 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 
------------------------------------------------------------

5 + 2 2 I 16 I 4 I 4 .1, 7. 2 
------------------------------------------------------------

7 I NVOKEI D I TRUE I 4 2 I 1 7 I 4 I 7. 3 
------------------------------------------------------------

2 CID I 4 I 20 I 4 I 2 .1, 6. 2 
------------------------------------------------------------

4 2AID I 4 I I 20 I 4 I 5.1,5.2,6.1,7.3 
------------------------------------------------------------

6 < = 4 4 I I 21 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 

5 + 4 4 I 22 I 0 I 4 .1, 7. 2 
------------------------------------------------------------

7 INVOKEID !TRUE I 8 I 4 I 23 I 8 I 7.3 
------------------------------------------------------------

2 CID 4 I I 26 I 4 I 2 .1, 6. 2 

4 2AID I 8 I 26 I 8 I 5.1,5.2,6.1,7.3 
------------------------------------------------------------

6 <= I 8 4 I 27 I FALSE I 7.1,2.0,4.0 
------------------------------------------------------------

7 INVOKEID IFALSEI 8 I 28 I 8 I 8.1 

8 WRITE 8 I OUTF I I ( 3 ) I 2 9 I 
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number of operands that any instruction for the compiled 

code in figure 16 will have is three; however, not all 

instructions have three operands. The next column lists the 

time unit each operation begins execution. 

within the table are ordered by the 

execution. 

The instructions 

time they begin 

The next column lists the result produced by each 

executing instruction. The last column lists the 

destinations of the result produced for each instruction 

executed. The numbers in this column require some 

explanation however. The number listed to the left of each 

period is the instruction number which comes from the number 

for that instruction in the compiled listing in figure 16. 

The number to the right of each period is the operand number 

within the instruction where the result will actually be 

placed. 

Once an instruction packet in sent to a processor, the 

new instruction template for that instruction currently 

residing in memory will have no operands until it receives a 

result from an executing instruction. Thus no instruction 

may carry an operand from one execution to the next. An 

instruction is allowed to pass a result to the next 

invocation of itself however. 

Referring to Table I, operation 2aid executes at time 

six, sending a result of one to the third operand of the 

Invokeid operation, to both operands of the addition 

operation, and to the first operand of the less than or 
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equal to operation. At time unit nine, the less than or 

equal to operation fires and sends a result of true to the 

first operand of the Invokeid instruction. Since there were 

two possibilitie~ here, operands of true or false, it is 

instructive to examine both possibilities. If the value of 

false had been received by the Invokeid instruction, then 

the proper sequence of events requires that the body of the 

loop does not get executed. Table II illustrates the 

execution trace for this case. 

TABLE II 

EXECUTION TRACE OF FIGURE 15 WITH NO LOOP ITERATIONS 

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST 

3 CONS 5 I 1 I 4.1 

0 READ 6 I STRUC I 1.1 

4 2AID 1 I 6 I 1 I 5.1,5.2,6.1,7.3 
------------------------------------------------------------

1 SELECT ISTRUCI 2 I 7 I 0 I 2.1 
------------------------------------------------------------

2 CID I 0 8 I 0 I 2 .1, 6. 2 
------------------------------------------------------------

6 <= ! 1 o I 9 I FALSE I 7 • 1 I 2 • 0 I 4 • 0 
------------------------------------------------------------

7 INVOKEID IFALSEI ! 1 I lo I 2 I a.1 

8 WRITE 1 I OUTF I I ( 3 ) I 11 I 
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As previously explained, upon receiving a false result 

for its first operand, the Invokeid instruction passes as a 

result its third operand to the instruction that demanded 

it. At time six, the 2aid instruction passed the result of 

one to the third operand of the Invokeid operation. 

Therefore, if a false value were received by the Invokeid 

operation at time nine, the value of one would be passed on 

by the Invokeid instruction at its execution at time ten to 

the instruction that demanded the Invoke operation. This 

results in the correct execution since the body of the loop, 

the addition operation, was never executed. Thus, if the 

value of false were to have been received, the execution 

observed would have been the desired one. 

Currently, however, the Invokeid operation is holding a 

true value for operand one. For the Invokeid instruction to 

continue execution, it must have a value for its second 

operand. Therefore, at time nine, the Invokeid operation 

demands the value of the addition operation, the body of the 

loop, so that it may proceed in its own execution. The 

addition operation fires at time ten and passes the result 

of two to the second operand of the Invokeid operation. The 

Invokeid operation now has all the operands it needs to 

fire. At time eleven, the Invokeid instruction fires and 

sends the value of two as a result to operand three of the 

Invokeid operation in control of the next iteration. The 

last step in the execution of the Invokeid operation, when 

it has a true value for operand one, is to demand the next 
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invocation of itself. This concludes the first iteration of 

the loop in the program listed in figure 16. Continuing 

iterations follow the same pattern with the exception of the 

final attempted iteration discused below. 

Resuming the trace at time 21, the less than or equal 

to operation sends a true result to the first operand of the 

Invokeid operation. The Invokeid operation demands the 

result of the addition operation which fires at time 22, 

passing the result of eight to operand number one of the 

2aid operation as well as operand two of the Invokeid 

operation. At time 23, the Invokeid operation fires, 

demanding another invocation of the Invokeid operation as 

well as passing a result of eight to the third operand of 

the next invocation of the invokeid operation. Table III 

shows the rows from Table I from time 21 until time 23. 

TABLE III 

ROWS 16 THROGH 18 FROM TABLE I 

6 <= 4 4 I 21 I TRUE I 7 .1, 2. 0, 4. 0 
------------------------------------------------------------

5 + 4 4 I 22 I s I 4 .1, 7. 2 
------------------------------------------------------------

? INVOKEID ITRUE I 8 4 I 23 I 8 I 7.3 

At time 26, the 2aid operation fires, passing a result 

of 8 to operand three of the Invokeid operation and 
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overwrites the operand previously residing there. At time 

27, the less then or equal to operation fires, passing a 

result of false to operand number one of the Invokeid 

instruction. This causes the firing of the Invokeid 

instruction which passes its third operand as a result to 

the write instruction. Since the first operand was false, 

the Invokeid operation does not reinvoke itself. The write 

operation fires at time 29, completing the execution of the 

program for an initial input of four. Table IV shows the 

last four rows of Table I illustrating the completion of 

execution of the program. 

TABLE IV 

LAST FOUR ROWS OF TABLE I 

4 2AID 8 I 26 I 8 I 5.1,5.2,6.1,7.3 

6 <= 8 4 I 27 I FALSE I 7.1,2.0,4.0 
------------------------------------------------------------

7 INVOKEID IFALSEI 8 I 28 I 8 I 8.1 

8 WRITE 8 IOUTF 1!(3) I 29 I 

Figure 16 illustrates a similar example to that 

illustrated in Figure 15 with the exception that the while­

end loop in Figure 15 has been replaced with a repeat-until 

loop in Figure 16. Note that there exist important 



PROC TEST 
BEGIN 

END 

INTEGER L,D,; 
FILE INF,OUTF; 
INPUT L FILE=INF FORMAT=I(2); 
D : = 1; 
REPEAT 

D := D + D 
UNTIL D > L; 
OUTPUT D FILE=OUTF FORMAT=I(2) 

a.) High Level Code 

0 READ INF,I(2);1 
1 SELECT ,2;2 
2 CID ; 6:-2 
3 CONS-1;4 
4 2AID ;5,5,6 
5 + , ""'i4,7,7 
6 <=- :- ;7,2,4 
7 INVOKEID , , ;7,8 
8 WRITE ,OUTF,l(2); 

b.) Compiled Code 

Figure 16. Example of the Compilation Process 
for a Repeat Loop 

78 
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differences in the compiled code. While the same compiled 

instructions appear in both listings and in the same order 

the destination addresses for two of the instructions have 

been modified to reflect the change in the high level code. 

The 2aid operation in Figure 16 does not include the 

Invokeid instruction for a result destination as in Figure 

15. The addition operation is the only operation other than 

the Invokeid operation itself, that supplies values to 

operands two and three in the Invokeid operation. 

To verify that the given demand driven data flow code 

works properly, two instruction traces are illustrated for 

two given examples. The first example discussed inputs a 

value of four into the program in Figure 16. Theoretically, 

the result produced by the program in Figure 16 should 

correspond to the result produced by the program in Figure 

15 for the given input. A comparison of Table III to Table 

I shows that, in fact, the same result will be produced. 

This can be verified by comparing for equality the first 

operand of the Write operation in both tables. Their 

equality ensures that the same result will be output for 

both. A close comparison of Table III and Table I 

illustrates that, as long as the conditional operation 

controlling the loops gives a true result for the first 

demand, the output for both programs will be the same for 

any number of iterations greater than or equal to one 

iteration. 
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TABLE V 

EXECUTION TRACE OF FIGURE 16 

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST 

3 CONS I 5 I 1 I 4 .1 
------------------------------------------------------------

0 READ I 6 I STRUC I 1.1 

4 2AID 1 6 I 1 I 5.1,5.2,6.1 

1 SELECT ISTRUCI 2 1 I 4 I 2.1 

2 CID 4 I 8 I 4 I 2 .1, 6. 2 
------------------------------------------------------------

6 < = 1 I 4 I 9 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 
------------------------------------------------------------

5 + 1 1 I I 10 I 2 I 4.1,1.2,1.3 

7 INVOKEID !TRUE I 2 2 I 11 I 2 I 1. 3 

2 CID 4 I I 14 I 4 I 2 .1, 6. 2 
------------------------------------------------------------

4 2AID 2 I I I 14 I 2 I 5.1,5.2,6.1 
------------------------------------------------------------

6 < = 2 4 I I 15 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 
------------------------------------------------------------

5 + 2 2 I 16 I 4 I 4.1,1.2,7.3 

7 INVOKEID !TRUE I 4 I 4 I 17 I 4 I 7.3 
------------------------------------------------------------

2 CID 4 I I 20 I 4 I 2 .1, 6. 2 

4 2AID 4 I 20 I 4 I 5.1,5.2,6.1 

6 < = 4 4 I 21 I TRUE I 7 • 1 , 2 • 0 , 4 • 0 
------------------------------------------------------------

5 + 4 4 I 22 I a I 4.1,1.2,7.3 

7 INVOKEID !TRUE I 8 8 I 23 I 8 I 7.3 
------------------------------------------------------------

2 CID 4 I 26 I 4 I 2: 1, 6. 2 

4 2AID 8 I I 26 I 8 I 5.1,5.2,6.1 
------------------------------------------------------------

6 <= 8 4 I I 27 I FALSE I 7.1,2.0,4.0 
------------------------------------------------------------

7 INVOKEID !FALSE! 8 I 28 I 8 I 8.1 

8 WRITE 8 I OUTF I I ( 3 ) I 2 9 I 
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The major difference in program execution occurs when a 

zero is used as input into both programs. Using a zero as 

input into the code in Figure 15 results in the execution 

trace illustrated in Table II while using a zero as input 

into the code in Figure 16 results in the execution trace 

illustrated in Table IV. Note that the addition operation 

is executed in Table IV while it does not execute in Table 

II, because a repeat loop will execute the body of the loop 

it controls at least once even if the first time the 

conditional operation is executed a false is produced, as in 

this example. Thus, the execution trace in Table II 

produces an output value of one as required, and the 

execution trace in Table IV produces an output of two, also 

as required. This demonstrates that the demand driven code 

shown will execute a repeat loop in the proper manner. 
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TABLE VI 

EXECUTION TRACE OF FIGURE 16 DEMANDING ONE LOOP ITERATION 

INSTRUCTION OPl OP2 OP3 TIME RESULT DEST 

3 CONS s I 1 I 4.1 

0 READ I 6 I STRUC I 1.1 
------------------------------------------------------------

4 2AID I 1 6 I 1 I 5.1,5.2,6.1,7.3 

1 SELECT jSTRUCI 2 7 I 0 I 2.1 
------------------------------------------------------------

2 CID 0 I 8 I 0 I 2 .1, 6. 2 
------------------------------------------------------------

6 <= 1 0 I 9 I FALSE I 7.1,2.0,4.0 

5 + 1 1 I lo I 2 I 4.1,7.2,7.3 

7 INVOKEID jFALSEj 2 2 I 21 I 2 I a.1 

8 WRITE 2 I OUTF I I ( 3 ) I 12 I 
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