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·PREFACE 

As the number of uses for random numbers increases, the need for 

better methods of producing them increases. However, the most widely 

used method today was introduced over thirty years ago. These linear 

congruential generators are fast and compact, but the sequences they 

produce have been under fire for years. 

Attempts have been made to improve congruential sequences by 

shuffling them, but while this solves some of the problems, it does 

not solve all of the problems inherent in such a highly detenninistic 

method. The need was thus seen for a less detenninistic approach. The 

following study introduces such an approach, and compares it to accepted 

generators. 

I wish to express my gratitude to Dr. Joseph H. Mize for his 1deas, 

encouragement, and guidance, as my major adviser. I also extend thanks 

to Dr. J. P. Chandler, Dr. C. Patrick Koelling and Dr. Philip M. Wolfe 

for their guidance as members of my connnittee. Thanks also to Claus 

Christiansen for his help. 

Special thanks to my parents, without whom I would not be here. 

And to my wife for her support and assistance, and especially for putting 

up with my audible thought processes. 
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CHAPTER I 

INTRODUCTION 

A Brief History of Random 

Nwnber Generation 

Man has used methods of generating random nwnbers for centuries. 

This has been mainly for recreational purposes, such as playing cards 

and rolling dice. ~1ost people don't think of rolling dice for craps as 

generating random nwnbers, but it is actually a very good method, 

asswning that the dice are fair. We also make decisions using a simple 

0-1 generator known as a coin. 

~1any more serious uses have arisen for random numbers. These include 

computer simulation techniques, random sampling for statistical analysis 

and a nwnber of problems that are difficult or impossible to solve by 

other means. One might expect those coins and dice to be in constant 

motion, except that most of these applications require far too many 

nwnbers to be able to use such slow methods of generation. It is out 

of this need that faster methods of generation have been developed. 

The first success came with machines that could generate "random 

noise" which was then interpreted as digits. Kendall and Babington­

Smith produced a table of 100,000 random digits in 1939 by such a 

method (Knuth, 1969). The Rand Corporation published a table of one 

million random digits in 1955 using a similar method. 
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While these methods may produce good random sequences, it is 

difficult to attach such a machine to a computer. Also, the sequences 

produced are not repeatable, which is often desirable. A solution to 

these problems is to store a large list of numbers in a computer or on 

tape. However one runs into problems of space required and the possi­

bility of running out of numbers if the sequence is not long enough. 

Because of these shortfalls, a method was needed that could produce 

unlimited numbers and could repeat the same sequence, while not requir­

ing an excessive amount of space on computers. Von Neumann (1951) 

developed the first such generator in 1946 using a computer algorithm 

known as the mid-square method. Since then many other algorithms have 

been developed. These algorithms have become the main source of random 

numbers, when large sequences are needed. It is on these types of 

generators that the remainder of this paper shall focus. Before discus -

sing the various algorithms available, it is necessa:ry to discuss what 

is meant by such terms as "random m.nnbers" and "random sequences". 

What is RandolIUless? 

One can place pieces of paper with the digits 0 through 9 on them 

in a hat and then draw one out. Is the nurnber chosen a random number? 

It would be better expressed as a number chosen at random. Thus, numbers 

are not random, but can be obtained in a random manner. 

What one normally speaks of as a random number generator might be 

better called a random sequence generator. That is, a method of choosing 

nurnbers in a random manner so as to create a sequence with random 

characteristics. 

What then are random characteristics of a sequence? Although 

random sequences can fit various distributions, if none is mentioned it 
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is assl.Uned that the sequence fits a lllliform distribution. That is, the 

probability of finding any specific digit, 0-9, in a given position of 

the sequence should be about 1/10. Likewise, the probability of finding 

any pair of digits in a given pair of locations should be (1/10) 2, and 

so on. 

3 

Most pseudo-random number generators produce sequences of, hopefully, 

llllifonnly distributed.real nl.Unbers on the interval (O, 1). Various fl.lllc­

tions can then be used to transform this standard lllliform output to fit 

a desired distribution. 

Why is it called a pseudo-random nl.Unber generator? The reason is 

that the methods available for generating random sequences are determinis­

tic. That is, each number is a fllllction of some previous value and is 

thus dependent, and cannot truly be called random. The methods available 

simply produce sequences of numbers which can pass a certain nl.Unber of 

statistical tests which check for specific characteristics of random 

sequences. If enough tests are passed then the method is assumed to be 

acceptable. 



CHAPTER II 

PSEUDO-RANDJM SEQUENCE ALGORI1HMS 

As mentioned earlier, Von Newnann first proposed generating random-

sequences by computer algorithm in 1946. He proposed the "middle-square", 

or midsquare, method. Using this method, each nwnber is produced by 

squaring the current mnnber and using the middle digits of the solution 

for the next value. For example, 7316 squared equals 53523856; the next 

nwnber is 5238. Unfort1.Il1ately, this method was plagued with problems. 

It has a very short time before it starts repeating itself (its period). 

It may even turn into a very short loop, such as 5600, 3600, 9600, 1600, 

5600. Or it may simply degenerate, for example 3741, 9950, 0025, 0006, 

0000, Finally, it does not stand up well to empirical testing 

(Forsyth, 1951; Knuth 1969; Shannon, 1975). Because of these problems, 

the midsquare method is no longer used. 

The linear congruential method of generating random nwnbers was 

developed in 1949 by Lehmer (1951; Coveyou, 1960; Hull and Dobell, 

1962, 1964; Knuth, 1969; Smith, 1971). This method, and its nwnerous 

variations, are still the most widely studied and used methods. The 

congruential generators calculate each nwnber from the preceding one 

using the foTimlla x = (a* x 1 + c) mod m. m is generally a large n n-

power of two, such as 235 . (See Hull and Dobell (1962), or Knuth 

(1969), for a discussion on choosing values for a, c, and m.) When 

c = 0 the method is called multiplicative congruential; when c t 0 

it it called mixed congruential. 

4 



There are many arguments throughout the literature on how to 

maximize the period of a congruential generator, minimize serial cor­

relation, and minimize many other problems (Hull and Debell, 1962; 

Coveyou, 1960; Greenberger, 1961). As with the midsquare method, each 

number generated with a congruential generator is completely dependent 

on the previous value. The result is that there will always be serial 

correlation, and other characteristics, that should not exist in a truly 

random sequence. 

This problem becomes very obvious when mapping values from a 

sequence onto a line, square, cube, or higher dimensional space. Indi­

vidual values mapped onto a line cover it unifonnly, as_ do pairs of 

values mapped onto a square. However, when mapping triples onto a cube, 

the space is not covered unifonnly. The points fall into planes cutting 

through the cube (Marsaglia, 1968). 

Attempts have been made to improve linear congruential sequences 

through shuffling. MacLaren and Marsaglia introduced this concept in 

1965. One congruential generator is used to fill a table with pseudo­

random numbers. Another generator is used to "randomly' select values 

from the table. The size of the table is not critical. Its purpose is 

to store values so they may be withdrawn in a different order than they 

were produced. Once a value has been withdrawn the first generator 

replaces it with another (MacLaren and Marsaglia, 1965). 

This method, while taking more time, does reduce many of the 

problems that plague congruential generators. Shuffling breaks the 

dependency between consecutive values generated. But this does not 

solve all of the problems. One example is that, in congruential 

sequences, each nl.IlTlber will occur only once per period. A truly random 
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sequence does not have this restriction, and shuffling the sequence does 

not solve the problem. 

Even though shuffling of congruential sequences does not solve all 

of the problems, it does reduce them, and is worth the extra time 

required (Nance and Overstreet, 1978). Variations on this method have 

been developed by Westlake (1967), and Bays and Durham (1976) . 

.Another type of generator was introduced by Tausworthe in 1965. 

The Tausworthe, or shift register, generator is related to the Lehmer 

congruential method. While linear congruentials are based on the residue 

of an integer product,. modulo m; the Tausworthe methods are based on the 

residue of polynomials, computed modulo a primitive polynomial over the 

Galois field of base two (Tausworthe, 1965; Lewis, 1972, 1975; Tootill, 

1973; Canovos, 1967; Albert, 1937). As might be expected, this is a 

slower method, however it is theoretically sound, and has been shown to 

be more consistent in tests on n-tuples, where congruential methods 

fail. 

In brief, the Tausworthe theorem is as follows. 
n 

sequence of O's and l's generated by~= i~lci*3k-l 

Let a=(ak) be the 

(mod 2) for any 
n . 

c. e (O,l) and c =l, where f(x) = L: c.*xi is primitive over the Galois 
i n i=l i 

field of base two. Then y = (yk) will be uniformly distributed where 
L -t n n 

Yk = tEl 2 Clq.j+r-t for 0 < = r < = 2 - 1, L < = n, (q*2 - 1) = 1 and 

q > L (Lewis, 1975). This type of generator is very sensitive to the 

choice of the primitive trinomial and other parameters, which makes it 

more difficult to use. 

6 

As with the Lehmer generator, there are variations of the Tausworthe 

generator. Lewis and Payne developed the Generalized Feedback Shift 

Regester (GFSR) method (Lewis, 1973, 1975). Bright and Enison produced 

the TLP, or Tausworthe, Lewis, Payne generator (Bright, 1979). 



Although complicating the calculation of each number greatly, these 

methods have not escaped the major problem inherent in the previous 

methods. They are deterministic. Rather than each value being dependent 

on the previous one, it is now dependent on the la.St "L" values. These 

methods have not been tested as extensively as the others, which may be 

due in part to their slowness and difficulty of use. 
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CHAPTER III 

RESEARo--I OBJECTIVE 

Based on the need for less detenninistic methods of pseudo-random 

number generation, the purpose of this study is to develop a less deter­

ministic method of generation. The objective is then to show that the 

proposed method's performance is superior to that of the accepted methods 

on empirical tests. 

One cannot expect any method to perform better on all tests, as the 

methods compared should pass most of the tests used. However, a special 

battel)' of tests will be performed to highlight dependencies between con­

secutive numbers in the sequences. It is on this set especially that 

the proposed method should show promise. 

In addition to empirical tests and comparisons, the theoretical 

properties of sequences produced by the proposed method will be evaluated 

based on a definition of a random sequence. Probabilists and Computer 

Scientists differ on such definitions. Therefore, Chapter V will discuss 

some of the definitions in depth, culminating in a fairly strong defini­

tion. In Chapter VI, the properties of the proposed method will be 

presented based on this definition. 
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QIAPTER IV 

PROPOSED :METIIOD 

To avoid the nonrandom characteristics inherent in highly 

deterministic methods of generating ntunbers the Proposed Method uses a 

uniformly distributed table for its source of random numbers. The table 

contains all of the ntunbers .000, .001, ... , .999. The numbers are 

jumbled so that the probability of finding any specific number in a 

given location of the table is approximately 1/1000. 

The table need be created only once and then stored in the computer. 

The random number generator is then initialized by reading the table 

from its file into an array. The user then supplies a seed value, or 

starting location, in the table. A fast congruential generator is then 

used to supply numbers "uniformly distributed" between 0 and 999. These 

values are then added to the current table location mod 1000 to arrive 

at the next location. The number stored there is the next random number. 

Thus, once the generator is initialized each successive number is 

generated by the following steps: 

1) Generate c. e [0,999] by congruential method (Where c. represents the 
l l 

ith element of the congruential sequence.) 

2) Add c. to current table location mod 1000: 
l 

t. + c. mod 1000 ·:} t. 1 J l J+ 

(Where t. is the current table location and t. 1 is the newly 
J J+ 

derived table location.) 

9 



3) Value rs[.000, .999] located in tj+l is next number (Where r is 

the obtained pseudo-random number.) 

4) Go to 1) and repeat for next number. 

For the remainder of this paper, the generator will be referred to as the 

Pseudo-Random Access, Uniform Table, or PRAUT, method. 

Because the PRAUT method uses exactly 1000 values, it does not have 

the resolution that other methods have. This is not a major problem. 

For most purposes the least significant digits will be irrelevant. 

However, there will be times when further resolution would be useful. 

Under these circumstances two values can be generated and combined as 

follows: r = r. + .OOl*r.+l" This produces six digit numbers while 
J J 

requiring more time to generate. However, if the last three digits are 

important it would not be wise to depend on the randomness of these 

digits in a congruential sequence (see Chapter VI). 

10 

Both the randomness and the relatively long period of this generator 

can be improve~ by an additional step. The only way the generator can 

cycle is if the congruential generator providing addresses begins its 

cycle when the current table location is the same as it was at the start 

of an earlier cycle of the congruential generator. But if we were to 

change the table as we generate nlUilbers, the chances of cycling within 

the life time of this universe are extremely remote. 

A method of doing this is as follows. After using the value 

located in a position, one switches the value with another. Given that 

the current table location is tj+l' found by tj + ci mod 1000; switch 

its contents with that in location tj+l + ci mod 1000. Thus, the next 

time that the location tj+l is arrived at, the probability that the 

number that brought it there was the same as c. is 1/1000. So the nlUilbers 
J 

switched have a very low probability of getting switched back. 



The generator will be discussed with and without this step as the 

author feels that its performance should be satisfactory without it. It 

involves a trade off between period length and possible randomness and 

time taken to generate. 

The remaining unexplained part of the PRAUT generator is how the 

table is created. Because the table is created only once, its creation 

can be as thorough as one desires. However, the following method should 

be sufficient. 

The proposed operation has two steps. First fill the table in a 

somewhat random manner and then shuffle it. The filling operation is 

similar to the method of locating nlllnbers when generating. Starting at 

some position in the table, generate a nlllnber [O, 999] using a congruen-

tial generator and add it to the current location mod 1000. If that 

position is already taken then simply repeat lllltil an empty one is 

found. When the nlllnbers .000 through .999 are in the table the second 

step begins. 

The second step is identical to the optional step in generating 

nlllnbers. That is switching the contents of each location t. + c. mod 
J l 

1000 with t. + 2c. mod 1000. Once this has been done· a few thousand 
J l 

times there should be no resemblance to the table after step one. 

Note that the randomness of the table is not critical as the method 

of obtaining each nlllnber from the table uses pseudo-random addresses. 

However, if the table was not jumbled, but merely the sequence .000, 

.001, ... , .999, and if the addresses generated by the congruential 

method were used in an absolute fashion, rather than relative to the 

last location, then the generator would perform only as well as the con­

gruential generator used. It is the relative addressing, the randomness 
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of the table, and the optional jlilTibling of entries during execution that 

separates the sequence produced by PRAUT from the nonrandom characteris­

tics of the congruential method. 'This will be discussed in more detail 

under theoretical properties of the PRAUf method (Chapter VI). 
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rnAPTER V 

Sa.ffi DEFINITIONS OF RANl)()J-,1NESS 

Before discussing the theoretical behavior of the PRAUT generator, 

we should look more closely at what a random sequence is. There is no 

single recognized definition of a random sequence, although many have 

been proposed. 

Lehmer (1951) defined a random sequence as 

a vague notion embodying the idea of a sequence in which each 
tenn is unpredictable to the uninitiated and whose digits 
pass a certain number of tests; traditional with statisticians 
and depending somewhat on the uses to which the sequence is to 
be put (p. 141). 

There are several problems with this definition which represent 

common mistakes or misconceptions of randonmess. The most glaring is 

the phrase "unpredictable to the uninitiated". This would imply that 

those of us who have studied randonmess could somehow observe a sequence 

and predict values that are to come. Nothing could be further from the 

truth. A factor that should be included in any definition of a random 

sequence is that each value is independent of all other values. There-

fore, any method of predicting values based on previous values, or any 

other method, will succeed in the long run one out of n times, where n 

is the number of possible values. 

The other main problem with the Lehmer definition is the phrase 

"whose digits pass a certain number of tests, . . . ". A random sequence 

should pass statistical tests, but passing statistical tests in no way 

13 
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assures randoTirrless. This is because, for example, each element of a 

sequence must be independent of all others, and must be unifonnly 

distributed on [O, 1). But there is no way to empirically test for 

independence or for unifonn distribution because one cannot generate an 

infinite sequence, which would be required for such tests. One can show 

that, in the long run, a sequence covers the interval [O, 1) fairly uni-

formly, but one cannot show that any element U. has an equal chance of 
1 

having any of the possible values. 

Given any finite set of tests, there will always be a sequence 
of ntnllbers that will pass all of the tests but is totally 
lillacceptable for some particular application. It is always 
possible that it will have patterns that remain undetected 
despite intensive testing (Shannon, 1975, p. 356). 

From this we can see that a definition cannot be based on vague intuitive 

notions, or empirical tests. It IIIllSt be based on theoretical characteris-

tics. Or, as Knuth (1969, p. 128) says, "what we really want is a 

relatively short list of mathematical properties, " 

A number of authors have delved into more theoretical definitions 

of random sequences. Knuth's (1969) discussion entitled "What is a 

Random Sequence?" covers some of the commonly mentioned definitions. 

These however are still not entirely correct. They will be discussed 

and compared to a more robust definition. 

Knuth (1969) starts with the definition of equidistribution. 

Definition 1: "The sequence of u0 , u1, . . . is equidistributed 

if and only if Pr (u < = U < v) = v-u for all u, v with 0 < = u < v < n 

= l" (p. 128). (Note: The author finds the notation (u < = U < v) to 
n 

be inconsistent with previous use, however the following discussion should 

clarify the meaning.) It follows that any independent, unifonnly distri­

buted sequence is equidistributed, by the following theorem. 



Theorem 1: 

Let us carry out a sequence of identical independent experiments, 
in each of which the event A has probability p=P(A) (O<p<l). 
Let v denote the frequency of the occurence of the event A in 
the course of the first n experiments. Then one has v /n~p 
(Renyi, 1970, p. 195). n 

In other words, if A is the event that u < = U < v, then the relative n 

frequency of the occurrence of A tends in probability toward (v-u) as n 

increases. 

Equidistribution is a useful definition, as it is empirically 

testable, to some extent. That is, one can determine, given a sequence 

of numbers, the number of values that fall in any interval in [O, 1). 

Unfortunately, this is not a strong enough condition to represent random­

ness. Many nonrandom sequences are equidistributed, for example (1/2, 

1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, ..• ). Note that the components 

of this sequence are neither independent nor uniformly distributed. 

Knuth (1969) also shows that equidistribution is inadequate and 

proceeds into more robust definitions. 

Definition 2: "The sequence u0, u1, is said to be k-distri-

buted if Pr(u1 < = Un < v1, ... , ~ < = Un+k-l < vk) = Cv1 - u1) 

(vk - ~) for all choices of real numbers u, v with 0 < = 

for 1 < = j < = k" (p. 129). 

u. < v. < 
J J 

Definition 3: "A sequence is said to be 00-distributed if it is 

= 1 

k-distributed for all positive integers k" (p. 129). After many more 

definitions Knuth (1969) falls back to his definition Rl which states 

that "a [O, 1) sequence is defined to be 'random' if it is an 00-distri-

buted sequence" (p. 138) . 

The concept of an 00-distributed sequence was introduced by Franklin 

15 

in 1963 under the name "completely equidistributed''. It is a well studied 
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concept, but as Knuth (1969) states, "an infinite sequence which is 

oo-distributed satisfies a great many useful properties which are expected 

of random sequences, ... " (p. 150). That is, 00-distributed does not 

mean random, but rather it means that a sequence has a lot of random 

qualities. There are problems with it. For example, one can find non­

random sequences which are oo-distributed. There are also problems with 

definitions that require infinite sequences, when only finite sequences 

can be generated and used. 

The first problem is probably the greater of the two. The fact that 

sequences exist which are 00-distributed but definitely not random can be 

seen through a simple extension of Knuth's proof that equidistribution is 

not random. Knuth shows that any two equidistributed sequences u0, u1, 

. and V 0, V 1, . • . can be used to fonn W = (W 0, W 1, . . . ) where 

W = l/2U0, l/2+1/2V0, l/2U1, l/2+1/2V1, . . . . While this is obviously 

not an acceptable random sequence, it is equidistributed. This example 

does not affect 00-distributed as the sequence is not even 2-distributed. 

However the following example produces a sequence which is 00-distributed. 

Let U0, u1, ... and v0, v1, ... be 00-distributed sequences. 

The values of u0, u1, .•. will be transfonned to become w0, W1, ... 

and the positions and values of v0, .v1 , ... will direct the process. 

The sequence V has two flillctions. First, even positions, v0, v2, V 4, 

. represent the function W = l/2Ui, while odd positions, V1 , v3, V5, 

, represent the function W = 1/2 + l/2U .. Second, the value of 
1 

each V. detennines how many times the function its position represents 
1 

will be used. That is, if V. < = .5 then the next two elements of W 
1 

will be detennined by the flillction V. represents. If V. < .5 then only 
l 1 

the next one element will be detennined by the flillction V. represents. 
l 



Control of the sequence then moves to V. 1 to detennine the fate of the 
i+ 

next one or two elements.of W. 

To illustrate, let the values of W produced by l/2U. , and therefore 
1 

lying in [O, 1/2), be depicted as "-", and the values produced by 1/2 + 

l/2U., and thus lying in [1/2, 1), be represented as "+". The following 
1 

sequence V will then produce the sequence W shown. 

VO v1 v2 v3 V4 vs v6 v7 vs 

v { . 371 . 423 . 744 . ll9 .625 . 978 . 763 .234 .469 

w { + + + + + 

17 

This sequence will have an equal number of values in [O, 1/2) to those in 

[1/2, 1), and there is no way to know which values will be which, other 

than W0 . This sequence would even appear to be random at first glance. 

Its only problem is that there are never more than two consecutive 

values greater than .5, or less than .5. But this sequence is 00-distri-

buted. That is, there is no way to subdivide the sequence into k-tuples 

so that +' s and - 's do not fall lilliformly. Thus, as with equidistribution, 

a stronger property is needed. That does not necessarily mean an exten-

sion of 00-distributed, as Knuth has already pointed out problems with 

some of these. Perhaps one should shy away from definitions requiring 

infinite sequences, as they tend to fall prey to such manipulation. The 

second problem mentioned will further illustrate this problem. 

The second problem is that an infinite sequence can, and will, have 

finite subsequences that do not look random. For example, one million 

zeros in a row. This is perfectly acceptable in an infinite random 

sequence, and will not affect the sequence's chances of being 00-distri-

buted. Unfortunately, this is not true of finite sequences. Although 
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long, seemingly non-random subsequences can occur in finite random 

sequences, it is both unlikely and unacceptable. 1herefore, since all 

random sequences used are finite, this is not a very practical 

definition. 

One could modify the definition of 00-distributed to m-distributed. 

Definition 4: A sequence is said to be m-distributed if it is 

. k-distributed for all positive integers k < = m. But what happens when 

k = m? We then have a one-to-one correspondence, which means that 

Pr (u. < = U. < v.) = (v. - u.) for all i < = m. Suddenly the meaning 
J 1 J J J 

is changed. No longer is U used, as it represents an infinite number n 

of values of which a certain percent fall between u and v. Now U. is 
1 

used, representing one component of the sequence, which has a certain 

chance of having a value between u and v. 1his assumes independent 

and unifonn distribution of individual components, aspects which Knuth 

avoids. 

1he concept of independence of components of a sequence has been 

brought up throughout this discussion. In order to discuss independence, 

a different view of a random sequence is needed. Rather than being ahy 

infinite sequence that meets certain criterion, think of a random 

sequence as a sequence of random variables, or experiments. Each experi-

ment has a number of possible outcomes, or events, each as likely as all 

others. 1hese events must be independent of one another, which is to say 

that, given any finite number, n, of events, A., Pr (A. *A.+l * 1 1 1 
*A. 1) = P(A.)*P(A. 1)* .•. *P(A.+ 1). The following theorem shows 1+n- 1 1+ . 1 n-
why this is important to random sequences. 

1heorem 2: Given a sequence of events A., whose probabilities 
1 

P(A) are all positive, " ... a necessary and sufficient condition for 
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mutual independence of the events is the satisfaction of the equations 

PAil Aiz ... Aik (Ai) = P(Ai), for any pairwise different ii, iz, 
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ik, i" (Kolmogorov, 1956, p. 12). That is, given that events Ail through 

Aik have occurred, the probability that Ai occurs is equal to the probability 

that Ai would have occurred anyway. One should be able to stop at any 

point in the generation of a truly random sequence and have no way of 

predicting the next value based on previous values. This property is 

unique to independent components and is the major downfall of the Knuth 

definitions, which define no relationship between individual components. 

Independence is not the only pr~perty needed. The numbers generated 

are expected to form a uniform distribution. Thus, each component must 

be identically uniformly distributed. The result is the same as that 

desired by the Knuth definitions. 

Combining the properties given above produces the following 

definition. 

Definition 5: For the purposes of uniform random sequence genera-

tion on [O, 1), a sequence Uo, U1, is said to be random if and 

only if each element, Ui, consists of an identical set of possible out­

comes, Ai, Az, ... , An, which are uniformly distributed on [O, 1), 

are all equally likely, and for any_ k elements P(Aj 1 *Ajz * . *Ajk) = 

P(Aj 1) *P(Ajz) *· .. *P(Ajk). That is to say, for the purpose of uniform 

random sequence generation, a sequence is said to be random if and only 

if each component of the sequence is uniformly distributed on [O, 1), and 

is independent of all other components, or combinations thereof. 

This definition is assumed throughout the re1aainder of this paper, 

and is especially important to the discussion of the theoretical properties 

of the PRAUT method. 



CHAPTER VI 

SOME 1HEORETICAL PROPERTIES OF 

1HE PRAITT METIIOD 

There are a number of characteristics to consider when comparing 

random number generators. These include the speed of the generator, the 

amolillt of space it requires in the computer, and the actual numbers it 

produces. The first two characteristics, speed and space, will be 

discussed in Chapter VIII, Comparison of Methods, where several 

generators are compared to the PRAUT method. 

In this chapter several characteristics of congruential generators 

and the PRAITT generator will be compared. The relative length of the 

periods of the two methods will be discussed first. The second topic 

discussed will be how the non-random characteristics of the congruential 

addressing generator affect the PRAUT sequences. Finally, the expected 

characteristics of the PRAUT method will be discussed in relation to the 

definition of randoI!Illess. 

The Period 

All of the previously discussed generators cycle, or repeat 

themselves. Since the numbers they produce are detenninistic, derived 

from a previous number, whenever a number produced is exactly the same 

as at some time earlier the sequence will begin to cycle. The mnnber of 

values produced per cycle is called the period. 
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If the pannaeters for a linear congruential generator are well 

chosen the period will be very long, such as 235. 1his should easily 

be long enough that, for practical purposes, it will never occur. 

21 

1he PRAlJf generator cycles only if the addressing generator cycles, 

and then the table location must be exactly the same as it was when the 

addressing generator cycled some time previously. Suppose the congruen­

tial addressing generator cycles after 235 elements, or 34,359,738,368. 

1hen 235 mod 1000 is the difference between the table location at the 

start and end of the cycle. Since in this case that equals 368, each 

number generated during this cycle of the addressing generator will be 

368 table positions (mod 1000) from the number generated 235 values 

earlier. TI1e PRAUT generator has not cycled. It will not cycle until 

the addressing generator cycles 125 times, as (125*368) mod 1000 = 0. 

At this point almost 4.2 trillion numbers will have been generated. 

1he period of most congruential generators is long enough to 

assure that the period of the PRAlJf generator is more than long enough 

for practical purposes. If by some chance there would be an astronomical 

problem to solve requiring constant, noncycling random numbers, the 

period of the PRAlJf generator with shuffling is longer than 102500. 

Severe Congruential Problems Produce 

Only Small PRAUT Problems 

Random numbers, when plotted in any dimension, should cover it 

uniformly. Naturally, a random number generator does not have the 

resolution to achieve all possible values in [O, 1). 1herefore, each 

dimension will be considered in .001 increments. 1his means that one 

space has 1000 possible values. Two space has 1000*1000, or one 



million pairs. Three space has one billion possible triples, and four 

space has one trillion possible quadruples. Since a good congruential 

generator can cover one and two space, it should be able to achieve all 

one thousand and one million values and pairs. It will not be able to 

achieve all one billion triples, because the triples will fall into 

planes in three space. Assume that the congruential generator can 

achieve only 100 million of the one billion possible triples, and only 

3 billion of the one trillion quadruples. What effect will this have 

on the PRAUT sequence? 

The PRAUT generator will certainly be able to produce the 1000 

values in one space~ Since the addressing generator can produce all 

1000 address increments, and they can occur at any table location, the 

PRAUT generator will be able to produce all one million pairs. In the 

same manner, since the addressing generator can produce any pair, the 

PRAUT generator, starting at any location, can produce all one billion 

triples. However, since the addressing generator can produce only 100 

million triples, the PRAUT generator can produce only 100 billion quad­

ruples. The PRAUT method is thus flawed by its addressing generator. 

Table I shows, however, that it remains better than the congruential. 

1 
2 
3 
4 

TABLE I 

POINTS IN N-SPACE AGIIEVABLE BY CONGRUENTIAL 
OR PRAUT GENERATORS 

Possible Congruential PRAUT 

space 1000 1000 1000 
space 1 million 1 million 1 million 
space 1 billion 100 million 1 billion 
space 1 trilion 3 billion 100 billion 

22 
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The flaw is even smaller than it first appears. Although the 100 

million triples produced by the congruential generator fall into planes, 

the quadruples produces with the PRAUT generator do not. For example, 

suppose that 100, 100, 100 is a possible triple for the addressing 

generator. This sequence may start at any location in the PRAUT table. 

Therefore locations 1, 101, 201, 301 are possible in sequence, as are 2, 

102, 202, 302, and so forth. These location sequences obviously fonn 

patte111.S; however, the values stored at each location are unrelated to 

the location. Therefore the location sequence 1, 101, 201, 301 may 

produce .933, .271, .358, .647, or any other set of values. It can be 

seen then, that although the congruential triples fit into planes, the 

quadruples that they produce are scattered at random throughout four 

space. 

The difference in magnitude of these two problems can be seen 

through empirical testing. Graphing only a few hundred triples from a 

congruential generator s~ows the development of distinct planes. In 

contrast, even 100 billion quadruples from the PRAUT generator, if some­

how graphed, would be scattered across four space in a random manner. 

The only way to tell that not all one trillion quadruples were possible 

would be to graph several htm.dred billion of them and realize that 

although the pattern still looks random, it is not covering any new 

space. All possible quadruples, quintuples, and so on would be obtainable 

if the congruential sequence were shuffled, or if the PRAUT table, or 

sequence, were shuffled. However, this would be lillllecessary tm.less more 

than a trillion number sequence was needed. 
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1heoretical Distribution of 

Sequences Generated 

According to the definition of randomness, each ntunber should be 

independent of all others and have an equal chance of having any of the 

possible values. This means that if values for •.. U. 2, U. 1 have 
l- l-

occurred, Pr(u < = U. < v) = v - u. When using a congruential generator, 
l 

ifU .. 2 was in [.50, .51), andU. 1 was in [.65, 66), it may not be 
l- l-

possible for U. to occur in [.31, .32). This is demonstrated through 
l 

its failure to cover three space. This problem is smoothed out when 

using the PRAUI' method. 

In the PRAUT method, if U. 2 is in [.50, .51), this means that the 
l-

table location could have been any of ten locations spread randomly 

throughout the table. This is also true for Ui-1 occurring in [.65, 66). 

In order for this sequence to occur the addressing generator has to 

produce one of the 100 increments that define the relationships between 

the locations of these values. Not all of these possible increments 

will have the same probability of occurring, but the average of the 

probabilities will be very close to 100/1000, or .1, the expect~d overall 

probability. 

Given that Ui_ 2 and Ui-l have occurred as stated, t~ere are 100 

possible address increments to make U. occur in [.31, .32). · Again, not 
l 

all of these increments are as probable as they should be, others will 

be more probable; so the average will be near .1. Thus the probability 

of U. 1, U. having these values, given U. 2, is roughly .1 * .1 or .01, 
l- l l-

using the PRAUT method, which is the expected outcome. The probability 

of the above sequence occurring using a linear congruential generator 

was 0. 



GIAPTER VII 

EMPIRICAL TESTS 

1he tests used for this research are all standard accepted tests, 

discussed by such authors as Knuth (1969) and Lewis (1975). 1he tests 

used are the frequency test, serial test on pairs and on triples, minimum 

of five values, maximum of five values, sum of five values, and the gap 

test. Each will be explained here. Each uses the chi-square test to 

compare .the sequence generated to theoretical distributions (see 

Appendix A for computer code of the tests). 

Frequency Test 

Given some number, n, of random numbers, and some values, u and v, 

such that 0 < = u < v < = l; approximately n*(v - u) values should fall 

in [u, v). By dividing the interval [O, 1) into k subintervals, and 

generating n pseudo-random numbers, the number that fall within each 

subinterval can be tallied. 1hese totals are then compared to the 

expected totals for goodness of fit. 

Serial Test on Pairs and Triples 

1hese tests are very similar to the frequency test. Just as 

P(u < = u < v) = (v - u), P(u1 <=Uk< vi, u2 < = Ui+l < v2) = Cv1 -

v2)Cv2- u2), and so on. Sequences are generated, the number of pairs 

that fall within any set of subsequences are tallied and the totals 
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compared to the expected totals. The process is the same when testing 

triples. 

While the freqilency test alone reveals nothing about the distribution 

of individual values, the addition of the serial tests greatly strengthens 

the evidence for, or against,unifonnity. 

Minimum of Five Values 

Given any five random nlilTlbers, the probability that all of them 

are greater than some value, x, is (l-x) 5. Based on this expected 

distribution, a sequence can be generated and the minirnlilTl value of each 

five elements tallied. The resulting distribution is compared to the 

expected distribution. 

MaxirnlilTl of Five Values 

This test is identical to the minirnlilTl test, except x5 is used for 

calculation, instead of (l-x) 5. 

Sum of Five Values 

If each number generated is converted to an integer, ie .. 000-.009 

became 0, then the s urn of each five numbers will range from 0 to 45. 

Each of these outcomes has a positive probability. For example, of the 

100,000 possible outcomes, only (0, 0, 0, 0, 0) produces a sum of 0. 

It therefore has a probability of .00001. There are five ways to obtain 

a SlilTl of 1, fifteen ways of obtaining a SlilTl of 2 , and so on. As with 

the other tests, a sequence is generated, the sums of each set of 

values are calculated, tallied, and the outcome compared to the 

theoretical distribution. 
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Gap Test 

The probability that consecutive elements of a sequence will have 

values from an interval such as [.700, .800) is (.800 - .700), or 0.1. 

The probability of values within the interval occurring separated by one 

other value is 0.09. The probability of values within the interval 

occurring separated by two other values is 0.081, and so on. The gap 

test measures the intervals, or gaps, between elements with values from 

a selected interval, and how often each size gap occurs. The results 

are tallied and compared to theoretical results. 

Special Tests 

This battery of tests should discredit most methods of generation, 

however the better methods should pass. It is therefore.necessary to 

perform more stringent testing in order to compare these methods. One 

may recall that a major problem with pseudo-random sequences is that 

the ntunbers are not independent of one another. In most cases each ntun­

ber is dependent on the previous value. If the dependency is too great, 

the tests already described will uncover it. The following method was 

developed to catch some of the methods whose dependency is a little 

better disguised. 

Usually empirical tests are applied to all values generated by a 

method, however if one were to test only the values occurring after 

elements with values in a chosen interval, such as [.700, .799), the 

subsequence obtained should be perfectly random, if the entire sequence 

is. But if the values are dependent on the previous value, then the 

subsequence will not be random at all, and should fail the empirical 

tests too frequently. Therefore, each pseudo-random ntunber generator 
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tested will not only be submitted to the seven accepted tests described, 

but this subsequence will be detennined and submitted to the same battery 

of tests. 



CHAPTER VI I I 

CCMPARISON OF :MEIBODS 

One may discuss the theoretical characteristics of a generator all 

one likes, but the only way to determine if it is as good as other methods 

is to empirically test them side by side and compare results. The PRAUT 

method will be compared to a linear congruential method (Schrange, 1979), 

the GFSR method (Lewis, 1973), and the Hewlett Packard (HP3000) RNG. 

A shuffling method will also be compared using various methods for 

values (Bays, 1976). The testing procedures will be discussed first, 

followed by the results and comparisons. 

The testing procedures can be broken into three sections: 1) Stan­

dard tests perfonned on each generator, 2) special indepedence tests 

perfonned on each generator, and 3) special comparison of PRAUT and 

shuffling methods. 

For the standard tests a sequence of 100,000 numbers from a 

generator are submitted to the seven tests discussed earlier. The 

result is seven chi-square values. If a chi-square value fails at the 

5% or 95% level then the sequence is considered to have failed that test. 

Ten sequences from each generator are tested so that the expectation is 

one failure out of the ten sequences on each test. 

Recall that the special independence test developed only tests 

about one out of eve:ry ten values. About 500,000 values were generated 

each time in order to be able to test sequences of 50,000. Again, ten 
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sequences were tested from each generator so that one should expect 

about seven failures out of 70 tes~s. 
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The PRAUT method and shuffling methods may look similar because of 

the use of a table of numbers and random accessing, however this last 

set of tests shows that the similarity ends there. In the previous two 

sections of tests the HP generator was used with the two methods. In 

this section a very poor generator is used for addressing in the PRAUf 

method, and for the shuffling method. The intent is to show that 

shuffling the sequence improves it very little, while using it for 

addresses in the PRAUf method still produces a very good sequence. 

The same tests as those in sections one and two are used on 

sequences of 100,000 and 50,000 numbers. Only five sequences are 

tested for each generator as the results ar.e clear by that point. 

Failure rate is expected to be 0 or 1 out of 5. 

Results and Comparisons 

Testing began with the hope that all five generators would pass 

the first set of tests, to illustrate that they are all relatively 

good generators. It was then hoped that the special independence test 

would show some superiority of the PRAUf method. Finally, the special 

comparison of the PRAlIT and shuffling methods was intended to show that 

the PRAlIT is not simply a shuffling method in disguise. 

The results of the standard tests are shown in Table II. The PRA.lIT, 

HP3000, shuffling, and linear congruential methods all did very well, 

all passing arolID.d 90% of the tests with no generator falling below 80% 

on any given test. Unfortunately, the GFSR generator did not fare as 

well. It appears that if the delay parameter was too small then the 



sequence failed the gap test. If the delay was large enough to pass 

the gap test then the Sum of 5 test had a high failure rate. As the 

purpose of this study is not to uncover such problems they will not 
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be discussed in depth. Let if suffice to say that the small word size 

of the HP3000 and the extreme sensitivity of the input parameters for 

the GFSR method led to the problem. Because the rest of the results 

were good and GFSR results were seemingly unavoidable, analysis pro­

ceeded to the special tests. 

TABLE II 

RESULTS OF STANDARD STATISTICAL TESTS* 

Tests PRAUT HP3000 Shuffle LinCong GFSR 

Frequency 10 9 10 10 9 
Pairs 9 10 9 9 8 
Triples 9 10 8 9 8 
Max of 5 8 10 8 10 8 
Min of 5 9 9 9 10 9 
Sum of 5 10 8 10 8 5 
Gap 9 9 8 9 4 
Average 9.14 9.28 8.86 9.28 7.28 

*Numbers represent the number of sequences that passed the 
test out of the ten tries. 1 

The results of the special independence tests can be found in 

Table III. It can easily be seen that while the PRAUT method maintained 

its average, the other methods did not. All four of the methods com­

pared had tests which were passed only 70% of the time or less. Note 

that the GFSR method actually performed better than in the standard 
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tests. Since its failure of the gap test was due to problems with 

consecutive strings of numbers, this disappeared when working with only 

selected values. The problem with the Sum of 5 test remained. 

TABLE III 

RESULTS OF SPECIALIZED STATISTICAL TESTS* 

Test PRAUf HP3000 Shuffle Lin Cong GFSR 

Frequency 9 9 9 7 10 
Pairs 10 9 9 8 9 
Triples 10 9 10 7 8 
Max of 5 9 9 6 9 9 
Min of 5 10 7 9 9 9 
Sum of 5 9 9 7 8 5 
Gap 8 7 9 9 9 
Average 9.28 8.43 8.43 8.14 8.43 

*Numbers represent the ntnnber of sequences that passed the 
test out of ten tries. 

The results of these two sets of tests illustrate that the 

normally accepted empirical tests do not llllcover dependencies which 

are known to exist. It shows that these dependencies significantly 

affect the beh1vior of the sequences generated by linear congruential 

and feedback shift register methods, and that shuffling the sequences 

does not solve the problem. Finally, these tests strengthen the claim 

!hat consecutive valuPs generated by the PRAUf method are independent. 

They do not, however, prove that claim, nor do they indicate anything 

about the independence of nonconsecutive values. 

Al though the PRAUf and shuffling methods were compared in the 

previous tests and the PRAUf method preformed better, their differences 
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are better illustrated through a comparison using a poor seed generator. 

See Table IV for results. 

Looking first at the standard tests, one can see that the poor 

generator only passed around 50% of the time. Shuffling the sequence 

did not help at all as it only passed 43% of the time. On the other 

hand, the PRAUT sequence passed over 88% of the time and would thus be 

considered acceptable. 

Moving on to the special tests, the poor generator failed 

completely, showing that each value is very dependent on the last. 

Shuffling the values helped, but still passed less than 40% of the 

time. The PRAUT method, however, show~d no signs of deterioration, 

even at this stage. This would indicate that one does not need a 

very good addressing generator at all in order to obtain acceptable 

sequences. 

Other Attributes of the Generators 

While the quality of the sequences produced is the main concern 

in generating pseudo-random numbers, the size and speed of the algo­

rithms are also important. The algorit~ should not use excessive 

amounts of core storage, and because the algorithm is generally called 

many times during a program, it should be as fast as possible. 

Because the quality of the sequence is most important, it is generally 

assumed that if the size and speed are acceptable to the user, then 

the sequence is the sole determining factor in choosing a method. 

None of the methods compared are excessively long. The PRAUT 

method is probably the longest because of the table of 1000 values 



TABLE IV 

RESULTS OF COMPARISON OF PRAITT AND SHUFFLING MEIBODS 
USING A POOR SEED GENERATOR* 

Standard Tests Special Tests 

Tests PRAUT· Shuffle Poor PRAUT Shuffle 

Frequency 5 0 2 5 1 
Pairs 5 2. 4 5 4 
Triples 4 3 3 5 3 
Max of 5 3 0 0 4 0 
Min of 5 5 0 1 3 1 
Sum of 5 4 5 4 5 0 
Gap 5 5 4 4 4 
Average 4.43 2.14 2.57 4.43 1. 86 

Poor 

0 
0 
0 
0 
0 
0 
0 
0.0 

*Numbers represent the number of sequences that passed the test 
out of five nms. 
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used. The GFSR method uses a table which may be that large, but does 

not have to be. It also requires much more code than the other methods. 

These differences, however, are unimportant, as none of the methods use 

an excessive amount of space. 

The speeds of the generators are more easily compared, as actual 

times per number can be calculated. The following times pertain to an 

HP3000 series 30. Although speeds will differ between machines, the 

relative times will remain about the same. 

Three of the generators require initialization. The shuffling 

method requires 296 CPU milliseconds to initialize a table of size 

ten. The PRAUT method requires 21,048 milliseconds to read the tabl~ 

from a file, or up to 5300 milliseconds to generate a table. The 

GFSR generator requires 177,500 milliseconds to initialize. This may 

be considered excessive as it translates to nearly three minutes. 

The actual generation time per number varies a great deal as 

well. The fastest method was the HP3000 generator at 0.26 ms per 

number. Because this generator was used for addressing in the PRAUT 

method and for the shuffling method, these must naturally be slower. 

The PRAUT required 0.44 ms and shuffling required 0.48 ms. The 

slowest methods were the portable linear congruential at 0.72 ms, 

and the GFSR at 0.77. The PRAUT generator was thus the second 

fastest. 

The poor generator was also timed, as it is merely a deformation 

of a fairly good generator designed by the author. (The code for 

this method can be found in Appendis B.) This generator requires 

an initialization and takes 0.27 ms per number. It therefore is nearly 



as fast as the HP3000 generator and could thus be used for the PR~UT 

method. This is useful, as it is .portable, as is the PRAUT method. 
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rnAPTER IX 

CONCLUSIONS 

'Ihe main objective of this research was to develop a less 

detenninistic method of random number generation than the accepted 

methods, and to show that it out perfonns them on empirical tests. 'Ihe 

PRAUT generator was shown to be less detenninistic than the extensively 

used linear congruential methods through a theoretical discussion of 

the properties of the sequences. 'Ihe probability of an element of a 

sequence ha\ring a value within a specific interval is much less influenced 

by previous values in the PRAUT method. 'Ihe PRAUT generator can produce 

more of the possible combinations of values than congruential methods. 

'Ihe important result of a less detenninistic method is that the 

sequences produced more closely resemble truly random sequences. 

'Ihrough empirical testing of the PRAUT and accepted methods, the PRAUT 

generator was shown to perform better. Specifically, on empirical 

tests of subsequences of the sequences generated, the PRAUT method 

passed over 90% of the time, while the other methods tested only · 

passed between 80% and 85% of the time. Also, when a poor address 

generator was used for the PRAUT and shuffling methods, the PRAUT 

method was hardly affected, passing 88% of the time. 'Ihe shuffled 

sequence did not even pass 50% of the time. 

Based on these results, the PRAUT generator is recorrnnended as a 

method of producing better pseudo-random sequences. 'Ihere may be cases 
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where only very specific attributes of a sequence are needed, which a 

congruential generator may provide. In these cases a congruential 

generator may be acceptable. 

The PRAlIT method fairs well on the other important factors in 

choosing a generator as well. While not the fastest generator, it 

does produce numbers faster than the shuffling, GFSR, and portable con­

gruential generators tested, making it the fastest of the portable 

generators tested. The PRAlIT method also requires an acceptable amount 

of space. The table of 1000 values used makes its the most space con­

suming generator tested, however, there is very little need for being 

as small as the congruential methods. 

The PRAUI' method is thus a fast generator which produces better 

pseudo-random sequences, through a less detenninistic approach. Its 

only trade off is a small, but acceptable, amount of space. It is 

therefore recommended as a better method of generating pseudo-random 

sequences. 
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43 



c ·:·;.·;<; 

c 
RANDOM NUMBER GENERATOR TESTER 

C USES: FREQUENCY, SERIAL ON PAIRS & TRIPLETS, GAP, 
C MIN,MAX & SUM OF 5. 

I=< Ef.~L RN< ·100 0 ) 
INTEGER*4 LAST,TOT,ISEED 
COMMON /TEST/ RN,LAST,TOT 
SYSTEM INTRINSIC RANDl,RAND 
DISPLAY" THIS RUN IS TESTING HP'S RAND 
DISPLAY 11 ** 
ISEED==RANDl 
ISEED=RANDCISEED>*1.E+07 
DI ~:>PLAY II II 

DISPLAY II !SEED~ 11 ,ISEED 
TOT=::· 100000 
L.AST"" 0 
DD 1 0 I=l , ·.t 0 0 
IF (I . EQ. ".l 0 0) LAST== 1 

DO 20 J=t,·1000 · 
20 RNCJ)~ RANDCISEED) 

CALI. .. El]UI :0 
CALL MMS 
CALL GAPTST 

10 CONTINUE 
STOP 
El"-l"D 

II 

II 
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C ** RANDOM NUMBER GENERATOR TESTER ** 
C SPECIAL SUBSEQUENCE TEST 
c 
C USES: FREQUENCY, SERIAL ON PAIRS & TRIPLETS, CAP, 
C MIN,MAX & SUM OF 5. 
c 
C TESTS ONLY THE SUBSEQUENCE OF THOSE VALUES WHICH OCCUR 
C AFTER 1~ \)ALUE IN I:. 700 >, 799], 
c 

REAL RN<1000) 
INTEGER*4 LAST,TOT,ISEED 
COMMON /TEST/ RN,LAST,TOT 
SYSTEM INTRINSIC RAND1,RAND 
DI ~3Pl...AY II 11 

DI~3Pl...AY" " 
D:U:>PUW" TESTING HP 'S RAND USING SPEC:U'.\L TESTT 
DISPLAY II 

ISEED::::RAND1 
ISEED=RAND(ISEED)*1 .E+07 
DI!3PLAY II. II 

DISPLAY II ISEED = II' ISEED 
TOT= ~iOOOO 

U\!3T= 0 
D010J::::t,:io 
IF<I.EQ. 50) L..ASTc:: "! 
l<=O 
DO 20 .J'="l, 1500 0 
XX"-" RAND (I SEED) 

"1"5 L[ ::: XX -x- l 0 
IF<II.NE.7) GOTO 20 
><X=R 1'.iND (I SEED) 
K "~I< ·-t-1 
R i'J< K) '"'xx 
IF <K. GE. ·.t 000) GOTO 2~5 
GOTO 15 

20 CONTINUE 
25 CALL EQUID 

CALL MMS 
CALL CAPTST 

·1 0 CONTINUE 
5 CONTINUE 

~3TDP 
END 

·X-·X· II 
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r· __ , 

C SUBROUTINE FOR FREQ., SERI~L ON PAIRS AND TRIPLES 
c 

c 

c 

SUBPDUT ::: NE EOUI :0 
RE:J~L PN(1000) 
IN TECER D NE ( ·1 0 ) , Pr:') IF-~ < 1 0 1 1 0 )- 1 TR IP < 1 0 1 1 0 1 1 () ) 
INTEGER*4 LAST 1 TOT 
COMMON /TEST/ RN 1 LAST 1 TOT 
DATA ONE/10•01,PAIR/100*0/aTRIP/1000*0/ 
DD 1 0 I·::: '.l 1 1 O 0 0 

J::::RN< I }*10+1 
10 ONE<J>= ONECJ)+'.l 

DO 20 I"" 'l 1 99<.7» 2 
J==F:N (I) ·X·t 0+1 
K::::HN<I+1 )·:<:10+·1 

20 PAIRCJ~K>=PAIR<J,K)+l 

DO 30 I::::".l _,99'.7 1 3 
J==RN(J:)·X-10+1 
~'.::::RN< I+".l) ·itt O+'l 
!_:=RN< I+2 )*1.0+1 

30 TRIP<J 1 K1 L)=TRIPCJ,K>L)+1 

IFCLAST.EQ.0) RETURN 
EXPl=TOT/10. 
EXP2::::TQT/C2.*'.l00.) 
EXP3::::CTOT*0,999)/(3.*1000.) 
CH I 1 =O 
CHIZ~'"'O 
CHI3=0 
D 0 1 '1 0 J= 1 > l 0 

CHI1=CHI1+ CONEEJ)-EXP1l**2 
DO ·120 K='l ;.10 

c; l-i I 2 ~ C 1··1 I 2-t· ( P A I F~ ( J > ~: ) - E :>< P ;2 ) ·X· ·~"'< :?. 
DD 130 l...=~1 1 10 

CHI3=CHI3+ <TRIPCJ,K 1 L>-EXP3)**2 
'J. 30 CONT I NUE 
t;;; 0 CONTINUE 
110 CONTINUE 

CHI t ·=CHI1 /EXP ·.t 
CHI ;~=CHI 2/EXP 2 
CH I 3==CH13/EXP:.3 
DH>Plr~Y" FREW.JENCY TEST= ">CHI1;" 3.3 I \b.'1" 
DI~3PLAY" SERIAL ON PAIRS:= "1CHI2" II '76 / 1.2:3 II 

DI~3PUW 11 SE!~:U~L ON TR IPL-::: II ,CHI3_; II <?;;7 /".l0T3 II 

F<ETURN 
Ei\!D 
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c 
C ** MIN., MAX., AND SUM OF 5 TESTS ** 

c 

SUBPiJUTINE Mi'i~) 

REAL RN<tOOO>,MX,MN 
REAL EXP,DISTC46) 
INTEGER MAX<10>,MIN<10),SUM<46) 1 SM 
INTECER*4 LAST,TOT 
COMMON /TEST/ RN,LAST,TOT 
D~TA MAX,MIN/20*0/,SUM/46*0/ 
DATA DIST/.00001 1 .00005, .00015 1 .01.}035_, .0007 1 .001:.:.~6, 

1 . 0 () ;21 / • 0 0 33 ) ' 0 0 4 9~5 ) ' 0 () 7 ·.t 5 / . 0 () '? 9 6 i • 0 'l 3 4 / . 0 'l '7 <'\ 5 ) 
2 . 0:.?.20!'5 1 • 027'1 ;·. 03246,. 03'?9:i ;- . 043:2'..~i;. 0484;. O!.'S;.:~8 1 

3 . O~'.'i63,. 0587'::.i;. 06 1 , 06 1 ,0!58'75 1 , O!:'..i63,, 052f3,, 048·1 > 
.1., , o 4 3 3 ~.~ , . o 3 7 s) s i • o 3 :.:!. 4 6 i I n 2 ·71 i • o ~=- ::.::~ o-5 ) , o 1 1? .4 ~::.i .r , o 1 :3 A ;-
'.':i • () 0 9 9 6 ; • 0 0 7 'l 5 ) . 0 0 4 9 5 > ' !J 0 3 :5 > • 0 (J:2 'l ' ' 0 i) '1 ;::~ 6 ) ' Ci 0 fJ 7 i 

6 • 0 0 0 3!5) • 0 0 0 1 ~.'ii ' () () 0 0 5 / . () () 0 0 ·.t / 

DO ·10 I=='.l 1 1000 1 5 
SM=:::1 
MN=:::1 
MX=== O 
CHISM=O. 
CHIMN=O. 
CHIMX=O. 
K=I+4 
DD 20 J:::I 1 K 

IF<IHHJ>.LT. MN) MN===RN<J) 
IFrnN<J) .GT, MX) MX::::RN( J) 

20 SM===SM+RNCJ)•10 
IMX=MX**5 * 10 + 1 
MAXCIMX>= MAX<IMX)+1 
IMN=<1.-MN)·:r.'·X·!S ·;<· 10 +1 
MINCIMN)= MINCIMN)+l 

10 SUM<SM)= SUM<SM)+l 

IFCLAST.EQ.0) RETURN 
EXP=TOT/(5. ·X-10.) 
DO 30 I===·.t,10 

CHIMX=CHIMX + CMAX<I>-EXP>**2 
30 CHIMN=CHIMN + <MIN<I>-EXP>**2 

CHIMX:=CHIM>~/EXP 
CHIMN=CHIMN/EXP 
SMTIJT=TOT /5. 
DO 40 I=1;4ii 

EXP=SMTDT*DISTCil 
40 CHISM=CHISM + CCSUMCI>-EXP>**2)/EXP 

DI~:;PLr'.:\Y" MA)\ CiF ~5 = II CHIM::< II 

·' 
DI~3PL(~1Y" i"IIN DF ·- ·- ll CHii\1N; II .... ' 
DI '.::PLr~Y 11 SUM DF 1:: -· !l l:i··1:L SM II 

· ... i 

P ETUF~ N 
E::ND 

..., ···~ 

',JI· .•• • 
/ 1,S,i'.:)11 

::50.3./ bl..i" 

47 



c 
C 'I:·~ Cf.~P TE~3T 
(., -· 

c 

c 

SUBROUTINE GAPTST 
REr.-1L HN('J.000) 
INTEGER GAPC22>,GP,TOT 
INTEGER*4 LAST,DUMMY 
COMMON /TEST/ RN,LAST,DUMMY 
DATA GAP /22·X-0/) GP, EXT, CHIGP /'1, 0., 0. I· 
DATA TOT/00/ 

DD "IO I::::".l,1000 
N::::f~N(.l'.)*10 

IF<N .EQ. 7) GOTO ".l 
GP==:GP+l 
GOTO 10 

·1 IF <GP . GT. ;:~2) GP:::-·22 
GAPCGP):::: GAPCGPl+".l 
GP:=! 
TOT::::TOT+t 

'l 0 CONTINUE 

IF<LAST .. EQ. 0) l~ETURN 
DO 20 I==t,22 
IFCI.EQ.22) GOTO 2 
EX = ,'.\ * . 9·X-·X· <I-"l ) 
EXT=EXT+EX 
GOTO 3 

2 EX:=:1 , -EXT 
3 EXP==EX~·TOT 

CHIGP=CHIGP + C<GAP<I>~EXPl**2)/EXP 
20 CONTINUE 

DISPL.i~Y" GAP TEST :::: II ,CHI GP} II 1'l'6 / 
RETURN 
END 

48 



APPENDIX B 

FORfRAN CODE FOR GENERATORS TESTED 
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(., 
·' *** THIS IS THE PRAUT GENERATOR 
C NOTE 1 ! YOU MUST TYPE :FILE FTN03~TABLE1,0LD 

r 
\..' 

SUBROUTINE INITTAB 
REttl ... T<1000) 
INTECER·:*4 IX 
COMMON /MDNROE/T 1 IX 
ACCEPT IX 

. lH~3PLAY II I SEED FDR RAND ... II; IX 
DO "1 0 I =1 , ·1 0 0 O 

10 READ(3;•> T<I> 
RETURN 
EN:O 

FUNCTION TGEN<IPOS> 
I~ EAL. T ( 1 0 0 0 ) 
INTEGER·~.,~ IX 
COMMON /MONROE/T,IX 
INC=RAND<IX>*1000 
IPml=MOD<IPOS+INC; 1000 )+"l 
TGEN:=T <I POS) 

'RETURN 
EN:O 

so 



C THIS IS THE SHUFFLING METHOD 
C BY BAYS AND DURHAM, 1976 
c 

c 

SUBROUTINE INITSHUF<ISEED> 
RE(.~L. T(".10) 
INTECER·l<:4 I~'..EED 
COMMON /SHUFF/ T,IADDR 
DO 10 I"·:t,10 

10 T<I>=RANDCISEED> 
IADDR=RANDCISEED)~l0+1 
RETUl~N 

EN:O 

FUNCTION SHUFGEN<ISEED> 
REAL T<10) 
INTEGER·X:4 ISEl::D 
COMMON /SHUFF/ T,IADDR 
SHUFGEN::::T < H~D:OR) 
T<IADDR>=RANDCISEED> 
IADDR=SHUFGEN*10+1 
RETURN 
END 
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c THIS I~:l "r1 P 01nt1IiLE RNC" BY ~3HRAr·ICE, ·1 <?'79 c 

c 

FUi"-!CTIOH Po::~ T (I)<> 
INTEGER*4 A.P,IX,B15,B16 1 XHI 1 XALD,LEFTLO,FHI>K 
COMMON !INIT/ A,B15,B16,P 
::<HI==I::</B16 
XALO=(IX-XHI*B16)*A 
L1::FTLO".:xr:1LO/B 16 
FHI=XHI•A+LEFTLO 
K::::FHI./Bl'.':) 
IX=<<<XALO-LEFTLO*B16>-P>+<FHI-K*B15>*B16>+K 
IF<IX.LT.O>IX=IX+P . 
PORT=IX*4.656612875E-10 
RETURN 
EN:O 

~)LJBRClUTINE Ii'~ITPORT 
INTEGER*4 A,B15,B16,P 
COMMON /INIT/ A,B15,B16 1 P 
(.~::.~1680'? 

B '.\ '.'.'.i=3:~7 6 f:3 
B 16::::t,5;:;36 
p :::: ;.:~ 14748'.3647 
RETURN 
EN:O 
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c 

c 

THIS IS THE GFSR GEN L.El.i.l IS 1 ·.t <.~75 

FUNCTION SETRCM,P 1 DELAY 1 Q,WDSIZE> 
INTEGER DELAY 1 Q1 DNE 1 WDSIZE 1 M<111> 
SETR=P+l 
ONE==2**<WDSIZE-1) 
DD1I="l1P 

1 M (I) ==ONE 
DO .4 K==l >WD~3IZE 

DO 2 J="1 1 DELAY 
2 X=RNDCM 1 P,Q,WDSIZE> 

!< OIJNT= O 
DO 3 !=1 ,P 
ITEMP=ONE/2**<K-"1> 
ITEMP~<M<I>-MCI)/ONE*ONE)/ITEMP 
IF (I TEMP . EQ. 1) l<Ol.JNT::::!<OUNT+l 
IFCK .EQ. WDSIZEl GOTO 3 
M<I>=MCI)/2 +ONE 

3 CONTINUE 
IF< l<OUNT • EQ. P) SETR=I< 

4 CONTINUE 
DO 5 I:::: 1 > 5 0 0 0 

DO !;; J=l > P 
5 X=RND<M>P,Q>WDSIZE> 

RETURN 
END 

FUNCTION RND<M,P,Q,WDSIZE> 
LOGICAL AA,~B,LCOMPJ 1 LCOMPK 
INTEGER A,B,Q,WDSIZE,M<111) 
EQUIVAL~NCE <AA,A>,<BB,B> 1 CMCOMPJ>LCOMPJ) 
EQUIVALENCE <MCOMPK,LCOMPK> 
DATA J /0/ 
N=<2••<WDSIZE-f>-1>•2+1 
J:==J+·.1. 
:J:F(J .GT. P) J:=1 
l<==:J+Q 
IF<K .GT. P) l<=K-P 
MCOMPJ=N-M(J) 
MCCJMPK=N·-M < K) 
A=M<lO 
B===M(J) 
BB=LCOMPI .AND. AA .OR. LCOMPK .AND. BB 
M<J>=B 
RND=FLOATCM(J))/FL.OAT<N> 
l~ETUl~N 

END 
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C THIS IS A BAD GENERATOR 
c 

·ruNCTIDN BD((.~) 

DATA B/.90/,P/3.25/ 
A :::: A .;-.: B 
IF<A ,f;T, 10000) G(J'TO ~5 
A :::: A * P 

5 :8'D::::A - JINT(r:':\) 
RETU~?.N 
END 
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