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CHAPTER I 

THE RESEARCH PROBLEM 

Introduction 

High levels of suspended sediment contribute to the degradation of 

water quality in many aquatic systems. Reservoirs of the southern Great 

Plains region of the United States are particularly susceptible to 

inorganic turbidity problems which generally result from a combination 

of factors associated with geology, meteorology, and basin morphology. 

High turbidity levels not only lead to decreased aesthetic and 

recreational value of these impoundments, but also have definite effects 

on physical, chemical, and biological reservoir components (Wallen 1951, 

Schiebe et al. 1975, Grobbellaar and Stegman 1976). The United States 

Select Committee on National Water Resources (1960) identified sediment 

as the major water pollutant by volume and weight and emphasized the 

ability of suspended sediments to carry nutrients, pesticides, and 

pathogenic microorganisms. 

Suspended sediments exert considerable influence on a number of 

water quality parameters. The ability of sediment to adsorb and 

transport nutrients (Green et al. 1978, Gloss et al. 1980) and heavy 

metals (de Groot 1976, Forstner 1976, Litherathy and Laszlo 1976) has 

been well-documented. Thorton et al. (1980b) described increased fecal 

coliform concentrations associated with storm waters of high turbidity. 

High levels of sediment loading in reservoirs of ten result in losses of 
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storage capacity and increased cost of water treatment in impoundments 

used for municipal water supplies (Brown 1941, Paulet et al. 1972). 
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Biologists are particularly interested in the effects of turibidity 

on the biota of aquatic ecosystems. High concentrations of suspended 

material radically alter the degree of light penetration and may produce 

marked effects on primary productivity (Jewson and Wood 1975, 

Schwartzkopf and Hergenrader 1978, Gloss et al. 1980). These turbidity

induced reductions in primary productivity may be reflected throughout 

entire food chains in many aquatic systems. Turbidity also affects the 

survival, reproduction, and behavior of sport fishes (Wallen 1951, 

Hemistra et al. 1969) and influences aquatic predator-prey interactions 

(Vinyard and O'Brien 1976, Confer et al. 1978). 

While the effects of high turbidity levels on various aspects of 

reservoir ecology are generating an increasing amount of research 

interest, few studies have attempted to assess quantitatively the actual 

causes of turbidity in these systems. An increased knowledge of the 

factors governing inorganic turbidity in impoundments would undoubtedly 

be of value in the construction of new reservoirs and in the management 

and possible restoration of reservoirs with existing turbidity problems. 

Lake Carl Blackwell 

Lake Carl Blackwell (LCB), located approximately 14 km west of 

Stillwater in Payne County, Oklahoma, was constructed in 1938 as part of 

a Federal Government Land Utilization Project. The reservoir has high 

turbidity which may be responsible for its reduced recreational usage 

(Howick et al. 1982). Fluctuating water levels, unprotected shorelines, 

runoff from the watershed, and direct exposure to wind all contribute to 
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the turbidity problem of this impoundment. 

Because of this turbidity problem, the Environmental Protection 

Agency funded a one-year diagnostic study of LCB under the Clean Lakes 

Program established by Section 314 of the Clean Waters Act. A major 

emphasis of the study concerned the collection of baseline limnological 

data to define the current physical, chemical, and biological conditions 

of the impoundment. 

Turbidity values obtained during the study exceeded the state water 

quality limit for turbidity (25 NTU) except from October 1980 to March 

1981. Turbidity levels were lowest at LCB during fall and winter, but 

increased drastically during spring and summer (Howick et al. 1982). 

High turbidity levels during spring and summer are particularly 

undesirable because recreational usage is highest during these seasons. 

A multiple regression model was developed during the Clean Lakes 

Study to predict turbidity of LCB surface waters at various stations and 

times (Howick et al. 1982). Data for the model were processed by the 

Statistical Analysis System using a stepwise regression program. The 

model uses water depth, wind speed, precipitation, exposure, sediment 

particle size, and exposure:depth ratio as possible independent 

variables, and turbidity as the dependent variable. At best the model 

is able to explain 42% of the variance in turbidity. However, the model 

is based on limited data and requires further development. 

Purpose of the Study 

Because inorganic turbidity is a major problem at Lake Carl 

Blackwell and other reservoirs, the factors governing turbidity in this 

reservoir definitely merit further investigation. The present study was 



conducted with the following objectives: 

1. To document temporal and spatial variations in turbidity in 

Lake Carl Blackwell. 

2. To define the relative effects of water depth, wind velocity, 

fetch, precipitation, and sediment particle size on turbidity 

in Lake Carl Blackwell. 

3. To expand and refine the existing LCB turbidity model. 

4 

4. To form a basis for predicting the usefulness and effectiveness 

of various lake restoration techniques in reducing turbidity in 

reservoirs. 



CHAPTER II 

LITERATURE REVIEW 

Introduction 

Information regarding sources of turbidity in reservoirs is 

essential for establishing effective reservoir construction, management, 

and restoration techniques. Equally important is an understanding of 

the effects of turbidity on physical, chemical, and biological 

parameters of reservoir limnology. While many researchers have 

described the effects of suspended sediment on various components of 

aquatic systems, relatively few studies have investigated the factors 

governing turbidity in specific impoundments. 

Sources of Turbidity 

Sediment Inputs 

Turbidity problems in many reservoirs result from the transport of 

large amounts of sediment from the watershed. Sediment may be 

transported by sheet erosion of unprotected areas of the watershed or by 

erosion of stream banks during high flow periods (Brown 1941). Kennedy 

et al. (1980) described a ten-fold increase in suspended solids 

concentration of water entering Lake Red Rock, Iowa, following a period 

of heavy rainfall. Suspended silt carried by floodwaters into 

Lindleyspoor Dam, South Africa, increased surface water turbidity from 

5 
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28 to 220 JTU (Jackson Turbidity Units) (Walmsley 1978). 

The movement and distribution of water of varying densities due to 

solids concentrations play significant roles in reservoir hydrodynamics 

(Thornton et al. 1980a). Depending upon density differences between 

reservoir and inflowing waters, a water mass may enter a reservoir as an 

overflow, interflow, or an underflow. These flow patterns may produce a 

variety of vertical turbidity profiles exemplified by those reported for 

Lindleyspoor Dam, South Africa (Walmsley 1978). In December, 1975, 

floodwaters entered Lindleyspoor Dam as an underflow, resulting in an 

increase in bottom waters turbidity from 60 to 310 JTU. No apparent 

change in the turbidity of surface waters was observed. Drastic 

increases in surface water turbidity from 28 to 220 JTU following a 

later flood in January, 1976 indicated the movement of an overflow 

across the reservoir. An interflow was recorded during October, 1976 

when a significant turbidity peak was observed between 10 and 14 m. 

Serruya (1977) reported the flow of turbidity currents along the top of 

the thermocline during summer stratification in Lake Kinneret, Israel. 

A number of density current experiments designed to model 

underflows of turbid waters in reservoirs were conducted by Lambert and 

Luthi (1977). Results of these experiments indicate that the 

displacement of overlying water moved by turbidity currents may be 

responsible for the circulation and oxygenation of some lakes. 

Deposition from turbidity currents initiated by littoral sediment 

slumping accounts for approximately 50% of the total sediment 

accumulation in the central basin of Fayetteville Green Lake, New York 

(Lundlam 1974). 

Because reservoirs typically have high drainage to surf ace area 
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ratios, watershed land use and management practices have a great impact 

on sediment loading of impoundments. Brown (1941) cited increasing 

rates of deforestation, overgrazing, cultivation of oversteep slopes, 

and improper tillage as important factors contributing to the loss of 

storage capacity due to silting in many reservoirs. The degree of plant 

cover and grazing activity by livestock were found to be significant in 

determining turbidity levels in small Oklahoma farm ponds (Epperson 

1972). 

Sedimentation rates and the composition of sediments are also 

dependent upon the geology and soil types of the watershed (Paulet et 

al. 1972). Thus, the relative erodability of soil materials is an 

important consideration. Rhoton et al. (1979) demonstrated the 

differential erosion of clay particles from the watersheds of the Maumee 

River Basin by observing that sediments transported by runoff contained 

18.4% more clay than watershed surface soils. A survey of Indiana and 

Illinois watersheds indicated that montmorillonite clays are more easily 

eroded than other clay materials (Lund et al. 1972). This is of 

particular importance since colloidal suspensions of montmorillonite 

clays have been cited as the major cause of turbidity in central 

Oklahoma reservoirs (Irwin and Stevenson 1951). 

Sediment Resuspension 

Another significant source of turbidity in many reservoirs is the 

resuspension of sediments by wind-induced water currents and wave 

action. Resuspension is of particular importance in shallow, exposed 

impoundments and may be influenced by a number of morphological, 

climatological, and hydrological factors. Hakanson (1977) cited such 



variables as wind velocity, duration and direction, fluctuating water 

levels, fetch, water circulation patterns, water depth, rate of 

sedimentation, sediment compaction, and lake bottom roughness as 

significant in determining the extent of sediment resuspension in a 

given system. 
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Several investigators have noted the effects of wind on turbidity 

in lakes and reservoirs. Chandler (1942) and Andrews (1948) reported 

increases in turbidity levels of western Lake Erie following periods of 

high winds. Changes in turbidity gradients from vertical to horizontal 

during mixing periods in Lake Hemlock, New York are partially the result 

of resuspension of sediments in shallow areas (Stewart and Martin 1982). 

Water depth and exposure to wind were cited by Epperson (1972) as 

important factors controlling turbidity in Oklahoma farm ponds. 

The resuspension of loose sediments by wave activity was cited as 

the major cause of inorganic turbidity in Lake Chautauqua, Illinois 

(Jackson and Starrett 1959). In years when vegetation was sparse and 

ice cover was absent, turbidity varied directly with wind velocity. In 

years of heavy vegetation or ice cover, wind velocity was found to have 

little or no effect on turbidity levels. Resuspension was reported as 

high in areas of water depth less than 1.5 m but insignificant in areas 

where depth exceed.ed 1.8 m. These authors also recorded highest 

turbidities during low water level stages when large expanses of 

shoreline were susceptible to erosion. Similarly, Carter (1977) 

estimated that over 62% of the annual load of sediment to Lake Erie 

resulted from shoreline erosion. 

Serruya (1976) identified resuspension as a significant process in 

Lake Kinneret, Israel, especially during turnover periods. Average 
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amounts of trypton collected in sediment traps were greater by an order 

of magnitude than trypton inputs from the Jordan River, the major 

tributary to the lake. These differences were attributed to the 

resuspension and redeposition of in situ sediments. Drastic increases 

in sedimentation rates of deeper stations were observed during turnover 

periods, but sedimentation rates in shallow stations remained fairly 

constant throughout the year. Differences in the N:P ratios of Jordan 

River materials and in situ sediments were also used to determine the 

source of fluctuating suspended solids concentrations. The average rate 

of resuspension for Lake Kinneret of 897 g m-2 yr-1 was determined to be 

equivalent to the resuspension of the upper 2.9 mm of sediment. 

Measurements of the redeposition of pollen grains were used by 

Davis (1968, 1973) to estimate rates of resuspension in a dimictic 

Michigan lake. Data obtained from core samples were used to calculate 

an average annual pollen deposition rate, and significantly higher 

pollen collection rates in sediment traps were attributed to the 

resuspension of pollen-containing sediment. The ratio of pollen 

deposition:input was estimated at approximately 4:1. Periods of the 

highest deposition in this lake were closely correlated with seasons of 

water mixing, and thermal stratification was identified as a major 

barrier to resuspension. Deposition values of 5 to 6 grains cm-2 day-1 

during summer stratification increased to as high as 1,000 grains cm-2 

day-1 during turnover. Extensive redeposition was observed in littoral 

areas, even during stratification periods. 

Sediment resuspension and resulting increases in turbidity may also 

be caused by the rooting activity of fish or other organisms. Cahoon 

(1953) reported that the removal of carp (Cyprinus carpio) and various 
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catfish species over a 5-year period from Lake Mattamuskeet, North 

Carolina, resulted in a gradual increase in transparency from 15 cm to 

92 cm. Thompson and Bennett (1939) found that several Illinois lakes 

cleared after the removal of carp and other bottom-feeding species. 

Roiling by livestock and feeding waterfowl was reported as a significant 

cause of turbidity in several Oklahoma farm ponds (Epperson 1972). 

Turbidity Effects 

Water Temperature 

The effects of turbidity on the temperatures of surface waters of 

reservoirs was investigated by Schiebe et al. (1975). Surface water 

temperatures were monitored in two adjacent impoundments with widely 

contrasting turbidity levels. On all sampling dates, water temperatures 

were lowest in the reservoir with the greatest turbidity. The loss of 

heat caused by the backscattering of solar radiation by suspended 

particles in the turbid reservior was believed to be responsible for 

these differences. 

Loss of Storage Capacity 

The loss of storage capacity caused by the transport and deposition 

of sediments is also a problem in reservoirs. Erosion and sediment 

delivery rates, trap efficiencies of the reservoir, and sediment bulk 

densities all determine the rate of storage capacity loss in reservoirs 

(Paulet et al. 1972). According to the United States Department of 

Agriculture (1973), of reservoirs built in the Great Plains states prior 

to 1935, 33% have lost 25 to 50% of their original capacity, 14% have 

lost 50 to 75%, and approximately 10% have lost all usable storage 
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capacity as a result of sediment deposition. Annual sedimentation rates 

reported for many of these reservoirs were extremely high. Kennedy et 

al. (1980) reported sedimentation rates as high as 27.1 cm yr-1 for Lake 

Red Rock, Iowa. 

Sedimentation rates in reservoirs are largely influenced by the 

efficiency of the reservoir in retaining sediment inputs. Rausch and 

Schreiber (1979) cite the ratio of reservoir volume to annual inflow 

(volume/year) as the most important factor in determining reservoir trap 

efficiency. Sediment trap efficiencies of 87% and 93% were reported for 

Callahan Reservoir (Rausch and Schreiber 1979) and Lake Red Rock 

(Kennedy et al. 1980), respectively. 

Nutrients 

In addition to creating unaesthetic conditions, suspended sediments 

exert considerable influence on many chemical water quality parameters. 

The ability of sediments to adsorb and transport nutrients, especially 

phosphorus, may lead to undesirably high levels of productivity. While 

soluble P is considered more available to aquatic producers, P 

associated with suspended sediments may influence the soluble phase 

through adsorption-desorption dynamics (Li et al. 1972). 

A number of studies have illustrated suspended sediment-phosphorus 

relationships. Rausch and Schreiber (1979) reported that of the P 

entering or leaving Callahan Reservoir in central Missouri, 96% and 90% 

respectively, was associated with suspended sediments. The accumulation 

of P in the bottom sediments of this impoundment was reported as nearly 

proportional to the sediment accumulation rate (Schreiber and Rausch 

1979). Increases in both orthophosphorus and total phosphorus were 



closely correlated with turbidity increases associated with mixing by 

motorboats in shallow lakes of central Florida (Yousef 1979). 

12 

The highest P adsorption potentials are generally associated with 

clay-sized particles (Reddy 1976, Green 1978) and are dependent upon the 

chemical constituents of these particles. In a study of Wisconsin lake 

sediments, Shukula (1971) reported that noncalcareous sediments adsorbed 

more added P than calcareous sediments. Oxalate-extractable iron was 

identified as the most important factor contributing to P adsorption of 

both sediment types. Green et al. (1978) reported a positive 

correlation between P adsorption capacity and calcite content of 

sediments, but indicated that P adsorbed by calcite is easily desorbed. 

Heavy Metals 

Suspended sediments may also influence heavy metal dynamics in 

aquatic systems. In many systems, the transportation and distribution 

of metals is largely dependent upon the hydrodynamic activity of the 

associated suspended matter (de Groot 1976). Highest metal 

concentrations are generally associated with fine-grain materials such 

as clay particles (Forstner 1976). de Groot (1976) found that elements 

such as chromium, lead, and copper are easily bound by sediments, while 

metals such as zinc and nickel occur most frequently in the dissolved 

phase. The amount of a trace metal carried by suspended materials is 

largely dependent upon the chemical form of the specific element (Reddy 

1976). 



13 

Primary Productivity 

Biologists are particularly concerned with the effects of turbidity 

on the biota of aquatic ecosystems. Suspended sediments alter the 

degree of light penetration in aquatic systems and frequently produce 

significant effects on primary productivity. The growth of 

phytoplankton populations may be regulated by light-limiting effects of 

turbidity on primary productivity, even in systems with high nutrient 

concentrations (Murphy 1962, Hergenrader and Hammer 1973). Schwartzkopf 

and Hergenrader (1978) reported significant decreases in phytoplankton 

growth in a Nebraska reservoir during periods of sediment resuspension 

and also described significant increases in chlorophyll ~ levels 

following the settling of suspended materials. 

Several studies have focused on the effects of turbidity on 

plankton production in farm ponds. Buck (1956) reported that the 

average volume of net plankton in surface waters of clear ponds (less 

than 25 ppm turbidity) during the 1954 growing season was eight times 

greater than in highly turbid ponds (greater than 100 ppm). Claffey 

(1955) reported decreased levels of plankton productivity in turbid 

ponds and Butler (1964) cited turbidity as the cause of decreased 

primary production in farm ponds and laboratory microecosystems. 

Rates of photosynthesis in phytoplankton may also be affected by 

the circulation of algal cells through turbidity-influenced gradients of 

light intensity and spectral range (Jewson and Wood 1975). Jewson and 

Taylor (1978) reported that the circulation of algae through light-dark 

gradients may result in decreased rates of net photosynthesis and the 

establishment of depth gradients of dark respiration. These authors 
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identified the ratio of light to dark regions in the water column as an 

important consideration in estimating net photosynthesis in turbid 

systems. 

The lower limit of the euphotic zone in aquatic systems is 

generally defined as the depth at which 1% of the surface irradiance 

occurs (Talling 1971). Grobbelaar and Stegman (1976), however, found 

this measurement to be of little value in turbid impoundments. These 

authors reported algal 14c assimilation at depths as great as 530% 

deeper than the 1% light intensity depth in Hendrik Verwoerd Dam, South 

Africa. Unusual patterns of wavelength transmission were also observed 

in this reservoir. While blue light is generally transmitted deepest in 

relatively clear-water lakes (Wetzel 1975), blue light was rapidly 

attenuated and red light transmitted most in the turbid waters of 

Hendrik Verwoerd Dam. Similar results were reported by Walmsley et al. 

(1980) for another turbid South African reservoir. These observations 

are of particular importance due to the selective absorption of red 

light by chlorophyll molecules. 

Invertebrates 

Inorganic turbidity may also have detrimental effects on 

zooplankton populations. McCabe and O'Brien (1982) reported that even 

low levels of turbidity resulted in significant decreases in both 

filtering and assimilation rates of Daphnia pulex at low to medium algal 

concentrations. These effects were reportedly the result of dense 

packing of silt particles in the guts of test animals. This study also 

indicated that zooplankton population growth may be severely diminished 

by suspended silts and clays. Rainwater (1969) reported a similar 
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decrease in the number of species, number of individuals, and total 

biomass content of benthic macroinvertebrate assemblages in turbid farm 

ponds as compared to clear ones. 

Predator-Prey Dynamics 

Alterations in aquatic predator-prey interactions may also be the 

result of high levels of inorganic turbidity. Moore and Moore (1976) 

reported that turbidity reduced the ability of European flounders 

(Platichthys fleses) to see prey and increased the time spent in 

capturing pursued prey. Increased turbidity may also reduce the 

reaction distances of several fish species to zooplankton prey (Vinyard 

and O'Brien 1976, Confer et al. 1977). Wright (1981) reported a 60% 

reduction in reaction distance of white crappie (Pomoxis annularis) to 

Daphnia magna at turbidity levels of 33 NTU. 

Gardner (1981) cited turbidity as the cause of reduced feeding 

rates of bluegills (Lepomis.macrochirus) preying on two size classes of 

Daphnia pulex. Feeding rate declined from approximately 14 prey per 

minute in clear water to 7 per minute in turbid water (190 NTU). The 

role of turbidity in influencing the ability of planktivorous fish to 

locate prey was reported as the reason for differing sizes of 

zooplankton found in two Kansas reservoirs (McCabe and O'Brien 1982). 

Turbidity may also alter taxon selectivity by planktivorous fish making 

slowly-moving and reacting prey types more susceptible to predation 

(Gardner 1981). 



16 

Fish Productivity 

While naturally-occurring turbidity levels seldom result in direct 

lethal effects on fishes (Wallen 1951), other detrimental effects on 

fish populations have been reported. Hemistra et al. (1969) described 

altered behavior patterns and reduced ~ctivity levels of green sunfish 

(Lepomis cyanellus) in moderately turbid waters. Summerfelt and Shirley 

(1978) reported significant positive correlations between turbidity 

levels and year class strength of largemouth bass (Micropterus 

salmoides) in Lake Carl Blackwell, but attributed these observations to 

associated rises in water level rather than to turbidity. 

The effects of turbidity in farm ponds on several species of 

popular sportfish were studied by Buck (1956). Ponds were classified as 

clear (< 25 ppm turbidity), intermediate (25 to 100 ppm), and muddy 

() 100 ppm). At the end of two growing seasons, average total weight of 

fish in clear ponds was approximately 1.7 times greater than in 

intermediate ponds and approximately 5.5 times greater than in muddy 

ponds. These differences were attributed to faster growth and greater 

reproduction in clear ponds. At the end of the first growing season, 

largemouth bass had increased their average individual weights 6.4 times 

in clear ponds, 4.0 times in intermediate ponds, and 1.3 times in muddy 

ponds. Reproductive success was also reduced by turbidity. 

Young-of-the-year bass were found in seven of 12 intermediate ponds, 

four of 12 intermediate ponds, and none of nine muddy ponds. The same 

study indicated that high turbidity may drastically reduce angler 

fishing success rates in Oklahoma reservoirs. 



17 

Turbidity Models 

Several investigators have reported on attempts to develop 

mathematical models aimed at predicting the dynamic processes of 

sediment resuspension, transportation, and deposition in aquatic systems 

under a given set of meteorological, morphological, and hydrological 

conditions. Many of these studies we re reviewed by Norman ( 1964). 

Eagleson and Dean (1959) provided theoretical expressions for motion and 

velocity of spherical sediment particles under oscillatory waves, and 

Hakanson (1977) used water content of sediments as a physical parameter 

to construct diagrams aimed at identifying areas of sediment erosion, 

transportation, and accumulation in Lake Vanern, Sweden. 

While many of these theoretical models have proven empirically 

sound for coarse-grained beach materials, sediments composed primarily 

of fine silts and clays have a different resistance to resuspension than 

larger grain sizes (Norrman 1964). Therefore, models developed for the 

erosion and transportation of large grain sizes are not applicable to 

the fine silt and clay sediments characteristic of reservoirs of the 

Great Plains. The only study found relating the resuspension and 

dispersion of fine-grained sediments is that of Sheng and Lick (1979) 

conducted in western Lake Erie. 

Turbidity as a Water Quality Parameter 

The use of turbidity as a water quality parameter has been 

criticized by Austin (1974) because of the failure of this measurement 

to account for the absorption of light in a water medium. Walmsley et 

al. (1980), however, claim that turbidity measurements are of particular 
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value in waters where the attenuation of light is largely a function of 

scattering by inorganic suspended materials rather than absorption by 

other components. 



CHAPTER III 

THE STUDY AREA 

·Lake Carl Blackwell is located in northcentral Oklahoma, 14 km west 

of Stillwater in Township 19N, Range lE to lW in Payne County. The 

reservoir, formed by the impounding of Stillwater Creek, was completed 

in 1938. The original spillway elevation for LCB was 288.37 m msl, but 

was lowered to 287.78 m msl in 1948 because of structural problems with 

the dam. The reservoir is owned and operated by Oklahoma State 

University and serves as a site for recreational activities such as 

boating, waterskiing, fishing, camping, and picknicking; provides for 

flood control; and serves as a source of drinking water for Stillwater 

and several surrounding municipalities (Howick et al. 1982). LCB is 

located in a highly-populated region of the state with 850,000 people, 

29% of Oklahoma's present population, living within an 80 km radius of 

the reservior (Howick et al. 1982). Morphometric characteristics of LCB 

are shown in Table 1. 

LCB's watershed is located in northwestern Payne and southcentral 

Noble Counties of Oklahoma. The fine-grained sandstones and mudstone 

conglomerates of the Wellinston formation dominate the geology of the 

watershed. These materials impart a reddish-brown color to the soils of 

the region and are ultimately responsible for the red color of LCB water 

(Howick et al. 1982). The watershed of LCB is completely rural and 

generally covered by grasslands and upland forests. As of 30 July 1980, 

19 



Table 1. Morphometric characteristics of 
Lake Carl Blackwell at spillway elevation 
(287.78 m rnsl).a 

Surface area 1250 ha 

Volume 6.16 x 103 

Average depth 4.93 m 

Maximum depth 15 m 

Shoreline lengthb 88.5 km 

Shoreline developmentb 6.8 

Maximum length 8.28 km 

Drainage area 193 km2 

aFrom Howick et al. (1982). 

bFrom Gomez and Grinstead (1973). 

20 

ha m 
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the watershed consisted of 62.2% grasslands, 10.0% upland forests, 11.1% 

transitional zone between grasslands and forests, 9.1% bottomland 

forests, 4. 7% cropland (dominated by Wheat~ milo, alfalfa, and 

soybeans), and 2.4% wet soil (Howick et al. 1982). 
'; 



CHAPTER IV 

MATERIALS AND METHODS 

Introduction 

A longitudinal and transverse series of sampling stations were 

established in Lake Carl Blackwell.to facilitate sampling a variety of 

depths and locations within the reservoir (Figure 1). Stations 2E and 

3E were added on 23 July 1982 as additional shallow water stations 

following lake level rises in summer. Sampling began on 12 February 

1982 when samples were collected under ice cover at Station lA and 

continued through 24 January 1983. On several occasions, sampling trips 

were discontinued before completion due to dangers associated with high 

winds and waves. Overall, the study incorporated 54 sampling dates, 

many of which were concentrated around periods of significant rainfall 

or high wind velocities. 

Turbidity 

Water samples for turbidity analysis were collected from 5-10 cm 

below the surface at each station and analyzed in the field on a Hach 

Model 16800 nephelometer. Turbidity readings were recorded in 

nephelometric turbidity units (NTU). Initially, replicate samples were 

collected at each station, but consistently identical values of 

replicates proved this practice unnecessary. When turbidity values 

exceeded the nephelometer scale (100 NTU), samples were diluted with 
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Figure 1. Lake Carl Blackwell sampling stations. 
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distilled water, read, and the results multiplied by the appropriate 

dilution factor. The nephelometer was standardized with a commercial 

turbidity standard (Amco Standards International, Inc.) prior to each 

sampling trip. 

Secchi Disc 
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Secchi disc transparencies were measured at each station as 

described by Lind (1979). In accordance with this procedure, 

measurements were generally made between 0900 and 1400 h CST. Due to 

the somewhat subjective nature of Secchi disc measurements, these values 

were obtained by the same observer throughout the study. High winds and 

waves frequently made accurate Secchi disc measurements difficult to 

obtain. 

Depth 

Because water depth was an important parameter to this study, an 

estimate of the average depth in the vicinity of each station was more 

desirable than a single depth measurement at the immediate station. 

Both transverse (shore-to-shore) and longtitudinal (perpendicular to 

transverse) SONAR transects were recorded through each station with a 

Lowrance Model LRG-1501B chart-recording depth finder. Longitudinal 

transects were run to shore or for a maximum distance of 100 m either 

side of the station. Average depth for each transect was calculated by 

dividing the cross-sectional area of the transect (as determined by 

polar planimetry) by the transect length. These values for each of the 

two transects were then averaged to obtain a final measure of average 

depth (m) for each station. Average depth values were corrected for 



significant changes in lake level during the study period. 

Wind Data 

Wind velocity measurements were obtained for each day during the 

study period from the Agricultural Experiment Station, Oklahoma State 

University. These measurements were recorded as miles of wind (the 

number of miles of wind which pass a given point in a 24 h period), 

which, when converted to km and divided by 24, yielded an average wind 

velocity for the day (km hr-1). Wind direction data for Payne County, 

Oklahoma were obtained from records of the National Climatic Center, 

Asheville, North Carolina. When wind directions varied during a day, 

the dominant wind direction for that day was used. 

Effective Fetch 
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Fetch is the distance along open water over which wind blows and, 

along with wind velocity and duration, is an important factor 

controlling wave height. Although fetch is generally measured as the 

straight line distance in the direction of the wind from shore or island 

to a specific point on a body of water, the Beach Erosion Board (1962) 

developed a measure of "effective fetch" which has proven more accurate 

than straight line distances in estimating wave height. The method 

accounts for small deviations in wind direction from a main direction 

and is based on the concept that the width of a fetch places a 

restriction on the length of the effective fetch. Thus, the less the 

width:length ratio, the smaller the effective fetch. 

Effective fetch is calculated by constructing 15 radials on a map 

of the reservoir from the sampling station at intervals of 6° out to 
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an angle of 45° on either side of the wind direction. These radials are 

extended until they intersect the shore. The length (km) of each radial 

is multiplied by the cosine of the angle between the respective radial 

and the wind direction. The resulting values for each radial are then 

summed and divided by the sum of the cosine of all individual angles 

(Beach Erosion Board 1962, Hakanson 1981). 

Effective fetch distances (km) corresponding to eight different 

wind directions were calculated for each LCB sampling station. 

Rainfall and Lake Level 

Rainfall measurements (cm) and lake level readings were obtained 

from the U.S. Department of Agriculture Hydraulics Laboratory located 

adjacent to the north end of the LCB dam. 

Sediment Particle Size 

Sediment samples were collected with an Eckman dredge on 

21 September 1982 for particle size analysis. Samples were returned to 

the lab and analyzed by means of the hydrometer method described by ASTM 

(1955). 

Statistical Methods 

Data were analyzed using Statistical Analysis Systems, Inc. (SAS) 

computer programs (SAS Institute, Inc. 1976). Individual analyses of 

variance (ANOVA) were performed for most parameters under the General 

Linear Models procedure. Sources of variation included date and 

station. When the ANOVA indicated a significant difference at the 95% 

confidence level, Duncan's multiple range test was used to examine 
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variation within a source. The maximum R2 improvement technique of the 

Stepwise Regression procedure was used to construct all multiple 

regression models. A minimum significance level of 0.05 was used for 

all statistical tests throughout this study. 



CHAPTER V 

RESULTS OF THE STUDY 

Turbidity and Secchi Disc 

Turbidity varied spatially in Lake Carl Blackwell during the study. 

Turbidity values ranged from 16 NTU at Station lA during mid-February to 

1140 NTU at Station 5 on. 13 May 1982 (Table 2). Over the entire 

sampling period, variation within stations generally increased with 

decreasing water depth. The greatest range in turbidity was observed at 

Station 5 and levels for this station were significantly higher than 

those of all other stations. 

Seasonal variation in turbidity was also observed (Figure 2). 

Values increased through spring, increased drastically following heavy 

mid-May rains, and decreased through late summer, fall, and winter. 

Variation among stations was high in spring and early summer, extremely 

high during May, and low during fall and winter. 

Dramatic increases occurred in turbidity following heavy rains in 

Hay (Figure 3). An increase of 1010 NTU was observed between 11 and 13 

May at Station 5, and turbidity decreased along the central pool from 

west to east within the reservoir. Turbidity levels at Station lA 

increased only 12 NTU during the same 2 day period. Similar patterns of 

decreasing change in turbidity from the ends of the arms to the central 

pool were observed. 
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Table 2. Means and ranges of depth, turbidity, and Secchi disc measured at Lake Carl 
Blackwell from 12 February 1982 to 24 January 1983. 

Number of DeEth (m) Turbidity (NTU) Secchi Disc (cm) 
Station Samples Mean Range Mean Range SD Mean Range SD 

lA 54 ll .O 9. 9-11. 7 46.0 16-138 29.2 47.1 12-85 17.3 

lB 51 6.8 5.6- 7.5 46.7 19-138 28.4 46.7 15-85 17.6 

lC 53 5.0 4.0- 5.6 47.4 20-138 29.1 44.7 14-84 16.6 

lD 51 3.9 3.1- 4.5 50.4 19-136 30.1 42.3 16-87 17.0 

2A 51 7.5 5.9- 8.4 49.3 19-138 30.6 45.0 15-83 16.4 

2B 51 5.3 4.1- 6.1 49.6 19-138 30.0 44.7 15-85 16.6 

2C 50 4.3 3.3- 4.9 52.8 20-150 34.5 41.5 14-80 16.5 

2D 50 1.6 0.3- 2.2 62.8 22-390 60.3 38.1 5-73 16.7 

2Ea 21 0.9 o.o- 1.4 34.4 24-45 5.7 44.6 21-110 10.0 

3A 50 6.7 5.3- 7.6 60.2 20-284 47.5 37.9 ll-69 12.7 

3B 49 5.4 3.9- 6.2 64.7 21-312 52.8 35.7 7-72 12.9 

3C 49 3.5 2.5- 4.1 73.3 28-432 67.1 31.8 6-53 11. 9 

3D 49 2.2 1.1- 2.9 84.7 28-564 89.6 28.2 6-49 10.6 

3Ea 21 0.9 o.o- 1.4 51.1 30-78 13. 7 32.8 19-51 7.6 

w 
0 



Table 2. Continued. 

Number of De.eth (m) 
Station Samples Mean Range 

4A 50 3.4 2.2-4.1 

4B 49 3.8 2.5-4.7 

4C 49 3.2 1. 8-3. 9 

5 49 1.8 0.5-2.2 

aAdded to sampling scheme on 23 July 1982. 

Turbidit~ (NTU) 
:Mean Range SD 

77. 7 30-450 66.2 

79.3 30-'510 75.6 

97.7 30-720 139.5 

128.7 30-1140 226.0 

Secchi Disc (cm) 
Mean Range SD 

27.7 4-48 11.4 

29.4 9-80 13. 9 

27.9 4-49 11.4 

23.8 2-50 11.1 

w 
...... 



Figure 2. Temporal variation in mean surface 
turbidity (+ ls) and Secchi disc in Lake Carl 
Blackwell from 12 February 1982 to 24 January 
1983. 
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Figure 3. Rainfall and horizontal variation in 
turbidity in Lake Carl Blackwell from 6 to 25 May 
1982. 
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Secchi disc transparency measurements were inversely related to 

turbidity (Figure 2) and varied significantly with both date and 

station. Secchi disc measurements ranged from 2 cm at Station 5 on 

5 May I982 to IIO cm at Station 2E on 24 January I983 (Table 2). 

Morphological Parameters 

Average depths at each station during the study are given in 
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Table 2. The deepest sampling station was Station IA (II.7 m at 

spillway elevation) and the shallowest station was 3E (I.4 mat spillway 

elevation). Prior to the rise in summer lake level, Stations 2E and 3E 

were dry land and Station 5 was the shallowest station. Lake Carl 

Blackwell decreases in depth from east to west and fro\Il the central pool 

into the arms of the reservoir. The bottom is highly irregular in the 

arms and western end of LCB due to the presence of deep and winding 

channels. 

Effective fetch distances varied significantly among stations 

during the study. The largest effective fetch (2.39 km) occurs at 

Station lB when winds are from the southwest (Table 3). The shortest 

effective fetch is O.I2 km at Station ID when winds are from the east. 

A southwest wind results in the largest mean effective fetch for all 

stations (0.98 km) with the smallest mean (0.7I km) resulting from a 

north wind. Effective fetch distances for Station IB were significantly 

higher than those of all other stations. Due to the narrow nature of 

the central pool and arms of LCB, effective fetch distances are 

considerably shorter than straight-line fetch determinations. 



37 

Table 3. Effective fetches (km) for Lake Carl Blackwell. 

Wind Direction 
Station N NE E SE s SW w 

lA o. 77 0.42 0.18 0.31 0.85 1.72 2.22 1.69 

lB 0.53 0.40 0.35 0.56 1.37 2.39 1.51 0.37 

lC 0.35 0.29 0.18 0.36 1.31 1.12 0.20 0.29 

lD 0.16 0.18 0.12 0.12 . 1.03 0.73 0.17 0.13 

2A 1.24 1.07 1.45 1.33 0.82 1.73 1.88 1.21 

2B 1.01 0.56 0.61 1.92 1.87 1.33 0.60 0.90 

2C 0.68 0.27 0.40 1. 61 1.35 0.31 0.26 0.59 

2D 0.42 0.29 0.12 0.57 1.01 0.40 0.23 0.23 

2E 0.24 0.19 0.18 0.47 0.83 0.36 0.17 0.24 

3A 0.91 1.28 1.94 1.11 1.13 1.07 1. 70 . 1. 71 

3B 1.62 1.62 1.22 0.38 o. 77 0.96 0.84 1.35 

3C 0.96 1.62 0.78 0.26 0.52 0.87 0.58 0.31 

3D 0.89 1.41 0.59 0.25 0.56 0.60 0.41 0.36 

3E 0.96 1.14 0.23 0.18 0.31 0.49 0.33 0.22 

4A 0.22 0.22 1.22 1.67 0.86 1.32 1.08 0.79 

4B 0.59 0.91 1.95 1.32 0.53 0.81 1.49 1.29 

4C 0.84 1.39 2.03 1.00 0.17 0.45 1.10 1.43 

5 0.52 o. 79 2.00 1.47 0.56 0.98 0.94 0.52 

x 0.71 0.78 0.84 0.82 0.88 0.98 0.87 0.75 



Climatological Measurements 

Wind velocities and directions were highly variable during the 

study (Table 4). Winds were generally strongest during spring and 

decreased in intensity during mid and late summer. Highest daily wind 

speeds were observed on 3 April 1982 when gusts up to 96 km hr-1 
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(60 mph) were recorded. The calmest day of the study was on 7 October 

1982 when wind velocity averaged only 0.2 km hr-1. Winds were primarily 

from the north during the first 3 months of the study, but southerly 

winds prevailed during late summer and fall. 

Rainfall was unusually high in the LCB watershed during May of 1982 

(Table 4) and these rains caused significant runoff into the reservoir. 

Rainfall totaled 31. 97 cm (12. 6 in) during May and the highest daily 

rainfall was 11.56 cm (4.6 in) on 12 May 1982. Lake level increased 

1.4 min only 6 days (11 to 17 May) and the reservoir exceeded spillway 

elevation on 27 May 1982. This was a particularly rare event as Lake 

Carl Blackwell has reached spillway elevation only six times since 

impoundment in 1938 (Howick et al. 1982). 

Sediment Particle Size 

The average size of sediment particles increases in Lake Carl 

Blackwell from east to west and from the central pool into the arms 

(Table 5). Sediments near the dam are dominated by clay-sized particles 

but silt comprises the highest percentage of sediments at most sampling 

stations. These patterns of sediment size distribution are similar to 

those reported by Norton (1968) and Howick et al. (1982). 
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Table 4. Monthly wind velocity, dominant wind direction, and rainfall 
at Lake Carl Blackwell from February 1982 to January 1983. 

Wind Velocit~ (km wind day-1) Dominant Rainfall 
Month Mean Minimum Maximum Wind Direction (cm) 

February 175.2 50.4 360.0 N 3.97 

March 189.6 45.6 343.2 N 3.88 

April 194.4 52.8 408.0 N 7.14 

May 158.4 40.8 362.4 SW 31.97 

June 134.4 55.2 292 .8 SE 3.84 

July 136.8 52.8 252.0 s 0.33 

August 122.4 36.0 204.0 s 0.53 

September 168.0 81.6 384.0 s 4.24 

October 139.2 4.8 402.8 s 0.74 

November 187.2 31.2 393.6 s 4.57 

December 151.2 19.2 352.8 NW 2.67 

January 117 .6 21.6 247.2 N 1.23 



Table S. Lake Carl Blackwell sediment particle size 
analysis for samples collected on 21 September 1982. 

Percent Percent Percent Mean Size 
Station Claya Siltb Sande (Jl m) 

lA 66 34 0 1 

lB 28 38 34 26 

lC lS 19 66 9S 

1D 8 8 84 330 

2A 39 4S 16 7 

2B 14 74 12 12 

2C 18 49 33 3S 

2D 10 34 S6 S7 

2E 8 4S 47 48 

3A 22 30 48 46 

3B 18 29 S3 S6 

3C 22 74 4 14 

3D 10 48 42 42 

3E 13 S3 34 37 

4A 2S 41 34 2S 

4B 46 46 8 3 

4C 27 47 26 17 

s 23 S9 18 18 

ac1ay particle diameter less than 2 µm. 

bsnt particle diameter 2 to SO µm. 

cs and particle diameter SO to SOO µm (USDA system, 
Hausenbuiller 1972). 
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CHAPTER VI 

DISCUSSION 

Introduction 

Results of this study clearly reveal the importance of two major 

processes in the regulation of inorganic turbidity levels in Lake Carl 

Blackwell. While tremendous fluctuations in turbidity during the study 

were associated with heavy rains and sediment input, the important 

effects of wind-induced sediment resuspension were also noted. The 

relative importance of these two factors varied during the study. 

Runoff and Sediment Inputs 

Tremendous fluctuations in nephelometric turbidity during early 

summer in the present study resulted from sediment inputs from runoff 

following heavy Hay rains. Turbidity increases in reservoirs following 

periods of heavy rainfall have been well-documented (Brown 1941, 

Walmsley 1978, Kennedy et al. 1980). 

Horizontal gradients of turbidity change during runoff in LCB can 

be attributed to the settling of coarse-grain suspendeq materials prior 

to transport to deep-water stations. High percentages of coarse-grained 

materials in sediments of the western end and upper arms of Lake Carl 

Blackwell support this explanation. Sedimentation surveys conducted at 

LCB further reveal that the highest sedimentation rates have occurred in 

the arms and the western end of the impoundment (Howick et al. 1982). 

41 
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While sediment inputs from runoff resulted in tremendous turbidity 

increases during this study, inflow is probably less important in the 

regulation of LCB turbidity .on a long-term basis. Early summer rains 

during this study were nearly three times higher than normal for the 

season (Myers 1976) and historically declining water levels 

characteristic of LCB (Howick et al. 1982) indicate the rarity of such 

inflow events. 

Sediment Resuspension 

Sediment resuspension results from the vertical translation of 

energy from waves to sediments in areas of shallow water (Sheng and Lick 

1979). While a number of factors relating to geology, meteorology, and 

basin morphology determine the extent of sediment erosion in aquatic 

systems (Hakanson 1977), two important considerations relating to 

resuspension are wave height and water depth. Impoundments possessing 

extensive shallow littoral regions exposed to high winds are most 

susceptible to sediment resuspension (Jackson and Starrett 1959). 

Resuspension was cited as the primary cause of turbidity in Lake 

Carl Blackwell during the Clean Lakes Study of 1980 and 1981 (Howick et 

al. 1982). Observations of increases in turbidity associated with 

spring winds during the present study reinforce the significance of this 

process. Following the melting of ice cover in mid-February 1982, mean 

surface turbidities increased from 24.2 NTU to 57.4 NTU by the end of 

April. While some rainfall occurred during this period, no significant 

lake level increases were recorded. Thus., turbidity increases observed 

during this time can be attributed largely to resuspension. High 

variation in turbidity levels among stations during spring was the 
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result of rapid turbidity increases in shallow stations in comparison to 

those of deeper areas. Variations within stations during this period 

increased with decreasing depth indicating that shallower stations were 

the most dynamic in terms of turbidity fluctuations. 

Long-term water level fluctuations characteristic of LCB (Howick et 

al. 1982) further aggravate problems associated with resuspension. 

Decreasing water levels not only expose large areas of shallow water to 

wave effects, but also leave barren shorelines highly susceptible to 

wave-induced sediment erosion. On many sampling days, bands of high~y 

turbid water were observed along barren, wind-swept shorelines. 

Increased turbidity levels associated with resuspension during 

spring and fall turnover have been reported (Serruya 1976). Since 

thermal stratification is a weak and transitory process in Lake Carl 

Blackwell (Howick et al. 1982), turbidity increases associated with 

specific turnover events were not observed. 

Turbidity-Secchi Disc Relationship 

As expected, turbidity varied inversely with Secchi disc 

transparency. A regression of turbidity (Turb) on Secchi disc (SD) 

yielded the equation: 

Turb = 166.28 - 2.70 SD (n=790, r=-0.53). 

The correlation coefficient for this equation is lower than expected due 

to the nonlinear relationship between turbidity and Secchi disc at 

extremely high turbidity levels. Under extremely turbid conditions, 

drastic increases in nephelometric turbidity result in only minimal 

changes in Secchi disc transparency. Log-transformation of the 

turbidity data resulted in the regression formula: 
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ln Turb = 5.13 - 0.03 SD (n=790, r=-0.88). 

Further data transfonnation (log-log) yielded: 

Turb = 2368 x sn-1.09 (n=790, r=-0.96). 

Turbidity Models 

Multiple regression models relating nephelometric turbidity to 

measured climatological and morphometric parameters at Lake Carl 

Blackwell were constructed. These models not only represent an attempt 

to simplify and quantify factors controlling turbidity in LCB during the 

study, but also propose a possible basis for predicting future turbidity 

dynamics in LCB and similar impoundments. 

It seems reasonable to assume that meteorological conditions 

immediately preceeding sampling dates would be of greater importance in 

determining turbidity levels than those conditions farther removed from 

time of sampling. Values of wind velocity and effective fetch were 

therefore weighted according to a simple equation similar to one 

proposed by Ayers et al. (1958) to estimate wind-displacement of 

chlorophyll. The equation is: 

where: 

Pt = P1 + 1/2 P2 + 1/4 P3 + 1/8 P4 + 1/16 P5 

p t weighted parameter of interest for sampling day; 

P1 parameter value on day prior to sampling day; 

P2 = parameter value 2 days prior to sampling day; 

P5 = parameter value 5 days prior to sampling day. 

This equation does not suggest that an accumulated wind velocity or 

fetch exists, but only that there is an accumulated effect of these 

parameters (Small 1963). Values for wind velocity and effective fetch 

weighted according to this equation yielded better correlations with 
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turbidity than any other unweighted cummulative values tested. 

It was also desirable to develop a single variable that integrated 

all parameters influencing sediment resuspension. Resuspe,nsion is 

primarily a function of wave height and water depth. Since wave height 

is determined primarily by wind velocity and fetch length (Beach Erosion 

Board 1962), the following parameter, referred to as wind effect, was 

used as a measure of total wind effect prior to sampling dates: 

where: f 

Wind Effect = 
f x v 

Zx 
weighted effective fetch (km) 

v =mean wind velocity (km h-1) 

zx mean depth (m) 

High wind velocities and large fetches impinging upon shallow areas 

result in high values of wind effect. Low values occur at deep 

locations or when values for wind velocity and fetch are small. 

The predictive capabilities and usefulness of the wind effect 

variable are illustrated in Figure 4. High wind velocities (up to 

96 km hr-1) were recorded from 1 to 6 April 1982. Stations with the 

highest values of wind effect during this period generally exhibited the 

greatest increase in nephelometric.turbidity. Lessening turbidity 

increases were observed at stations with decreasing values for wind 

effect. 

Various parameters associated with rainfall were also examined for 

inclusion in the turbidity models. Cummulative values of rainfall for 1 

to 5 days preceeding sampling were correlated with turbidity. A measure 

of rainfall weighted according to the previously-mentioned equation was 

also examined. Rainfall accumulations for 2 days prior to sampling were 

most closely correlated with turbidity levels and were therefore used as 



Figure 4. The influence of wind effect (see 
text) on changes in turbidity levels of Lake Carl 
Blackwell sampling stations from 1 to 6 April 
1982. 



:> 
1-
z 
.<J 

30· 

20· 

1 o· 

] r 
~I ITT t~~ 

.. -.-. 
. . ... . . ... . . r 

t.. . . . . . . . R 
.. ·1 1:·:·: . . . mJ ,·: . 

:-:-:I .. r . . . . . . 
•I I• • • • ' ' • . . . . . .. . .. 

·;·.1 1.·.·.t 1.:-:- . 

. . . ... . . . . 
' .. 

. . . . . . :::::j p·. . . . . ..... , :.;.; :-:-: . . . . . . . . . . . . . .... 
. . : : : . . . . . . . . . . . . ·.· . . . ' 

.. . . . . . . . . . . . . . . . - - . . . . . . 
20 4C 48 4A 3 3A 3 28 2 2A 3C 1A 18 1C 10 

DECREASING WIND EFFECT c::> +::> 
-....J 



48 

the .rainfll parameter in the models. 

The maximum R2 improvement technique of the SAS Stepwise procedure 

(SAS Institute Inc. 1976) was used to construct the turbidity models. 

Turbidity served as the dependent variable in these models and 

independent variables included average depth, weighted wind velocity, 

weighted effective fetch, weighted wind:depth ratio, weighted 

fetch:depth ratio, wind effect, and cummulative rainfall 2 days prior to 

sampling. Sediment particle size could not be used in the models due to 

autocorrelations with depth (Table S). 

Two separate multiple regression turbidity models were developed 

for this study. The first is based upon all data collected during the 

entire sampling period. The best obtainable model for this period is a 

two variable model: 

Turb = 40.6 + 23.43 CR2 + 1.30 WE (n=716, R=0.61) 

where: Turb = nephelometric turbidity (NTU); 

CR2 cummulative rain (cm) 2 days prior to sampling; 

WE = wind effect. 

Cummulative rain alone explains 35% of the variance in turbidity in 

this model. The addition of wind effect increases the amount of 

variance explained to 37%. The tremendous variation in turbidity 

resulting from excessively heavy rains during a significant portion of 

the study period is reflected in the importance this model places on 

rainfall. This equation does emphasize the significance of runoff and 

sediment input during the sampling period, but is probably limited in 

its predictive capabilities to infrequent periods of heavy rains and 

significant lake level rises. 

A much more useful and practical turbidity model was constructed 
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using data collected prior to heavy rains during the study. This model 

uses data collected through April 1982 and emphasizes the effects of 

wind without the confounding influence of excessive runoff. The best 

obtainable model for this perio-d is the three variable model: 

Turb = 46.93 + 0.63 WE+ 7.21 CR2 - 2.21 Zx (n=l58, R=0.69) 

where: Turb nephelometric turbidity (NTU); 

WE = wind effect; 

CR2 cummulative rain (cm) 2 days prior to sampling; 

zx average depth (m). 

Average depth accounts for 33% of the variance in turbidity in this 

model while CR2 and WE increase the amount of variance explained to 41% 

and 48% respectively. This equation predicts turbidity under the more 

common conditions of average winds and moderate rainfall and is 

therefore the more useful of the two. 

Factors Not Addressed by the Study 

In addition to those parameters investigated by this study, several 

other factors are of obvious importance in regulating turbidity levels 

in LCB and other reservoirs. While quantification of these parameters 

proved too complex for the present study, these processes are of 

considerable importance and do merit mention. 

The transport of suspended sediments by wind-induced water currents 

is a significant process in reservoirs. While sediment transport 

associated with inflow events has been measured (Lambert and Luthi 1977, 

Serruya 1977, Walmsley 1978), sediment transport by wind-influenced 

water movements has received little study. The complex nature of water 

movements in reservoirs makes sediment transport by these processes 



extremely difficult to measure. Turbidity increases at deep water 

stations observed during the present study were undoubtedly the result 

of sediment transport from shallow stations, rather than the 

resuspension of underlying sediments. 
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Settling velocities associated with varying sediment particle sizes 

and degrees of turbulence are also important, yet difficult to measure. 

Ever-changing patterns of turbulence in natural systems make laboratory

derived settling equations questionable for field application. The 

importance of settling velocities of suspended material varies with 

existing turbidity levels and watershed geology. While drastic 

decreases in turbidity due to settling were observed at high NTU levels 

during the study, settling velocities associated with colloidal clay 

suspensions characteristic of Great Plains impoundments (Leonard 1950, 

Irwin and Stevenson 1951) may be of lesser importance. Further research 

in the areas of sediment transport and deposition would greatly increase 

our currently-sparse knowledge of reservoir limnology. 



CHAPTER VII 

SUMMARY 

1. Turbidity (NTU) and Secchi disc measurements were collected at 

Lake Carl Blackwell, Oklahoma on 54 sampling dates from 12 February 1982 

to 24 January 1983. Meteorological conditions were also recorded for 

this period. 

2. Turbidity values ranged from 16 to 1140 NTU and Secchi disc 

transparency measurements ranged from 2 to 110 cm. Both measurements 

varied significantly with date and station. 

3. Turbidity values were generally highest at shallow water 

sampling stations in the western end and upper arms of LCB and decreased 

with increasing depth within the reservoir. 

4. Increases in turbidity levels during the spring of 1982 were 

attributed to sediment resuspension and drastic turbidity increases were 

observed following heavy early summer rains. 

5. Two multiple regression turbidity models were developed to 

predict nephelometric turbidity levels for a given set of climatological 

and morphometric parameters. One model was based on data for the entire 

sampling period and is useful in predicting turbidity under high inflow 

conditions. A second model used data collected prior to periods of 

heavy rains and is useful in predicting turbidity under more common 

conditions of moderate winds and rain. 

51 



LITERATURE CITED 

AMERICAN SOCIETY FOR TESTING AND MATERIALS. 1955. Tentative methods 
for grain-size analysis of soils. 1954 Supplement to ASTI1 
Standards, Part 5, pp. 337-347. 

ANDREWS, T. F. 1948. Temporary changes in certain limnological 
conditions in western Lake Erie produced by a windstorm. Ecology 
29:501-505. 

AYERS, J. C., D. C. CHANDLER, G. F. LAUFF, C. F. POWERS, AND E. B. 
HENSON. 1958. Currents and water masses of Lake Michigan. Great 
Lakes Res. Inst. Puhl. 3:161. 

BEACH EROSION BOARD. 1962. Waves in inland reservoirs. Technical 
Memoir 132, Beach Erosion Corps of Engineers, Washington, D. C. 

BROWN, C. B. 1941. Factors in control of reservoir silting. J. Amer. 
Water Works Assoc. 33:1022-1040. 

BUCK, D. H. 1956. Effects of turbidity on fish and fishing. Trans. 
North Amer. Wildl. Conf. 21:249-261. 

BUTLER, J. L. 1964. Interaction of effects by environmental factors on 
primary productivity in ponds and microecosystems. Ph.D. Diss., 
Okla. State Univ., Stillwater. 88 pp. 

CAHOON, W. G. 1953. 
North Carolina. 

Commercial carp removal at Lake Mattamuskeet, 
J. Wildl. Manage. 17:312-317. 

CARTER, C. H. 1977. Sediment-load measurements along the United State 
shore of Lake Erie. Rep. 102, Ohio Dep. of Natural Res., Columbus, 
Ohio. 

CHANDLER, D. C. 1942. Limnological studies of western Lake Erie, II. 
Light penetration and its relation to turbidity. Ecology 23:41-52. 

CLAFFEY, F. J. 1955. The productivity of Oklahoma waters with special 
reference to relationships between turbidities from soil, light 
penetration, and the populations of plankton. Ph.D. Diss., 
Okla. State Univ., Stillwater. 102 pp. 

CONFER, J. L., G. L. HOWICK, M. H. CORZETTE, S. L. KRAMER, S. 
FITZGIBBON, and R. LANDESBERG. 1977. Visual predation by 
planktivores. Oikos 31:27-37. 

52 



DAVIS, H. B. 1968. Polleµ grains in lake sediments: redeposition 
caused by seasonal water circulation. Science 162:796-799. 

1973. Redeposition of pollen grains in lake sediment. 
Limnol. Oceanogr. 8:44-52. 

DE GROOT, A. J. 1976. Heavy metels in the Dutch Delta, p. 104-107. 
In: H. L. Golterman (ed.), Interactions between sediments and 
fresh water. Dr. W. Junk. 

EAGLESON, P. S. and R. G. DEAN. 1959. Wave-induced motion of bottom 
sediment particles. Proc. Amer. Soc. Civil Eng. J. Hydraul. Div. 
85: 53-79. 

EPPERSON, w. E. 1972. Ecological factors affecting turbidity and 
productivity of prairie ponds. Ph.D. Diss., Okla. State Univ., 
Stillwater. 76 PP• 

FORSTNER, U. 1976. Metal concentrations in freshwater sediments-
natural background and cultural effects, p. 94-103. In: H. L. 
Golterman (ed.), Interactions between sediments and fresh water. 
Dr. w. Junk. 

GARDNER, M. B. 1981. Effects of turbidity on feeding rates and 
selectivity of bluegills. Trans. Amer. Fish. Soc. 110:446-450. 

53 

GLOSS, S. P., L. M. MAYER, and D. E. KIDD. 1980. Advestive control of 
nutrient dynamics in the epilimnion of a large reservoir. Limnol. 
Oceanogr. 25:219-228. 

GREEN, D. B., T. J. LOGAN, and N. E. SHECK. 1978. Phosphate 
adsorption-desorption characteristics of suspended sediments in the 
Maumee River Basin of Ohio. J. Environ. Qual. 7:208-212. 

GOMEZ, R. C., and B. G. GRINSTEAD. 1973. Reservoirs of Oklahoma. 
Okla. Dep. Wildl. Cons. Bull, 129 PP• 

GROBBELAAR, J. U., and P. STEGMANN. 1976. Biological assessment of the 
euphotic zone in a turbid man-made lake. Hydrobiologia 48:263-266. 

HAKANSON, L. 1977. The influence of wind, fetch, and water depth on 
the distribution of sediments in Lake Vanern, Sweden. Can. J. 
Earth Sci. 14:397-412. 

1981. A manual of lake morphomery. Springer-Verlag, 
Berlin. 78 PP• 

HAUSENBUILLER, R. L. 1972. Soil science, principles and practices. 
W. C. Brown, Dubuque, Iowa. 504 pp. 

HEMISTRA, N. W., K. D. DAHKOT, and N. G. BENSON. 1969. Some effects of 
silt and turbidity on behavior of juvenile largemouth bass and 
green sunfish. U.S. Dep. Inter., Bur. Sports Fish Wildl. Tech. 
Pap. 20. 9 PP• 



HERGENRADER, G. L., and M. J. HAMMER. 1973. Eutrophication of small 
reservoirs in the Great Plains, p. 560-566. In: w. C. Ackerman, 
G. F. White, adn E. B. Worthington (eds.), Man-made lakes: their 
problems and environmental effects. Amer. Geophys. Union. 

HOWICK, G. L., J. L. WILHM, D. W. TOETZ, and S. L. BURKS. 1982. 
Diagnostic study of Lake Carl Blackwell. Dep. Zool., Okla. State 
Univ., Stillwater. 132 pp. 

54 

IRWIN, w. H., and J. H. STEVENSON. 1951. Physiochemical nature of clay 
turbidity with special reference to clarification and productivity 
of impounded waters. Okla. Agricul. and Meehan. Coll. Bull., Arts 
and Sciences Studies, Biological Series, Vol. 48, No. 4. 

JACKSON, H. o., and W. C. STARRETT. 
at Lake Chautauqua, Illinois. 

1959. Turbidity and sedimentation 
J. Wild. Manage. 23:157-168. 

JEWSON, D. H., and J. A. TAYLOR. 1978. The influence of turbidity on 
net phytoplankton photosynthesis in some Irish lakes. Freshwat. 
Biol. 8:573-584. 

, and R. B. WOOD. 1975. Some effects on integral -------photosynthesis of artificial circulation of phytoplankton through 
light gradients. Verh. Internat. Verein. Limnol. 19:1037-1044. 

KENNEDY, R.H., K. W. THORNTON, and J. H. CARROLL. 1980. Suspended
sediment gradients in Lake Red Rock. Proc. Symp. Surf ace-water 
Impoundments, Amer. Soc. Civil. Engineers, Minneapolis, Minn., 
June, 1980. 

LAMBERT, A. M., and S. M. LUTHI. 1977. Lake circulation induced by 
density currents: an experimental approach. Sedimentology 
24:735-741. 

LEONARD, E. M. 1950. Limnological features and successional changes 
of Lake Carl Blackwell, Oklahoma. Ph.D. Diss., Okla. State Univ., 
Stillwater. 75 PP• 

LI, W, C., D. E. ARMSTRONG, J. D. H. WILLIAMS, R. F. HARRIS, and J. K. 
SYERS. 1972. Rate and extent of inorganic phosphate exchange in 
lake sediments. Soil Sci. Soc. Am. Proc. 36:279-285. 

LIND, O. T. 1979. Handbook of common methods in limnology. C. v. 
Mosby, St. Louis. 

LITHERATHY, P., and F. LAZLO. 1976. Uptake and release of heavy metals 
in the bottom silt of recipients, p. 403-409. In: H. L. Golterman 
(ed.), Interactions between sediments and fresh water. Dr. W. 
Junk. 

LUDLAM, S. D. 1974. Fayettville Green Lake, New York, 6. The role of 
turbidity currents in lake sedimentation. Limnol. Oceanogr. 
19:656-664. 



LUND, L. J., H. KOHNKE, and H. PAULET. 1972. An interpretation of 
reservoir sedimentation II. Clay mineralogy. J. Environ. Qual. 
1:303-307. 

McCABE, G.D., and W. J. OBRIEN. 1982. The effects of suspendecl silt 
on the ecology of Daphnia pulex. Am. Mid. Natur. (in press). 

55 

MOORE, J. w., and I. A. MOORE. 1976. The basis of food selection in 
flounders, Platichthys flesus (L.) in the Severn Estuary. J. Fish 
Biol. 9: 139-156. 

MURPHY, G. I. 1962. Effect of m1x1ng depth and turbidity on the 
productivity of fresh water impoundments. Trans. Amer. Fish. Soc. 
91:69-76. 

MYERS, H. R. 1976. Climatological data of Stillwater, Oklahoma 
1893-1975. Agricultural Experiment Station Report No. P-739, Okla. 
State Univ. 

NORRMAN, J. O. 
morphology. 

1964. Lake Vattern: investigations on shore and bottom 
Geografiska Annuler 46:1-238. 

NORTON, J. L. 1968. The distribution, character, and abundance of 
sediments in a 3000-acre impoundment in Payne County, Oklahoma. 
M.S. Thesis, Okla. State Univ., Stillwater. 76 pp. 

PAULET, M., H. KOHNKE, and L. J. LUND. 1972. An interpretation of 
reservoir sedimentation: I. Effect of watershed characteristics. 
J. Environ. Qua!. 1:146-150. 

RAINWATER, F. L. 1969. Community structure of benthic macro
invertebrates as related to turbidity in farm ponds. Ph.D. Diss., 
Okla. State Univ., Stillwater. 45 pp. 

RAUSCH, D. L., and J. D. SCHREIBER. 1979. 
Sediment and nutrient trap efficiency. 
20:281-284. 

Callahan Reservoir: I. 
Trans. Amer. Soc. Agr. Eng. 

REDDY, M. M. 1976. A preliminary report: nutrients and metals 
transported by sediments within the Genesee River watershed, p. 
244-251. In: H. L. Golterman (ed.), Interactions between sediments 
and fresh water. Dr. W. Junk. 

RHOTON, F. E., N. E. SMECK, and L. P. WILDING. 1979. Preferential clay 
mineral erosion from watersheds in the Maumee River Basin. J. 
Environ. Qual. 8:547-550. 

SAS INSTITUTE, INC. 1976. a user's guide to SAS 76. SAS Institute, 
Inc., Cary, North Carolina. 

SCIUEBE, F. R., J.C. RITCHIE, and J. R. McHENRY. 1975. Influence of 
suspended sediment on the temperatures of surface waters of 
reservoirs. Verh. Internat. Verein. Limnol. 19:133-136. 



SCHREIBER, J. D., and D. L. RAUSCH. 1979. Suspended sediment-
phosphorus relationships for the inflow and outflow of a flood 
detention reservoir. J. Environ. Qual. 8:510-514. 

56 

SCHWARTZKOPF, S. H., and G. L. HERGENRADER. 1978. .A comparative 
analysis of the relationship between phytoplankton standing crops 
and environmental parameters in four eutrophic prairie reservoirs. 
Hydrobiologia 59:261~273. 

SERRUYA, C. 1977. Rates of sedimentation and resuspension in Lake 
Kinneret, P• 48-56. In: H. L. Golterman (ed.), Interactions 
between sediments and fresh water. Dr. W. Junk. 

SHENG, Y. P., and W. LICK. 1979. 
sediments in a shallow lake. 

The transport and resuspension of 
J. Geophys. Res. 84:1809-1826. 

SHUKLA, S. S., J. K. SYERS, J. D. H. WILLIAMS, D. E. ARMSTRONG, and R. 
F. HARRIS. 1971. Sorption of inorgnic phsophate by lake 
sediments. Soil Sci. Soc. Amer. Proc. 35:244-255. 

SMALL, L. F. 1963. Effect of wind on the distribution of chlorophyll ~ 
in Clear Lake, Iowa. Limnol. Oceanogr. 8:426-432. 

STEWART, K. M., and P. J. H. MARTIN. 1982. Turbidity and its causes in 
a narrow glacial lake with winter ice cover. · Limnol. Oceanogr. 27: 
510-517. 

SUMMERFELT, R. C., and K. E. SHIRLEY. 1978. Environmental correlates 
to year-class strength of largemouth bass in Lake Carl Blackwell. 
Proc. Okla. Acad. Sci. 58:54-63. 

TALLING, J. F. 1971. The underwater light climate as a controlling 
factor in the production ecology of freshwater phytoplankton. 
Mitt. Internat. Verein. Limnol. 19:214-243. 

THOMPSON, D. H., and G. W. BENNETT. 1939. Fish management in small 
artificial lakes. Trans. N. Amer. Wildl. Conf. 4:311-317. 

THORNTON, K. W., R. H. KENNEDY, J. H. CARROLL, W. W. WALKER, R. C. 
GUNKEL, and S. ASHBY. 1980a. Reservoir sedimentation and water 
quality--an heuristic model. Proc. Syrop. on Surface-water 
impoundments, Amer. Soc. Civil. Engineers, Minneapolis, Minn., 
June,·, 1980. 

-------, J. F. NIX, and J. D. BRAGG. 1980b. Coliforms and water 
quality: use of data in project design and operation. Water Res. 
Bull. 16: 86-92. 

UNITED STATES DEPARTMENT OF AGRICULTURE. 1973. Summary of reservoir 
sediment deposition surveys made in the United States through 1970. 
Miscellaneous Publication 1266, Agricultural Research Service, 
Water Resources Council. 



57 

UNITED STATES SENATE SELECT COMMITTEE ON NATIONAL WATER RESOURCES. 
1960. Pollution Abatement, Committee Print No. 9, 86th Congress,_ 
2nd Session, January, 1960. 

VERNET, J. P., F. RAPIN, and G. SCOLARI. 1976. Heavy metal content of 
lake and river sediments in Switzerland, p. 390-397. In: H. L. 
Golterman (ed.), Interactions between sediments and fresh water. 
Dr. W. Junk. 

VINYARD, G. L., and W. J. O'BRIEN. 1976. Effects of light and 
turbidity on the reactive distance of biuegill (Lepomis 
macrochirus). J. Fish. Res. Board Can. 33:2845-2849. 

WALLEN, I. E. 1951. The direct effect of turbidity on fishes. Okla. 
Agric. Mechanical Coll. Bull., Arts and Sciences Studies, 
Biological Series, Vol. 48, No. 2. 

WALMSLEY, R. D. 1978. Factors governing turbidity in a South African 
reservoir. Verh. Internat. Verein. Limnol. 20:1685-1689. 

--~~~~~~~ 

, M. BUTTY, H. VAN DER PIPEN, and D. GOBLER. 1980. 
Light penetration and the interrelationships between optical 
parameters in a turbid subtropical impoundment. Hydrobiologia 70: 
145-157. 

WETZEL, R. G. 1975. Limnology. W. B. Saunders, Philadelphia. 

WRIGHT, D. I. 1981. The planktivorous feeding behavior of white 
crappie (Pomoxis annularis): field testing a mechanistic model. 
Ph.D. Diss., Univ. Kansas• 116 pp. 

YOUSEF, Y. A., W. M. McLELLON, and H. H. ZEBUTH. 1979. Changes in 
phosphorus concentrations due to mixing by motorboats in shallow 
lakes. Water Res. 14:841-852. 



'\) 
VITA 

Stephen Lee Nolen 

Candidate for the Degree of 

Master of Science 

Thesis: FACTORS GOVERNING INORGANIC TURBIDITY IN A GREAT PLAINS 
RESERVOIR 

Major Field: Zoology 

Biographical: 

Personal Data: Born in Tulsa, Oklahoma, March 21, 1959, the son 
of Bryce L. and Donna Nolen; married to Lea Ann Parks June 14, 
1980. 

Education: Graduated from Nathan Hale High School, Tulsa, 
Oklahoma, in May, 1977; received Bachelor of Science in Arts 
and Sciences degree in Zoology (Ecology) from Oklahoma State 
University in 1981; completed requirements for the Master of 
Science degree at Oklahoma State University in Hay, 1983. 

Professional Experience: Field Technician, EPA Clean Lakes 
Program, 1981; Graduate Teaching Assistant, Department of 
Zoology, Oklahoma State University, 1981-1983. 


