GIVENS TRANSFORMATIONS FOR

LEAST SQUARES

BY
HSTAO-LAN WANG %OH
Bachelor of Arts
Fu-Jen Catholic University
Taiwan, Republic of China

1977

Submitted to the faculty of the
Graduate College of the
Oklahoma State University
in partial fullfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1983

" Thess
1983
L B3> &

UNIVERSITY €

)
_ LIBRARY

GIVENS TRANSFORMATIONS FOR

LEAST SQUARES

" Thesis Approved:

SO Cheler
gmﬂmm

7 Dean of the Graduate College

ii

1170284 |

PREFACE

This study implements the orthogonal decomposition methcd based on
Givens transformations to solve linear least squares problems. A com-
parison has been made with the methods based on Householder transforma-
tions and the modified Gram-Schmidt algorithm with respect to storage
requirements, time requirements, and accuracy.

I would like to thank Dr. G. E. Hedrick and Dr. S. A. Thoreson for
their suggestions, and Dr. D. W. Grace for substituting during my oral
examination. A special thanks goes to my major advisor, Dr. Johmn P.
Chandler, whose assistance and guidance were invaluable for this thesis
and for my studies at Oklahoma State University.

The deepest appreciation is extended to my parents and my father-
in~law for their love and confidence. My final thanks goes to my
husband, Hsiaoli, whose encouragement and considerateness played an

important role in completion of this thesis.

iii

Chapter

I.

IT.

IIT.

Iv.

VI.

VII.

TABLE OF CONTENTS

INTRODUCTION L T T TS P
THEORETICAL BACKGROUND . & « ¢ ¢ o o o + &

Normal Equaticns .« « o « o + o ¢ o &
Householder Transformations . « . « .
Modified Gram-Schmidt Algorithm . . .
Givens Transformations « . « « o «

DESCRIPTION OF TEST PROBLEMS « . « « o « o

Integer Matrices . o « o ¢ o « o o o
Polynomials o« + o ¢« o ¢« o « o s o o o
I11-Conditioned Problems . . . « o .

DESCRIPTION OF PROGRAMS . & + & ¢ o « o .

GIVEN - Implementation of Givens
Transformations . « ¢« o « o &+ « « &
Functions of Subroutines in GIVEN . .
Insturctions for Users of GIVEN . . .
CRTHL and BLSQS - Implementations of
Modified Gram=-Schmidt o . « ¢ ¢ « &«
LLSQF - Implementation of Householder
Transformations « « « o« « o + o &+ &

COMPARISON WITH REPECT TO STORAGE, TIME, AND

ERROR BOUNDS ¢ « o «¢ 5 ¢ ¢ o o o o &
Storage Requirement + « o« « o « o + =
Time Requirement . . . 4 + o + o » o
Error Bounds .+ « o ¢ « + ¢ + o o o

TEST RESULTS ¢ o « s & ¢ + o o o s o « o

CONCLUSIONS AND RECOMMENDATICNS o

SELECTED BIBLIOGRAPHEY . ¢ . o ¢ o « o o o ¢ o + o

APPENDIX A - PROGRAM LISTING OF GIVEN

APPENDIX B - PROGRAM LISTING OF ORTHL .+ & - o« . »

iv

Page

10
12

17
17

19
20

Chapter

APPEND X
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

PROGRAM LISTING OF BLSQS
PROGRAM LISTING OF LLSQF

PROGRAM LISTING OF INVHIL

TEST PROGRAM FOR GIVEN
TEST PROGRAM FOR ORTHL
TEST PROGRAM FOR BLSQS

TEST PROGRAM FOR LLSQF

PROGRAM LISTING OF THE ORIGINAL
ORTHOLIN2 WITHOUT ITERATIVE REFINEMENT

o

VERSION

Page

77

86

95

97

98

99

101

102

Table

II.
III.

IV.

VI.

VII.

VIII.

IX.

XI.

XII.

XIII.

Iv.

Xv.

LIST OF TABLES

Symbol Legend « o -« o « o ¢ o « o s o o o o o o+ =

Attributes and Characteristics of variables in GIVEN
Storage Requirements for Program Implementations . .
Comparison of Operations Required . . . « . o« « o &

Test Results of Problems (1-A) and (1-B) in
Double Precision Arithmetic .« . . ¢« ¢ ¢ o « o + «

Test Results of Problems (1-C) and (1-D) in
Double Precision Arithmetic o+ « o v o « o « o « @

Test Result of Problem (1-E) in
Double Precision Arithmetic . .« o« ¢ o ¢ o « o « &

Test Results of Problems (1-A) and (1-B) in
Single Precision Arithmetic . . . ¢ ¢ ¢ o ¢ o + &«

Test Results of Problems (2-A) and (2-B) in
Double Precision Arithmetic . . o« ¢ o ¢« o « o « o

Test Results of Problems (2-A) and (2-B) in
Single Precision Arithmetic . . &« ¢ o ¢ o ¢ o + &

Test Results of Problems (3-A) and (3-B) in
Double Precision Arithmetic . ¢« o ¢« o o o o o « &

Test Results of Problems (3-A) and (3-B) in
Single Precision Arithmetic . ¢« . o« ¢ ¢ « o « o &

Comparison of Significant Digits Lost . . « « & .« &

The Rank Point of Significant Digits Lost in
Double Precision Arithmetic . . ¢ ¢ o ¢ o ¢« o o« &

The Rank Point of Significant Digits Lost in
Single Precision Arithmetic . « ¢ o ¢+ o ¢ o o o &

vi

Page

27

44

45

46

47

48

49

50

51

53

53

Table Page

XVI. Comparison of ORTHL with and without Iterative
Refinement for Problems (1-A) to (1-E) in
Double Precision Arithmetic . o« ¢ o ¢ o « o o o o « o« 55

XVII. Comparison of ORTHL with and without Iterative
Refinement for Problems (2-A) to (3-B) in

Double Precision Arithmetic . o« &+ o « o ¢ o o « « o o 56
XVIII. Comparison of ORTHL with and without Iterative
Refinement in Single Precision Arithmetic « . . 57

vii

LIST OF FIGURES

Figure Page
1. Program Sturcture of GIVEN e + o s & o o s e s 8 s e & o a 24
2, Program Sturcture of LLSQF e+ e+ e e s 2 e s e e e s e s 33

viii

CHAPTER I
INTRODUCTION

This thesis will implement the orthogonal decomposition method
based on Givens transformations (Givens rotations) in a portable FORTRAN
subroutine, named GIVEN, to solve linear least squares problems. Then
it will compare this method with the methods based on the modified
Gram-Schmidt algorithm (modified Gram-Schmidt projections) and
Householder transformations (Householder reflections) with respect to
speed, accuracy, and storage requirements.

gﬁbrming and solving the normal equations numerically (see Chapter
I1) is a common and the cheapest way to solve linear least squares
problems, but the result is often quite unsatisfactory. The main reason
is that serious loss of accuracy can occur when the crossproduct matrix
ATA is formed [22, 26]. Orthogonal decomposition (QR decomposition)
methods based on the modified Gram-Schmidt algorithm [1, 2, 3, 4, 10,
22, 33] or Householder transformations [5, 7, 14, 16, 19, 22, 33] are
generally the most accurate approaches to solve linear least squares
problems. However, they require storage for the whole design matrix A
in main memory; thus the size of problems for which they can be used are
restricted. Moreover, they are not suited to updating the solution by
adding a new row to the design matrix or to delete a vrow from the design

matrix when the original design matrix has already been triangularized.

An orthogonal decomposition method based on Givens transformatiomns
is nearly as accurate as any other orthogonal decomposition method, but
has two major advantages [12, 13]. The first is that the design matrix
can be processgd one row at a time. Secondly, zeros already present in
the design matrix are readily exploited to reduce arithmetic.

Givens transformations have been used in the least squares problems
by Fowlkes [11], Chambers [8], and Gentleman [12, 13]. However,
Gentleman inserts a diagonal scaling matrix D between the factors of the
Cholesky decomposition (matrix square root). This new version of Givens
transformations eliminates all square roots and halves the number of
multiplications required. Furthermore, it can be used to solve weighted
least squares problems, and to remove a row from the design matrix by
adding it again with the negative of its previous weight [15]. However,
any method of removing rows is potentially unstable. Meanwhile, weighted
problems are not necessary for accuracy tests. Therefore, deletion or
weighted problems will not be considered in this study.

Chapter II will discuss the theoretical background of solving linear
least squares problems inc¢luding normal equations,-modified Gram-Schmidt
algorithm, Householder transformations, and Givens transformationms.

Chapter III will present a description of the test problems. There
are three sets of test problems including integer matrices, polynomials,
and ill—conditioned problems. Integer matrices are chosen for ensuring
that all error is generated during computation since integer matrices can
be expressed in the computer exactly. Furthermore, ill-conditioned
problems are chosen in order to prove that orthogonal decomposition

methods are stable.

In Chapter IV, a description will be made for the programs to be
tested, which are GIVEN, ORTHL [1], BLSQS [4], and LLSQF [20]. GIVEN is
converted from the ALGOL brocedures in Gentleman [13]. Although weighted
problems will not be included in this study, GIVEN still preserves the
feature that it can be used on weighted problems. For unweighted
problems, the user simply sets the variable WEIGHT the value 1 for each
row (each row has its own weight) of the design matrix. Detailed program
functions and users instructions of GIVEN will also be shown respectively
in this chapter. ORTHL and BLSQS are the implementations cf medified
Gram-Schmidt, and LLSQF is the implementation of Householder transforma-
tions. The main purpose of the above mentioned programs is to compare
accuracy among orthogonal decomposition methods.

Chapter V will present a discussion of these three orthogonal
decomposition methods with respect to storage requirements, time
requirements, and error bounds.

Test results will be listed in Chapter VI, and will be followed by
a discussion of these results. An average number of significant digits
lost will be computed for each program on each problem. Chapter VII will
give conclusions of this thesis, and will make suggestions for further

research. Finally,‘program listings will be collected in Appendices.

CHAPTER TI
THEORETICAL BACKGROUND

The linear least squares problem arises in a variety of areas and
in a variety of contexts. In particular, it is intimately connected
with the approximations of data and with the parts of statistics which
are concerned with the normal distribution. Before discussing the
theoretical background of methods used to solve linear least squares
problems, it is necessary to specify what a linear least squares problem
is. The model linear least squares problems is to compute a vector of
regression coefficients‘; so as to minimize the sum of the squares of

the components of the residual vector T which is defined by

- p—ry

rmxl = mel - Am?<n) Xn><l . (2-1)

A is a given rectangular matrix with rank r (r<n); b is a given vector
of observations; and m is greater than n (m >> n usually). This problem

is usually denoted by

{r[z = |% - KQ]Z = min. (2-2)
where [...lq indicates the euclidean norm. The problem is said to be
linear because r depends on X linearly. If r<n then there is no unique
solution {5]. Under these conditions, it is required simultaneously
that [x(z to be a minimum related to the Moore-Penrose generalized

inverse matrix. This circumstance is a very natural one for many

statistical and numerical problems; however, the problems which will be
tested in this study are full ranked (i.e. r=n) since the program ORTHL
(will be discussed in Chapter IV) requires that the matrix A has
independent columns.

There are three general approaches for computing x [8]:

a. Solve the normal equations
Ax = A'D , (2-3)

by forming the Cholesky decomposition of ATA.
b. Form an orthogonal decomposition of A.
c. Form a singular value decomposition of A.
Since one of the main purposes of this study is to compare the
orthogonal decomposition methods, singular value decomposition is not

covered in this study.
Normal Equations

Let X be a solution of least squares problem of minimizing (2-1).

Since

r=b-Ax=b-b =b,, (2-4)
but b2 belongs to the orthogonal complement of R(A). Hence
0=2aT, = aTr = AT(h - A%) . (2-5)

2

Therefore the solution of (2-3) minimizes the least squares problem
(2-1). Unfortunately, the matrix ATA is frequently ill-conditioned [25]

and influenced greatly by roundoff errors. The following example of

Golub [14] illustrates this well. Suppose that

A = 0 a 0 0 0 (2-6)

then

(14221 1 1 1]

ATA = 1 1 1+a2 1 1 (2-7)

1 1 1 1+a2 1

1 1 1 1 1+a2

Clearly for a#0, the rank of ATA is five, and the eigenvalue of ATA are
5+a2, a2, a2, az, a2,

Assume that the elements of ATA are computed using double precision
arithmetic and then rounded to single precision accuracy. Now let ¢ be
the largest number on the computer such that £f1(1l.0+e)=1.0 where £1(...)

indicates floating point computation. Now if a</e/2, then

(1 1 1 1 1]
1 1 1 1 1

f1aTA) = |1 01 1 1 1 (2-8)

The rank of the computed representation of (2-8) will be one.
Consequently, no matter how accurate the linear equation solver, it will
be impossible to solve the normal equations (2-3). On the other hand,
forming the normal equations can square the condition number of the

problem [1]. If the condition number is denoted by cond(A), then

cond(aTa) < condz(A). (2-9)

This fact shows that in general using t-digit binary arithmetic, it may

be impossible to obtain even an approximate solution to (2-3) unless

cond(A) < 2_t/2

. Longley [23] has given examples in which the solution
of the normal equations obtains almost no digits of accuracy in least
squares problems.

et

} Orthogonal decomposition method is a better way to solve linear
| Pl yaediibabuiuion sttt

least squares problems. This approach is also called QR decomposition
T e i S

NS N R—— S

since it finds Q and R such that
A= QR, (2-10)

where Q is an mxn orthogonal matrix and R is an nXn upper triangular
matrix. Indeed, use of an orthogonalization process on A for obtaining
a least squares solution is known in the literature [18]. The linear
least squares problem becomes QR§¥€: If this equation is premultipied

by QF, then

Q'QRx = Q" b. (2-11)

Since QTQ=I,

Rx = Qb = 0. (2-12)

8
Thus, (2-12) can be solved easily by using successive back substitutions.
Notably, R=QTA and the right hand side QTE are obtained by applying the

same operation QT to A and D respectively. Further,

cond(QTA) = cond (A). (2-13)

The orthogonal decomposition may be carried out via Householder
transformations, the modified Gram-Schmidt algorithm, or Givens trans-

formations., These will be discussed in the following sections.
Householder Transformations

Householder transformations are also known as elementary reflectors
and as elementary Hermitian matrices [27]. Since Householder was the
first to use elementary refiectors in a systematic way to introduce
zeros into a matrix [19], the first name is more common than the last
two names. Golub [14] was the first to work out the details and in
conjunction with Businger [7] publish an algorithm.

Let A=A(1), and let A(z), A(3), cee A(n+l) be defined as

follows:

A _p K ey o) L w), (2-14)
where P(k) is a symmetric, orthogonal matrix of the form
T
p®) =1 - g g®a®, (2-15)

(k) (k+1)

The elements of P are derived so that as X
s

= Q0 for i=k+1, ... , m.

In other words, Householder transformations are used to zero out the

(0

subdiagonal part of each column. Moreover, is generated as

follows:
- . (k) 2,1/2 _
o = (2 a; 59, (2-16)
i=1
- (k) 1y1-1
B, = [Gk(ck+lak’k])] , (2-17)
™ =0, for 1k, (2-18)
=(k k (k) .
i) - sgn(ai,i) (0k+|ai,kl), for i=k, (2-19)
(k) _ (k) . -
u; o= ai,k , for i>k. (2-20)
Since P(k) is not computed explicitly, it is clear that

T
P94 (1 _ g 50T 4 (2-21)

- ()T
= A(k) - u(k)(Bku(k) A(k)). (2_22)

Therefore A(k+1) and §(k+1) are obtained by

_ T
A(k+1) - A(k) _.H(k)(skﬁ(k) A(k)) (2-23)
and

— - —- ~(k) T
pktl) _ (k) _ u(k)(Bku(k) b(k)), (2-24)

respectively. In computing (2-23) and (2-24), one can take the

advantage that the first (k-1) components of'a(k) are zeroes. After

th (k+1)

k transformation, A becomes as follows:

10

~

' A
gDy
/1777
A (2-25)

/1177

0 A

\ /117]

where ﬁ(k+l) is a kxk upper triangular matrix which is unchanged by

subsequent transformations.
Modified Gram-Schmidt Algorithm

Gram-Schmidt orthogonalization is another method for decomposing a
matrix into the product of a matrix with orthogonal columns and a

triangular matrix as (2-10). The classical formulas expressing.aj in

terms of;j and the previously determined vectors-al, e ,'35_1 appear

as follows:

9, =235 » (2-26)
qj = aj - iil 1j i (J = 2’ . ’ n), (2_27)
where
L T T T -

To convert to matrix notation, define A to be the matrix with columns of
'Ej, Q to be the matrix with columns of ﬁa, and R to be the upper
triangular matrix with unit diagonal elements with the strictly upper
triangular elements given by (2-28). Then, (2-26) and (2-27) can be

written as A=QR. The experimental evidence in Rice [26} indicated that

equations (2-26) to (2-28) have significantly less numerical stability

11
than the modified Gram-Schmidt method given below. Rice was the first
person to point out and explain the superior numerical properties of the
modified Gram-Schmidt algorithm. Then Bjorck {2] gave detailed error
analysis. This modified Gram-Schmidt algorithm was established by Rice
[26] and it is described as follows:

(1) — . -
A = . = 1, *rse 9 g
aJ = aJ j= n | (2-29)

[For i=1 to n

= _ =(1) _
q; = a; (2-30)
2 _ P
For j=i+l to n
ENCHLIN 2 _
rij = aj q; / dy (2-32)
=(i+1) _ (1) -
. = a, - r.,.q. . 2-33
L %3 i 139 (2-33)
To use modified Gram-Schmidt in the solution of linear least
squares problems, one can form'the augmented matrix
n, ‘ -—
£=[a7%] (2-34)

and apply modified Gram—-Schmidt algorithm to the mx(n+l) matrix X to

obtain

X = %, (2-35)

where the matrix ﬁ is also upper triangular with unit diagonal elements.
The strictly upper triangular elements of R are given by (2-32). The
vectors E& given by (2-30) constitute the column vectors of the mx(n+l)

matrix 5. The (n+l1)x(n+l) diagonal matrix B with diagonal elements Ei’

12
i=1, ... , nt+l, is obtained by (2-31). Futher, the amount of
computations and storage required are not increased by this modifica-
tion, Wampler [29] has found that the modified Gram-Schmidt and
Householder programs have essentially equivalent accuracy. However,
Jordan [21] obtained experimental results that the modified Gram—-Schmidt
algorithm performs a little more accurately than Householder transforma-

tions do.
Givens Transformations

One way to view the method based on Givens transformations is as a
numerically stable way to update the Cholesky decomposition of the
crossproduct matrix to add one more row [12]. A Givens transformation

rotates two row vectors
0 .6. 0 ., r
i

i+1 DR K] rk oee

0...0 Xy Kyq ocece Xpocee s

and replaces them with two new vectors

0...0 ri r£+1 cees ré ce
0...0 0 x£+1 cense xi cee
where
ré = cry + sxp, (2-36)
xi = - sTy + cxy, (2-37)

2 +82=1, (2-38)

13

The requirement that Xs is transformed to zero indicates that

r] = (r§+x§>”2 , (2-39)
¢ =1,/ (r21+x§)1/2 =x, /!, (2-40)
s =x; / (r§+xi)1/2 = x; / ri . (2-41)

The transformation obviously leaves unchanged zeros appearing in
corresponding elements of both vectors.
When a new row has been added in R, as shown in the following

diagram,

R 0
——— e e
{ \
X p:d X X X
x X X X
x b4 X
b4 X
X <--= residual
sum of
squares
X X X X X <=-- new_row of
[A:b]

R can be retriangularized by rotating the new row successively with the
first, second, third, etc. rows of R until the entire new row of A has
been transformed to zero. This process needs mXn square roots totally
for solving a least squares problem. However, square roots are avoided
in Gentleman [12, 13]. The trick is té find not R itself, but rather a

diagonal matrix D and a unit upper triangular matrix R such that

14
R=/ DR . (2-42)

Rotation is made on a row of the product YD R with a scaled row of A as

follows:

0...0 /d ... /E'Ek oo

0 ... 0 V§x, ee. V3§ X .o
i k

From (2-36) to (2-41), the transformed rows can be written as follows:

0...0 va' ... /4 Ty aee
0...0 Q .. V3 X e
where

d' = d+exl | (2-43)
§' = ds/ (d+6x§) =ds / d', (2-44)
T o=d/ (@) =d/a, (2-45)
s = Sx; / (d+6xi) = 8x; /dar, (2-46)
e (2=47)
i =cr, +s5x . (2-48)

k k

In other words, the transformed rows can be expressed as a row of a new
YD R and a new scaled row of A, Formulas (2-43) to (2-48) not only can
avoid the square roots of (2-36) to (2-41), but also reduce the number

of multiplications required [12]; the retriangularization, thus, can be

15
done faster.
Furthermore, Gentleman points out that the formula (2-48) can be
written in a different way to save another multiplication. It is given

by

T! =T, +§x1'< . (2-49)

It is easy to verified as the following equations that (2-48) and (2-49)

obtain the same value for r!

K

ré =1 +s xﬂ (2-50)
=T, + (6%,/d") (%, = x;T)) (2-51)
= }'k - (8%,/d") xyr + (8x,;/d") % (2-52)
=T, (1 -6x/d) +5 x, (2~53)
= T, (@' _ 5x2)/d") +5 x_ (2-54)
= ?k (d/d") +s Xy (2-55)
=T c+sx . (2-56)

Thus, only half as many multiplications are needed as usual with Givens
transformations. In practice, (2-49) may be numerically unstable, and
this will be shown in Chapter VI, although the instability can be
detected and avoided.

If b is treated as just another column of A, then © is obtained,

where

a=/m0, (2-57)

and an extra element of D obtained which is, in fact, just the residual

16

sum of squares, From (2-12), (2-42), and (2-57),

@il

Rx=

(2-58)

This equation is at least as easy to solve as (2-12) since R is unit
1

triangular,

CHAPTER III
DESCRIPTION OF TEST PROBLEMS

There are three sets of test problems, including integer matrices,
polynomials, and ill-conditioned problems. They will be described in
this chapter. These problems are selected because they have been used
very often for testing the accuracy of methods which are used to solve

linear least squares problems,
Integer Matrices

The first set of problems, (1-A) to (1-E), are taken from Jordan
[21]. They have the same design matrix A but different right hand
sides. Specifically, A is taken as the first five columns of che

inverse of the 6x6 segment of the Hilbert matrix as follows:

36 -630 3360 -7560 7560]
-630 14700 -88200 211680 =-220500
A= 3360 -88200 564480 -1411200 1512000
-7560 211680 -1411200 3628800 -3969000

7560 =-220500 1512000 =3969000 4410000

| =2772 83160 -582120 1552320 -1746360

The right hand side,.g(ﬁ), of the first problem (1-A) is tsken so that
the solution vector % = (1, 1/2, 1/3, 1/4, 1/5)T. Other right hand

sides are formed as the following formulas:

o
~4

by =Pyt
E'(C) = E"(A) +37v,

| B‘(D) = B‘(A) +127v,
by = Py

18

(3-1)

(3-2)

(3-3)

(3-4)

where v = (4620, 3960, 3465, 3080, 2772, 2520)T. Therefore, the right

hand sides become as follows:

)
463
-13860
97020
-258720
291060

~116424

Since'; is orthogonal to the columns of A (i.e. ;Tgi = 0, i=1, 2,

T;(B)
5083
-9900
100485
-255640
293832

-113904

e
14323
~1980
107415
249480
299376

-108864

® ()
55903
33660
138600
=221760
324324

-86184

> E)

554863
461340
512820
110880
623700

185976

s 0 0y

n), the solutions should be precisely the same for these five problems.

—

All elements in A and b are integers; therefore they can be exactly

presented‘in the IBM 3081 (all programs will be tested on an IBM 3081).

This fact ensures that all significant digits lost are generated during

computation. On the other hand, they are chesen not only because they

are integer matrices but also because they are very ill-conditioned.

The condition number can be roughly estimated by

cond

(A) = max !aij]

!

+ max [a7l]
1]

(3-5)

19
where a;; denotes the elements in A—l. Since the largest magnitude
element in the Hilbert matrix is 1, the condition number of problems
(1-A) to (1-E) is 441000x1 (di.e, 4.41x105) roughly, However, in the
program LLSQF [19], which will be discussed in the next chapter, the

condition number is defined by
cond(a) = [R], * [R7V[,, (3-6)

where [...]1 denotes l-norm and R is the decomposed triangular matrix of
A as in the equation (2-12). The condition number of these problems
that are computed by LLSQF is 5.ISXI06. Both condition numbers obtained
by using either the formula (3-5) or (3-6) are very large.

A FORTRAN subroutine from Herndon [17], named INVHIL, which compute
the inverse of Hilbert matrix is listed in Appendix E.

The inverse of a Hilbert segment is often used as a linear least
squares test problem. In Businger and Gulub D, 33], Golub [14], and
Golub and Wilkinson [16], the same problem as (1-A) and some other right
hand sides with the same property as the right hand sides of (1-A) to
(1-E). Bjorck and Golub [5] chose the first six columns of the inverse
of 8x8 Hilbert segment for the design matrix A. b was taken so that
X = (1/3, 1/4, 1/5, 1/6, 1/7, 1/8)T with various error components.

Therefore, the first set of test problems are very important.
Polynomials

The second set of test problems contains two problems, (2-A) and
(2-B), and are also selected from Jordan [21]0 They are least gquares

problems for polynomials of degree n-1 with 2%41 equidistant data points

20
(i.e. Ax = Z—m) on the interval {0,1]. The values of m and n are
constrained such that xi can be exactly represented in the computer,
where O<r<n-1 and O<i<m. The solution vector has all components equal

to 1. Then, problem (2-A) has m=7 and n=7 as follows:

l1<3ij=<7,
- T
X = (l’ 1, 1, 1, 1, 1, n-,
D= AX .

Problem (2-B) has m=10 and n=5 as follows:

. -10135-1

A= (ayp = [a-D 277170,
1 <1< 1025,
1<3<5,
x=(, 1,1, 1, DT,
b = Ax .

Wampler [30] also used polynomial problems for testing his least

squares programs.
I11-Conditioned Problems

There are two problems, (3-A) and (3-B), in the third set of test
problems, which are chosed from Bauer [1, 33] and Lawson and Hanson [22],
respectively. They are chosen because they are very ill-conditioned.

Problem (3-A) contains all integer elements in A and b as follows:

(=74 80 18 -11 -4 =8] [51]

14 -69 21 28 0 7 -61

A=] 66 =72 =5 7 1 1 b= -56
-12 66 =30 -23 3 -3 62
38 =7 -4 1 .0 10

4 =12 4 4 0 1], | =12 |

The exact solution to this problem should be
T
a, 2, -1, 3, =4, 0)" .

—
x:

The design matrix A of problem (3-B) is as follows:

The right hand side of problem (3-B) is that

(~.13405547 -,20162827 -.16930778 -.18971990 -.17387234 |
-.10379475 -,15766336 —-.13346256 -,14848550 -.13597690
-.08779597 —.12883867.—.10623007<-.12011796 -.10932972
.02058554 .00235331 -.01641270 .00078606 .00271659
-.03248093 -.,01876799 .00410639 -.01415894 -.01384391
.05967662 .06667714 ,04352153 .05740438 .05024962
.06712457 .07352437 .04489770 .06471862 .05876455
.08687186 .09368296 .05672327 .08141043 .07302330
.02149662 .06222662 .07213486 .06200069 .05570931
.06687407 .10344506 .09153849 .09508223 .08393667
.15879069 ,18088339 .11540692 ,16160702 .14796479
.17642887 .20361830 .13057860 .18385729 .17005549
.11414080 .17259611 .14816471 .1600746€ .14374096
.07846038 .14669563 .14365800 I.14003842 12571177
L -10803175 ,16994623 .14971519 .15885312 .14301547

22

b = (-.4361, -.3437, -.2657, -.0392, .0193,
.0747, .0935, .1079, .1930, .2058,

.2606, .3142, .3539, .3615, .3647)" .

The condition numbers of (3-A) and (3-B) are 3.66><106

[1, 33] and
7 ,
1.39x10 [22] respectively.
Ill-conditioned problems also appears in Martin et al. [24, 33].
He chose a 7x7 Hilbert matrix. In order to avoid rounding errors, the
matrix was scaled by the factor 360360 so that all coefficients were
integer. Since orthogonal decomposition methods avoid magnifying

~condition number, ill-conditioned problems are important in the accuracy

test for linear least squares problems,

CHAPTER IV

DESCRIPTION OF PROGRAMS

There are four programs to be tested in this study., All of them
are coded in standard FORTRAN and named GIVEN, ORTHL, BLSQS, and LLSQF,
respectively, Program listings are collected in Appendix A to Appendix
D as well as their test programs in Appendix F to Appendix I. This
chapter will have a detailed description for the program GIVEN with
complete user instructions. After that, description of ORTHL, BLSQS,

and LLSQF will be presented briefly.

GIVEN - Implementation of

Givens Transformations

This program is converted from Gentleman [12, 13] in which ALGOL
procedures are presented. It is an implementation of Givens transfor-
mations. However, an option indicator, ITYPE, has been used in GIVEN as
an input parameter which does not appear in Gentleman. ITYPE will be
explained in user instructions. Figure 1 shows the program structure of
GIVEN. It is obvious that GIVEN controls the program flow and connects
to the user supplied calling program. The functions of these subrou-

tines and user instructions will be described in the following sections.

23

+

+

T
i

Main Program
(supplied by users)

+
+

GIVEN

o
i

+

- e
U T

v

INCLUD

+
+

-+
CONF ‘ SSDCOM
-+

g s R ot e 4
T T T T

REGRES k

Figure 1. ProgramvSturcture of GIVEN.

24

25

Functions of Subroutines in GIVEN

1., Subroutine GIVEN, Subroutine GIVEN controls the data input and
produces the results of the regression solution. Furthermore, it calls
the other four subroutines INCLUD, CONF, SSDCOM, and REGRES to perform
the least squares computations. Since the results will be printed out
automatically by GIVEN itself, users need not to worry about the output.

2. Subroutine INCLUD. This subroutine updates D, R, ?, and SSERR
to include the effect of a new row of A and b. For an initial decompo-
sition, D, ﬁ;:g, and SSERR should be set to zero before processing the
first row.

3. Subroutine CONF. Given R and some integer J, CONF finds the
contrast which could not be estimated if D were zero; that is, finds the
linear combination of the first J columns of A which would wvanish [11].
Most cases in which A is not of full rank (that is, where the independ-
ent variables are confounded) can readily be detected by some D becoming
small or vanishing. The common method of resolving the resulting
indeterminacy is to find the confounded contrast as produced by this
subroutine, and then either to force one of the confounded wvariables
(those with non-zero coefficients in the contrast) to have regression
coefficient zero, or to orthogomalize the regression coefficients of a
subset of confounded variables to the others [12]. The later is
achieved by requiring the vanishing of a linear combination of regres-
sion coefficients equal to the confounded contrast for the components
in the subset, and zero for other components. Constraints like either
of the above, which merely resolve indeterminacy, can readily be imposed

by including them as extra rows of A and b.

26

—

4. Subroutine SSDCOM., Given D and 5; this subroutine computes the
sum of squares decompositions. This, and not the regression coeffici-
ents, is what is needed for standard hypothesis testing.

5. Subroutine REGRES. This subroutine computes the regression

—m

coefficients x from the input quantities R and 0.
Instructions for Users of GIVEN

1. TImportant Symbols. Important symbols are shown in Table I, and
Table II presents their attributes, dimensions, and other character-
istics.

2. Calling Sequence. Formal parameters are described in Table I

and Table II. The calling sequence is
CALL GIVEN (NCOL,NR,ITYPE,AROW,D,TBAR,RBAR).

3. Input Sequences, Data input via input device are WEIGHT, AROW,
BROW, and/or NZERO. These variables are well described in Table I and
Table II. The option indicator ITYPE for input data may have the value
1 or 2. 1ITYPE=1 indicates that the design matrix is a normal matrix
(that is, A is not sparse). On the contrary, ITYPE=2 indicates that the
design matrix A is a sparse matrix. Users must note that different

input sequences of data cards are used for each option as follows:

ITYPE = 1:
record 1: WEIGHT of the first row of A
record 2: the first row of [A[E]
record 3: WEIGHT of the second row of A

record 4: the second row of [Alg]

TABLE I

SYMBOL LEGEND

Symbol Description

NCOL number of unknowns

NR dimension of RBAR; NR=NCOL* (NCOL-1)/2

TOL1 tolerance for detecting rank deficiency

TOL2 tolerance for identifying the confounded variables

ITYPE input sequence option indicator

AROW one row of the design matrix A to be processed
currently

BROW the current element of right hand side ®

WEIGHT weight of each row of A

NZERO column index of the nonzero element in the current
row

D the diagonal scaling matrix

RBAR the superdiagonal elements of R, stored sequentially
by rows

TBAR EL where VD 0 is the vector of orthogonal
coefficients

SSERR the sum of squares error

J see description in subroutine CONF

CONTRA the coefficients of the confounded trast among
the independent variables if the system is rank
deficient

SS the sum of squares decomposition, i.e. the squares
of the orthogonal coefficients

BETA the regression coefficients

27

TABLE II

ATTRIBUTES AND CHARACTERISTICS OF

VARTIABLES IN GIVEN

Symbol Attr. Dim. GIVEN INCLUD CONF SSDCOM REGRES
NCOL int read in in in in
NR int in in in in
TOL1 real cons
TOL2 real cons
ITYPE int in
AROW real 1:NCOL read in/out
BROW real read in/out
WEIGHT real read in
NZERO int read
D real 1:NCOL in/out in
RBAR real 1:NR in/out in in
TBAR real 1:NCOL in/out in in
SSERR real in/out
J int val B in
CONTRA real 1:NCOL out
Ss real 1:NCOL out
BETA real 1:NCOL out
Abbreviations:
Attr, - Attribute in - input parameter
Dim. - Dimension out - output parameter
int - integer cons - constant
val - value

28

o

(repeat record 1 and 2 for the next row of [AIE])

(until WEIGHT=0)

Note: a) WEIGHT=0 indicates end of input data.
b) Set all values of WEIGHT to 1 for
unweighted problems.

ITYPE = 2:
record 1: WEIGHT of the first row of A
record 2: BROW of the first row
record 3: NZERO

record 4: AROW(NZERO) of the first row
. (repeat record 3 and record 4 for the next
. row until NZERO=0)

(repeat from record 1 for the next row of A)

(until WEIGHT=0)
Note: NZERO=0 indicates end of each row.
4. TInput Data Format. The following data formats are built into

subroutine GIVEN,

WEIGHT - El4.7
NZERO - 12

AROW - El4.7
BROW - El4.7

Users, perhaps, need to change them if the formats are not suitable to

their problem.

29

30

5. Output. The output of this program contains the number of
equations, RBAR, D, SSERR, and the solution vector AROW. They are
output with clear expositions.

6. Input and Output Devices. Unit 5 is used as the input device,
and unit 6 is used as the output device. Users may change them merely
by changing the values of IN and LP if they desire,

7. Tolerances. The values of the tolerances, TOL1 and TOL2, which
are used to detect rank definiencies and to identify the confounded

16

variables, are respectively set to 10~ and 10-8 for running on an IBM

3081 with 56-bit mantissa in double precision. For single precision

8 and 10_8, respectively. Too big a

computation, they are set to 10~
tolerance will make the result inaccurate. Usually, user may set TOLl
to 10‘k, where k is the approximate number of decimal digits that can
be expressed in the machine, and TOL2 is a small number relative to the

magnitude of elements in the solution vector. Users may change the

values of these two tolerances in subroutine GIVEN if necessary.

ORTHL and BLSQS - Implementations of

Modified Gram-Schmidt

Both ORTHL and BLSQS are implementations of the modified Gram-
Schmidt algorithm with iterative refinement of the solutions [3, 4].
Iterative refinement is a scheme for improving an approximate solution
to the linear least squares problems. This scheme was first proposed
by Golub [14] and used also in Bauer [1, 33].

Given the approximate solution ;.of the least squares problem of
minimizing [E - A;lz, the method of iterative refinement can be defined

briefly as the following statements:

31

1. Compute ?'='§ - AQ in double precision.

2. Solve d A+'? in single precision.

Iteration should be terminated when d becomes negligible compared
tog° Note that r in statement 1 is required to be computed in double
precision if refinement is to work correctly. The accuracy achieved
by using iterative refinement will be approximately the same as that
obtained by a double precision decomposition [3].

ORTHL was converted by Chandler [9] from Bauer's ALGOL procedure
ORTHOLIN2, and BLSQS was developed by Bolliger [6] from the ALGOL
algorithm by Bjorck‘[A]. Both programs use double precision for the
computation of inner products in iterative refinement. In order to
compare with GIVEN in pure single precision and/or pure double
precision, these programs have been slightly modified to eliminate mixed
precision arithmetic.

ALGOL procedures'are available in Bauer [l, 33], Bjorck [4],

Clayton [10], and Walsh [28].

LLSQF — Implementation of Householder

Transformations

LLSQF is an implementation of Householder transformations for
solving linear least squares problems, and is adapted from the IMSL
Library [16]. This program also implements the iterative refinement
scheme to reduce the error in the computed least squares solutions. The
original LLSQF also uses double precision for iterative refinement;

therefore, it was changed to pure single/double precision in order to

32
agree with the other programs.

LLSQF calls some other subroutines and/or functions which are also
members of IMSL Library including UERTST, UGETIO, SASUM, SDOT, SNRMZ2,
VHS12, DASUM, DDOT, and DNRM2. These subroutines are shown in Figure 2.
DASUM, DDOT, and DNRM2 are only used in double precision arithmetic, and
SASUM, SDOT, and SNRM2 are only used in single precision arithmetic.
Since VHS12 is the subroutine to perform iterative refinement, it is
used in both single and double precision arithmetic. However, this
study does not compare mixed precisions; therefore, DVHS12 and SVHS12
are generated from VHS12 for double preecision and single precision,
respectively., Furthermore, UERTST and UGETIO are used to output some
messages. They involve integer and character variables only; hence,
they can be used in both precision computations.

ALGOL procedures that implement Householder transformations are
available in Bjorck et al. [5], Businger et al. [7, 33], and FORTRAN
subroutines in Lawson and Hanson [22].

All the programs mentioned above, including GIVEN, ORTHL, BLSQS,
and LLSQF have been run on an IBM 3081 in both single and double
precision for the test problems that have been mentioned in Chapter III.

The test results will be shown in Chapter VI.

+

+

+

Main Program
(supplied by users)

v
+ +
LLSQF
v
v v
+— — + : : —~+
SASUM SDOT UERTST
(DASUM) (DDOT)
+ + + + + +
e —+
v v v
SNRM2 SVHS12 UGETIO
(DNRM2) (DVHS12)
e . + + +- -+

Figure 2,

Program Structure of LLSQF.

33

CHAPTER V

COMPARISON WITH RESPECT TO STORAGE,

TIME, AND ERROR BOUNDS
Storage Requirement

One of the advantages of Givens transformations is that the design
matrix can be preocessed one row at a time. The importance of this is
that it is very storage efficient. Design matrices are frequently too
large to be stored in high speed memory, and hence they must be fetched
as required; furthermore, it turns out that the natural and convenient
way to fetch them is usually by rows [ll].

Lawson and Hanson [22] established a modified approach of House-
holder transformations and modified Gram-Schmidt for transforming the
matrix [A:g] to upper triangular form without requiring that the entire
matrix [A:g] be in computer storage at one time., That is, Householder
transformations and modified Gram~Schmidt method can be organized to
accumulate blocks of rows sequentially to handle problems in which
mxn is very large and m>>n.

—

The matrix A and the vector b are partitioned in the form:

{ A by
A= [» b = . (5-1)
A N
q > bq ’

where each Aj is mi*n and each bj is a vector of length mj. Of course,

34

35

m = m, + m2 + ... + mq. The smallest value of m, may be 1. The

—
algorithm will construct a sequence of triangular matrices [Ri:dﬂ’ i=1,
..+ » q, with the property that the least squares problem

R.x = 4, (5-2)
1] 1

has the same solution set and the same residual norm as the problem

~ r -— ~
[A b
. . X = . (5-3)
A —
L q o L bq -
In Lawson and Hanson [22], if
{ 0 (if 3=0),
v =< (5-4)
h|
I om, (if 3>0),
i=1
and
u= max { m., + min [n+1,v._l]} R (5-5)
1g3<q J

then the algorithm can take place in a computer storage array W having

at least u rows and n+l columns. Further, by more complicated pro-

gramming the storage required could be reduced by exploiting the fact
that each matrix [Rjzag] is upper triangular.

Although this sequential accumulation approach can reduce storage

requirements, it has two disadvantages. First, the operation count is

increased as the block size is decreased. This fact will be discussed

36
in the next section. Secondly, the whole matrix A still needs to be
stored in main memory when iterative refinement is required.

Table III shows the work arrays required for the programs GIVEN,
ORTHL, BLSQS, and LLSQF. Other single spaced variables are ignored
since they are small compared to arrays. Although the storage require-
ments are various for alternative coding skill, the method based on
Givens transformations is the most attractive in storage requirement
since O(nz) << O(mn) especially when m >> n. In the case of m >> n,
even if pure double precision arithmetic is used in Givens transfor-
mations, the storage required is still much less than the storage needed
by Householder transformations or modified Gram=-Schmidt in which mixed

precision arithmetic is used.
Time Requirement

In discussing the time required for orthogonal decomposition
methods, only the number of operations is compared. The times needed
for I/0, compilation, and loading, etc. are not considered although
they might dominate the time required to solve a least squares problem.

The number of operations has been discussed in Lawson and Hanson
[22]. Operations could be additions/subtractions, multiplications/
divisions, or square roots. Their comparisons are listed in Table IV.
Apparently Gentleman's modification of the Givens method is competitive
with the standard Householder method for nonsequential processing [12,
22]. The sequential Householder accumulation increases the number of
operations as the block size is decreased. In the worst case of k=1,
the operations counts for additions and multiplications are approxi-

mately doubled relative to the number of operations for nonsequential

TABLE III

37

STORAGE REQUIREMENTS FOR PROGRAM IMPLEMENTATIONS

GIVEN ORTHL BLSQS LLSQF
Array Array Array Array Array Array Array Array
Name Size Name Size Name Size Name Size
AROW n A (m,n) A (m,n+1) A (m,n)
D n B m B m B m
RBAR n(ntl)/2 X m X n X n
TBAR n P m RES m H n

PP n QR (mtn,n)

D n IPIV n

R (m,n) XV o+l

U (m,n) RESV m
D n
F mtn
G mrtn
Y n
MY1 m
XMY2 n

TOTAL
0(n?) | 0 (mn) | 0 (mn)] O(mn)

38

TABLE IV

COMPARISON OF OPERATIONS REQUIRED

Method add/subt mult/div squ root
Givens (original) p** 2P n
Givens (modified) P P 0
Householder”™ (original) P P n
Householder® (sequential***) P(k+1)k P(k+1)k n
Modified Gram-Schmidt¥ P+n3/3 P+n3/3 0

* Operation count of this method does not include
the operations for iterative refinement.

*% P has the value of mnz-n3/3 where m is the number
of rows of A; n is the number of columns of A,

*%% Suppose that the entering blocks of data each
contains k rows. That is, k=m/q where q is
the number of blocks to be processed
sequentially.

39
processing. The Householder transformations always require n3/3
operations fewer than the modified Gram—-Schmidt method since the matrix
Q in Householder transformations is not explicitly computed.

The time required for Householder transformations and the modified
Gram—-Schmidt method are increased when iterative refinement has been
implemented. Tradeoffs involve time, storage, and accuracy in the
implementation of iterative refinement. Although actural comparative
performance of computer programs based on any of these methods will also
depend strongly on coding details, the modified Givens transformation is
more economically attractive and convenient to be used than the other

methods,
Error Bounds

Wilkinson [32] gives an error analysis of a single Givens
transformation for formulas (2-36) to (2-41). The desired and computed

1 \i
values of Ty and X, can be bounded by

fl(r') - r T

< be (5-6)
2 Elg o

{
k

f1(x') - x&

where € is the largest number such that f1l(l+e)=1., A similar calcula-
tion for the Givens transformations without square roots, as formulas
(2-43) to (2-48), shows that the difference between the desired and

computed values of /d' T! and V3' x; can be bounded by

k
£f1(/d') £f1(z!) - /a' 1! /d T,

k k1< 7.5 k (5-7)
£1(/8") £1(x)) - /8! x|, /Exk)

40
where the factor 7.5 is very gemerous.
Gentleman [12} indicates that the cheaper formula (2-49) is
numerically unstable if d is very small compared to axi. It produces
terrible results for least squares problems with very well-conditioned

design matrices. Thus, he established a more general form of bounds as

follows:

£1(/a") fl(?l'{) - /d" ?1'{

<
£1(/3") £1(x)) - /5! xp |2
. £0y2 w2y |7
{(4.52)“+[4.5248,04(d"/d)*]“}* ¢ (5-8)
‘/-(S—Xk 2 .

For (5-8) it is clear that the instability is exactly associated with
d'/d. Gentleman suggests that the formula (2-49) should not be used
unless d'/d < 100 and use formula (2-48) instead for unstable cases.

When d'/d = 100, the bound is obtained by

£f1(/a") fl(?l'() - /q" r, /E?k 5-0)
< 85,04¢ 5-9

£1(/5") £1(x)) - /s) /Es'xk

2 2 °

A backward error analysis for the solution of linear least squares
problems by Givens transformations is presented in Gentleman [12]. The
difference between the computed triangular matrix and some exactly

orthogonal transformation of the original matrix is bounded by

41

| v-9oTa |, 2wk (=5) /4] (W)™ | A |, (5-10)

IN

(5-11)

~ AT~ mn-3 |
| u - (') [2 | b 12

nnl’z [m+(n-5)/4] (1+n)

IA

b

where U is an mxn upper triangular matrix either equal to the computed

matrix R or the product of the computed matrix YD with the computed
matrix R as in the formula (2—42);'3 is an m-vector whose leading n
elements are either © or VD 6 as in the formula (2-57). 8T is the
orthogonal mxm matrix that is the product of exact plane rotations (they
are not the same plane rotations had been used throughout); n is either

6e, 7.5, or 85¢ as appropriate; and]...] denoted the Frobenius norm.

F
The error in backsubstituting a triangular system is negligible,
therefore it is not discussed in this study.

For the method based on the modified Gram-Schmidt algorithm,

Bjorck [2, 3] derives bounds for errors related to the factorization of

A and ghas follows:

IR"&TA]F

];‘aT§12

1.9(n-1)%ne | Aalp s (5-12)

1A

1
73

I A

1.9 n¥(atl)e| B [, - (5-13)

These bounds are valid if inner-products are accumulated in double
precision. The bounds must be increased by a factor of 2m/3+1 for single
precision arithmetic.

Lawson and Hanson [22] analyze the error bounds for Householder
transformations clearly. The error associated with the application of

k succussive Householder transformations is bounded by

! Mgy = Q -o- QA [F < (6m-3k+40)ke | A |4 o (5-14)

CHAPTER VI
TEST RESULTS

Test results are listed from Table V to Table XII. The solutions
listed in these tables for BLSQS, LLSQF, and ORTHL are obtained with
iterative refinements. The results obtained without iterative refine-
ments will be discussed later. Table XIII shows the average number of
significant digits lost for each test except for problem (3-B). The

average number of significant digits lost, S, is obtained by

- |

Z@-ep] /o, (6-1)

1

[=

where ciis the number of significant digits gained correctly for each
element in the solution vector x. Here d is the approximate number of
decimal digits which can be expressed in the computer. The value of d

can be computed by the formula

-d+1

“htl g mdt (6-2)

16
Then
d =1+ (h-1) logl6 / log 10 , (6-3)

where h is the number of hexidecimal digits in the mantissa. For the

IBM 3081, h is 14 for double precision and 6 for single precisiom.

42

TABLE V

TEST RESULTS OF PROBLEMS (1-A) AND (1-B) 1IN
DOUBLE PRECISTON ARITHMETIC

*
BLSQS

LLSQF

0.9999999999999716 0.9999999999999932

0.5000000000002174
0.3333333333334898
0.2500000000000891

0.2000000000000374

0.5000000000001261

0.3333333333334255

0.2500000000000526

0.2000000000000221

1.000000010618187

0.5000000035142349
0.3333333348321534
0.2500000006536209

0.2000000002318849

1.000000000076881

0.5000000000246713
0.3333333333435627
0.2500000000043859

0.2000000000015385

1.600000000001756

0.5000000000004070
0.3333333333334549
0.2500000000000364

0.2000000000000085

1.000Q00001375334

0.5000000004449910
0.3333333335207196
0.2500000000810422

0.2000000000285829

0.9999996268401792
0.4999999755325871
0.3333333228376746
0.2499999954059259

0.1999999983659048

1.000000005879908

0.5000000019750643
0.3333333341825702
0.2500000003722848

0.2000000001325607

% The same results have been obtained by BLSQS without iterative refinement.

(%

TABLE VI

TEST RESULTS OF PROBLEMS (1-C) AND (1-D) IN
DOUBLE PRECISION ARITHMETIC

(1-¢)

(1-D)

1.0000060031850952

0.5000000105405908

0.3333333378286429

0.2500000019602838

0.2000000006954288

0.999999746512339

0.4999999915582043
0.3333333297206321
0.2499999934209580

0.1999999994389965

0.9999997803422034
0.4999999265421750
0.3333333018233540
0.2499999862079275

0.1999999950942623

1.,000000127407247

0.5000000421628930
0.3333333513146082
0.2500000078410853

0.2000000027816782

0.9999997549168600
0.4999999178431638
0.3333333980469485
0.2499999845425777

0.1999999944988563

0.9999991211205443
0.4999997060914313
0.3333332072614688
0.2499999448180365

0.1999999803722587

.000000017650046

.5000000059285523
.3333333358824851
.2500000011174761

.2000000003979006

. 77
.000000070596765
.5000000237131642
.3333333435295277
. 2500000044 697354

.2000000015915454

*

The same results have beenoobtained by BLSQS without iterative refinement.

Y

TABLE VII

TEST RESULT OF PROBLEM (1-E) IN

DOUBLE PRECISION ARITHMETIC

(1-E)

GIVEN BLSQS* LLSQF ORTHL
1.000001274078713 0.9999929325845028 0.9995%&2105831275 1.00006%&059858107
0.5000004216303036 0,4999996425678251 0.4999970607166682 0.5000002371404218
0.3333335731463022 0.3333331799077687 0.3333320725320155 0.3333334352997964
0,2500000784107963 0,2499999328168350 0.2499994481447138 0.2500000446995640
0.2000000278167136 0.1999999760966501 0.1999998037100309 0.2000000159163011

x

The same result has been obtained by BLSQS without iterative refinement.

Gy

TEST RESULTS OF PROBLEMS (1-A) AND (1-B) IN

TABLE VIII

SINGLE PRECISION ARITHMETIC

*
BLSQS

GIVEN LLSQF ORTHL
%, 1.011581 0.000014 0.850402 5.201400
x, 0.503354 0.708983 0.455584 2.017883
(1-A) X, 0.334663 0.308322 0.315644 1.012878
x, 0.250557 0,163342 0.242648 0.555840
X 0.200193 0.135602 0.197483 0.310946
x, 11.71515 90.65291 26.66490 ~13.8247
x, 4.10072 30.32495 9.09479 —4.3502
(1-B) x4 1,88199 13,09037 4.02362 ~1.7189
x, 0.92904 5.82361 1.86638 ~0.6397
% 0.44183 2,17994 0.77524 ~0.1143

*

The same results have been obtained by BLSQS without

iterative refinement,

9%

TABLE IX

TEST RESULTS OF PROBLEMS (2-A) AND (2-B) IN
DOUBLE PRECESION ARITHMETIC

GIVEN BLSQS* LLSQF ORTHL
23 0.9999999999999g;9 1.000560000000000 —1.000000000000012 1.000000000000088
x, 0.9999999999999628 1.000000000000004 0,9999999999999818 0.9999999999999995
Xq 1.000000000000311 0.9999999999999639 1.000000000001359 1.000000000000006
(2-4) x, 0.9999999999989189 1,000000000000121 0.9999999999955208 0.9999999999999682
Xg 1.000000000001830 0.9999999999997997 1.000000000007294 1,000000000000073
Xe 0.9999999999985991 1.000000000000162 0.9999999999942267 0.9999999999999191
x5 1.000000000000391 0.9999999999999489 1.000000000001773 1.000000000000033
X ﬁ0.9999999999998568 1.000000000000000 0.9999999999999902 1?555000000000000
X, 1.000000000000019 0.9999999999999998 1.000000000000063 0.9999999999999996
(2-B) Xq 1.000000000000110 1.000000000000000 0.9999999999998528 1.000000000000002
X, 1.000000000000111 1.000000000000000 1.000000000000169 0.9999999999999974
Xg 0,9999999999999005 0.9999999999999998 0.9999999999999259 1.000000000000001

* The same results have been obtained by BLSQS without iterative refinement.

Ly

TABLE X

TEST RESULTS OF PROBLEMS (2-A) AND (2-B) IN
SINGLE PRECISTION ARITHMIC

GIVEN BLSQS* LLSQF ORTHL
3 0.9999268 1.0000010 0.9999926 0.9999998
X, 0.9998756 0.9999968 0.9999421 0.9999859
Xq 1,0007162 1.0000172 1.0027380 1.0000496
(2-4) x, 0.9984465 | 1.0000467 0.9188493 0.9999377
Xg 1.0018578 0.9997123 2.4426165 1.0000238
Xg 0.9991331 1.0003977 -10.0723238 0.9999839
X, 1.0000420 0.9998291 33.3302765 1.0000153
Xy 0.9993522 1.0000000 0.9998312\ B 0.9999995
X, 1.0001822 0,9999988 1.0005016 0.9999942
(2-B) X4 1.0002918 1.0000086 0.9987872 1.0000296
X, 1.0007191 0.9999855 1.0015106 0.9999450
Xg 0.9994494 1,0000067 0.9993319 1.0000286

*

The same results have been obtained by BLSQS without
iterative refinement,

8%

TABLE XI

TEST RESULTS OF PROBLEMS (3-A) AND (3-B) IN
DOUBLE PRECISION ARITHMETIC :

GIVEN BLSQS " LLSQF ORTHL

x, 1.000000000000611 0,9999999999999163 0.9999999999997195 1.000000000000649

x, 1.999999999999537 2.000000000000065 2.000000000000240 1.999999999999441

x, -1,000000000002217 ~0,9999999999996917 -0.9999999999989253 ~—L1.000000000002500
8 x, 3.000000000014941 2,999999999997936 2.999999999992818 3.000000000016684

xg -3.999999999953892 ~4,000000000006369 ~4.000000000022290 ~3.999999999948234

xs ~0.538999x1071° 0.814049x10~ 1! 0.284400x101° ~0.660476x10 10

x, -74.91579305899307 ~74,91579307444269 ~74.91579316041095 ~74.91579308345429

x, 100.6816561346046 100.6816561559755 100.6816562753221 100.6816561634514
(3-B) xg -79.80442261521869 ~79.80442263226947 ~79.80442272701437 ~79.80442264221179

x, 92.81699663658507 92.81699665660886 92.81699676690292 92.81699666826094

x, -80.05289259765479 -80.05289261577138 -80.05289271597731 -80.05289262632364

*

The same results have

been obtained by BLSQS without iterative refinement.

6%

TABLE XII

TEST RESULTS OF PROBLEMS (3-A) AND (3-B) IN
SINGLE PRECISION ARITHMETIC

GIVEN BLSQS LLSQF ORTHL
x, 1.013959 ~5.945167 -1 899553 1.001654
x, 1.988305 0,763933 0.601x10° 1.998547
x, -1,053028 -0.278558 4.584720 ~1.006414
(3-8) P
x, 3,354614 0.0 ~0.408%10 3.042818
X, ~2.901019 0.0 -2,896753 -3.866953
X -1.402582 0.0 0.354x10°° —0.169660
x, 1.60539 87.530 43.7141 .1235x10”
x, -5.63163 ~124,738 ~64.0907 ~.1713x10’
(3-B) X, 4.50359 99.256 50.9108 .1362x10’
x, ~5.14306 -115.851 -59.1630 -.1589x10’
% 9.02764 109.432 58.1077 .1442x10’

0¢

COMPARISON OF SIGNIFICANT DIGITS LOST

TABLE XIII

51

%
ORTHL Jordan

3

GIVEN BLSQS LLSQF Jordan

D.P. 3,85 3.65 6.05 4,05

(1-A) 4.8 5.0
S.P. 4,62 6.82 6.22 all
D.P. 8.25 7.25 9.25 8.05

(1-B) 7.0 8.0
S.P. all all all all
D.P. 8.65 8.65 9.45 8.45

1-c) 7.5 8.4
S:P, all all all all
D.P. 9.25 9.65 10.05 9.05

(1-D) 8.1 9.0
S.P. all all all all
D.P, 10.25 10.25 11.05 10.05

(1-E) 9.1 10.0
S.P. all all all all
D.P. 3.79 2.56 4,08 1.84

(2-4) 3.0 3.9
S.P, 3.02 2.16 3.73 1.73
D.P 3.25 0.26 2.85 1.12

(2-B) 0.7 1.0
S.P. 3.02 1.02 2.44 1.42
D.P. 4.98 3.98 4,82 4.98

(3-4) - -
S.P. 5.85 5.85 all 4,85

* Test results from Jordan [21] for modified Gram-Schmidt
algorithm

*% Test results from Jordan [21] for Householder transformations

52

Table XIV and XV show the rank point obtained for each test. The
rank point goes from 1 to 4 for the largest number of significant digits
lost to the smallest number of significant digits lost for each program
on each test problem. That is, the most accurate program obtains four
points, the next accurate one gets three points, and so on. If two
tests lost the same number of digits, then they get the same rank point
which is the average of the next two rank points. For example, GIVEN
and BLSQS on test (1-C) have the same rank point, i.e. (2+3)/2=2.5.
Consequently, BLSQS and ORTHL, the implementations of the modified
Gram-Schmidt algorithm, are the most accurate on the average, and they
are superior to the other programs for testing on Jordan's test problems.
This superior agrees with Jordan's test results. GIVEN performs better
than LLSQF (Householder transformations).

Since the exact solution of problem (3-B) is not available, the
result can not be compared by computing the number of significant digits
lost. However, one can see GIVEN is almost as accurate as ORTHL, BLSQS,
and LLSQF, and they agree with each other for &ilo digits. The squares
of the norm of residual vectors, r;lg , for all programs have been
computed as 0.190606170954><10-7 approximately. However, the single
precision arithmetic lost all digits on problem (3-B). The reason
probably are that the roundoff error has occurred when A was read in
and that single precision arithmetic should not be used for an ill-
conditioned problem,

It is well-known that the usual iterative refinement scheme cannot
improve an approximate solution unless the residual vector is computed
using some extra precision [4, 5, 24]° In other words, iterative refine-

ment is useless in pure single precision or in pure double precision.

TABLE XIV

THE RANK POINT OF SIGNIFICANT DIGITS LOST

IN DOUBLE PRECISION ARITHMETIC

53

Rank Point Average
Point
(1-A) (1-B) (1-c) (1-p) (1-E) (2-A) (2-B) (3-A)
GIVEN 3 2 2.5 3 2.5 2 1 1.5 2.1875
BLSQS 4 4 2.5 2 2.5 3 4 4 3.25
LLSQF 1 1 1 1 1 1 2 3 1.375
ORTHL 2 3 4 4 4 4 3 1.5 3.1875
TABLE XV
THE RANK POINT OF SIGNIFICANT DIGITS LOST
IN SINGLE PRECISION ARITHMETIC
Rank Point Average
(1-4) (2-A) (2-B) (3-A) Point
GIVEN 4 2 1 2.5 2.375
BLSQS 2 3 4 2.5 2.875
LLSQF 3 1 3 1 2.0
ORTHL -1 4 2 4 2.75

54
This is true for BLSQS. Surprisingly, the solutions obtained by ORTHL
are improved after iterative refinement as shown in Table XVI to Table
XVIII, and its final solutions are as accurate as that of BLSQS.
Further, the results of ORTHL without refinement are just the same as
the results computed by the original version of ORTHOLIN2 which is
listed in Appendix J. (Hence the medifications contained in ORTHL have
not ruined the behavior of ORTHOLIN2.) This is very unusual, and the
author does not have enough time to find out what has happened in
ORTHOLIN2/ORTHL. The reason probably is that ORTHL has done the
decomposition and/or back substitution in a form that is less stable
in some respect than the method used in BLSQS. Users may use
BLSQS [or ORTHL with iterative refinement] to get the best solution
in pure single/double precision. Otherwise, one should work on ORTHL

further until ORTHL is accurate as BLSQS.

TABLE XVI

COMPARISON OF ORTHL WITH AND WITHOUT ITERATIVE REFINEMENT FOR
PROBLEMS (1-A) to (1-E) IN DOUBLE PRECISION ARITHMETIC

(1-A) ' (1-B) 1-c) (1-D) (1-E)
X 1.00000000000176 1,00000000587991 1.00000001765005 1.00000007059677 1.00000070598581
X, 0.500000000000407 0,500000001975064 0.500000005928552 0.500000023713164 0.500000237140421

With
Iterative Xq 0.333333333333455 0,333333334182570 0,333333335882485 0.333333343529528 0.333333435299796
Refinement

X, 0.250000000000036 0,250000000372285 0.250000001117476 0.250000004469735 0.250000044699564

X 0.200000000000009 0,200000000132561 0.200000000397901 0.200000001591545 0,200000015916301

Xy 0,99999597 0.99999598 0.,99999598 0.99999604 0.99999668

X, 0,49999866 0.49999866 0.49999866 0.49999868 0.49999889
Without
Iterative Xq 0,33333276 0.33333276 0.33333276 0.33333277 0.33333286
Refinement

Xy, 0.24999975 0.24999975 0.24999975 0.24999975 0.24999979

X 0.19999991 0.19999991 0.19999991 0.19999991 0.19999993

Gg

COMPARISON OF ORTHL WITH AND WITHOUT ITERATIVE REFINEMENT FOR

TABLE XVII

PROBLEMS (2-A) to (-B) IN DOUBLE PRECISION ARITHMETIC

(2-A) (2-B) (3-4) (3-B)

x, 1.000000000000000 1.000000000000000 1.000000000000649 ~74.9157930845429

x, 0.9999999999999995 0,9999999999999996 1.999999999999441 100.68165616-4514
ith x; 1.000000000000006 1,000000000000002 —1.000000000002500 -79.80442264221179
Iterative x, 0.9999999999999682 0.9999999999999974 3.000000000016684 92.81699666326094
Refinement xs 1.000000000000073 1,000000000000001 —3.999999999948234 -80.05289262632264

xe 0.9999999999999191 -0.660476x10"10

x, 1.000000000000033

x, 1.000000000009784 0.9999999999950065 1.00000030252136 ~74.91746587148

x, 0.999999999628141 1,000000000092234 1.99999974265977 100.68397894992
Without x, 1,000000003558426 0.9999999999960641 —-1,00000115746025 ~79.80626604861
Iterative x, 0.999999986149639 1.000000000588753 3.00000773111154 92.81914145241
Refinement x; 1.000000025465319 0.9999999997144280 —3.99997602508280 -80.05484174036

xg 0.999999977930424 -0.305937x10™%

x, 1.000000007264618

9¢

REFINEMENT IN SINGLE PRECISION ARITHMETIC

TABLE XVIII
COMPARISON OF ORTHL WITH AND WITHOUT ITERATIVE

(1-4) (3-4) (3-B)

% 5.201400 1.001654 .1235 107
%, 2.017883 1.998547 .1713 10’
With x, 1.012878 ~1.006414 .1362 10’
Iterative 7
Refinement X, 0.555840 3.042818 .1589 10
% 0.310946 -3.866953 .1442 10’

x6 -0.169660
x, 14085. 04 .1120x10% .7652x10°
x, ~4696.80 ~.9502x10° .1621x107
Without x4 2011.61 .4283x10% .8434x10°
Tterative 5 6
Refinement x4 -879.59 .2860x10 .9822%x10
x ~312.56 .8869x10° .8922x10°

-.1132x10°

CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

From the test results and algorithms discussed in the previous

chapters, the following conclusions thus can be derived.

1. Gentleman's modification of Givens transformations has the

following advantages which other methods do no have.

ae

Ce

Since it processes the design matrix A one row at a time,
the storage for the whole design matrix A is not necessary.
Since the design matrices are often sparse, the number of
operations required is much smaller in these cases. The
reason is that zeros are exploited in Givens transfor-
mations.

The effect of new rows is easy to include by taking the
advantage of the triangularized structure already present.
This is important since the need for updating regression
results arises frequently. When data are obtained
sequentially, it may be undesirable or impossible to wait
for all the data before obtaining some regression results.
Givens transformations can introduce each new row with
arbitrary positive or negative weight. Therefore solving
weighted least squares problems or deleting rows from a
triangularized design matrix is easy although the later

can be unstable,

58

59

2. From the test results, orthogonal decomposition methods can
accurately solve moderately ill-conditioned linear least squares
problems in double precision.

3. The method based on Givens transformations is nearly as
accurate as the method based on the modified Gram=Schmidt algorithm
with iterative refinement, while the modified Gram-Schmidt algorithm
obtains the most accurate results.

4. The computed results of Householder transformations method
with iterative refinement is a little less accurate than the results
of Givens transformations.

5. The performance of each orthogonal decomposition method is -
getting worse when the residual vector grows larger as in problems
(1-A) to (1-E). The number of significant digits lost is greater than
the digits lost of a very ill-conditioned problem as (3-A).

6. If mixed precision is available for the modified Gram-Schmidt
algorithm and Householder transformations, they should be much more
accurate than using pure single precision arithmetic.

7. One must use double precision for ill-conditioned problems
and use extra precision for iterative refinement.

For further study, the following recommendations might be a
guideline.

1. Deletion of rows from a regression is inherently a numerically
unstable process, and if subroutine INCLUD is used with negative
weights to do this, then some code should be inserted to detect the
instability and restart the decomposition if necessary.

2. If the accuracy obtained by using Givens transformations is

not adequate, an iterative improvement can be used, but the storage

60
required will be increased.

3. Large sparse test problems may be tested to see how much the
time is reduced by Givens transformations compared to the time required
for large dense problems.

4. Many(variations of algorithmic and programming details are
possible in implementing Householder transformations, the modified
Gram-Schmidt algorithm, or Givens transformations. Tradeoffs possibly
involve execution time, accuracy, resistance to underflow and overflow,
storage requirements, complexity of code, taking advantage of sparsity

of nonzero elements, programming language, portability, etc.

(3)

(10)

(11)

(12)

SELECTED BIBLIOGRAPHY

Bauer, F. L., "Elimination with Weighted Row Combinations for
Solving Linear Equations and Least Squares Problems."
Numerische Mathematik, Vol. 7 (1965), 338-352.

Bjorck, Ake, "Solving Linear Least Squares Problems by Gram-—
Schmidt Orthogonalization." Nordisk Tidskrift for
Informationsbehandling (BIT), Vol. 7 (1967), 1-21.

Bjorck, Ake, "Iterative Refinement of Linear Least Squares
Solutions I." BIT, Vol. 7 (1967), 257-278.

Bjorck, Ake, "Iterative Refinement of Linear Least Squares
Solutions II." BIT, Vol. 8 (1968), 8-30.

Bjorck, Ake and Gene H. Golub, "Iterative Refinement of Linear
Least Square Solutions by Householder Transformation."
BIT, Vol. 7 (1967), 322-337.

Bolliger, R. E., Computer Program, Department of Computing and
Information Sciences, Oklahoma State University, Stillwater,
Oklahoma.

Businger, Peter A. and Gene H. Golub, "Linear Least Squares
Solutions by Householder Transformations.' Numerische
Mathematik, Vol. 7 (1965), 269-276.

Chambers, P. A., "Regression Updating." J. of Amer. Statist.
Ass., Vol. 66 (1971), 744-748.

Chandler, John P., Computer Program, Department of Computing
and Information Sciences, Oklahoma State University,
Stillwater, Oklahoma.

Clayton, D, G., "Gram-Schmidt Orthogonalization."”

Statistics, Vol. 20 (1971), 335-338.

Applied

Fowlkes, E. B., '"'Some Operators for ANOVA Calculatioms."
Technometrics, Vol. 11 (1969), 511-526.

Gentleman, W. Morven, ''Least Squares Computations by Givens
Transformations without Square Roots." J. Inst. Maths
Applics, Vol. 12 (1973), 329-336.

61

62

(13) Gentleman, W, Morven, '"Basic Procedures for Large Sparse or
Weighted Linear Least Squares Problems.'" Applied Statistics,
Vol. 23 (1974), 448-454.

(14) Golub, Gene H., "Numerical Methods for Solving Linear Least
Squares Problems." Numerische Mathematik, Vol. 7 (1965),
206-216.

(15) Golub, Gene H., "Matrix Decompositions and Statistical
Calculations.”" Statistical Computation, R. C. Milton and
J. A. Nelder, ed., Academic Press, New York, 1969.

(16) Golub, Gene H. and J. H. Wilkinson, "Note on the Iterative

Refinement of Least Squares Solution." Numerische
Mathematik, Vol. 9 (1966), 139-148.

(17) Herndon, J. R., "Algorithm 50." Communications of ACM, Vol. &
(1961), 179.

(18) Householder, A. 8., Principles of Numerical Analysis, McGraw-Hill,
New York, 1953,

(19) Householder, A. S., "Unitary Triangularization of a Nonsymmetric
Matrix." J,. Assoc. Comput. Mach., Vol. 5 (1958), 339-342.

(20) 1IMSL Library, Computer Program, IMSL, Inc., Houston, Texas.

(21) Jordan, T. L., "Experiments of Error Growth Associated with Some
Linear Least—Squares Problems.'" Mathematics of Computationm,
Vol. 22 (1968), 579-588.

(22) Lawson, Charles L. and Richard J. Hanson, Solving Least Squares
Problems. Prentice-Hall, Englewood Cliffs, N.J., 1974,

(23) Longley, J. W., "An Appraisal of Least Squares Program for the
Electronic Computer from the Point of View of User."
J. Amer. Statist. Ass., Vol. 62, (1967), 819-841.

(24) Martin, R. S., G. Peters, and J. H. Wilkinson, "'Symmetric
Decomposition of a Positive Definite Matrix.'" Numerische
Mathematik, Vol. 7 (1965), 362-383.

(25) Osborne, E. E., "On Least Squares Solutions of Linear Equation."
J. Assoc. Comput., Mach., Vol. 8 (1961), 628-636.

(26) Rice, John R., "Experiments on Gram-Schmidt Orthogonalization."
Math. Comp., Vol. 20 (1966), 325-328.

(27) Stewart, G. W., Introduction to Matrix Computations. Academic
Press, Inc., New York, 1973,

(28) Walsh, Philip J., "Algorithm 127." Communications of ACM,
Vol. 5 (1962), 511-513.

(29)

(30)

(31)

(32)

(33)

63

Wampler, Roy H., "An Evaluation of Linear Least Squares Computer
Programs." Nat. Bur, of Standards J. Res., Ser. B. Math.
Sci., 73 (1969), 59-90.

Wampler, Roy H., "A Report on the Accuracy of Some Widely Used
Least Squares Computer Programs.'" J. Amer, Statist. Ass.,
Vol., 65 (1970), 549-565.

Wilkinson, J. H., "Error Analysis of Tﬁansformations Based on the
Use of Matrices of the Form I-2ww .'" Error in Digital
Computation, L. B. Rall ed., Wiley, New York, Vol 2 (1965),
77-101,

Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford
Clarendon Press, 1965.

Wilkinson, J. H. and C. Reinsch, "Linear Algebra.'" Handbook for
Automatic Computation, F. L. Bauer, ed., Vol. II, Sprint-
Verlag, New York, 1971.

APPENDIX A

PROGRAM LISTING OF GIVEN

{C % 2k % vk o ok ok sk e o ok ok ok e ok sk Kk ok kK R ok kK ke ke Sk K ok ke sk ok i Xk Sk ok ok Kk sk ik ik Sk ke ke ok sk ok ok ok K sk K ok ke sk ok Kk ok ok sk

I. PURPOSES

NCOL
NR

TOL1
TOL2

ITYPE

AROW
BROW
WEIGH
NZERO

D
RBAR

‘TBAR

SSERR
J

NCOoL,

ITYPE

[oNeNoNesNesEeNosNoNoNoRsNeNoNo oo No NoNoNo N NoNoRs NoRo NoRoReNoRo No Ne Ns N o N2 Re o e 2 e e Ne N e N2 K2 Ko e X2 K2 Ko Re N2 Ne K2 X e

SUBROUTINE-GIVEN

T_

NR,

=1:

THIS SUBROUTINE READS DATA VIA INPUT DEVICE. THEN,
IT CALLS SUBROUTINE INCLUD, CONF, SSCDOM, AND REGRES TO
SOLVE LINEAR. LEAST SQUARES PRCBLEMS BY IMPLEMENTING THE
ORTHOGONAL DECOMPOSITION METHOD BASED ON GIVENS
TRANSFORMATIONS. FINALLY, IT PRODUCES THE LEAST SQUARES
SOLUTION VIA OUTPUT DEVICE.

II. SYMBOL LEGEND:

NUMBER OF COLUMNS IN DESIGN MATRIX A
DIMEMNSION OF THE ARRAY RBAR;
NR = NCOL*(NCOL+1)/2
TOLERANCE FOR DETECTING RANK DEFICIENCIES
TOLERANCE FOR IDENTIFYING THE CONFOUNDED
VARIABLES
INPUT OPTION INDICATOR
ITYPE=1 FOR NORMAL DESIGN MATRIX
ITYPE=2 FOR SPARSE DESIGN MATRIX
(NOTE: INPUT DATA SEQUENCES ARE DIFFERENT)
ONE RCW OF THE DESIGN MATRIX A TO BE
PROCESSED CURRENTLY
THE CURRENT ELEMENTS OF RIGHT HAND SIDE B
WEIGHT OF EACH ROW OF A
COLUMN INDEX OF THE NONZERO ELEMENT IN THE
CURRENT ROW
THE DIAGONAL SCALING MATRIX
THE SUPERDIAGONAL ELEMENTS OF R, STORED
SEQUENTIALLY BY ROWS
THETA BAR, WHERE D**2*TBAR IS THE VECTOR OF
ORTHOGONAL COEFFICIENTS
THE SUM OF SQUARES ERROR
SEE DESCRIPTION IN SUBROUTINE CONF

III. INPUT PARAMETERS:

ITYPE.

Iv. DATA READ VIA INPUT DEVICE:
WEIGHT, AROW, BROW, NZERO.

V. INPUT DATA SEQUENCES:

CARD 1: WFTGHT OF THE FIRST ROW OF A
CARD 2: (AROW(I),I=1,NCOL),BROW OF THE FIRST

ROW OF (A|B)

64

E3E B R K B R I R N R R R R R R R K B N R R R R R R R R R N SR B N N N R

e XeNeNeNesEe 22N N2 s e N2 N e e N K2 N2 N2 N2 X2 N2 e X2 N e Ne N2 K2 Ko e N e N2 Ko Ko N Ne e N e o N e N2 K

ITYPE=2:

CARD
CARD
CARD
CARD

(REPEAT CARD 1 AND 2 FOR THE NEXT
OBSERVATION UNTIL WEIGHT=0)

WEIGHT OF THE FIRST ROW OF A
BROW

NZERO

AROW(NZERQ) OF THE 1ST ROW OF A

AWM -

(REPEAT CARD 3 AND 4 FOR THE NEXT
NONZERO AROW(NZERO) UNTIL NZERO=0)

(éEPEAT FROM CARD 1 FOR THE NEXT ROW OF A

NOTE :

VI. WORK SPACE:
D(NCOL),
VII. REFERENCES:

GENTLEMAN, W. M.

UNTIL WEIGHT=0)

1) WEIGHT=0 MEANS END OF INPUT DATA

2) NZERO=0 INDICATES END OF EACH ROW

3) SET ALL WEIGHT=1 FOR UNWEIGHTED
PROBLEMS.

RBAR(NR), TBAR(NCOL), AROW(NCOL).

MATHS. APPLICS, 12 (1973), PP.329-336.

GENTLEMAN, W. M.

STATISTICS, 23 (1974), PP. 448-454.

VIII. AUTHOR:

ok ok 3k K i ok ke koK sk ok Sk ok ok ki i 3 ke ok ik ke dle sk ok ok sk e ok sk ok i ke sk ok Sk i ke ik ke ek ol e ke ke ok ok ik Sk K Kk K ok K K o e ofe ke

10

HSIAOLAN W.
OKLAHOMA STATE UNIVERSITY,

SUBROUTINE GIVEN (NCOL,NR,ITYPE,AROW,D,TBAR,RBAR)
IMPLICIT REAL*8 (A-H,0,R-Z)
DIMENSION ARCW(NCOL),D(NCOL), TBAR(NCOL),RBAR(NR)

SET CONSTANTS.

IN=5

LP=6
TOL1=1.D-16
TOL2=1.D-8
ZERO=0.
ONE=1.

INITIALIZATION.

N =20

SSERR=ZERG

DO 10 K=1,NCOL
TBAR(K)=ZERO
D(K)=ZERI
CONTINUE

"LEAST SQUARES COMPUTATIONS BY GIVENS

TRANSFORMATIONS WITHOUT SQUARE ROOTS." J. INST.

"BASIC PROCEDURES FOR LARGE SPARSE OR

WEIGHTED LINEAR LEAST SQUARES PROBLEMS." APPLIED

LOH, COMPUTING AND INFORMATION SCIENCES,
STILLWATER, OKLAHOMA.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

65

60
70
80

S0
100
110

120

66

DO 20 K=1,NR
RBAR(K)=ZERO
CONTINUE

PRINT HEADING.

WRITE (LP,30)
FORMAT (//* TEST DATA ==> (A:B)‘//)

INPUT WEIGHT FOR THE CURRENT ROW.

READ (IN,50) WEIGHT
FORMAT (F14.7)
IF (ITYPE.EQ.1) GOTO 122

INPUT DATA FOR SPARSE MATRIX.

IF (WEIGHT.EQ.ZERO) GOTO 150
IF (WEIGHT.GT.ZERO) GOTO 60
N=N-1
GOTO 70
N=N+1
READ (IN,80) BROW
FORMAT (E12.8)
DO 90 K=1,NCOL
AROW(K)=ZERG
CONTINUE
READ (IN, 110) NZERO
FORMAT (12)
IF ((NZERO.LE.O).OR.(NZERO.GT.NCOL)) GOTO 130
READ (IN, 120) AROW(NZERO)
FORMAT (E12.8)
GOTO 100

INPUT DATA FOR NORMAL MATRIX.

IF (WEIGHT.EQ.ZERO) GOTO 150

IF (WEIGHT.GT.ZERO) GOTO 124

N=N-1

GOTO 126

N=N+1

READ (IN,128) (AROW(I),I=1,NCOL),BROW
FORMAT (6E12.8)

PRINT CURRENT ROW.

WRITE (LP,140) (AROW(I),I=1,NCOL),BROW
FORMAT (6E16.8)

INCLUDE THE EFFECT OF THE CURRENT ROW.

CALL INCLUD (NCOL,NR,WEIGHT,AROW,BROW,D,RBAR,TBAR,SSERR)
GOTO 40

PRINT NUMBER OF ROWS AND DIAGONAL MATRIX.

WRITE (LP,160) N

FORMAT (//5X,14,’ OBSERVATIONS READ’)

WRITE (LP,170) (D(I),I=1,NCOL)

FORMAT (////’ DIAGONAL MATRIX 1S’//(6X,E25.16))

FIND CONFOQUNDED CONTRAST TO RESOLVE INDETERMINACY.

" NFIRST=1

DO 220 J=1,NCOL
IF (DABS(D(J)).GE.TOL1) GOTO 220

a0

[sXoNe]

180

190

250

67

CONFOUNDING DISCOVERED

IF (NFIRST.NE.1) GOTO 180

NFIRST=0

CALL CONF (NCOL,NR,dJ,RBAR,AROW)

WRITE (LP,190) (AROW(I),I=1,NCOL)

FORMAT (////' CONFOUNDED CONTRASTS’//(6X,E25.16))

CHOOSE RESOLVING CONSTRAINT

M=J-1
DO 200 K=1,
IF (DABS(AROW(K)).LE.TOL2) GOTO 200
AROW(K)=ZERO
GOTO 210
CONTINUE
WEIGHT=0ONE
BROW=ZERO
CALL INCLUD (NCOL,NR,WEIGHT,AROW,BROW,D,RBAR,TBAR,SSERR)
CONTINUE

FIND SUM OF SQUARES DECOMPOSITIOMN AND SUM OF SQUARES ERROR.

CALL SSDCOM (NCOL,D,TBAR,AROW)
WRITE (LP,230) (AROW(I),I=1,NCOL)

FORMAT (////" SUM OF SQUARES DECOMPOSITION’//(6X,E25.16))
WRITE (LP,240) SSERR
FORMAT (////"* SUM OF SQUARES ERROR’//6X,E25.16)

FIND SOLUTION VECTOR.

CALL REGRES (NCOL,NR,RBAR,TBAR,AROW)

WRITE (LP,250) (AROW(I),I=1,NCOL)

FORMAT (////’ REGRESSION COEFFICIENTS’//(16X,E25.16))
RETURN

END

(G % 2k k o e 2k sk K e ok ok ok e i ke ok K sk kO ke ok ok ke e ok Sk ke s ke KOk Sk sk i ok ok ok kK Sk ok Sk ke ok ok ko k skok ke ok ok ok ek ke koK ke ok ke ok 0k

QOO0 000000O000

20

30

SUBROUTINE-INCLUD

I. PURPGSE:

THIS SUBROUTINE UPDATES D, RBAR, TBAR, AND SSERR
TO INCLUDE, WITH SPECIFIED WEIGHT, THE EFFECT OF A NEW

ROW OF A AND B.
FOR AN INITIAL DECOMPOSITION, D, RBAR, TBAR,

SSERR SHOULD BE SET TO ZERO BEFORE INCLUDING THE FIRST

ROW.
II. INPUT VARIABLES:

NCOL, NR, WEIGHT, AROW, BROW
(SEE DEFINITION IN SUBROUTINE GIVEN)

III. OUTPUT VARIABLES:

D, RBAR, TBAR, SSERR
(SEE DEFINITICON IN SUBROUTINE GIVEN)

e e Sk e e ok e e K e ke sk ke sk Sfe e ok Sk e ok R ok Sk ok ik ok ke ke Sk e e ok ok ok sk koK ok ok Kk Sk K Kok ke sk ko k ke ok kK ok ok ik ke ok K kK Sk ke Ok Kk ok

SUBROUTINE INCLUD (NCOL,NR,WEIGHT,AROW,BROW,D,RBAR,TBAR,SSERR)

IMPLICIT REAL*8 (A-H,0,R-2)
DIMENSION AROW(NCOL),D(NCOL), TBAR(NCOL),RBAR(NR)

SKIP UNNECESSARY TRANSFORMATIONS. TEST ON EXACT ZEROS MUST

BE USED OR STABILITY CAN BE DESTROYED.

DO 20 I=1,NCOL
IF (WEIGHT.EQ.0) GOTG 30
IF (AROW(I).EQ.0.) GOTO 20
XI=AROW(I)
DI=D(I)
DPRIME=DI+WEIGHT*XI**2
CBAR=DI/DPRIME
SBAR=WE IGHT *XI/DPRIME
WEIGHT=CBAR*WEIGHT
D(I)=DPRIME
NEXTR=(I-1)*(2*NCOL-1)/2+1
M=I+1
DO 10 K=M,NCOL
IF (K.GT.NCOL)GOTO 10
XK=AROW(K) :
AROW(K)=XK-XI*RBAR(NEXTR
RBAR(NEXTR)=CBAR*RBAR(NEXTR)+SBAR*XK
NEXTR=NEXTR+1
CONTINUE
XK=BROW
BROW=XK-XI*TBAR(I)
TBAR(I)=CBAR*TBAR(1I)+SBAR*XK
CONTINUE
SSERR=SSERR+WEIGHT*BROW**2
RETURN

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
E 3
*
Ne
*
*
*
x

68

(C 3% % %k ok e sk sk ok o sk e okeooke Sk 3 ok ke ok e 3K K Rk K Ok Sk ok ok ok K ok sk ok Sk ok ok ok Sk Kl S ok ok oK K koK K K ok Sk ek K sk o sk ok ok sk sk 3k ok K X K

SUBROUTINE-CONTF

I. PURPOSE:

INVOKING THIS SUBROUTINE GBTAINS THE CONTRAST WHICH
COULD NOT BE ESTIMATED IF D(J) WERE ASSUMED TO BE ZEROD.
THAT IS, OBTAINS THE LINEAR COMBINATION OF THE FIRST J
COLUMNS WHICH WOULD ZE ZERO. THIS IS OBTAINED BY SETTING
THE FIRST J-1 ELEMENTS OF CONTRAST TO THE SOLUTION OF THE
TRIANGULAR SYSTEM FORMED BY THE FIRST J-1 ROWS AND
COLUMNS OF RBAR WITH THE FIRST J-1 ELEMENTS OF THE JTH
COLUMN AS RIGHT HAND SIDE, SETTING THE JTH ELEMENT OF
CONTRAST TO -1, AND SETTING THE REMAINING ELEMENTS OF
CONTRAST TO ZERO.

IT. INPUT VARIABLES:

NCOL, NR, J, RBAR
(SEE DEFINITION IN SUBROUTINE GIVEN)

III. OQUTPUT:
CONTRA - THE COEFFICIENTS OF THE CONFOUNDED CONTRAST

AMONG THE INDEPENDENT VYARIABLES IF THE SYSTEM
IS RANK DEFICIENT

¥ O OE K R K K O K K X K X ¥ X K K X ¥ ¥ A K K X X K X X A H #

QOO0 0000OO0O0O00

Sk 3k o ke ok Sk e ok ok ok Sk ok ok ok K ok ok ke ok ok e e sk sk ok ok ok ke Sk ke sk ok Sk ok ke sk K kK sk Rk Sk Sk e sk i ok ok ke ik ke Sk sk ke ke Sk e Sk ok ke ik ok ke ke

SUBROUTINE CONF (NCOL,NR,J,RBAR,CONTRA)
IMPLICIT REAL*8 (A-H,0,R-Z)
DIMENSION RBAR(NR),CONTRA(NCOL)
L=J+1
DO 10 I=L,NCOL
IF (I.GT.NCOL) GOTO 10
CONTRA(I)=0.
10 CONTINUE

CONTRA(J) = -1.
L=dJd-1
I =1L

20 NEXTR = (I-1) * (2*NCOL-I) / 2 + 1
CONTRA(I) = RBAR(NEXTR+U-I-1)
M =14+
DO 30 K=M,L
CONTRA(I) = CONTRA(I) - RBAR(NEXTR) * CONTRA(K)
NEXTR = NEXTR + 1
30 CONTINUE
I =1 -1
IF (I.GE.1) GOTO 20
RETURN
END

69

Cti!*I***t*‘tt*x*'*!‘ttt****!‘!*t*x**i!‘i#****ﬂ*************tlﬁ!*l'***‘

SUBROUTINE-SSDCOM

I. PURPQOSE:

THIS SUBROUTINE COMPUTES THE COMPONENTS OF THE SUM
OF SQUARES DECOMPOSITION FROM D AND TBAR.

II. INPUT:

NCOL, D, TBAR
(SEE DEFINITION IN SUBROUTINE GIVEN)

III. QUTPUT:
SS - THE SUM OF SQUARES DECOMPOSITION,

I.E. THE SQUARES OF THE ORTHOGONAL
COEFFICIENTS

* % % K O X OE R X K O X X ¥ X K X K X X %

[oNeNeNsReNeNe N2 N2 N2 N2 N2 N2 K2 N2 N2 N2 K2 N2 N2 X2 K2

6 206 A0 30 3 0 G e K e e ol R i e i e iR e i I I o e e e e i S e ol e O I e e e ol K o OIS N e i e o S e 3 e oK e ok ok

SUBROUTINE SSDCOM (NCOL,D,TBAR,SS)
IMPLICIT REAL*8 (A-H,0,R-2)
DIMENSION D(NCOL),TBAR(NCOL).SS(NCOL)
DO 10 I=1,NCOL :
SS(I) = D(I) * TBAR(I) *=* 2

10 CONTINUE
RETURN
END

70

(C 3 e e 3k e 3k X 3K K K Kk Kk ke K K ok KOk K ke 3 ok ko e ok o ok ok ok Sk Sk ok ok ok ko ok Kk ok o ok sk ok ok ok K oKk e ok K ok ok ok 3k ok ok kK ok ok K ok ok

SUBROUTINE-REGRES

I. PURPOSE:

THIS SUBROUTIE OBTAINS BETA BY BACKSUBSTITUTION IN
THE TRIANGULAR SYSTEM RBAR AND TBAR.

NCOL, NR, RBAR, TBAR
(SEE DEFINITION IN SUBROUTINE GIVEN)

III. OUTPUT:

*
*
*
*
*
E 3
*
*
*
*
II. INPUT: *
*
*
*
*
*
*
BETA - THE REGRESSION COEFFICIENTS *

*

*

*

e XeNeNe e N Ne s N2 N N2 N2 N2 s N2 K2 X2 K2 K2 X2 K1)

2k e e e e ok o ok 3k Sk ok ok ok 3k 3k kK ek e ok A ok ok ok ok ok Kk ke K K i ke ok ok i Ik Sk ol ik i ok ok 3k ek kol ek ek sk e g ok i ok ok ook ok ok

SUBROUTINE REGRES (NCOL,NR,RBAR,TBAR,BETA)
IMPLICIT REAL*8 (A-H,0,R-2Z)
DIMENSION RBAR(NR), TBAR(NCOL),BETA(NCOL)
I = NCOL
10 BETA(I) = TBAR(I)
NEXTR = (I-1) * (2*NCOL-I) / 2 + {
M=14+1
DO 20 K=M,NCOL
IF (K.GT.NCOL) GOTO 20
BETA(I) = BETA(I) - RBAR(NEXTR) * BETA(K)
NEXTR = NEXTR + 1
20 CONT INUE
I =1-1
IF (I.GE.1) GOTO 10
RETURN
END

71

[XeXeNe N2 Ee e e K2 R Ne e Ne R Ne e Ne N2 N2 K2 N2 e N2 K2 N2 K2 N2 X2 X2 K2 e Ke Ko e Ne Xo K2 N2 X2 Xe K2 X2 X2 X2 K2 X2 Ko X2 N2 X2 X s K2 K2 N K o)

APPENDIX B

PROGRAM LISTING OF ORTHL

SUBROUTINE ORTHL(A,LAU,NR,NC,B,X,R,LR,IREF,NTRAC,NIX,U,P,PP,D)
IMPLICIT REAL*8 (A-H,0-2)

ORTHL 2.2 A.N.S.I. STANDARD FORTRAN NOVEMBER 1974
J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY

LEAST SQUARE SOLUTION OF A*X=B, WHERE -A- IS A MATRIX WITH NR ROWS
AND NC COLUMNS (NR.GE.NC), AND B IS A VECTOR WITH NR COMPONENTS.

F. L. BAUER, NUMERISCHE MATHEMATIK 7 (1965) 338

GIVEN A MATRIX -A- AND A VECTOR -B-, ORTHL SOLVES FOR THE UNIQUE
VECTOR X, IF ANY, WHICH MINIMIZES THE LENGTH OF THE VECTOR A*X-B.
ORTHL WILL SOLVE ANY LINEAR LEAST SQUARES FITTING PROBLEM
(LINEAR REGRESSION, POLYNOMIAL REGRESSION, ETC.) HAVING A UNIQUE
SOLUTION AND, IF STORAGE PERMITS, SHOULD ALWAYS BE USED IN
PREFERENCE TO SOLVING THE -NORMAL EQUATIONS— (AH*A*X=AH*B) .

(AH DENOTES THE TRANSPOSE OF A.)

FOR A PROBLEM THAT DOES NOT HAVE A UNIQUE SOLUTION (NIX RETURNED
NONZERO), CONSULT.... -SOLVING LEAST SQUARES PROBLEMS- BY
C. L. LAWSON AND R. J. HANSON (PRENTICE-HALL 1974).

INPUT QUANTITIES..... A,LAU,NR,NC,B,LR,IREF,NTRAC
QUTPUT QUANTITIES.... X,R,NIX
SCRATCH ARRAYS....... u,P,PP,D
A == THE ARRAY CONTAINING THE INPUT MATRIX -A-
LAU -~ THE FIRST DIMENSION OF THE ARRAYS -A- AND -U-
(NOT THE MATRICES -A- AND -U-)
NR -= THE NUMBER OF ROWS IN THE MATRIX -A-
NC -~ THE NUMBER OF COLUMNS IN THE MATRIX -A-
B == THE ARRAY CONTAINING THE INPUT VECTOR -B-
X -- THE ARRAY IN WHICH THE SOLUTION VECTOR IS RETURNED
R -- RETURNS THE ERROR MATRIX (AH*A)**-1
LR == THE FIRST DIMENSION OF THE ARRAY -R-
IREF -~ NONZERO IF ITERATIVE REFINEMENT OF THE SOLUTION IS

TO BE PERFORMED (IF IREF IS ZERO, THE ARRAYS -A-
AND -U- MAY BE THE SAME ARRAY IN THE CALLING
PROGRAM, AND DOUBLE PRECISION IS NOT USED)

NTRAC -- = O FOR NORMAL OUTPUT
= 1 TO PRINT OUT THE RESULT OF EACH ITERATION
=-1 TO OBTAIN NO OUTPUT
NIX -~ RETURNED NONZERO IF THE GIVEN PROBLEM WAS SINGULAR
U == SCRATCH ARRAY OF AT LEAST NR*NC LOCATIONS
P -- SCRATCH ARRAY OF AT LEAST NR LOCATIONS
PP == SCRATCH ARRAY OF AT LEAST NC LOCATIONS
D -= SCRATCH ARRAY OF AT LEAST NC LOCATIONS

THE FOLLOWING CHANGES HAVE BEEN MADE IN BAUER-S ORTHOLIN2

1. THE DECOMPOSITION OF OSBORNE IS USED...
A=U*R INSTEAD OF BAUER-5 A=U*D*R, AND R**-1 IS COMPUTED
INSTEAD OF R.

2. THE ERROR MATRIX ERR=(AH*A)**-{1 IS COMPUTED, WITHOUT FORMING AH*A.
(THIS REQUIRES THE USE OF BOTH TRIANGLES OF THE ARRAY R.)

3. THE DIAGONAL MATRIX D**-1=UH*U IS SAVED (IN THE ARRAY D) IN ORDER

72

O 0000000000000 0O000000000O00

o0oo0n

TO OBTAIN ERR WITHOUT COMPUTING ANY SQUARE ROOTS.

RELATIONS AMONG THE MATRICES IN THE DECOMPOSITION
A=U*R UH*U=D**~1 R=D*UH*A AH*A=RH*(D**-1)*R
R*X=D*UH*B

OTHER REFERENCES....

* %

100

200
300

1000
1010

1012

1014
1016

1020
1030
1040
1042

1044

E. OSBORNE, J.S.I.A.M. 12 (1964) 300

OHN R. RICE, MATHEMATICS OF COMPUTATION 20 (1966) 325

VON HOLDT, PROC. WESTERN JOINT COMPUTER CONF. (1959) 255

H. WILKINSON AND C. REINSCH, -LINEAR ALGEBRA-
(SPRINGER-VERLAG, 1871)

L. JORDAN, MATHEMATICS OF COMPUTATION 22 (1968) 579

H. WAMPLER, J. AM. STAT. ASSOC. 65 (1970) 548

LONGLEY, J. AM. STAT. ASSOC. 62 (1967) 819

GOLUB IN ~-STATISTICAL COMPUTATION-, ED. R. C. MILTON AND
J. A. NELDER (ACADEMIC PRESS, 1969)

BJORCK, BIT 7 (1967) 1

BJUORCK, BIT 7 (1967) 257

BJUORCK, BIT 8 (1968) 8

PP HCA-4 CcAUCM

% ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok o %k Kk ok Kk Kk X

DOGUBLE PRECISION DS,DT,DU

DIMENSION 8(1),X(1),P(1),PP(1),D(1)
DIMENSION A(LAU,NC),R(LR,NC),U(LAU,NC)

k ok ok ok k ok k %k ok ok %k &k ok ok ok Sk Xk ok ok ok ok ok ok ok 3k ok sk ok k k Xk k X

IDEBUG=0
KW=6
RZERG=0.
RUNIT=1,
REFAC=.25
RQUAR= .25
EPS2=RZERO
NIX=1

IF (IDEBUG.EQ.O) GOTO 1000
WRITE(KW, 100)
FORMAT(1H1, ' INITIAL (A:B):’)
DO 200 I=1,LAU
WRITE(KW,300) (A(I,J),J=1,NC),B(I)
FORMAT(10X,7E14.4)
SET U EQUAL TO A.

DO 1010 J=1,NR

DO 1010 K=1,NC

U(J,K)=A(J,K)
IF (IDEBUG.EQ.O) GOTO 1020
WRITE(KW, 1012)
FORMAT(/’ INITIAL U:’)
DO 1014 I=1,NR
WRITE(KW, 1016) (U(I,d),J=1,NC)
FORMAT (5E26. 18)
INITIALIZE R TO THE UNIT MATRIX.

DO 1040 J=1,NC

DO 1030 K=1,NC

R(J,K)=RZERD

R(J,JU)=RUNIT
IF (IDEBUG.EQ.O) GOTQ 1048
WRITE (KW, 1042)
FORMAT(/’ INITIAL R:’)
DO 1044 1=1,NC .
WRITE(KW, 1016) (R(I,J),Ju=1,NC)

73

74

DECOMPQOSE -~A-~ INTO A=U*R , WHERE U IS AN NR BY NC MATRIX WITH
ORTHOGONAL COLUMNS AND R IS AN NC BY NC UNIT UPPER TRIANGULAR MATRIX.
THE MATRIX R**-1 IS COMPUTED AND STORED IN THE ARRAY R.

THE MODIFIED GRAM-SCHMIDT METHOD, WHICH IS STABLE, IS USED TO
ORTHOGONALIZE THE COLUMNS OF U.

(2 X2 N2 N2X2X2)

1048 DO 1130 K=1,NC
KMU=K~1
IF (IDEBUG.EQ.1) WRITE(KW,1049) K, KMU
1049 FORMAT(/’ K, KMU =’,2I5)
IF(KMU) 1460, 1100, 1050
1050 DO 1090 J=1,KMU
S=RZERQO
DO 1060 L=1,NR
IF(IDEBUG.EQ.1) WRITE(KW,1052) L,J,K,U(L,Jd),U(L,K)

1052 FORMAT(/’ #1 L,J,K,U(L,J),U(L,K) =/,315,2E26.18)
1060 S=S+U(L,J)*U(L,K)
S$=5/D(J)
IF (IDEBUG.EQ.1) WRITE(KW,1062) S
1062 FORMAT(/’ #1 S =’,E26.18)
DO 1070 L=1,NR
1070 U(L,K)=U(L,K)-S*U(L,d)
c
c PERFORM THE SAME COLUMN OPERATION ON R.
DO 1080 L=1,NC
1080 R(L,K)=R(L,K)-S*R(L,J)
1090 CONTINUE

IF (IDEBUG.EQ.O) GOTO 1100
WRITE(KW, 1091)

1091 FORMAT(/’ #1 U =)
DO 1092 I=1,NR
1092 WRITE(KW, 1016) (U(I,J),U=1,NC)
WRITE (KW, 1094)
1094 FORMAT(/’ #1 R =)
DO 1095 I=1,NC
1095 WRITE(KW, 1016) (R(I,J),J=1,NC)
c COMPUTE THE SQUARED LENGTH OF COLUMN K.

1100 S=RZERO
DO 1110 L=1,NR
1110 S=S+U(L,K)**2 ‘
IF (IDEBUG.EQ.1) WRITE(KW,1112) S
1112 FORMAT(/‘ #2 S =',E26.18)
IF THE LENGTH IS ZERO, THE PROBLEM DOES
NOT HAVE A UNIQUE SOLUTION.

[eN¢]

IF(S) 1460, 1460,1120
1120 D(K)=S
1130 CONTINUE
c FORM D*UH*B IN X.
DO 1150 J=1,NC
S$S=RZERO
DO 1140 K=1,NR
1140 S$=S+U(K,J)*B(K)
X(J)=s/D(y)
IF (IDEBUG.EQ.1) WRITE(KW,1142) uJ,Ss,D(J),.X(V)

1142 FORMAT(/’ (X=D*UH*B) J,5,D(J),X(J) =’,15,3E26.18)
1150 CONTINUE
c COMPUTE X=(R**-1)*D*UH*B
DO 1170 J=1,NC

S=RZERO

DO 1160 K=J,NC
1160 $=S+R(J,K)*X(K)

X(J)=5

IF (IDEBUG.EQ.1) WRITE(KW,1162) J,S,X(J)
1162 FORMAT(/’ (X=(R**-1)*D*UH*B) J,S,X(Jd) =’,15,2E26.18)
1170 CONTINUE

-75

IF(IREF)1180, 1390, 1180

C ITERATE THE SOLUTION.
C COMPUTE THE RESIDUAL VECTOR AND STORE IT IN P.
C

1180 SDOLD=RZERO
1190 DO 1210 J=1,NR
DS=B(J)
DO 1200 K=1,NC
DT=A(J,K)
DU=X(K)
1200 DS=DS-DT*DU
1210 P(J)=DS
IF (IDEBUG.EQ.1) WRITE(KW,1212) (P(J).J=1.NR)
1212 FORMAT(/’ REDIDUAL R ='/(5E26.18))
1218 IF(NTRAC) 1240, 1240, 1220
1220 WRITE(KW, 1230)(X(K),K=1,NC)

1230 FORMAT(/16H ORTHL X = /(20X ,E26.18))
Cc
C COMPUTE PP=D*UH*P
1240 DO 1260 J=1,NC
S=RZERQ
DO 1250 K=1,NR
1250 S=S+U(K,J)*P(K)

1260 PP(J)=S/D(J)
IF(IDEBUG.EQ.1) WRITE(KW, 1262) (PP(dJ),U=1,NC)
1262 FORMAT(/’ PP=D*UH*P =’/5E26.18)
c COMPUTE DELTA X = (R*¥-1)*pp
SXOLD=RZERO
SDX=RZERO
SDIFF=RZERO
DO 1280 J=1,NC
S=RZERO
DO 1270 K=J,NC
1270 S=S+R(J,K)*PP(K)
SXOLD=SXOLD+X(J)**2
SDX=SDX+S*S
XSAVE=X(J)
X{(J)=X(J)+S
SDIFF=SDIFF+(X(J)~XSAVE)**2
IF (IDEBUG.EQ.1) WRITE(KW,1272) J,S,SXOLD,SDX,XSAVE,X(J),SDIFF
1272 FORMAT(/’ J=',15,/’ S,5X0LD,SDX,XSAVE,X(J),SDIFF =‘/5E26.18)
1280 CONTINUE

00

TEST FOR CONVERGENCE.
IF(NTRAC) 1310, 1310, 1290
1290 WRITE(KW, 1300)SXOLD,SDX,SDIFF,SDOLD)
1300 FORMAT(/3%H ORTHL. SXOLD, sSDX, SDIFF, sSDOLD = ,4E18.5)

c CHECK (DELTA(N) X) VS. 0.5*X,.
1310 IF(SDX-RQUAR*SXOLD) 1340, 1320, 1320
1320 WRITE(KW, 1330)SDX, SXOLD
1330 FORMAT(/43H POOR CONVERGENCE IN ORTHL. SDX, SXOLD = ,2E15.5/1H)

c CHECK (DELTA(N) X) VS. EPS*X.
1340 IF(SDIFF-EPS2*SXO0OLD) 1390, 1350, 1350
1350 IF(SDIFF)1390, 1390, 1360
1360 IF(SDOLD)1380, 1380, 1370
c CHECK (DELTA(N) X) VS.
o] SQRT(REFAC)*(DELTA(N-1) X).
1370 IF(SDIFF-REFAC*SDOLD) 1380, 1390, 1380
1380 SDOLD=SDIFF
GO TO 1190
1390 IF(NTRAC) 1410, 1410, 1400
1400 WRITE(KW, 1230)(X(K),K=1,NC)

C COMPUTE THE ERROR MATRIX, (R**-1)*D*(R**-1)H , AND STORE IT IN R.
C COMPUTE THE LOWER TRIANGLE FIRST, THEN SYMMETRIZE THE MATRIX.
C UP TO THIS POINT THE LOWER TRIANGLE OF THE ARRAY R HAS NOT BEEN USED.
c
1410 DO 1430 J=1,NC
NCPU=NC+J
DO 1430 KK=J,NC
K=NCPJ-KK
S=RZEROD
DO 1420 L=K,NC
1420 S=S+R(J.L)*R(K,L)/D(L)
1430 R(K,dJ)=5

DO 1440 J=1,NC
DO 1440 K=dJ,NC
1440 R(J,K)=R(K,J)
IF (IDEBUG.EQ.0Q) GOTO 1448
WRITE(KW, 1442)
1442 FORMAT(/’ ERROR MATRIX R =)
DO 1444 I=1,NC
1444 WRITE(KW, 1016) (R(I,J),J=1,NC)
c ORTHL FINISHED SUCCESSFULLY. RETURN.
1448 NIX=0
1450 RETURN

1460 WRITE(KW, 1470)NIX
1470 FORMAT(//// 21H ORTHL FAILED (NIX = ,I1, 2H). ,5X,
* 24H THE SYSTEM IS SINGULAR. // 1H)
GO TO 1450
c
C END ORTHL.
END

leXske e ke ReReReReReRe ke s e ReReRe e Ko Re Ne e X2 X2 Ko X2 2 N2 X2 K2 N2 N2 X2 N2 X2 K e Ko Ko Ne Ko K2 e N2 N e N s X2 N2 Ne N e N ¢

APPENDIX C

PROGRAM LISTING OF BLSQS

SUBROUTINE BLSQS (M,N,MPN,NPU,NRHS,M1,N1,ISING, IFAIL,ETA,TOL,
* A,LA,B,LB,X.LX,RES,LRES,QR,LQR,XV,RESV,IPIV,D,Y,
* F,G,XMY1,XMY2)

IMPLICIT REAL*8(A-H,0-2)

..... AUTHOR. R E BOLLIGER.
OKLAHOMA STATE UNIVERSITY.

..... GENERAL DESCRIPTION.

THIS FORTRAN SUBROUTINE SOLVES THE SYSTEM OF LINEAR EQUATIONS,
A * X = B FOR THE BEST LEAST SQUARES SOLUTION. THIS VERSION

IS A TRANSLATION OF SEVERAL ALGOL PROGRAMS BY BJORK (1). THE
MATRIX -A- CONTAINS THE GIVEN SYSTEM OF M LINEAR EQUATIONS IN

N UNKNOWNS, WHERE M IS GREATER THAN OR EQUAL TO N AND THE FIRST
M1 ARE TO BE STRICTLY SATISFIED. FOR THE -NRHS- RIGHT HAND
SIDES GIVEN IN THE MATRIX -B-, THE BEST LEAST SQUARES SOLUTION
TO THE APPROXIMATING SYSTEM IS COMPUTED AND STORED IN THE ARRAY
-X-. THE CORRESPONDING RESIDUALS ARE STORED IN THE ARRAY -RES-.
THE CHOICE OF THE RANK N1 OF THE APPROXIMATING SYSTEM DEPENDS
ON THE PARAMETER -TOL-.

..... RESTRICTIONS.
THE VECTOR -RESV- MUST BE DECLARED TO BE DOUBLE PRECISION,
OTHERWISE THE RESULTS OF THIS PROGRAM ARE MEANINGLESS.

..... DIMENSION LIMITATIONS.
GIVEN M, N AND -NRHS-, THE CALLING PROGRAM MUST PRQVIDE THE
FOLLOWING MINIMUM STORAGE LOCATIONS...

ARRAY NAME MINIMUM REQUIRED DIMENSION(S)

A (M,N+1)
B (M,NRHS)
X (N,NRHS)
RES (M,NRHS)
QR (M+N,N)
IPIV (N)

XV (N+1)
RESV (M)

D (N)

F (M+N)

G (M+N)

Y (N)

XMY 1 (M)

XMY 2 (N)

THIS MEANS THAT AT LEAST
2XM+TAN+EN* *2+2M*N+2*NRHS * (M+2N)+ 1
STORAGE LOCATIONS MUST BE RESERVED.

..... SPECIAL MACHINE REQUIREMENTS.
THE PARAMETERS -ETA-, -TOL-, -FOUR- AND -SIXFO- ARE
MACHINE DEPENDENT. THE BEST VALUES OF -TOL-,
-FOUR- AND-SIXFO- FOR THE IBM 360 ARE UN-
DETERMINED AT THIS TIME.

77

OO000O000000000000000000000OOO00OOONNOO00O0000000O000O00O00OO0O0

o0

10

20 FORMAT(1HO.51HNUMBER OF EQUATIONS IS LESS THAN NUMBER OF UNKNOWNS)

SUBROUTINES CALLED.

THIS PROGRAM CALLS THE SUBROUTINES
-SOLVE-, -DECOM-, AND ~ACSOL-. EACH OF
THESE PROGRAMS ARE CONTAINED IN THE
BLSQS PACKAGE.

CALLING SEQUENCE.

CALL BLSQS(M,N,MPN,NPU,NRHS ,M1 N1, ISING,IFAIL,ETA,TOL,

A,LA,B,LB,X,LX,RES,LRES,QR,LQR,XV,RESV,IPIV,D,Y,

F,G,XMY1 XMY2)

PARAMETER DESCRIPTION

NAME MEANING OR USE

M NUMBER OF EQUATIONS TO BE SOLVED

N NUMBER OF UNKNOWNS

MPN EQUAL TO N + M

NPU EQUAL TO N + 1

NRHS . NUMBER OF RIGHT HAND SIDES

M1 NUMBER OF EQUATIONS TO BE STRICTLY SATISFIED
N1 RANK OF THE A MATRIX (DETERMINED BY TOL)
ISING FAILURE EXIT PARAMETER IN DECOM

IFAIL FAILURE EXIT PARAMETER IN ACSOL

ETA RELATIVE MACHINE TOLERANCE

TOL PARAMETER USED TO DETERMINE RANK OF A
A ARRAY CONTAINING SYSTEM TO BE SOLVED
LA SEE (**) BELOW

8 ARRAY OF RIGHT HAND SIDES

LB SEE (**) BELOW

X ARRAY OF SOLUTION VECTORS

LX SEE (**) BELOW

RES ARRAY OF RESIDUAL VECTORS

LRES SEE (**) BELOW

QR ARRAY CONTAINING DECOMPOSITION OF A
LQR SEE (**) BELOW

XV A SOLUTION VECTOR

RESV A RESIDUAL VECTOR

THE ARRAYS D, Y, F, G, IPIV, XMY1, AND
XMY2 ARE USED THROUGHOUT THE PROGRAM
FOR COMPUTATIONAL PURPOSES AND NEED NOT
CONCERN THE USER.

**x--FOR THE ARRAY DESCRIBED IN THE LINE ABOVE THIS ONE
THIS PARAMETER IS EQUAL TO THE FIRST DIMENSION

OF THE ARRAY SPECIFIED IN THE CALLING PROGRAM.

FOR EXAMPLE---

DIMENSION A(100,11)

LA=100

CALL BLSQS (...A,LA,...)

REFERENCES.

1. A. BJORK, BIT 7(1967) 257-278 AND 8(1968) 8-30.

DIMENSION A(LA,NPU), QR(LQR,N), F(MPN),G(MPN), XV(NPU)
DIMENSION RESV(M), XMY1(M), XMY2(N), D(N), Y(N), IPIV(N)
DIMENSION B(LB,NRHS), X{(LX,NRHS), RES(LRES,NRHS)

DEFINE QR MATRIX
10UT=6 :
IF(M-N)10,30,30

WRITE(IOUT,20)

78

[eEeNeNe N2 E2 N2 X2 K2 X2 X2 X2 X2 X2 Ko Ne N2 N el

30

40

50

60

70
80

10

20

79

GO TO 80

DO 40 J=1,N

DO 40 I=1,M

QR(I,J)=A(I,J)

CALL DECOM (M,N,M1,N1,ISING,ETA,TOL,IPIV.D,QR,LQR)

BEGIN (IV)TH RIGHT HAND SIDE
DO 70 IV=1,NRHS
DO 50 I=1,M
A(I,NPU)=B(I,IV)
MPU=M+1
CALL ACSsOL (M,N,M1 N1 ,MPN,NPU,A,LA,QR,LQR,D,IPIV,
XV,RESV,F,G,Y,XMY1,XMY2,IFAIL,ETA)

STORE SOLUTIONS AND RESIDUALS
DO 60 J=1,N
X(J,1V)=XV(J)
M1PU=M1+1
DO 70 I=M1PU,M
RES(I,IV)=RESV(I)
RETURN
END
SUBROUTINE DECOM(M,N,M1,N1,ISING,ETA,TOL,IPIV,D,QR,LQR)
IMPLICIT REAL*8(A-H,0-2Z)

THIS SUBROUTINE USES THE MODIFIED GRAM-SCHMIDT
ALGORITHM WITH PIVOTING TO OBTAIN THE
DECOMPOSITION OF THE MATRIX STORED IN QR

NEEDED FOR THE ITERATIVE REFINEMENT. IF THE

N1 FIRST ROWS OF QR MODIFIED BY ROUNDING

ERRORS ARE LINEARLY DEPENDENT, THE VARIABLE

ISING IS SET EQUAL TO ONE AND THE DECOMPOSITION IS
NOT COMPLETED. ON NORMAL EXIT, ISING HAS THE
VALUE ZERO.

AUTHORS NOTE--- THE COMPUTATION

OF THE BOOLEAN VARIABLE -NOT FINIS- IS,
OF COURSE, NOT NECESSARY, EXCEPT TO
PROVIDE CONTINUITY BETWEEN THE

FORTRAN AND ALGOL VERSIONS OF THIS
ALGORITHM.

DIMENSION QR(LQR,N), D(N), IPIV(N)
I0UT=6
ZERO0=0.0
UNITY=1.0
TOL2=TOL**2
MV=1
MH=M1
FSUM=.TRUE.
IFSUM=1{
N1=N
MS=M
FINIS=.FALSE.
IFIN=C
DO 10 J=1,N
IPIV(J)=J
BEGIN STEP NUMBER -IS-
OF THE DECOMPGOSITION
DO 520 IS=1,N
K=M+IS
IF(IS-M1-1)30,20,30
MV=M1+1
MH=M
FSUM=.TRUE.
IFSUM=1

30
40

50
60
70

80
20

100
110

120
130
140
150
160
170
180

180

200

210

220
230

240
250

260

270

280
290
300
310
320

80

COMPUTE -NOT FINIS-
IF(IFIN)S0, 40,50
NF IN=1
GO TO 60
NFIN=0
IF(NFIN-1)210,70,210
BEGIN PIVOT SEARCH
STATEMENT NR 70 IS THE LABEL -PIV-...
DS=ZERO
DO 120 J=IS.N
IF(IFSUM-1)100, 80, 100
SUM=ZERO
DO 90 I=MV,MH
SUM=SUM+QR(I,JU)*QR(I,J)
D(J)=SUM
IF(DS-D(J))110, 120, 120
DS=D(y)
IP=J
CONTINUE
IF(IFSUM-1)140, 130, 140
DM=DS
IF(DS-ETA*DM) 150, 160, 160
IFSUM=1
GO TO 170
IFSUM=0
IF(IFSUM-1)180, 70, 180
IF(IP-IS)190,220, 190
BEGIN COLUMN INTERCHANGE
I=IPIV(IP)
IPIV(IP)=IPIV(IS)
IPIV(IS)=I
D(IP)=D(IS)
KMU=K - 1
DO 200 I=1,KMU
C=QR(I,IP)
QR(I,IP)=QR(I,IS)
QR(I,IS)=C
END COLUMN INTERCHANGE
END PIVOT SEARCH
GO TO 220
STATEMENT NR 210 IS THE LABEL -NDS-...
MH=K - 1
MS=MH
IF(IFIN-1)230,240.230
C=ZERO
GO TO 250
C=UNITY
SUM=ZERO
DO 260 I=MV,MH
SUM=SUM+QR(I,IS)*QR(I,IS)
SUM=SUM+C
D(IS)=Sum
DS=D(IS)
COMPUTE -NOT FINIS-
IF(IFIN)280,270,280
NFIN=1
GO TO 290
NF IN=0
IF(NFIN-1)400, 300, 400
IF(IS-M1)400, 400,310
IF(DS-TOL2*D(M1+1))320, 320, 400
IFIN=1
N1=IS-1
MV=M+ 1
DO 390 IP=IS,N
CHECK FOR M1=0

OO0O0O0OO0O00O0

1F(M1)370,370,330
330 DO 340 I=1,M1
340 QR(I,IP)=ZERO
DG 360 J=1,M1
SUM=ZERO
DO 350 I=1.,M
350 SUM=SUM+QR(I,J)*QR(I,IP)
C=SUM/D(J)
DO 360 I=1,Mt
360 QR(I,IP)=QR(I,IP)-C*QR(I,J)
370 MPU=M+1
MPN 1 =M+N1
DO 390 JJU=MPU,MPN1
J=MPU+MPN1-JJ
SUM=ZERQ
DO 380 I=J,MPN1
ILM=I-M
380 SUM=SUM+QR(J,ILM)*QR(T TP}
390 QR(J,IP)=-SUM
GO TO 210
400 IF(DS)430,410,430
HERE FOR SINGULAR EXIT
410 ISING=1
WRITE(IOUT,420)
420 FORMAT(24HOEXIT SINGULAR IN DECOMP)
GO TO 530
430 QR(K,IS)=-UNITY
ISPU=IS+1
IF(ISPU-N)440, 440,520
BEGIN ORTHOGONALIZATION
440 DO 510 J=ISPU,N
SUM=ZERO
DO 450 I=MV,MH
450 SUM=SUM+QR(I,J)*QR(I,IS)
RSU=SUM/DS
QR(K,J)=RSJ
DO 460 I=1,MS
460 QR(I,J)=QR(I,J)~RSU*QR(I,IS)
COMPUTE -NOT FINIS-
IF(IFIN)470,480,470
470 NFIN=0O
GO TO 490
480 NFIN=1
4S0 CONTINUE
IF(NFIN-1)520,500,520
500 D(J)=D(J)-DS*RSU**2
510 CONTINUE
520 CONTINUE
END ORTHOGONALIZATION
END STEP NUMBER -IS-

ISING=0
530 RETURN
END
SUBROUTINE ACSOL (M,N,M1,N1,MPN,NPU,A,LA,QR,LQR,D,IPIV,
* XV,RESV,F,G,Y,XMY1,XMY2 IFAIL,ETA)

IMPLICIT REAL*8(A-H,0-2Z)

THIS SUBROUTINE USES THE DECOMPOSITION
STORED IN QR FOR THE ITERATIVE REFINEMENT
OF THE SOLUTION CORRESPONDING TH THE RIGHT
HAND SIDE GIVEN IN THE (N+1)ST COLUMN OF
A. IF THE SCLUTION FAILS TO IMPROVE
SUFFICIENTLY, THE VARIABLE IFAIL IS SET
EQUAL TO ONE AT EXIT. OTHERWISE, IFAIL

IS ZERO.

sNeNoNeNe]

DIMENSION A(LA,NPU), QR(LQR,N), F(MPN),G(MPN), XV(NPU)
DIMENSION RESV(M), XMY1(M), XMY2(N), D(N), Y(N), IPIV(N)
DPNUL=0.0
ZER0=0.0
UNITY=1.0 ,
10UT=6
BJUORKS CHOICE FOR THIS PARAMETER
SIXF0=64.0
BJORKS CHOICE FOR THIS PARAMETER
FOUR=4.0
XV(NPU)=-UNITY
ETA2=ETA**2
DO 10 I=1,M
F(I)=A(I,NPU)
G(I)=ZERO
RESV(I)=DPNUL
10 XMY1(I)=ZERO
DO 20 IS=1,N
XV(IS)=ZERO
JAYE=M+1S
F(JAYE)=ZERO
G(JAYE)=ZERO
20 XMY2(1S5)=ZERO
K=0
ENDR2=ZERO
ENDX2=ZERO
BEGIN KTH ITERATION STEP
30 ENDR1=ENDR2
ENDX 1=ENDX2
ENDR2=ZERO
ENDX2=ZERO
IF(K)40,280,40
BEGIN NEW RESIDUALS
40 DO 50 I=1,M
ALPHA=F(1I)
RESV(I)=RESV(I)+ALPHA
50 XMY1(I)=XMY1(I)+G(I)
WRITE(IOUT,60)K
60 FORMAT (1HO,20HFOR ITERATION NUMBER,I2,20H RESIDUAL VECTOR 1S.//)
DO 70 I=1.,M
70 WRITE(IOUT,80)RESV(I)
80 FORMAT(1H0O,D22.15)
DO 130 IS=1,N
J=M+IS
IP=IPIV(IS)
XV(IP)=XV(IP)+F(J)
XMY2(IP)=XMY2(IP)+G(JU)
** A DOUBLE PRECISION INNER PRODUCT **
DPSUM=DPNUL
DO 90 I=1,M
ALPHA=A(I,IP)
BETA=XMY1(I)
90 DPSUM=DPSUM+ALPHA*BETA
ALPHA=XV(IP)
DPSUM=DPSUM-ALPHA
G(J)=-DPSUM
IF(IS-N1)110,110, 100
100 F(J)=ZERO
GO TO 130
** A DOUBLE PRECISION INNER PRODUCT **
110 DPSUM=DPNUL
DO 120 I=1,M
ALPHA=A(I,IP)
120 DPSUM=DPSUM+ALPHA*RESV(I)
F(J)=-DPSUM
130 CONTINUE

140
150
160
170
180

190

200

83

WRITE(IOUT, 140)K
FORMAT (1HO,20HFOR ITERATION NUMEBER,I2,20H SOLUTION VECTOR IS,//)
DO 150 I=1,N
WRITE(IOUT, 160)XV(I)
FORMAT(1HO,E15.7)
DO 250 I=1,M
IF(I-M1)180, 180,170
C=RESV(I)
GO TO 190
C=DPNUL
** A DOUBLE PRECISION INNER PRODUCT **
DPSUM=DPNUL
DO 200 uJ=1,NPU
ALPHA=A(I,u)
BETA=XV(J)
DPSUM=DPSUM+ALPHA*BETA
DPSUM=DPSUM+C
F(I)=-DPSUM

"IF(I-M1)210,210,220

210
220

230

240

250

260
270

280

290

300

310
320

330
340

350

360

C=DPNUL
GO TO 230
C=XMY1(I)
** A DOUBLE PRECISION INNER PRODUCT **
DPSUM=DPNUL
DO 240 J=1,N
ALPHA=A(I,J)
BETA=XMY2(J)
DPSUM=DPSUM+ALPHA*BETA
DPSUM=DPSUM+C
G(I)=-DPSUM
N1PU=N1+1
DG 270 JJ=N1PU,N
IS=N1PU+N-JJ
SUM=ZERD
MPIS=M+IS
DO 260 I=1,MPIS
SUM=SUM+QR(I,IS)*G(I)
JAYE=M+IS

G(JAYE)=SUM

END NEW RESIDUALS
CALL SOLVE (M,N,M1,N1,MPN,QR,LQR,D,Y,F)
MPU=M+ 1
N1PU=N1+1

IF(N1PU-N)290, 290,320

DO 310 IS=N1iPU,N

J=M+IS

SUM=ZEROQ

DO 300 I=MPU,J
SUM=SUM+QR(I,IS)*F(I)
SUM=SUM+G(J)

CSP=SUM/D(IS)

DO 310 I=1,J
F(I)=F(I)-CSP*QR(I,IS)
MPN=M+N

DO 350 J=MPU,MPN
IF(J-M-N1)340,340,330
G(U)=ZERC

GO TO 350

G(J)=G(J)+F(J)

CONTINUE ,
CALL SOLVE {(M,N,M1,N1,MPN,QR,LQR,D,Y,G)
DO 360 I=1.M
ENDR2=ENDR2+F (1) **2

DO 370 I=MPU,MPN

IF (F(I).LT.1.E-40) GOTO 370
ENDX2=ENDX2+F (I)**2

370 CONTINUE
IF(K)390, 380, 390
380 ENR=ENDR2
ENX=ENDX2
END KTH ITERATION
390 K=K+1
KTH ITERATION TO BE DONE AT LEAST TWICE
IF(K-1)30, 30,400
TEST FOR FURTHER ITERATION
400 IF(SIXFO*ENDX2-ENDX1)410,420,420
410 IF(ENDX2-ETA2*ENX)420,420,30
420 IF(SIXFO*ENDR2-ENDR1)430,440,440
430 IF{ENDR2-ETA2*ENR)440, 440,30
TEST FOR FAILURE EXIT
440 IF(ENDR2-FOUR*ETA2*ENR)480,480,450
450 IF(ENDX2-FOUR*ETA2*ENX)480,480,460
460 IFAIL=1
HERE FOR FAILURE EXIT
WRITE(IOUT,470)
470 FORMAT(19HOEXIT FAIL IN ACSOL)
GO TO 490
480 IFAIL=1
HERE FOR NORMAL EXIT
490 RETURN
END
SUBROUTINE SOLVE (M,N,M1,Nt,MPN,QR,LQR,D,Y,F)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION QR(LQR,N), F(MPN), Y(N), D(N)
ZER0=0.0
Mv=1
MH=M1
DO 100 IS=1,Nt
J=M+1S
IF(IS-M1-1)20,10,20
10 MV=M1+1
MH=M
20 ISM1=IS~1
SUM=ZERO
IF(ISM1)50, 50,30
30 DO 40 I=1,ISM1
MPI=M+I
40 SUM=SUM+QR(MPI,IS)*Y(I)
50 Y(IS)=SUM-F(J)
Y(IS)=-Y(IS)
IF(IS-M1)70,70,60

60 C=-Y(IS)
GO TO 80
70 C=ZERO

80 SUM=ZERO .
DO 90 I=MV,MH

90 SUM=SUM+QR(I,IS)*F(I)
SUM=SUM+C
C=SUM / D(IS)
F(J)=C
DO 100 I=MV M

100 F(I)=F(I)-C*QR(I,IS)
IF(M1)150, 150,110

110 DO 120 1=1,M1

120 F(1)=ZERO
DO 140 1S=1,M1
SUM=ZERO
DO 130 I=1,M

130 SUM=SUM+QR(I,IS)*F(I)
SUM=SUM-Y(IS)
C=SUM / D(IS)
DC 140 I=1,Mi

140
150

160
170

F(I)=F(I)-C*QR(I,IS)
MPU=M+ 1

MPN1=M+N1

DO 170 JU=MPU,MPN1
J=MPN1+MPU-UJ
SUM=ZERD

DO 160 I=J,MPN1
ILM=I-M
SUM=SUM+QR(J, ILM)*F(I)
F(J)=-SUM

RETURN

END

85

10

15

20

APPENDIX D

PROGRAM LISTING OF LLSQF

SUBROUTINE LLSQF(A,IA,M,N,B,TOL,KBASIS,.X,H,IP,IER)
INTEGERIA,M,N,KBASIS,IP(N)
REALA(IA,N),B(M),TOL,X(N),H(N)
INTEGERI,IER,J,JCOL,JJ,JSTART K, KP1,L,LDIAG, LMAX
REALBB,DLOSS,DLOSSJ,RCOND, RCONDJ, RNORM, TMP , XNORM
REALSASUM, SDOT, SNRM2

LDIAG=MINO(M,N)

IER=129
IF(LDIAG.LE.O)GOTOS0Q00
IER=130
IF(TOL.GT.1.0)GOTO9000
IER=0

JSTART=MAXO(KBASIS+1,1)
DO35J=1,LDIAG

IP(J)=y
IF{J.LE.KBASIS)GOTO30
LMAX=U
IF(J.EQ.JSTART)GOTO10
DLOSSU=1.0
IF(BB.EQ.0.0)GOTO30
TMP=BB

BB=BB*SQRT(AMAX1(1.0-(B(J-1)/BB)**2,0.0))
IF(BB.EQ.0.0)GOTA30

DLOSSJ=BB/TMP

DOSL=J,N

IF(H(L).EQ.0.0)GOTOS

TMP=H(L)
H(L)=H(L)*SQRT(AMAX1(1.0-(A(J-1,L)/H(L))**2,0.0))
DLOSSJ=AMIN1(DLOSSJ,.H(L)/TMP)

TMP=X (L)

x{L)=0.0

IF(H(L).EQ.0.0)GOTOS

X(L)=TMP-A(J-1,L)*B(J~-1)

IF(H(LMAX) .EQ.0.0)LMAX=L
IF(ABS(X(L))/H(L).GT.ABS(X(LMAX))/H(LMAX))LMAX=L
CONTINUE :
DLOSS=DLOSS*DLOSSY

TMP=10.0+DLOSS

IF(TMP.GT.10.0)GOT020

BB=SNRM2(M-J+1,B(J), 1)

IF(BB.EQ.0.0)GOTO30

DO15L=J,N

H(L)=SNRM2(M-J+1,A(J,L), 1)

X(L)=0.0

IF(H(L).EQ.0.0)GDTO15
X(L)=SDOT{(M-J+1,A(J,L),1,B(J), 1)
IF(H(LMAX).EQ.0Q.0)LMAX=L
IF(ABS(X(L))/H(L).GT.ABS{X(LMAX))/H(LMAX))LMAX=L
CONTINUE

DLOSS=1.0

CONTINUE

IP(J)=LMAX

IF(LMAX.EQ.J)GOTO30

DD251I=1,M

TMP=A(I,J)

ACI,J)=A(I,LMAX)

A(I,LMAX)=TMP

86

25

30

35

40
45

50
55
60

65

70
75

80

88
90

95

3000

8005

CONTINUE
H(LMAX)=H(J)
X(LMAX)=X(J)
JCOL=MINO(J+1,N)

CALLSVHS12(1,J,J+1,M,A(1,J),1,H(J),A(1,JCOL),1,IA,N-V)

CALLSVHS12(2,J,J+1,M,A(1,J),1,H(J),.B,1,M,1)
CONTINUE

RCOND=0.0

K=0

RNORM=0.0

XNORM=0.0

DO55J=1,LDIAG
IF(ABS(A(uU,J)).EQ.0.0)GOTO60
IF(TOL.LT.0.0)GOTOS0
RNORM=AMAX 1 (RNORM, SASUM(J,A(1,J),1))
X(J)=1.0/A(J,J)

IF(J.LT.2)G0OTO45

I=J

D040L=2,J

I=1-1 :
X(I)=-SDOT(J-I,X(I+1),1,A(I,I1+1),IA)/A(I,I)
CONT INUE

CONTINUE
XNORM=AMAX 1 (XNORM, SASUM(J,X, 1))
RCONDU=1 .0/ (RNORM*XNORM)
IF(TOL.GE.RCONDJ)GOTOC .

RCOND=RCONDJ

K=J

CONT INUE

KP1=K+1

KBASIS=K

DO65U=1,N

X(J)=0.0

IF(KBASIS.EQ.0)GOTOSO
X(K)=B(K)/A(K,K)

IF(K.LT.2)GOTO75

1=K

DO70L=2,K

I=1I-1 :
X(I)=(B(I)-SDOT(K-I,X(I+1),.1,A(I,I+1),IA))/A(I,I)
CONTINUE

J=LDIAG+1

pO80OJJ=1,LDIAG

J=Jd-1

L=IP(J)

IF(L.EQ.J)GOTO80

TMP=X(L)

X(L)=X(J)

X(J)=TMP

CONTINUE

D085I=1,K

B(I)=0.0

J=LDIAG+1

D0O9S5JJ=1.LDIAG

J=J-1
CALLSVHS12(2,J,J+1,M,A(1,J),1,H(J),B,1,M, 1)
CONTINUE

IF(TOL.GE.O.0)TOL=RCOND

GOTO9005

CONT INUE

CALLUERTST(IER, 'LLSQF)

RETURN

END

SUBROUTINE UGETIO(IOPT,NIN,NOUT)

87

10

INTEGERIOPT,NIN,NGQUT
INTEGERNIND, NOUTD
DATANIND/5/,NOUTD/6/
IF(IOPT.EQ.3)GOTO10
IF(IOPT.EQ.2)GOTO5
IF(IOPT.NE. 1)GOTO9005
NIN=NIND

NOUT=NQUTD

GOTO9005

NIND=NIN

GOTOS005

NOUTD=NQUT

8005 RETURN

10

20

25

30

END

SUBROUTINE UERTST(IER,NAME)

INTEGERIER

CHARACTER*2NAME(3)
CHARACTER*2NAMSET(3),NAMEQ(3)
CHARACTER*1 IEQ
DATANAMSET/'UE’,’RS’,’ET’/

DATANAMEQ/* ',’ *,' ‘/
DATALEVEL/4/,1EQDF/0/,1EQ/’'="/
IF(IER.GT.999)G0OT025
IF(IER.LT.-32)GOTOS5
IF(IER.LE.128)GOTOS
IF(LEVEL.LT.1)GOT030

CALLUGETIO(1,NIN, IOUNIT)
IF(IEQDF.EQ.1)WRITE(IOUNIT,35)IER,NAMEQ, IEQ, NAME
IF(IEQDF.EQ.QO)WRITE(IOUNIT, 35)1ER,NAME
GOTO30

IF(IER.LE.64)GOTO10
IF(LEVEL.LT.2)GOTO30

CALLUGETIO(1,NIN, IOUNIT)
IF(IEQDF.EQ.1)WRITE(IOUNIT,40)IER,NAMEQ, IEQ, NAME
IF(IEQDF.EQ.O)WRITE(IOUNIT,40)IER, NAME
GOT030

IF(IER.LE.32)GOTO15
IF(LEVEL.LT.3)GOTO30

CALLUGETIO(1,NIN, ICUNIT)
IF(IEQDF.EQ.1)WRITE(IOUNIT,45)IER,NAMEQ, IEQ, NAME
IF(IEQDF.EQ.O)WRITE(IOUNIT,45)IER,NAME
GOTO30

CONT INUE

D020I=1,3
IF(NAME(I).NE.NAMSET(I))GOT025
CONTINUE

LEVOLD=LEVEL

LEVEL=IER

IER=LEVOLD

IF{LEVEL.LT.O)LEVEL=4
IF(LEVEL.GT.4)LEVEL=4

GOTD30

CONTINUE

IF(LEVEL.LT.4)GOT030
CALLUGETIO(1,NIN,IOUNIT)
IF(IEQDF.EQ.1)WRITE(IOUNIT,50)IER,NAMEQ, IEQ,NAME
IF(IEQDF.EQ.O)WRITE(IOUNIT,50)IER, NAME

IEQDF=0
RETURN

35 FORMAT(19H *** TERMINAL ERROR, 10X,7H(IER = ,13,20H) FROM IMSL ROUT
*INE ,3A2,A1,3A2)

40 FORMAT(36H *** WARNIMG WITH FIX ERROR (IER = ,13,20H) FROM IMSL R

*OUTINE ,3A2,A1,3A2)
45 FORMAT(18H *** WARNING ERROR, 11X,7H(IER = ,I3,20H) FROM IMSL RQUTI

88

60
65

10

1S

20

25

30
35

10
1S

SO FORMAT(20H *** UNDEFINED ERROR,9X,7H(IER

55

40

*NE ,3A2,A1,3A2)

*INE ,3A2,A1,3A2)
IEQDF=1
D060I=1,3
NAMEQ(I)=NAME(I)
RETURN
END

REAL FUNCTION SDOT(N,SX, INCX,SY,INCY)
INTEGERN, INCX, INCY
REALSX(1),SY(1)
INTEGERI,M,MP1,NS,IX,1Y
SDOT=0.0EO

IF(N.LE.QO)RETURN
IF(INCX.EQ.INCY)IF(INCX-1)5,15,35
CONTINUE

IX=1

Iv=1
IF(INCX.LT.O)IX=(-N+1)*INCX+1
IFCINCY.LT.O)IY=(~N+1)*INCY+1
DO10I=1,N
SDOT=SDOT+SX(IX)*SY(IY)
IX=IX+INCX

IY=IY+INCY

CONTINUE

RETURN

M=N-(N/S)*5

IF(M.EQ.0)GOTO2S

D0201I=1,M
SDOT=SDOT+SX(I)*SY(1I)
CONTINUE

IF(N.LT.S)RETURN

MP 1=M+1

DO30I=MP1{,N,5

,15,20H) FROM IMSL ROUT

SDOT=SDOT+SX(I)*SY(I)+SX(I+14)*SY(I+1)+SX(I+2)*SY(I+2)+SX(I+3)*SY(I

*+3)+SX(I+4)*SY(I+4)
CONTINUE

RETURN

CONTINUE

NS=N*INCX
D0401I=1,NS, INCX
SDOT=SDOT+SX(I)*SY(I)
CONTINUE

RETURN

END

REAL FUNCTION SNRM2(N,SX,INCX)
INTEGERN, INCX

REALSX(1)

INTEGERI, J,NEXT,NN

REALCUTLO,CUTHI ,HITEST, SUM, XMAX, ZERO, ONE

DATAZERO,ONE/O.OEQ, 1.0EQ/
DATACUTLO,CUTHI/4.441E-16, 1.304E19/
IF(N.GT.0)GOTOS

SNRM2=ZERO

GOTO70

ASSIGN1STONEXT

SUM=ZERO

NN=N*INCX

I1=1

GOTONEXT, (15,20, 35.40)
IF(ABS(SX(I)).GT.CUTLO)GOTOSS
ASSIGN2OTONEXT

89

20

25

35
40

45

50

60

65

70

10

15
20

30

55

XMAX=ZERO
IF(SX(I).EQ.ZERD)GOTO65
IF(ABS(SX(I)).GT.CUTLO)GOTOS5
ASSIGN3STONEXT

GOTO030

I=J

ASSIGN4OTONEXT
SUM=(SUM/SX(I))/SX(I)
XMAX=ABS(SX(I))

GOTO045
IF(ABS(SX(1)).GT.CUTLO)GOTO50
IF(ABS(SX(I)).LE.XMAX)GOTO45
SUM=0NE+SUM* (XMAX/SX(1))**2
XMAX=ABS(SX(1))

GOTO065

SUM=SUM+(SX (I)/XMAX)**2
GOTO065

SUM= (SUM*XMAX) *XMAX
HITEST=CUTHI/FLOAT(N)
DO60U=I,NN, INCX
IF(ABS(SX(J)).GE.HITEST)GOTO25
SUM=SUM+SX(J)**2

SNRM2=SQRT (SUM)

GOTO70

CONTINUE

I=I+INCX

IF(I.LE.NN)GOTO10
SNRM2=XMAX*SQRT (SUM)
CONTINUE

RETURN

END

SUBROUTINE SVHS12(MODE,LP,L1,.M,U,INCU,UP,C,INCC,ICV,NCV)
INTEGERMODE,LP,L1,M, INCU, INCC, ICV,NCV
REALU(1),uP,C(1)
INTEGERIUJ,ILP,IL1,IM,INCR,12,13,14,J
REALONE,CL,CLINV, SM1

ONE=1.
IF(O.GE.LP.OR.LP.GE.L1.0R.L1.GT.M)E0T0O9005
ILP=(LP-1)*INCU+1

IL1=(L1-1)*INCU+1

IM={(M-1)*INCU+1

CL=ABS(U(ILP))

IF(MODE.EQ.2)GOTO15
DOSIJ=IL1,IM, INCU
CL=AMAX1(ABS(U(IV)),CL)
IF(CL.LE.0.0)GOTOSO05

CLINV=0ONE/CL

SM=(U(ILP)*CLINV)**2
DO10IJ=IL1,IM, INCU
SM=SM+(U(IJ)*CLINV)**2

SM1=SM

CL=CL*SQRT(SM1)
IF(U(ILP).GT.0.0)CL=-CL

uUP=U(ILP)-CL

U(ILP)=CL

GOT020

IF(CL.LE.O.0)GOTO9005
IF(NCV.LE.0)GOT0O9005

B=UP*U(ILP)

IF(B.GE.0.0)GOTO9005

B8=0ONE/B

12=1-ICV+INCC*(LP-1)
INCR=INCC*(L{~LP)

p035J=1,NCV

90

25

12=12+ICV
I13=I2+INCR

14=13

SM=C(I2)*UP
DO251IJ=IL1,IM, INCU
SM=SM+C(I3)*U(IJ)
I3=I3+INCC

CONTINUE
IF(SM.EQ.0.0)GOTO35

. SM=SM*B

30
35
9005

10

1S

20

25

10

15

C(I2)=C(I2)+SM*UpP
DO301J=IL1,IM, INCU
C(14)=C(I4)+SM*U(IU)
14=14+INCC

CONTINUE

CONTINUE

RETURN

END

REAL FUNCTION SASUM(N,SX,INCX)
INTEGERN, INCX
REALSX(1)
INTEGERI,M,MP1,NS
SASUM=0.0EQ
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO10
NS=N*INCX
DOS5I=1,NS, INCX
SASUM=SASUM+ABS(SX(I))
CONTINUE

RETURN

M=N-(N/6)*6
IF(M.EQ.0)GOT020
DO15I=1,M
SASUM=SASUM+ABS(SX(I))
CONTINUE
IF(N.LT.6)RETURN

MP 1=M+1

DD25I=MP1,N.6
SASUM=SASUM+ABS(SX(I))+ABS{SX(I+1))+ABS(SX(I+2))+ABS(SX(I+3))+ABS(
*SX(I+4))+ABS(SX(I+5))
CONTINUE

RETURN

END

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
DOUBLEPRECISIONDX(1),DY(1)
INTEGERN, INCX, INCY

INTEGERI ,M,MP1,NS,IX,IY
DDOT=0.DO

-IF(N.LE.O)RETURN
IF(INCX.EQ.INCY)IF(INCX-1)5,15,35
CONT INUE

IX=1

1Y=1
IF(INCX.LT.0)IX=(-N+1)*INCX+1
IF(INCY.LT.O)IY=(-N+1)*INCY+1
DO10I=1,N

DDOT=DDOT+DX(IX)*DY(IY)
IX=IX+INCX

IY=IY+INCY

CONTINUE

RETURN

M=N-(N/5)*5

91

25

30

35

40

10
15

20

25

35
40

45
50

60

65

70

20

30

55

IF(M.EQ.0)GOTO25
D020I=1,M
DDOT=DDOT+DX(I)*DY(I)
CONTINUE
IF(N.LT.S)RETURN

MP 1=M+1

DO30I=MP1,N,5

DDOT=DDOT+DX(I)*DY(I)+DX(I+1)*DY(I+1

*+3)+DX(I+4)*DY(I+4)
CONTINUE

RETURN

CONTINUE

NS=N*INCX
DO40I=1,NS, INCX
DDOT=DDOT+DX(I)*DY(I)
CONTINUE

RETURN

END

)+DX(I+2)*DY(I+2)+DX(I+3)*DY(I

DOUBLE PRECISION FUNCTION DNRM2 (N, SX, INCX)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION SX(1)
DATAZERO,ONE/O.QEOQ, 1.0EQ/

DATACUTLO,CUTHI/4.441E-16.1.304519/

IF(N.GT.0)GOTOS
DNRM2=ZERO

GOTO70

ASSIGN1STONEXT

SUM=ZERO

NN=N*INCX

I=1 -

GOTONEXT, (15,20, 35, 40)
IF(DABS(SX(I)).GT.CUTLO)GOTOSS
ASSIGN20OTONEXT

XMAX=ZERO
IF(SX(I).EQ.ZERO)GOTOGS
IF(DABS(SX(I)).GT.CUTLO)GOTOS5
ASSIGN3STONEXT

GOTO30

I=y

ASSIGN4OTONEXT
SUM=(SUM/SX(I))/SX(I)
XMAX=ABS(SX(I))

GOTO045
IF(DABS(SX(I)).GT.CUTLO)GOTOS50
IF(DABS(SX(I)).LE.XMAX)GOTO45
SUM=0NE+SUM* (XMAX/SX(1))**2
XMAX=DABS(SX(I))

GOTO65 .
SUM=SUM+(SX{I)/XMAX)**2
GOTO065

SUM= (SUM*XMAX) *XMAX
HITEST=CUTHI/FLOAT(N)
DO60J=I,NN, INCX
IF(ABS(SX(J)).GE.HITEST)GOTO25
SUM=SUM+SX (J) **2
DNRM2=DSQRT(SUM)

GOTO70

CONTINUE

I=I+INCX

IF(I.LE.NN)GOTO10
DNRM2=XMAX*DSQRT (SUM)
CONTINUE

RETURN

END

92

10

15

25

30
35
9005

SUBROUTINE DVHS12(MODE,LP,L1,M,U,INCU,UP,C,INCC,ICV,NCV)

IMPLICIT REAL*8(A-H,3-2)
DIMENSION U(1),C(1)
ONE=1.
IF(O.GE.LP.OR.LP.GE.L1.0R.L1.GT.M)GOTOS005
ILP=(LP-1)*INCU+1
IL1=(L1-1)*INCU+1
IM=(M-1)*INCU+1
CL=DABS(U(ILP))
IF(MODE.EQ.2)GOTO15
DOSIJU=IL1,IM,INCU
CL=DMAX1(DABS(U(IU)).CL)
IF(CL.LE.O.0)GOTOS005
CLINV=0ONE/CL
SM=(U(ILP)*CLINV)**2
DO10IJ=IL1,IM, INCU
SM=SM+(U(IJ)*CLINV)**2
SM1=SM
CL=CL*DSQRT(SM1)
IF(U(CILP).GT.0.0)CL=-CL
UP=U(ILP)-CL

u(ILP)=CL

GOT020
IF(CL.LE.0.0)GOT0O9005
IF(NCV.LE.0)GOT0O9005
B=UP*U(ILP)
IF(B.GE.0.0)GOT0O9005
B=0NE/B
I2=1-ICV+INCC*(LP-1)
INCR=INCC*(L1-LP)
DO35J=1,NCV

I12=12+ICV

I3=I2+INCR

I14=1I3

SM=C(1I2)*uUpP
DO25Iu=IL1,IM, INCU
SM=SM+C(I3)*U(IV)
I13=13+INCC

CONTINUE
IF(SM.EQ.0.0)GOTO35
SM=SM*B
C(I2)=C(I2)+SM*UpP
DO30IJ=IL1,IM,INCU
C(14)=C(I4)+SM*U(IuU)
I14=14+INCC

CONTINUE

CONTINUE

RETURN

END

DOUBLE PRECISION FUNCTION DASUM(N, SX, INCX)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION SX(1)
DASUM=0.0EO
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GOTO10
NS=N*INCX

DO5I=1,NS, INCX
DASUM=DASUM+DABS(SX(I))
CONTINUE

RETURN

M=N-(N/6)*6
IF(M.EQ.0)GOT020

93

15

20

DO15I=1,M
DASUM=DASUM+DABS(SX(I))
CONTINUE
IF(N.LT.6)RETURN
MP 1=M+1{
DO251=MP1,N,6
DASUM=DASUM+DABS(SX(I))+DABS(SX(I+1))+DABS(SX(I+2))+
*DABS(SX(I+3))+DABS(SX(I+4))+DABS(SX(I+5))
25 CONTINUE
RETURN
END

94

[sEeNeNoNe N2 N No X2 s N2 NeR2 R e No NeNo R N e N e N o]

O

APPENDIX E

PROGRAM LISTING OF INVHIL

SUBROUTINE INVHIL (NN,S,LS)

PRODUCES THE INVERSE OF AN N BY N FINITE SEGMENT OF THE HILBERT

MATRIX. H(I,J)=1/(I+J~1)

J. HERNDON AND P. NAUR, ALGORIGHM 50, COMMUNICATIONS OF THE A.C.M.
USAGE..........

NN SPECIFIES THE ORDER OF THE MATRIX TO BE PRODUCED.

S IS THE DOUBLE PRECISION ARRAY IN WHICH THE MATRIX IS RETURNED.

LS

IS THE FIRST DIMENSION OF THE ARRAY S IN THE CALLING PROBRAM.

EXAMPLE..........

10

20

30

40

DOUBLE PRECISION S
DIMENSION S(10, 10)
LS=10

N=6

CALL INVHIL (N,S,LS)
CALL EXIT

END

P. CHANDLER, F.5.U. PHYSICS DEPT.

DOUBLE PRECISION S,W,AN,AJ,AK,AL,UNITY, HALF,DD, THRSH,ABSDD,DEF
DOUBLE PRECISION DMOD

DIMENSION S(LS,NN)

KW=6
UNITY=1.DO
THRSH=.01D0
HALF=.5DO
N=NN
W=N*N
S(1,1)=w
IF(N~-2)200, 10, 10
AN=N
DG 20 J=2,N
AJd=y
W=W*((AN+AJ-UNITY) * (AN-AJ+UNITY)/(AU-UNITY)**2)**2
S(J,J)=w
NMU=N- 1
DO 30 u=1,NMU
JPU=J+1
DO 30 K=JPU,N
L=K-1
AL=L
S(J,K)=-S(J,L)*(AN+AL)*(AN-AL)/AL**2
DO 40 J=2,N
Ad=J
DO 40 K=1,J
AK=K
S(K,J)=S(K,J)/(AJ+AK-UNITY)
S(J,K)=S(K,d)
ROUND OFF ALL ELEMENTS TO THE NEAREST
INTEGER.
DO 170 J=1,N

50
60

70

80
90
100
110

120
130

140
150
160
170

180
190
200

DO 170 K=1,J
DD=DMOD(S(J,K) ,UNITY)
IF(DABS(DD)-THRSH)
ABSDD=DD
IF(ABSDD)50, 60, 60
ABSDD=-ABSDD
IF(ABSDD-THRSH) 120, 120, 70
IF (DABS(DABS(DD)-UNITY)-THRSH
DEF=ABSDD-UNITY
IF(DEF)80,90,90
DEF=-DEF
IF(DEF-THRSH) 120, 120, 100
WRITE(KW, 110)N,J,K,DD
FORMAT(’ POOR ACCURACY IN INVHIL FOR N = /,I3,’, J = /,13,
*d o= /13,7, DEFECT = /,D12.5)

IF(DABS(DD)~-HALF)

IF (ABSDD-HALF) 160, 160, 130
DD=DD-DSIGN(UNITY,DD)

DEF=UNITY

IF(DD) 140, 150, 150

DEF=-DEF

DD=DD-DEF

S{J,K)=S(J,K)-DD

S(K,J)=S(J,K)

DO 180 J=1,N

WRITE(KW, 190)N, J, (S(J,K) ,K=1,N)

FORMAT(/‘ INVHIL. N = ’,I3,5X,’d = ’,I13/(1X,5D21.13))

RETURN

END

96

APPENDIX F

TEST PROGRAM FOR GIVEN

(C % 2k ok ok ok ke K kK kK kK K kK ik ok ok ok ok ok ke ok ok ok ook sk kS sk ok 3 ok ok ok sk ok ok ok ok Ok ok Sk skl ok ok ok kK R K ok ke sk kK kR K K

C *
c TEST PROGRAM FOR GIVEN *
C *

(C % S ke ok ke e ok e e kol stk ik Sk ik ol ke ok K ok sk Sk Ol ok sk ok ol sk ok ok koK ok ok ok sk ok ok ok ok ok R sk ek ok R Ol sk kOl ke ok Sk ok sk ke ok K

Cc
C THE IMPLICIT STATEMENT IS USED FOR
C DOUBLE PRECISION ARITHMETIC ONLY.
IMPLICIT REAL*8(A-H,0-2)
C
c SET DIMENSIONS FOR WORK ARRAYS.
C
DIMENSION AROW(10),D(10),TBAR(10),RBAR(45)
o
c NCOL=NUMBER OF COLUMNS IN DESIGN MATRIX.
NCOL=6
c
C NR = NCOL*(NcOL-1)/2
NR=15
c
c ITYPE=1 FOR DENSE DESIGN MATRIX.
o} ITYPE=2 FOR SPARSE DESIGN MATRIX.
ITYPE=1
C
CALL GIVEN (NCOL,NR,ITYPE,AROW,D,TBAR,RBAR)
STOP
END

97

APPENDIX G

TEST PROGRAM FOR ORTHL

(C sk % ok ke 3k 3k ke ol 3 ke ke kK Rl ok Ol ok 3k Kk Sk ke e ok K O kK 3k Ok ok K e 3Ok ok ok Kok ko ik Kok s sk ko i ok ik ok ok ok ofe ke ok ok ok K

c *
c TEST PROGRAM FOR ORTHL *
c *

(2% 3k ok ok ok ke ek 3k ol Sk ok ok ok Sk ok e K sk e i ke R ok 2k Ok oK ol ke ok Ok R ke ok ok ke kol ok ok ok ok ok ke ok ok K ok ok ok kK ok ok ok ok sk ok R ok ok ok Ok ok

C

C THE IMPLICIT STATEMENT IS USED FOR
c DOUBLE PRECISION ARITHMETIC ONLY.
IMPLICIT REAL*8 (A-H,0-2)
c SET DIMENSIONS FOR WORK ARRAYS.
DIMENSION A(10,10),R(10,10).X(10),B(10),U(10,10),
* PP(10),D(10),RES(10)
c
c INPUT DEVICE NUMER
IN=5
c THE FIRST DIMENSION OF A
LAU= 10
c NUMBER OF ROWS IN THE INPUT MATRIX -A-
NR= 6
c NUMBER OF COLUMNS IN -A-
NC=6
c THE FIRST DIMENSION OF R
LR=6
c IREF=0 FOR NO ITERATIVE REFINEMENT
c IREF=1 FOR ITERATIVE REFINEMENT
IREF=1
c NTRAC=0 FOR NORMAL OUTPUT
c NTRAC=1 FOR PRINT OUT THE RESULT OF
c EACH ITERATION
NTRAC=1
c INPUT THE MATRIX -A- AND RIGHT HAND
c SIDE -B-
DO 20 I=1,NR
READ (IN,10) (A(I,J),J=1,NC),B(I)
10 FORMAT (7F6.1)
20 CONTINUE
c
CALL ORTHL (A,LAU,NR,NC,B,X,R,LR,IREF,NTRAC,NIX,U,P,PP,D)
STOP
END

98

APPENDIX H

TEST PROGRAM FOR BLSQS

(3K 3k ke ok ok sk ke e 0k Sk ki ok ok Ok ek ke ok Sk ok Kk Sk ok Ok Ok sk ke ok ok ok sk ok ok ok ok ke ok Sk kol sk sk ok ok ke ok ol ke ok ok ke ke ok ok ok ok ok ok

C *
c TEST PROGRAM FOR BLSQS *
C *
C**
c
C THE IMPLICIT STATEMENT IS USED FOR
C DOUBLE PRECISION ARITHMETIC ONLY.
IMPLICIT REAL*8(A-H,0-2)
c
DIMENSION QR(20,6),A(10,7),B(10,6),X(10,10),F(12),G(12)
DIMENSION RESV(G),XMY1(6),XV(7),XMY2(&),IPIV(6).,D(6),Y(6)
.DIMENSION AA(6,6),RES(10)
o] DOUBLE PRECISION RESV
c INPUT DEVICE NUMBER
IN=5
(o] OUTPUT DEVICE NUMBER
I0UT=6
c FIRST DIMENSION OF A
LA=10
c FIRST DIMENSION OF B
LB=10
c FIRST DIMENSION OF RES
LRES=10
c FIRST DIMENSION OF QR
LQR=20
c FIRST DIMENSION OF X
LX=10
C NUMBER OF RIGHT HAND SIDES
NRHS=1
c SINGLE PRECISION IBM 360
c RELATIVE MACHINE TOLERANCE
ETA=1.0E-8
c -TOL- DETERMINES SYSTEM RANK
TOL=1.0E~7
C NUMBER OF CONSTRAINTS
M1=0
(¢ NUMBER OF EQUATIONS
M=6
c NUMBER OF UNKNOWNS
N=6
c REQUIRED SUBROUTINE PARAMETERS
NPU=N+ 1
MPN=M+N
c INPUT A AND B
DO 20 I=1,M
READ (IN,10) (A(I,J),J=1,N),B(I,1)
10 FORMAT(7F6.0)
20 CONTINUE
c
c
CALL BLSQS (M,N,MPN,NPU,NRHS ,M1,N1,ISING, IFAIL,ETA,TOL,
* A,LA,B,LB,X,LX,RES,LRES,QR,LQR,XV,RESV,IPIV,D,Y,
* F,G,XMY1,XMY2)
]
c PRINT OUT RESULT

WRITE(IOUT,30)

99

30

40
50

60
70
80
20

100

FORMAT(15H -A- MATRIX---,//)

DO 40 I=1,M
WRITE(IOUT,50)(A(I,J),d=1,M)
FORMAT (1HO,5E15.7)

WRITE(IOUT,60)

FORMAT (1HO, 18HRIGHT HAND SIDE---,//)
WRITE(IOUT,70)(B(I,1),I=1,M)

FORMAT(1HO,GE15.7)

WRITE(IOUT,80)
FORMAT(1HO, 18HSOLUTION VECTOR---,//)
WRITE(IOUT,90)(X(I,1),I=1.N)
FORMAT ({HO, 3X,E25.16)

WRITE(IOUT, 100)N1
FORMAT(1HO, {7THSYSTEM RANK IS---,14,//)
sTOP

END

100

APPENDIX I

TEST PROGRAM FOR LLSQF

(C % %k ke ok ok ok ok e sk sk ke ok ok 3k sk sk sk ke ek K ke ok sk ok ok ke ik sk e sk okl sk ok ok ok ol sk ok ke ok e ok ke ok K ke s i ok ok sk ke ke ok e ok ok Xk ok ok

C *
c TEST PROGRAM FOR LLSQF *
C *
C**
c
(o] THE IMPLICIT STATEMENT IS USED FOR
c DOUBLE PRECISION ARITHMETIC ONLY.
IMPLICIT REAL*8 (A-H,0-2)
(o] SET DIMENSIONS
DIMENSION A(10,5),B(10),X(5),H(5),IP(5)
o] INPUT DEVICE NUMBER
IN=5
c OUTPUR DEVICE NUMBER
LP=6
c FIRST DIMENSION OF A
IA=10
c NUMBER OF ROWS IN INPUT MATRIX -A-
M=6
c NUMBER OF COLUMNS IN -A-
N=5
c TOL DETECTS RANK DEFICIENCE
TOL=0.0
c RANK OF -A-
KBASIS=6
(o] INPUT -A- AND -B-
DO 20 I=1,M
READ (IN, 10) (A(I,J),J=1,N),B(I)
10 FORMAT (7F6.0)
20 CONTINUE
o]
(o]
CALL LLSQF(A,IA,M,N,B,TOL,KBASIS,X,H,IP,IER)
c
c IF A CONDITION NUMBER IS CALCULATED,
c ITS RECIPROCAL IS RETURNED IN TOL.
c OTHERWISE, TOL IS NOT CHANGED.
WRITE (LP,30) TOL
30 FORMAT (/’ TOL = ’,E18.8)
c PRINT OUT SOLUTION VECTOR
WRITE (LP,40) (X(I),I=1,N)
40 FORMAT (/' X = ¢, /(7X,E25.16))
STOP
END

101

O0000

APPENDIX J

PROGRAM LISTING OF THE ORIGINAL
VERSION OF ORTHOLIN2 WITHOUT

ITERATIVE REFINEMENT

SUBROUTINE ORTHL (A,LAU,NR,NC,B,X,R,LR,IREF,NTRAC,NIX,U,P.PP,D)

ORIGINAL VERSION OF ORTHOLIN2 BY F. L. BARER
ITERATIVE IMPROVEMENT HAS NOT YET BEEN IMPLEMENTED.

J.

21

20

6

9
5
2

P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE UNIVERSITY

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION B(1),X(1),P(1).PP(1),D(1)
DIMENSION A(LAU,NC),R(LR,NC),U(LAU,NC)

KW=6
RZERO=0
NIX=1

MOVE A INTO U.
DO 1 J=1,NR
DO 1 K=1,NC
U(J,K)=A(J,K)

COMPUTE U AND R.
DO 2 J=1,NC
$=RZERD
DO 3 K=1,NR
T=U(K,J)
P(K)=T
S=S+T*T
IF(S.NE.RZERO) GO TO 20
WRITE(KW,21)dJ
FORMAT(/’ R(J,J) IS ZERO IN ORTHL FOR J =',13)
RETURN
R(J,d)=S
T=RZERO
DO 4 K=1,NR
T=T+P(K)*B(K)
X(J)=T
JPU=y+1
IF(JPU.GT.NC) GO TO 2
DO 5 L=JPU,NC
T=RZERO
DO 6 K=1,NR
T=T+P(K)*U(K,L)
R(J,L)=T
T=T/S
DO 9 K=1,NR
U(K,L)=U(K,L)-P(K)*T
CONTINUE
CONT INUE

11
10

DO 10 JJ=1,NC
J=NC+1-Jy

T=R(J,J)

S=X(uJ)

JPU=J+1

IF(JPU.GT.NC) GO TO 10
DO 11 K=uPU,NC
S=S-R(J,K)*X(K)
X(J)=S/T

NIX=0

RETURN

END

DO THE BACK SUBSTITUTION.

103

VITA |
Hsiao-Lan Wang Loh
Candidate for the Degree of

Master of Science

Thesis: GIVENS TRANSFORMATIONS FOR LEAST SQUARES
Major Field: Computing and Information Sciences
Biographical:

Personal Data: Born in Taipei, Taiwan, the Republic of China,
December 9, 1955, the daughter of Mr. and Mrs. Chiang-Lin
Wang.

Education: Received Bachelor of Arts in Educational Psychology
from Fu-Jen Catholic University, Taiwan, in 1977; completed
requirement for the Master of Science degree at Oklahoma
State University in December, 1983.

Professional Experience: Programmer at China Electronics
Corporation, Taipei, Taiwan, July, 1979 to Feburary, 1980;
Graduate Teaching Assistant, Department of Computing and
Information Sciences, Oklahoma State University, Stillwater,
Oklahoma, January, 1982 to December, 1983,

