By
CHERYL ELAINE ROGERS
Bachelor of Science University of Arkansas at Pine Bluff
Pine Bluff, Arkansas 1979

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 1983

Thesis
1983
R 724 m
cop. 2

Dedicated
to
Daytra and Alexica

MEASURING THE PERCEIVED QUALITY OF LIFE OF EAST CENTRAL OKLAHOMA FARMERS

Thesis Approved:

ACKNOWLEDGMENTS

The research conducted during this study is a component of the regional project entitled, "The Changing Structure of Agriculture: Causes, Consequences and Policy Implications." This project is a cooperative research effort between the Office of 1890 Research at Langston University and the Oklahoma Agricultural Experiment Station at Oklahoma State University. The author gives thanks for financial support to Dr. Steve B. Latimer and Mrs. Aline Johnson, past director and Interim Director of the Office of 1890 Research and to Dr. James Osborn, Head of the Department of Agricultural Economics at Oklahoma State University.

Special recognition is extended to Dr. Luther G. Tweeten, Regents Professor, for his generous guidance and leadership through the Masters of Science program. Thanks is also extended to Mrs. Iris McPherson for the computer analysis; to Mrs. Denise Lovvorn for initial typing; and to Mrs. Sandra Ireland for typing the rough and final thesis drafts.

The highest honors and deepest appreciation is extended to Mr . and Mrs. Henry Suber; Mr. and Mrs. Tommie Lee Ivy and family; to Joseph Ivy and my brother and sisters for their sacrifices and support.

TABLE OF CONTENTS
Chapter Page
I. THE RESEARCH PROBLEM AND CONCEPTUAL ISSUES IN QUALITY OF LIFE RESEARCH 1
The Research Problem 1
Research Objectives and Hypotheses to be Tested. 3
Research Objectives 3
Hypotheses. 3
Conceptual Issues in Quality of Life Research 4
The Use of Existing Economic Theory in Quality of Life Research 4
The Social Indicators Approach to Quality ofLife Research6
Organization of the Remainder of Thesis. 7
II. SOCIO-ECONOMIC AND DEMOGRAPHIC CHARACTERISTICS OF THE SURVEY RESPONDENTS. 8
Introduction 8
Reliability of the Random Sample 9
The Classification System. 9
Socio-Economic and Demographic Characteristics of the Respondents. 15
Age 19
Education 19
Years Farming for Oneself 20
Total Family Income and the Number of Children. 21
Total Acres Operated. 22
Net Worth 22
Percent of Land Owned 23
Summary of the Socio-Economic and Demographic Characteristics of the Respondents 24
III. CONSTRUCTION OF THE SOCIO-PSYCHOLOGICAL FACTORS OF WELL-BEING and the overall quality of life index 25
Quality of Life Component Index Construction 27
The Overall Quality of Life Indices. 29
The Model for Quality of Life Research 31
IV. SUMMARY AND CONCLUSIONS OF THE SOCIO-PSYCHOLOGICAL FACTORS and the overall quality of life indices 36
Introduction 36
Chapter Page
The Anomie Index: Tables 17 through 19 37
The Satisfaction I Index (SAT I): Tables 20
through 22. 41
The Satisfaction II Index (SAT II): Tables 23 through 25 45
The Hedonistic Index (HED): Tables 26 through 28 45
The Overall Quality of Life Indices (QLI):
Tables 29 through 31 52
Summary 57
A SELECTED BIBLIOGRAPHY 58
APPENDICES 64
APPENDIX A - RESULTS OF THE FACTOR ANALYTIC OUTPUT 65
APPENDIX B - SUMMARY OF THE STEPWISE AND PRESCRIBEDREGRESSION EQUATIONS FOR THE ANOMIE, SATIS-FACTION I, SATISFACTION II AND HEDONISTIC
INDICES. 76
Table Page

1. Distribution of the Random Sample by Farm Size in Acres and a Comparison with 1978 Oklahoma Census Data 10
2. Distribution of the Random Sample by Farm Size in Economic Sales Classes Compared with 1978 Oklahoma Census Data 10
3. Distribution of the Random Sample and Minority Supplement by Status, Income and Farm Size by Economic Sales Class 12
4. Distribution of the Random Sample and Minority Supplement by Status and Income 13
5. Distribution of the Random Sample and Minority Supplement by Farm Size and Income 14
6. Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement by Race, Farm Size and Income 16
7. Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement by Race, Status and Income. 17
8. Statistical Results Related to the Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement 18
9. Summary of Attitudinal Variables Used in Quality of Life Research by Means and Standard Deviations 26
10. Summary of the Socio-Psychological Factors of Well-Being by Significant Variables, Factor Loadings and Factor Weights 30
11. Stepwise Regression Equation for the Overall Quality of Life Index I 32
12. Prescribed Regression Equation for the Overall Quality of Life Index I 32
13. Stepwise Regression Equation for the Overall Quality of Life Index II 33
14. Prescribed Regression Equation for the Overall Quality of Life Index II 33
15. Stepwise Regression Equation for the Overall Quality of Life Index III 34
16. Prescribed Regression Equation for the Overall Quality of Life Index III. 34
17. Summary of the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement by Race, Farm Size and Income 38
18. Summary of the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement by Race, Status and Income 39
19. Statistical Results Related to the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement 40
20. Summary of the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement by Race, Farm Size and Income 42
21. Summary of the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement by Race, Status and Income 43
22. Statistical Results Related to the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement 44
23. Summary of the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement by Race, Farm Size and Income. 46
24. Summary of the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement by Race, Status and Income 47
25. Statistical Results Related to the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement 48
26. Summary of the Individual Variables and Composite Hedonistic Index for the Random Sample and Minority Supplement by Race, Farm Size and Income 49
27. Summary of the Individual Variables and Composite Hedonistic Index for the Random Sample and Minority Supplement by Race, Status and Income 50
28. Statistical Results Related to the Individual Variables and Composite Hedonistic Index for the Random Sample and Minority Supplement 51
29. Summary of the Overall Quality of Life Indices for the Random
Sample and Minority Supplement by Race, Farm Size and
Income. 53
30. Summary of the Overall Quality of Life Indices for the Random
Sample and Minority Supplement by Race, Status and Income . . 54
31. Statistical Results Related to the Overall Quality of Life Indices for the Random Sample and Minority Supplement 55
32. Stepwise Regression Equation for the Anomie Index 77
33. Prescribed Regression Equation for the Anomie Index 77
34. Stepwise Regression Equation for the Satisfaction I Index . . . 78
35. Prescribed Regression Equation for the Satisfaction I Index . . 78
36. Stepwise Regression Equation for the Satisfaction II Index. . . 79
37. Prescribed Regression Equation for the Satisfaction II Index. . 79
38. Stepwise Regression Equation for the Hedonistic Index 80
39. Prescribed Regression Equation for the Hedonistic Index 80

CHAPTER I

THE RESEARCH PROBLEM AND CONCEPTUAL ISSUES
IN QUALITY OF LIFE RESEARCH

The Research Problem

Dissatisfaction with the Quality of Life (QOL) in the United States has risen in spite of economic growth and affluence achieved in past decades (Environmental Protection Agency, 1973; "What America Thinks of Itself," 1973). This paradox of affluence, documented by numerous studies of economic well-being among cities (Schneider, 1975), geographical locations (Liu, 1974; Knox, 1973), and races (Lowry, 1970), has led researchers to propose a broader measure of well-being to include environmental, social and political as well as economic indicators as well-being (Liu, 1974).

Castle (1972) in his Presidential address to the American Agricultural Economics Association challenged agricultural economists to consider quality of life issues in agricultural marketing, rural development and resource economics. In the past decade, concern with farm structure (referring to the socio-economic and demographic characteristics of farm size and status) has heightened interest in quality of farm life and its measurement. Structural changes have been highlighted by growth in the number of part-time, smal1-scale and large farms; by decline in the numbers of mid-size farms; and by an increase in the average size of farms.

Although many stereotypes of farm size and status exist, recent national debate nat not clarified understanding of what structure of agriculture is consistent with the well-being of people (Brewster, 1979). A basic hypothesis of this study is that the perceived quality of life differs according to the needs and concerns of individuals as well as specific groups of farmers in the sample (large versus small, part-time versus full-time, low income versus non-low income operators, and whites versus minorities).

A central issue in the structural debate is the role of small farms in American Agriculture. Small farms are frequently characterized as inefficient, low income operators that remain in farming possibly because of agrarian values and the virtues of rural living. Research is needed to test Schumacher's "small is beautiful" hypothesis and determine which farm size yields the higher perceived quality of life among farm operators (Schumaker, 1973).

Because part-time farming is an alternative for operators of all farm sizes to remain economically viable a need exists to determine the effect of off-farm employment on the perceived QOL. Research is also needed to understand the structural changes and their effect on the quality of life for low income and minority operators.

Babb (1979) suggests that performance measures should be developed to evaluate, compare and assess alternatives relating to farm structure. A Quality of Life Index (QLI) is essential to quantify the relationship between performance and structure. Quality of life, a composite measure of well-being in specific life "domains", is expected to be a function of socio-economic and demograhpic variables including age, education, income and number of children.

These variables will be used to account for differences in the QLI among a sample of Oklahoma farmers. The QLI not only can help to appraise choices among alternative structures but also can aid in developing appropriate public policies and extension programs.

Research Objectives and Hypotheses to be Tested

Research Objectives

The primary objective of this study is to construct a Quality of Life Index (QLI) of perceived well-being and to explore differences in QOL among a sample of East Central Oklahoma farmers. The specific objectives are to:

1. Identify socio-psychological factors to measure well-being;
2. Aggregate the socio-psychological factors of well-being into an overall Quality of Life Index (QLI);
3. Use the QLI to determine differences in the perceived well-being among particular groups of farmers included in the sample; and
4. Determine socio-economic, demographic and other variables that account for differences in QOL among respondents.

Hypotheses

1. Small farmers have a higher perceived quality of life than mid-size or large family farmers.
2. Part-time farmers have a higher perceived quality of life than full-time or aged (including disabled) farmers.
3. Low-income farmers irrespective of race have a lower perceived quality of life than non-low income farmers.
4. Minority farmers (Blacks and American Indians) have a lower perceived quality of life than White farmers.

Conceptual Issues in Quality of Life Research

Since the introduction of the term "Quality of Life" (QOL) in the early 1960s, no wide agreement yet exists for its meaning. The ambiguity may be due to the subjective nature of the term and the diverse objectives, backgrounds, training and disciplines of those researching the topic. In 1973, the U. S. Environmental Protection Agency (EPA) in a comprehensive survey of quality of life literature notes the vagueness of the term:

The concept of Quality of Life has emerged in the last few years as an undefinable measure of society's determination and desire to improve or at least not permit a further degradation of its condition. Despite its current undefinability, it represents a yearning of people for something which they feel they have lost or are losing, or have been denied, and which to some extent they wish to regain or acquire (p. iii).

Many attempts have been made to sharpen the definition and focus underlying theory for quality of life research. QOL concepts and empirical measures have been developed using economic theory and objective and subjective indicators.

The Use of Existing Economic Theory
in Quality of Life Research

Production Approach. Liu (1975) defines quality of life as a multidimensional and subjective name for the "well-being" of people and the environment in which they live. Production theory is one basis for
quantifying QOL or output in terms of social and physical inputs. These interdependent inputs or factors can be employed in various proportions to attain a desired level of QOL (Liu, 1975). Using the analytical framework derived, Liu measures QOL by nine equally weighted components. He cites several domains of life found to be important in assessing overall QOL including the individual's health, standard of living, children, housing and family.

Seidman (1977), in a critique of Liu's work, questioned his arbitraty choice of weights for the nine components of the QOL composite index. He also questioned the empirical framework provided by the production function approach and concluded that an alternative theoretical measure should be developed.

Utility Maximization Approach. Gillingham and Reece (1979) used utility maximization theory to derive the "true" Cost of Living Index (COL) as a measure of QOL (Pollack, 1971). The authors defined QOL as the "level" of satisfaction an individual achieves as a result of the consumption of market goods, leisure, public goods and other characteristics (physical and social) of the individual's environment.

Gillingham and Reece used their cost of living measure to determine the level of satisfaction of various groups of individuals under alternative states of the world. It is a cardinal measure suitable for analyzing the relative probability that QOL for an individual will be higher in one situation over another. The authors cautioned that QOL empirical problems and methods of estimation need further research.

The Social Indicators Approach to
 Quality of Life Research

With the recognized limitations of existing economic theory and economic variables as a measure of total well-being, the social indicator's approach is gaining widespread acceptance. A social indicator is obtained by aggregating social statistics into a meaningful summary to measure goal (wel1-being) achievement (01son, 1973). Tests by Atkinson, Andrews and Crandall suggest the Social Indicators Approach is a realiable and stable measure of quality of life over time.

Social indicators that are used in Quality of Life research can be classified into two broad types--objective and subjective indicators. Subjective indicators are based on direct reports from individuals about their own perceptions and feelings of well-being whereas objective indicators are based upon counting the occurrences of given phenomenon such as dollars of income, quantity of community services or square feet in a dwelling (Andrews, 1974). Objective indicators include items such as infant mortality rates as a measure of community health; crime reports, street lighting and police patrols as a measure of neighborhood safety; and income as a measure of ability to command goods and services. These objective indicators do not necessarily reveal whether people experience more or less satisfaction. Objective indicators seem to provide an inadequate measure of well-being because they fail to record subtle influences such as discrimination on the well-being of people. They are viewed only as a method of alerting policy makers to gross shortcomings in important factors that contribute to well-being. They do not record tradeoffs such as amenities that may make people prefer rural residence despite fewer community services.

The literature suggests that subjective indicators are preferred by researchers as a measure of well-being although it is recognized that both subjective and objective social indicators are necessary to interpret adequately the meaning of overall quality of life (Converse and Rogers, p. 128; Bharadwaj and Wilkening, p. 422; Kennedy et al., p. 467). Kennedy et al. proposes the use of experiential and demographic variables to facilitate a better understanding of the experience of different groups of the population.

This study will analyze the subjective or perceived quality of life for farm people in East Central Oklahoma. Selected socio-economic and demographic data are used to examine the association between objective and subjective measures of quality of life.

Organization of the Remainder of Thesis

The sampling procedures and the reliability of the random sample as compared to 1978 Oklahoma Census data are analyzed in Chapter II. In addition, a summary of selected socio-economic and demographic variables within a derived classification system is presented. Chapter III outlines the procedures used to construct the socio-psychological factors of well-being and the overall Quality of Life Indices (QLI). Regression results highlighting the significant variables of the QLI are also included. Chapter IV will summarize each socio-psychological index and QLI in terms of the hypotheses in Chapter I under a detailed classification system.

SOCIO-ECONOMIC AND DEMOGRAPHIC CHARACTERISTICS
 OF THE SURVEY RESPONDENTS

Introduction

A personal interview survey of 424 eastern Oklahoma farmers was conducted during the summer of 1981. The survey, taken from four contiguous counties--Wagoner, McIntosh, Muskogee, and Okmulgee--consists of 372 farmers obtained through random cluster sampling plus a minority supplement of 52 farmers. The names for the minority supplement were randomly selected from a list provided by the county Agriculture Stabilization and Conservation Service (ASCS). The random sample and minority supplement, consisting of 96 percent male respondents, are used to analyze the responses of minorities and whites as compared to respondents in the random sample. The responses will be used to compare issues relating to farm structure and quality of 1ife.

Wagoner, McIntosh, Muskogee and Okmulgee counties were chosen because they have high proportions of part-time, minority, low income and small scale farmers emphasized in the study. Each respondent represented approximately 10 farmers from a proportional allocation to each county, based on the number of farms specified by the 1978 Census of Agriculture (USDA, 1978).

Reliability of the Random Sample

The percentage of sample farmers in the smallest farm size stratified by economic sales classes and acres was less than in the Census of Agriculture for Oklahoma (Tables 1 and 2). This deviation could be due to slightly different screening for a unit to be classified as a farm-sales of more than $\$ 1,000$ of crops and livestock last year in the sample as compared to the Census classification of a farm based on "normal" sales of over $\$ 1,000$ of farm products.

The difference between the Census and sample could also be accounted for by the difference in the year (1978 versus 1980). The area random survey missed some farm operators who live in cities or elsewhere some distance from the area. The random sample may have had less tendency than the census to double count farms where both the absentee owner and renter are classified as "operators" of the same farm. Finally, the concept of "sales" may differ from that used by the Census of Agriculture.

The Classification System

Respondents were classified by status according to the characteristics of the principal operator and by farm size based on the annual value of crops and livestock sold. By status the respondents may be (1) aged or disabled where aged respondents are 65 years or older and disabled respondents are not aged but report 50 percent or greater disability, (2) part-time, reporting 150 or more days of off-farm. employment, and (3) full-time able-bodied respondents who are not aged and depend on the farm for their livelihood. The full-time able-bodied category is approximated by the difference between the

Table 1. Distribution of the Random Sample by Farm Size in Acres and a Comparison with 1978 Oklahoma Census Data

$\begin{gathered} \text { Farm } \\ \text { Size } \\ \text { (Acres) } \end{gathered}$	Random Sample		1978 Census		$\begin{gathered} \begin{array}{l} \text { Deviation of } \\ \text { Survey } \end{array} \\ \hline \text { Percent) } \end{gathered}$
	Number	Percent	Number	Percent	
1-49	50	13.44	14,945	18.83	-5.39
50-179	130	34.95	25,683	32.35	+2.60
180-499	109	29.30	21,011	26.47	+2.83
500-999	53	14.25	10,149	12.78	+1.47
1,000 +	30	8.06	7,600	9.57	-1.51
Total	372	100.00	79,388	100.00	0.00

Table 2. Distribution of the Random Sample by Farm Size in Economic Sales Classes Compared with 1978 Oklahoma Census Data

Farm Size by Economic	Random Sample		1978 Census		Deviation of Survey
Sales Class	Number	Percent	Number	Percent	(Percent)
\$1,000-\$4,999	116	32.22	34,173	43.07	-10.85
\$5,000-\$39,999	168	46.67	33,886	42.71	+3.96
\$40,000-\$99,999	50	13.89	7,566	9.54	+4.35
\$100,000 +	26	7.22	3,716	4.68	+2. 54
Total	$360^{\text {a }}$	100.00	79,341 ${ }^{\text {b }}$	100.00	0.00

axcludes 12 respondents not classified by farm size.
$\mathrm{b}_{\text {Excludes }}$ abnormal farms not classified by value of sales.
number of all farms and the number of farms with part-time, aged and disabled heads. This typology is designed to render farms relatively homogenous within. and heterogeneous among classes.

Stratified by gross annual sales, the four economic sales classes or farm sizes are (1) \$1,000-\$4,999, (2) \$5,000-\$39,999, (3) \$40,000$\$ 99,999$, and (4) \$100,000 or greater.

Low income respondents within the classification system by farm size and status are determined by the total family income (TFI) and the number of individuals in the family (N). The criterion used to determine low income respondents is as follows:

```
If N=1 and TFI\leq$5,000
        N=2 and $5,000\leqTFI\leq$7,499
        N = 3 or more and $7,500\leq TFI \leq $9,999.
```

The numerical analysis of respondents in the random sample and minority supplement stratified by farm size, status, and low income is shown in Tables 3, 4, and 5.

The random sample had a larger percentage of part-time respondents and those operating in the economic sales class of $\$ 5,000-\$ 39,999$ than did the minority supplement. Most full-time respondents operated larger farms whereas part-time, aged and disabled respondents operated smaller farms.

The aged and disabled group and the smallest farm size evidenced the highest incidence of low income respondents. A smaller percentage of low income respondents were represented among operators in the economic sales class of $\$ 40,000-\$ 99,999$ and part-time operators. Parttime farmers have a small percentage of low income operators, and they were concentrated on the two smallest farm sizes.

Table 3. Distribution of the Random Sample and Minority Supplement by Status, Income and Farm Size by Economic Sales Class

Farm Size	Sample	Sample Farms											
		Status											
		Aged and Disabled			Part-time			Full-time			A11 Farms		
		LI ${ }^{\text {b }}$	Other	Total		Other	Total		ther	Total	LI	Other	Total
\$1,000-\$4,999	Random	18	17	35	3	56	59	10	12	22	31	85	116
	Whites	14	15	29	3	50	53	5	9	14	22	74	96
	Minorities	21	3	24	1	1.4	15	8	6	14	30	23	53
\$5,000-\$39,999	Random	17	28	45	4	71	75	10	38	48	31	137	168
	Whites	15	22	37	3	65	68	9	33	42	27	120	147
	Minorities	4	14	18	1	13	14	1	5	6	6	32	38
\$40,000-\$99,999	Random	1	9	10	--	7	7	4	29	33	5	45	50
	Whites	1	8	9	--	6	6	4	26	30	5	40	45
	Minorities	--	1	1	--	1	1	1	4	5	1	6	7
\$100,000 +	Random	--	1	1	--	1	1	6	18	24	6	20	26
	Whites	--	1	1	--	1	1	6	15	21	6	17	23
	Minorities	--	--	--	--	--	--	--	3	3	--	3	3
A11 Farms ${ }^{\text {a }}$	Random	36	55	91	7	135	142	30	97	127	72	289	360
	Whites	30	46	76	6	122	128	24	83	107	60	251	311
	Minorities	25	18	43	2	28	30	10	18	28	37	64	101

${ }^{\text {Excludes }} 12$ respondents not classified by value and sales.
${ }^{\mathrm{b}}$ See text p. 12 for definition of low income (LI).

Table 4. Distribution of the Random Sample and Minority Supplement by Status and Income

Status	Sample	Sample Farms					
		Low Income		Other		Total	
		Numbe	Percent	Numbe	Percent	Number	Percent
Aged and Disab1ed	Random	38	40.86	55	59.14	93	100.00
	Whites	32	41.03	46	58.97	78	100.00
	Minorities	25	58.14	18	41.86	43	100.00
Part-time	Random	13	8.72	136	91.28	149	100.00
	Whites	11	8.21	123	91.79	134	100.00
	Minorities	3	9.68	28	90.32	31	100.00
Full-time	Random	33	25.38	97	74.62	130	100.00
	Whites	26	23.85	83	76.15	109	100.00
	Minorities	11	37.93	18	62.07	29	100.00
A11 Farms	Random	84	22.58	288	77.42	372	100.00
	Whites	69	21.50	252	78.50	321	100.00
	Minorities	39	37.86	64	62.14	103	100.00

Table 5. Distribution of the Random Sample and Minority Supplement by Farm Size and Income

Farm Size	Sample	Sample Farms					
		Low Income		Other		Total	
		Number	Percent	Number	Percent	Number	Percent
$\begin{aligned} & \$ 1,000- \\ & \$ 4,999 \end{aligned}$	Random	31	26.72	85	73.28	116	100.00
	Whites	22	22.92	74	77.08	96	100.00
	Minorities	30	56.60	23	43.40	53	100.00
$\begin{aligned} & \$ 5,000- \\ & \$ 39,999 \end{aligned}$	Random	31	18.45	137	81.55	168	100.00
	Whites	27	18.37	120	81.63	147	100.00
	Minorities	6	15.79	32	84.21	38	100.00
$\begin{aligned} & \$ 40,000- \\ & \$ 99,999 \end{aligned}$	Random	5	10.00	45	90.00	50	100.00
	Whites	5	11.11	40	88.89	45	100.00
	Minorities	1	14.29	6	85.71	7	100.00
\$100,000 +	Random	6	23.08	20	76.92	26	100.00
	Whites	6	26.09	17	73.61	23	100.00
	Minorities	0	0.00	3	100.00	3	100.00
All Farms	Random	73	20.28	287	79.72	$360{ }^{\text {a }}$	100.00
	Whites	60	19.29	251	80.71	311	100.00
	Minorities	37	36.63	74	63.37	101	100.00

[^0]Ninety percent of the minorities (random sample and minority supplement combined) were on the two smallest farm sizes. Minorities on these small farms had a large percentage of aged and disabled operators. The remaining ten percent of minorities were full-time operators of larger farms. Minorities (American Indians and Blacks) represented 28 percent of the combined random sample and minority supplement.

Socio-Economic and Demographic Characteristics
 of the Respondents

A limited number of socio-economic and demographic variables are considered to relate differences in attitudes to farm structural measures such as farm size and status. Specific variables to be considered for the random sample, whites and minorities are the respondents age, education, number of children, percentage of land owned that is operated, total family income, net worth and total acres operated. The mean responses for each sample stratified by farm size and status are shown in Tables 6 and 7. Table 8 summarizes the statistical significance of each response as determined by the F statistic and the new Duncan's Multiple Range test (DMR).

The F statistic for the samples is computed for farm size, status, low income and the interactions of the following groups: (1) farm size and status; (2) farm size and low income; (3) status and low income and (4) farm size, status and low income. The new Duncan's Multiple Range test (DMR), a statistical comparison of the means, will be computed for variables with an F statistic significant at $\mathrm{p}<.05$ for the permutations described above. The DMR is a powerful statistical

Table 6. Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement by Race, Farm Size and Income

${ }^{\mathrm{a}}$ See text p. 12 for definition of low income (LI).
${ }^{\mathrm{b}}$ Mean values will not be computed for variables with less than five respondents.

Table 7. Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement by Race, Status and Income

Variables	Sample	Status											
		Aged and Disabled			Part-time			Full-time			All Farms		
		LIa	Other	Total	LI	Other	Total	LI	Other	Total	LI	Other	Total
No. of Children	Random	4.18.	2.40	3.12	3.69	2.63	2.72	2.51	2.83	3.45	2.65	2.83	2.83
	Whites	4.15	2.52	3.19	2.72	2.54	2.64	2.69	2.65	2.66	3.53	2.57	2.78
	Minorities	3.52	3.27	3.41	3.66	3.14	3.19	3.54	3.55	3.55	3.53	3.29	3.38
Age	Random	70.34	68.70	69.37	49.08	46.20	46.44	48.39	49.79	49.46	59.19	51.85	53.46
	Whites	70.34	68.89	69.48	49.10	46.12	46.35	47.23	49.78	49.16	58.38	51.53	53.00
	Minorities	69.68	71.17	70.30	44.33	46.64	46.39	56.50	50.76	52.57	65.11	55.48	59.12
Education	Random	8.50	11.00	9.97	11.16	12.61	12.49	11.71	11.87	11.84	10.06	12.05	11.61
	Whites	8.43	11.26	10.10	11.40	12.70	12.60	11.53	11.89	11.80	10.05	12.17	11.72
	Minorities	7.64	8.77	8.11	10.66	11.39	11.30	11.33	11.84	11.68	8.55	10.62	9.82
Years Farming	Random	41.67	33.36	36.70	19.23	15.63	15.96	21.36	21.58	21.52	30.08	21.16	23.21
For Oneself	Whites	41.54	34.21	37.16	16.90	15.47	15.59	20.57	21.81	21.50	29.54	21.05	22.90
	Minorities	38.20	38.83	38.46	24.66	18.47	19.19	24.27	19.88	21.60	33.23	25.20	28.43
Percent of	Random	77.00	63.28	66.99	68.89	62.13	62.73	29.17	58.60	50.99	45.60	60.46	57.08
Land Owned	Whites	74.88	63.05	66.19	59.08	61.84	61.64	27.29	55.07	46.89	42.58	58.73	54.82
	Minorities	69.64	67.39	68.51	97.32	63.89	69.55	43.56	72.06	67.50	61.50	70.07	68.02
Total Family	Random	4.45	31.47	21.34	5.20	35.30	34.23	3.80	44.31	34.99	4.22	37.60	31.30
Income	Whites	4.34	33.55	22.75	5.56	35.43	34.49	3.61	46.67	27.33	4.12	38.79	32.67
$(1,000)$	Minorities	3.78	19.79	10.48	6.25	31.51	29.83	3.37	30.00	20.49	3.80	27.79	19.00
Net Worth$(1,000)$	Random	200.28	417.40	334.69	161.25	244.82	239.98	159.87	467.28	349.92	179.05	353.10	218.70
	Whites	229.97	472.79	381.29	176.42	239.42	235.86	183.81	440.60	385.75	204.69	348.67	321.92
	Minorities	60.57	163.33	103.68	31.25	255.33	239.87	66.75	520.36	352.36	60.65	301.29	211.35
Total Acres Operated	Random	269.78	493.87	402.81	217.61	204.06	205.24	726.93	705.35	710.83	441.30	428.24	431.19
	Whites	294.15	560.71	451.35	191.09	208.43	207.00	870.23	646.24	699.66	494.79	416.93	433.67
	Minorities	125.84	167.72	143.37	249.66	126.71	138.61	277.54	889.88	657.62	178.15	352.89	286.72

[^1]Table 8. Statistical Results Related to the Socio-Economic and Demographic Characteristics for the Random Sample and Minority Supplement

Variables	Sample	$\begin{gathered} \text { Farm Size } \\ \text { (F.S.) } \end{gathered}$	Status	$\begin{aligned} & \text { Low Income } \\ & \text { (LI) } \end{aligned}$	$\begin{aligned} & \text { F.S. x } \\ & \text { Status } \end{aligned}$	$\text { F.S. } x$ Low Income	Status x Low Income	F.S. x Status x Low Income
No. of Children	Random	0.9362	0.5282	0.2207	0.6729	0.6674	0.0278*	0.1743
	Whites	0.7949	0.3657	0.0895	0.7395	0.9577	0.0965	0.4527
	Minorities	0.2153	0.8620	0.2541	0.6272	0.0107*	0.5739	0.9749
Age	Random	0.5780	0.0001*	0.7163	0.1049	0.0735	0.4651	0.2711
	Whites	0.6972	0.0001*	0.4961	0.1148	0.0537*	0.2621	0.2008
	Minorities	0.2125	0.0001*	0.9350	0.9502	0.7774	0.3735	0.1835
Education	Random	0.0951	0.1802	0.0629	0.3471	0.1859	0.1629	0.0502*
	Whites	0.1249	0.1850	0.0447*	0.2497	0.0952	0.2062	0.0860
	Minorities	0.0102*	0.0836	0.9768	0.7031	0.4030	0.3409	0.2550
Years	Random	0.0005*	$0.0001 *$	0.0248*	0.2003	0.5830	0.2283	0.7949
Farming	Whites	0.0006*	0.0001*	0.1729	0.2753	0.6474	0.1875	0.6519
for Oneself	Minorities	0.2201	0.0380*	0.2533	0.2433	0.8272	0.4990	0.7813
Percent of	Random	$0.0098 *$	0.3310	0.0187	0.7639	0.6384	0.5939	0.5079
Land Owned	Whites	0.0157*	0.4029	0.0075	0.6305	0.8774	0.4539	0.9131
	Minorities	0.8760	0.3291	0.9099	0.8215	0.6146	0.7773	0.7543
Total Family	Random	$0.0001 *$	0.0589*	$0.0001 *$	0.0003*	0.0008	0.8334	0.9740
Income	Whites	0.0001*	0.1134	0.0001*	0.0049*	0.0015*	0.9070	0.9774
$(1,000)$	Minorities	0.0001*	0.0001*	0.0001*	0.0001*	0.2871	0.4599	0.7995
Net Worth $(1,000)$	Random	0.0001*	0.0001*	0.4682	0.0603	0.0009*	0.0540*	0.0223*
	Whites	0.0010*	0.0001*	0.4600	0.0737	0.0019*	0.1218	0.0323*
	Minorities	0.0001*	0.0787	0.1205	0.0083*	0.5722	0.9317	0.9266
Total Acres Operated	Random	0.0001*	0.0015*	0.0028	0.0778	0.7026	0.6588	0.5171
	Whites	0.0001*	0.0002*	0.0280	0.0188*	0.4531	0.6986	0.4098
	Minorities	0.0001*	0.8845	0.7212	0.9991	0.9218	0.9773	0.9917

[^2]tool because it has a high probability of declaring a difference in means when an actual difference exists (McClave and Dietrich, 1979).

Age

For the random sample and for whites and minorities, age was significantly related to status. As expected, aged and disabled respondents were oldest whereas part-time farmers were youngest. For whites age significantly interacted with farm size and low income. The data suggest that older whites tend to have low incomes on the two smallest farms whereas younger whites tend to have low incomes on the largest farms. Low income respondents for all farms and minorities as a whole were older than other respondents by farm size and status.

Education

Although low income respondents in all samples evidenced lower educational attainment than other respondents, statistical significance was limited to whites. Low income white respondents by farm size and status consistently evidenced lower educational attainment than non low income operators except for the largest farm size of $\$ 100,000$ or more in sales. The low income respondents in this farm size averaged the most education (13.66 years) and were the youngest of all white respondents. They were also primarily renters, owning 13 percent of the land operated, and had a net worth several times smaller than that of non-low income operators of the same farm size.

Operators of the largest farm size ($\$ 100,000$ or more for the random sample and whites; $\$ 40,000-\$ 99,999$ for minorities) evidenced greater educational attainment than operators of all other farm sizes.

Statistical significance was limited to minorities by farm size. A relationship also exists for minorities between farm size, education and income. The minority low income respondents of the smallest farms had the least education and were also the oldest of all respondents. The minority group averaging the most education was non-low income operators in the $\$ 40,000-\$ 99,999$ sales class.
'Aged and disabled operators averaged the least education for all samples whereas part-time respondents averaged the most education for the random sample and whites. Full-time respondents averaged the most education for minorities.

Years Farming for Oneself

Years farming for oneself measures experience as an operator and is an important aspect of farming, particularly in making management decisions. The variable was significantly related to farm size for the random sample and whites, indicating that the largest and smallest farm operators had less experience than operators of mid-sized farms. Status was statistically significant for all samples. The aged and disabled operators had the most experience farming and part-time had the least.

Low income farmers had farmed longer than other operators for all the samples but statistical significance was limited to the random sample. Minorities generally farmed more years for themselves than respondents in the random sample and whites.

Total Family Income and the

Number of Children

Total family income consists of net income from farm and off-farm sources and includes rents, wages, interest and dividends, government payments and royalties. Off-farm income is an essential element of total family income of farmers because it buffers fluctuations in farm income and enables many operators to remain in farming. Off-farm income has helped to raise farm families' overall level of satisfaction (Lee, p. 86) and has brought family income closer to that of persons in the non-farm sector (Larson, p. 10; Carlin and Reinsel, p. 43). Lee, Polzin and MacDonald view off-farm work as both rational and efficient for the overall economy and the farm family.

National results by Carlin and Ghelfi indicated off-farm income was related to farm size when measured by the value of agricultural products sold. They concluded that small farm and young (less than 45 years old) operators were more likely to have off-farm sources of income. The additional income may provide a source of capital for expansion and stability.

Total family income for the random sample, whites and minorities was positively related to farm size, i.e., the larger the farm size the greater the total family income. Aged and disabled operators experienced lower total family income than part-time and full-time operators for the random sample, whites and minorities.

Generally, minorities had lower incomes than whites. Part-time minority operators in the economic sales class of $\$ 40,000-\$ 99,999$ evidenced the highest incomes of all minorities. Compared to whites, non-low income minority farmers in the $\$ 40,000-\$ 99,999$ sales class were
older, had less farming experience, owned a larger percentage of land operated, had more net worth, operated fewer acres and had fewer children.

The number of children in the family was statistically significant in the random sample for the interaction of status and income. The number of children is also significant for minorities for the interaction of farm size and low income. As expected, low income respondents by farm size and status had more children than other respondents.

Total Acres Operated

Total acres operated is closely related to total family income. It is highly significant for the random sample and for whites by farm size, status and income.

As expected, total acres operated is directly related to the economic sales class of respondents with the largest size farms operating the most acreage. Full-time respondents operated the most acreage and part-time the least for all samples. Low income respondents, for all farms except minorities, operated more acreage than non-low income respondents.

Net Worth

Wealth or net worth may influence the economic well-being of respondents in the sample. The average net worth of farm families, as indicated by Carlin and Ghelfi (p. 372), is nearly twice that of all families in the United States. Although no explicit formula is given, the authors concluded that the average level of well-being increased when net worth is considered as a component measure of
well-being. A significant increase for the aged was noted by Weisbrod and Hansen when considering net worth as a factor in well-being.

For the random sample of whites and minorities, net worth is significantly related to farm size with the average net worth increasing as farm size increases. Part-time farmers evidenced the least and full-time the most net worth for the random sample and whites. Aged and disabled operators evidenced the least net worth and full-time the most among minority operators. Overall, minorities averaged a smaller net worth than others with the least disparity between minorities and whites among part-time operators. Low income respondents generally had a lower net worth than other respondents by farm size and status.

Percent of Land Owned

The percentage of land owned is related to total family income and net worth. A larger percentage of land owned is expected to be associated with a larger net worth and spendable income. Percent of land owned is significant for the random sample and whites by farm size and low income. The larger the farm size the smaller the percentage of land owned for the random sample and whites. For the overall sample low income respondents owned a smaller percentage of land operated than did non-low income farmers.

Part-time low income minorities owned the largest percentage of land operated--97 percent. They also operated more land than did other part-time operators, had the least net worth and were younger than other respondents.

Summary of the Socio-Economic and
Demographic Characteristics
of the Respondents

Low income respondents in the sample were generally older, farmed longer, operated more acreage but owned a smaller percentage of land than did other respondents. Low income operators also had more children, averaged less education and evidenced a smaller net worth. Age was also a factor in determining the farm size operated by low income white respondents. Older whites evidenced low incomes in the two smaller farms and younger whites tended to be low income on the largest farm sizes.

Minorities, when compared to respondents in the random sample and whites usually farmed longer, had more children, were older and averaged lower educational levels. Minorities also had a lower total family income, a lower net worth and operated fewer acres than did respondents in the random sample and whites. Non-low income minorities in the economic sales class of $\$ 40,000-\$ 99,999$ was one exception because they evidenced a higher total family income, owned a larger percentage of land, evidenced a greater net worth, operated fewer acres and averaged fewer children than whites of the same sales class.

Among the status groups part-time farmers averaged greater educational attainment, were younger, had fewer years experience and generally averaged more total family income than full-time, aged and disabled operators.

CHAPTER III

CONSTRUCTION OF THE SOCIO-PSYCHOLOGICAL FACTORS
OF WELL-BEING AND THE OVERALL QUALITY
OF LIFE INDEX

Factor analysis will be used to identify and aggregate sociopsychological factors of well-being into the overall Quality of Life Index. The Statistical Analysis System (SAS), employing the principal axes solution and the varimax method of rotation, will be utilized to obtain the factor analysis results.

The statistical procedures are based on the responses of the random sample to selected attitudinal variables. The variables were taken from the well-tested National Opinion Research Center's nationwide survey designed to measure well-being. Other questions were added to determine satisfaction with employment opportunities and federal, state and county agricultural programs (see Table 9).

A three point numerical scale of possible responses to the variables is arranged so that dissatisfaction and disagreement with a question or item is assigned the lowest value. Satisfaction (or agreement) is assigned the highest value and the median score on the overall scale of items is assigned. One domain of the scale, two variables concerned with overall happiness and excitement of life, items were assigned a five point scale.

Table 9. Summary of Attitudinal Variables Used in Quality of Life Research by Means and Standard Deviations

Attitudinal Variables ${ }^{\text {a }}$	Mean ${ }^{\text {b }}$	Standard Deviation	Attitudina1 Variables ${ }^{\text {a }}$	Mean ${ }^{\text {b }}$	Standard Deviation
V29	2.47	0.83	V37	2.77	0.56
V30	1.94	0.95	V38	2.81	0.55
V31	2.57	0.75	V39	2.71	0.67
V32	2.74	1.05	V40	2.04	0.91
V33	3.29	0.75	V41	1.68	0.85
V34	2.75	0.65	V42	2.59	0.57
V35	2.87	0.47	V43	2.52	0.53
V36	2.92	0.34	V44	2.47	0.72

${ }^{\mathrm{a}} \mathrm{V} 29$: In spite of what some people say, the lot (situation/condition) of the average man is getting worse, not better. V30: It's hardly fair to bring a child into the world with the way things look for the future. V31: Most public officials (people in public office) are not really interested in the problems of the average man. Satisfaction or dissatisfaction with: V32 - taken all together, how would you say things are these days--would you say that you are (1) not too happy, (2) don't know, (3) pretty happy, or (4) very happy; V33 - In general, do you find life (1) dull, (2) no opinion, (3) pretty routine, or (4) exciting; V34 - house or apartment; V35 - with your community as a place to live; V37 - job; V38 - health; V39 - standard of living (things like income, car, furniture, etc.); V40 - job opportunities around here; V4l - county, state and federal programs for welfare, Social Security, and Medicare; V42 - The Cooperative Extension Service or Office; V43 - Land Grant University Agricultural Research; V44 - Agricultural Stabilization and Conservation Service (ASCS).
${ }^{\mathrm{b}}$ Most means responses are based on a three point scale where $1=\mathrm{dis}$ agree; 2 = undecided; and $3=$ agree. Variables 32 and 33 are based on a four point scale where $1=$ not too happy; $2=$ don't know; $3=$ pretty happy; $4=$ very happy and $1=$ dull; $2=$ no opinion; $3=$ pretty routine; 4 = exciting, for each variable, respectively.

After assigning response score values, the individuals actual response to each variable was standardized by the following procedure:

$$
R_{j i}=\frac{x_{j i}-\bar{x}_{j}}{s_{j i}}
$$

where $R_{j i}=\begin{aligned} & \text { the standardized response of variable } j \text { for the ith } \\ & \text { individual, }\end{aligned}$
$\begin{aligned} & x_{j i} \text { the actual observed response of variable } j \text { for the ith } \\ & \text { individual, }\end{aligned}$
$\bar{x}_{j}=$ the mean response for variable j, and
$s_{j}=$ the standard deviation of variable j.
The standardized responses were then used to construct the sociopsychological factors of well-being. The attitudinal variables as shown in the questionnaire, their mean responses and standard deviations are shown in Table 9.

Quality of Life Component Index Construction

The model for principal components is specified by $Z_{j}=a_{j 1} F_{1}+$ $\mathrm{a}_{\mathrm{j} 2} \mathrm{~F}_{2}+\ldots .+\mathrm{a}_{\mathrm{jn}} \mathrm{F}_{\mathrm{n}}(\mathrm{j}=1,2, \ldots, \mathrm{n})$ where each of the n observed values is described linearly in terms of n new uncorrelated components $F_{1}, F_{2}, \ldots, F_{n}$ and $a_{j i}$ represents the factor loadings for variable j on factor i. The factor loadings, determined by the intersection of a row and column, represent the relative importance of a variables influence on a factor. They also serve as a basis for combining variables into common groups.

The rotated and unrotated factor patterns (matrices of factor loadings) are displayed in the computer output. Although the unrotated factor pattern is the initial result of a factor analysis on the data, the rotated factor pattern is used in actual index construction. The
rotated factor pattern provides a simple and theoretically meaningful factor structure by reducing the ambiguity that accompanies the unrotated factor pattern. The varimax method of rotation was used because it maximizes the number of variables with high loadings while uniquely defining a factor in terms of a cluster of intercorrelated variables.

The cluster of intercorrelated variables, herein designated reduced factors $\left(\mathrm{F}^{\mathrm{r}}\right)$, must have a minimum factor loading of $|.5|$ to be here considered important on a factor. The scoring coefficient corresponding to each variable in the cluster is used to weight the standardized individual responses. The weighted responses will be developed into the socio-psychological factors of well-being. The scoring coefficient matrix and the rotated and unrotated factor matrices are displayed with other factor analytic output in Appendix A.

The number of factors retained in the analysis is dependent on the number of eigenvalues with a minimum value of one or greater. The eigenvalues, the sum of the column of squared factor loadings, are used to measure the amount of variation in the model accounted for by a factor. Six factors had an eigenvalue of one or greater but the model allowing only five factors will be used to construct the sociopsychological indices. The sixth factor resulted in a less plausible configuration because it had only one significant factor loading-satisfaction with marriage. Minor, Bradburn and Schaffer (p. 136) excluded a similar item from their analysis that measures satisfaction with marriage. They concluded that life satisfaction structures estimated without marital satisfaction were not misspecified.

A review of the variables that were significant for each reduced factor results in the derivation of the Anomie, Satisfaction I,

Satisfaction II, and Hedonistic Indices of well-being. Table 10 shows each socio-psychological factor summarized by significant variables, factor loadings and factor weights. The statistics are used to aggregate scores of individual respondents.

The Overall Quality of Life Indices

The socio-psychological factors of well-being derived from factor analysis are combined in several combinations to form three alternative forms of the overall Quality of Life Index. The formulas are as follows:

$$
\begin{align*}
& \mathrm{QLI}_{i} I=\mathrm{AN}_{i}+\mathrm{SAT}_{i}+\operatorname{SAT} \mathrm{II}_{i} \tag{3.1}\\
& \mathrm{QLI}_{i} \mathrm{II}=\mathrm{AN}_{i}+\operatorname{SAT} I I_{i} \tag{3.2}\\
& \mathrm{QLI}_{i} \mathrm{III}=\mathrm{AN}_{i}+\operatorname{SATII_{i}}+\mathrm{HED}_{i} \tag{3.3}
\end{align*}
$$

where $\mathrm{i}=$ individual $1,2,3, \ldots \mathrm{~N}$ and
$\mathrm{AN}_{\mathrm{i}}=$ the Anomie Index for the ith individual is derived from the weighted reduced factor one. The Anomie Index is designed to measure the degree of confidence (or lack of confidence) in the social environment of the individual. Anomie is characterized by feelings of pessimism, fatalism and aleination that are frequently associated with non-deferred gratification of wants and the insecurity that attends poverty. Feelings of personal efficacy or effectiveness, the opposite of Anomie, are considered to be signs of emotional health and an indication of satisfaction and well-being (Tweeten and Lu). Because Anomie is expected to be inversely related to quality of life, the Anomie Index is negatively correlative with the QLI.

SAT $I_{i}=$ the Satisfaction I Index for the ith individual derived from weighted reduced factor two. The Satisfaction I Index is designed to measure satisfaction with agricultural agencies, particularly the Cooperative Extension Service; land grand agricultural research; and U. S. Department of Agriculture programs of the Farmers Home Administration, Soil Conservation Service and Agricultural Stabilization and Conservation Service.

Table 10. Summary of the Socio-Psychological Factors of Well-Being by Significant Variables, Factor Loadings and Factor Weights

Socio-Psychological Factors of Well-Beingb										
Anomie			Satisfaction I			Satisfaction II			Hedonistic	
Variable ${ }^{\text {a }}$	Loading	Weight	Variable ${ }^{\text {b }}$	Loading	Weight	Variable ${ }^{\text {b }}$	Loading	Weight	Variable ${ }^{\text {b }}$ Loading	Weight
V29	0.739	0.403	V42	0.681	0.381	V37	0.641	0.419	V32	
V30	0.732	0.384	V43	0.662	0.373	V39	0.774	0.515	V33	
V31	0.695	0.367	V44	0.694	0.423	V40	0.496	0.048		
						V38	0.722	0.631		
						V41	-0.702	-0.582		
						V34	0.576	0.418		
						V35	0.817	0.664		

a Refer to footnote a of Table 9.
befer to pp. 31 and 33 for definitions of the socio-psychological factors.

```
SAT II 
        from the weighted reduced factor
        The Satisfaction II Index is designed to measure the
        individual's satisfaction with various aspects of their
        lives such as their work, family life, job, health, house
        or apartment. Many of the domains of life have been tested
        in other studies (Andrews and Withey, 1974; Rodgers and
        Converse, 1975) concluding that overall life satisfaction
        can be adequately explained in terms of a simple linear
        additive combination of the important domains of life.
        (George and Bearon view life satisfaction as a more indepth
        measure or assessment of the individual's overall "conditions
        of existence" derived from a comparison of one's aspirations
        to actual achievements.)
    HED i = the Hedonistic Index for the ith individual derived from
        two variables (V32 and V33) that did not meet the minimum
        factor loading criterion used to determine significant
        variables on the reduced factors. The Hedonistic Index is
        designed to measure the individuals subjectively perceived
        gratifications in life as a component of quality of life.
```

 The Model for Quality of Life Research
 Stepwise regression is initially used to isolate a subset of independent variables that underly the Quality of Life Indices. A summary of the stepwise and prescribed regression equations is shown in Tables 11 through 16. The results for the individual socio-psychological factors of well-being are shown in Appendix B.

Tha standardized coefficients in each table depict the number of standard deviation changes in the Quality of Life Index that would be predicted when a variable changed by one standard deviation. The values for T for $H_{o}: \beta=0$, Prob. $>|T|, R^{2}$ and the Prob. $>|F|$ are also presented to analyze the significance of each variable and the utility of the overall model. The results provided background for the analysis of each factor and index in Chapter IV.

However, the classification system in Chapter IV is deemed to be a richer source of information on the relationship between respondent

Table 11. Stepwise Regression Equation for the Overall Quality of Life Index I

Variables	Standard Coefficient	$\begin{gathered} \mathrm{T} \text { for } \mathrm{H} \\ \beta=0 \end{gathered}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Disabled Respondents	-0.18	-3.64	< 0.01
Education	0.14	2.80	< 0.01
Reside on Place	0.16	3.16	< 0.01
Farm Income	0.11	2.34	<0.01
Agricultural Agency Dealings	0.10	2.11	0.03
$\mathrm{R}^{2}=0.152 \quad$ F Statistic $=$	Prob. $>\|\mathrm{F}\|=0.01$		

Table 12. Prescribed Regression Equation for the Overall Quality of Life Index I

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{0}: \\ & \beta=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Age	4.62	2.60	<0.01
Skill at Farming	0.11	2.02	0.05
Black Respondents	-0.10	-2.08	0.03
Disabled Respondents	-0.11	-2.29	< 0.02
In-kind Assistance	-0.14	-2.80	< 0.01
$(\text { Age })^{2}$	-4.67	-2.60	< 0.01
$\mathrm{R}^{2}=0.149 \quad$ F St	Prob.	$=0.01$	

Table 13. Stepwise Regression Equation for the Overall Quality of Life Index II

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{\mathrm{O}}: \\ & \beta=0^{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Disabled Respondents	-0.21	-4.25	< 0.01
Reside on Place	0.18	3.61	< 0.01
Black Respondents	-0.13	-2. 58	< 0.01
Education	0.10	2.16	0.03
$\mathrm{R}^{2}=0.171 \quad$ F Statistic	. 51 Prob.	$\mathrm{F} \mid=0.01$	

Table 14. Prescribed Regression Equation for the Overall Quality of Life Index II

Table 15. Stepwise Regression Equation for the Overall Quality of Life Index III

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{\mathrm{O}}: \\ & \beta=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Disabled Respondents	-0.14	-2.77	<0.01
Farm Income	0.20	3.97	< 0.01
Off-farm Income	0.31	4.43	<0.01
Operator's Off-farm Occupation	-0.18	-2.73	<0.01
Black Respondents	-0.11	-2.24	<0.02
$\mathrm{R}^{2}=0.192 \quad \mathrm{~F}$ Statistic $=1$	34 Prob. $>\|F\|=0.01$		

Table 16. Prescribed Regression Equation for the Overall Quality of Life Index III

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{\mathrm{O}} \text { : } \\ & \beta=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|T\| \end{aligned}$
Age	3.34	1.94	0.05
Black Respondents	-0.13	-2.87	< 0.01
Disabled Respondets	-0.11	-2.45	< 0.01
Ratio of Farm to Total Income	0.11	2.40	< 0.01
In-kind Assistance	-0.13	-2.71	< 0.01
Off-farm Work	0.21	3.12	< 0.01
(Age) ${ }^{2}$	-3.41	-1.96	0.05
$\mathrm{R}^{2}=0.202 \quad \mathrm{~F}$ Statistic $=4$	4 Prob. > $\|F\|=0.01$		

characteristics and quality of life measures than the regression analysis.

CHAPTER IV

SUMMARY AND CONCLUSIONS OF THE SOCIO-PSYCHOLOGICAL FACTORS AND THE OVERALL QUALITY OF LIFE INDICES

Introduction

The emphasis to this point has been on developing an index to measure the perceived Quality of Life (QOL) of East Central Oklahoma farmers. The attitudinal variables from the survey were grouped and weighted by factor analysis to form four socio-psychological factors of well-being. The Anomie, Satisfaction I, Satisfaction II and Hedonistic Indices were used in different combinations to derive three Quality of Life Indices (QLI).

In this chapter, the mean responses for the weighted sociopsychological factors, their component variables and the overall Quality of Life Indices will be presented. The data will be analyzed for respondents in the random sample, whites and minorities within a classification system based on farm size, status and income.

The F Statistic for the samples is computed for farm size, status, low-income and the interactions within the following groups: (1) farm size and status; (2) farm size and low income; (3) status and low income; and (4) farm size, status and low income. The new Duncan's Multiple Range Test (DMR), a statistical comparison of the means, will be computed for variables with an F statistic significant at $\mathrm{p}<.05$ for the permutations described above. The DMR Test is a powerful
statistical tool because it has a high probability of declaring a difference in means when an actual difference exists (McClave and Dietrich, 1979).

An analysis of the Anomie, Satisfaction I, Satisfaction II, Hedonistic and overall Quality of Life Indices follows.

The Anomie Index: Tables 17 through 19

The Anomie Index, measuring the degree of confidence or lack of confidence in the social environment of the individual, was statistically significant in the random sample for the interaction of farm size, status and low income. Respondents operating in the economic sales class of $\$ 40,000-\$ 99,999$ and part-time averaged the lowest Anomie (evidenced the most confidence in the social environment). Low income respondents for all samples evidenced the highest Anomie.

Minorities operating the two smaller farm sizes averaged less confidence in the social environment (higher Anomie) than whites operating the same farm sizes. Minorities farming full-time and those operating in the economic sales class of $\$ 40,000-\$ 99,999$ had more confidence in the social environment than whites in the same classes. No appreciable difference existed between part-time operators of different races.

Reviewing the components of the Anomie Index, the "concern of public officials about the problems of the average man" was statistically significant for minorities by farm size and whites by farm size and status. White respondents operating farm size \$5,000-\$39,999 agreed more strongly than other whites that "public officials are not really interested in the problems of the average man." Also whites operating in the $\$ 40,000-\$ 99,999$ sales class disagreed least with

Table 17. Summary of the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement by Race, Farm Size and Income

Variables ${ }^{\text {a }}$	Samp1e	Farm Size											
		\$1,000-\$4,999			\$5,000-\$39,999			\$40,000-\$99,999			\$100,000 +		
		LIC Other Total			LI Other Total			LI Other Total			LI Other Total		
V29	Random	2.22	2.37	2.33	2.67	2.53	2.55	2.80	2.28	2.34	2.33	2.70	2.61
	Whites	2.18	2.31	2.28	2.70	2.51	2.55	2.80	2.32	2.37	2.33	2.76	2.65
	Minorities	2.50	2.60	2.54	2.66	2.62	2.63	--d	1.83	1.71	--d	--d	--d
v30	Random	2.16	1.85	1.93	2.25	1.91	1.98	1.80	1.86	1.86	1.83	1.85	1.84
	Whites	2.09	1.86	1.91	2.22	1.91	1.97	1.80	1.85	1.84	1.83	1.76	1.78
	Minorities	2.06	1.60	1.86	2.66	1.78	1.92	--	1.83	1.71	--	--	--
V31	Random	2.54	2.63	2.61	2.64	2.60	2.61	2.40	2.42	2.42	2.16	2.45	2.38
	Whites	2.59	2.58	2.58	2.62	2.63	$2.63{ }^{\circ}$	2.40	2.35	2.35	2.16	2.58	2.47
	Minorities	2.63	2.73	2.67	2.66	2.65	2.65	--	3.00	3.00	--	--	--
Anomie	Random	6.93	6.87	6.88	7.58	7.02	7.12	7.00	6.57	6.62	6.33	7.00	6.84
	Whites	6.86	6.75	6.78	7.55	7.02	7.12	7.00	6.52	6.57	6.33	7.11	6.91
	Minorities	7.20	6.95	7.09	8.00	7.06	7.21	--	6.66	6.42	--	--	--

${ }^{a_{V 29}}$: In spite of what some people say, the lot (situation/condition) of the average man is getting worse not better. V30: It's hardly fair to bring a child into the world with the way things look for the future. V31: Most public officials (people in public office) are not really interested in the problems of the average man. Anomie: A composite index derived from variables V29, V30, and V31 using factor analysis. The Anomie Index is designed to measure the degree of confidence or lack of confidence in the social environment of the individual.
${ }^{\mathrm{b}}$ Mean responses for the individual variables are based on a three-point scale where $1=$ disagree; 2 = undecided; and 3 = agree.
${ }^{\mathrm{c}}$ See text p .12 for definition of low income (LI).
${ }^{d}$ Mean values will not be computed for variables with less than five respondents.

Table 18. Summary of the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement by Race, Status and Income

Variables ${ }^{\text {a }}$	Sample	Status											
		$\frac{\text { Aged and Disabled }}{\text { LIC Other Total }}$			Part-time			Fu11-time			All Farms		
					LI Other Total			LI Other Total			LI	Other Total	
V29	Random	2.39	2.45	2.43	2.38	2.41	2.40	2.54	2.53	2.53	2.45	2.46	2.45
	Whites	2.46	2.34	2.39	2.27	2.43	2.41	2.57	2.51	2.53	2.47	2.44	2.45
	Minorities	2.52	2.88	2.67	--d	2.32	2.38	2.18	2.50	2.37	2.45	2.53	2.50
v30	Random	2.28	2.96	2.09	1.92	1.77	1.79	2.00	2.01	2.00	2.11	1.89	1.94
	Whites	2.34	1.93	2.10	1.72	1.78	1.77	1.88	2.01	1.98	2.07	1.88	1.92
	Minorities	2.12	1.66	1.93	--	1.75	1.80	2.09	1.83	1.93	2.12	1.75	1.89
v31	Random	2.63	2.65	2.59	2.53	2.57	2.56	2.51	2.59	2.57	2.57	2.57	2.57
	Whites	2.62	2.50	2.55	2.45	2.59	2.57	2.57	2.58	2.58	2.57	2.57	2.57
	Minorities	2.72	2.83	2.76	--	2.60	2.50	2.54	2.05	2.58	2.64	2.67	2.66
Anomie	Random	7.31	6.98	7.11	6.84	6.74	6.75	7.06	7.11	7.10	7.14	6.91	6.96
	Whites	7.43	6.78	7.05	6.45	6.78	6.75	7.03	7.08	7.07	7.13	6.88	6.93
	Minorities	7.36	7.38	7.37	--	6.67	6.77	6.81	6.94	6.89	7.23	6.95	7.05

$\mathrm{a}_{\mathrm{V} 29}$: In spite of what some people say, the lot (situation/condition) of the average man is getting worse not better. V30: It's hardly fair to bring a child into the world with the way things look for the future. V3l: Most public officials (people in public office) are not really interested in the problems of the average man. Anomie: A composite index derived from variables V29, V30, and V3l using factor analysis. The Anomie Index is designed to measure the degree of confidence or lack of confidence in the social environment of the individual.
${ }^{\mathrm{b}}$ Mean responses for the individual variables are based on a three-point scale where $1=$ disagree; 2 = undecided; and $3=$ agree.
${ }^{\mathrm{c}}$ See text p. 12 for definition of low income (LI).
$\mathrm{d}_{\text {Mean }}$ values will not be computed for variables with less than five respondents.

Table 19. Statistical Results Related to the Individual Variables and Composite Anomie Index for the Random Sample and Minority Supplement

Variables	Sample	$\begin{aligned} & \text { Farm Size } \\ & \text { (F.S.) } \end{aligned}$	Status	$\begin{gathered} \text { Low Income } \\ \text { (LI) } \end{gathered}$	F.S. x Status	F.S. x Low Income	Status x Low Income	$\begin{aligned} & \text { F.S. } x \\ & \text { Status } x \\ & \text { Low Income } \end{aligned}$
					rob. >			
V29	Random	0.3731	0.9604	0.4802	0.7063	0.6181	0.9963	0.4475
	Whites	0.3953	0.9803	0.3221	0.8010	0.5266	0.9279	0.4753
	Minorities	0.1406	0.4805	0.7553	0.5880	0.8391	0.3199	0.9874
V30	Random	0.1228	0.1256	0.2369	0.1867	0.2114	0.1793	0.0132
	Whites	0.1054	0.1509	0.3112	0.1269	0.4814	0.1045	0.0352
	Minorities	0.4445	0.8287	0.2125	0.4878	0.5658	0.8436	0.6297
V31	Random	0.1496	0.1174	0.2686	0.3320	0.8585	0.3062	0.4598
	Whites	0.0538	0.0433	0.4430	0.2711	0.4702	0.0897	0.6242
	Minorities	0.0488*	0.5550	0.2458	0.1853	0.6199	0.3511	0.0137
Anomie	Random	0.1442	0.1742	0.6296	0.2517	0.6190	0.3725	0.0490
	Whites	0.1406	0.2020	0.5160	0.2096	0.5231	0.2030	0.0967
	Minorities	0.4444	0.4474	0.9136	0.4356	0.7547	0.9951	0.2728

[^3]the statement. As farm size increased, the proportion of full-time, aged and disabled minority operators who agreed with the statement increased and the proportion of part-time minorities who disagreed increased.

The Satisfaction I Index (SAT I):
Tables 20 through 22

Mean responses consistently evidenced a positive correlation between farm size and the Satisfaction I Index that measures satisfaction with agricultural agencies. The larger the farm size the greater the satisfaction. Statistical significance was limited to minorities however.

Although minorities generally rated lower on the Satisfaction I Index, part-time minorities and those operating farms with $\$ 40,000-$ $\$ 99,999$ in gross annual sales rated higher than respondents in the random sample and whites. These two groups of minorities were less satisfied with land grant university agricultural research than with other agencies.

The least satisfied white respondents in the random sample were non-low income on the smallest farms. Their lowest satisfaction was with land grant university agricultural research.

The largest farmers were least satisfied with programs administered by the United States Department of Agriculture. Both the largest and smallest farmers were most satisfied with the Cooperative Extension Service among all agencies considered.

Table 20. Summary of the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement by Race, Farm Size and Income

Variables ${ }^{\text {a }}$	Sample	Farm Size											
		\$1,000-\$4,999			\$5,000-\$39,999			\$40,000-\$99,999			\$100,000 +		
		$\mathrm{LI}^{\text {c }}$	Other	Total	LI	Other	Total	LI	Other	Total	LI	Other	Total
V42	Random	2.61	2.55	2.56	2.54	2.55	2.55	3.00	2.68	2.72	3.00	2.85	2.88
	Whites	2.54	2.58	2.57	2.55	2.57	2.57	3.00	2.67	2.71	3.00	2.88	2.91
	Minorities	2.73	2.43	2.60	2.66	2.40	2.44	--d	2.83	2.57	--d	--d	--d
V43	Random	2.45	2.35	2.37	2.58	2.55	2.55	2.80	2.62	2.64	2.83	2.75	2.76
	Whites	2.45	2.35	2.37	2.59	2.55	2.56	2.80	2.67	2.68	2.83	2.70	2.73
	Minorities	2.56	2.47	2.52	2.16	2.43	2.39	--	2.33	2.14	--	--	
V44	Random	2.58	2.40	2.44	2.38	2.45	2.44	2.00	2.55	2.50	2.66	2.65	2.65
	Whites	2.54	2.39	2.42	2.44	2.46	2.46	2.00	2.55	2.48	2.66	2.70	2.69
	Minorities	2.60	2.64	2.60	2.00	2.50	2.42	--	2.66	2.57	--	--	--
Sat I	Random	28.12	27.37	27.57	28.22	28.13	28.15	28.20	28.86	28.80	28.83	29.20	29.11
	Whites	28.72	27.32	27.64	28.37	28.73	28.25	28.20	28.72	28.66	28.83	29.17	29.08
	Minorities	27.23	27.47	27.33	26.67	27.75	27.57	--	20.33	29.14	--	--	--

a Satisfaction or dissatisfaction with: V42 - the Cooperative Extension Service or Office; V43 - Land Grant University Agricultural Research; 044 - Department of Agriculture programs of the Farmers Home Administration (FHA), Soil Conservation Service (SCS), and Agricultural Stabilization and Conservation Service (ASCS); SAT I - A composite index derived from variables V42, V43, and V44 using factor analysis. The Satisfaction Index i is designed to measure the individual's satisfaction or dissatisfaction with agricultural agencies
${ }^{\mathrm{b}}$ Mean responses for the individual variables are based on a three-point scale where $1=$ dissatisfied; $2=$ undecided; and $3=$ satisfied.
${ }^{\mathrm{c}}$ See text. p. 12 for definition of low income (LI).
${ }^{\mathrm{d}}$ Mean values will not be computed for variables with less than five respondents.

Table 21. Summary of the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement by Race, Status and Income

Variables ${ }^{\text {a }}$	Sample	Status											
		Aged and Disabled			Part-time			Full-time			All Farms		
		LIC	Other	Total	LI	Other	Total	LI	Other	Total	LI	Other	Total
V42	Random	2.55	2.58	2.56	2.53	2.56	2.56	2.75	2.64	2.67	2.63	2.59	2.60
	Whites	2.53	2.65	2.60	2.65	2.45	2.55	2.76	2.66	2.68	2.60	2.61	2.61
	Minorities	2.80	2.22	2.55	--d	2.57	2.58	2.45	2.55	2.51	2.69	2.46	2.55
V43	Random	2.55	2.58	2.56	2.38	2.45	2.44	2.57	2.56	2.56	2.53	2.51	2.52
	Whites	2.53	2.58	2.56	2.36	2.45	2.44	2.65	2.59	2.60	2.55	2.52	2.52
	Minorities	2.52	2.44	2.48	--	2.46	2.48	2.27	2.50	2.41	2.46	2.46	2.46
V44	Random	2.60	2.47	2.52	2.46	2.41	2.42	2.36	2.53	2.49	2.48	2.46	2.47
	Whites	2.59	2.43	2.50	2.36	2.42	2.41	2.38	2.57	2.53	2.47	2.47	2.47
	Minorities	2.52	2.61	2.55	--	2.60	2.61	2.45	2.38	2.41	2.51	2.54	2.53
SAT I	Random	28.10	28.41	28.29	28.46	27.89	27.94	28.15	28.21	28.20	28.17	28.10	28.12
	Whites	28.28	28.36	28.33	28.09	27.83	27.85	28.65	28.37	28.44	28.39	28.11	28.17
	Minorities	27.60	27.77	27.67	--	28.46	28.58	25.36	27.38	26.62	27.12	27.96	27.65

[^4]Table 22. Statistical Results Related to the Individual Variables and Composite Satisfaction I Index for the Random Sample and Minority Supplement

Variables	Sample	$\begin{aligned} & \text { Farm Size } \\ & \text { (F.S.) } \end{aligned}$	Status	$\begin{gathered} \text { Low Income } \\ \text { (LI) } \end{gathered}$	F.S. x Status	$\begin{aligned} & \text { F.S. x } \\ & \text { Low } \\ & \text { Income } \end{aligned}$	Status x Low Income	$\begin{gathered} \text { F.S. x } \\ \text { Status } x \\ \text { Low Income } \end{gathered}$
V42								
	Random	0.1354	0.9960	0.3496	0.9826	0.5217	0.9715	0.4225
	Whites	0.1767	0.9806	0.6712	0.9989	0.7321	0.9279	0.7334
	Minorities	0.3979	0.9523	0.7798	0.1704	0.0127*	0.5526	0.3440
V43	Random	0.0032*	0.6207	0.8812	0.3405	0.1742	0.4664	0.0529
	Whites	0.0037	0.8846	0.9586	0.3405	0.7058	0.4109	0.4111
	Minorities	0.0242*	0.9165	0.5232	0.0479	0.0279*	0.6965	0.0123*
V44	Random	0.8916	0.4233	0.1563	0.5972	0.6475	0.8463	0.1754
	Whites	0.8967	0.3997	0.2099	0.5041	0.7082	0.9463	0.3426
	Minorities	0.4066	0.1483	0.1355	0.6563	0.4677	0.7909	0.2918
SAT I	Random	0.1362	0.8667	0.9772	0.2474	0.8252	0.7860	0.9620
	Whites	0.4552	0.6695	0.6471	0.2766	0.5629	0.7431	0.8839
	Minorities	0.0084	0.2340	0.1182	0.2074	0.0317*	0.7798	0.4391

[^5]
The Satisfaction II Index (SAT II):

Tables 23 through 25

Part-time minorities and respondents in the random sample were more satisfied with life situations than were other status groups. Full-time white operators were more satisfied than were part-time white operators.

Some similarities were apparent between the respondents satisfaction with Agricultural Agencies (SAT I) and satisfaction with different life domains (SAT II). Minorities generally rated lower than whites on both indices. The least satisfied minority is low income persons operating the smallest farms. This group is least satisfied with job opportunities in the area even though on average they are retirement age at 66.7 years (See Table 6). The interaction between farm size and the Satisfaction II Index was significant for minorities.

Whites and respondents in the random sample operating the smallest farms were least satisfied with agricultural agencies and life situations. The most satisfied respondents in the random sample and whites were operating in the economic sales class of $\$ 40,000-\$ 99,999$. Whites were least satisfied with county, state and federal programs for welfare, social security and medicare.

The Hedonistic Index (HED):
Tables 26 through 28

The Hedonistic Index, measuring the individuals gratification with life, is statistically significant for the random sample and whites by

Table 23. Summary of the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement by Race, Farm Size and Income

Variables ${ }^{\text {a }}$	Sample	Farm Size											
		\$1,000-\$4,999			\$5,000-\$39,999			\$40,000-\$99,999			\$100,000 +		
		LIC	Other	Total	LI	Other	Total	LI	Other	Total	LI	Other	Total
V37	Random	2.50	2.57	2.64	2.90	2.78	2.80	3.00	2.95	2.96	3.00	2.90	2.92
	Whites	2.77	2.52	2.58	2.92	2.81	2.93	3.00	2.95	2.95	3.00	2.88	2.91
	Minorities	2.76	2.86	2.81	2.83	2.78	2.78	--d	3.00	3.00	--d	--d	--d
v39	Random	2.58	2.72	2.68	2.61	2.81	2.77	2.60	2.68	2.68	2.33	2.80	2.69
	Whites	2.72	2.68	2.69	2.62	2.82	2.78	2.60	2.65	2.64	2.33	2.76	2.65
	Minorities	2.33	2.73	2.50	2.66	2.65	2.65	--	3.00	3.00	--	--	--
V40	Random	2.12	1.79	1.88	1.77	2.06	2.01	1.80	2.40	2.34	2.50	2.25	2.30
	Whites	2.36	1.76	1.90	1.85	2.06	2.02	1.80	2.35	2.28	2.50	2.23	2.30
	Minorities	1.56	1.82	1.67	1.16	1.81	1.71	--	2.83	2.57	--	--	--
v38	Random	2.70	2.84	2.81	2.67	2.83	2.80	3.00	2.73	2.76	3.00	3.00	3.00
	Whites	2.77	2.85	2.83	2.62	2.84	2.80	3.00	2.70	2.73	3.00	3.00	3.00
	Minorities	2.43	2.73	2.56	2.66	2.75	2.73	--	3.00	3.00	--	--	--
V41	Random	1.83	1.72	1.75	2.09	1.62	1.70	1.40	1.42	1.42	1.33	1.60	1.53
	Whites	1.81	1.71	1.73	2.14	1.61	1.71	1.40	1.40	1.40	1.33	1.70	1.60
	Minorities	2.30	1.69	2.03	1.83	1.90	1.89	--	1.83	1.71	--	--	--
v34	Random	2.54	2.75	2.69	2.90	2.75	2.78	2.60	2.80	2.78	2.83	2.70	2.73
	Whites	2.81	2.82	2.82	2.88	2.75	2.78	2.60	2.77	2.75	2.83	2.64	2.69
	Minorities	2.30	2.30	2.30	3.00	2.71	2.76	--	3.00	3.00	.	--	
v35	Randon							3.00			2.33		
	Whites	2.90	2.82	2.84	2.85	2.86	2.86	3.00	3.00	3.00	2.33	2.76	2.65
	Minorities	2.70	2.91	2.79	2.66	2.90	2.86	.	3.00	2.71	,	. 76	.
SAT II													
	Whites	19.36	18.28	18.53	18.62	19.01	18.94	19.00	19.42	19.37	19.00	19.17	19.13
	Minorities	17.03	18.26	17.56	18.00	18.50	18.42	-	20.66	20.14	-	1	1

${ }^{\text {a }}$ Satisfaction or dissatisfaction with your: V37 - Job; V39 - Standard of living (things like income, car, furniture, etc.); V40 - Job opportunities around here; V38 - Health; V41 - County, state and federal programs for welfare, Social Security, and Medicare; V34 - House or apartment; V35 - With your community as a place to live; SAT II - A composite index derived to measure the individual's satisfaction with different life domains.
${ }^{\mathrm{b}}$ Mean responses for the individual variables are based on a three-point scale where $1=$ dissatisffed; $2=$ undecided; and $3=$ satisfied.
'see text p. 12 for definition of low income (LI).
${ }^{\mathrm{d}}$ Mean values will not be computed for variables with less than five respondents.

Table 24. Summary of the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement by Race, Status and Income

Variables ${ }^{\text {a }}$	Sample	Status											
		Aged and Disabled			Part-time			Full-time			All Farms		
		LIC	Other	Total	LI	Other	Total	LI	Other	Total	LI	Other	Total
V37	Random	2.83	2.82	2.83	2.69	2.66	2.66	2.93	2.85	2.87	2.85	2.75	2.78
	Whites	2.80	2.86	2.83	2.72	2.63	2.63	2.96	2.89	2.90	2.85	2.75	2.77
	Minorities	2.84	2.83	2.83	--d	2.92	2.90	2.70	2.72	2.71	2.78	2.84	2.82
v39	Random	2.52	2.94	2.77	2.69	2.72	2.72	2.54	2.72	2.67	2.55	2.76	2.72
	Whites	2.56	3.00	2.82	2.63	2.69	2.69	2.61	2.69	2.67	2.59	2.75	2.71
	Minorities	2.52	2.61	2.55	--	2.78	2.80	2.09	2.77	2.51	2.43	2.73	2.62
V40	Random	1.84	2.10	2.00	2.07	2.00	2.00	2.15	2.08	2.10	2.00	2.04	2.03
	Whites	1.93	2.06	2.01	2.00	1.98	1.98	2.30	2.08	2.13	2.08	2.03	2.04
	Minorities	1.40	1.77	1.55	--	2.00	2.06	1.54	2.00	1.82	1.53	1.93	1.78
v38	Random	2.60	2.61	2.61	3.00	2.94	2.94	2.81	2.80	2.80	2.75	2.83	2.81
	Whites	2.59	2.58	2.58	3.00	2.93	2.94	2.84	2.81	2.82	2.75	2.83	2.81
	Minorities	2.48	2.66	2.55	--	2.92	2.93	2.45	2.66	2.58	2.51	2.78	2.67
V41	Random	2.13	1.80	2.61	1.69	1.54	1.55	1.66	1.62	1.63	1.88	1.62	1.68
	Whites	2.18	1.78	1.94	1.63	1.52	1.53	1.61	1.66	1.65	1.88	1.61	1.67
	Minorities	2.32	1.94	2.16	--	1.85	1.87	1.90	1.50	1.65	2.17	1.78	1.93
V34						2.80					2.73	2.76	2.75
	Whites	2.75	2.82	2.79	3.00	2.81	2.82	2.84	2.68	2.72	2.82	2.77	2.78
	Minorities	2.48	2.72	2.58	.	2.64	2.67	2.27	2.44	2.37	2.46	2.60	2.55
v35	Random		2.85	2.78	3.00	2.90	2.81	2.75	2.85	2.66	2.85	2.87	2.87
	Whites	2.93	2.82	2.87	3.00	2.91	2.91	2.69	2.83	2.79	2.85	2.86	2.86
	Minorities	2.72	3.00	2.83	--	2.82	2.77	2.63	3.00	2.86	2.66	2.92	2.82
SAT II	Random	18.26	18.98	18.68	19.38	18.91	18.95	18.78	18.83	18.82	18.64	18.89	18.84
	Whites	18.43	18.91	18.71	19.27	18.86	18.89	19.23	18.87	18.96	18.86	18.87	18.87
	Minorities	17.44	18.55	17.90	--	18.96	19.03	16.27	18.44	17.62	17.23	18.70	18.16

[^6]Table 25. Statistical Results Related to the Individual Variables and Composite Satisfaction II Index for the Random Sample and Minority Supplement

Variables	Sample	$\begin{gathered} \text { Farm Size } \\ \text { (F.S.) } \end{gathered}$	Status	$\begin{aligned} & \text { Low Income } \\ & \text { (LI) } \end{aligned}$	$\begin{aligned} & \text { F.S. x } \\ & \text { Status } \end{aligned}$	$\begin{aligned} & \text { F.S. x } \\ & \text { Low } \\ & \text { Income } \end{aligned}$	Status x Low Income	F.S. x Status x Low Income
		----			Prob. >	--		
V37	Random	0.0734	0.0237*	0.2446	0.0098*	0.7618	0.9542	0.4819
	Whites	0.0516*	0.0588*	0.2040	0.0226*	0.9230	0.6341	0.7993
	Minorities	0.0024	0.7218	0.9623	0.0161	0.0673	0.2477	0.0225*
V39	Random	0.2722	0.1420	0.1224	0.0170*	0.6401	0.6306	0.3727
	Whites	0.1536	0.0544	0.2738	0.0267*	0.4343	0.5577	0.4533
	Minorities	0.8090	0.0852	0.2997	0.8684	0.4091	0.1036	0.1985
V40	Random	0.0567*	0.6234	0.7964	0.5730	0.1306	0.7008	0.4753
	Whites	0.3256	0.8535	0.5780	0.6637	0.0529	0.4638	0.2916
	Minorities	0.0487*	0.1729	0.1826	0.6505	0.0844	0.2580	0.5837
V38	Random	0.6709	0.1935	0.3381	0.7511	0.6887	0.8592	0.6987
	Whites	0.4972	0.2023	0.2699	0.7876	0.4902	0.8359	0.6829
	Minorities	0.4643	0.5939	0.9393	0.8045	0.8706	0.6697	0.8836
V41	Random	0.0404*	0.1183	0.7518	0.2467	0.4982	0.7501	0.5435
	Whites	0.0739	0.1878	0.8074	0.3791	0.6804	0.9368	0.4480
	Minorities	0.1452	0.5571	0.7302	0.1214	0.0736	0.1683	0.0908
V34	Random	0.1501	0.1414	0.6873	0.0467*	0.6070	0.9466	0.7270
	Whites	0.2823	0.3053	0.4402	0.1012	0.6337	0.9652	0.7616
	Minorities	0.0361	0.4066	0.5364	0.4490	0.9389	0.6280	0.5340
V35	Random	0.0053*	0.0611	0.7200	0.0054*	0.1355	0.9119	0.9716
	Whites	0.0049*	0.0810	0.7730	0.0054*	0.1839	0.8077	0.8131
	Minorities	1.0000	0.1745	0.0003*	0.9957	0.0186*	0.3775	0.0303*
SAT II	Random	0.0569*	0.9239	0.7213	0.1081	0.4659	0.8642	0.6460
	Whites	0.2737	0.9185	0.2989	0.1330	0.2068	0.7775	0.5706
	Minorities	0.0291	0.1466	0.1872	0.8368	0.6072	0.8082	0.7917

[^7]Table 26. Summary of the Individual Variables and Composite Hedonistic Index for the Random Sample and Minority Supplement by Race, Farm Size and Income

Variables ${ }^{\text {a }}$	Sample	Farm Size											
		\$1,000-\$4,999			\$5,000-\$39,999			\$40,000-\$99,999			\$100,000 +		
		LI' Other Total			LI Other Total			LI Other Total			LI Other Total		
						----	Mean R	ponses	b				
v32	Random	2.61	2.91	2.83	2.19	2.65	2.57	3.40	3.02	3.06	3.00	2.85	2.88
	Whites	2.72	2.94	2.89	2.22	2.63	2.55	3.40	3.05	3.08	3.00	2.88	2.91
	Minorities	2.06	2.47	2.24	1.66	2.87	2.68	--d	3.00	2.71	--d	--d	--d
v33	Random	3.12	3.30	3.25	2.80	3.36	3.26	3.20	3.40	3.38	3.16	3.60	3.50
	Whites	3.09	3.35	3.29	2.85	3.40	3.30	3.20	3.45	3.42	3.16	3.58	3.47
	Minorities	2.86	3.04	2.94	2.66	3.12	3.05	-	3.16	3.28	--	--	--
HED	Random	5.74	6.22	6.09	5.00	6.02	5.83	6.60	6.42	6.44	6.16	6.45	6.38
	Whites	5.81	6.29	6.18	5.07	6.04	5.86	6.60	6.50	6.51	6.16	6.47	6.39
	Minorities	4.93	5.52	5.18	4.33	6.00	5.73	--	6.16	6.00	--	--	--

${ }^{a}$ V32: Taken all together, how would you say things are these days--would you say that you are (1) not too happy, (2) don't know, (3) pretty happy, or (4) very happy. V33: In general do you find life
(1) dull, (2) no opinion, (3) pretty routine, or (4) exciting. HED: A composite index derived from the above variables. The Hedonistic Index is designed to determine the individuals subjectively perceived gratification in life.
${ }^{\mathrm{b}}$ Mean responses for the individual variables are based on a four-point scale as indicated above.
${ }^{c}$ See text p. 12 for definition of low income (LI).
$\mathrm{d}_{\text {Mean }}$ values will not be computed for variables with less than five respondents.

Table 27. Summary of the Individual Variables and the Composite Hedonistic Index for the Random Sample and Minority Supplement by Race, Status and Income

Variables ${ }^{\text {a }}$	Sample	Status											
		Aged and Disabled			Part-time			Full-time			All Farms		
		LIC Other Total			LI Other Total			LI Other Total			LI Other Total		
V32	Random	2.39	2.81	2.64	2.92	2.84	2.85	2.51	2.74	2.68	2.52	2.80	2.74
	Whites	2.46	2.78	2.65	2.81	2.79	2.79	2.57	2.84	2.77	2.56	2.80	2.75
	Minorities	1.96	2.77	2.30	--d	3.14	3.16	1.81	2.05	1.96	2.02	2.73	2.46
V33	Random	2.89	3.30	3.13	3.30	3.46	3.44	3.12	3.26	3.23	3.04	3.36	3.29
	Whites	2.90	3.41	3.20	3.27	3.46	3.44	3.07	3.32	3.26	3.02	3.40	3.32
	Minorities	2.64	2.83	2.72	--	3.46	3.48	3.36	2.88	3.06	2.92	3.12	3.04
HED	Random	5.28	6.12	5.78	6.23	6.30	6.30	5.63	6.01	5.91	5.57	6.17	6.03
	Whites	5.37	6.19	5.85	6.90	6.26	6.24	5.65	6.16	6.04	5.59	6.21	6.08
	Minorities	4.60	5.61	5.02	--	6.60	6.64	5.18	4.94	5.03	4.94	5.85	5.51

${ }^{4}$ V32: Taken all together, how would you say things are these days--would you say that you are (1) not too happy, (2) don't know, (3) pretty happy, or (4) very happy. V33: In general, do you find life (1) dull, (2) no opinion, (3) pretty routine, or (4) exciting. HED: A composite index derived from the above variables. The Hedonistic Index is designed to determine the individuals subjectively perceived gratification in life.
$\mathrm{b}_{\text {Mean }}$ responses for the individual variables are based on a four-point scale as indicated above.
${ }^{\mathrm{c}}$ See text p .12 for definition of low income (LI).
${ }^{\mathrm{d}}$ Mean values will not be computed for variables with less than five respondents.

Table 28. Statistical Results Related to the Individual Variables and Composite Hedonistic Index for the Random Sample and Minority Supplement

Variables	Sample	$\begin{gathered} \text { Farm Size } \\ \text { (F.S.) } \end{gathered}$	Status	Low Income (LI)	F.S. x Status	F.S. x Low Income	Status x Low Income	$\begin{gathered} \text { F.S. x } \\ \text { Status } x \\ \text { Low Income } \end{gathered}$
					Prob. >	,		
V32	Random	0.0127*	0.6285	0.8527	0.2345	0.4855	0.6199	0.1657
	Whites	0.0112*	0.8175	0.9736	0.2084	0.7343	0.4307	0.2598
	Minorities	0.0297	0.0206*	0.0702	0.2840	0.0401	0.4259	0.3477
V33	Random	0.0198	0.0735	0.0061*	0.4406	0.3917	0.1205	0.0661
	Whites	0.0247	0.0842	0.0041*	0.5367	0.3867	0.1396	0.0451*
	Minorities	0.3965	0.1438	0.3059	0.6075	0.7379	0.8082	0.7315
HED	Random	0.0057*	0.3734	0.2076	0.4786	0.3315	0.4225	0.2050
	Whites	0.0111*	0.6780	0.1230	0.3997	0.4750	0.4605	0.1685
	Minorities	0.0932	0.0160*	0.4931	0.7553	0.3025	0.4649	0.7785

*Significant Multiple Range Test.
farm size. The Hedonistic Index is also significantly related to status for minorities. Farms with gross annual sales of $\$ 40,000-\$ 99,999$ and part-time respondents rated higher on the Hedonistic Scale and its component variables than all others among all samples considered. Minorities operating farms of $\$ 40,000-\$ 99,999$ evidenced the highest overall average on the Hedonistic Scale, although minority responses were generally lower than whites and respondents in the random sample. For all samples, low income respondents averaged lower Hedonistic scores than did other respondents.

The Overall Quality of Life Indices (QLI):
Tables 29 through 31

The three overall Quality of Life Indices are designed to measure the individuals perceived quality of life. Each index is an additive combination of selected socio-psychological factors discussed in the previous section. The Quality of Life Index $I\left(Q_{i} I^{\prime}\right)$ utilizes the Anomie, Satisfaction I, and Satisfaction II Indices. QLI $I I$ consists of the Anomie and Satisfaction II Indices and QLI ${ }_{i}$ III is a combination of the Anomie, Satisfaction II and Hedonistic Indices. Each Quality of Life Index will be summarized by farm size, status, low income and race.

Quality of Life and Farm Size. Although many of the means are negative due to an arbitrary scaling intercept, $Q L I_{i} I_{\text {for }}$ the random sample indicates a positive relationship between farm size and the individuals perceived quality of life (QOL). This observation is generally supported by $Q L I_{i} I I$ and $Q L I_{i} I I I$ except respondents in the $\$ 40,000-\$ 99,999$ sales class averaged the highest perceived QOL. Operators in this sales class evidenced the lowest Anomie and were more

Table 29. Summary of the Overall Quality of Life Indices for the Random Sample and Minority Supplement by Race, Farm Size and Income

Item ${ }^{\text {a }}$	Sample	Farm Size											
		\$1,000-\$4,999			\$5,000-\$39,999			\$40,000-\$99,999			\$100,000 +		
		LI	Other	Total									
QLI ${ }_{i}{ }^{\text {I }}$	Random	-1.08	-1.11	-1.10	-1.09	-0.52	-0.62	0.49	-0.07	-0.01	-0.27	0.28	0.15
	Whites	-6.79	-1.17	-1.06	-1.09	-0.44	-0.56	0.49	-0.21	-0.13	-0.27	0.17	0.05
	Minorities	-2.35	-0.91	-1.73	-1.88	-1.11	-1.23	--b	0.94	0.09	--b	--b	--b
QLI ${ }_{i}{ }^{\text {II }}$		-1.10	-0.92			-0.50			-0.25	-0.19	-0.87	-0.14	
	Whites	0.64	-1.00	-0.91	-1.10	-0.44	-0.56	0.31	-0.41	-0.33	-0.87	-0.28	-0.43
	Minorities	-2.55	-0.85	-1.81	-1.40	-0.94	01.01	--b	0.80	0.31	--	--	--
QLI $\mathrm{i}^{\text {III }}$						-0.50	-0.81	0.80				0.35	
	Whites	-0.93	-0.73	-0.78	-2.18	-0.40	-0.73	0.80	0.07	0.15	-0.80	0.23	-0.03
	Minorities	-3.76	-1.44	-2.75	-3.26	-1.04	-1.39		0.87	0.27	--	--	--

${ }^{a}$ QLI I is an additive combination of the Anomie, Satisfiaction I and Satisfaction II Indices; QLI II is an additive combination of the Anomie and Satisfaction II Indices; and QLI III is an additive combination of the Anomie, Satisfiaction II and Hedonistic Indices.
${ }^{\mathrm{b}}$ Mean values will not be computed for variables with less than five respondents.

Table 30. Summary of the Overall Quality of Life Indices for the Random Sample and Minority Supplement by Race, Status and Income

Item ${ }^{\text {a }}$	Sample	Status											
		Aged and Disabled			Part-time			Full-time			All Farms		
		LI	Other	Total									
QLI ${ }_{1} \mathrm{I}$	Random	-1.41	-0.67	-0.97	-0.44	-0.54	-0.53	-0.56	-0.55	-0.55	-0.93	-0.57	-0.65
	Whites	-1.35	-0.69	-0.96	-0.55	-0.55	-0.55	-0.22	-0.54	-0.47	-0.80	-0.57	-0.62
	Minorities	-2.11	-0.99	-1.64	-0.89	-0.64	-0.67	-2.84	-0.68	-1.50	-2.22	-0.75	-1.31
QLI ${ }_{1} \mathrm{II}$	Random	-1.48	-0.70	-10.2	-0.30	-0.44	-0.43	-0.64	-0.65	-0.65	-0.97	-0.56	-0.65
	Whites	-1.39	-0.75	-1.01	-0.29	-0.46	-0.45	-0.38	-0.69	-0.62	-0.83	-0.59	-0.64
	Minorities	-2.72	-0.76	-1.64	-1.16	-0.67	-0.71	-2.56	-0.59	-1.33	-2.27	-0.67	-1.27
QLI $1_{1}{ }^{\text {III }}$	Random	-2.34	-0.61	-1.32	-0.12	-0.12	-0.12	-1.09	-0.69	-0.79	-1.51	-0.41	-0.66
	Whites	-2.13	-0.56	-1.22	-0.25	-0.19	-0.19	-0.83	-0.56	-0.63	-1.36	-0.38	-0.59
	Minorities	-3.88	-1.35	-2.82	-0.11	-0.06	-0.07	-3.35	-1.78	-2.38	-3.44	-0.91	-1.87

a QLI $_{1}$ I is an additive combination of the Anomie, Satisfaction I and Satisfaction II Indices; QLI II is an additive combination of the Anomie and
Satisfaction II Indices; and QLI III is an additive combination of the Anomie, Satisfaction II and Hedonistic Indices. Satisfaction II Indices; and $Q L I_{i}$ III is an additive combination of the Anomie, Satisfaction II and Hedonistic Indices.

Table 31. Statistical Results Related to the Overall Quality of Life Indices for the Random Sample and Minority Supplement

Variables	Sample	$\begin{gathered} \text { Farm Size } \\ \text { (F.S.) } \end{gathered}$	Status	$\begin{gathered} \text { Low Income } \\ \text { (LI) } \end{gathered}$	$\begin{aligned} & \text { F.S. x } \\ & \text { Status } \end{aligned}$	$\begin{aligned} & \text { F.S. x } \\ & \text { Low } \\ & \text { Income } \end{aligned}$	Status x Low Income	F.S. x Status x Low Income
QLI ${ }_{i}{ }^{\text {I }}$	Random	0.0173*	0.5524	0.7568	0.2773	0.6908	0.6344	0.9477
	Whites	0.1486	0.5311	0.4386	0.2727	0.5662	0.6200	0.9615
	Minorities	0.1209	0.4374	0.0120	0.8477	0.2145	0.9395	0.9010
QLI $i^{\text {II }}$	Random	0.0836	0.5948	0.5898	0.3367	0.5506	0.8013	0.7068
	Whites	0.3369	0.6227	0.2548	0.2574	0.3760	0.7748	0.7244
	Minorities	0.1604	0.5722	0.0279*	0.8752	0.6516	0.9019	0.7051
QLI $i^{\text {III }}$	Random	0.0064*	0.2980	0.5406	0.2043	0.3853	0.4036	0.3981
	Whites	0.0331*	0.5638	0.6814	0.1393	0.4596	0.5290	0.4624
	Minorities	0.0503*	0.0766	0.0894	0.8616	0.5202	0.6633	0.7286

[^8]satisfied with life domains (SAT II) than all other farm sizes. They also evidenced the highest average on the Hedonistic Index. These data suggest that farms in the economic sales class of $\$ 40,000-\$ 99,999$ have a higher perceived Quality of Life among all farm sizes.

Minorities also evidenced a positive relationship between farm size and quality of life by all Quality of Life Indices but statistical significance was limited to $Q L I_{i}$ III. Because $Q L I_{i} I^{\text {and }}$ QLI ${ }_{i} I I$ are not significant by farm size (Table 29) the hypothesis that small farmers have a higher perceived quality of life than mid-sized and large family farms is not accepted for the random sample and minorities.

Quality of Life and Status. The three QLI indicated part-time operators for the random sample and minorities evidenced a higher perceived quality of life than full-time, aged and disabled operators. Part-time white respondents evidenced a higher perceived QOL than other status groups except by $Q L I_{i} I$ where there was no appreciable difference in the average responses of full-time and part-time operators. The socio-economic and demographic variables analyzed in Chapter II suggest that part-time operators averaged greater educational attainment and generally averaged more total income. Earlier analysis indicated part-time minority farmers were happier with life situations and found their life to be more exciting than all other minorities.

Although the QLI by status were not statistically related, the analyses suggest that part-time operators by all races have a higher perceived quality of life than full-time, aged and disabled operators.

Quality of Life and Low Income Respondents. Considering the overall sample ("all farms", Table 30) low income respondents by all indices for the random sample, white and minorities have a lower
perceived quality of life than all other operators. As noted in an earlier chapter on economic and demographic variables, low income respondents evidenced a smaller net worth, averaged less education and had more children than respondents with higher income.

Quality of Life and Race. Mean responses for the Quality of Life III Index indicated whites averaged a greater perceived quality of life than minority operators by farm size and status. QLI I_{i} and II also evidenced a greater perceived quality of life for whites by status and farm size except in the $\$ 40,000-\$ 99,999$ economic sales class. Minorities in this farm size evidenced a greater perceived QOL than other minorities and whites. Minorities in the group were more satisfied with agricultural agencies (SAT II) than were others. They also evidenced less anomie than all whites and all minorities.

Summary

The data suggest that the perceived quality of life generally increase as farm size increase but farms in the economic sales class of $\$ 40,000-\$ 99,999$ had a higher perceived quality of life than all others. Coughenour and Christenson found similar results in their study analyzing attitude about personal well-being, community well-being and perceived adequacy of community services. Part-time operators rated higher on the Quality of Life Index than full-time aged and disabled operators whereas low income operators rated lower than those that were not low income. Generally minorities perceived their quality of life as lower than white respondents except those minorities with gross annual sales of $\$ 40,000-\$ 99,999$.

A SELECTED BIBLIOGRAPHY

Andrews, Frank M. "Social Indicators of Perceived Life Quality." Social Indicators Research 1(1974):279-299.

Andrews, Frank M. and Rick Crandall. "Self-Reported Well-Being." Social Indicators Research 3(1976):21-35.

Andrews, Frank M. and Stephen Withey. '"Developing Measures of Perceived Life Quality: Results from Several National Surveys." Social Indicators Research 1(1974):1-26.

Atkinson, Tom. "The Stability and Validity of Quality of Life Measures." Social Indicators Research 10 (1982):113-132.

Babb, E. M. "Consequences of Structural Changes in U. S. Agriculture." Structure Issues of American Agriculture. Washington, D. C.: USDA ESCS Agricultural Economics Report No. 438, 1979. . "Some Causes of Structural Changes in U. S. Agriculture." Structure Issues of American Agriculture. Washington, D. C.: USDA ESCS Agricultural Economics Report No. 438, 1979.

Baharadwaj, Lakahmi and E. A. Wilkening. "The Perceived Well-Being." Social Indicators Research 4(1977):421-439.

Beale, Calvin C. "Demographic Aspects of Agriculture Structure." Structure Issues of American Agriculture. Washington, D. C.: USDA ESCS Agricultural Economics Report No. 438, 1979.

Bollman, Ray D. "Off-Farm Work by Farmers: An Application of the Kinked Demand Curve for Labor." Canadian Journal of Agricultural Economics 27(1979):37-60.

Brennan, Michael, Philip Taft, and Mark Schripak. The Economics of Age. New York: W. W. Norton and Company, Inc., 1967.

Brewster, David. "Historical Notes on Agricultural Structure." Structure Issues of American Agriculture. Washington, D. C.: USDA ESCS Agricultural Economics Report No. 438, 1979.

Bunge, Mario. "What is a Quality of Life Indicator." Social Indicators Research 2(1975):65-79.

Campbell, Angus. "Measuring the Quality of Life." Michigan Business Review 261(January 1974):8-10.

Carlin, Thomas and Linda Ghelfi. "Off-Farm Employment and the Farm Sector." Structure Issues of American Agriculture. Washington, D. C.: USDA ESCS Agricultural Economics Report No. 438, 1979.

Carlin, Thomas and Edward Reinsel. "Combining Income and Wealth: An Analysis of Farm Family Well-Being." American Journal of Agricultural Economics 55(1973):43-44.

Castle, Emery N. "Economics and the Quality of Life." American Journal of Agricultural Economics 54 (1972):723-735.

Clawson, Marion. Policy Directions of U. S. Agriculture: Long-Range Choices in Farming and Rural Living. Baltimore, Maryland: The Johns Hopkins Press, 1968.

Coughenour, Milton and James Christenson. "Is Life on the Small Farm Beautiful? Agriculture Structure and Quality of Life in the United States." Mimeographed paper presented at the 5th World Congress of Rural Sociology, Mexico City, Mexico, 1980.

Coughenour, Milton and Luther Tweeten. "Quality of Life Perceptions and Farm Structure." Mimeographed, Department of Rural Sociology, University of Kentucky, 1983.

Doering, Otto C., III. "Introductory Comments." American Journal of Agricultural Economics 60 (1978):293-294.

Draper, Norman and Harry Smith. Applied Regression Analysis, 2nd ed. New York: John Wiley and Sons, Inc., 1981.

Drewonski, Jan. "Social Indicators and Welfare Measurement: Remarks and Methodology." Journal of Development Studies (April 1972): 77-90.

Evans, Dennis and Virginia Stee1man. "Community Leaders Assess Quality of Life." Journal of Extension 15(March/April 1977):7-12.

Environmental Protection Agency. The Quality of Life Concept: A Potential New Tool for Decision-Makers. Washington, D. C.: EPA, 1973.

Fane, George. "Education and the Managerial Efficiency of Farmers." Review of Economic Statistics 57(1975):452-461.

Fliege1, Frederick, E. B. Harper, and J. C. Van Es. "The Small, Part-Time Farmer: Hobbyist, Welfare Case or Backbone of Rural America." Illinois Agricultural Economics Staff Papers. UrbanaChampaign: University of I11inois, 1981.

Fruchter, Benjamin. Introduction to Factor Analysis. Princeton: New Jersey: D. Van Nostrand Company, Inc., 1975.

Gardner, Delworth and Rulon Pope. "How is Scale and Structure Determined in Agriculture?" American Journal of Agricultural Economics 60(1978):295-302.

George, Linda and William Reece. Quality of Life in Older Persons: Meaning and Measurement. New York: Human Sciences Press, Inc., 1980 .

Gillingham, Robert and William Reece. "A New Approach to Quality of Life Measurement." Urban Studies 16(1979):329-332.
\qquad - "Analytical Problems in the Measurement of the Quality of Life." Social Indicators Research 7(1980):91-101.

Hair, Joseph, et al. Multivariate Data Analysis with Readings. Tulsa, Oklahoma: Petroleum Publishing Company, 1979.

Harman, Harry. Modern Factor Analysis, 2nd ed. revised. Chicago: The University of Chicago Press, 1967.

Harper, Wilmer. "The Role of Income in the Perceived Quality of Life in the Rural Populace." Ph.D. thesis, Oklahoma State University, 1977.

Harper, Wilmer and Luther Tweeten. "Socio-Psychological Measures of the Quality of Rural Life: A Proxy for Measuring the Marginal Utility of Income." American Journal of Agricultural Economics 59(1977):1000-1005.

Hastings, Steven and R. Dean Shippey. "The Role and Characteristics of Small Farms in Delaware." Department of Agricultural and Food Economics, Bulletin No. 438, University of Delaware, 1981.

Hines, Fred, David Brown and John Zimmer. "Social and Economic Characteristics of the Population in Metro and Nonmetro Counties, 1970." Washington, D. C.: USDA ERS Agricultural Economics Report No. 272, 1975.

Huffman, Wallace. "Decision Making: The Role of Education." American Journal of Agricultural Economics 56(1974):85-91.

Jones, Dewitt, Ronald Hanson and John Crecink. Off-Farm Earnings and Small Farms. Washington, D. C.: Paper V of the National Rural Center Small Farms Project, 1980.

Kennedy, Leslie, Herbert Northcott, and Clifford Kinzel. "Subjective Evaluation of Well-Being: Problems and Prospects." Social Indicators Research 5(1978):457-474.

Knox, Paul. "Social Well-Being and North Sea Oil: An Application of Subjective Social Indicators." Urban Studies 10(1976):423-432.

Larson, Donald. "Impact of Off-Farm Income on Family Income Levels." Agricultural Finance Review 36(April 1976):7-11.

Lee, John, Jr. "Allocating Farm Resources Between Farm and Non-Farm Uses." American Journal of Agricultural Economics 47(1965):83-92.

Liu, Ben-Chieh. "Quality of Life Indicators: A Preliminary Investigation." Social Indicators Research 1(1974):187-208.
. "Quality of Life: Concept, Measure and Results." The American Journal of Economics and Sociology 34 (1975):4-13.

- Quality of Life Indicators in U. S. Metropolitan Areas, 1970: A Comprehensive Assessment. Washington, D. C.: Environmental Protection Agency, 1975.

Lowry, Mark, Jr. "Race and Socio-Economic Well-Being: A Geographical Analysis of the Mississippi Case." The Geographical Review 60 (1970):512-528.

Marans, Robert, Don Dillman and Janet Keller. Perceptions of Life Quality in Rural America: An Analysis of Survey Data from Four Studies. Institute of Social Research, University of Michigan, 1982 .

McCall, Storris. "Quality of Life." Social Indicators Research 2(1975): 229-248.

McClane, James and Frank Dietrich, Jr. Statistics. San Francisco, California: De11en Publishing Company, 1979.

Minor, Michael, Norman Bradburn and Nora Schaffer. "The Structure of Life Satisfaction: A Comparative Analysis Across Social Groups." In The Quality of Life, eds. Szalai, Alexander and Frank Andrews, pp. 129-143. Beverly Hills, California: Sage Publications, 1980.

Mulaik, Stanley. The Foundation of Factor Analysis. New York: McGraw-Hill, Inc., 1972.

Nolan, Michael and Paul Lasley. "Agricultural Extension: Who Uses It?" Journal of Extension 17(September/October 1979):21-27.

Nie, Norman, et al. SPSS: Statistical Package for the Social Sciences, 2nd ed. New York: McGraw-Hill, Inc., 1975.

Oehrtman, Robert. "Objectives, Motives, Business Style and Personal History--How They Relate to Managerial Success." Southern Journal of Agricultural Economics 7 (December 1975):111-116.

Ott, Lyman. An Introduction to Statistical Methods and Data Analysis. Boston, Massachusetts: Duxbury Press, 1977.

Pollack, Robert A. "The Theory of the Cost of Living Index." Working Paper No. 11. Washington, D. C.: U. S. Department of Labor, 1977.

Polzin, Paul and Peter MacDonald. "Off-Farm Work: A Marginal Analysis." Quarterly Journal of Economics 85(1971):540-545.

Rodgers, Willard and Philip Converse. 'Measures of the Perceived Overall Quality of Life." Social Indicators Research 2(1975):127-152.

Rummel, R. J. Applied Factor Analysis. Evanston: Northwestern University Press, 1970.

Schneider, Mark. "The Quality of Life in Large American Cities: Objective and Subjective Social Indicators." Social Indicators Research 1 (1975):495-509.

Schumacher, E. F. Small is Beautiful: Economics as if People Mattered. New York: Harper and Row Publishers, 1973.

Seidman, David. "Quality of Life Indicators in U. S. Metropolitan Areas, 1970: A Rejoinder." Social Indicators Research 4(1977):115-117.
\qquad . "Quality of Life Indicators in U. S. Metropolitan Areas, 1970: A Review.' Social Indicators Research 4(1977):97-106.

Shin, D. C. and D. M. Johnson. "Avowed Happiness as an Overall Assessment of the Quality of Life." Social Indicators Research 5(1978): 475-492.

Simpson, Richard and H. Max Miller. "Social Status and Anomie." Social Problems 10 (1963): 256-264.

Spreitzer, Elmer and Eldon Synder. "Correlates of Life Satisfaction Among the Aged." Journal of Gerontology 29(1974):454-458.

Stell, Robert and James Farrie. Principals and Procedures of Statistics. New York: McGraw-Hill Book Company, Inc., 1960.

Szalai, Alexander and Frank Andrews, ed. The Quality of Life: Comparative Studies. Beverly Hills, California: Sage Publications Inc., 1980.

Tweeten, Luther. "The Economics of Small Farms." Science 219 (March 4, 1983):1037-1041.
. "Economic Aspects of Small Scale Agriculture." Oklahoma Agricultural Experiment Station Professional Paper, Miscellaneous Publication No. 1422, Oklahoma State University, 1982.

Tweeten, Luther and Yao-Chi Lu. "Attitudes as a Measure of Optimal Place of Residence." The Social Science Journal 15(April 1976): 4-13.

Tweeten, Luther, G. B. Cilley, and I. Popoola. "Typology and Policy for Small Farms." Southern Journal of Agricultural Economics 12(December 1980):77-85.
U. S. Bureau of the Census. 1959 Census of Agriculture. Washington, D. C.: U. S. Department of Commerce, 1959 .
. 1964 Census of Agriculture. Washington, D. C.: U. S. Department of Commerce, 1964.
\qquad - 1969 Census of Agriculture. Washington, D. C.: U. S. Department of Commerce, 1969. - 1974 Census of Agriculture. Washington, D. C.: U. S. Department of Commerce, 1969. - 1978 Census of Agriculture. Washington, D. C.: U. S. Department of Commerce, 1979.

University of Michigan. "Well-Being Across the Life Span." Institute for Social Research Newsletter (Winter 1982):3.

Van Es, J. C., et al. "Choosing the Best of Two Worlds: Sma11 PartTime Farms in Illinois." Department of Agricultural Economics, Research Report No. 185, University of Illinois, 1982.

Weisbrod, Burton and W. Lee Hanson. "An Income-Net Worth Approach to Measuring Economic Welface." American Economic Review 58(1968): 1315-1329.

West, Jerry G. "Agricultural Economics Research and Extension Needs of Small-Scale, Limited-Resource Farmers." Paper presented at the Annual Meeting of Southern Agricultural Economics Association, New Orleans, Louisiana, February 1979.
"What America Thinks of Itself." Newsweek, December 10, 1973, pp. 40-48.
Wilkening, Eugene. "Roles of Communicating Agents in Technological Change in Agriculture." Social Forces 34(1956):316-367.

APPENDICES

APPENDIX A

RESULTS OF THE FACTOR ANALYTIC OUTPUT

PRIOR ESTIMATES OF COMMUNALITY:

	ROTATED FACTOR PATTERN						
	FACTOR1.	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6	
V29	0.73973	-0.13230	-0.08902	0.10026	0.01847	0.08214	
V30	0.73279	0.08342	0.16502	-0.21528	-0.14440	-0.10915	
V31	0.69520	-0.12794	-0.16392	0.07320	0.06064	0.03421	
V32	-0.42782	-0.08189	0.10287	0.04030	0.25410	0.42209	
V33	-0.45696	0.27926	0.20077	0.27783	-0.00648	0.33641	
V34	-0.01242	-0.21125	0.36445	0.00535	0.57698	0.16096	
V35	-0.07172	0.19613	0.00859	-0.02652	0.81763	-0.02737	
V36	0.04269	0.18402	0.00535	-0.05194	0.03448	0.69330	
V37	-0.03438	0.22668	0.64186	0.08750	0.06991	-0.02614	
V38	0.02087	0.18014	0.20771	0.72273	0.08334	-0.31378	
V39	-0.13514	-0.09802	0.77482	-0.10934	0.12812	0.04003	
V40	-0.03049	0.04372	0.49609	0.08396	-0.05234	0.45367	
V41	0.05111	0.21917	0.16877	-0.70227	0.10304	-0.25728	
V42	-0.21998	0.68177	-0.01521	-0.05257	0.03261	0.19935	
V43	-0.13680	0.66223	0.18190	-0.01551	-0.24801	0.05280	
V44	0.10753	0.69475	-0.01969	0.03381	0.30348	-0.01184	

ORTHOGONAL TRANSFORMATION MATRIX

| | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | | 1 | | | | |
| 2 | -0.67188 | 0.43823 | 0.43765 | 0.10403 | 0.22502 | 0.32175 |
| 3 | 0.61462 | 0.64977 | 0.32141 | -0.24296 | 0.17555 | -0.08295 |
| 4 | 0.21816 | -0.60273 | 0.59417 | 0.01558 | 0.46575 | 0.13753 |
| 5 | 0.28037 | 0.10208 | 0.10013 | 0.91351 | -0.20403 | 0.15755 |
| 6 | -0.02948 | 0.10961 | -0.46266 | 0.26718 | 0.80517 | -0.23102 |
| | 0.20913 | 0.00565 | -0.35782 | -0.15499 | 0.10813 | 0.89022 |

VARIANCE EXPLAINED BY EACH FACTOR

FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
2.068532	1.771904	1.609625	1.190340	1.288372	1.238483

SQUARED MULTIPLE CORRELATIONS OF THE VARIABLES WITH EACH FACTOR

FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

SCORING COEFFICIENT MATRIX
V29
V30
V31
V32
V33
V34
V35
V36
V37
V38
V39
V4O
V41
V42
V43
V44

OBS	I	FACTOR 1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
1	213	-4.7739	2. 1409	1.9615	1.0223	0.7205	1.6715
2	213	0. 1352	-0.2897	1.2915	0.8239	-0.1183	0.4538
3	213	-4.7075	2.0456	0.8806	0.8393	0.8346	0.6721
4	213	0.6615	1.9909	1. 2563	-1.2571	0.6667	-0.3169
5	213	-1.9866	1.5314	1.3842	0.8567	0.5320	1.0220
6	213	-0.8935	0.6001	1.2418	1.3723	0.2646	1.5748
7	213	-0.5462	1.1136	1.0465	1.0895	0.9346	1.5141
8	213	1.3963	1.3663	1.2946	0.6000	0.3904	0.8841
9	213	-4.8029	1.6932	2.3842	-0. 0698	0.5421	1.0852
10	213	-4.3673	2.2187	1.8638	0.9840	0.4790	1.2704
11	213	-2.6594	-0.3948	1.0393	1.1700	0.4621	0.9320
12	213	-2.8314	2.3936	2.2096	0.5328	0.1764	1.0416
13	213	-2.4025	-1.6386	0.6976	1. 1992	0.9279	0.8328
14	213	-0.9225	0.1524	1.6645	-0.3197	0.0862	0.9884
15	213	-2.4604	2. 1355	1.6260	0.3558	0.7608	1.0599
16	213	0.2283	1.6087	0.6159	-0.4876	0.8445	-0.1141
17	213	-0.6496	-2.8605	0.8793	1.4554	0.0298	0.7985
18	213	0.8812	-0.3347	-0.1319	-0.5293	0.9155	0.9608
19	213	0.4293	1.6333	-4.7004	1.0230	-1.4663	-0.4525
20	213	0.4445	1.9150	1.8559	0. 1836	0.7440	1.4294
21	213	3.9916	-4.1062	-3.2825	-3. 1257	-0.5754	-0.5237
22	213	-1.8604	2.3073	-3.0998	1.3617	-3. 1281	-0.1925
23	213	2.4440	-0.5215	-0.0986	-0.4999	0. 1881	-1.3018
24	213	3.9890	0.0135	-0.0918	-1.9492	0.2233	-2.7584
25	213	0.9175	1.8976	0.6772	-0.0377	0.6166	0.0288
26	213	-1.7954	2.0225	1.5578	-0.8347	0.8901	0.3130
27	213	-2.7704	-1.4925	-1.5387	-1.8107	-0.7458	2.6091
28	213	1.9540	-2. 1209	-0.0743	0.4909	0.4937	-0.5452
29	213	-1.5740	1.2813	-0.2474	1.0751	0.5369	1.0597
30	213	-1.2010	-0.5907	-3.3647	1.3845	-1.8052	-0.1653
31	213	1.7890	-1. 1332	0.9048	0.7298	0.5754	0.0914
32	213	-1.0316	1.9969	1.7078	-0.1878	!. 1674	1. 3568
33	213	1.9540	-2. 1209	-0.0743	0.4909	0.4937	-0.5452
34	213	-4.5854	1.2410	-1.3979	0.5287	0.5864	0.7649
35	213	2.8109	-2.3297	0.9681	-1.6690	0.8797	-0.6383
36	213	1.8394	0.5407	0.2674	-1.1991	1.2117	-0.8172
37	213	1.8062	0.5883	0.8079	-1.1076	1. 1546	-0. 3175
38	213	3. 4579	-2.6555	0.5270	0.2855	-1.8278	-0.7355
39	213	-1.2777	1.3799	0.0614	0.4889	-0.5180	0.5664
40	213	0.6173	-1.6768	1.5199	-0.2077	0.6613	0.5086
41	213	-5.5883	0.4664	2.1360	0.7932	-0.4412	1.2577
42	213	2. 2096	1.5220	1.0991	0.5234	-0.0926	0.0818
43	213	-2.5466	2.7291	1.9568	-0.6175	0.2596	-0.0361
44	213	-1.3629	-2.2853	-0.2648	0.7291	0.5139	0.5323
45	213	-3.4720	0.5575	0.7158	0.5537	1.0105	0.2260
46	213	0.1838	-0.1476	-0.4739	-0.8974	1. 2729	0.0143
47	213	4. 1605	-4.8522	-1.4095	-0.3197	-4.0390	-1.5600
48	213	-3.2501	1.5430	1.6318	1.0198	-3.4699	0.5841
49	213	2.9309	0.1684	-2.6947	0.7236	-0.1333	-0.0904
50	213	0.4672	1.7919	0.7722	0.1912	-0.0799	-0.6150
51	213	1.5226	1.5278	0.4113	-0.4056	0.6252	-0.4167
52	213	-0.7858	1.6060	1. 6060	0.3976	0.5876	1.0881
53	213	-2.9984	1.8233	1.7479	1.2629	0.7649	1.8687
54	213	-2.0797	-1.5239	1. 1320	1.2727	0.5299	1.7946
55	213	-4.0515	-0.0986	1.6703	-1.7948	1.2219	1. 1837
56	213	-2.5639	-0.3719	-2.7517	0.5146	0.4687	0.4550

OBS	I	FACTOR 1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTORG
57	213	2.2760	1. 4267	0.0181	0.3404	0.0215	-0.9176
58	213	-0.6724	-0. 2076	-1.9425	-3.8054	0.5648	-0.4192
59	213	0.1941	1.0269	-0.4535	-1.2304	0.8594	-0.9679
60	213	0.0897	1.5534	0.3066	1.0106	0.6472	0.4446
61	213	-3.6424	2.3624	1.9933	-1.0292	0.7290	0.2221
62	213	-4.3009	2. 1235	0.7828	0.8010	0.5931	0.2709
63	213	2.6898	-3.0916	-3.4058	-1. 2984	0.2922	-2.4677
64	213	-1.6018	1.6360	0.3514	1. 1389	0.7180	0.5135
65	213	0.8479	-0.8316	-3. 2256	-1.4011	1.2323	-0.1625
66	213	-3.4728	1.6011	2.0686	-0.6108	0.3811	0.7294
67	213	0.3525	-1.8400	0.9319	1.0109	-0.4449	0.3974
68	213	0.7912	1.7361	1.5605	0.9679	0.3818	1.3296
69	213	-0.5514	0.4156	0.0894	1.4684	-4.9681	1.1979
70	213	-4.7739	2.1409	1.9615	1.0223	0.7205	1.6715
71	213	-1.5812	-0.782 1	-0.4054	0.5809	0.3432	-0.9141
72	213	-1.6325	1.7200	1.3214	1.2988	0.6623	1.4598
73	213	-3.8603	-1.2792	0.4866	0.8952	0.4829	0.7043
74	213	-1.0145	0.4390	0.3677	0.2345	-0.7483	0.0063
75	213	1.6044	1.8918	1.3649	0.8913	-0.1012	0.5273
76	213	-3.2795	2.8571	-0.3533	0.0593	-0.9725	-0.4779
77	213	-2.6306	2.2044	1.4505	1.0046	0.0766	0.5135
78	213	1.9588	-1.4264	-0.6499	0.5660	-1.3302	-0.5384
79	213	1.6312	1. 4650	-0.4023	0.6717	0.2562	0.3247
80	213	0.5418	1.4774	0.8609	0.3882	0.4253	0.2858
81	213	-3.1497	0. 1573	1.8974	0.3033	0.2037	0.6837
82	213	2.4655	-4.0333	-2.7016	0.7996	0.1572	-0.7475
83	213	-3.5425	0.2830	0.8848	-0.6473	0.8044	1. 2869
84	213	-1.2100	-1.8195	-0.4099	-1.0076	0.8123	-0.5702
85	213	-0.0433	-1.8057	0.0350	-3. 1007	-0.0.4917	-2.0283
86	213	4.2436	-4.3361	-2.8731	-4.5663	-5.8626	-1.5333
87	213	1.7310	-1.2951	-1.4088	1.5172	-0.3431	0.0924
88	213	0.8576	-0.7609	1.7762	0.1641	-3.8031	1. 1770
89	213	-0.0732	1.0962	-0.1323	0.8682	0.8071	0. 1135
90	213	3.5647	-1.7791	-3.8958	-0.4071	-1.2995	-6.4197
91	213	-0.0674	-1.4125	0.2411	-0.3352	1.0291	-0.4736
92	213	0.8908	-1.7624	-0.1147	0.5241	0.1846	-5.6145
93	213	-0.0199	1.7049	1.3441	-0. 5941	0.9345	0.5102
94	213	-2. 5060	-1. 1035	0.4797	0.1546	0.3842	0. 1003
95	213	1. 1672	-3.7119	0.0679	-0.0659	0.6287	-0.1566
96	213	1.3733	-0.1258	0.3384	0.6148	-0.8268	-0.4393
97	213	-4.7739	2.1409	1.9615	1.0223	0.7205	1.6715
98	213	2.9136	-0.4289	-2.2411	0.7116	-0.8376	-1.3678
99	213	0.7401	1.2519	-0.3278	0.7917	0.3241	-0.5888
100	213	2.4291	-0. 5885	-3.2482	-1.7033	0.5979	-1.0792
101	213	-0.7747	0.7531	1.3661	-0.1587	1.6332	1.2576
102	213	1.3115	-2.0733	-0.1799	-0.4337	0.3360	0.4515
103	213	-2.0710	-2.3122	-3.4843	-2.4254	-0.8043	1.7103
104	213	0.8853	0.0351	0.7800	0.8547	1.0076	0.8994
105	213	0.6283	2.0385	1.7968	-1.1656	0.6096	-. 1828
106	213	0.8843	1.9452	1.2177	0.0538	0.5595	0.5285
107	213	2.6225	-1.6612	-5.9525	-0.1833	-2. 1148	-2.0541
108	213	1.5677	-2.3859	-1.2265	-4.0885	-0.9940	-2.0084
109	213	-1.9107	-0.0059	-0. 5635	-0.1914	1.4097	0.4630
110	213	-0.7447	1.5613	1.2146	1.4191	0.6845	1.5584
111	213	1.3996	0.5105	0.9056	-1.0693	1.3961	0.0836
112	213	1.8165	-2.3955	-5.0094	0.0587	-0.1965	-1.4468

OBS	I	FACTOR 1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
113	213	0.4180	-2. 2958	-0.4202	0.9421	0.7963	-0.3164
114	213	-1.1029	-2.6468	-2.4921	0.9811	-0.0503	-0.6167
115	213	0.7613	0.9279	1.7120	-0.6099	1.3305	1.0289
116	213	2.6680	0.4389	-0.6489	-1.2765	-1.9806	-2.3440
117	213	-2.1792	-1.2609	-0.5798	0.4944	0.7976	0.0783
118	213	1.5607	2. 1747	-0.7047	-0.4220	-1.1417	-0.9096
119	213	0.8511	1.9928	1.7582	0. 1453	0.5025	1.0283
120	213	0.4631	-2.4266	-0.7677	-3. 2881	0.7396	0.2032
121	213	1.8129	-2.6700	0.2638	-1.9111	0.0815	1.5766
122	213	-0.2643	-0.3566	-2.0766	-1.7298	0.8628	0. 1320
123	213	0.3610	-1.5337	-5.1410	1.3102	1.0996	0.3339
124	213	-2.9627	2.5718	2.3121	-0.7513	0.8912	0.9998
125	213	1.7796	0.2840	0.0697	-0.3765	1.0910	-0.5158
126	213	-4.4786	0.7146	1.2327	-0.9378	-0.0052	-0.2991
127	213	-0.1279	-0.8063	-0.2103	-1.2829	1.0809	-1.1161
128	213	2. 1235	-0.7100	-5.2602	0. 1352	-0.4766	-0.3815
129	213	-4.4796	0.3541	0.9616	-0.8236	1. 1220	-0.0135
130	213	-0.1320	1.6997	-0.3166	-1.6242	0.5774	-0.8688
131	213	2.2096	1.5220	1.0991	0.5234	-0.0926	0.0818
132	213	3.8896	0.9797	-2.8265	-0.0690	-0.3438	-1.9281
133	213	-0.0090	1.3551	-0.6102	1. 1879	-1.9282	-0.2201
134	213	0.8232	1.7679	-1.7914	-3.4550	-1.4994	-0.6622
135	213	3.9720	-3.0120	-0.8599	-0.2939	-0.2103	-1.1926
136	213	-1.4488	-0.4389	1. 3668	1.3639	0.0863	1.9923
137	213	1.0879	-1.3688	-2.1134	0.4567	0.2937	0.3402
138	213	1.5752	-2.5535	-0.5753	0.4654	0.5541	0.4021
139	213	1.0426	0.1466	-1.5708	-2.2850	0.3238	1.4546
140	213	-2.3625	3.0392	0.7076	-0.4832	-0.8853	0.2656
141	213	0.2094	2.0669	0.7019	-0.6347	0.8886	-0.1582
142	213	-2.4538	1.7836	0.3473	0.9955	0.7542	0.3618
143	213	1.5483	-1.8383	0.2946	0.4150	-0.3920	-0.4296
144	213	1.7595	-1.1529	-2.1634	-2.9563	-0.2087	-1.0450
145	213	-2.1107	2.4242	2.3162	-0.6079	0.8549	1. 1515
146	213	-2.4144	0.2491	-0.8301	1.4113	-0.5820	1. 2745
147	213	1.7730	0.6359	1.3483	-1.0162	1.0976	0. 1822
148	213	-4.5984	0.2012	0.8373	0.7075	-0.2466	0.3037
149	213	2.7189	0.4964	0.2423	-0.3907	0.0854	-1.5661
150	213	-0.1428	1. 4062	-1.2664	1.4159	0.5521	1.3946
151	213	3.4583	-4.7520	-0.3546	-1.0228	0. 1549	-2.0682
152	213	-0.0394	0.0834	-4.2367	1. 1987	0.0132	0.0851
153	213	-1.3650	-0.4758	0.8347	1.2521	0.2427	0.6294
154	213	-4.2944	-0.6302	0.8009	0.8199	-3.7125	0.4197
155	213	3.0014	-4.1134	-0.2161	0.4590	-0.4660	-1.6782
156	213	-1.0007	-0.4916	-0.1634	1.0396	0.6802	-0.8867
157	213	2.5396	1.0934	-1.9785	-1.8115	-0.3340	-0.9803
158	213	-1.0939	2.3609	-2.9663	-0.7691	-5.1746	-2.0305
159	213	1.3800	-1.1790	-0.6430	0.9123	0.7332	-1.1351
160	213	-0.3917	1.2204	-2. 1354	1.7966	-3.7488	1.2099
161	213	2.6517	-0.1852	0.1987	0.5172	-1.3027	-0.4590
162	213	-0.8451	-0.5379	-0.0290	-1.6250	0.8386	2.0375
163	213	2.2160	-1.2317	1. 1171	0.5422	-4.3982	0.2306
164	213	2.6938	-1.8213	-0.0047	0.9205	0.3652	-1.2654
165	213	1.1231	0.0648	-0.3013	0.8832	0.2673	-1.0359
166	213	-0.0564	2.6499	1. 1149	-1.1314	0.0932	-1.1657
167	213	-2.6483	-0.2388	0.3751	0.4013	-0.3579	-1.3076
168	213	-0.9361	2.5895	2.3914	-0.8719	0.4621	0.6360

OBS	I	FACTOR 1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTOR6
169	213	2. 4665	0.2781	0.7574	0.5525	0.3732	-0.0173
170	213	-3.1270	1.0617	1.5021	0.2877	1. 1461	0.9153
171	213	0.0206	2.3719	1.6331	-0. 8661	0.5997	0.1817
172	213	1.8875	-2.0257	1.0067	0.6738	0.3796	0.4543
173	213	1.1705	0.6831	0.8036	0.2879	-0.5360	-0.4469
174	213	0.4392	-3.2152	-2.7572	0.9819	0.7664	-4.2934
175	213	1. 1080	0.7490	1.4165	0. 1744	0.9683	0.9291
176	213	0.7912	1.7361	1. 5605	0.9679	0.3818	1. 3296
177	213	1.3963	1. 3663	1.2946	0.6000	0.3904	0.8841
178	213	0.4719	2.0095	-1.2938	1.6689	-0.1810	0.6366
179	213	1. 3722	-1.9056	-3.2918	1. 3986	-0.1065	-1.0458
180	213	4.3875	-1.4454	-0.5362	0.1338	-0.3802	-1.5631
181	213	1.5848	0.4664	-2.0649	0.1064	0.2563	-0.0225
182	213	2.0265	0.4985	-1.4552	-0.0643	0.5681	-1.2635
183	213	-1.9309	-0.5628	1. 1048	1.3194	0.9498	1.7782
184	213	4.0238	-2.0475	-0.1411	-1.4606	0.6237	-2.7592
185	213	0.6649	0.3754	0. 1922	-0.9352	1.6045	-0.3017
186	213	1.3963	1.3663	1.2946	0.6000	0.3904	0.8841
187	213	0.4297	1.5274	1.3107	-3.2240	0.5666	2.2503
188	213	1. 2683	-1.1520	0.8065	0.9462	0.9508	0.5523
189	213	-1.4624	1.9982	2.0937	0.8117	0.4622	1.6399
190	213	0.3027	0.3394	0.8721	-0.8925	0.9706	1.6046
191	213	1.9891	1.8623	0.5112	-1.2665	0.5044	-1. 1192
192	213	2.1478	-1.2906	-0.4491	-3.6926	0.8568	-0.0420
193	213	-0.7447	1.5613	1.2146	1.4191	0.6845	1.5584
194	213	0.7912	1.7361	1.5605	0.9679	0.3818	1.3296
195	213	2.0539	0.6095	0.3104	0.7999	-0.0439	-0.8192
196	213	-1.4622	-1.9082	0.5558	0.8391	0.5782	0.0924
197	213	-0.6783	1.4660	0.1336	1.2362	0.7985	0.5590
198	213	-0.4192	2.34 .17	2.2714	-0.7363	0.7842	1. 0826
199	213	-2.9385	2.0801	1.9456	0.4403	0.8856	1.5673
200	213	-4.7365	1.5979	1.3032	-0.8527	0.6561	0. 0857
201	213	2.0737	-1.6075	0.3211	-1.1544	0.7351	-1.1479
202	213	0.0937	-1.3172	0.7313	1. 2101	1.3436	1.0678
203	213	-2.5203	1.8788	1.4283	1. 1785	0.6401	1.3613
204	213	1.0194	-1.3377	-0.0626	1.3269	-3.3501	0.3676
205	213	2.3882	-7. 1026	-3.9519	1. 1985	-3.8635	-3.0951
206	213	0.3919	0.3779	-0.4036	1. 1887	0.7813	-0.3425
207	213	0.2317	-1.1947	1.6157	-1.2121	0.5767	-0.3456
208	213	0.1723	-0.6193	-2.0314	-0.1884	-0.9289	- 1.0263
209	213	-2.9883	-1.2319	-2.0806	0.5852	-2.4030	-5.8604
210	213	1.5531	1.2084	-0.5024	-3.6642	0. 1161	-0.2837
211	213	-1.2088	-1.0171	-0.2337	0.7482	1. 1718	-0. 5299
212	213	1.8096	-0.7041	1.8413	-0.7560	-0.7562	-0.3897
213	213	3. 0955	-0.9768	-4.3219	-0.4217	-0.9651	-1.5764
214	213	2.2096	1.5220	1.0991	0.5234	-0.0926	0.0818
215	213	0.5161	-0.5857	0.2194	-0.9820	1. 1847	-0. 2853
216	213	-2.2561	0.4559	1.4201	0.5782	1.0658	1. 1110
217	213	1.3321	0.1001	-6.0554	-2. 1534	-5.7376	0.5580
218	213	-1.6009	0.4855	0.5889	-0.0513	1.2339	0.0686
219	213	0.9814	-1.7276	-1.9821	-0.7749	-1.3905	-0.3941
220	213	0.1539	-0.3803	-4.1900	0.7532	-2.3987	0.0175
221	213	2.4002	-1.6392	1. 1407	0.0104	-2.5458	0.2525
222	213	-2.5847	0.7746	-1.3450	-2.4476	-1.8480	1.7521
223	213	-2.0472	2.1015	2.4367	-1.2359	-0.4851	-0.3471
224	213	-0.0550	-2.2784	0.7586	1. 1634	0.9238	1.0842

obs	I	FACTOR 1	FACTOR2	factor3	factor 4	factors	FACTOR6
225	213	-3.3240	2.5622	2.0414	-0.5640	0.8010	0.7131
226	213	1.4836	-0.8848	0.4969	-0.4982	-1.7753	-1.3255
227	213	0.4678	-3.7046	-0.5610	0.5657	0.6266	-0.3444
228	213	4.0657	1. 1085	-5.1162	-3. 1508	-2.3805	-1.3704
229	213	2.1293	-2.3169	-0.8765	-1.2820	0.3728	-0.0557
230	213	2.6206	0.0849	-0.7246	-0.5169	0.4269	-0.7720
231	213	-0.3310	2.2197	2. 1255	-1.2398	0.4707	0. 1905
232	213	-0.2992	-2.8920	0.9272	0.9455	-0.0186	-0.5572
233	213	0.5708	2.0765	0.9727	-0.8220	0.9788	0. 1286
234	213	0.9109	2.2496	1.9559	-0.6774	0.6232	0.7269
235	213	-4.3293	2.8656	0.7477	0.9676	-1.2878	0.7775
236	213	1.6905	-1.9545	0.2758	0.1497	0.2635	-2.8289
237	213	1.5781	0.4804	-1.6271	-1. 1692	-1.0398	-1.6525
238	213	-1.0355	1.5694	-0.1141	0.5510	0.2798	-0.8860
239	213	-1.0807	1.5012	0. 2544	0.4020	0.6115	-0. 1981
240	213	3.2022	-3.3318	0.2250	-4.0477	-0.5713	-0. 2576
241	213	-4.3310	1.2106	2. 1857	0.2912	0.7845	1.0231
242	213	0.5043	2. 1717	2.0536	-0.6391	0.8647	1. 1280
243	213	1.7935	-4.4302	0. 2701	-3.5648	0.1448	0.5445
244	213	-1.4954	0.7224	1.2596	0.9820	0.9546	1.1477
245	213	-1.0785	2.9189	-0.0756	-1.5825	-1. 1459	-1.4535
246	213	1.3963	1.3663	1.2946	0.6000	0.3904	0.8841
247	213	-0.6773	0.3155	0.3711	0.0459	1.3144	0. 1141
248	213	-0.5050	2.3545	-1.0579	1.5659	-1. 2736	1.0058
249	213	0.3846	1.6583	1.6582	1.0062	0.6233	1.7308
250	213	2.7174	2.3662	-3.4108	0.6504	-2.1278	-1.5300
251	213	1.9640	2.4673	-3.0176	-0.0956	-1.5241	-1.0291
252	213	-1.6188	0.2593	1.3842	-0. 2847	-0. 1017	-0. 4382
253	213	0. 1076	1.2073	-0.8761	-0.9323	0.9244	-0.4429
254	213	1.5898	0.7730	-1.6857	-2.0048	0.0151	0.9473
255	213	0.3846	1.6583	1.6582	1.0062	0.6233	1.7308
256	213	-3.4756	0.0444	-0.0536	-1.5569	0.5603	1.4928
257	213	-3.8793	-0.9585	-0.6392	1.4225	0.3273	1. 1222
258	213	-1.6084	1.9879	1.6300	0.4992	0.7246	1.2116
259	213	-4.3293	2.8656	0.7477	0.9676	-1.2878	0.7775
260	213	-4.3009	2. 1235	0.7828	0.8010	0.5931	0.2709
261	213	4.6629	-4.3150	-5.9777	-0. 1650	-6.3124	-2.1259
262	213	1.0566	0.9197	1.4548	-0.9251	0.2212	-0.8522
263	213	1.5161	1.8798	1.6900	-1.0453	0.6318	0.2814
264	213	3.4655	-5. 1026	-3.6471	0.2445	-5.9469	-1.9623
265	213	0.7199	1. 1947	1.0828	-0.8983	0.8824	-0. 3717
266	213	1.7237	-0.5728	1.0055	-0.2694	0.0915	-0. 2477
267	213	-3.8861	1.9821	1.8547	1.1426	0.7427	1.7701
268	213	-1.9300	-0.2023	1.3759	1.2052	-0. 1774	1.4926
269	213	0.6640	-2.1251	0.5166	0.0172	0.2431	0.2282
270	213	1.6985	0. 1907	0.5845	0.7781	0.5246	0.0970
271	213	-2.9874	0.7178	1.4074.	0.6665	0. 1483	0.8867
272	213	-2.5203	1.8788	1.4283	1.1785	0.6401	1.3613
273	213	0.250-1	0.8151	-1.4166	-2.7302	-1.0047	0. 4605
274	213	2.3973	-0.9091	-0. 3494	0.8547	0. 1427	-0.3695
275	213	-. 1948	1.8784	0. 1358	0.3369	0.4362	-0. 5447
276	213	0.8659	-2.2461	1. 1844	0.8798	-2.0877	0.7422
277	213	-2.5203	1.8788	1.4283	1. 1785	0.6401	1.3613
278	213	6710	2.0703	0.9988	-1.0850	0.2766	-0.9517
279	213	0.8853	0.0351	0.7800	0.8547	1.0076	0.8994
280	213	-0.0732	1.0962	-0.1323	0.8682	0.8071	0. 1135

OBS	I	FACTOR 1	FACTOR2	FACtor3	FACTOR4	FACTOR5	FACTOR6
281	213	0.8758	-1.7337	1.3703	1.0801	0.6125	1.3009
282	213	2.1231	0.3198	-2.4409	0.7725	0.5878	-0.3340
283	213	-2.0398	0.8158	1.4982	-0.0358	0.2912	0.6839
284	213	0.7335	1.6038	0.9509	0. 1520	0.3308	0.0092
285	213	2.3957	1.9402	0.4135	-1.3048	0.2629	-1.5204
286	213	2.6027	-1.9818	-1.1120	0.7849	-5.8895	-5.6786
287	213	-4.1811	2.6369	1. 1782	-0.8442	0.8345	-0.3318
288	213	1.7475	-0.3275	-0.7268	0.3823	0.7892	0.3316
289	213	2.3405	-1.2905	1.5694	-0.5035	0.7340	-0. 4676
290	213	-2.1213	0.0663	1.8775	0.9055	-0.4676	1.3859
291	213	-4.2843	0.7623	1. 1824	0.5161	0.3663	0.7427
292	213	2.2686	-1.7870	-0.8096	O. 1845	-0. 2954	-1.4837
293	213	2.3739	2.3303	-0.9003	-0.4986	-1.6247	-1.7119
294	213	2.0010	-1.7085	0.2309	0.5742	-3.4381	-0.3300
295	213	-0.2424	-0.5359	-0.9691	1.4441	O. 1307	0. 1685
296	213	1.6643	2.1485	1.5626	0.0687	0.0195	0.2260
297	213	0.6533	-0.7736	0.4885	-0.5649	1.4005	-0. 4358
298	213	2.7234	-0.9657	0.4158	0.5816	0.8390	-0. 1165
299	213	1.6742	-3.2492	-0.0208	0.7614	-5.0315	0.4949
300	213	0.9435	-2.8079	-5.0115	0.9579	0. 1657	-0.3431
301	213	-3.0807	0.7669	0.6941	1.0332	0.4591	0.8856
302	213	-1.5103	-1.8825	0.9771	0.9278	0.4801	1.4022
303	213	1.5161	1.8798	1.6900	-1.0453	0.6318	0.2814
304	213	1.1361	2.8828	-2.7130	-1.0385	-1.4256	-1.4290
305	213	-2.6458	0.8251	1.4930	0.4463	1.4098	1.4150
306	213	-0. 1930	2.1020	0.8227	-1.4689	0.7015	-0.9152
307	213	-1.8126	-0.4487	-2.2946	0.7767	0.7999	1.3571
308	213	0.9435	-2.8079	-5.0115	0.9579	0. 1657	-0.3431
309	213	-0.0591	-2.6481	-0. 1534	-0. 2206	0.8317	1.1456
310	213	0.5004	-1.2394	0.6336	1. 1718	1. 1021	0.6667
311	213	-0.0550	-2.2784	0.7586	1. 1634	0.9238	1.0842
312	213	0.5668	-1.3346	-0.4474	0.9889	1.2162	-0.3328
313	213	1.8151	-1.5213	1.5429	1.0659	-0. 3931	0.2507
314	213	1.9243	-3.5157	-0.9593	-3.6525	-2.9686	1.0377
315	213	0.1838	-0. 1476	-0.4739	0.8974	1.2729	0.0143
316	213	0.8943	-2.4888	-3.6793	-3.0256	0. 1761	0.6298
317	213	3. 1870	-3.2397	-0.8251	-1.8022	0.4703	-3.5195
318	213	2.2167	-2.3770	-2.3700	0.4988	0.1784	-0.5585
319	213	-2.2205	-0.7251	0.1299	1. 1545	1.4047	0.3167
320	213	1.7251	1.0146	-1.7612	-1.6586	-0.2901	1.8870
321	213	4.3325	0.0494	-2.6023	-0.8001	-0.2799	-2.5765
322	213	0.7026	0.0121	0. 1773	0.8800	0.9651	1.6780
323	213	0. 1020	-3.2764	0.6295	1.4287	0.4806	-3.3704
324	213	-2.3982	1.0741	-0.8503	0.8678	0.3920	1.4541
325	213	2.9259	-0.0073	-4.9176	0. 1395	-1.9534	-5.6257
326	213	-0. 1802	-1.9747	0.6616	0.9868	0.3192	1.0465
327.	213	0.3682	2.0357	-3.5612	1.1783	-1.3422	-0.4989
328	213	-1.3467	-0.8995	1.0691	0.9774	0.9410	0.5758
329	213	-2.4420	-2.4521	-0.6291	-1.9373	0.2155	1.4796
330	213	-0.6601	-1.9086	1.0244	1.5313	0.9152	1.5297
331	213	-3.5095	-0.3688	0.9919	0.5666	0.0270	0.8045
332	213	2.6983	-2.9300	-1.0450	-1.0826	-0.0736	-5.9573
333	213	-4.5877	2.5591	1.2760	-0.8059	1.0760	0.0693
334	213	0.3516	-2.2005	0.6608	1. 1251	0.6823	0.6830
335	213	2.7340	-1.9176	0.2706	0. 5058	-0.0464	-0.8478
336	213	-3.7172	0.3944	2.0091	O. 1881	-0.2178	1. 1003

OBS	I	FACTOR1	FACTOR2	FACTOR3	FACTOR4	FACTOR5	FACTORG
337	213	1.3204	-1.0090	0.1565	1.0254	-1.3958	0.4069
338	213	-1.8297	1.2930	1.9303	-0.8691	0.1567	-4.2483
339	213	0.7557	-0.1968	-0.2423	0.4785	-2.5639	-0.5279
340	213	0.2383	-1.5467	0.3371	-0.5724	0.5700	-1.0437
341	213	0.9211	-0.8187	-4.8858	0.1467	-0.9699	-0.2558
342	213	-1.1489	-0.7604	-0.0361	-0.0744	1.2925	-0.8313
343	213	-1.8539	0.3740	0.4166	0.5063	-0.7137	0.2270
344	213	-0.7747	0.7531	1.3661	-0.1587	1.6332	1.2576
345	213	2.1107	1.5491	-3.3370	-0.2403	-1.6219	-1.9760
346	213	2.6501	-1.6619	-0.9770	-0.6462	0.8710	-2.3275
347	213	1.6308	-0.6772	0.0969	-0.4233	0.6711	-0.4995
348	213	2.0737	-1.6075	0.3211	-1.1544	0.7351	-1.1479
349	213	0.4153	-3.6384	-2.7143	0.7833	0.4473	-2.2503
350	213	-0.2950	-2.5227	-0.3567	-1.1835	0.4326	1.7511
351	213	-1.5172	-1.8338	0.1612	1.2511	0.9487	0.4848
352	213	0.8824	-2.4055	-3.8723	1.1132	0.2898	-0.3895
353	213	0.3516	-2.2005	0.6608	1.1251	0.6823	0.6830
354	213	-2.4584	-2.4954	1.6335	1.3063	-0.0716	1.1010
355	213	-0.9628	0.5835	-2.0471	0.9638	0.7919	1.0529
356	213	1.6533	0.1225	0.9530	0.6291	0.8562	0.7850
357	213	0.9378	-0.6636	0.2114	1.2623	-0.8353	-1.2351
358	213	1.3282	-0.8952	1.0042	0.1236	1.0715	0.2509
359	213	0.7481	1.7923	1.5170	-0.8197	0.7831	0.3958
360	213	-0.3633	-3.1458	-0.4507	1.1075	0.2316	-4.0064
361	213	-1.1513	1.4834	1.3124	1.4574	0.9260	1.9596
362	213	-2.2020	1.9446	1.6556	-0.7964	1.1316	0.7142
363	213	-2.5585	1.8536	1.1096	1.1332	0.5804	0.9678
364	213	-1.5003	-0.0617	0.9641	1.4798	1.0273	-0.6661
365	213	-1.1809	-1.3718	-0.8325	0.6844	0.9907	0.0162
366	213	-0.9700	1.5705	0.8237	0.0399	0.7902	0.2664
367	213	-4.8485	1.4966	1.2186	-1.5627	0.4225	2.7938
368	213	2.2605	0.0006	-0.8222	-1.1240	-0.6119	-1.6572
369	213	-0.6683	1.2333	-3.4271	1.0112	-1.7842	-0.5811
370	213	-2.6217	1.0930	1.8016	-0.3532	1.4721	1.1668
371	213	1.7251	1.0146	-1.7612	-1.6586	-0.2901	1.8870
372	213	-4.8559	-1.7171	0.3910	-1.7186	0.1056	2.2277

APPENDIX B

SUMMARY, OF THE STEPWISE AND PRESCRIBED REGRESSION EQUATIONS FOR THE ANOMIE, SATISFACTION I, SATISFACTION II AND HEDONISTIC INDICES

Table 32. Stepwise Regression Equation for the Anomie Index

Variables		Standardized Coefficients	$\begin{aligned} & \text { T For } \mathrm{H}_{\mathrm{O}} \text { : } \\ & \mathrm{B}=0^{\circ} \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|T\| \end{aligned}$
Education		-0.30	-5.19	< 0.01
(Age) ${ }^{2}$		0.19	3.39	< 0.01
Hired Help		-0.15	-2.90	< 0.01
$\mathrm{R}^{2}=0.115$	F Statistic	Prob. $>\|F\|=0.01$		

Table 33. Prescribed Regression Equation for the Anomie Index

Table 34. Stepwise Regression Equation for the Satisfaction I Index

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } H_{o} \text { : } \\ & \mathrm{B}=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Skill at Farming	0.11	2.13	<0.03
Percent of Land Owned	0.15	3.10	<0.01
Agricultural Agency Dealings	0.16	3.16	< 0.01
Education and Income	0.10	1.96	<0.05
Farming Efficiency	0.10	2.00	<0.04
$\mathrm{R}^{2}=0.168 \quad \mathrm{~F}$ Statistic $=$	43 Prob	$=0.01$	

Table 35. Prescribed Regression Equation for the Satisfaction I Index

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } H_{0}: \\ & B=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|T\| \end{aligned}$
Age	3.32	1.82	< 0.06
Percent of Land Owned	0.08	1.74	< 0.08
Skill at Farming	0.10	1.75	< 0.07
$(\text { Age })^{2}$	-3.35	-1.82	<0.06
$\mathrm{R}^{2}=0.102 \quad$ F Stati	9 Prob. $>\|F\|=0.01$		

Table 36. Stepwise Regression Equation for the Satisfaction II Index

Variables	Standard Coefficient	T for $\mathrm{H}_{\mathrm{o}}:$ $\mathrm{B}=0$	Prob $>\|\mathrm{T}\|$
Disabled Respondents	-0.22	-4.46	<0.01
Black Respondents	-0.16	-3.20	<0.01
Reside on Place	0.18	3.71	<0.01
Education	0.14	2.84	<0.01
$R^{2}=0.184$	F Statistic $=12.62$	Prob. $>\|F\|=0.01$	

Table 37. Prescribed Regression Equation for the Satistication II Index

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{\mathrm{O}}: \\ & \mathrm{B}=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Age	4.83	2.72	< 0.01
Black Respondents	-0.15	-3.14	<0.01
Disabled Operators	-0.13	-2.75	<0.01
In-Kind Assistance	-0.15	-2.99	< 0.01
Age x Income	-0.27	-1.95	<0.05
Cropland	-0.11	-2.17	<0.03
Off-farm Work	0.16	2.46	<0.01
(Age) ${ }^{2}$	-4.90	-2.79	<0.01
$\mathrm{R}^{2}=0.186 \quad \mathrm{~F}$ St	38 Prob.	$=0.01$	

Tab1e 38. Stepwise Regression Equation for the Hedonistic Index

Table 39. Prescribed Regression Equation for the Hedonistic Index

Variables	Standard Coefficient	$\begin{aligned} & \mathrm{T} \text { for } \mathrm{H}_{\mathrm{O}}: \\ & \mathrm{B}=0 \end{aligned}$	$\begin{aligned} & \text { Prob } \\ & >\|\mathrm{T}\| \end{aligned}$
Black Operators	-0.09	-1.94	<0.05
Ratio of Farm to Total Income	0.11	2.30	<0.02
Off-Farm Work	0.21	3.06	< 0.01
$\mathrm{R}^{2}=0.162$	17 Prob.	= 0.01	

1
 VITA
 Cheryl Elaine Rogers
 Candidate for the Degree of
 Master of Science

Thesis: MEASURING THE PERCEIVED QUALITY OF LIFE OF EAST CENTRAL OKLAHOMA FARMERS

Major Field: Agricultural Economics
Biographical:

Personal Data: Born in Monticello, Arkansas, August 3, 1957, the daughter of Mr. and Mrs. Henry Suber.

Education: Graduated from Monticello High School, Monticello, Arkansas in May, 1975; received the Bachelor of Science degree from the University of Arkansas at Pine Bluff in 1979; completed requirements for the Master of Science degree in Agricultural Economics from Oklahoma State University in July, 1983.

Professional Experience: Enumerator, Department of Agriculture, University of Arkansas at Pine Bluff, May, 1975-August, 1975; Student Research Assistant, University of Arkansas at Pine Bluff, August, 1975-May, 1978; Conservation Aide, Fish and Wildiife Service, Ann Arbor, Michigan, May, 1976-August, 1976; Soil Conservation Technician, Soil Conservation Service, Appleton, Wisconsin, May, 1977-August, 1977; Agricultural Statistician and'Student Trainee, Statistical Reporting Service, Little Rock, Arkansas, May, 1978-August, 1980; Graduate Research and Teaching Assistant, Oklahoma State University, Stillwater, Oklahoma, 1980-1983; Area Program Agent, Rural Development and Agriculture, Langston University, Langston, Oklahoma, February, 1983-Present.

[^0]: $\mathrm{a}_{\text {Excludes }} 12$ respondents not classified by farm size.

[^1]: ${ }^{a}$ See text p. 12 for definition of low income (LI).

[^2]: *Significant Multiple Range Test.

[^3]: *Significant Multiple Range Test.

[^4]: ${ }^{\text {a }}$ Satisfaction or dissatisfaction with: V42 - The Cooperative Extension Service or Office; V43 - Land Grant University Agricultural Research; V44-Department of Agricultural programs of the Farmers Home Administration (FHA), Soil Conservation Service (SCS), and Agricultural Stabilization and Conservation Service (ASCS); SAT I - a composite index derived from variables V42, V43, and V44 using factor analysis. The Satisfaction Index I is designed to measure satisfaction or dissatisfaction with agricultural agencies.

 ${ }^{\mathrm{c}}$ See text p. 12 for definition of low income (LI).
 ${ }^{d}$ Mean values will nut be computed for variables with less than five respondents.

[^5]: *Significant Multiple Range Test.

[^6]: ${ }^{\text {a }}$ Satisfaction or dissatisfaction with your: V37 - Job; V39 - Standard of living (things like income, care, furniture, etc.); V40 - Job opportunities around here; V38 - Health; V41 - County, state and federal programs for welfare, Social Security, and Medicare; V34 - House or apartment; V35 - with your community as a place to live; SAT II - A composite index derived to measure the individual's satisfaction with different life domains.
 $\mathrm{b}_{\text {Mean }}$ responses for the individual variables are based on a three-point scale where $1=$ dissatisfied; $2=$ undecided; and $3=$ satisfied.
 ${ }^{\mathrm{c}}$ See text p. 12 for definition of low income (LI).
 ${ }^{d}$ Mean values will not be computed for variables with less than five respondents.

[^7]: *Significant Multiple Range Test.

[^8]: *Significant Multiple Range Test.

