
A LESS DETERMINISTIC METHJD OF

RANDOM NUMBER GENERATION

By

MARK STEPHEN MJNROE ,,
Bachelor.of Arts

St. Olaf College

Northfield, Jvtinnesota

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1983

-.~· .. ··.' - .. ---

.
· Thesis

'1933
.. ;tf 753~

c:J'' "--

) . . •·• 7

11111111 11 111 Ill II

A LESS DETERMINISTIC MEIBOD OF

RANDOM NUMBER GENERATION

Thesis Approved:

ii

·PREFACE

As the number of uses for random numbers increases, the need for

better methods of producing them increases. However, the most widely

used method today was introduced over thirty years ago. These linear

congruential generators are fast and compact, but the sequences they

produce have been under fire for years.

Attempts have been made to improve congruential sequences by

shuffling them, but while this solves some of the problems, it does

not solve all of the problems inherent in such a highly detenninistic

method. The need was thus seen for a less detenninistic approach. The

following study introduces such an approach, and compares it to accepted

generators.

I wish to express my gratitude to Dr. Joseph H. Mize for his 1deas,

encouragement, and guidance, as my major adviser. I also extend thanks

to Dr. J. P. Chandler, Dr. C. Patrick Koelling and Dr. Philip M. Wolfe

for their guidance as members of my connnittee. Thanks also to Claus

Christiansen for his help.

Special thanks to my parents, without whom I would not be here.

And to my wife for her support and assistance, and especially for putting

up with my audible thought processes.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

A Brief History of Random Number Generation
What is Randomness?

II. PSEUDO-RANDOM SEQUENCE ALGORITHMS

I II . RESEARCH OBJECTIVE

IV. PROPOSED METHOD ..

V. SO.tv1E DEFINITIONS OF RANDOMNESS

VI. SO.tv1E THEORETICAL PROPERTIES OF THE PRAUT METHOD.

The Period.
Severe Congruential Problems Produce Only Small

PRAUT Problems.
Theoretical Distribution of Sequences Generated

VII. EMPIRICAL TESTS.. . .

Frequency Test.
Serial Test on Pairs and Triples.
Minimum of Five Values.
Maximum of Five Values.
Sum of Five Values.
Gap Test.
Special Tests . .

VIII. COMPARISON OF .METHODS.

Results and Comparisons
Other Attributes of the Generators.

IX. CONCLUSIONS ...

A SELECTED BIBLIOGRAPHY

iv

Page

1

1
2

4

8

9

13

20

20

21
24

25

25
25
26
26
26
27
27

29

30
33

37

39

Chapter

APPENDICES

APPENDIX A - FORTRAN CODE FOR EMPIRICAL TESTS. .

APPENDIX B - FORTRAN CODE FOR GENERATORS TESTED.

v

Page

42

43

49

LIST OF TABLES

Table

I. Points inn-Space Achievable by Congruential
or PRAUT Methods

II. Results of Standard Statistical Tests

III. Results of Special Statistical Tests.

IV. Results of Comparison of PRAUT and Shuffling
Methods Using a Poor Seed Generator

vi

Page

. . 22

31

32

. 34

CHAPTER I

INTRODUCTION

A Brief History of Random

Nwnber Generation

Man has used methods of generating random nwnbers for centuries.

This has been mainly for recreational purposes, such as playing cards

and rolling dice. ~1ost people don't think of rolling dice for craps as

generating random nwnbers, but it is actually a very good method,

asswning that the dice are fair. We also make decisions using a simple

0-1 generator known as a coin.

~1any more serious uses have arisen for random numbers. These include

computer simulation techniques, random sampling for statistical analysis

and a nwnber of problems that are difficult or impossible to solve by

other means. One might expect those coins and dice to be in constant

motion, except that most of these applications require far too many

nwnbers to be able to use such slow methods of generation. It is out

of this need that faster methods of generation have been developed.

The first success came with machines that could generate "random

noise" which was then interpreted as digits. Kendall and Babington

Smith produced a table of 100,000 random digits in 1939 by such a

method (Knuth, 1969). The Rand Corporation published a table of one

million random digits in 1955 using a similar method.

1

While these methods may produce good random sequences, it is

difficult to attach such a machine to a computer. Also, the sequences

produced are not repeatable, which is often desirable. A solution to

these problems is to store a large list of numbers in a computer or on

tape. However one runs into problems of space required and the possi

bility of running out of numbers if the sequence is not long enough.

Because of these shortfalls, a method was needed that could produce

unlimited numbers and could repeat the same sequence, while not requir

ing an excessive amount of space on computers. Von Neumann (1951)

developed the first such generator in 1946 using a computer algorithm

known as the mid-square method. Since then many other algorithms have

been developed. These algorithms have become the main source of random

numbers, when large sequences are needed. It is on these types of

generators that the remainder of this paper shall focus. Before discus -

sing the various algorithms available, it is necessa:ry to discuss what

is meant by such terms as "random m.nnbers" and "random sequences".

What is RandolIUless?

One can place pieces of paper with the digits 0 through 9 on them

in a hat and then draw one out. Is the nurnber chosen a random number?

It would be better expressed as a number chosen at random. Thus, numbers

are not random, but can be obtained in a random manner.

What one normally speaks of as a random number generator might be

better called a random sequence generator. That is, a method of choosing

nurnbers in a random manner so as to create a sequence with random

characteristics.

What then are random characteristics of a sequence? Although

random sequences can fit various distributions, if none is mentioned it

2

is assl.Uned that the sequence fits a lllliform distribution. That is, the

probability of finding any specific digit, 0-9, in a given position of

the sequence should be about 1/10. Likewise, the probability of finding

any pair of digits in a given pair of locations should be (1/10) 2, and

so on.

3

Most pseudo-random number generators produce sequences of, hopefully,

llllifonnly distributed.real nl.Unbers on the interval (O, 1). Various fl.lllc

tions can then be used to transform this standard lllliform output to fit

a desired distribution.

Why is it called a pseudo-random nl.Unber generator? The reason is

that the methods available for generating random sequences are determinis

tic. That is, each number is a fllllction of some previous value and is

thus dependent, and cannot truly be called random. The methods available

simply produce sequences of numbers which can pass a certain nl.Unber of

statistical tests which check for specific characteristics of random

sequences. If enough tests are passed then the method is assumed to be

acceptable.

CHAPTER II

PSEUDO-RANDJM SEQUENCE ALGORI1HMS

As mentioned earlier, Von Newnann first proposed generating random-

sequences by computer algorithm in 1946. He proposed the "middle-square",

or midsquare, method. Using this method, each nwnber is produced by

squaring the current mnnber and using the middle digits of the solution

for the next value. For example, 7316 squared equals 53523856; the next

nwnber is 5238. Unfort1.Il1ately, this method was plagued with problems.

It has a very short time before it starts repeating itself (its period).

It may even turn into a very short loop, such as 5600, 3600, 9600, 1600,

5600. Or it may simply degenerate, for example 3741, 9950, 0025, 0006,

0000, Finally, it does not stand up well to empirical testing

(Forsyth, 1951; Knuth 1969; Shannon, 1975). Because of these problems,

the midsquare method is no longer used.

The linear congruential method of generating random nwnbers was

developed in 1949 by Lehmer (1951; Coveyou, 1960; Hull and Dobell,

1962, 1964; Knuth, 1969; Smith, 1971). This method, and its nwnerous

variations, are still the most widely studied and used methods. The

congruential generators calculate each nwnber from the preceding one

using the foTimlla x = (a* x 1 + c) mod m. m is generally a large n n-

power of two, such as 235 . (See Hull and Dobell (1962), or Knuth

(1969), for a discussion on choosing values for a, c, and m.) When

c = 0 the method is called multiplicative congruential; when c t 0

it it called mixed congruential.

4

There are many arguments throughout the literature on how to

maximize the period of a congruential generator, minimize serial cor

relation, and minimize many other problems (Hull and Debell, 1962;

Coveyou, 1960; Greenberger, 1961). As with the midsquare method, each

number generated with a congruential generator is completely dependent

on the previous value. The result is that there will always be serial

correlation, and other characteristics, that should not exist in a truly

random sequence.

This problem becomes very obvious when mapping values from a

sequence onto a line, square, cube, or higher dimensional space. Indi

vidual values mapped onto a line cover it unifonnly, as_ do pairs of

values mapped onto a square. However, when mapping triples onto a cube,

the space is not covered unifonnly. The points fall into planes cutting

through the cube (Marsaglia, 1968).

Attempts have been made to improve linear congruential sequences

through shuffling. MacLaren and Marsaglia introduced this concept in

1965. One congruential generator is used to fill a table with pseudo

random numbers. Another generator is used to "randomly' select values

from the table. The size of the table is not critical. Its purpose is

to store values so they may be withdrawn in a different order than they

were produced. Once a value has been withdrawn the first generator

replaces it with another (MacLaren and Marsaglia, 1965).

This method, while taking more time, does reduce many of the

problems that plague congruential generators. Shuffling breaks the

dependency between consecutive values generated. But this does not

solve all of the problems. One example is that, in congruential

sequences, each nl.IlTlber will occur only once per period. A truly random

5

sequence does not have this restriction, and shuffling the sequence does

not solve the problem.

Even though shuffling of congruential sequences does not solve all

of the problems, it does reduce them, and is worth the extra time

required (Nance and Overstreet, 1978). Variations on this method have

been developed by Westlake (1967), and Bays and Durham (1976) .

.Another type of generator was introduced by Tausworthe in 1965.

The Tausworthe, or shift register, generator is related to the Lehmer

congruential method. While linear congruentials are based on the residue

of an integer product,. modulo m; the Tausworthe methods are based on the

residue of polynomials, computed modulo a primitive polynomial over the

Galois field of base two (Tausworthe, 1965; Lewis, 1972, 1975; Tootill,

1973; Canovos, 1967; Albert, 1937). As might be expected, this is a

slower method, however it is theoretically sound, and has been shown to

be more consistent in tests on n-tuples, where congruential methods

fail.

In brief, the Tausworthe theorem is as follows.
n

sequence of O's and l's generated by~= i~lci*3k-l

Let a=(ak) be the

(mod 2) for any
n .

c. e (O,l) and c =l, where f(x) = L: c.*xi is primitive over the Galois
i n i=l i

field of base two. Then y = (yk) will be uniformly distributed where
L -t n n

Yk = tEl 2 Clq.j+r-t for 0 < = r < = 2 - 1, L < = n, (q*2 - 1) = 1 and

q > L (Lewis, 1975). This type of generator is very sensitive to the

choice of the primitive trinomial and other parameters, which makes it

more difficult to use.

6

As with the Lehmer generator, there are variations of the Tausworthe

generator. Lewis and Payne developed the Generalized Feedback Shift

Regester (GFSR) method (Lewis, 1973, 1975). Bright and Enison produced

the TLP, or Tausworthe, Lewis, Payne generator (Bright, 1979).

Although complicating the calculation of each number greatly, these

methods have not escaped the major problem inherent in the previous

methods. They are deterministic. Rather than each value being dependent

on the previous one, it is now dependent on the la.St "L" values. These

methods have not been tested as extensively as the others, which may be

due in part to their slowness and difficulty of use.

7

CHAPTER III

RESEARo--I OBJECTIVE

Based on the need for less detenninistic methods of pseudo-random

number generation, the purpose of this study is to develop a less deter

ministic method of generation. The objective is then to show that the

proposed method's performance is superior to that of the accepted methods

on empirical tests.

One cannot expect any method to perform better on all tests, as the

methods compared should pass most of the tests used. However, a special

battel)' of tests will be performed to highlight dependencies between con

secutive numbers in the sequences. It is on this set especially that

the proposed method should show promise.

In addition to empirical tests and comparisons, the theoretical

properties of sequences produced by the proposed method will be evaluated

based on a definition of a random sequence. Probabilists and Computer

Scientists differ on such definitions. Therefore, Chapter V will discuss

some of the definitions in depth, culminating in a fairly strong defini

tion. In Chapter VI, the properties of the proposed method will be

presented based on this definition.

8

QIAPTER IV

PROPOSED :METIIOD

To avoid the nonrandom characteristics inherent in highly

deterministic methods of generating ntunbers the Proposed Method uses a

uniformly distributed table for its source of random numbers. The table

contains all of the ntunbers .000, .001, ... , .999. The numbers are

jumbled so that the probability of finding any specific number in a

given location of the table is approximately 1/1000.

The table need be created only once and then stored in the computer.

The random number generator is then initialized by reading the table

from its file into an array. The user then supplies a seed value, or

starting location, in the table. A fast congruential generator is then

used to supply numbers "uniformly distributed" between 0 and 999. These

values are then added to the current table location mod 1000 to arrive

at the next location. The number stored there is the next random number.

Thus, once the generator is initialized each successive number is

generated by the following steps:

1) Generate c. e [0,999] by congruential method (Where c. represents the
l l

ith element of the congruential sequence.)

2) Add c. to current table location mod 1000:
l

t. + c. mod 1000 ·:} t. 1 J l J+

(Where t. is the current table location and t. 1 is the newly
J J+

derived table location.)

9

3) Value rs[.000, .999] located in tj+l is next number (Where r is

the obtained pseudo-random number.)

4) Go to 1) and repeat for next number.

For the remainder of this paper, the generator will be referred to as the

Pseudo-Random Access, Uniform Table, or PRAUT, method.

Because the PRAUT method uses exactly 1000 values, it does not have

the resolution that other methods have. This is not a major problem.

For most purposes the least significant digits will be irrelevant.

However, there will be times when further resolution would be useful.

Under these circumstances two values can be generated and combined as

follows: r = r. + .OOl*r.+l" This produces six digit numbers while
J J

requiring more time to generate. However, if the last three digits are

important it would not be wise to depend on the randomness of these

digits in a congruential sequence (see Chapter VI).

10

Both the randomness and the relatively long period of this generator

can be improve~ by an additional step. The only way the generator can

cycle is if the congruential generator providing addresses begins its

cycle when the current table location is the same as it was at the start

of an earlier cycle of the congruential generator. But if we were to

change the table as we generate nlUilbers, the chances of cycling within

the life time of this universe are extremely remote.

A method of doing this is as follows. After using the value

located in a position, one switches the value with another. Given that

the current table location is tj+l' found by tj + ci mod 1000; switch

its contents with that in location tj+l + ci mod 1000. Thus, the next

time that the location tj+l is arrived at, the probability that the

number that brought it there was the same as c. is 1/1000. So the nlUilbers
J

switched have a very low probability of getting switched back.

The generator will be discussed with and without this step as the

author feels that its performance should be satisfactory without it. It

involves a trade off between period length and possible randomness and

time taken to generate.

The remaining unexplained part of the PRAUT generator is how the

table is created. Because the table is created only once, its creation

can be as thorough as one desires. However, the following method should

be sufficient.

The proposed operation has two steps. First fill the table in a

somewhat random manner and then shuffle it. The filling operation is

similar to the method of locating nlllnbers when generating. Starting at

some position in the table, generate a nlllnber [O, 999] using a congruen-

tial generator and add it to the current location mod 1000. If that

position is already taken then simply repeat lllltil an empty one is

found. When the nlllnbers .000 through .999 are in the table the second

step begins.

The second step is identical to the optional step in generating

nlllnbers. That is switching the contents of each location t. + c. mod
J l

1000 with t. + 2c. mod 1000. Once this has been done· a few thousand
J l

times there should be no resemblance to the table after step one.

Note that the randomness of the table is not critical as the method

of obtaining each nlllnber from the table uses pseudo-random addresses.

However, if the table was not jumbled, but merely the sequence .000,

.001, ... , .999, and if the addresses generated by the congruential

method were used in an absolute fashion, rather than relative to the

last location, then the generator would perform only as well as the con

gruential generator used. It is the relative addressing, the randomness

11

of the table, and the optional jlilTibling of entries during execution that

separates the sequence produced by PRAUT from the nonrandom characteris

tics of the congruential method. 'This will be discussed in more detail

under theoretical properties of the PRAUf method (Chapter VI).

12

rnAPTER V

Sa.ffi DEFINITIONS OF RANl)()J-,1NESS

Before discussing the theoretical behavior of the PRAUT generator,

we should look more closely at what a random sequence is. There is no

single recognized definition of a random sequence, although many have

been proposed.

Lehmer (1951) defined a random sequence as

a vague notion embodying the idea of a sequence in which each
tenn is unpredictable to the uninitiated and whose digits
pass a certain number of tests; traditional with statisticians
and depending somewhat on the uses to which the sequence is to
be put (p. 141).

There are several problems with this definition which represent

common mistakes or misconceptions of randonmess. The most glaring is

the phrase "unpredictable to the uninitiated". This would imply that

those of us who have studied randonmess could somehow observe a sequence

and predict values that are to come. Nothing could be further from the

truth. A factor that should be included in any definition of a random

sequence is that each value is independent of all other values. There-

fore, any method of predicting values based on previous values, or any

other method, will succeed in the long run one out of n times, where n

is the number of possible values.

The other main problem with the Lehmer definition is the phrase

"whose digits pass a certain number of tests, . . . ". A random sequence

should pass statistical tests, but passing statistical tests in no way

13

14

assures randoTirrless. This is because, for example, each element of a

sequence must be independent of all others, and must be unifonnly

distributed on [O, 1). But there is no way to empirically test for

independence or for unifonn distribution because one cannot generate an

infinite sequence, which would be required for such tests. One can show

that, in the long run, a sequence covers the interval [O, 1) fairly uni-

formly, but one cannot show that any element U. has an equal chance of
1

having any of the possible values.

Given any finite set of tests, there will always be a sequence
of ntnllbers that will pass all of the tests but is totally
lillacceptable for some particular application. It is always
possible that it will have patterns that remain undetected
despite intensive testing (Shannon, 1975, p. 356).

From this we can see that a definition cannot be based on vague intuitive

notions, or empirical tests. It IIIllSt be based on theoretical characteris-

tics. Or, as Knuth (1969, p. 128) says, "what we really want is a

relatively short list of mathematical properties, "

A number of authors have delved into more theoretical definitions

of random sequences. Knuth's (1969) discussion entitled "What is a

Random Sequence?" covers some of the commonly mentioned definitions.

These however are still not entirely correct. They will be discussed

and compared to a more robust definition.

Knuth (1969) starts with the definition of equidistribution.

Definition 1: "The sequence of u0 , u1, . . . is equidistributed

if and only if Pr (u < = U < v) = v-u for all u, v with 0 < = u < v < n

= l" (p. 128). (Note: The author finds the notation (u < = U < v) to
n

be inconsistent with previous use, however the following discussion should

clarify the meaning.) It follows that any independent, unifonnly distri

buted sequence is equidistributed, by the following theorem.

Theorem 1:

Let us carry out a sequence of identical independent experiments,
in each of which the event A has probability p=P(A) (O<p<l).
Let v denote the frequency of the occurence of the event A in
the course of the first n experiments. Then one has v /n~p
(Renyi, 1970, p. 195). n

In other words, if A is the event that u < = U < v, then the relative n

frequency of the occurrence of A tends in probability toward (v-u) as n

increases.

Equidistribution is a useful definition, as it is empirically

testable, to some extent. That is, one can determine, given a sequence

of numbers, the number of values that fall in any interval in [O, 1).

Unfortunately, this is not a strong enough condition to represent random

ness. Many nonrandom sequences are equidistributed, for example (1/2,

1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, ..•). Note that the components

of this sequence are neither independent nor uniformly distributed.

Knuth (1969) also shows that equidistribution is inadequate and

proceeds into more robust definitions.

Definition 2: "The sequence u0, u1, is said to be k-distri-

buted if Pr(u1 < = Un < v1, ... , ~ < = Un+k-l < vk) = Cv1 - u1)

(vk - ~) for all choices of real numbers u, v with 0 < =

for 1 < = j < = k" (p. 129).

u. < v. <
J J

Definition 3: "A sequence is said to be 00-distributed if it is

= 1

k-distributed for all positive integers k" (p. 129). After many more

definitions Knuth (1969) falls back to his definition Rl which states

that "a [O, 1) sequence is defined to be 'random' if it is an 00-distri-

buted sequence" (p. 138) .

The concept of an 00-distributed sequence was introduced by Franklin

15

in 1963 under the name "completely equidistributed''. It is a well studied

16

concept, but as Knuth (1969) states, "an infinite sequence which is

oo-distributed satisfies a great many useful properties which are expected

of random sequences, ... " (p. 150). That is, 00-distributed does not

mean random, but rather it means that a sequence has a lot of random

qualities. There are problems with it. For example, one can find non

random sequences which are oo-distributed. There are also problems with

definitions that require infinite sequences, when only finite sequences

can be generated and used.

The first problem is probably the greater of the two. The fact that

sequences exist which are 00-distributed but definitely not random can be

seen through a simple extension of Knuth's proof that equidistribution is

not random. Knuth shows that any two equidistributed sequences u0, u1,

. and V 0, V 1, . • . can be used to fonn W = (W 0, W 1, . . .) where

W = l/2U0, l/2+1/2V0, l/2U1, l/2+1/2V1, While this is obviously

not an acceptable random sequence, it is equidistributed. This example

does not affect 00-distributed as the sequence is not even 2-distributed.

However the following example produces a sequence which is 00-distributed.

Let U0, u1, ... and v0, v1, ... be 00-distributed sequences.

The values of u0, u1, .•. will be transfonned to become w0, W1, ...

and the positions and values of v0, .v1 , ... will direct the process.

The sequence V has two flillctions. First, even positions, v0, v2, V 4,

. represent the function W = l/2Ui, while odd positions, V1 , v3, V5,

, represent the function W = 1/2 + l/2U .. Second, the value of
1

each V. detennines how many times the function its position represents
1

will be used. That is, if V. < = .5 then the next two elements of W
1

will be detennined by the flillction V. represents. If V. < .5 then only
l 1

the next one element will be detennined by the flillction V. represents.
l

Control of the sequence then moves to V. 1 to detennine the fate of the
i+

next one or two elements.of W.

To illustrate, let the values of W produced by l/2U. , and therefore
1

lying in [O, 1/2), be depicted as "-", and the values produced by 1/2 +

l/2U., and thus lying in [1/2, 1), be represented as "+". The following
1

sequence V will then produce the sequence W shown.

VO v1 v2 v3 V4 vs v6 v7 vs

v { . 371 . 423 . 744 . ll9 .625 . 978 . 763 .234 .469

w { + + + + +

17

This sequence will have an equal number of values in [O, 1/2) to those in

[1/2, 1), and there is no way to know which values will be which, other

than W0 . This sequence would even appear to be random at first glance.

Its only problem is that there are never more than two consecutive

values greater than .5, or less than .5. But this sequence is 00-distri-

buted. That is, there is no way to subdivide the sequence into k-tuples

so that +' s and - 's do not fall lilliformly. Thus, as with equidistribution,

a stronger property is needed. That does not necessarily mean an exten-

sion of 00-distributed, as Knuth has already pointed out problems with

some of these. Perhaps one should shy away from definitions requiring

infinite sequences, as they tend to fall prey to such manipulation. The

second problem mentioned will further illustrate this problem.

The second problem is that an infinite sequence can, and will, have

finite subsequences that do not look random. For example, one million

zeros in a row. This is perfectly acceptable in an infinite random

sequence, and will not affect the sequence's chances of being 00-distri-

buted. Unfortunately, this is not true of finite sequences. Although

18

long, seemingly non-random subsequences can occur in finite random

sequences, it is both unlikely and unacceptable. 1herefore, since all

random sequences used are finite, this is not a very practical

definition.

One could modify the definition of 00-distributed to m-distributed.

Definition 4: A sequence is said to be m-distributed if it is

. k-distributed for all positive integers k < = m. But what happens when

k = m? We then have a one-to-one correspondence, which means that

Pr (u. < = U. < v.) = (v. - u.) for all i < = m. Suddenly the meaning
J 1 J J J

is changed. No longer is U used, as it represents an infinite number n

of values of which a certain percent fall between u and v. Now U. is
1

used, representing one component of the sequence, which has a certain

chance of having a value between u and v. 1his assumes independent

and unifonn distribution of individual components, aspects which Knuth

avoids.

1he concept of independence of components of a sequence has been

brought up throughout this discussion. In order to discuss independence,

a different view of a random sequence is needed. Rather than being ahy

infinite sequence that meets certain criterion, think of a random

sequence as a sequence of random variables, or experiments. Each experi-

ment has a number of possible outcomes, or events, each as likely as all

others. 1hese events must be independent of one another, which is to say

that, given any finite number, n, of events, A., Pr (A. *A.+l * 1 1 1
*A. 1) = P(A.)*P(A. 1)* .•. *P(A.+ 1). The following theorem shows 1+n- 1 1+ . 1 n-
why this is important to random sequences.

1heorem 2: Given a sequence of events A., whose probabilities
1

P(A) are all positive, " ... a necessary and sufficient condition for

"

mutual independence of the events is the satisfaction of the equations

PAil Aiz ... Aik (Ai) = P(Ai), for any pairwise different ii, iz,

19

ik, i" (Kolmogorov, 1956, p. 12). That is, given that events Ail through

Aik have occurred, the probability that Ai occurs is equal to the probability

that Ai would have occurred anyway. One should be able to stop at any

point in the generation of a truly random sequence and have no way of

predicting the next value based on previous values. This property is

unique to independent components and is the major downfall of the Knuth

definitions, which define no relationship between individual components.

Independence is not the only pr~perty needed. The numbers generated

are expected to form a uniform distribution. Thus, each component must

be identically uniformly distributed. The result is the same as that

desired by the Knuth definitions.

Combining the properties given above produces the following

definition.

Definition 5: For the purposes of uniform random sequence genera-

tion on [O, 1), a sequence Uo, U1, is said to be random if and

only if each element, Ui, consists of an identical set of possible out

comes, Ai, Az, ... , An, which are uniformly distributed on [O, 1),

are all equally likely, and for any_ k elements P(Aj 1 *Ajz * . *Ajk) =

P(Aj 1) *P(Ajz) *· .. *P(Ajk). That is to say, for the purpose of uniform

random sequence generation, a sequence is said to be random if and only

if each component of the sequence is uniformly distributed on [O, 1), and

is independent of all other components, or combinations thereof.

This definition is assumed throughout the re1aainder of this paper,

and is especially important to the discussion of the theoretical properties

of the PRAUT method.

CHAPTER VI

SOME 1HEORETICAL PROPERTIES OF

1HE PRAITT METIIOD

There are a number of characteristics to consider when comparing

random number generators. These include the speed of the generator, the

amolillt of space it requires in the computer, and the actual numbers it

produces. The first two characteristics, speed and space, will be

discussed in Chapter VIII, Comparison of Methods, where several

generators are compared to the PRAUT method.

In this chapter several characteristics of congruential generators

and the PRAITT generator will be compared. The relative length of the

periods of the two methods will be discussed first. The second topic

discussed will be how the non-random characteristics of the congruential

addressing generator affect the PRAUT sequences. Finally, the expected

characteristics of the PRAUT method will be discussed in relation to the

definition of randoI!Illess.

The Period

All of the previously discussed generators cycle, or repeat

themselves. Since the numbers they produce are detenninistic, derived

from a previous number, whenever a number produced is exactly the same

as at some time earlier the sequence will begin to cycle. The mnnber of

values produced per cycle is called the period.

20

If the pannaeters for a linear congruential generator are well

chosen the period will be very long, such as 235. 1his should easily

be long enough that, for practical purposes, it will never occur.

21

1he PRAlJf generator cycles only if the addressing generator cycles,

and then the table location must be exactly the same as it was when the

addressing generator cycled some time previously. Suppose the congruen

tial addressing generator cycles after 235 elements, or 34,359,738,368.

1hen 235 mod 1000 is the difference between the table location at the

start and end of the cycle. Since in this case that equals 368, each

number generated during this cycle of the addressing generator will be

368 table positions (mod 1000) from the number generated 235 values

earlier. TI1e PRAUT generator has not cycled. It will not cycle until

the addressing generator cycles 125 times, as (125*368) mod 1000 = 0.

At this point almost 4.2 trillion numbers will have been generated.

1he period of most congruential generators is long enough to

assure that the period of the PRAlJf generator is more than long enough

for practical purposes. If by some chance there would be an astronomical

problem to solve requiring constant, noncycling random numbers, the

period of the PRAlJf generator with shuffling is longer than 102500.

Severe Congruential Problems Produce

Only Small PRAUT Problems

Random numbers, when plotted in any dimension, should cover it

uniformly. Naturally, a random number generator does not have the

resolution to achieve all possible values in [O, 1). 1herefore, each

dimension will be considered in .001 increments. 1his means that one

space has 1000 possible values. Two space has 1000*1000, or one

million pairs. Three space has one billion possible triples, and four

space has one trillion possible quadruples. Since a good congruential

generator can cover one and two space, it should be able to achieve all

one thousand and one million values and pairs. It will not be able to

achieve all one billion triples, because the triples will fall into

planes in three space. Assume that the congruential generator can

achieve only 100 million of the one billion possible triples, and only

3 billion of the one trillion quadruples. What effect will this have

on the PRAUT sequence?

The PRAUT generator will certainly be able to produce the 1000

values in one space~ Since the addressing generator can produce all

1000 address increments, and they can occur at any table location, the

PRAUT generator will be able to produce all one million pairs. In the

same manner, since the addressing generator can produce any pair, the

PRAUT generator, starting at any location, can produce all one billion

triples. However, since the addressing generator can produce only 100

million triples, the PRAUT generator can produce only 100 billion quad

ruples. The PRAUT method is thus flawed by its addressing generator.

Table I shows, however, that it remains better than the congruential.

1
2
3
4

TABLE I

POINTS IN N-SPACE AGIIEVABLE BY CONGRUENTIAL
OR PRAUT GENERATORS

Possible Congruential PRAUT

space 1000 1000 1000
space 1 million 1 million 1 million
space 1 billion 100 million 1 billion
space 1 trilion 3 billion 100 billion

22

23

The flaw is even smaller than it first appears. Although the 100

million triples produced by the congruential generator fall into planes,

the quadruples produces with the PRAUT generator do not. For example,

suppose that 100, 100, 100 is a possible triple for the addressing

generator. This sequence may start at any location in the PRAUT table.

Therefore locations 1, 101, 201, 301 are possible in sequence, as are 2,

102, 202, 302, and so forth. These location sequences obviously fonn

patte111.S; however, the values stored at each location are unrelated to

the location. Therefore the location sequence 1, 101, 201, 301 may

produce .933, .271, .358, .647, or any other set of values. It can be

seen then, that although the congruential triples fit into planes, the

quadruples that they produce are scattered at random throughout four

space.

The difference in magnitude of these two problems can be seen

through empirical testing. Graphing only a few hundred triples from a

congruential generator s~ows the development of distinct planes. In

contrast, even 100 billion quadruples from the PRAUT generator, if some

how graphed, would be scattered across four space in a random manner.

The only way to tell that not all one trillion quadruples were possible

would be to graph several htm.dred billion of them and realize that

although the pattern still looks random, it is not covering any new

space. All possible quadruples, quintuples, and so on would be obtainable

if the congruential sequence were shuffled, or if the PRAUT table, or

sequence, were shuffled. However, this would be lillllecessary tm.less more

than a trillion number sequence was needed.

24

1heoretical Distribution of

Sequences Generated

According to the definition of randomness, each ntunber should be

independent of all others and have an equal chance of having any of the

possible values. This means that if values for •.. U. 2, U. 1 have
l- l-

occurred, Pr(u < = U. < v) = v - u. When using a congruential generator,
l

ifU .. 2 was in [.50, .51), andU. 1 was in [.65, 66), it may not be
l- l-

possible for U. to occur in [.31, .32). This is demonstrated through
l

its failure to cover three space. This problem is smoothed out when

using the PRAUI' method.

In the PRAUT method, if U. 2 is in [.50, .51), this means that the
l-

table location could have been any of ten locations spread randomly

throughout the table. This is also true for Ui-1 occurring in [.65, 66).

In order for this sequence to occur the addressing generator has to

produce one of the 100 increments that define the relationships between

the locations of these values. Not all of these possible increments

will have the same probability of occurring, but the average of the

probabilities will be very close to 100/1000, or .1, the expect~d overall

probability.

Given that Ui_ 2 and Ui-l have occurred as stated, t~ere are 100

possible address increments to make U. occur in [.31, .32). · Again, not
l

all of these increments are as probable as they should be, others will

be more probable; so the average will be near .1. Thus the probability

of U. 1, U. having these values, given U. 2, is roughly .1 * .1 or .01,
l- l l-

using the PRAUT method, which is the expected outcome. The probability

of the above sequence occurring using a linear congruential generator

was 0.

GIAPTER VII

EMPIRICAL TESTS

1he tests used for this research are all standard accepted tests,

discussed by such authors as Knuth (1969) and Lewis (1975). 1he tests

used are the frequency test, serial test on pairs and on triples, minimum

of five values, maximum of five values, sum of five values, and the gap

test. Each will be explained here. Each uses the chi-square test to

compare .the sequence generated to theoretical distributions (see

Appendix A for computer code of the tests).

Frequency Test

Given some number, n, of random numbers, and some values, u and v,

such that 0 < = u < v < = l; approximately n*(v - u) values should fall

in [u, v). By dividing the interval [O, 1) into k subintervals, and

generating n pseudo-random numbers, the number that fall within each

subinterval can be tallied. 1hese totals are then compared to the

expected totals for goodness of fit.

Serial Test on Pairs and Triples

1hese tests are very similar to the frequency test. Just as

P(u < = u < v) = (v - u), P(u1 <=Uk< vi, u2 < = Ui+l < v2) = Cv1 -

v2)Cv2- u2), and so on. Sequences are generated, the number of pairs

that fall within any set of subsequences are tallied and the totals

25

26

compared to the expected totals. The process is the same when testing

triples.

While the freqilency test alone reveals nothing about the distribution

of individual values, the addition of the serial tests greatly strengthens

the evidence for, or against,unifonnity.

Minimum of Five Values

Given any five random nlilTlbers, the probability that all of them

are greater than some value, x, is (l-x) 5. Based on this expected

distribution, a sequence can be generated and the minirnlilTl value of each

five elements tallied. The resulting distribution is compared to the

expected distribution.

MaxirnlilTl of Five Values

This test is identical to the minirnlilTl test, except x5 is used for

calculation, instead of (l-x) 5.

Sum of Five Values

If each number generated is converted to an integer, ie .. 000-.009

became 0, then the s urn of each five numbers will range from 0 to 45.

Each of these outcomes has a positive probability. For example, of the

100,000 possible outcomes, only (0, 0, 0, 0, 0) produces a sum of 0.

It therefore has a probability of .00001. There are five ways to obtain

a SlilTl of 1, fifteen ways of obtaining a SlilTl of 2 , and so on. As with

the other tests, a sequence is generated, the sums of each set of

values are calculated, tallied, and the outcome compared to the

theoretical distribution.

27

Gap Test

The probability that consecutive elements of a sequence will have

values from an interval such as [.700, .800) is (.800 - .700), or 0.1.

The probability of values within the interval occurring separated by one

other value is 0.09. The probability of values within the interval

occurring separated by two other values is 0.081, and so on. The gap

test measures the intervals, or gaps, between elements with values from

a selected interval, and how often each size gap occurs. The results

are tallied and compared to theoretical results.

Special Tests

This battery of tests should discredit most methods of generation,

however the better methods should pass. It is therefore.necessary to

perform more stringent testing in order to compare these methods. One

may recall that a major problem with pseudo-random sequences is that

the ntunbers are not independent of one another. In most cases each ntun

ber is dependent on the previous value. If the dependency is too great,

the tests already described will uncover it. The following method was

developed to catch some of the methods whose dependency is a little

better disguised.

Usually empirical tests are applied to all values generated by a

method, however if one were to test only the values occurring after

elements with values in a chosen interval, such as [.700, .799), the

subsequence obtained should be perfectly random, if the entire sequence

is. But if the values are dependent on the previous value, then the

subsequence will not be random at all, and should fail the empirical

tests too frequently. Therefore, each pseudo-random ntunber generator

28

tested will not only be submitted to the seven accepted tests described,

but this subsequence will be detennined and submitted to the same battery

of tests.

CHAPTER VI I I

CCMPARISON OF :MEIBODS

One may discuss the theoretical characteristics of a generator all

one likes, but the only way to determine if it is as good as other methods

is to empirically test them side by side and compare results. The PRAUT

method will be compared to a linear congruential method (Schrange, 1979),

the GFSR method (Lewis, 1973), and the Hewlett Packard (HP3000) RNG.

A shuffling method will also be compared using various methods for

values (Bays, 1976). The testing procedures will be discussed first,

followed by the results and comparisons.

The testing procedures can be broken into three sections: 1) Stan

dard tests perfonned on each generator, 2) special indepedence tests

perfonned on each generator, and 3) special comparison of PRAUT and

shuffling methods.

For the standard tests a sequence of 100,000 numbers from a

generator are submitted to the seven tests discussed earlier. The

result is seven chi-square values. If a chi-square value fails at the

5% or 95% level then the sequence is considered to have failed that test.

Ten sequences from each generator are tested so that the expectation is

one failure out of the ten sequences on each test.

Recall that the special independence test developed only tests

about one out of eve:ry ten values. About 500,000 values were generated

each time in order to be able to test sequences of 50,000. Again, ten

29

sequences were tested from each generator so that one should expect

about seven failures out of 70 tes~s.

30

The PRAUT method and shuffling methods may look similar because of

the use of a table of numbers and random accessing, however this last

set of tests shows that the similarity ends there. In the previous two

sections of tests the HP generator was used with the two methods. In

this section a very poor generator is used for addressing in the PRAUf

method, and for the shuffling method. The intent is to show that

shuffling the sequence improves it very little, while using it for

addresses in the PRAUf method still produces a very good sequence.

The same tests as those in sections one and two are used on

sequences of 100,000 and 50,000 numbers. Only five sequences are

tested for each generator as the results ar.e clear by that point.

Failure rate is expected to be 0 or 1 out of 5.

Results and Comparisons

Testing began with the hope that all five generators would pass

the first set of tests, to illustrate that they are all relatively

good generators. It was then hoped that the special independence test

would show some superiority of the PRAUf method. Finally, the special

comparison of the PRAlIT and shuffling methods was intended to show that

the PRAlIT is not simply a shuffling method in disguise.

The results of the standard tests are shown in Table II. The PRA.lIT,

HP3000, shuffling, and linear congruential methods all did very well,

all passing arolID.d 90% of the tests with no generator falling below 80%

on any given test. Unfortunately, the GFSR generator did not fare as

well. It appears that if the delay parameter was too small then the

sequence failed the gap test. If the delay was large enough to pass

the gap test then the Sum of 5 test had a high failure rate. As the

purpose of this study is not to uncover such problems they will not

31

be discussed in depth. Let if suffice to say that the small word size

of the HP3000 and the extreme sensitivity of the input parameters for

the GFSR method led to the problem. Because the rest of the results

were good and GFSR results were seemingly unavoidable, analysis pro

ceeded to the special tests.

TABLE II

RESULTS OF STANDARD STATISTICAL TESTS*

Tests PRAUT HP3000 Shuffle LinCong GFSR

Frequency 10 9 10 10 9
Pairs 9 10 9 9 8
Triples 9 10 8 9 8
Max of 5 8 10 8 10 8
Min of 5 9 9 9 10 9
Sum of 5 10 8 10 8 5
Gap 9 9 8 9 4
Average 9.14 9.28 8.86 9.28 7.28

*Numbers represent the number of sequences that passed the
test out of the ten tries. 1

The results of the special independence tests can be found in

Table III. It can easily be seen that while the PRAUT method maintained

its average, the other methods did not. All four of the methods com

pared had tests which were passed only 70% of the time or less. Note

that the GFSR method actually performed better than in the standard

32

tests. Since its failure of the gap test was due to problems with

consecutive strings of numbers, this disappeared when working with only

selected values. The problem with the Sum of 5 test remained.

TABLE III

RESULTS OF SPECIALIZED STATISTICAL TESTS*

Test PRAUf HP3000 Shuffle Lin Cong GFSR

Frequency 9 9 9 7 10
Pairs 10 9 9 8 9
Triples 10 9 10 7 8
Max of 5 9 9 6 9 9
Min of 5 10 7 9 9 9
Sum of 5 9 9 7 8 5
Gap 8 7 9 9 9
Average 9.28 8.43 8.43 8.14 8.43

*Numbers represent the ntnnber of sequences that passed the
test out of ten tries.

The results of these two sets of tests illustrate that the

normally accepted empirical tests do not llllcover dependencies which

are known to exist. It shows that these dependencies significantly

affect the beh1vior of the sequences generated by linear congruential

and feedback shift register methods, and that shuffling the sequences

does not solve the problem. Finally, these tests strengthen the claim

!hat consecutive valuPs generated by the PRAUf method are independent.

They do not, however, prove that claim, nor do they indicate anything

about the independence of nonconsecutive values.

Al though the PRAUf and shuffling methods were compared in the

previous tests and the PRAUf method preformed better, their differences

33

are better illustrated through a comparison using a poor seed generator.

See Table IV for results.

Looking first at the standard tests, one can see that the poor

generator only passed around 50% of the time. Shuffling the sequence

did not help at all as it only passed 43% of the time. On the other

hand, the PRAUT sequence passed over 88% of the time and would thus be

considered acceptable.

Moving on to the special tests, the poor generator failed

completely, showing that each value is very dependent on the last.

Shuffling the values helped, but still passed less than 40% of the

time. The PRAUT method, however, show~d no signs of deterioration,

even at this stage. This would indicate that one does not need a

very good addressing generator at all in order to obtain acceptable

sequences.

Other Attributes of the Generators

While the quality of the sequences produced is the main concern

in generating pseudo-random numbers, the size and speed of the algo

rithms are also important. The algorit~ should not use excessive

amounts of core storage, and because the algorithm is generally called

many times during a program, it should be as fast as possible.

Because the quality of the sequence is most important, it is generally

assumed that if the size and speed are acceptable to the user, then

the sequence is the sole determining factor in choosing a method.

None of the methods compared are excessively long. The PRAUT

method is probably the longest because of the table of 1000 values

TABLE IV

RESULTS OF COMPARISON OF PRAITT AND SHUFFLING MEIBODS
USING A POOR SEED GENERATOR*

Standard Tests Special Tests

Tests PRAUT· Shuffle Poor PRAUT Shuffle

Frequency 5 0 2 5 1
Pairs 5 2. 4 5 4
Triples 4 3 3 5 3
Max of 5 3 0 0 4 0
Min of 5 5 0 1 3 1
Sum of 5 4 5 4 5 0
Gap 5 5 4 4 4
Average 4.43 2.14 2.57 4.43 1. 86

Poor

0
0
0
0
0
0
0
0.0

*Numbers represent the number of sequences that passed the test
out of five nms.

34

35

used. The GFSR method uses a table which may be that large, but does

not have to be. It also requires much more code than the other methods.

These differences, however, are unimportant, as none of the methods use

an excessive amount of space.

The speeds of the generators are more easily compared, as actual

times per number can be calculated. The following times pertain to an

HP3000 series 30. Although speeds will differ between machines, the

relative times will remain about the same.

Three of the generators require initialization. The shuffling

method requires 296 CPU milliseconds to initialize a table of size

ten. The PRAUT method requires 21,048 milliseconds to read the tabl~

from a file, or up to 5300 milliseconds to generate a table. The

GFSR generator requires 177,500 milliseconds to initialize. This may

be considered excessive as it translates to nearly three minutes.

The actual generation time per number varies a great deal as

well. The fastest method was the HP3000 generator at 0.26 ms per

number. Because this generator was used for addressing in the PRAUT

method and for the shuffling method, these must naturally be slower.

The PRAUT required 0.44 ms and shuffling required 0.48 ms. The

slowest methods were the portable linear congruential at 0.72 ms,

and the GFSR at 0.77. The PRAUT generator was thus the second

fastest.

The poor generator was also timed, as it is merely a deformation

of a fairly good generator designed by the author. (The code for

this method can be found in Appendis B.) This generator requires

an initialization and takes 0.27 ms per number. It therefore is nearly

as fast as the HP3000 generator and could thus be used for the PR~UT

method. This is useful, as it is .portable, as is the PRAUT method.

36

rnAPTER IX

CONCLUSIONS

'Ihe main objective of this research was to develop a less

detenninistic method of random number generation than the accepted

methods, and to show that it out perfonns them on empirical tests. 'Ihe

PRAUT generator was shown to be less detenninistic than the extensively

used linear congruential methods through a theoretical discussion of

the properties of the sequences. 'Ihe probability of an element of a

sequence ha\ring a value within a specific interval is much less influenced

by previous values in the PRAUT method. 'Ihe PRAUT generator can produce

more of the possible combinations of values than congruential methods.

'Ihe important result of a less detenninistic method is that the

sequences produced more closely resemble truly random sequences.

'Ihrough empirical testing of the PRAUT and accepted methods, the PRAUT

generator was shown to perform better. Specifically, on empirical

tests of subsequences of the sequences generated, the PRAUT method

passed over 90% of the time, while the other methods tested only ·

passed between 80% and 85% of the time. Also, when a poor address

generator was used for the PRAUT and shuffling methods, the PRAUT

method was hardly affected, passing 88% of the time. 'Ihe shuffled

sequence did not even pass 50% of the time.

Based on these results, the PRAUT generator is recorrnnended as a

method of producing better pseudo-random sequences. 'Ihere may be cases

37

where only very specific attributes of a sequence are needed, which a

congruential generator may provide. In these cases a congruential

generator may be acceptable.

The PRAlIT method fairs well on the other important factors in

choosing a generator as well. While not the fastest generator, it

does produce numbers faster than the shuffling, GFSR, and portable con

gruential generators tested, making it the fastest of the portable

generators tested. The PRAlIT method also requires an acceptable amount

of space. The table of 1000 values used makes its the most space con

suming generator tested, however, there is very little need for being

as small as the congruential methods.

The PRAUI' method is thus a fast generator which produces better

pseudo-random sequences, through a less detenninistic approach. Its

only trade off is a small, but acceptable, amount of space. It is

therefore recommended as a better method of generating pseudo-random

sequences.

38

A SELECTED BIBLIOGRAPHY

Albert, A. Adrian. Modem Higher Algebra. Chicago: The University of
Chicago Press, 1937.

Allard, J. L., A. R. Debell, and T. E. Hull. "Mixed Congruential Random
Nl.Ililber Generators for Decimal Machines." Journal of the Association
for Computing Machinery, Vol. 10 (1963), pp. 131-141.

Bays, Carter and S. D. Durham. "Improving a Poor Random Nl.Ililber Generator."
Association for Computing Machinery Transactions on ~1athematical
Software, Vol. 2, No. 1 (March 1976), pp. 59-64.

Bright, Herbert S. and Richard L. Enison. "Quasi-Random Nl.Ililber Sequences
from a Long-Period TLP Generator with Remarks on Applications to
Cryptography." Computing Surveys, Vol. 11 (December 1979),
pp. 357-379.

Canavos, George C. "A Comparative Analysis of Two Concepts in the
Generation of Unifonn Pseudo- Random Numbers.'' Proceedings of
the Association for Computing Machinery National Meeting (1967),
pp. 485-491.

Coveyou, R. R. "Serial Correlation in the Generation of Psuedo-Random
NlUilbers." Journal of the Association for Computing Machinery,
Vol. 7, No. 1(January1960), pp. 72-74.

Coveyou, R. R. and R. D. MacPherson. "Fourier Analysis of Unifonn
Random Nlililber Generators." Journal of the Association for
Computing Machinery, Vol. 14, No. 1(January1967), pp. 100-119.

Fishman, George S. Principles of Discrete Event Simulation. New York:
John Wiley and Sons, Inc. 1978.

Forsythe, George E. "Generation and Testing of Random Digits at the
National Bureau of Standards, Los Angeles." Monte Carlo Methods,
National Bureau of Standards, .Applied Mathematics Series, Vol. 12
(1951), pp. 34-35.

Franklin, J. N. "On the Equidistribution of Psuedo-Random Numbers."
Quarterly of Applied Mathematics, Vol. 16 (1958), pp. 183-188.

Greenberger, M. "An A Priori Detennination of Serial Correlation in
Computer Generated Random Numbers." Mathematics of Computation,
Vol. 15 (1961), pp. 383-389.

39

Hull, T. E. and A. R. Dobell. "Random Number Generators~" Journal of
the Association for Computing Machinery, Vol. 4, No. 3 (July 1962),
pp. 230-254. .

Hull, T. E. and A. R. Dobell. "Mixed Congruential Random Number
Generators for Binary Machines." Journal of the Association for
Computing Machinery, Vol. 11, No. 1(January1964), pp. 31-40.

Knuth, Donald E. The Art of Computer Programming. Massachusetts:
Addison-Wesley Pub. Co., 1969.

Kolmogorov, A. N. Folllldations of the Theory of Probability. New York:
Chelsea Pub. Co., 1956.

Lehmer, D. "Mathematical Methods in Large-Scale Computing Uni ts."
A-nals of the Computer Laboratory, Harvard University, Vol. 26
(1951), pp. 141-146.

Lewis, T. G. Distribution Sampling for Computer Simulation.
Massachusetts: Lexington Books, 1975.

Lewis, T. G. and W. H. Payne. "Generalized Feedback Shift Register
Pseudorandom Number Algorithm." Journal of the Association for
Computing Machinery, Vol. 20, No. 3 (1973), pp. 456-468.

Loeve, Michel. Probability Theory. New Jersey: D. Van Nostrand Go.,
Inc., 1960.

MacLaren, M. Donald and George Marsaglia. ''Uniform Random Number
Generators." Journal of the Association for Computing Machinery,
Vol. 12, No. 1 (January 1965), pp. 83-89.

Maisel, Herbert and Givliano Guagnoli. Simulation of Discrete
Stochastic Systems. Chicago: Science Research Associates, Inc.,
1972.

"Marsaglia, G. "Random Numbers Fall Mainly on the Planes." Proceedings
of the National Academy of Science, Vol. 61, No. 1 (September 1968),
pp. 25-28.

Nance, Richard E. and Claude Overstreet, Jr. "A Bibliography on Random
Number Generation." Computing Reviews (October 1972), pp. 495-508.

Nance, Richard E. and Claude Overstreet, Jr. "Some Experimental
Observations on the Behavior of Composite Random Number Generators."
Operations Research, Vol. 26, No. 5 (September-October 1978),
pp. 915-935.

Payne, W. H. "Fortran Tausworthe Pseudorandom Number Generator."
Cornrmmications of the Association for Computing Machinery, Vol. 13,
No. 1 (January 1970), p. 57.

Renyi, Alfred. Folllldations of Probability. San Francisco: Holden
Day, Inc., 1970.

40

Schrange, Linus. "A More Portable Fortran Random Number Generator."
Association for Computing Machinery Transactions on Mathematical
Software, Vol. 5, No. 2 (Jlllle 1979), pp. 132-139.

Shannon, Robert E. Systems Simulation: The Art and Science. New
Jersey: Prentice-Hall, Inc., 1975.

Smith, C. S. "Multiplicative Pseudo-Random Ntnnber Generators With
Prime Modulus." Journal of the Association for Computing
Machinery, Vol. 18, No. 4 (October 1971), pp. 586-593.

Tausworthe, Robert C. "Random Ntnnbers Generated by Linear Recurrence
Modulo Two." Mathematics of Computation, Vol. 19 (1965),
pp. 201-209.

Tootill, J. P. R., W. D. Robinson and D. J. Eagle. "An Asymptotically
Random Tausworthe Sequence." Journal of the Association for
Computing Machinery, Vol. 20, No. 3 (1973), pp. 469-481.

Van Gelder, A. "Some New Results in Psuedo-Random Ntnnber Generation."
Journal of the Association for Computing Machinery, Vol. 14,
No. 4 (October 1967), pp. 785-792.

Von Netnnann, J. "Various Techniques Used In Connection With Random
Digits." Monte Carlo Methods, National Bureau of Standards,
Applied Mathematics Series, Vol. 12 (1951), pp. 36-38.

Westlake, W. J. "A Uniform Random Number Generator Based on the
Combination of Two Congruential Generators." Journal of the
Association for Computing Machinery, Vol. 14, No. 2 (April 1967),
pp. 337-340.

Whittlesey, J. RB. "On the Multidimensional Uniformity of Pseudo
Rand.om Generators." Cormnllllications of the Association for
Computing Machinery, Vol. 12, No. 5 (May 1969), p. 247.

41

APPENDICES

42

.APPENDIX A

FORTRAN CODE FOR EMPIRICAL TESTS

43

c ·:·;.·;<;

c
RANDOM NUMBER GENERATOR TESTER

C USES: FREQUENCY, SERIAL ON PAIRS & TRIPLETS, GAP,
C MIN,MAX & SUM OF 5.

I=< Ef.~L RN< ·100 0)
INTEGER*4 LAST,TOT,ISEED
COMMON /TEST/ RN,LAST,TOT
SYSTEM INTRINSIC RANDl,RAND
DISPLAY" THIS RUN IS TESTING HP'S RAND
DISPLAY 11 **
ISEED==RANDl
ISEED=RANDCISEED>*1.E+07
DI ~:>PLAY II II

DISPLAY II !SEED~ 11 ,ISEED
TOT=::· 100000
L.AST"" 0
DD 1 0 I=l , ·.t 0 0
IF (I . EQ. ".l 0 0) LAST== 1

DO 20 J=t,·1000 ·
20 RNCJ)~ RANDCISEED)

CALI. .. El]UI :0
CALL MMS
CALL GAPTST

10 CONTINUE
STOP
El"-l"D

II

II

44

C ** RANDOM NUMBER GENERATOR TESTER **
C SPECIAL SUBSEQUENCE TEST
c
C USES: FREQUENCY, SERIAL ON PAIRS & TRIPLETS, CAP,
C MIN,MAX & SUM OF 5.
c
C TESTS ONLY THE SUBSEQUENCE OF THOSE VALUES WHICH OCCUR
C AFTER 1~ \)ALUE IN I:. 700 >, 799],
c

REAL RN<1000)
INTEGER*4 LAST,TOT,ISEED
COMMON /TEST/ RN,LAST,TOT
SYSTEM INTRINSIC RAND1,RAND
DI ~3Pl...AY II 11

DI~3Pl...AY" "
D:U:>PUW" TESTING HP 'S RAND USING SPEC:U'.\L TESTT
DISPLAY II

ISEED::::RAND1
ISEED=RAND(ISEED)*1 .E+07
DI!3PLAY II. II

DISPLAY II ISEED = II' ISEED
TOT= ~iOOOO

U\!3T= 0
D010J::::t,:io
IF<I.EQ. 50) L..ASTc:: "!
l<=O
DO 20 .J'="l, 1500 0
XX"-" RAND (I SEED)

"1"5 L[::: XX -x- l 0
IF<II.NE.7) GOTO 20
><X=R 1'.iND (I SEED)
K "~I< ·-t-1
R i'J< K) '"'xx
IF <K. GE. ·.t 000) GOTO 2~5
GOTO 15

20 CONTINUE
25 CALL EQUID

CALL MMS
CALL CAPTST

·1 0 CONTINUE
5 CONTINUE

~3TDP
END

·X-·X· II

45

r· __ ,

C SUBROUTINE FOR FREQ., SERI~L ON PAIRS AND TRIPLES
c

c

c

SUBPDUT ::: NE EOUI :0
RE:J~L PN(1000)
IN TECER D NE (·1 0) , Pr:') IF-~ < 1 0 1 1 0)- 1 TR IP < 1 0 1 1 0 1 1 ())
INTEGER*4 LAST 1 TOT
COMMON /TEST/ RN 1 LAST 1 TOT
DATA ONE/10•01,PAIR/100*0/aTRIP/1000*0/
DD 1 0 I·::: '.l 1 1 O 0 0

J::::RN< I }*10+1
10 ONE<J>= ONECJ)+'.l

DO 20 I"" 'l 1 99<.7» 2
J==F:N (I) ·X·t 0+1
K::::HN<I+1)·:<:10+·1

20 PAIRCJ~K>=PAIR<J,K)+l

DO 30 I::::".l _,99'.7 1 3
J==RN(J:)·X-10+1
~'.::::RN< I+".l) ·itt O+'l
!_:=RN< I+2)*1.0+1

30 TRIP<J 1 K1 L)=TRIPCJ,K>L)+1

IFCLAST.EQ.0) RETURN
EXPl=TOT/10.
EXP2::::TQT/C2.*'.l00.)
EXP3::::CTOT*0,999)/(3.*1000.)
CH I 1 =O
CHIZ~'"'O
CHI3=0
D 0 1 '1 0 J= 1 > l 0

CHI1=CHI1+ CONEEJ)-EXP1l**2
DO ·120 K='l ;.10

c; l-i I 2 ~ C 1··1 I 2-t· (P A I F~ (J > ~:) - E :>< P ;2) ·X· ·~"'< :?.
DD 130 l...=~1 1 10

CHI3=CHI3+ <TRIPCJ,K 1 L>-EXP3)**2
'J. 30 CONT I NUE
t;;; 0 CONTINUE
110 CONTINUE

CHI t ·=CHI1 /EXP ·.t
CHI ;~=CHI 2/EXP 2
CH I 3==CH13/EXP:.3
DH>Plr~Y" FREW.JENCY TEST= ">CHI1;" 3.3 I \b.'1"
DI~3PLAY" SERIAL ON PAIRS:= "1CHI2" II '76 / 1.2:3 II

DI~3PUW 11 SE!~:U~L ON TR IPL-::: II ,CHI3_; II <?;;7 /".l0T3 II

F<ETURN
Ei\!D

46

c
C ** MIN., MAX., AND SUM OF 5 TESTS **

c

SUBPiJUTINE Mi'i~)

REAL RN<tOOO>,MX,MN
REAL EXP,DISTC46)
INTEGER MAX<10>,MIN<10),SUM<46) 1 SM
INTECER*4 LAST,TOT
COMMON /TEST/ RN,LAST,TOT
D~TA MAX,MIN/20*0/,SUM/46*0/
DATA DIST/.00001 1 .00005, .00015 1 .01.}035_, .0007 1 .001:.:.~6,

1 . 0 () ;21 / • 0 0 33) ' 0 0 4 9~5) ' 0 () 7 ·.t 5 / . 0 () '? 9 6 i • 0 'l 3 4 / . 0 'l '7 <'\ 5)
2 . 0:.?.20!'5 1 • 027'1 ;·. 03246,. 03'?9:i ;- . 043:2'..~i;. 0484;. O!.'S;.:~8 1

3 . O~'.'i63,. 0587'::.i;. 06 1 , 06 1 ,0!58'75 1 , O!:'..i63,, 052f3,, 048·1 >
.1., , o 4 3 3 ~.~ , . o 3 7 s) s i • o 3 :.:!. 4 6 i I n 2 ·71 i • o ~=- ::.::~ o-5) , o 1 1? .4 ~::.i .r , o 1 :3 A ;-
'.':i • () 0 9 9 6 ; • 0 0 7 'l 5) . 0 0 4 9 5 > ' !J 0 3 :5 > • 0 (J:2 'l ' ' 0 i) '1 ;::~ 6) ' Ci 0 fJ 7 i

6 • 0 0 0 3!5) • 0 0 0 1 ~.'ii ' () () 0 0 5 / . () () 0 0 ·.t /

DO ·10 I=='.l 1 1000 1 5
SM=:::1
MN=:::1
MX=== O
CHISM=O.
CHIMN=O.
CHIMX=O.
K=I+4
DD 20 J:::I 1 K

IF<IHHJ>.LT. MN) MN===RN<J)
IFrnN<J) .GT, MX) MX::::RN(J)

20 SM===SM+RNCJ)•10
IMX=MX**5 * 10 + 1
MAXCIMX>= MAX<IMX)+1
IMN=<1.-MN)·:r.'·X·!S ·;<· 10 +1
MINCIMN)= MINCIMN)+l

10 SUM<SM)= SUM<SM)+l

IFCLAST.EQ.0) RETURN
EXP=TOT/(5. ·X-10.)
DO 30 I===·.t,10

CHIMX=CHIMX + CMAX<I>-EXP>**2
30 CHIMN=CHIMN + <MIN<I>-EXP>**2

CHIMX:=CHIM>~/EXP
CHIMN=CHIMN/EXP
SMTIJT=TOT /5.
DO 40 I=1;4ii

EXP=SMTDT*DISTCil
40 CHISM=CHISM + CCSUMCI>-EXP>**2)/EXP

DI~:;PLr'.:\Y" MA)\ CiF ~5 = II CHIM::< II

·'
DI~3PL(~1Y" i"IIN DF ·- ·- ll CHii\1N; II '
DI '.::PLr~Y 11 SUM DF 1:: -· !l l:i··1:L SM II

· ... i

P ETUF~ N
E::ND

..., ···~

',JI· .•• •
/ 1,S,i'.:)11

::50.3./ bl..i"

47

c
C 'I:·~ Cf.~P TE~3T
(., -·

c

c

SUBROUTINE GAPTST
REr.-1L HN('J.000)
INTEGER GAPC22>,GP,TOT
INTEGER*4 LAST,DUMMY
COMMON /TEST/ RN,LAST,DUMMY
DATA GAP /22·X-0/) GP, EXT, CHIGP /'1, 0., 0. I·
DATA TOT/00/

DD "IO I::::".l,1000
N::::f~N(.l'.)*10

IF<N .EQ. 7) GOTO ".l
GP==:GP+l
GOTO 10

·1 IF <GP . GT. ;:~2) GP:::-·22
GAPCGP):::: GAPCGPl+".l
GP:=!
TOT::::TOT+t

'l 0 CONTINUE

IF<LAST .. EQ. 0) l~ETURN
DO 20 I==t,22
IFCI.EQ.22) GOTO 2
EX = ,'.\ * . 9·X-·X· <I-"l)
EXT=EXT+EX
GOTO 3

2 EX:=:1 , -EXT
3 EXP==EX~·TOT

CHIGP=CHIGP + C<GAP<I>~EXPl**2)/EXP
20 CONTINUE

DISPL.i~Y" GAP TEST :::: II ,CHI GP} II 1'l'6 /
RETURN
END

48

APPENDIX B

FORfRAN CODE FOR GENERATORS TESTED

49

(.,
·' *** THIS IS THE PRAUT GENERATOR
C NOTE 1 ! YOU MUST TYPE :FILE FTN03~TABLE1,0LD

r
\..'

SUBROUTINE INITTAB
REttl ... T<1000)
INTECER·:*4 IX
COMMON /MDNROE/T 1 IX
ACCEPT IX

. lH~3PLAY II I SEED FDR RAND ... II; IX
DO "1 0 I =1 , ·1 0 0 O

10 READ(3;•> T<I>
RETURN
EN:O

FUNCTION TGEN<IPOS>
I~ EAL. T (1 0 0 0)
INTEGER·~.,~ IX
COMMON /MONROE/T,IX
INC=RAND<IX>*1000
IPml=MOD<IPOS+INC; 1000)+"l
TGEN:=T <I POS)

'RETURN
EN:O

so

C THIS IS THE SHUFFLING METHOD
C BY BAYS AND DURHAM, 1976
c

c

SUBROUTINE INITSHUF<ISEED>
RE(.~L. T(".10)
INTECER·l<:4 I~'..EED
COMMON /SHUFF/ T,IADDR
DO 10 I"·:t,10

10 T<I>=RANDCISEED>
IADDR=RANDCISEED)~l0+1
RETUl~N

EN:O

FUNCTION SHUFGEN<ISEED>
REAL T<10)
INTEGER·X:4 ISEl::D
COMMON /SHUFF/ T,IADDR
SHUFGEN::::T < H~D:OR)
T<IADDR>=RANDCISEED>
IADDR=SHUFGEN*10+1
RETURN
END

51

c THIS I~:l "r1 P 01nt1IiLE RNC" BY ~3HRAr·ICE, ·1 <?'79 c

c

FUi"-!CTIOH Po::~ T (I)<>
INTEGER*4 A.P,IX,B15,B16 1 XHI 1 XALD,LEFTLO,FHI>K
COMMON !INIT/ A,B15,B16,P
::<HI==I::</B16
XALO=(IX-XHI*B16)*A
L1::FTLO".:xr:1LO/B 16
FHI=XHI•A+LEFTLO
K::::FHI./Bl'.':)
IX=<<<XALO-LEFTLO*B16>-P>+<FHI-K*B15>*B16>+K
IF<IX.LT.O>IX=IX+P .
PORT=IX*4.656612875E-10
RETURN
EN:O

~)LJBRClUTINE Ii'~ITPORT
INTEGER*4 A,B15,B16,P
COMMON /INIT/ A,B15,B16 1 P
(.~::.~1680'?

B '.\ '.'.'.i=3:~7 6 f:3
B 16::::t,5;:;36
p :::: ;.:~ 14748'.3647
RETURN
EN:O

52

c

c

THIS IS THE GFSR GEN L.El.i.l IS 1 ·.t <.~75

FUNCTION SETRCM,P 1 DELAY 1 Q,WDSIZE>
INTEGER DELAY 1 Q1 DNE 1 WDSIZE 1 M<111>
SETR=P+l
ONE==2**<WDSIZE-1)
DD1I="l1P

1 M (I) ==ONE
DO .4 K==l >WD~3IZE

DO 2 J="1 1 DELAY
2 X=RNDCM 1 P,Q,WDSIZE>

!< OIJNT= O
DO 3 !=1 ,P
ITEMP=ONE/2**<K-"1>
ITEMP~<M<I>-MCI)/ONE*ONE)/ITEMP
IF (I TEMP . EQ. 1) l<Ol.JNT::::!<OUNT+l
IFCK .EQ. WDSIZEl GOTO 3
M<I>=MCI)/2 +ONE

3 CONTINUE
IF< l<OUNT • EQ. P) SETR=I<

4 CONTINUE
DO 5 I:::: 1 > 5 0 0 0

DO !;; J=l > P
5 X=RND<M>P,Q>WDSIZE>

RETURN
END

FUNCTION RND<M,P,Q,WDSIZE>
LOGICAL AA,~B,LCOMPJ 1 LCOMPK
INTEGER A,B,Q,WDSIZE,M<111)
EQUIVAL~NCE <AA,A>,<BB,B> 1 CMCOMPJ>LCOMPJ)
EQUIVALENCE <MCOMPK,LCOMPK>
DATA J /0/
N=<2••<WDSIZE-f>-1>•2+1
J:==J+·.1.
:J:F(J .GT. P) J:=1
l<==:J+Q
IF<K .GT. P) l<=K-P
MCOMPJ=N-M(J)
MCCJMPK=N·-M < K)
A=M<lO
B===M(J)
BB=LCOMPI .AND. AA .OR. LCOMPK .AND. BB
M<J>=B
RND=FLOATCM(J))/FL.OAT<N>
l~ETUl~N

END

53

C THIS IS A BAD GENERATOR
c

·ruNCTIDN BD((.~)

DATA B/.90/,P/3.25/
A :::: A .;-.: B
IF<A ,f;T, 10000) G(J'TO ~5
A :::: A * P

5 :8'D::::A - JINT(r:':\)
RETU~?.N
END

54

I
VITA

.Mark Stephen Monroe

Candidate for the Degree of

~1aster of Science

Thesis: A LESS DETERMINISTIC METHOD OF RANID1 NUMBER GENERATION

Major Field: Industrial Engineering and Management

Biographical :

Personal Data: Born in Cortez, Colorado, January 8, 1959, the
son of William L. and Mary L. Monroe. Married to Judith
J. Lackore on May 23, 1981

Education: Graduated from the American Cornrmmity School of London,
England, in May, 1977; received a Bachelor of Arts Degree in
Mathematics from St. Olaf College, Northfield, Minnesota, in
May, 1981; received a Master of Science Degree in Industrial
Engineering and Management from Oklahoma State University in
December, 1983.

Professional Experience: Teaching Assistant, Department of
Mathematics, St. Olaf College, January, 1980 to May, 1981.
Teaching Assistant, School of Industrial Engineering and
Management, Oklahoma State University, August, 1981 to

. May, 1983.

