
THE TREATMENT OF ALCOHOL WASTEWATER BY ROTATING 

BIOLOGICAL CONTACTORS (RBC) 

By 

BILLY NEAL QUALLS, JR. 

Bachelor of Arts 

Arkansas College 

Batesville, Arkansas 

1981 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

December, 1983 



Dedicated to my parents, 

Bill and Marie Qualls 



THE TREATMENT OF ALCOHOL WASTEWATER BY ROTATING 

BIOLOGICAL CONTACTORS (RBC) 

Thesis App roved: 

Thesis Adviser 

f)~.f) ~11· 
Dean of tne Graduate College 

ii 



ACKNOWLEDGMENTS 

I would like to express my sincere appreciation to Dr. Enos Stover, 

my adviser, for this encouragement and advice during this thesis work. 

I would also like to thank Dr. Marcia Bates, Dr. John Veenstra, and Dr. 

Don F. Kincannon for their help and guidance. 

would like to thank my wife for her encouragement and patience 

throughout this ~rying ti~e of writing this thesis. 

Finally, I would like to dedicate this thesis to my two grandmothers 

who passed away while I was in school. They were Thelma Sandefur and 

Agnes Qualls. They will be sorely missed. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 

I I. LITERATURE REVIEW 

History of RBC Process 
Process Description 
Desi qn Factors 

I I I. METHODS AND MATER!ALS 

Test Unit .... 
Alcohol Wastewater 

IV. ANALYTICAL PROCEDURES 

Suspended Sol ids 
Chemical Oxygen Demand 
Biochemical Oxygen Demand 
Total Organic Carbon 

V. RESULTS 

SBOD, SCOD, and STOC Removal 

VI. DETERMINATION OF BIOKINETIC CONSTANTS 
FOR SBOD, SCOD, AND STOC 

VI I. DISCUSSION ..•... 

Biological Solids Concentration 
SBOD Removal Efficiency 
SCOD Removal Efficiency 
STOC Removal Efficiency 

VI I I. CONCLUSIONS AND RECOMMENDATIONS 

A SELECTED BIBLIOGRAPHY ....... . 

iv 

5 

5 
7 
8 

12 

12 
14 

18 

18 
l 8 
19 
19 

20 

20 

32 

53 

54 
55 
55 
56 

58 

60 



LIST OF TABLES 

Table Page 

I. Relative Raw Wastewater (Thi~ Stil lage) 
Characteristics ... .•...... 16 

I I. BOD Removal by Rotating Biological Contactor 
(RBC) Treatment of Alcohol Wastewater at 
an Organic Loading Less Than l Lb/Day/1000 
Feet2 Throughout Entire Unit . . . . . . . ....... 29 

I I I. BOD Removal by the RBC at Loadings Greater 
Than 1 Lb/Day/1000 Feet2 Throughout En-
t i r.e Uni t . . . . • . . . . . . . . . . . . . . • . . . . 29 

IV. COD Removal by Rotating Biological Contactor 
(RBC) Treatment of Alcohol Wastewater at 
an Organic Loading Less Than l Lb/Day/1000 
Feet 2 Throughout Entire Unit . . . . . . . ....... 30 

V. COD Removal by the RBC at Loadings Greater 
Than 1 Lb/Day/1000 Feet2 Throughout En-
t i re Uni t . . • • . . . . . . . . . . . . . . . . . . . . 30 

VI. TOC Removal by Rotating Biological Contactor 
(RBC) Treatment of Alcohol Wastewater at 
an Organic Loading Less Than 1 Lb/Day/1000 
Feet2 Throughout Entire Unit ............... 31 

VI I. TOC Removal by the RBC at Loadings Greater 
Than 1 Lb/Day/1000 Feet2 Throughout En-
t i re Uni t . . . . . . . . . . . . . . . . . . . . . • . . . 31 

VI I I. Biokinetic Constants Determined From SBOD, 
SCOD, and STOC Data .................... 48 

v 



LIST OF FIGURES 

Figure 

l. Process Flow Diagram. 

2. Experimental Apparatus and Operating Conditions 

3. SBOD 
of 

4. SCOD 
of 

5. STOC 
of 

6. SBOD 
of 

7. SCOD 
of 

8. STOC 
of 

Remaining Versus Stage for Hydraulic Loas:ling 
0.18 gpd/ft2 ............... . 

Remaining Versus Stage for Hydraulic Loading 
o . 1 B g pd If t 2 . . . . . . . . . . . . . . . . 

Remaining Versus Stage for Hydraulic Loading 
o. l 8 g pd If t 2 . . . . . . . . . . . . . . . . 

Remaining Versus Stage for Hydraulic Loading 
l. 22 gpd/ft2 . . . . . . . . . . . . . . . . 

Remaining Versus Stage for Hydraulic Loading 
1 . 22 gpd/ft2 . . . . . . . . . . . . . . . . 

Remaining Versus Stage for Hydraulic Loading 
l . 22 gpd/ft2 . . . . . . . . . . . . . . . . 

9. SBOD Applied Versus SBOD Removed at All Loading Rates 

10. SBOD Applied Versus SBOD Removed at Low Loading Rates 

l 1. Determination of Umax and Kb at Low Loading Rates 
Less Than l Lb/Day/1000 Ft 2 . 

12. Determination of Umax and Kb at All Loading Rates 

13. SCOD Applied Versus SCOD Removed at Al 1 Loading Rates 

14. SCOD Applied Versus SCOD Removed at Loadings Less 
Than l Lb/Day/1000 Ft2 

15. Determination of Umax and Kb at All Loading Rates 

16. Determination of Umax and Kb at Low Loading Rates 
Less Than 0.5 Lb/Day/1000 Ft2 

17. STOC Applied Versus STOC Removed at Al 1 Loading Rates 

vi 

Page 

3 

l 3 

21 

22 

23 

24 

25 

26 

34 

35 

37 

39 

40 

41 

42 

43 



Figure 

18. 

19. 

20. 

21 . 

22. 

23. 

STOC Applied Versus STOC Removed at Low Loading Rates 
Less Than 2.0 Lb/Day/1000 Ft2 

Determination of Umax and Kb at Low Loading Rates 
Less Than 2.0 Lb/Day/1000 Ft2 

Determination of Umax and Kb at All Loading Rates 

Determination of Yt and Kb at All Loading Rates 

Determination of Yt and Kb at All Loading Rates 

Determination of Yt and Kb at All Loading Rates 

vii 

Page 

46 

47 

50 

52 



CHAPTER I 

INTRODUCTION 

Since the oil embargo of the early 1970 1 s, the United States has be

come more aware of the energy shortage. Alternative energy sources are 

being explored in more detail and more money from both private and pub-

1 ic sources are being invested in these ideas. The alcohol fuel indus

try is now being considered as a partial solution to the energy shortage 

and as a potential new agricultural industry. The United States is rich 

in grains used for feedstock for the ethanol production industry. Corn, 

milo, and wheat are the major grains used in the alcohol production in

dustry (1, 2). 

There are three broad types of ethanol plants. The first type pro

duces anhydrous ethanol primarily used for commercial blending of gaso

hol. The second type of plant produces 180 to 190 proof ethanol. This 

alcohol is dried to 200 proof and mixed with gasoline to upgrade the oc

tave level in gasoline. The third type includes the small farm units 

that produce ethanol of 160 to 190 proof. This is primarily used for 

direct fuel use. 

The wastewaters from the alcohol production process are high strength 

and require characterization and treatabi lity data so that the best and 

most economical means of treatment can be employed. Present treatment 

of this wastewater consists of screening-dewatering of the grain solids 
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and evaporation of the liquid fraction. This evaporation process is very 

energy intensive and time consuming. 

A schematic representation of a flow diagram for the larger fuel al

cohol production facilities is shown in Figure l. The grain is ground, 

mixed with water and enzymes, and then cooked for the preparation of the 

starch for its conversion to sugar. During saccharification, the next 

step, different enzymes act on the exposed starch molecules to convert 

them to fermentable sugars. Ethanol is produced from the sugars by yeast. 

The product of fermentation, beer, contains about 10 to 12 percent ethan

ol. The ethanol is then separated prior to distillation if packed dis

tillation columns are used (3). 

For each bushel of grain used, 30 to 35 qal Jons of water are requir

ed. The products of fermentation include 17 pounds of carbon dioxide, 

2.5 gallons of anhydrous ethanol, and 25 to 30 gal Jons of stil lage con

taining the grain residue at 6 to 9 percent sol ids content (3). 

The biological treatment option investigated during these studies 

was the rotating biological contactor (RBC). This treatment process pro

vides a treated effluent that can be recycled back to the plant, used 

for irrigation or discharged. This process is relatively easy to oper

ate and produces a good quality effluent. 

After analysis of the data and the determination of the biokinetic 

constants, the Kincannon-Stover model for RBC scale-up and design was 

evaluated (4). The Kincannon-Stover mode 1 is based on the concept of 

concentration coupled with the hydraulic surface loading rate to get the 

total loading rate applied to a system. This model was based upon trick-

1 ing-fi lter work introduced in the early 1970 1 s by Cook and Kincannon 
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(5). This work was used and applied to the RBC process by Stover and 

Kincannon (4). 
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CHAPTER I I 

LITERATURE REVIEW 

History of RBC Process 

The RSC is a relatively new process in the United States. The "ro

tating drum11 goes back to the l920 1 s. Investigators in both the United 

States and Germany experimented with using rotating wood surfaces (6). 

The RBC systems as presently used evolved from the research work of Hart

man and Popel in West Germany in 1958 (6). 

The RBC system was manufactured in 1959 by J. Conrad Stengel in. 

These systems were two to three meters in diameter and made of polysty

rene (6). The first commercial installation went on a stream in West 

Germany in 1960 (6). 

After 1960, further development of the RBC stopped in Europe. But 

between 1960 and 1965, in the United States, Allis-Chalmers did much for 

the development of rotating discs. In 1967, All is-Chalmers began their 

first field testing of the RBC at a dairy plant. Wastes from the dairy 

process was fed to the unit to determine its capabilities under actual 

field conditions. The test unit succeeded in achieving Bo percent COD 

reduction of loadings as high as 400 pounds COD/day/1000 ft 3 (6). 

Until 1972, the polystyrene discs were not compact and the overall 

process was simply too expensive. Then came an important breakthrough: 

the development of a more compact disc, one with much more surface area 

for a given volume. Autotrol now came out with an arrangement of 1/16 

5 



inch-thick polyethylene sheets ~Jith a 1/2 inch space separating them 

filled with a honeycombed polyethylene configuration. 
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In addition to the previously mentioned work with municipal waste

water, there has been much work on the RBC as an industrial wastewater 

treatment possibility. Some of the commercial wastes studied included 

cheese, bakery, winery, yeast, and slaughterhouse waste. The effective

ness of the RBC in treating slaughterhouse wastes have been reported by 

Stover, Chittenden and \~ells, and Stover and Kincannon (7, 8, 9). Stover 

observed a two-phase removal rate corresponding to the high removal in 

the first stage compared with lesser removal in the latter stages. Stover 

and Kincannon (9) used a synthetic waste and a slaughterhouse waste (or

ganic and hydraulic loadings) to determine their influence on removal 

characteristics. Their conclusions, found in this study, were that the 

RBC performance is a function of the total organic loading. They also 

found that much higher removal efficiencies could be found using synthe

tic wastewater instead of the slaughterhouse wastewater. Refinery wastes 

have been treated with the RBC with removal efficiencies as great as 60 

to 75 percent BOD removal ( 10). 

The RSC has been used in tertiary treatment by several researchers. 

Noss and Miller (11) described the use of the RSC for secondary treat

ment and recarbonation fol lowing low level I ime add"ition for phosphorous 

removal. Cheung and Krauth (12) investigated the effects of nitrate con

centration in RBC 1 s. 

The industrial wastewater field is relatively new with the use of 

the RSC. In addition to fields previously mentioned, there have been 

other researchers such as Chesler and Eskelund (13) who evaluated RBC's 

for the treatment of explosives manufacturing wastes. Acid mine 
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drainage wastes were ireated in pilot scale studies by Olem and Unz (14). 

0 1 Shaughnessy et al. (15) applied RBC 1 s to oil shale retort wastewater . 
.. • 

Borghei (16) described treatment of the effluent of a glucose-production 

plant using a RBC packed bed. 

Process Description 

The RBC process is an aerobic, continuous flow, wastewater treat-

ment system designed for municipal and many industrial wastewaters. The 

RBC converts the influent feed that contains soluble biodegrada~le organ-

ics into biomass and carbon dioxide. The excess biomass generated by 

these units is separated by a secondary clarifier. 

Wastewater from the primary clarifier is introduced into the tank 

containing a series of d1sks mounted on a horizontal shaft. These discs 

(media) are mounted in such a way that 40 percent of the media are sub-

merged in the wastewater at all times. As the discs rotate through the 

wastewater, a thin film of biomass be!]ins to grow on the disks. 

The film of biomass is responsible for the removal of the biodegrad-

able organic. wastewater constituents. The media are continually rotated 

so that the biomass film is alternatively exposed to fresh wastewater 

and air. If the rotating stops, the film will dry out and form a hard 

layer on the discs. Upon rewetting of the film, sloughing can occur. 

The discs are separated by baffles to avoid short circuiting. The 

heaviest growth and greatest substrate removal occurs on the first stage 

and lessens with each succeeding stage. 

The inner film becomes anaerobic and turns black. Shearing forces 

along with these anaerobic conditions result in the sloughing of the 
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biomass. These sloughed solids are removed from the RBC tank and passed 

on to the final clarifier. 

Sack et al. (17) found that in a four-stage RBC system, the overall 

appearance of the sludge ranged from a black stringy stage to a greenish-

brown slime on the latter stages. 

According to several sources (Torpey (18), Prescod (19), Sack (20), 

and Antonie (21)), the development of the types of microbes on the media 

is dependent on the type of wastewater entering each stage and the amount 

of nutrients the microbes see. The basic microbial makeup of the RBC 

system is reported to be as follows: 

The predominant organisms including Sphaerotilus and zoogleal 
bacteria are present on all disks. Besides these two impor
tant kinds, the diversity and abundance of free swimming pro
toza (Paramecium, Cycl idium, Ocomonas, Oxytrichia, and Euglena) 
are present in the first few stages is much thicker than the 
bacterial slime produced on the later disks ( [10], p. 8). 

The attachment of the microbes onto the disks is very important to 

the RBC process. The mechanism of attachment is primarily due to fila-

mentous organisms such as Sphaerotilus. These microorganisms serve as a 

skeletal system to which other microorganisms can attach (17). T:·1e thick-

ness of the biofilm is due to the amount of filamentous organisms pres-

ent. As the amount of energy source is reduced in each stage, the popu-

lation of the filamentous organisms decreases. This leads to a thinner 

biofilm on the disks (21). 

De s i g n Facto r s 

The major dependent design variables are: rotational speed, temper-

ature, organic loading, and hydraulic loading. Each of these wi 11 affect 

the design and operation of the unit. 
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At residual times less than 100 minutes, the removal of BOD and 

NH 3-N always decreases as the flow rate increases or the residence time 

decreases (22). The surface hydraulic rate is usually expressed in gal-

2 Jons per day. per square foot (gpd/ft ) . The question of whether the ef-

ficiency of a RBC is dependent upon the organic concentration of a waste 

or the hydraulic flow rate has been debated for many years. In 1971, 

Cook and Kincannon (5) showed exclusively that the organic concentration 

of a waste was the deciding factor as to how a trick] ing filter would 

perf0rm. Stover and Kincannon ( 4) presented the same type of cone 1 us ions 

for the RBC. From these papers and conclusions drawn from them, a model 

for the scale-up of RBC 1 s was presented. This model will be explained 

further in the preceding sections. 

Another important factor affecting treatment efficiency is tempera-

ture. The increasing temperature of the wastewater increases the rate 

of substrate utilization. From a previous study (22), the percentage of 

BOD removal does not increase much at 55°F or above. 

Nitrification exhibits a greater sensitivity to temperature and hy-

d r a u l i c 1 o ad i n g r a t e . I f t he h yd r au 1 i c 1 o ad i n g r a t e i s con t ro 1 1 e d a t 

2 
less than l.O gpd/ft , for municipal wastewaters, the percentage of 

NH 3-N removed is not greatly influenced by the temperature of the waste

water· unless it reaches below 55°F (22). The temperature of the waste-

water affects the amount of dissolved oxygen in the wastewater. 

There are several operational problems that can occur with the RBC 

system. The RBC system performs better in the winter than in the summer 

at some plants. Low DO levels in the first stages and low pH levels in 

later stages affected bio-activity. 



The rotation of the media through the wastewater not only allows 

for aeration and mixing, but also provides shearing forces that cause 

s laughing of excess mi cr_ob i al growth. 
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The function of the first stage is to remove organic material. Sub

sequent stages are used to remove ammonia if it is necessary to meet 

NH 3-N standards. 

Wastewater DO levels of one to two mg/I are considered to be mini

mal to avoid DO 1 imiting conditions. Anaerobic conditions can occur if 

inadequate o2 transfer and mixing occur. The sludge floating and settl·

ing in the corners turns black and a distinctive odor begins to be emit-

ted. 

The amount of o2 that a wastewater requires is dependent on the 

strength and type of wastewater. The total amount of o2 necessary to 

stabilize a waste is referred to as the ultimate oxygen demand. The ul

timate o2 demand includes not only the .amount of o2 required to stabi 1-

ize the carbonaceous fraction, but also that required to transform micro

bial ly NH 3-N to N0 3-N. For untreated domestic wastewater there is little 

o2 demand by the nitrifiers within the first eight days of stabilization. 

The BOD5 test is indicative of the o2 demand by the carbonaceous or-

gan isms only. If significant populations of nitrifiers are present, the 

total BOD5 is a poor indicator of the treatment of the system. 

Nitrification is the oxidation of NH 3-N to nitrate, and denitrifica

tion is the reduction of nitrate to nitrogen gas, Nitrification is used 

to control wastewater effluent levels of ammonia, but both nitrification 

and denitrification are used to control total nitrogen levels in the ef

fluent. Usually 5 percent of the oxygen demand is the amount of nitrogen 

assimilated during oxidation of carbonaceous material (23). 
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The importance of nitrogen control in wastewater effluents is its 

impact on receiving streams. As ammonia is oxidized to nitrate, the DO 

levels are decreased. Nitrate is readily available for assimilation by 

plant 1 ife, causing algal blooms when present in significant quantities. 

As pH decreases, the rate of nitrification declines. Temperature also 

affects nitrification by decreasing by 50 percent for every l0°C drop in 

wastewater temperature below 30°C (3). This value differs from one engi

neer to another. These values are from average municipal wastewater 

studies. For example, the nitrification rate at l0°C would be about 

half that at 20°C. Organic removal rates for the RBC process should de

crease 25 percent for every l0°C drop in wastewater temperature below 

about 30°C (3). 



CHAPTER I 11 

METHODS AND MATERIALS 

Test Unit 

The smal 1 sc~1e rotating biological contactor unit used.duriMg this 

study consisted of a tank constructed of plexiglass which was divided by 

five baffles to form six .stages. Later in the study the first baffle 

was removed to facilitate better ~ixing and prevent dead spaces. The 

baffles had openings at their bases to allow flow throughout the unit. 

Mounted on the shaft that ran down the center of the unit were polyethy-

Jene discs. There were four of these discs in each stage (Figure 2). 

Each disc was approximately 1/8 inch thick and 6 inches in diameter. 

This resulted in a total disc surface area of 9.43 square feet for the 

entire unit. Smal 1 plexiglass paddles were inserted between the discs 

to insure complete mixing and keep the sol ids in suspension. The final 

stage contained an overflow weir which directed the effluent into a sam-

ple bottle. The volume of the unit was 7.6 1 iters. Hydraulic flow rates 

2 2 2 of 0.12 gpd/ft , 0.18 gpd/ft , and 1.20 gpd/ft were used in this study. 

The alcohol wastewater was pumped up from the floor from a feed bottle 

and directly added into the front of the first stage. Several types of 

pumps were employed to achieve the diversity of flow into the unit. A 

Sigma finger pump and a Cole-Palmer Masterflex tubing pump were used 

with the most success. The Cole-Palmer pump had a smal 1 head on it, and 

at a high flow rate it wore out the tubing about every two days. The 

12 
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rotational speed of the discs was changed because of a change in motors 

to drive the unit. The first motor was a Barco] that turned the discs 

at 8 rpm. It lasted for one month. The next motor tri~d was a variable 

speed Cole-Palmer stirring motor in which the worm gear eventually wore 

out. It turned the discs at 30 rpm. The last motor that was used in 

this study was a variable DC motor made by the Cole-Palmer Company and 

it could turn the shaft at 18 rpm without any binding. The shaft had to 

be replaced after six months due to failure of the metal. The bearings 

had to be replaced after a few months of constant turning. A center sup-

port bearing was placed on the middle baffle for extra support. 

Alcohol Wastewater 

The stil lage or wastewater used for these studies was collected from 

the Oklahoma State University Agricultural Engineers' 200,000 gallons per 

year capacity fuel alcohol research facility. 

Raw wastewater from the alcohol production facility was devoid of 

essential elements. Nitrogen and phosphorous were added to the feed be-

fore it was added to the unit. The amount of nutrients added to the mix-

ture was calculated by the ratio of BOD:N:P + 100:5:1. Nitrogen was add-

ed to the mixture in the form of ammonium chloride. Phosphate was added 

to the feed solution in the form of phosphoric acid. For example, a solu-

tion of wastewater feed was needed with a SBOD5 of approximately 500 

mg/l. After diluting the raw feedstock until the appropriate SBOD5 was 

obtained, 2.4 grams of NH 3Cl were added to a 25-1 iter bottle. To obtain 

this amount of NH 4Cl to add, the following formula was used: 

Grams/Mole Nitrogen 
Grams/Mole NH 4c1 (Grams to be added)X* 25 mg/l 
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(X*) 25 liters= Grams to be added/25 liters 

To obtain the amount of phosphate to be added in the form of phosphoric 

acid, a stock solution of 50 ml of concentrated phosphoric acid was add

ed to a 1-1 iter container of distil led water. Then 6.5 ml of this stock 

solution was added to the feedstock. The 6.5 ml of this stock solution 

was determined based on the molecular weight of both phosphorous and 

phosphoric acid, as well as the density of phosphoric acid. These waste

waters were characterized and subjected to pretreatment studies. The re

sults are listed in Table I. 

A summary of the ra": wastewater characteristics from the ethanol pro

duction facility from both corn and mi lo feedstocks at the Oklahoma State 

University fuel and alcohol research facility are presented in Table 

(3). These results characterize the wastewater (raw feedstock) that was 

used in this RBC study. 

The supernatant was di luted to provide the influent feed for the RBC 

studies. Tap water was used to dilute the raw wastewater. A magnetic 

stirrer was employed to mix the nutrients with the wastewater. 

The test unit was seeded with sludge from anaerobicactivatedsludge 

unit that used alcohol wastewater as its primary feedback. Since the . 

sludge was already acclimated, it readily started to metabolize the feed. 

This sludge was fed as a batch process for one week. Raw undiluted 

wastewater was fed directly to the sludge during this time. After this 

initial week, the unit was converted into a continuous flow unit. The 

unit was operated under continuous flow conditions until sufficient 

growth appeared on the discs. Suspended sol ids data were collected every 

other day to determine if steady state conditions had been met. After 

steady state conditions were met, samples were collected at six locations. 



TABLE 

RELATIVE RAW WASTE\JATER (TH IN ST I LLAGE) CHARACTER I ST I CS 

Corn Feedstock Mi lo Feedstock 
Standard Standard 

Parameter;" Mean Deviation Mean Deviation 

TS 32,200 9' 300 42,800 2' l SO 

TDS 18,600 7' 100 20,400 6,800 

SS 11'800 3, 700 22,SOO s' 100 

vss 11 ,300 3,SOO 19,SOO 2,600 

Total COD 64,SOO 12,600 7S,700 12' 100 

Soluble COD 30' 800 6,200 40,700 9' 100 

Total BODS 26,900 800 . 34 ,900 2,000 

Soluble BODS 19,000 2' l 00 2 1 '700 1'360 

Soluble TOC 9. 350 2,200 14,900 2,SOO 

Total p 1 '1 70 100 1 ,280 100 

Soluble p 1 ,065 75 l '0 75 150 

Tota 1 TKN 755 11 5 

Soluble NH 3-N 130 60 

Total Carbohydrate 8,250 750 

Soluble Carbohydrate 2,250 780 

Soluble Glucose 750 

pH (Range) 3.3-4.0 3.4-4.0 

;'<A 11 uni ts in mg/l except pH. 
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These locations were: the influent, end of the first stage, and end of 

the remaining four stages. The end of the fifth represented the efflu

ent. Samples were obtained with a flat ended 25 ml pipette. The flat 

ended pipette allowed sol ids to be collected without clogging the end of 

the pipette. During certain test periods, the sol ids were very slimy 

and would clog the end of the pipette. When these samples were filter

ed, they would completely clog the filter pores at very small volumes. 

To remedy this situation, 100 ml of the samples were allowed to settle 

in a 250 ml flask for about one minute. From these samples, SBOD, STOC, 

and SCOD data were obtained. 

The flow rate was measured each day with a smal 1 50 ml graduate cyl

inder. The tests that were performed were biochemical oxygen demand, 

chemical oxygen demand, total organic carbon, and suspended solids. 



CHAPTER IV 

ANALYTICAL PROCEDURES 

Suspended Sol ids 

The suspended sol ids concentration was measured gravimetrically by 

filtering the sample through 0.45 micron milapore filters. The follow

ing procedure was used fer analysis. Filter papers were placed in alumi

num pans and placed in a drying oven at l03°C until all the moisture on 

them had evaporated. After removal from the oven, the filters and pans 

were placed in a desiccator to cool to a constant weight. The dry weights 

were then recorded. Twenty-five milliliters of sample were filtered 

through the filter papers with the use of a vacuum pump. If the so 1 ids 

would not dewater well, 10 milliliters of sample were filtered. After 

filtering, the filter papers were placed in the pans and dried for about 

two hours. A homogeneous mixture of sol ids was difficult to obtain due 

to the clumping of the solid material. Duplicates of each sample were 

treated in the same manner as the originals. 

Chemical Oxygen Demand 

The chemical oxygen demand of the filtrate was measured using the 

Hach procedure. The procedure is basically the same one as the proce

dure outlined in Standard Methods. The refluxing time is the same but 

there are smaller quantities of chemicals used and a smaller quantity of 

sample _is needed for analysis. Standards are made for high and low 

18 
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range data. A curve is plotted from the standards concentration against 

adsorbence. The samples are read on a specrometer and matched with their 

respective curves. The standard solutions were made of Glucose. 

Biochemical Oxygen Demand 

The biochemical oxygen demand of the filtrate was determined using 

procedures outlined in Standard Methods, except that a dissolved oxygen 

(DO) probe was used instead of the titration method. The DO probe was 

used to read the initial DO 1n the BOD bottle as well as the DO after 

five days. 

Total Organic Carbon 

The total organic carbon of the filtrate was measured using the 

Oceanographic Total Carbon Analyzer. Standards for both total and inor

ganic carbon were prepared. The total organic carbon concentration was 

calculated by subtracting the total inorganic carbon concentration from 

the total carbon concentration. 



CHAPTER V 

RESULTS 

SBOD, SCOD, and STOC Removal 

SBOD, SCOD, and STOC removal characteristics at various hydraulic 

loeadings as a function of stage are shown in Figures 3 through 8. These 

figures are typical for the study. Figure 3 describes the behavior of 

2 
the unit at 0.18 gpd/ft . As can be seen from this plot, the initial 

SBOD concentration was 270.0 mg/l, and this was reduced to approximately 

5.0 mg/l by_ the time it left the flve-stage unit. The removal efficien-

cy accomplished by this unit is approximately equal to 98 percent. It 

should be noted that more than 94 percent of the removal was accomplish-

ed in the first stage. 

Figure 4 represents the typical removal of SCOD at a hydraulic load-

2 
ing of 0.18 gpd/ft . The initial SCOD concentration at one of the organ-

ic loadings was 270.0 mg/l, and this was reduced to approximately 20.0 

mg/l by the time it exited the unit. The removal efficiency accomplish-

ed by this unit is approximately equal to 93 percent. The removal effi-

ciency of the first stage, calculated by a reduction of 270.0 mg/l to 

65.0 mg/l SCOD, was equal to 80 percent, thereby showing that most of 

the removal occurred in the first stage of the unit. At a higher organ-

ic loading, the SCOD initial concentration was reduced from 315.0 mg/l 

to 25.0 mg/l. This reduction resulted in removal rate efficiencies of 

92 percent. The SCOD concentration was reduced from 315.0 mg/l to 85.0 

20 
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mg/l in the first stage of the unit. The removal rate efficiency of the 

first stage was equal to a 73 percent reduction of the SCOD in the waste-

water. 

2 
Figure 5 represents the removal of STOC at 0. 18 gpd/ft . This fig-

ure represents a typical curve that was seen throughout the study. The 

initial STOC concentration of 180.0 mg/l was reduced to 10.0 mg/l by the 

time the wastewater exited the unit. The removal efficiency throughout 

the entire unit equalled 94 percent. The first stage removal rate effi-

ciency was Bl percent. This was calculated by a reduction of 180.0 mg/l 

to 35.0 mg/l. 

Figure 6 represents the removal of SBOD at 1 .22 gpd/ft 2 . The ini-

tial SBOD concentrations for three different organic loadings were 60.0 

mg/l, 170.0 mg/l, and 200.0 mg/l. The respective effluent concentrations 

were 1 .0 mg/l, 3.0 mg/l, and 8.0 mg/l. The resulting percentage reduc-

tions for these three conditions are 99, 98, and 96 percent, respective-

ly. The increased influent concentrations yields increased effluent con-

centrations. The first stage SBOD reductions for the three loadings were 

95, 91, and 90 percent, respectively. 

Figure 7 represents the removal of SCOD at a hydraulic loading rate 

of 1 .22 gpd/ft 2 . The initial SCOD concentration was 225.0 mg/1, and the 

effluent concentration was approximately l .0 mg/l. This resulted in a 

net reduction of SCOD by 99.5 percent. The second organic loading had 

an initial SCOD concentration of 300.0 mg/l and a final effluent value 

of 6.0 mg/1. This resulted in a reduction of the SCOD by 98 percent. 

Most of the SCOD removed occurred in the first stage at both conditions. 

At the lower of the two conditions, the initial concentration of 225.0 

mg/l SCOD was reduced to 15.0 mg/l SCOD. This resulted in a net 
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reduction of SCOD by 93 percent. The higher organic loading condition 

had an initial concentration of 325.0 mg/l SCOD and was reduced to 40.0 

mg/l. This resulted in a net reduction of 88 percent of the SCOD in the 

first stage. 

Figure 8 represents the removal of STOC at a hydraulic loading of 

2 
l .22 gpd/ft . Several different loadings were tried and the initial con-

centrations of these loadings were: 60.0, 70.0, 110.0, and 120.0 mg/l. 

The effluent SCOD concentrations for these loadings are: 5.0, 10.0, 

15.0, and 20.0 mg/l. The resulting reduction percentages for these load-

ings were: 92, 86, 86, and 85 percent. An increase in the influent con-

centration resulted in an increase in the effluent concentration and a 

decrease in percentage of reduction. 

The first stage STOC concentrations were 10.0, 20.0, 25.0, and 32.0 

mg/l, respectively. This resulted in first stage reduction percentages 

of 83, 72, 77, and 73 percent, respectively. 

2 
At the hydraulic loading of l.22 gpd/ft , the average SBOD concen-

tration decreased by 98 percent, the SCOD concentration by 98 percent, 

and the STOC concentration by 87 percent. These averages were based on 

data collected over the entire unit. The average first stage reduction 

percentages varied from 92 percent for SBOD, 91 per.cent for SCOD, and 

76 percent for STOC. 

Tables I I through VI I list applied loadings versus removed loadings 

for SBOD, STOC, and SCOD. The efficiency of the units under different 

conditions are listed in the following pages. 



TABLE I I 

BOD REMOVAL BY ROTATING BIOLOGICAL CONTACTOR (RBC) 
TREATMENT OF ALCOHOL WASTEWATER AT AN ORGANIC 

LOADING LESS THAN 1 LB/DAY/1000 FEET2 
THROUGHOUT ENTIRE UNIT 

Applied, 
Ft 2 

Removed, ') Efficiency, 
Lb/Day/1000 Lb/Day/1000 Ft"- Percent 

0.23 0.23 100.0 

0.27 0.26 96.3 

0.43 0.43 100.0 

0.50 0. 50 99.4 

0.57 0.57 100.0 

0.78 0.76 97.4 

TABLE 11 I 

BOD REMOVAL BY THE RBC AT LOADINGS GREATER THAN 
1 LB/DAY/1000 FEET2 THROUGHOUT ENTIRE UNIT 

Applied, 
Ft 2 

Removed, 
Ft 2 

Efficiency, 
Lb/Day/1000 Lb/Day/1000 Percent 

1. 22 l.22 100 .0 

l. 67 1. 67 100.0 

2. 52 2.51 99.6 

3.35 3.23 96.4 

5 .03 4.76 94.6 
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TABLE IV 

COD REMOVAL BY ROTATING BIOLOGICAL CONTACTOR (RBC) 
TREATMENT OF ALCOHOL WASTEWATER AT AN ORGANIC 

LOADING LESS THAN 1 LB/DAY/1000 FEET2 
THROUGHOUT ENTIRE UNIT 

App 1 i ed, 
Ft2 

Removed, 
Ft2 

Efficiency, 
Lb/Day/1000 Lb/Day/1000 Per.cent 

0.41 0.39 95. l 

0.51 0 .48 94. l 

0.61 0.58 95. 1 

0.71 0 .67 95.2 

TABLE V 

COD REMOVAL BY THE RBC AT LOADINGS GREATER THAN 
l LB/DAY/1000 FEET2 THROUGHOUT ENTIRE UNIT 

Applied, 
Ft2 

Removed, 
Ft 2 

Efficiency, 
Lb/Day/1000 Lb/Day/1000 Percent 

2.32 2.32 100.0 

4.23 4.20 99.3 

5.29 5. l 8 97.9 

7.05 6.61 93.7 

10.58 9.48 89.6 
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TABLE VI 

TOC REMOVAL BY ROTATING BIOLOGICAL CONTACTOR (RBC) 
TREATMENT 0 F ALCOHOL \·IASTEWATER AT AN ORGANIC 

LOADING LESS THAN l LB/DAY/1000 FEET2 
THROUGHOUT ENTIRE UNIT 

Applied, 
Ft2 

Removed, 
Ft 2 

Efficiency, 
Lb/Day/1000 Lb/Day/1000 Percent 

0.21 0.21 100.0 

0.33 0.33 100.0 

0.55 0.55 100.0 

0.64 0.64 100.0 

0.95 0.95 100.0 

TABLE VI I 

TOC REMOVAL BY THE RBC AT LOADINGS GREATER THAN 
l LB/DAY/1000 FEET2 THROUGHOUT ENTIRE UNIT 

Applied, 
Ft 2 

Removed 
Ft2 

Efficiency, 
Lb/Day/1000 Lb/Day/1000 Percent 

1. 33 l. 33 100.0 

1. 80. 1. 80 100.0 

2.40 2.40 100.0 

4. 39 4.23 96.4 

4 .51 4. 30 95,3 
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CHAPTER VI 

DETERt11NATION OF BIOKINETIC CONSTANTS 

FOR SBOD, SCOD, AND STOC 

The concept of total organic loading was employed to evaluate the 

data. Total organic loading is the combination of hydraulic flow rate 

and organic concentration. One advantage of the total organic loading 

concept is the capability to predict substrate removal and treatment 

efficiency at any loading condition. The smaller the diameter of the 

RBC, the higher the treatment efficiency with the same wastewater. There

fore, direct scale-up from a small-scale system because of oxygen trans

fer 1 imitation and the biodegradability of the wastewater is obtained. 

Full-scale systems data of lbs/day/1000 ft 2 applied versus lbs/day/1000 

ft 2 removed yield a curve that cannot be defined solely with zero, first, 

or second-order kinetics. The curves tend to follow different orders of 

reaction kinetics as the orgcinic loadings are increased. It has been 

seen that as the BOD applied approaches higher and higher values, the 

BOD removed approaches a maximum value where further increases in BOD ap

plied cause no further increase in BOD removed. This relationship can 

best be described mathematically by the Monad equation and monomolecular 

kinetics. 

Monad kinetics also predict the maximum BOD removal rate observed 

in RBC 1 s. At a certain loading condition, the RBC becomes saturated 

with BOD, apparently due to o2 limitations, and the removal rate does 
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not increase with increasing BOD loadings. The system becomes p2 limit

ed at these conditions and seems to be zero order kinetics. Smaller dia-

meter units transfer more o2 into the system so that the maximum sub

strate utilization rate (U ) will be greater than the full-scale sysmax 

tern. 

Figure 9 represents the specific substrate utilization rate as a 
i 

function of total organic loading for all the SBOD loading rates. SBOD 

applied is plotted against SBOD removed to obtain the maximum substrate 

ut i I i zat ion rate. If the curve has flattened out, then the maximum sub-

strate removal has been achieved. 

Figure 10 represents the SBOD curve at a low loading rate. The curve 

does not flatten out because the maximum substrate utilization has not 

been obtained. A comparison of the two curves is presented here. With 

these curves, one can deterMine how well a system will perform at these 

conditions with this particular wastewater. 

Figure 11 represents the reciprocal of the SBOD applied (1/F!i) ver-

sus the reciprocal SBOD removed (l/F(Si; Se)) to determine U and Kb. 
. ~x 

In Figure 11, only loading rates less than 1 lb/day/1000 ft 2 will be con-

sidered. The method of data analysis is based upon the Kincannon and 

Stover model for RBC design. This method eliminates or reduces the 

amount of data scatter found with ·mast of the other models. The curve 

is now in a 1 i near form. 

Figure 12 represents the reciprocal SBOD applied versus the recip-

rocal SBOD removed for all of the data. The biokinetic constants change 

from those of the low loading because of the change in the total organic 

loading. The slope was determined to be 0.9955 and the Y-intercept 
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equal to 0.007. From the equation 

FS. 
I 

A - ~ 

U was calculated to be 142.85 and Kb is equal to 143.50. max 

Figure 13 represents the plotting of SCOD applied versus SCOD re-

moved for all the data. The representative curve starts to flatten out 

at the upper range. 

Figure 14 represents the SCOD applied versus the SCOD removed at 

loadings less than 1 lb/day/1000 ft 2 . At this low loading rate, the 

curve looks 1 inear but in reality is not. All of the SCOD data points 

were 1 inearized by the Kincannon-Stover model. Scatter was reduced dras~ 

tically with this method as can be seen by this graph. 

All of the high and low loadings were plotted in Figure 15 for the 

reciprocal kinetic constants for SCOD. This figure represents the recip-

rocal SCOD removed for al 1 the data. All of the high and low loadings 

were plotted in Figure 15 to determine the U and Kb. The slope of 
max 

the 1 ine was equal to 1 .019 and the Y-intercept was equal to 0.016. 

Therefore, U equals 62.5 and Kb equals 60.40. max 

The low loadings were plotted for the reciprocal SCOD applied ver-

sus reciprocal SCOD removed in Figure 16. The biol~inetic constants were 

determined from the slope of 0.9937 and the Y-intercept of 0.0006. 

was calculated to be 166.67 and Kb was equal to 165.62. 

u max 

Figure 17 represents the specific substrate utilization rate as a 

function of total organic loading. This particular figure represents 

the STOC applied versus STOC removed at all of the loading rates. The 
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curve remains 
. 2 

1 inear throughout the range of 0.0 to 4.5 lb/day/1000 ft . 

The maximum removal rate has not been achieved. 

The low end of the STOC curve is plotted in Figure 18. The curve 

follows a 1 inear relationship. 

The reciprocal STOC applied versus TOC removed is plotted in Figure 

19 for the determination of U and Kb for the low data. The slope of max 

the line is equal to 0.9960, and the Y-intercept is equal to 0.014. 

Therefore, U is equal to 71.43 and Kb is equal to 71.14. max 

Determination of biokinetic constants for al 1 of the data is shown 

in Figure 20. U and K were calculated for all the STOC data shown. 
max o 

The slope of the line was determined t9 be 0.9936, and the Y-intercept 

to be 0.020. With these numbers U was calculated to be 50.0 and Kb max 

was equal to 49.68. All of the data points were plotted on the graph to 

compare these kinetic constants to those of the separate loadings. 

The kinetic constants vary somewhat, but the major criteria for com-

parison are between U and Kb. max In the Kincannon-Stover model explain-

ed earlier, a slight difference between U and Kb will cause a great max 

difference in the required area for treatment. All of the constants 

should be carried out to three places. A summary of the constants is 

l is t ed i n Tab 1 e VI I I . 

The true yield and decay constant must be determined to calculate 

the amount of sludge that will be produced. Figures 21 and 22 represent 

the SBOD removed versus the sol ids produced. Figure 21 repre'sents the 

Yt and Kb at all loading rates. There was much scatter in these data 

due to the sol ids fluctuation in the RBC. The slope of the 1 ine is equal 

to Yt. The Y-intercept is equal to Kd. Yt was determined to be 0.80 

and Kd was equal to 0.07. 
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Parameter 

SBOD 

Al 1 
Low 

SCOD 

All 
Low 

STOC 

A 11 
Low 

TABLE VI 11 

BLOKINETIC CONSTANTS DETERMINED FROM 
SBOD, SCOD, AND STOC DATA 

Umax . Kb Yt 

]112.85 143. 50 0.08 
i 81. 82 182. 91 

62. 50 63. 75 0.61 
165.62 166. 6 7 

50.00 49.68 l. 4 7 
71 .43 71. 14 
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Figure 22 represents the determination of Yt and Kd at al 1 loading 

rates for STOC. The slope was calculated to be 1 .47, which was equal to 

Vt. The V-intercept was calculated to be 0.20, and this is equal to Kd. 

Figure 23 represents the determination of Vt and Kd at all loading 

rates for SCOD. The slope was determined to be 0.61, which was equal to 

Vt. The V-intercept is equal to 0.04. This is equal to Kd. 
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CHAPTER VI I 

DISCUSSION 

The purpose of this investigation was to determine the feasibility 

of using the rotating biological contactor to treat wastewater from a 

full-scale alcohol production plant. There has been considerable work 

done on fixed film kinetics, especially with the RBC. The rotating bio

logical contactor may hold the key to the future of the wastewater treat

ment field. Rotating biological contactors have a number of characteris

tics which make them desirable for the design engineer. They can pro

vide a very high degree of treatment. They require less area than most 

other comparable processes. They can be retrofitted easily to existing 

plants. RBC's show high efficiency in oxygen transfer. 

They handle or~anic overloading well, due to the large biomass on 

the discs. Since they involve attached growth, they are much less like

ly to fail through washout when conditions adverse to biological growth 

occur. There is no bulking, foaming, or floating of sludge to interfere 

with the plant's overall efficiency. 

The RBC uses up to 50 percent less energy than conventional activat

ed sludge units. Over the lifetime of the plant, this can be a substan

tial savinqs. 

Rotating biological contactors are simple to operate. There is no 

sludge or effluent recycle. The sloughed biomass settles well and can 

be more easily recovered than solids from an activated sludge tank. 
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Clarifier design is far less critical with the RBC unit than the acti-

vated sludge systems. 
..• 

On the other hand, the RBC has several disadvantages. Structural 

problems tend to occur with several large-scale plants. Oil leaks from 

the drive units are common. Enclosures are necessary where very low 
, 

air or water temperature occur in order to achieve acceptable perfor-

mances. Suspended solids tend to accumulate in RBC reactors if removal 

in primary clarifier is inadequate. 

Disc rotation affects wastewater treatment in several ways. It pro-

vides the contact between the biomass and the wastewater; it shears the 

biomass; it provides the needed oxyge~ to aerate the wastewater; and it 

provides the needed mixing velocity in each stage. There is an optimum 

velocity where above that point treatment efficiency will not increase. 

For every RBC system, treating either municipal or industrial waste-

water, there is a limit to the rate which the waste is applied for aero-

bic conditions to be maintained. Once pushed into this anaerobic region 

a number of problems can occur. Undesirable organisms will proliferate, 

and anaerobic and sulfer oxidizing bacteria microorganisms will be plen-

tiful. The anaerobic bacteria normally coexist with aerobic microorgan-

isms forming the underlayer of the biofilm. When overloading occurs, 

the tremendous growths which tend to develop are primarily anaerobic bac-

teria. This dead load decreases the life expectancy of the equipment. 

Biological Solids Concentration 

After the unit was stabilized, the sol ids concentration in the ef-

fluent decreased steadily and remained between 4 and 12 mg/l throughout 

the rest of the study. At first, at a SBOD concentration of 1000 mg/l, 
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the solids coming out of the system varied from 100 to 600 mg/l unti 1 

the system stabilized. At a high loading on the first stage, black an-

aerobic sludg~ was produced. The film on the discs changed from a whit-

ish-gray color to a black spotted film. As the hydraulic loading in-

creased, the solids concentration in the mixed liquor became less dense. 

At higher flow rates, the solids concentration in the mixed liquor re-

mained constant at 100 to 250 mg/l after the unit stabilized. The lower 

flow rates would not washout the solids, and the solids remained in the 

stages, causing the biomass to become denser. Anaerobic conditions were 

soon to follow. The biomass would turn black as previously mentioned. 

An offensive odor would be emitted with these conditions. 

SBOD Removal Efficiency 

As seen earlier in Tables I I through VI I, very good removal effi-

ciency occurred with all loadings. The maximum substrate removal rate 

was never achieved with this system because of the low loadings on the 

system. As the total organic loading increases, the curve would become 

steeper and the efficiency lessen. If the maximum substrate utilization 

rate had been reached, the curve would start to follow zero order kine-

tics and flatten out. 

SCOD Removal Efficiency 

The removal efficiency for SCOD is outlined in Tables IV and V for 

2 
loadings less than and greater than 1 lb/day/1000 ft . The maximum re-

2 
moval rate has not been reached at 11.5 lb/day/1000 ft . The best remov-

al efficiencies occurred at the total organic loadings of 1 to 5 lb/day/ 

1000 ft 2 . At less than 1 lb/day/1000 ft 2 , the system was underloaded 
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and the removal efficiencies indicate this point. The mixed 1 iquor so-

1 ids were metabolizing each other due to the lack of feedstock. The 

data collected during this periodwerevery scattered. The wastewater 

was highly biodegradable and this could have led to a fluctuation in 

the data. 

STOC Removal Efficiency 

The STOC removal efficiencies were very high throughout the study. 

At the levels observed, no maximum substrate removal was obtained. The 

curve does not flatten out and no maximum substrate removal was reached. 

Tables VI and VI I list the efficiencies for STOC. 

The small scale RBC unit performed well under differing conditions 

of concentration and hydraulic loading. The removal efficiencies were 

high for the SBOD, SCOD, and STOC data. The Kincannon-Stover model line-

arized the data points so that they could be evaluated. From the recip-

rocal plots, the kinetic constants of Umax' Kb, YE, and Kd were determin

ed. The area required for treatment as well as the concentration of the 

effluent (S ) could be determined from these kinetic constants. Basical
e 

2 
ly, the Kincannon-Stover model plots pounds appl ied/day/1000 ft (SA) 

versus pounds removed/day/1000 ft 2 (SR). The resulting curve is as fol-

lows: 
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The plot shows that the curve cannot be defined by either first, 

second, or zero order kinetics. The low end of the curve approaches 

first-order kinetics and the upper end of the c~rve approaches zero-

order kinetics. This model eliminates the scatter in the data. Other 

models base their beliefs in that SR versus SA is the linear form as 

follows: 

The equation of the line would be SR= at SA (k), whereas in the 

slope of the line and in the linear form it is constant; xis the treat-

ment efficiency. This statement insinuates that no matter how many 

pounds are applied, the efficiency will be the same by the equation SR= 

SA (x) or x =SR/SA. This was proved incorrect by the evaluation of the 

data for SBOD, SCOD, and STOC. 



CHAPTER VI I I 

CONCLUSIONS AND RECOMMENDATIONS 

The results of the study support the following conclusions: 

1. A conservative estimate design can be accomplished by using the 

Kincannon-Stover design method. 

de ls. 

It eliminates the scatter with other mo-

2. Alcohol wastewater can be treated with the RBC with success, if 

one loads the stages corre~tly. It is not recommended to use this sys-

tern because of the high strength of the wastewater. Overloading is like

ly to occur unless many units are employed and careful operational proce

dures are followed. 

3. The RBC has great potential with low strength wastewaters such 

as municipal wastewater. The RBC unit can be used to upgrade an exist

ing facility. The major cost of the system would be the capital cost of 

constructing the system. Municipalities employ this method because of 

low operational cost. 

The recommendations for future study are: 

l. Operate an RBC at different rotational speeds to compare treat

ment efficiencies with the same wastewater. 

2. Explore large-scale unit treatment kinetics with the same waste

water. 

3. Compare design cost of RBC, activated sludge, and biological 

towers for the same effluent requirements. 
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4. Experiment with different disc configurations and compare effi

ciencies for each other. 

5. Operate RBC with different wastewaters and compare the data ob

tained with the data from alcohol wastewaters. 

6. Compare sizes of RBC plants presently in use with their theore

tical size calculated from the Kincannon-Stov~t model. 

7. Experiment with different strJctural designs. For example, ex

plore the possibilities of square, circular, and rectangular tanks. 
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