```
DYNAMIC ANALYSIS OF A MARINE RISER SYSTEM
```

By
VASAN LAXMINARASIMHAN *

Bachelor of Engineering
Osmania University
Hyderabad, India

1978

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE
July, 1983

> Thesis
> 1983
> 1425 d cop. 2

By
L. VASA

Bachelor of Engineering
Osmania University
Hyderabad, India
1978

Submitted to the Faculty of the Graduate College of the Oklahoma State University
for the Degree of
MASTER OF SCIENCE
July, 1983

dynamic analysis of a marine riser system

ACKNOWLEDGMENTS

The author wishes to extend his appreciation to his major advisor, Dr. A. H. Soni, for his patience and understanding throughout this study. Profound gratitude is expressed to Dr. V. Srinivasan whose inspiration and invaluable guidance was instrumental in this thesis taking the final shape. Thanks are also extended to Ms. Brinda Subramaniam who spent many patient and painful hours in typing earlier drafts of the manuscript. Lastly, the author's appreciation goes to Ms. Janet Sallee for the excellence of the final copy and her valuable suggestions concerning form.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. LITERATURE REVIEW 5
Static Models. 5
Analytical Studies 6
Numerical Studies 6
Dynamic Models 7
Deterministic Models 8
Analytical Studies 8
Numerical Studies 9
Non-Deterministic Models 19
III. FORMULATION OF THE PROBLEM 20
Expression for Axial Tension T 20
Forces and Moments Due to External Pressure 22
Equation of Motion 24
IV. FINITE ELEMENT FORMULATION 27
Galerkin's Technique 30
Element Property Formulation 30
Mass Matrix 31
Conventional Stiffness Matrix 32
Geometric Stiffness Matrix. 34
Damping Matrix 37
Force Vector 38
V. COMPUTER PROGRAM. 39
Boundary Conditions 40
Time Integration 40
Check Problems 42
Mass and Stiffness Matrix 42
Geometric Stiffness Matrix. 42
Subroutines DECOM and SOLBAN. 47
Subroutine NEWMAR 47
VI. RESULTS, DISCUSSION AND CONCLUSIONS 51
Conclusion 66
Chapter Page
REFERENCES. 71
APPENDICES. 73
APPENDIX A - MARIAN USER'S MANUAL. 74
APPENDIX B - PROGRAM IISTING 78
APPENDIX C - SAMPIE RESULTS. 95

TABLE

Table
 Page

I. NEWMARK'S Integration Scheme. 41

LIST OF FIGURES

Figure Page

1. Riser Schematic Diagram. 3
2. Displacement (Y) Due to Drifting of a Drilling Vessel [Ref. 7] 10
3. Displacement (Y) Due to Rolling of a Drilling Vessel [Ref. 7] 11
4. Bending Stress Along a 3000 Ft. Riser, for Random Wave [Ref. 14] 14
5. Bending Stress Along a 3000 Ft. Riser, for Regular Wave [Ref. 14] 15
6. Maximum Bending Stress Versus Wave Period Wave Period for Different Heights [Ref. 15]. 16
7. Bending Stress Amplitude Along Riser Length [Ref. 15] 17
8. Maximum Bottom Angle Versus Wave Period [Ref. 15]. 18
9. Recommended Top Tension Versus Water Depth [Ref. 17] 19
10. Free Body Diagram of a Differential Beam Element 21
11. Coordinates for Forces and Moments Due to External Pres- sure 23
12. Element and Global Node Description 28
13. Beam Element Showing DOF 29
14. Free Vibration Mode Shapes 43
15. Free Vibration Mode Shape 44
16. Buckling Mode Shapes 45
17. Buckling Mode Shape 46
18. Displacement Comparison, Forced Vibration, Time $=9 \mathrm{sec}$. 48
Figure Page
19. Wave Propagation Due to Drifting. 54
20. Wave Propagation Due to Rolling for 225 m Riser Length. 55
21. Displacements Due to Drifting for 225 m Riser Length. 56
22. Displacements Due to Rolling for 225 m Riser Length 57
23. Displacements Due to Roll and Drift for 225 m Riser Length. 58
24. Bending Moment Variation Due to Drift and Roll for 225 m Riser Length. 59
25. Bending Moment Variation Due to Drift for 225 m Riser Length. 60
26. Bending Moment Variation Due to Rolling for 225 m Riser Length 61
27. Displacement Comparison for 15 and 20 Element Model for 300 m Riser Length. 62
28. Displacement Comparison for 15 and 20 Element Model for 400 m Riser Length 63
29. Bending Moment Variation for 15 Element Model for 400 m Riser Length 64
30. Bending Moment Variation for 20 Element Model for 400 m Riser Length. 65
31. Deflection Comparison for Different Wave Periods. 67
32. Deflection Comparison for Different Wave Periods for $T / W=$ 2.5 and Riser Length $=600 \mathrm{~m}$ 68
33. Maximum Bottom Angle Versus Wave Period for $T / W=2.0$ and Riser Length $=600 \mathrm{~m}$ 69
34. Maximum Bottom Angle Versus Wave Period for $T / W=2.5$ and Riser Length $=600 \mathrm{~m}$ 69

- Distance measured along the riser from the bottom
- Axial tension at the top of the riser
- Mass density of the riser material
- Mass density of the fluid inside the riser
- Mass density of the surrounding fluid
- Gravitational force
- Element length
- Riser total length
- Outer diameter of the riser
- Inner diameter of the riser
- Outer area of cross section
- Inner area of cross section
- Riser inside pressure $\left\{\rho_{i} g(I-z)\right\}$
- Riser outer pressure $\left\{\rho_{0} g(I-z)\right\}$
- Lateral displacement of riser
- Wave particle velocity
- Current velocity
- Wave particle acceleration
- Mass coefficient
- Drag coefficient
- Modulus of elasticity
- Wave height, crest to trough

L_{W}	- Wave length
τ	- Wave period
I	- Second moment of cross sectional area
ξ^{\prime}	- Local coordinate
$N_{i}(\xi)$	- Shape functions, Hermitian
$f_{Y^{\prime}} f_{X}$	- Lateral fluid loading on the riser

CHAPTER I

INTRODUCTION

The ever growing need for energy has taken mankind to very strange places in search of new energy sources. Almost all the land-based oil and gas sources have been discovered and, at the current rate of consumption, they would be depleted in not too long a future. So, it came as a pleasant surprise when it was discovered that the sea-beds hold vast quantities of oil and gas reserves. No time was lost in exploiting the newly discovered source. In future, the sea-beds may well be the only source of oil and gas.

The exploration and extraction of oil and gas from sea-beds follow a familiar pattern. Exploratory drilling ships are sent to places where the presence of oil is suspected. Drilling rods are lowered from the ship and the sea-bed is drilled. If oil is struck, big platforms are brought into that place and extraction begins. Initially, when the offshore drilling was in its infancy, the drilling was done very close to the shore in shallow waters not exceeding a few hundred feet deep. But now-a-days exploration and extraction are ventured far from shore at depths approaching 10,000 feet. The trend seems to be to go for greater depths in search of more oil and gas.

Offshore drilling has posed some of the greatest challenges to technology. The drilling and extraction have often to be carried out in extremely hostile environments. The structures and materials used must
withstand severe loadings such as waves, currents and vessel displacements. One particular component that deserves special attention is the marine riser. It is the pipe that connects the well-head at the sea-bed to the drilling vessel (or platform) at the sea surface. During the drilling phase, the riser helps to guide the drill string and serves as a return path for the mud. During the extraction phase, the riser is the only transport path from the sea-bed to the ocean surface. This explains the great amount of importance placed on the proper analysis, design, construction and maintenance of marine risers. A single failure in a marine riser in operation can cost up to a million dollars per day.

A typical marine riser is shown schematically in Figure l. The drilling vessel is held in position vertically above the well-head by moorings. The marine risers used during drilling phase are called drilling risers and the ones used during extraction phase are called production risers. The riser is attached to the well-head at the sea-bed through a blow-out preventer. The blow-out preventer provides control when well flows develop and it also provides a means of circulating, conditioning and returning the well-bore to a state of unpressured condition. At the top the riser is connected to the vessel (or platform) through slip joints (also called telescopic joints). The slip joint allows the riser to change its length as the vessel heaves and moves laterally. It is a common practice to apply axial tension at the top of the riser to reduce bending in the riser.

The marine riser must be structurally strong to withstand the unpredictable and varying forces exerted upon it under changing conditions. Moreover, current requirements to have risers with longer and more reliable service lives necessitates an analysis technique of acceptable

Figure 1. Riser Schematic Diagram
accuracy and low cost. The long slender marine riser configuration makes itself susceptible to a number of structural problems which complicate riser analysis and design.

In this thesis, the dynamic analysis of the marine riser is conducted by the Finite Element Method. Finite element method formulation provides an efficient and accurate solution. The analysis predicts riser deflections and bending moments due to wave and current loadings. It accounts for structural loads due to self weight, internal and external fluid pressures, applied top tension, hydrodynamic current and wave induced forces and surface vessel motion in waves. The hydrodynamic force acting on the riser is drag dominated and proportional to the square of the fluid velocity. The consequent non-linear term is also considered in the analysis.

LITERATURE REVIEW

Static Models

Attempts have been made to predict the behavior of marine risers using the principle of statics. Such analysis could be expected to be only approximate because the actual riser behavior is governed by the laws of dynamics. Both analytical and numerical studies have been reported under static models.

The equation of motion for a static case is derived by considering the riser as a simply supported beam with variable axial tension and current flow as the load after applying appropriate boundary conditions. The governing fourth-order differential equation is

$$
\begin{equation*}
E I \frac{d^{4} y}{d z^{4}}+T(z) \frac{d^{2} y}{d z^{2}}+w \frac{d y}{d x}=F_{D} \tag{1}
\end{equation*}
$$

where

```
E = modulus of elasticity
I = second moment of cross sectional area
T = tension varying along the length
w = weight of riser in sea water per unit length
```

$$
F_{D}=\frac{1}{2} C_{D} \rho D_{O}\left|\dot{U}_{C}\right| \dot{U}_{C}
$$

where

$$
\begin{aligned}
C_{D} & =\text { drag coefficient } \\
\rho & =\text { mass density of water } \\
D_{O} & =\text { riser outer diameter }
\end{aligned}
$$

Analytical Studies

The drill string has been analyzed by assuming the drill string as being made up of short beam sections having constant axial tension at the top and bottom, joined by a flexible cable with variable tension in the middle $[1,2]$. The papers conclude that the dynamic effects are negligible and that the bending stresses at the ocean surface are primarily due to the pitch and roll, while those at the ocean floor are due to lateral translations. The conclusion that the dynamic effects are insignificant has been proved to be wrong by later authors.

A simplified solution has been obtained by restricting the study to water depths less than 1,000 feet with moderate sea and vessel conditions [3]. Dimensionless variable has been introduced into the differential equation to facilitate the ease of solution by assuming infinite power series. The importance of tensioning the riser to prevent buckling and to control deflection and stresses has been demonstrated through design charts. Though this paper does not consider the various parameters in-depth, the paper has proved to be a useful guide in later works.

Numerical Studies

Sophisticated static analysis computer codes have been developed to study the relative importance of various parameters using the finite element method [4]. A fourth-order non-linear differential equation has
been solved [5] using the finite difference technique by considering the riser as a simply supported beam with variable axial tension and variable current profile.

Dynamic Models

Three basic methods of solution are used for the dynamic response analysis: deterministic time-history analysis, a steady-state or fre-quency-domain analysis, and a non-deterministic random vibration analysis. The time-domain solution include the finite difference and finite element method. The finite difference method converts the equation of motion into a set of non-linear ordinary differential equations. The timedomain solution is quite flexible and can accommodate variation in riser dimension, boundary conditions, and external time-varying loads and/or motions. Dynamic analysis in the time domain is suited for the assessment of fatigue damage and also when a detailed knowledge of stress variation due to irregular seas is required.

The frequency domain solution is obtained by assuming steady-state wave loadings and vessel motions and reducing the equations of motion to an ordinary differential equation and numerically integrating it. The advantage of the frequency-domain analysis is that one can directly apply a frequency-domain definition of the environment or ship motion to the riser and generate, within a relatively short computer run, a response spectrum suitable for subsequent fatigue life estimation. The disadvantage include the unknown effect of drag linearization (if and when it is done) and the sensitivity of the method to minor changes in wave spectra.

The governing equation for a dynamic case, including varying top tension, internal and external fluid pressure, is

$$
\begin{align*}
m \frac{\partial^{2} y}{\partial t^{2}} & +E I \frac{\partial^{4} y}{\partial z^{4}}-\left\{T_{O}-\rho g\left(A_{O}-A_{i}\right)(I-z)\right\} \\
\partial z^{2} & \left\{\left(\rho_{O} A_{O}-\rho_{i} A_{i}\right)(I-z) g\right\} \frac{\partial^{2} y}{\partial z^{2}} \tag{2}\\
& -\rho g\left(A_{0}-A_{i}\right) \frac{\partial y}{\partial z}+\left(\rho_{O} A_{O}-\rho_{i} A_{i}\right) g \frac{\partial y}{\partial z}=f_{Y}
\end{align*}
$$

where

$$
\begin{aligned}
m & =\rho_{i} A_{i}+\rho\left(A_{O}-A_{i}\right) \\
f_{y} & =\frac{\pi}{4} \rho_{O} C_{m} D_{O}^{2} \frac{\partial^{2} U_{w}}{\partial t^{2}}-\frac{\pi}{4} \rho_{O}\left(C_{m}-1\right) D_{O}^{2} \frac{\partial^{2} y}{\partial t^{2}}+\frac{1}{2} \rho_{O} D_{O} C_{D}\left|\dot{U}_{w}+\dot{U}_{C}-\frac{\partial y}{\partial t}\right| \\
& x\left(\dot{U}_{W}+\dot{U}_{c}-\frac{\partial y}{\partial t}\right)
\end{aligned}
$$

Deterministic Models

Analytical Studies

A frequency domain analysis by the normal mode approach has been carried out [6]. The steady state response has been obtained for two cases: (i) neglecting non-linear damping and (ii) including non-linear hydrodynamic damping. It has been shown that the non-linear hydrodynamic damping increases considerably as the amplitude of vessel motion increases and also that the force due to the vessel motion is the major cause for riser bending stress.

The drill string has been analyzed for maximum displacement and bending stress, depending on a given damping factor of the surrounding water [7]. A fourth-order homogeneous partial differential equation has been taken to be governed by non-homogeneous boundary conditions. The solution process involves transforming the problem as being governed by a non-homogeneous partial differential equation with homogeneous boundary
conditions. Discussions have been presented based on practical values of damping factor (0.1 to 0.2). Resonance phenomena was also included. Plots of displacement due to drifting and rolling of a drilling vessel for different wave periods and damping factor of 0.1 is shown in Figures 2 and 3.

The dynamic response of marine risers has been obtained by Young et al. [8] in the frequency domain. The random nature of the waves has also been included in the analysis. The frequency domain approach was found to be very useful in fatigue calculations. The authors concluded that vessel motion is the primary factor influencing the dynamic response. In addition, short risers were found to be sensitive to wave period and range of operating tension, long risers were found to be sensitive to axial force variations. Young et al.'s computer programs allows for a choice of either the displacement or the force boundary conditions at either end of the riser.

A modal analysis procedure has been proposed by Dareing and Huang [9]. The eigenvalues and eigenfunctions developed earlier by the authors were used in obtaining the modal response [10].

Numerical Studies

Along with the static analysis a dynamic analysis has been carried out [11]. In the general fourth order linear differential equation the non-linear term has been substituted with an 'equivalent' linear term. The results of the response of eight riser configurations (bending stress, deflection, offset, sway and surge, bottom angle, water depth, wave forces, byoyed/unbyoved) to one top tension, three wave heights, two vertical motion response functions and wave periods ranging from

Figure 2. Displacement(Y) Due to Drifting of a Drilling Vessel [Ref. 7]

Figure 3. Dispacement(Y) Due to Rolling of a Drilling Vessel [Ref.

6-20 seconds have been presented and discussed. The paper concludes that the hydrodynamic damping is a critical factor in limiting the riser dynamic deflections and stresses.

As with the static case, the dynamic case has been analyzed using sophisticated computer program [4]. The orderly importance of different. parameters have been discussed briefly after solving the differential equation by the finite element method. The same method has been used to obtain the dynamic response [12]. The derivation of the governing equation includes intermediate ball joints with non-linear stiffness. The bending equation of motion has been transformed to discrete coordinate system to obtain the mass and stiffness matrix. The matrix equation of motion was numerically integrated by Newmark's method. The paper shows that the stress levels are quite sensitive to top tension, particularly just above the flexible joint and also the dynamic stress range reduces with increasing tension.

Coupled non-linear equations of motions for the axial (bar) and lateral (beam) response have been solved by direct time and spatial integration by Newmark-Beta method [13]. A brief descriptive analysis of the emergency disconnect maneuver has also been presented.

The hydrodynamic drag term has been linearized by a unique method and the results have been shown to agree well with the more accurate non-linear time-domain results [14]. The sinusoidal wave particle velocity has been represented by the real part of a complex variable. By substituting in the governing equation and using constants, the drag term was linearized. The constants in turn were evaluated by the describing function technique used in control theory. The variation of bending stress along the length of the riser is compared for two cases: (i) random waves with time and frequency domain compared with static
(i) random waves with time and frequency domain compared with static case (Figure 4) and (ii) regular wave in time and frequency domain (Figure 5).

The riser has been modeled as a discrete multi-degree-of-freedom dynamic system [15]. Various matrices such as mass, bending stiffness, geometric stiffness and damping matrices have been derived. A statistically equivalent load was determined to act at the nodal points. The non-linear force term was linearized by a scheme presented in Reference 21. The effect of variation of different parameters have been discussed. The results of the variation of maximum bending stress with wave period for different riser lengths is as shown in Figure 6. The plot obtained for the variation of bending stress along the riser length is as shown in Figure 7. Maximum bottom angle versus wave period for different wave heights is as shown in Figure 8.

Non-Deterministic Models

Results of the analytical studies of the effect of various problem parameters on the non-deterministic response of a marine riser to random wave forces have been presented [16].

A computer model for analyzing a marine riser has been developed [17]. The random wave model allows one to specify any wave spectrum, from which the model generates a synthetic wave by decomposing the spectrum. The model predicts a time history of riser stresses, deflection and lower ball joint angle. The method used was implicit finite difference solution to the tensioned beam column equation. Recommended top axial tension for various water depths and vessel offset for particular wave height of 15 feet and period 10.3 seconds is plotted as shown in Figure 9.

Figure 4. Bending Stress Along a 3000 Ft. Riser, for Random Wave [Ref. 14]

Figure 5. Bending Stress Along a 3000 Ft. Riser, for Regular Wave [Ref. 14]

Figure 6. Maximum Bending Stress Versus Wave Period Wave Period for Different Heights [Ref. 15]

Figure 7. Bending Stress Amplitude Along Riser Length [Ref. 15]

Figure 8. Maximum Bottom Angle Versus Wave Period [Ref. 15]

Figure 9. Recommended Top Tension
Versus Water Depth
[Ref. 17]

FORMULATION OF THE PROBLEM

In this chapter the governing equation of motion of the marine riser is derived by considering all the forces acting on a differential element as shown in Figure 10. The motion is assumed to be decoupled in the $X Z$ and $X Y$ planes. Hence the same argument for the derivation of the governing equation applies in either of the planes.

The various parameters acting on the riser are

1. Top axial tension, varying along length
2. Internal pressure due to mud and fluid
3. External pressure due to sea water
4. Weight of riser acting downwards
5. Lateral fluid loading

Expression for Axial Tension T

The riser is assumed to have constant cross section throughout its length. The riser is supposed to be moving only laterally, i.e. its vertical motion is ignored as this is taken care of by the slip joint at the top.

For equilibrium, the sum of the forces in the z direction should be equal to zero, therefore,

$$
\begin{equation*}
\frac{\partial}{\partial z}\left(T-p_{i} A_{i}\right)-\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} g=0 \tag{3}
\end{equation*}
$$

Figure 10. Free Body Diagram of a Differential Beam
Element

Integrating with respect to z

$$
\begin{equation*}
T-p_{i} A_{i}=\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} g z+C \tag{4}
\end{equation*}
$$

where C is the constant of integration.
Applying boundary conditions at $z=L, T=T_{o}, p_{i}=0$, substituting in Equation (4) to find the value of C

$$
\begin{equation*}
C=T_{0}-\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} g I \tag{5}
\end{equation*}
$$

Equation (4) becomes

$$
\begin{equation*}
T-p_{i} A_{i}=T_{0}-\rho_{i} g(L-z) A_{i}-\rho g\left(A_{0}-A_{i}\right)(L-z) \tag{6}
\end{equation*}
$$

but $\rho_{i} g(L-z) A_{i}=p_{i} A_{i}$, therefore,

$$
\begin{equation*}
T=T_{O}-\rho g\left(A_{O}-A_{i}\right)(L-z) \tag{7}
\end{equation*}
$$

Forces and Moments Due to External Pressure

From Figure 11,
$\phi=$ the angle between the normal to the surface (pressure direction and the horizontal plane

$$
=\frac{\partial U}{\partial z} \sin \theta
$$

Force on the elemental area,

$$
\begin{equation*}
d \vec{F}=-\left(p_{0} r_{0} d \theta d z\right) \cos \phi \hat{\varepsilon}_{r}+\left(p_{0} r_{0} d \theta d z\right) \sin \phi \hat{\varepsilon}_{z} \tag{8}
\end{equation*}
$$

for small ϕ, Equation (8) becomes

$$
\begin{equation*}
d \vec{F}=-\left(p_{0} r_{0} d \theta d z\right) \hat{\varepsilon}_{r}+\left(p_{0} r_{0} d \theta d z\right) \phi \hat{\varepsilon}_{z} \tag{9}
\end{equation*}
$$

Figure 1l. Coordinates for Forces and Moments Due to External Pressure
but $\hat{\varepsilon}_{r}=\cos \theta \hat{i}+\sin \theta \hat{j}, \hat{\varepsilon}_{z}=\hat{k}$, therefore;
$\overrightarrow{d F}=-\left(p_{0} r_{0} d \theta d z\right) \cos \theta \hat{i}-\left(p_{0} r_{0} d \theta d z\right) \sin \theta \hat{j}+\left(p_{0} r_{0} d \theta d z\right) \frac{\partial U}{\partial z} \sin \theta \hat{k}$

Moment due to this force about the center of the mass
$\overrightarrow{d m}=\vec{r} \times d \vec{F}$ and $\vec{r}=r_{0} \cos \theta \hat{i}+r_{O} \sin \theta \hat{j}$
$\overrightarrow{d m}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ r_{0} \cos \theta & r_{0} \sin \theta & 0 \\ -\left(p_{0} r_{0} \cos \theta\right) & -\left(p_{0} r_{0} \sin \theta\right) & \left(p_{0} r_{0} \frac{\partial U}{\partial z} \sin \theta\right)\end{array}\right| d \theta d z$
$\overrightarrow{d m}=p_{O} r_{0}^{2} \frac{\partial U}{\partial z} \sin ^{2} \theta d \theta d z \hat{i}-p_{O} r_{0}^{2} \frac{\partial U}{\partial z} \sin \theta \cos \theta d \theta z \hat{j}+\left(-p_{O} r_{O}^{2} \sin \theta \cos \theta\right.$

$$
\begin{equation*}
\left.+p_{0} r_{0}^{2} \sin \theta \cos \theta\right) d \theta d z \hat{k} \tag{12}
\end{equation*}
$$

Integrating the above forces and moments with respect to θ, varying from O to 2π

$$
\begin{equation*}
\int_{0}^{2 \pi} \overrightarrow{d \vec{F}}=0 \text { from Equation (10) } \tag{13}
\end{equation*}
$$

from Equation (12)

$$
\begin{equation*}
\int_{0}^{2 \pi} d \vec{m}=p_{0} A_{0} \frac{\partial U}{\partial z} d z \hat{i} \tag{14}
\end{equation*}
$$

Equation of Motion

The shear deformation and rotary inertia effects are ignored as the riser is a very slender beam. Then, according to classical beam
theory, from Figure 10 , summing forces in the Y-direction

$$
\begin{equation*}
\frac{\partial U}{\partial z}+f_{Y}=\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} \ddot{U} y \tag{15}
\end{equation*}
$$

Summing moments about the top edge

$$
\begin{equation*}
\frac{\partial M}{\partial z}-Q_{y}+\left(T-p_{i} A_{i}\right) \frac{\partial U}{\partial z}+P_{0} A_{0} \frac{\partial U}{\partial z}=0 \tag{16}
\end{equation*}
$$

From moment-curvature relation

$$
\begin{equation*}
M_{x}=E I \frac{\partial \theta x}{\partial z}=-E I \frac{\partial^{2} U y}{\partial z^{2}} \tag{17}
\end{equation*}
$$

Differentiating Equation (16) with respect to z

$$
\begin{align*}
& \frac{\partial^{2} M x}{\partial z^{2}}-\frac{\partial Q y}{\partial z}+\left(T-p_{i} A_{i}\right) \frac{\partial^{2} U}{\partial z^{2}}+p_{0} A_{0} \frac{\partial^{2} U Y}{\partial z^{2}}+\left\{\rho g\left(A_{0}-A_{i}\right)+\rho_{i} g A_{i}\right\} \frac{\partial U}{\partial z} \\
& \quad-\rho_{0} g A_{0} \frac{\partial U}{\partial z}=0 \tag{18}
\end{align*}
$$

From Equations (15), (17) and (18)

$$
\begin{gather*}
\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right) \ddot{U}_{y}+E I \frac{\partial^{4} U}{\partial z^{4}}-\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)(L-z)\right\} \frac{\partial^{2} U}{\partial z^{2}}-\left(p_{0} A_{0}-p_{i} A_{i}\right)\right. \\
x \frac{\partial^{2} U Y}{\partial z^{2}}-\rho g\left(A_{0}-A_{i}\right) \frac{\partial U}{\partial z}+\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right) g \frac{\partial U}{\partial z}=f_{Y} \tag{19}
\end{gather*}
$$

Rearranging, the governing equation is

$$
\begin{align*}
& \left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} \ddot{U}_{y}+E I \frac{\partial^{4} U}{\partial z^{4}}-\left\{T_{O}-\rho g\left(A_{O}-A_{i}\right)(I-Z)\right\} \frac{\partial^{2} U}{\partial z^{2}}-\left(\rho_{O} A_{O}-\rho_{i} A_{i}\right) \\
& x(I-z) g \frac{\partial^{2} U}{\partial z^{2}}-\rho g\left(A_{0}-A_{i}\right) \frac{\partial U}{\partial z}+\left(\rho_{0} A_{O}-\rho_{i} A_{i}\right) g \frac{\partial U}{\partial z}=f_{Y} \tag{20}
\end{align*}
$$

where

$$
\begin{align*}
f_{Y}= & \frac{\pi}{4} \rho_{O} C_{m} D_{O}^{2} \frac{\partial^{2} \ddot{U}_{W}}{\partial t^{2}}-\frac{\pi}{4} \rho_{O}\left(C_{m}-1\right) D_{O}^{2} \frac{\partial^{2} U_{Y}}{\partial t^{2}}+\frac{1}{2} \rho_{O} D_{O} C_{D}\left|\dot{U}_{W}+\dot{U}_{C}-\frac{\partial U}{\partial t}\right| \\
& x\left(\dot{U}_{W}+\dot{U}_{C}-\frac{\partial U}{\partial t}\right) \tag{21}
\end{align*}
$$

Similarly considering $X Z$ plane we have, the governing equation as,

$$
\begin{align*}
& \left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} \ddot{U}_{x}+E I \frac{\partial^{4} U x}{\partial z^{4}}-\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)(I-z)\right\} \frac{\partial^{2} U}{\partial z^{2}}-\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right) \\
& x(L-z) g \frac{\partial^{2} U}{\partial z^{2}}-\rho g\left(A_{0}-A_{i}\right) \frac{\partial U}{\partial z}+\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right) g \frac{\partial U}{\partial z}=f_{x} \tag{22}
\end{align*}
$$

The above fourth order differential equation has been solved using finite element method after considering the drag term to be non-linear. This is described in later chapters.

FINITE ELEMENT FORMULATION

The mathematical model considered in the analysis treats the riser pipe as an assembly of beam elements of the form shown in Figure 12. Each element possesses four degrees of freedom (see Figure 13) with one translation and one rotation at each end.

The axial load on the riser is due to the applied tension at the top which prevents the pipe from buckling under its own weight and enables its deflections and stresses to be controlled. The magnitude of this axial tension varies along the length due to the counteracting effect of the riser self weight. The effective tension acting on each beam element is therefore estimated by subtracting the weight of the riser pipe above the element from the applied top tension. The weight of the inner fluid is neglected in these calculations as they do not contribute to the net axial forces.

The lateral load intensity and consequent riser deflection and stresses are primarily influenced by top vessel offset, current and wave velocities. The non-linear hydrodynamic exciting force is taken to be a modified form of Morrison's equation including mass and drag coefficients.

The bottom end, i.e. the first node that coincides with the riser system, has zero translational displacement. However, it is free to rotate. At the top, the nth node which coincides with the vessel bottom is assumed to have a sinusoidal displacement.

Figure 12. Element and Global Node Description

Figure 13. Beam Element Showing DOF

Galerkin's Technique

Before applying finite element method, the differential equation is rendered in an integral form. Since the non-linear forcing term cannot be represented by a potential term, the variational method cannot be used. Hence Galerkin's technique is adopted. According to this method the differential equation is successively multiplied by the shape functions and integrated over the domain. The residue is then set to zero. The various terms in the differential equation give rise to the mass, conventional stiffness, geometric stiffness, damping matrices and force vector.

Element Property Formulation

The element mass, damping and stiffness matrices along with the force vector are derived, considering Hermitian interpolation function. The shape functions are derived in the local coordinate (ξ) which is related to the global coordinate (z) as

$$
z=\left(\ell_{2}-\ell_{1}\right) \xi+\ell_{1}
$$

The cubic polynomial is

$$
\begin{equation*}
U=a_{0}+a_{1} \xi+a_{2} \xi^{2}+a_{3} \xi^{3} \tag{26}
\end{equation*}
$$

Evaluating the constants a_{0}, a_{1}, a_{2} and a_{3} for $0<\xi<1$, the shape functions arrived at, in local coordinates are

$$
\begin{aligned}
& N_{1}(\xi)=1-3 \xi^{2}+2 \xi^{3} \\
& N_{2}(\xi)=1\left(\xi-2 \xi^{2}+\xi^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& N_{3}(\xi)=3 \xi^{2}-2 \xi^{3} \\
& N_{4}(\xi)=1\left(-\xi^{2}+\xi^{3}\right)
\end{aligned}
$$

Deflection $U_{Y}(\xi, t)=U_{i} N_{1}(\xi)+\Theta_{i} N_{2}(\xi)+U_{i+1} N_{3}(\xi)+\Theta_{i+1} N_{4}(\xi)$
where U_{i} and Θ_{i} are ith node displacement and rotation.

Mass Matrix

In the formulation of the beam element mass matrix, the consistent mass approach is used. This leads to greater accuracy compared to lumped mass approach. From Equation (20), multiplying the inertial term $\left\{\rho_{i} A_{i}+\rho\left(A_{0}-A_{i}\right)\right\} \ddot{U}_{y}$ with $N_{i}, i=1,2,3,4$ and integrating for ξ varying from O to 1 , the mass matrix is formed. Differentiating Equation (27) twice with respect to time we get \ddot{U}_{Y}.

$$
\begin{equation*}
\ddot{U}_{y}(\xi, t)=\ddot{U}_{i} N_{1}(\xi)+\ddot{\theta}_{i} N_{2}(\xi)+\ddot{U}_{i+1} N_{3}(\xi)+\ddot{\theta}_{i+1} N_{4}(\xi) \tag{28}
\end{equation*}
$$

substituting in the inertial term and integrating, let $m=\rho_{i} A_{i}+$ $\rho\left(A_{0}{ }^{-A_{i}}\right)$, then, with $N_{1}(\xi)$
$m \int_{0}^{1}\left\{\ddot{U}_{1}\left(1-3 \xi^{2}+2 \xi^{2}\right)+\ddot{\theta}_{1} \ell\left(\xi-2 \xi^{2}+\xi^{3}\right)+\ddot{U}_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\ddot{\theta}_{2} \ell\left(-\xi^{2}+\xi^{3}\right)\right\}$

$$
\begin{equation*}
x\left\{1-3 \xi^{2}+2 \xi^{3}\right\} \ell d \xi=m\left\{\frac{13}{35} \ell \ddot{U}_{1}+\frac{22}{420} \ell^{2} \ddot{\theta}_{1}+\frac{9}{70} \ell \ddot{U}_{2}-\frac{13}{420} \ell^{2} \ddot{\theta}_{2}\right\} \tag{29}
\end{equation*}
$$

with $\mathrm{N}_{2}(\xi)$
$m \int_{0}^{1}\left\{\ddot{U}_{1}\left(1-3 \xi^{2}+2 \xi^{3}\right)+\ddot{\theta}_{1} \ell\left(\xi-2 \xi^{2}+\xi^{3}\right)+\ddot{U}_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\ddot{\theta}_{2} \ell\left(-\xi^{2}+\xi^{3}\right)\right\}$

$$
\begin{equation*}
x\left\{\xi-2 \xi^{2}+\xi^{3}\right\} \ell d \xi=m \ell^{2}\left\{\frac{22}{420} \ddot{U}_{1}+\frac{4}{420} \ell \ddot{\theta}_{1}+\frac{13}{420} \ddot{U}_{2}-\frac{3}{420} \ell \ddot{\theta}_{2}\right\} \tag{30}
\end{equation*}
$$

with $N_{3}(\xi)$
$m \int_{0}^{1}\left\{\ddot{U}_{1}\left(1-3 \xi^{2}+2 \xi^{3}\right)+\ddot{\theta}_{1} \ell\left(\xi-2 \xi^{2}+\xi^{3}\right)+\ddot{U}_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\ddot{\theta}_{2} \ell\left(-\xi^{2}+\xi^{3}\right)\right\}$

$$
\begin{equation*}
x\left\{3 \xi^{2}-2 \xi^{3}\right\} \ell d \xi=\operatorname{m} \ell\left\{\frac{54}{420} \ddot{U}_{1}+\frac{13}{420} \ell \ddot{\theta}_{1}+\frac{156}{420} \ddot{U}_{2}-\frac{22}{420} \ell \ddot{\theta}_{2}\right\} \tag{31}
\end{equation*}
$$

with $N_{4}(\xi)$
$m \int_{0}^{1}\left\{\ddot{U}_{1}\left(1-3 \xi^{2}+2 \xi^{3}\right)+\ddot{\theta}_{1} \ell\left(\xi-2 \xi^{2}+\xi^{3}\right)+\ddot{U}_{2}\left(3 \xi^{2}-2 \xi^{3}\right)+\ddot{\theta}_{2} \ell\left(-\xi^{2}+\xi^{3}\right)\right\}$

$$
\begin{equation*}
x\left\{-\xi^{2}+\xi^{3}\right\} \ell d \xi=m \ell^{2}\left\{-\frac{13}{420} \ddot{U}_{1}-\frac{3}{420} \ell \ddot{\theta}_{1}-\frac{22}{420} \ddot{U}_{2}+\frac{4}{420} \ell \ddot{\theta}_{2}\right\} \tag{32}
\end{equation*}
$$

From Equations (29), (30), (31) and (32), the mass matrix is

$$
\frac{\mathrm{m} 1}{420}\left[\begin{array}{cccc}
156 & 22 \ell & 54 & -13 \ell \\
22 \ell & 4 \ell^{2} & 13 \ell & -3 \ell^{2} \\
54 & 13 \ell & 156 & -22 \ell \\
-13 \ell & -3 \ell^{2} & -22 \ell & 4 \ell^{2}
\end{array}\right]
$$

Conventional Stiffness Matrix

From Equation (21) consider the term, EI $\frac{\partial^{4} U}{\partial z^{4}}$. Multiplying with $N_{i}(\xi)$ and integrating from 0 to 1

$$
\begin{aligned}
& \frac{E I}{\ell^{3}} \int_{0}^{I} \frac{\partial}{\partial \xi}\left(\frac{\partial^{3} U}{\partial \xi^{3}}\right) N_{i}(\xi) d \xi=\frac{E I}{\ell^{3}}\left[\left\{\frac{\partial^{3} U_{Y}}{\partial \xi^{3}} N_{i}(\xi)\right\}\right]_{0}^{1}-\frac{E I}{\ell^{3}} \int_{0}^{I} \frac{\partial^{3} U_{Y}}{\partial \xi^{3}} \frac{\partial N_{i}(\xi)}{\partial \xi} d \xi \\
& \quad=\frac{E I}{\ell^{3}}\left[\left\{\frac{\partial^{3} U Y}{\partial \xi^{3}} N_{i}(\xi)\right\}\right]_{0}^{1}-\frac{E I}{\ell^{3}\left[\left\{\frac{\partial^{2} U_{Y}}{\partial \xi^{2}} \frac{\partial N_{i}}{\partial \xi}\right\}\right]_{0}^{1}+\frac{E I}{\ell^{3}} \int_{0}^{1} \frac{\partial^{2} U Y}{\partial \xi^{2}} \frac{\partial^{2} N_{i}(\xi)}{\partial \xi^{2}} d \xi}
\end{aligned}
$$

The first two terms of Equation (33) cancel out when added for all the elements. Hence only the 3rd term needs to be evaluated, with $N_{1}(\xi)$

$$
\begin{align*}
& \frac{E I}{\ell^{3}} \int_{0}^{1}\left\{U_{1}(-6+12 \xi)+\theta_{1} \ell(-4+6 \xi)+U_{2}(6-12 \xi)+\theta_{2} \ell(-2+6 \xi)\right\}\{-6+12 \xi\} \\
& x d \xi=\frac{E I}{\ell^{3}}\left\{12 U_{1}+6 \ell \theta_{1}-12 U_{2}+6 \ell \theta_{2}\right\} \tag{34}
\end{align*}
$$

with $\mathrm{N}_{2}(\xi)$

$$
\begin{align*}
& \frac{E I}{\ell^{3}} \int_{0}^{1}\left\{U_{1}(-6+12 \xi)+\Theta_{1} \ell(-4+6 \xi)+U_{2}(6-12 \xi)+\Theta_{2} \ell(-2+6 \xi)\right\}\{-4+6 \xi\} \\
& x \ell d \xi=\frac{E I}{\ell^{3}}\left\{6 \ell U_{1}+4 \ell^{2} \Theta_{1}-6 \ell U_{2}+2 \ell^{2} \Theta_{2}\right\} \tag{35}
\end{align*}
$$

with $\mathrm{N}_{3}(\xi)$

$$
\begin{align*}
& \frac{E I}{\ell^{3}} \int_{0}^{1}\left\{U_{1}(-6+12 \xi)+\Theta_{1} \ell(-4+6 \xi)+U_{2}(6-12 \xi)+\Theta_{2} \ell(-2+6 \xi)\right\}\{6-12 \xi\} \\
& x d \xi=\frac{E I}{\ell^{3}}\left\{12 U_{1}-6 \ell \theta_{1}+12 U_{2}-6 \ell \Theta_{2}\right\} \tag{36}
\end{align*}
$$

with $\mathrm{N}_{4}(\theta)$

$$
\begin{align*}
& \frac{E I}{\ell^{3}} \int_{0}^{1}\left\{U_{1}(-6+12 \xi)+\Theta_{1} \ell(-4+6 \xi)+U_{2}(6-12 \xi)+\theta_{2} \ell(-2+6 \xi)\right\}\{-2+6 \xi\} \\
& x \ell d \xi=\frac{E I}{\ell^{3}}\left\{6 \ell U_{1}+2 \ell^{2} \Theta_{1}-6 \ell U_{2}+4 \ell^{2} \Theta_{2}\right\} \tag{37}
\end{align*}
$$

From Equations (34), (35), (36) and (37), the conventional stiffness
matrix is expressed as

$$
\frac{E I}{\ell^{3}}\left[\begin{array}{cccc}
12 & 6 \ell & -12 & 6 \ell \\
6 \ell & 4 \ell^{2} & -6 \ell & 2 \ell^{2} \\
-12 & -6 \ell & 12 & -6 \ell \\
6 \ell & 2 \ell^{2} & -6 \ell & 4 \ell^{2}
\end{array}\right]
$$

Geometric Stiffness Matrix

From Equation (20) consider terms

$$
-\left\{T_{O}-\rho g\left(A_{O}-A_{i}\right)(L-z)\right\} \frac{\partial^{2} U Y}{\partial z^{2}}-\rho g \frac{\partial U}{\partial z}
$$

Multiplying with $N_{i}(\xi)$ and integrating over 0 to 1
$-\frac{1}{\ell}-\int_{0}^{1}\left\{T_{0}-\rho g\left(A_{O}-A_{i}\right)\left(I-\ell \xi-\ell_{1}\right)\right\} N_{i}(\xi) \frac{\partial^{2} U}{\partial \xi^{2}} d \xi-\int_{0}^{1} \rho g\left(A_{O}-A_{i}\right) N_{i}(\xi)$

$$
\begin{align*}
& x \frac{\partial U}{\partial \xi} d \xi=-\frac{1}{\ell}\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)\left(L-\ell \xi-\ell_{1}\right)\right\}\left\{\frac{\partial U}{\partial \xi}\right\}+\frac{1}{\ell} \int_{0}^{1} \frac{\partial U}{\partial \xi} \\
& x \frac{\partial}{\partial \xi}\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)\left(L-\ell \xi-\ell l_{1}\right)\right\}\left\{N_{i}(\xi)\right\} d \xi-\int_{0}^{1} \rho g\left(A_{0}-A_{i}\right) N_{i}(\xi) \frac{\partial U}{\partial \xi} d \xi \tag{38}
\end{align*}
$$

First term of Equation (38) when added for all elements, cancels out. From 2 nd and 3 rd terms we have

$$
\begin{aligned}
& \frac{1}{\ell} \int_{0}^{1}\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)\left(I-\ell \xi-\ell_{1}\right)\right\} \frac{\partial U}{\partial \xi} \frac{\partial N_{i}(\xi)}{\partial \xi}+\frac{\partial}{\partial \xi}\left\{T_{0}-\rho g\left(A_{0}-A_{i}\right)\left(L-\ell \xi-\ell l_{1}\right)\right\} \\
& x-\int_{0}^{1} \rho g\left(A_{0}-A_{i}\right) N_{i}(\xi) \frac{\partial U}{\partial \xi} d \xi=\frac{1}{\ell} \int_{0}^{1}\left\{T_{0}-\rho g\left(A_{O}-A_{i}\right)\left(L-\ell \xi-\ell \ell_{1}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& x \frac{\partial U}{\partial \xi} \frac{\partial N_{i}(\xi)}{\partial \xi} d \xi+\int_{0}^{1} \rho g\left(A_{O}-A_{i}\right) N_{i}(\xi) \frac{\partial U}{\partial \xi}-\int_{0}^{1} \rho g\left(A_{O}-A_{i}\right) N_{i}(\xi) \\
& x \frac{\partial U}{\partial \xi} d \xi=\frac{1}{\ell} \int_{0}^{1}\left\{T_{0}-\rho g\left(A_{O} A_{i}\right)\left(I-\ell \xi-\ell \ell_{1}\right)\right\} \frac{\partial U}{\partial \xi} \frac{\partial N_{i}(\xi)}{\partial \xi} d \xi \tag{39}
\end{align*}
$$

Similarly considering the terms

$$
-\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right)(L-z) g \frac{\partial^{2} U Y}{\partial z^{2}}+\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right) g \frac{\partial U}{\partial z}
$$

we will be only left with the term

$$
\begin{equation*}
\frac{1}{\ell} \int_{0}^{1}\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right)\left(L-\ell \xi-\ell_{1}\right) g \frac{\partial U Y}{\partial \xi} \frac{\partial N_{i}(\xi)}{\partial \xi} d \xi \tag{40}
\end{equation*}
$$

Multiplying with $N_{i}(\xi), i=1,2,3,4$ and integrating over 0 to 1 , both Equations (39) and (40). Let us first consider the Equation (39) with $N_{1}(\xi)$

$$
\begin{align*}
& \frac{1}{\ell} \int_{O}^{1}\left\{T_{O}-\rho g\left(A_{O}-A_{i}\right)\left(L-\ell \xi-\ell_{1}\right)\right\}\left\{U_{1}\left(-6 \xi+6 \xi^{2}\right)+\theta_{1}\left(1-4 \xi+3 \xi^{2}\right) \ell+U_{2}\left(6 \xi-6 \xi^{2}\right)\right. \\
& \left.\quad+\theta_{2}\left(-2 \xi+3 \xi^{2}\right) \ell\right\}\left\{-6 \xi+6 \xi^{2}\right\} d \xi=\frac{1}{\ell} A\left(\frac{6}{5} U_{1}+\frac{\ell}{10} \Theta_{1}-\frac{6}{5} U_{2}+\frac{\ell}{10} \theta_{2}\right) \\
& \quad+B\left(\frac{3}{5} U_{1}-\frac{9}{10} 1 \theta_{1}-\frac{3}{5} U_{2}\right) \tag{41}
\end{align*}
$$

where $A=T_{0}-\rho g\left(A_{0}-A_{i}\right)(I-1)$ and $B=\rho g l\left(A_{0}-A_{i}\right)$
with $\mathrm{N}_{2}(\xi)$

$$
\begin{aligned}
& \int_{0}^{1}(A+B \xi)\left\{U_{1}\left(-6 \xi+6 \xi^{2}\right)+\Theta_{1} \ell\left(1-4 \xi+3 \xi^{2}\right)+U_{2}\left(6 \xi-6 \xi^{2}\right)+\Theta_{2} \ell\left(-2 \xi+3 \xi^{2}\right)\right\} \\
& x\left\{1-4 \xi+3 \xi^{2}\right\} d \xi=A\left(\frac{1}{10} U_{1}+\frac{2}{15} \ell \theta_{1}-\frac{1}{10} U_{2}-\frac{1}{30} \ell \theta_{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
+B\left(\frac{1}{10} U_{1}+\frac{1}{30} \ell \theta_{1}-\frac{1}{10} U_{2}-\frac{1}{60} \ell \theta_{2}\right) \tag{42}
\end{equation*}
$$

with $N_{3}(\xi)$

$$
\begin{align*}
& \frac{1}{\ell} \int_{0}^{1}(A+B \xi)\left\{U_{1}\left(-6 \xi+6 \xi^{2}\right)+\Theta_{1}\left(1-4 \xi+3 \xi^{2}\right) \ell+U_{2}\left(6 \xi-6 \xi^{2}\right)+\theta_{2}\left(-2 \xi+3 \xi^{2}\right) \ell\right\} \\
& x\left\{6 \xi-6 \xi^{2}\right\} d \xi=\frac{A}{\ell}\left(-\frac{6}{5} U_{1}-\frac{1}{10} \theta_{1}+\frac{6}{5} U_{2}-\frac{1}{10} \theta_{2}\right) \\
& +\frac{B}{\ell}\left(-\frac{3}{5} U_{1}+\frac{9}{10} \ell \theta_{1}+\frac{3}{5} U_{2}+0\right) \tag{43}
\end{align*}
$$

with $N_{4}(\xi)$

$$
\begin{align*}
& \frac{1}{\ell} \int_{0}^{1}(A+B \xi)\left\{U_{1}\left(-6 \xi+6 \xi^{2}\right)+\theta_{1}\left(1-4 \xi+3 \xi^{2}\right) \ell+U_{2}\left(6 \xi-6 \xi^{2}\right)+\theta_{2}\left(-2 \xi+3 \xi^{2}\right) \ell\right\} \\
& x\left\{-2 \xi+3 \xi^{2}\right) \ell d \xi=A\left(\frac{1}{10} U_{1}-\frac{1}{10} \ell \theta_{1}-\frac{1}{10} U_{2}+\frac{2}{15} \ell \theta_{2}\right) \\
& +B\left(0+0-\frac{1}{60} \theta_{1}+\frac{1}{10} \ell \theta_{2}\right) \tag{44}
\end{align*}
$$

From Equations (41), (42), (43) and (44), we arrive with the matrices
$\frac{A}{\ell}\left[\begin{array}{cccc}\frac{6}{5} & \frac{1}{10} \ell & -\frac{6}{5} & \frac{1}{10} \ell \\ \frac{1}{10} \ell & \frac{2}{15} \ell^{2} & -\frac{1}{10} \ell & -\frac{1}{30} \ell^{2} \\ -\frac{6}{5} & -\frac{1}{10} \ell & \frac{6}{5} & -\frac{1}{10} \ell \\ \frac{1}{10} \ell & -\frac{1}{30} \ell^{2} & -\frac{1}{10} \ell & \frac{2}{15} \ell^{2}\end{array}\right]+\frac{B}{\ell}\left[\begin{array}{cccc}\frac{3}{5} & \frac{1}{10} \ell & -\frac{3}{5} & 0 \\ \frac{1}{10} \ell & \frac{1}{30} \ell^{2} & -\frac{1}{10} \ell & -\frac{1}{60} \ell^{2} \\ -\frac{3}{5} & -\frac{1}{10} \ell & \frac{3}{5} & 0 \\ 0 & -\frac{1}{60} \ell^{2} & 0 & \frac{1}{10} \ell^{2}\end{array}\right]$

From Equation (40)
Let $C=\left(\rho_{0} A_{0}-\rho_{i} A_{i}\right) g\left(L-l_{1}\right)$ and $D=-\left(\rho_{0} A_{0} \rho_{i} A_{i}\right) g l$
Except for the coefficients A, B, C and D the rest is the same as in Equation (39), hence the matrices can be written as above. The coefficients $\frac{A}{\ell}$ and $\frac{B}{l}$ are replaced by $\frac{C}{l}$ and $-\frac{D}{\ell}$ respectively. Thereafter, the four matrices can be combined to form two geometric stiffness matrices. Now the new coefficient $\frac{A+C}{\ell}$ takes into account the varying top tension and the other coefficient $\frac{B-D}{\ell}$ accounts for the effect of internal and external fluid pressure.
$\frac{A+B}{\ell}\left[\begin{array}{cccc}\frac{6}{5} & \frac{1}{10} \ell & -\frac{6}{5} & \frac{1}{10} \ell \\ \frac{1}{10} \ell & \frac{2}{15} \ell & -\frac{1}{10} \ell & -\frac{1}{30} \ell^{2} \\ -\frac{6}{5} & -\frac{1}{10} \ell & \frac{6}{5} & -\frac{1}{10} \ell \\ \frac{1}{10} \ell & -\frac{1}{30} \ell^{2} & -\frac{1}{10} \ell & \frac{2}{15} \ell^{2}\end{array}\right]+\frac{B-C}{\ell}\left[\begin{array}{cccc}\frac{3}{5} & \frac{1}{10} \ell & -\frac{3}{5} & 0 \\ \frac{1}{10} \ell & \frac{1}{30} \ell^{2} & -\frac{1}{10} \ell & -\frac{1}{60} \ell^{2} \\ -\frac{3}{5} & -\frac{1}{10} \ell & \frac{3}{5} & 0 \\ 0 & -\frac{1}{60} \ell^{2} & 0 & \frac{1}{10} \ell\end{array}\right]$

Damping Matrix

The damping matrix is derived from the non-linear drag term. The relative velocity squared term is successively multiplied with $N_{i}(\xi)$, $i=1,2,3,4$ and integrated to form the matrix. The absolute value of the relative veiocity within the matrix necessitates the computation of the matrix at every time step. All these have been included in the computer program which is described later.

Force Vector

The non-linear drag term is
$\frac{\pi}{4} \rho_{O} C_{m} D_{O}^{2} \ddot{U}_{w}-\frac{\pi}{4} \rho_{O}\left(C_{m}-1\right) D_{0}^{2} \frac{\partial^{2} U_{y}}{\partial t^{2}}+\frac{1}{2} \rho_{O} D_{0} C_{D}\left|\dot{U}_{w}+\dot{U}_{C}-\frac{\partial U}{\partial t}\right|\left(\dot{U}_{w}+\dot{U}_{C}-\frac{\partial U_{y}}{\partial t}\right)$

The force vector comprises a part of the relative velocity squared term and also the wave particle acceleration term. These are described further in later chapter dealing with computer program.

The computer program used in the dynamic analysis is written in standard FORTRAN IV. The program has been written with the intention that every aspect of riser geometry, structure, top and bottom constraints, wave profile, current conditions be specified as input data. This leads to a program which requires comprehensive input data on the riser to be analyzed and at the same time allows a wide variety of configurations to be calculated without program changes.

The element property matrices such as mass, conventional stiffness, geometric stiffness matrices are time independent and are formulated and stored in separate subroutines. The subroutine used are MASS, STIFN and GESTFN respectively. A fifth order Gauss-Legendre integration scheme is used to formulate the damping matrix. The shape functions are computed in subroutine SHAPE. These element matrices are assembled for all the elements over the riser length in the subroutine GLOBAL. AIl the matrices except the damping matrix are assembled just once. The damping matrix is assembled at every time step. To reduce the storage, the global matrix is assembled and stored in a banded upper triangular form. The 4×4 element matrices are symmetrical and hence the band-width (MBAND) of the global matrix is four. The matrix is of the order NEQ by MBAND, where $N E Q$ is the total degrees of freedom in the entire riser. Subroutine INPUT is formulated to read and echo check all the input
parameters used for the analysis.

Boundary Conditions

The main program allows various combinations of boundary conditions to be specified at the highest and lowest riser nodes. This is done by including an ID array which defines the number of restraints, restrained degrees of freedom and so on for the riser configuration under consideration. A free degree of freedom is assigned a zero value and a restrained degree of freedom is specified as one. The lowest riser node has free rotational degree of freedom with the translational degree of freedom restrained. This condition is satisfied by assigning an added rotational stiffness value to the corresponding stiffness term. The highest node is assumed to be acted upon by a forcing function resulting due to vessel motion which in turn is dependent on the wave condition.

Time Integration

Newmark's time integration scheme is considered to be suitable for an analysis of this type. Table I shows briefly the implementation procedure. The non-linear drag term creates, by the finite element formulation, a non-linear damping matrix and a non-linear force vector. Since these two are time dependent, they have been separately computed and stored in subroutine DAMP. Subroutine NEWMAR which consists of Newmark's integration scheme, calls subroutine DAMP at every time step such that damping matrix and force vector are computed at that instant.

Subroutine NEWMAR computes the displacement and rotation at every time step. The system of equation stored in the banded form is solved by calling subprograms DECOM and SOLBAN. Subroutine DECOM decomposes

TABLE I

NEWMARK'S INTEGRATION SCHEME

1. Initialize $\{\mathrm{X}\}_{\circ},\{\dot{\mathrm{x}}\}_{\circ}$ and $\{\ddot{\mathrm{x}}\}_{\circ}$ to zero.
2. $\operatorname{Set} \delta=1 / 2, \alpha=1 / 4$
$a_{0}=1 /\left(\alpha \cdot \Delta t^{2}\right), \quad a_{1}=\delta /(\alpha \cdot \Delta t), \quad a_{2}=1 /(\alpha \cdot \Delta t)$
$a_{3}=1 /(2 \alpha)-1, \quad a_{4}=(\delta / \alpha-1), \quad a_{5}=(\delta / \alpha-2) \cdot \Delta t / 2$
$a_{6}=(1-\delta) \cdot \Delta t, \quad a_{7}=\delta \cdot \Delta t$
3. Calculate $\{\hat{F}\}=\{F\}_{t}+[M]_{t}\left(a_{0}\{x\}_{t-\Delta t}+a_{2}\{x\}_{t-\Delta t}+a_{3}\{x\}_{t-\Delta t}\right)$

$$
+[c]_{t}\left(a_{1}\{x\}_{t-\Delta t}+a_{4}\{x\}_{t-\Delta t}+a_{5}\{x\}_{t-\Delta t}\right)
$$

4. Solve $\left([K]_{t}+a_{0}[M]_{t}+a_{1}[C]_{t}\right)\{x\}_{t}=\{\hat{F}\}_{t}$
5. Compute $\{x\}_{t}=a_{0}\left(\{x\}_{t}-\{x\}_{t-\Delta t}\right)-a_{2}\{x\}_{t-\Delta t}-a_{3}\{x\}_{t-\Delta t}$

$$
\{x\}_{t}=\{x\}_{t-\Delta t}+a_{6}\{x\}_{t-\Delta t}+a_{7}\{x\}_{t}
$$

6. Repeat from Step 3 for all intervals
the band matrix into an upper triangular matrix using the Gaussian elimination procedure. SOLBAN first decomposes the global force vector and then solves for the displacements and rotations using the method of backward substitution.

Check Problems

The program is checked thoroughly for proper formulation. The various checks for the individual element property matrix and the assembled global form are the following:

Mass and Stiffness Matrix

The mass and the stiffness matrices are checked by solving an eigenvalue problem. The free vibration of a simply supported beam is analyzed by suppressing the end displacements. The values and the subsequent mode shapes are compared with the theoretically calculated values and are as shown in Figure 14 and Figure 15. The end conditions are changed and the riser is considered as fixed at the bottom and sliding at the top. The eigenvalues and eigenvectors are solved by a simultaneous iteration scheme. The comparison of the results with the theoretical values show a good agreement. The above checks sufficiently validate the authenticity of the mass and stiffness matrix formulation.

Geometric Stiffness Matrix

The geometric stiffness matrix is checked by solving a buckling problem. The values of the buckling load at every mode is compared with the theoretical values and were found to agree well. The mode shape comparison are shown in Figure 16 and Figure 17.

Figure 14. Free Vibration Mode Shapes

Figure 15. Free Vibration Mode Shape

Fiqure 16. Buckling Mode Shapes

III Mode

Figure 17. Buckling Mode Shape

Subroutines DECOM and SOLBAN are checked by solving a static problem. For a 100 meter length riser the end displacement is assumed to be 0.03 m and the force calculated from the formula

$$
\text { Displacement }=\frac{\text { Force } \mathrm{x} \text { (Length) }^{3}}{12 \times \text { Young's Modulus } \times \text { Inertia }}
$$

The parameters taken are $D I A I=0.114 \mathrm{~m}, \mathrm{DIAO}=0.1297 \mathrm{~m}$, DENS $=8000$ $\mathrm{Kg} / \mathrm{m}^{3}, \mathrm{E}=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}, I=0.0003047 \mathrm{~m}^{4}$. The force calculated is 21.65 N . The result obtained is a displacement of 0.0296554 m which verifies the validity of DECOM and SOLBAN.

Subroutine NEWMAR

The Newmark's integration scheme as formulated in the subroutine NEWMAR is checked by solving a forced boundary condition problem numerically. A sinusoidally time dependent displacement boundary condition is specified at the top. The theoretical verification is made by applying a method due to Mindlin and Goodman (18). The results are presented in Figure 18.

The input paramters considered for the various check problem are as follows:

Eigenvalue Problem - Simply Supported Beam:

To check mass and conventional stiffness matrices
DENSO
$=0.0 \mathrm{Kg} / \mathrm{m}^{3}$
DENS
$=8000 \mathrm{Kg} / \mathrm{m}^{3}$
DIAI
$=0.4172 \mathrm{~m}$

DIAO
$=0.4572 \mathrm{~m}$

Figure 18. Displacement Comparison, Forced Vibration, Time $=9 \mathrm{sec}$
E
$=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$

I
$=0.0006577 \mathrm{~m}^{4}$

Length
$=150 \mathrm{~m}$

Elements
$=10$

Eigenvalue Problem - Fixed and Sliding Beam:
To check mass and conventional stiffness matrices
DENSO $\quad=0.0 \mathrm{Kg} / \mathrm{m}^{3}$
DENS
$=8000 \mathrm{Kg} / \mathrm{m}^{3}$

DIAI $=0.4172 \mathrm{~m}$

DIAO $=0.4572 \mathrm{~m}$

E
$=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$=0.0006577 \mathrm{~m}^{4}$

Length
$=450 \mathrm{~m}$
Elements $=10$

Buckling Problem:
To check geometric stiffness matrix
DENSO

DENS
$=0.0 \mathrm{Kg} / \mathrm{m}^{3}$

DIAI
$=8000 \mathrm{Kg} / \mathrm{m}^{3}$
$=0.4172 \mathrm{~m}$
DIAO

E

I

Length
Elements

TENS
$=0.4572 \mathrm{~m}$
$=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$=0.0006577 \mathrm{~m}^{4}$
$=450 \mathrm{~m}$
$=10$
$=1.0 \mathrm{~N}$

Static Problem:

To check subroutines DECOM and SOLBAN
DENSO $\quad=0.0 \mathrm{Kg} / \mathrm{m}^{3}$
DENS
$=8000 \mathrm{Kg} / \mathrm{m}^{3}$
DIAI
$=0.381 \mathrm{~m}$
DIAO
$=0.4064 \mathrm{~m}$
$=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$=0.0003047 \mathrm{~m}^{4}$
Length
$=100 \mathrm{~m}$
Elements $=10$
End Force $\quad=21.65 \mathrm{~N}$
End Deflection
$=0.03 \mathrm{~m}$
Time Dependent Boundary Condition Problem:
To check subroutine NEWMAR
DENSO
$=0.0 \mathrm{Kg} / \mathrm{m}^{3}$
DENS
DIAI
DIAO
E
I
Length
Elements
Amplitude
Wave Period
$=8000 \mathrm{Kg} / \mathrm{m}^{3}$
$=0.381 \mathrm{~m}$
$=0.4064 \mathrm{~m}$
$=20 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$=0.0003047 \mathrm{~m}^{4}$
$=100 \mathrm{~m}$
$=10$
$=2.0 \mathrm{~m}$
$=20 \mathrm{sec}$

CHAPTER VI

RESULTS, DISCUSSION AND CONCLUSIONS

The data for the example problems has been chosen carefully such as to include as many variations in sensitive parameters such as tension, wave period, etc. in as less number of problems as possible. The data chosen corresponds closely to API 500-20-ID test case as specified in (19).

(i)	Length	$=$	225 m
	Elements	$=$	10
	Wave Height	$=$	6.09 m
	Period	$=$	$9 \mathrm{sec} \& 20 \mathrm{sec}$
	Surface Current Velocity	$=$	2 Knots
	Tension/Weight of Riser	$=$	1.22 \& 2.0
	Maximum Top Rotation	$=$	$0.05 \mathrm{rad} \& 0.15 \mathrm{rad}$
	Maximum Top Displacement	$=$	$3 \mathrm{~m} \& 2 \mathrm{~m}$
(ii)	Length	$=$	300 m
	Elements	$=$	15 \& 20
	Wave Height	$=$	6.09 m
	Period	$=$	20 sec
	Surface Current Velocity	$=$	2 Knots
	Tension/Weight of Riser	$=$	2.0
	Maximum Top Rotation	$=$	0.25 rad

	Maximum Top Displacement		3.0 m
(iii)	Length	$=$	400 m
	Elements	$=$	15 \& 20
	Wave Height	$=$	6.09 m
	Period	$=$	20 sec
	Tension/Weight of Riser	$=$	2.0
	Maximum Top Rotation	$=$	0.1 rad
	Maximum Top Displacement	$=$	2.0 m
(iv)	Length	$=$	600 m
	Elements	$=$	20
	Wave Height	$=$	6.09 m
	Period	$=$	5, 9, 12, 15, 20 sec
	Tension/Weight of Riser	$=$	2.0 \& 2.5
	Maximum Top Rotation	$=$	0.1 rad
	Maximum Top Displacement	=	2.0 m
The other	ers that are constant for	the	examples are:
	DENSI	$=$	$1438 \mathrm{Kg} / \mathrm{m}^{3}$
	DENSO	$=$	$1025 \mathrm{Kg} / \mathrm{m}^{3}$
	DENS	$=$	8690 Kg/m ${ }^{3}$
	DIAI	$=$	0.381 m
	DIAO	$=$	0.4064 m
	E	$=$	$21 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
	9	$=$	$9.81 \mathrm{~m} / \mathrm{sec}^{2}$
	C_{D}	=	1.138
	C_{m}	=	1.5
	Current Velocity	$=$	2 Knots to (at 2nd node)

Figure 19 to Figure 26 correspond to the first case. Figure 19 and Figure 20 shows the wave propagation of displacements in the first few seconds. The displacements only due to drifting and that only due to rolling of the drilling vessel agrees well with Kazuo Aso et al. [7]. The paper does not present any displacement or bending stress graph due to both drifting and rolling. The method of superposition to arrive at such result as they argue may not be convincing particularly for a nonlinear problem. As such, both drifting and rolling are taken to act simultaneously and the result of the displacement and bending moments are as shown in Figure 21 to Figure 24. It can be seen from Figure 24 that the maximum bending moment at the bottom occurs after 12 seconds and that at the top occurs after 14 seconds. The bending moment due to drifting and rolling as taken separately are presented in Figure 25 and Figure 26. From the figures it can be seen that the maximum bending moment, maximum vessel displacement and maximum deflection of the riser do not occur at the same time over a period of vibration. This agrees well with Kazuo Aso et al. [7].

Figure 27 shows displacement comparison for a 15 and 20 element riser model for 300 m length. It can be seen that the displacement profile differ less for the upper half than for the lower half. A similar comparison is made for a 400 m length of riser as shown in Figure 28 to Figure 30. The result is the same. Here a comparison for the bending moment represented in Figures 29 and 30 shows that the maximum moment, either at the top or at the bottom occurs at the same time for both the models. However, the profile differs very much near the bottom. For a 600 m length of riser the analysis was performed for two different top tension to riser weight ratios. The period was varied

Figure 19. Wave Propagation Due to Drifting

Figure 20. Wave Propagation Due to Rolling for 225 m Riser Length

Figure 21. Displacements Due to Drifting for 225 m Riser Length

Figure 22. Displacements Due to Roiling for 225 m Riser Length

Figure 23. Displacements Due to Roll and Drift for 225 m Riser Length

Figure 24. Bending Mament Variation Due to Drift and Roll for 225 m Riser Length

Figure 25. Bending Moment Variation Due to Drift for 225 m Riser Length

Figure 26. Bending Moment Variation Due to Rolling for 225 m Riser Length

Figure 27. Displacement Comparison for 15 and 20 Element Model for 300 m Riser Length

Figure 28. Displacement Comparison for 15 and 20 Element Model for 400 m Riser Length

Figure 29. Bending Mament Variation for 15 Element Model for 400 m Riser Length

Figure 30. Bending Moment Variation for 20 Element Model for 400 m Riser Length
from 5 to 20 seconds to study the behavior of the bottom angle. Figures 31 and 32 show the displacement profile when the ratio of top tension to riser weight is 2.0 and 2.5 respectively. It can be seen that the displacement behavior is more orderly when the ratio is higher. This agrees with the general conclusion that the top tension ratio should be higher as the length of the riser is increased. Also in Figures 33 and 34 can be seen the bottom rotational behavior due to changing wave periods. It can be seen that the maximum bottom angle occurs when the wave period is between 10 and 15 seconds. This does not perfectly agree with Spanos and Chen [15]. They have arrived at the results by considering the top to be fixed which is a hypothetical approach. Here it may be argued that the results presented are more realistic than most of the previous work done in this area.

Conclusions

The general conclusion that the time domain analysis is very expensive and time consuming is proved wrong. The maximum CPU time taken in this analysis is about 6 seconds which costs not more than a couple of dollars. All the previous authors agree that the time domain analysis without any linearization technique is the most appropriate method of analysis. Hence there is no reason why a thorough analysis such as this one should not be carried out, especially when the cost of the whole project runs into millions of dollars. As in the case of all off-shore structures, the fluid loading seems to be the weakest link in the analysis. Morrison's equation still forms the basic equation for fluid loading. The sophistication in the analysis is, however, yet to be matched by experimental verification.

Figure 31. Deflection Comparison for Different Wave Periods

Figure 32. Deflection Comparison for Different Wave Periods for $\mathrm{T} / \mathrm{W}=2.5$ and Riser Length $=600 \mathrm{~m}$

Figure 33. Maximum Bottom Angle Versus Wave Period for $T N=2.0$ and Riser Length $=600 \mathrm{~m}$

Figure 34. Maximum Bottom Angle Versus Wave Period for $T / W=2.5$ and Riser Length $=600 \mathrm{~m}$

The finite element formulation leads to an efficient and accurate solution for the dynamic analysis of risers. Herein a consistent mass matrix is derived which represents riser system inertia more accurately than lumped mass matrix. This along with the boundary conditions considered for calculating bending moment differs from that of Spanos and Chen [15]. This analysis also does not give rise to any loss of accuracy due to any linearization technique as is the case for most of the previous papers. Moreover, since the analysis is in time domain it can be concluded that this represents an accurate dynamic analysis of the marine riser.
(11)

Graham, R. D., M. A. Frost, III, and J. C. Wilhoit. "Analysis of the Motion of Deep Water Drill Strings--Part 1: Forced Lateral Motion." Transaction ASME, Journal of Engineering for Industry, Vol. 87, No. 1 (May, 1965), pp. 137-144.

Frost, III, M. A. and J. C. Wilhoit, Jr. "Analysis of the Motion of Deep Water Drill Strings--Part 2: Forced Rolling Motion." Transaction ASME, Journal of Engineering for Industry, Vol. 87, No. 1 (May, 1965), pp. 145-149.

Fischer, W. and N. Ludwig. "Design of Floating Vessel Drilling Riser." Journal of Petroleum Technology, (March, 1966), pp. 272-280.

Heuze, L. A. "A 4000-foot Riser." OTC Paper No. 2325, Offshore Technology Conference, Houston, Texas, 1975.

Gosse, C. G. "The Marine Riser--A Procedure for Analysis." OTC Paper No. 1080, Offshore Technology Conference, Houston, Texas, 1975.

Kirk, C. L., E. U. Etok, and M. T. Cooper. "Dynamic and Static Analysis of a Marine Riser." Applied Ocean Research, Vol. 1, No. 3 (1979), pp. 125-135.

Kzuo Aso and Kan. Katsushige. "On the Lateral Vibration of a Boring-rod in the Deep Sea." Bulletin of the JSME, Vol. 24, No. 190 (April, 1981).

Young, R. D., J. R. Fowler, E. A. Fischer and R. R. Luke. "Dynamic Analysis as an Aid to the Design of Marine Risers." Journal of Pressure Vessel Design, Transaction ASME, Vol. 100 (May, 1978), pp. 200-205.

Dareing, D. W. and T. Huang. "Marine Riser Vibration Response Determined by Modal Analysis." Journal of Energy Reserves Technology, Transaction ASME, Vol. 101 (September, 1979), pp. 159-166.

Dareing, D. W. and T. Huang. "Natural Frequencies of Marine Drilling Risers." Journal of Petroleum Technology (July, 1975).

Burke, B. G. "An Analysis of Marine Risers for Deep Water." Journal of Petroleum Technology (April, 1974), pp. 455-465.

Mindlin, R. D. and L. E. Goodman. "Beam Vibrations With TimeDependent Boundary Conditions." Journal of Applied Mechanics, Transaction ASME, Vol. 72 (December, 1950), pp. 377-380.
(19) Sarohia, S. and M. H. Patel. "The Finite Element Analysis of a Marine Riser in the Frequency Domain: Program Manual for VCL Riser." Report OEG/80/3, University College London (March 1980).

APPENDICES

APPENDIX A

MARIAN USER'S MANUAL

MARIAN is a Computer Program written in FORTRAN to carry out the dynamic analysis of a marine riser in time domain. This user's manual describes the way in which the data is supplied to the program.

CARD \#

1

3

DATA AND DESCRIPTION
DENSI, DENS, DENSO, DIAI, DIAO, YMOD (5FlO.3, E13.7)

DENSI - Mass density of the fluid inside the riser, in $\mathrm{Kg} / \mathrm{m}^{3}$

DENS - Mass density of the riser material, in $\mathrm{Kg} / \mathrm{m}^{3}$

DENSO - Mass density of the surrounding fluid, in $\mathrm{Kg} / \mathrm{m}^{3}$

DIAI - Riser inner diameter, in m
DIAO - Riser outer diameter, in m YMOD - Young's Modulus of elasticity, in $\mathrm{N} / \mathrm{m}^{2}$ NNPE, NUMEL, NDOF, MBAND, NUMNP (5I5)

NNPE - Number of nodes per element ($=2$)
NUMEL - Number of elements
NDOF - Number of degrees of freedom $(=4)$

MBAND - Band width $(=4)$
NUMNP - Number of nodal points
TENS, GRAV, DELT, AMP, THETA, DPER, ITER (6F10.4,
IS)
TENS - Top tension, in N
GRAV - Gravitational acceleration, m/sec ${ }^{2}$
DELT - Incremental time step, in sec

```
CARD #
```

```
                DATA AND DESCRIPTION
```

 DATA AND DESCRIPTION
 AMP - Amplitude of drift, in m
AMP - Amplitude of drift, in m
THETA - Amplitude of roll, in rad
THETA - Amplitude of roll, in rad
DPER - Period of drift and role, in sec
DPER - Period of drift and role, in sec
ITER - Maximum number of time steps
ITER - Maximum number of time steps
DRA, AMASSC, SURFV, WAVEL, PERIOD, WHGT,
DRA, AMASSC, SURFV, WAVEL, PERIOD, WHGT,
IDEPTH (6F10.5, I5)
IDEPTH (6F10.5, I5)
DRA - Drag coefficient
DRA - Drag coefficient
AMASSC - Mass coefficient
AMASSC - Mass coefficient
SURFV - Surface current velocity, in m/sec
SURFV - Surface current velocity, in m/sec
WAVEL - Wave length, in m
WAVEL - Wave length, in m
PERIOD - Wave period, in sec
PERIOD - Wave period, in sec
WHGT - Wave height, in m
WHGT - Wave height, in m
IDEPTH - Node number where the current velocity
IDEPTH - Node number where the current velocity
tapers to zero
tapers to zero
I, LENGTH(I) (I5, F10.5)
I, LENGTH(I) (I5, F10.5)
NOTE: I = NUMNP, LENGTH(I) = Distance of the
NOTE: I = NUMNP, LENGTH(I) = Distance of the
ith nodal point from bottom. As many cards as
ith nodal point from bottom. As many cards as
NUMNP with one value of I and LENGTH(I) on each
NUMNP with one value of I and LENGTH(I) on each
card
card
I,NP (J,I), J = I, NNPE, I = 1, NUMEL (3I3)
I,NP (J,I), J = I, NNPE, I = 1, NUMEL (3I3)
NOTE: I is the element number followed by the
NOTE: I is the element number followed by the
node numbers of that element on each card. As
node numbers of that element on each card. As
many cards as elements.
many cards as elements.
ID(I,J), I = 1, NNPE, J = 1, NUMNP (XI2)

```
ID(I,J), I = 1, NNPE, J = 1, NUMNP (XI2)
```


DATA AND DESCRIPTION

NOTE: This contains two cards. Each card has as many values as NU NP. Hence the Format has to be changed accordingly. Give one if the DOF is suppressed, otherwise zero. First card all displacements, 2nd card all rotations.

APPENDIX B

COMPUTER PROGRAM

```
C***********************************************************:**************
C*
C***** MARIAN - PROGRAM TO COMPLITE THE EYNAMIC RESPORISE OF A MARINE
C*
C***** RISER SYSTEM IN THE TIME DOMAIN.
C*
***** WRITTEN BY L.VASAN
C*
C
COMMON /C1; DENSI,DENS, AREAI, AREAO, ELEN(50), NDOF, GRAV, YMOL), 1 INERT, TENS, LENGTH(50), DENSO, NLMEL, NP (2,50), LL. (4), NUMNP \(2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6)\), TIME (30) \(3, \operatorname{GLGEST}(50,6)\), NUMB, MBAND, ID \((2,50)\), NEQ, NNPE, AMASSC, \(\operatorname{GLTOST}(50,6)\) COMMON /C2/SH1(10), SH2 (10), SH3(10), SH4 (10), ZHI (5), WGT (5), AMP, DPER COMMON /C3/ NINT, JTER,DIS(50,30), SURFV, WAVEL, WHGT, PERIOD,VCUR(50) , VCW (20), DELT, GILDAMP (50,6), CMAT (4, 4), Z (20), IDEFTH, FUFNC (50, 30) , DIAI 2,DIAO, VEL(50), DRA, PMAT (4,4), GLGEOS(50, 6 ), FORCE (50), VWÃVE(50), THETA

\section*{DIMENSION AMOM(50), SHEAR(50)}

\section*{REAL LENGTH, INERT}
DATA NINT, JJ,LP / 5,0,6 /
DATA ZHI / O.0.0.538469,-0.538469,0.90618,-0.90618 / DATA WGT / 0.568889,0.478629,0.478629,0.236927,0.236927 /
CALL INPUT DU 10 I \(=1\), NUMEL
ELEN(I) \(=\operatorname{LENGTH}(I+1)-\operatorname{LENGTH}(I)\)
\(c\)
INERT \(=(3.1416 / 64.0) *((D I A O * * 2)+(D I A I * * 2)) *(D I A O\) +DIAI \()\) *(DIAO - DIAI)
C
AREAO \(=(3.1416 / 4.0) *(D I A O * * 2)\) AREAI \(=(3.1416 / 4.0) *(D I A I * * 2)\)
C
C
C
\(N E Q=0\)
TIME(1) \(=0.0\)
C DO \(77 \mathrm{I}=2\), ITER \(\operatorname{TIME}(\mathrm{I})=\operatorname{TIME}(\mathrm{I}-1)+\) DELT
77 CONTINUE
```

00000010
0ccono20
06000020
00000030
00 GOOO 4 C
00000050
00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
OJJOOO 150
00000150
0000160
000001170 00000170 00000130 00000190 00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000320 00000330 00000340 00000350 000036 00000370 00000380 00000390 00000400 00000410 00000420 00000430 00000440 00000450 00000460 00000470 00000480 00000490 00000490 00000500 00001010 00001020

```
    DO 63 KL = 1,NEQ
    50 53 ML = ,NEQ
        GLTOST(KL,ML) = GLSTIF(KL,ML)+GIGGEST(KL,ML )+GLGEOS(KI.,ML)
        CONTINUE
        CONTINUE
63
C
    NEQ = NEQ - 2
C
C
C
    DO 543 JJ = 1, ITER
    M = 0
    20 200 I = 1,NUMNP
    OO 220 J = I,NNPE
    N=ID(U,I)
    M=M+i
    FUNC(M,JJ) = 0.0
    IF (N.EQ.O) GO TO 220
    FUNC(M,JJ) = DIS(N,JJ)
    CONTINUE
    CONTINUE
c
C
                MN = O 
        DO }342\textrm{JL}=1\mathrm{ ,NUMEL
        MN =MN +2
        MN=MN+2
        KLM=KLM + + 
        MPQ =MN - - 
C
    AMOM(UL)= -YMOD*INERT*(-FUNC(MN,JJ) + FUNC(KiM,UJ))/ELEN(JL)
        SHEAR(UL) = (-YMOD*INERT /(EIEENIUL) ** 3!)*(12.O*FUNC(MPQ,JJ)
        1 + E.O*ELEN(JL)*FUNC(MN,JJ) - 12.O*FUNC(NQR,JJ) + 5.0*
        2 ELEN(JL)*FUNC(KIM,MJ))
C
    342 CONTINJUE
        WRITE (4.445) TIME(JJ)
        FORMAT (///10X,'TIME = ',F5.2,' SECS.'//)
        WRITE (4,333)
        FORMAT (/IOX, AHINODE, 8X, 12HDISPLACEMENT, IOX, BHROTATION, 8X
        1 7HELEMENT, 10X, 6HMOMENT, 15X,5HSHEAR//)
```

```
|=0
```

|=0
LO 239 I = 1,NUMB,2

```
    LO 239 I = 1,NUMB,2
```

00001030 00001040 00001050 Or000106G 00001070 00001080 $0000!1090$ 00001100 00001110 00001120 00001130 00001140 00001140
00001150 00001150
00001160 00001160 00001170 00001180 00001190 00001200 00001210 00001220 00001230 00001240 00001250 00001250 00001270 00001280 00001290 00001300 00001310 00001320 00001320
00001330 00001330 00001340 00001350 00001360 00001370 00001380
00001390 00001390 00001400 00001410 00001420 00001430 00001440 00001450 00001460 00001470 00001480 00001490 00001490 00001510 00001520 00001530

$$
J=1-J
$$

WRITE $(4,444) J, \operatorname{FUNC}(1, J J), \operatorname{FUNC}(I+1, \mathrm{l} \|)$
FORMAT (11X,I2,8X,E13.6,8X,E1E.6/)
IF (J.GT.NUMEL.) GO TO 239
WRITE (4,456) J, AMOM(J), SHEAR(J)
FORMAT(61X,12,8X,E13.6,8X,E13.G/)
CONTINUE
CONT INUE
STOP
END

DO $5 \mathrm{~J}=1$,NINT
$\mathrm{SH} 1(\mathrm{~J})=0.5-0.75 * 2 \mathrm{HI}(\mathrm{J})+0.25 *(\mathrm{ZHI}(\mathrm{d}) * * 3)$
SH2 (J) $=0.25 *(1.0-\mathrm{ZHI}(J)-\mathrm{ZHI}(J) * * 2+\mathrm{ZHI}(J) * * 3)$
$\mathrm{SH} 3(J)=0.5+0.75 * \mathrm{ZHI}(J)-0.25 *(\mathrm{ZHI}(J) * * 3)$
$\mathrm{SH} 4(J)=0.25 *(-1.0-\mathrm{ZHI}(J)+2 \mathrm{HI}(J) * * 2+2 \mathrm{HI}(J) * * 3)$
CONTINUE
C
RETURN
END
.
C
COMMON /C1/ DENSI, DENS, AREAI, AREAO, ELEN(50), NDOF, GRAV, YMOD, 1 INERT, TENS, LENGTH(50), DENSO, NUMEL, NP (2,50), Li (4), NUMNP , $2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GI} \operatorname{STIF}(50,6), \operatorname{TIME}(30)$ 3, $\operatorname{GLGEST}(50,6)$, NUMMB , MBAND, ID $(2,50)$, NEQ, NNPE, AMASSC, GLTOST $(50,6)$

COMMON /C3/ NINT, ITER,DIS(50,30), SURFV, WAVEL, WHGT, PERIOD, VCUR(50) 1, VCW(20), DELT , GLDAMP (50,6), CMAT (4,4), $2(20)$, IDEPTH, FUNC (50, 30) , DIAI

```
, DIAO,VEL(50), DRA, PMAT(4,4),GLGEOS(50,6), FORCE(50),VWAVE(50) THETA
```

```
LL(1) = ID(1,I)
    LI(2) = ID(2,I)
    LI(2)=ID(2,I)
    LL(3)=ID(1,J)
```

DO $400 \mathrm{~K}=1$, NDOF
IF (LL(K).LE.O) GO TO 400

00001540 00001550 00001560 00001570 00001580 00001590 00001600 00001610 00001620 00001630 00001640 0000 1650 00001650 00001660 00001670 00001680 00001690 00001700 00001710
00001720 00001720 00001730 00001740 00001750 00001750 00001770 00001780 00001790 00001800 00001810 $0000 \div 820$ 00001820 00001830 00001840 00001850 00001850 00001870 00001880 00001890 00001900 00001910 00001920 00001330 $00001 E 40$ 00001950 000019 GO 00001960 00001970
00001980 00001980 00001990 00002000 00002010 00002020 00002030
coco2040

	$K I=L L(K)$	00002050
	DO $300 \mathrm{M}=1$, NDOF	00002060
	IF (LL(M).LT.KI) GO TO 300	00002070
	$L K=L i(M)-K I+1$	00002080
	IF (JJ.GT.C) GO TO 200	00002090
	GLSSTIF(KI,LK) $=$ GLSTIF(KI,LK $)+\operatorname{STMAT}(K, M)$	00002100
	GLGEST (KI,LK) $=$ GLGEST(KI,LK $)+\operatorname{GSMAT}(K, M)$	00002110
	GLGEOS (KI,LK) $=$ GLGEOS $(K I, L K)+\operatorname{PMAT}(K, M)$	00002120
	GLMASS $(K I, L K)=\operatorname{GLMASS}(\mathrm{KI}, \mathrm{LK})+\operatorname{EMAT}(K, M)$	00002130
200	GLDAMP $(K I, L K)=$ GL_DAMP $(K I, L K)+\operatorname{CMAT}(K, M)$	00002140
300	CONTINUE	00002150
400	CONT INUE	00002160
C		00002170
	RETURN	00002180
	END	00002190
C		00002200
C		00002210
	SUBROUTINE INPUT	00002220
C		00002230
C		00002240
	COMMON /C:/ DENSI, DENS, AREAI, AREAO, ELEN(50), NDOF, GRAV, YMOD,	00002250
	1 INERT, TENS, LENGTH(50), DENSO, NUMEL, NJP (2,50) , LL (4) , NUMNP,	00002260
	$2 \mathrm{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLIMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIME}(30)$	00002270
	$3, \operatorname{GLGEST}(50,6)$, NUMB, MBAND, ID $(2,50), N E Q$, NNJPE, AMASSC, GLTOST $(50,6)$	00002280
	COMMON /C2/SH1 (10), SH2 (10), SH3 (10), SH4 (10), ZHI (5), WGT (5), AMP, DPER	00002290
	COMMIMON /C3/ NINT, ITER, DIS (50, 30), SURFV, WAVEL, WHGT, PERIOD, VCUR (50)	00002300
	1. VCW (20), DELT, GLDAMP (50.6), CMAT (4,4), $\mathrm{Z}(20)$, IDEPTH, FUNC (50, 30) , DIA	00002310
	2, DIAO, VEL (50), DRA , PMAT (4,4), $\operatorname{GLGEOS}(50,6), \operatorname{CORCE}(50), \operatorname{VWAVE}(50)$, THETA	00002320
C		00002330
C		00602340
	gEAL INERT, LENGTH	00002350
	IN $=5$	00002360
	$L P=6$	000023%
C		00002380
C		00002:30
	READ (IN, 10) DENSI, DENS,DENSO.DIAI,DIAO, YMOD	00002400
10	FORMAT(5F10.3,E13.7)	00002410
C		00002420
	READ(IN, 20) NNPE, NUMEL, NDOF, MBAND, NUMNP	00002430
20	FORMAT(515)	00002440
C		00002450
	READ(IN, 30) TENS, GRAV, DELT, AMP, THETA, DPER, ITER	00002460
30	FORMAT (6 F 10.4, I5)	00002470
	READ (IN, 140) DRA, AMASSC, SURFV, WAVEL, PERIOD, WHGT, IDEP [H	00002480
140	FORMAT (6F10.5,15)	00002490
C		Or)002500
	READ (IN, 70) (I, LENGTH(I), IO=1, NUMNP)	00002510
	READ (IN, 80) (I. (NP (U, I) , U=1, NNPE), IO=1, NLMEL)	00002520
70	FORMAT (I5,F10.5)	00002530
80	FORMAT (3I3)	ccose 2540
C		00002550

050
060 00002070 00002080 00002090 00002100 00002111 00002130 00002140 00002150 00002160 00002170 00002190 00002200 0002210 00002230 00002240 00002260 00002260 00002270 00002280 00002300 00002310 00002320 00602340 00002350 00002360 00002370 $00002: 30$ 00002400 00002420 00002430 00002440 00002450 00002460 00002470 00002490 0 0) 025500 00002520 00002530 00002550

DO $130 I=1$, NNPE
READ $(I N, 110) \quad(\operatorname{ID}(I, J), J=1$, NUMNP)
FORMAT(16I2)
ORMA (16 I 2)
CONT INUE

WRITE (4, 900) DENSI, NNPE, DRA, WHGT, YMOD
WRITE $(4,910)$ DENS.NUMEL, AMASSC, AMP,TENS
WRITE (4,920): DENSO, MBAND,SURFV,THETA, GRAV
WRITE $(4,930)$ DIAI,NDOF,WAVEL,DPER,DELT
WRITE (4,940) DIAO,NUMNP,PERIOD,LENGTH(NUMNP), ITER
FORMAT(5X,'DENSI =',E13.5,8X,'NNPE $=\prime, I 5,8 X, '$ DRA
, F10.3,8X, 'WHGT ='.F10.3.8X,'YMOD =', E13.7/)
FORMAT(5X,'DENS $=\prime, E 13.5,8 X,{ }^{\prime}$ NUMEL $=\prime, 15,8 X,{ }^{\prime}$ AMASSC $=\prime$

F10 3 , , THETA =; FiO; 8x MBAND $=15,8 x$, SURF
FORMAT (5X,'DIAI $=\prime$, E13.5,8X,'NDOF $=\prime, 15,8 X$,'WAVEL $=\prime$,

RETURN
END

SUBROUTINE MASS(N)

COMMON /C1/ DENSI.DENS, AREAI, AREAO, ELEN(50), NDOF, GRAV, YMOD, 1 INERT, TENS, LENGTH(50), DENSO, NUMEL, NP (2,50), LL (4) , NUMNP,
$2 \operatorname{STMAT}(4,4)$, EMAT (4,4), GSMAT (4,4), GLMASS(5O, 6), GLSTIF (50, 6). TIME (30)
3, GLGEST $(50,6)$, NUMB, MBAND, ID $(2,50)$, NEQ, NNPE, AMASSC, GLTCST $(50,6)$
COMMON /C3/ NINT, ITER,DIS(50,30), SURFV, WAVEL, WHGT, PERIOD, VCUR (50)
1, VCW (20), DELT, GLDAMP (50,6), CMAT (4,4), (20), IDEPTH, FUNG (50, 30), DIAI 2. DIAO, VEL(50), DRA, PMAT (4,4), GLGEOS $(50,6)$, FORCE (50), VWAVE (50), THETA

AMASS $=$ DENSI * AREAI + DENS * (AREAO-AREAI) COEFF $=$ APHASS * $(\operatorname{ELEN}(N) / 420.0)+3.14 / 4.0 *$ (DENSO * (AMASSC-1.O 1) * DIAO ** 2)
$\operatorname{EMAT}(1,1)=156.0 * \operatorname{COEFF}$
$\operatorname{EMAT}(1,2)=22.0$ * ELEN(N) $* \operatorname{COEFF}$
$\operatorname{EMAT}(1,2)=22.0 * \operatorname{ELEN}(N)$
$\operatorname{EMAT}(1,3)=54.0 * \operatorname{COEFF}$
$\operatorname{EMAT}(1,3)=54.0{ }^{*} \operatorname{COEFF}$
$\operatorname{EMAT}(1,4)=-13.0^{*} \operatorname{ELEN}(N) * \operatorname{COEFF}$
$\operatorname{EMAT}(2,2)=4.0$ * $(\operatorname{ELEN}(N) * * 2) * \operatorname{COEFF}$

00002560 00002570 00002570 00002580 00002590 00002600
00002610 00002610 00002620 00002630 00002640 00002650 00002660 00002670 00002580 00002690 00002690 00002700
00002710 00002710 00002720 000274 00002740 00002750 00002760 00002770 00002750 00002790 00002800 00002810 00002820 00002530 00002840 00002850 00002850 00002860 00002870 00002880 00002390 00002900
00002910 00002910 00002920
$000029: 30$ 00002930 00002940 00002950 00002960 00002970 00002980 c.0002990 00003000 00003010 00003020 00003030 001003030 00003040 00003050 00603060

```
    EMAT(2,3)=13.0 * ELEN(N)* COEFF 00003070
    EMAT(2,3)=13.0* *LEEN(N)
    MAT (3,3) = 156.0 * COEFF
    MAT(3,4) = -22.0 * ELEN(N) * COEFF
    MAT (4,4) = 4.0 * (EILEN(N) ** 2) * CCEFF
        OO 10 J = 1, NDOF
        DO 20 K = 1, J
    EMAT(J,K) = EMAT(K,J)
    CONTINUE
    CONTINLIE
    IF(N.GT.1) RETURN
RETURN
END
C
C
C
        STMAT(1.1) = 12.0 * COEFF
        STMAT(1,2) = 6.0 * ELEN(N) * COEFF
        STMAT( 1,3)=-12.0* COEFF
        STMAT(1,4)=6.0 * ELEN(N)* COEFF
        STMAT(2,2)=4.0 * (EL.EN(N) ** 2) * COEFF
        STMAT(2,3) = -6.0 * ELEN(N) * COEFF
        STMAT(2,4) = 2.0 * (ELEN(N) ** 2) * COEFF
        STMAT(3,3) = 12.0 * COEFF
        STMAT(3.4) = -6.0 * ELEN(N) * COEFF
        STMAT(4,4) = 4.0 * (ELEN(N) ** 2) * COEFF
        DO 10 J = 1. NDOF
        DO 20 K = i, J
        STMAT(J,K) = STMAT(K,J)
        STMAT(U,K
        CONTINUE
    10
COMMON /CI/ DENSI,DENS,AREAI, AREAO, ELEN(50), NDOF, GRAV, YMOD, 1 INERT,TENS,LENGTH(50), DENSO, NUPMEL,NP (2,50),LL(4),NUMNP
2STMAT \((4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIME}(30)\) 3, GLGEST (50,6),NUMB , MBAND, ID (2,50), NEQ,NNPE, AMASSC, GLTOST (50.6)
REAL IPNERT
COEFF \(=\) YMOD * INERT/ELEN(N) ** 3
\(\operatorname{STMAT}(1.1)=12.0 * \operatorname{COEFF}\)
\(\operatorname{STMAT}(1,2)=6.0 * \operatorname{ELEN}(N) * \operatorname{COEFF}\)
\(\operatorname{STMAT}(1,4)=6.0 * \operatorname{ELEN}(N) * \operatorname{COEFF}\)
\(\operatorname{STMAT}(2,3)=-6.0 * \operatorname{ELEH}(N) * \operatorname{COEFF}\)
STMAT 2.4 ) \(=2.0\) * (ELEN(N) ** 2) * COEFF
SMMT(3,3) \(=12.0 *\) COEFF
\(\operatorname{STMAT}(4,4)=4.0 *(\operatorname{ELEN}(N) * * 2) * \operatorname{COEFF}\)
DO \(10 \mathrm{~J}=1\). NDOF
DO \(20 \mathrm{~K}=1\), J CONT INUE
```

00003070
00003080
00003090
00003100
00003110
00003120
00003130
00003130
0003140
00003150
00003160
00003170
00003180
00003190
00003200
00003210
00003220
00003230
00003240 00003250 00063260 00003270 00003280 00003290 00003300 00003310 00003310 0 00003330 00003340 00003350 0003360 00003370 00003380 00003390 00003400 00003410 coco3420 00003430 00003440 00003450 00003460 00003470 00003480 00003480
00003490 00003490 C0003500 00003510 06035.20 00003530 06003540 00003550 00003560 00003570

RETURN

END

SUBROUTINE GESTFN(N)

COMMON /C1/ DENSI,DENS,AREAI,AREAO,ELEN(5O),NDOF,GRAV,YMOD, 1 INERT, TENS, LENGTH(50), DENSO, NUMEL, NP (2,50), LL (4). NUMNP $2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIME}(30)$ 3, GLGEST $(50,6)$, NUMB , MBAND, ID $(2,50)$, NEQ, NNiPE, AMASSC, GLTOST $(50,6)$ REAL LENGTH, INERT

COEFF $=((T E N S-$ DENS*GRAV*(AREAO-AREAI) *(LENGTH(NUMNP)-
LENGTH $(N+1)))+$ (DENSO*AREAO - DENSI *AREAI)* (LENGTH(NUMNP)

- LENGTH(N+1)) * GRAV)/ELEN(N)
$\operatorname{GSMAT}(1,1)=1.2 * \operatorname{CoEFF}$
$\operatorname{GSMAT}(1,2)=0.1 * \operatorname{ELEN}(N) * \operatorname{COEFF}$
$\operatorname{GSMAT}(1,3)=-1.2 * \operatorname{COEFF}$
$\operatorname{GSMAT}(1,4)=0.1 * \operatorname{ELEN}(N) * \operatorname{CDEFF}$
$\operatorname{GSMAT}(2,2)=(2.0 / 15.0) *(\operatorname{ELEN}(N) * * 2) * \operatorname{COEFF}$
$\operatorname{GSMAT}(2,3)=-0.1 * \operatorname{ELEN}(N) * \operatorname{COEFF}$
$\operatorname{GSMAT}(2,4)=(-1.0 / 30.0) *(\operatorname{ELEN}(N) * * 2) * \operatorname{COEFF}$
$\operatorname{GSMAT}(3,3)=1.2 * \operatorname{COEFF}$
$\operatorname{GSMAT}(3,4)=-0.1 * \operatorname{ELEN}(N) * \operatorname{CUEFF}$
$\operatorname{GSMAT}(4,4)=(2.0,15.0)^{*}(\operatorname{ELEN}(N) * * 2) * \operatorname{COEFF}$
DO $10 \mathrm{j}=1$, NDOF
DO $20 \mathrm{~K}=1$, J
$\operatorname{GSMAT}(J, K)=\operatorname{GSMAT}(k, J)$
CONT INUE
CONTINUE

IF(N.GT.1) RETURN

RETURN
END

SLUBROUTINE PRESS(N)

COMMON /C1/ DENSI, DENS, AREAI, AREAO, ELEN(5O), NDOF, GRAV, VMOD 1 INERT, TENS, LENGTH(50) , DENSO, NUMEL, NP (2,50), LL (4), NUMNP, $2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), 7 \operatorname{IME}(30)$

00003580
00003590
00003600
00003610
00003620
00003630
00003640
00003650
00003660
00003670
00003670 00003680 00003690 00003700 00003710 C0003720
00003730
00003740
00003750
00003760
00003770
00003780
00003730
00003800
00003810
00003820
00ヶ)03820
00003820
00003840 0003850 000.53860 00003870 00003830 00003890 00003900 00003910 00003920 00003930 C0003940 00003950 00003960 00003970 00003980 00003990 00004000 00004010 00004010 00004020 00004030 0004040 00004050 00004060 00004070 00004080

3, GLGEST (50,6), NUMB, MBANI), ID (2,50), NEO, NNPE, AMASSC, GLTOST (50,6)
COMMON /C3/ NINT, ITER,DIS(50,30), SURFV,WAVEL, WHGT, PERIOD, VCUR(50) 1, VCW(20), DELT, GLDAMP (50,6), CMAT (4,4), $\mathrm{Z}(20)$, IDEPTH, FUNC (50, 30), DIAI 2, DIAO, VEL(50), DRA, PMAT (4,4), GLGEOS(50,6), FORCE (50), VWAVE (50), THETA REAL LENGTH, INERT

COEFF $=((D E N S * G R A V * L E N G T H(N U M N P) *(A R E A O-A R E A I))-(D E N S O *$ AREAO - DENSI*AREAI)*LENGTH(́NUMNP)*GRAV)/ELEN(N)
$\operatorname{PMAT}(1,1)=0.6 * \operatorname{COEFF}$
$\operatorname{PMAT}(1,2)=0.1 * \operatorname{ELEN}(N) * \operatorname{COEFF}$
$\operatorname{PMAT}(1,3)=-0.6 * \operatorname{COEFF}$
$\operatorname{PMAT}(1,4)=0.0 * \operatorname{ELEN}(N) * \operatorname{COEFF}$
$\operatorname{PMAT}(2,2)=(1.0,30.0) *(\operatorname{ELEN}(N) * * 2) * \operatorname{CDEFF}$
$\operatorname{PMAT}(2,3)=-0.1 * \operatorname{ELEN}(N) * \operatorname{COEFF}$

$\operatorname{PMAT}(2,4)=(-1.0 / 60.0)^{*}(E L E N(N) * * 2) * \operatorname{COEFF}$
PMAT $(3,3)=0.6 *$ COEFF
$\operatorname{PMAT}(3,4)=-0.0 * \operatorname{ELEN}(N): k \operatorname{COEFF}$
$\operatorname{PMAT}(4,4)=0.1 *(\operatorname{ELEN}(N) * * 2) * \operatorname{coEFF}$
DO $10 J=1$, NDOF
DO $20 \mathrm{~K}=1$, J
$\operatorname{PMAT}(J, K)=\operatorname{PMAT}(K, J)$
CONT IMUE
CONT INUE

IF(N.GT.1) RETURN

RETURN
E.NO

00004030
00004100
00004110 00004120 00004130 00004140 00004150 00004160
00004170
00004180
00004190
00004.200

00004210
00004220
00004220
00004230
$00 \square 04240$
00004250
00004260
00004270
00004280
00004290 00004300 co0043:0 00004.320 00004330
00004340
00004350
00004360
00004370
00004380
00004390
00004390
00004400
0004410
0004420
00004430
00004440
00004450
00004460 00004470 00004480 00004490 00004500 00004510 00004520 00004530 00004540 00004550 00004550 00004560 000104570 00004580 00004590

DO $122 \mathrm{I}=2, \mathrm{NDUM}$
$\operatorname{VEL}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)$ VEL(I) =
CONTINUE
$\operatorname{DO} 250 I=1$, NUMNP
$\operatorname{VCUR}(I)=0.0$
CONT INUE
VCUR (NUMNP) $=$ SURFV
DUMM $=0.0$
TOTLEN = LENGTH(NUMNP) .- LENGTH(IDEPTH)
DO $350 \mathrm{I}=1$. NULHNP
IF ((I).EQ.NUMNP) GO TO 350
IF(I.IE.IDEPTH) GO TO 350
DUMM $=$ DUMM + ELEN $(I-1)$ $\operatorname{VCUR}(I)=$ DUMM $*$ SURFV / TOTLEN CONT INUE
C
C
C
C
C
Do 450 I $=1$, NUMNP
TOTL $=$ - (LENGTH(NUMNP) - LENGTH(I)) VWAVE (I) $=(3.1416 *$ WHGT/PERIOD)* (EXP $6.283 *$ TOT! / WAVEL
1)) * $\operatorname{COS}(6.283$ * TIME(JJ) / PERIOD)

AWAVE (I) $=-$ (19.74*WHGT/(PERIOD**2))*(EXP(6.283*TOTL./WAVEI.))
*SIN(6.283*T1ME(JJ)/PERIOD)
CONT INUE

$$
\text { FORCE }(N L)=0.0
$$

C
COEFF $=0.5$ * DENSO + DIAO * DRA
DO 35 NN = 1, NUMEL

$$
\text { IF (NN.EQ.1) MN = } 3
$$

$$
\begin{aligned}
& \text { IF (NN.EQ.1) } M N=3 \\
& \text { IF }(N N . G T .1) M N=M N+N N
\end{aligned}
$$

DO 888 III $=1.4$
DO 888 JJJ $=1.4$
DO 888 JJJ $=1.4$
CMAT(III, JUJ) $=0.0$

00504600
00004610
00004620
00004630
00004640
00004650
0060465 C
00004670
00004670
00004680
0004690
00004700
00004710
00004720
$000 c 4730$
00004740
00004750
00004760
$00004 \% 70$
00004780
00004790
00004800
00004810
00004820
00004830
00004840
00004840
00004850
00004860
00004870
00004880
00004890
00004900
00004910
00004920
00004930
00004940
00004950
00004960
00004970
00004980
00004990
00005000
00005000
0000501 C
00005020
0005030
00005040
00005050
00005050
00005070
00005080
00005090
00005100

COEF $1=3.1416 / 4.0$ *DENSO*AMASSC*(DIAO**2)

$\operatorname{IF}(\operatorname{ID}(1,1) \cdot E Q \cdot O \cdot A N D \cdot \operatorname{ID}(2,1) \cdot G T \cdot O)$ UMI. $=2$
$\operatorname{IF}(\operatorname{ID}(1,1) . E Q . O . A N D . \operatorname{ID}(2,1) . E Q . O) \mathrm{JML}=1$
DO $84 \mathrm{MM}=1$, NUMEL
$K M L=J M L+2$
DO $94 K=1$, NINT
ACCL (MM) $=$ AWAVE (MM) *0.5*(1.0-ZHI (K)) + AWAVE (MMP 1$) * 0.5 *$ $(1.0+\mathrm{ZHI}(K))$
$\operatorname{FORCE}(U M L)=(\operatorname{COEF} 1 * A C C L(M M)+\operatorname{COEFF} * Z(M M) * V C W(M M)) * S H 1(K)$ +FORCE (UML)
$\begin{aligned} \text { FORCE }(K M L)= & (\operatorname{COEF} 1 * A C C L(M M)+\operatorname{COEFF} * Z(M M) * V C W(M M)) * S H 3(K) \\ & + \text { FORCE }(K M L)\end{aligned}$
$\begin{aligned} \operatorname{FORCE}(K M L)= & (\operatorname{COEF} 1 * A C C L(M M)+\operatorname{COEFF} * Z(M M) * V C W(M M)) * S H 3(K) \\ & +\operatorname{FORCE}(K M L)\end{aligned}$
DO $30 K=1$, NINT
$\operatorname{VCW}(N N)=\operatorname{VONE} * 0.5 *(1.0-\mathrm{ZHI}(K))+V T W O * O .5 *(1.0+2 H I(K))$
$Z(N N)=A B S(V C W(N N)-(V E L(M N-2) * S H 1(K) \div V E L(M N-1)$
1 * SH2 (K) + VEL(MN) * SH3 (K) \& VEL (MN+1) * SH4 (K)))

CMAT $(1,1)=$ CMAT (1.1) $+Z(N N) * \operatorname{SHI}(K) * * 2 . O * W G T(K) * \operatorname{COEFF}$ CMAT $(1,2)=$ CMAT $(1,2)+7(N N) * S H I(K) * \operatorname{SH2}(K) *$ WGT(K) * COEFF CMAT $(1,3)=$ CMAT $(1,3)+Z(N N) * S H 1(K) * \operatorname{SH3}(K) *$ WGT $(K) * \operatorname{COEFF}$
 CMAT $(2,2)=\operatorname{CMAT}(2,2)+Z(N N) * S H 2(K) * * 2.0 * W G T(K) * \operatorname{COEFF}$ $\operatorname{CMAT}(2,3)=\operatorname{CMAT}(2,3)+Z(N N) * S H 2(K) * S H 3(K) *$ WGT $(K) * \operatorname{CGEFF}$
 CMAT $(2,4)=$ CMAT $(2,4)+Z(N N) * \operatorname{SH2}(K) * \operatorname{SH} 4(K) *$ WGT (K) * COEFF

 CMAT (4,4)
CONT INUE.

DO $601=1.4$
DO $60 \mathrm{~J}=1.4$
$\operatorname{CMAT}(U, I)=\operatorname{CMAT}(I, U)$
$I J=N P(1, N N)$
$J L=N P(2, N N)$
CALL GI.OBAL (IJ, JL, JJ)
$M N=M N-N N+!$
CONT INUE

CONTINUE
UML = JML
CONTINUE
$\mathrm{PHI}=0.0$

FORCE (NEQ) $=$ FGRCE (NEQ) - GLTOST(NEG, 2) *AMP*SIN(6.283*TIME (NJ) i DPER + PHI) +GLTOST (NEQ, 3) *THETA*SIN(6.283*TIME (JU)/DPER+PHI) $-(6.283 / D P E R) * G L D A M P(N E Q, 2) * A M P * C D S(6.283 * T$ TME (JJ)/DPER
$.+$ PHI $)+(6.283 \prime$ DPER $) * \operatorname{GLDAMP}($ NEQ, 3) *THETA*COS $(6.283 * T I M E(J 1)$
/DPER + PHI $)+((6.283 / D P E R) * * 2) * G L M A S S(N E Q, 2) * A M P * S I N(6.283 *$

00005110 00005120 00005130 00005140 00005150 00005160 00005170 co005 180 00005190 00005200 00005200 00005210 00005220 0 000.5230 00005240 00005250 00005260 00005270 00005280 00005290 00005300 00005310 con05320 00005330 00005340 00005350 00005360 00005370 00005370 00005380 00005390 00005400 00005410 00005420 00005430 00005440 00005450 00005460 00005470 00005480 00005490 00005500 00005510 00005520 00005530 00005540 00005550 00005550 00005560 00055570 00005580 00005590 00005600 00005610

.TIME (UJ)/DPER+PHI)-((6.283/DPER)**2)*GLMASS (NEQ, 3)*THETA*

 . SIN(6.283*TIME (JJ)/DPER+PHI)FORCE (NEQ-1) =FGRCE (NEQ-1)-GI-TUST (NEQ-1, 3)*AMP*SIN(6.283*TIME (JU) DPER+PHI) +GLTOST (NEQ-1,4)*THETA*SIN(6.293*TIME (U.J)/DPER+PHI)
$-(6.283 / D P E R) * G L D A M P(N E Q-1,3) * A M P * \operatorname{COS}(6.283 * T I M E(J,) / D P E R$
. PH) $+(6.283 / D P E R)$ *GLDAMP (NEQ-1,4)*THETA*COS ($6.283 * T I M E$ (UJ)
/ DPER+PHI) + ((©. 283/DPER)**2)*GLMASS(NEQ-1,3)*AMP*STN(6.283*
.TIME (JU)/DPER+PHI)-((6.283/DPER)**2)*GLMASS(NEQ-1,4)*THETA* .SIN(6.283*TIME(JU)/DPER+PHI)

RETURN

END

SUBROUTINE NEWMAR

COMMON /C1/ DENSI, DENS, AREAI, AREAO, ELEN(50), NDOF , GRAV, YMOD, 1 INERT. TENS, LENGTH(50), DENSO, NJMEL, NP (2,50), LL (4), NUMNP
$2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIMF}(30)$
$3, \operatorname{GLGEST}(50,6)$, NUMB, MBAND, ID $(2,50), \operatorname{NEQ}, \operatorname{NNPE}, \operatorname{AMASSC}, \operatorname{GLTOST}(50,6)$
COMMON /C2/SH1(10), SH2 (10), SH3(10), SH4 (10), ZHI (5), WGT(5), AMP, DPER COMMON /C3/ NINT, ITER,DIS(50, 3C), SURFV, WAVEL, WHGT, PERIOD, VCUR(50) 1, VCW (20), DELT, GLDAMP (50.6), CMAT (4.4), Z(20), IDEPTH, FUNC (50, 30), DIAI 2,DIAO, VEL (50), DRA, PMAT $(4,4), \operatorname{GLGEOS}(50,6)$, FORCE (50), VWAVE (50), THETA

DIMENSION A(50,6),B(50,1), XOLD(50), XNEW(50), VXOLD(50), VXNEW(50) 1 , AXNEW(50), AXOLD(50), TEMP (50)
$N C=3$

> DO $10 \mathrm{I}=1$, NEQ $\times O L D(I)=0.0$ $V \times O L D(I)=0.0$ AXOLD $(I)=0.0$ XNEW I I $=0.0$ $V X N E W(I)=0.0$ AXNEW $(I)=0.0$ $B(I, I)=0.0$

CONTJNUE

DO $200 \mathrm{JJ}=2$, ITER
DO $123 \mathrm{LK}=1$, NEQ
TEMP(LK) $=\operatorname{VXOLD}(L K)+$ DELT*AXOLD(LK)

00005620 00\%05630 00005640 00005650 00005660 000056670 00005670 0cco5630 coco5690 00005700 06005710 00005720
00005730 00005730 00005740 00005750 $00 c 05760$ C0005770 00005780 00005790 00005800 06005810 00005820 00005830 00005840 00005840 00005850 00005860 00005870 00005880 00005890 00005900 00005910 00005920 00005930 00005940 00005950 00005960 00005970 00005980 00005990 00006990 000065010 00065010 00006020
00006030
00006040
00006050
00006060
00006070 c0006080 00006090 00006100
00006110
00006120

$$
\text { ALFA }=0.25
$$

$$
\begin{aligned}
& \text { DELTA }=0.5 \\
& A O=1.0 \% \text { (ALFA } * \text { DELT } * * 2)
\end{aligned}
$$

$$
\begin{aligned}
& A O=1 . O / \text { ALFA * DELT ** } \\
& A 1=\text { DELTA / (ALFA * DEI.T) }
\end{aligned}
$$

$$
A 2=1 . O /(A L F A * D E L T)
$$

$$
A 3=(0.5 / A L F A)-1.0
$$

$$
A 4=(D E L T A / A L F A)-1.0
$$

$$
A 5=D E L T *((D E L T A / A L F A)-2.0) * 0.5
$$

$$
A 6=D E L T *(1.0-D E L T A)
$$

$$
A 7=D E L T A * D E L T
$$

CALL DAMP (JJ,TEMP)
DO $420 \mathrm{I}=1$, NEQ
B(I, 1) =FORCE (I
KBAND $=2$ * NC +
DO $420 \mathrm{~J}=1$, KBAND
$\mathrm{JN}=\mathrm{J}+\mathrm{I}-\mathrm{NC}-1$
IF (UN.LE.O.OR.UN.GT.NEQ) GO TO 420
IF (J.LE.NC) GO TO 421
$J M=J-N C$
$B(I, 1)=B(I, 1)+G L M A S S$
$(I, J M) *(A C * \operatorname{XOLD}(J N)+A 2 * V X O L D(U N)+A 3 * A X O L D(U N)$
*+ GLDAMP $(I, J M) *(A 1 * X O L D(U N)+A 4 * V X O L D(U N)+A 5 * A X O i-D(J N))$
GO TO 420

$$
J M=I-J N+1
$$

$B(I, 1)=B(I, 1)+G L M A S S(J N, J M) *(A O * X O L D(U N)+A 2 * V X O L D(U N)+A 3 * A X O L D(U N)$
) + GLDAMP (UN,UM) (A1*XOLD (UN) + A4*VXOLD(UN) + A5*AXCLD(UN))
CONTINUE
DO $425 \mathrm{I}=1, \mathrm{NEQ}$
DO $435 \mathrm{~J}=1$. MBAN
DO $435 \mathrm{~J}=1$, MBAND
$A(I, J)=\operatorname{GLTOST}(I, J)+A O * G L M A S S(I, J)+A 1 * G L D A M P(I, J)$
CONTINUE
CONTINUE
CALL DECOM (A,B,JJ)
CALL SOLBAN(A,B,JJ)
DO $430 \mathrm{I}=1$. NEQ
XNEW(I) = DIS (I, UJ)
AXNEW(I)=AO*(XNEW(I)-XOLD(I)) - A2*VXOLD(I) - A3*AXOLD(I)
$\operatorname{VXNEW}(I)=V X O L D(I)+A 6 * A X O L D(I)+A 7 * A X N E W(I)$
$\operatorname{TEMP}(I)=V X N E W(I)$
430
C
C
CALL DAMP (JJ,TEMP)
C
C
DO $422 \mathrm{I}=1$, NEQ
B(I, 1)=FORCE (I
KBAND $=22^{*} N C+1$
DO $422 \mathrm{~J}=1$. KBAND

00006130 00006140 00006150 00006 igo 00006160 00006170 00006180 CCOOG 190 00006200 00006210
00006220 00006220
00006230 00006230
00006240 $00 C 06240$
00006250 00006250 00006260 00006270 00006280 00006290 00006300 00006310 00006320 00006330 00006340 00006340 00006350 00006360 00006370 00006380 00006390 00006400 00006410 00006420 00006430 00006440 00006450 00006460 00006470 00006430 00006490 00006490 00006500 00006510 00006520 00006530 00006540 00006550 00006560 00006570 00006580 00006590 00006600 00006610 00006620 00006630

```
    JN=J+I-NC-1
    IF (UN.LE.O.OR.UN.GT.NEQ) GO TO 422
    IF (U.LE.NC) GO TO 423
    JM = J - NC
    B(I,1)=B(I, 1)+GLMASS(I,JM)*(AO*XOLD(JN)+A2*VXOLD(JN)+A3*AXOLD(JN))
    +. GLDAMP(I,UM)*(A1*XOLD(UN) + A4*VXOLD)(UN) + A5*AXOLD(JN))
    GO TO 422
    DIS(NEQ+1,JJ) = AMP * SIN(6.283*TIME(JJ)/DPER+PHI)
        CONTINUE
C
        RETURN
        END
C
C
C
    B(I,1)=B(I, 1)+GLMASS(JN,UM)*(AO*XOLD(UN)+A2*VXOLD(UN)+A3*AXO!DD(UN)
    *)+GLDAMP(JN,JM)*(A1*XOLD(JN) + A4*VXOLD(JN) + 45*AXOLD(UN)
    CONTINUE
    DO 445 I = NEO
    DO 455 J = 1 MEAN
    A(I,J)= GLTOST(I,J) + AO*GLMASS(I,J) + A1*GI_DAMP(I,J)
    CONTINUE
    CONTINUE
    CALL DECOM(A,B,UJ)
    CALL SOLBAN(A,B,JJ)
    DO 432 I=1,NEQ
    XNEW(I)=DIS(I,JU
    AXNEW(I)=AO*(XNEW(I)-XOLD(I)) - A2*VXOLD(I) - A3*AXOLD(I)
    VXNEW(I)=VXOLD(I) + A6*AXOLD(I) + A7*AXNEW(I)
    DO 470 I=1,NEQ
    DIS(I UJ) = XOLD(I)
    VXOLD(I) = VXNEW(I)
    AXOLD(I)=AXNEW(I
PHI =0.0
```


RETURN

``` END
SUBROUTINE DECOM(A,B,JJ)
COMMON /C1/ DENSI, DENS, AREAI, AREAU, ELEN(50), NDOF, GRAV, YMOD, 1 INERT, TENS, LENGTH (50), DENSU, NUMEL, NP ( 2,50 ), LL (4), NUMPSP .
\(2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIME}(30)\) 2STMAT 4,4\(),\) EMAT \((4,4)\),GSMAT \((4,4)\), GLMASS ( 50,6 ), GLSTIF 50,6\(), T 1\) ME
COMMON/C2/SH1(10),SH2(10), SH3(10),SH4(10), ZHI (5). WGT (5), AMP, DPER COMMON /C3/ NINT, ITER,DIS(50,30), SURFV, WAVEL, WHGT, PERIOD, VCUR(50) 1, VCW (20), DELT , GLDAMP \((50,6)\), CMAT \((4,4), Z(20), \operatorname{IDEPTH}\), FUNC \((50,30)\), , IIAI 2 , DIAO, VEL(50), DRA, PMAT (4,4), GLGEOS \((50,6)\). FORCE (50), VWAVE (50), THETA
```

00006640
00006650 00006660 00006670 00006680 00006690 00006700 00006710
00006720 00006720 00006730 00006740 COON6750
00006760
00006770
00006780
00006790
00006800
00006810 00006320 00006830 00006840
00006850
00006860
00006870
00006880
00006290
00006900 00006900 00006910 00006920 00006330 00006940 00006950
00006960
00006970 00006980 00006990 00007000 00007010 00007020 00007030 00007040 00007050 0007050 00007060 00007070 00007080 00007090 00007100 00007110 00007120 00007130 00007140
1 , AXNEW(50), AXOLD(50)
NP $1=$ NEQ -1
DO $226 \mathrm{I}=1$, NP 1
DO $226 I=1, N P 1$
$M J=I+M B A N D-1$
$M J=I+M B A N D-1$
$I F(M J . G T . N E Q) M J=N E Q$
IF (MJ.GT. NE
$\mathrm{NJ}=\mathrm{I}+1$
$\mathrm{NJ}=\mathrm{I}+1$
MK $=$ MBAND
MK $=$ MBAND
$I F((N E Q-I+1)$
$\operatorname{IF}((N E Q-I+1) \cdot L T \cdot M B A N D) \operatorname{MK}=N E Q-I+1$
$\mathrm{ND}=0$
DO $224 \mathrm{~J}=\mathrm{NJ}, \mathrm{MJ}$
MK = MK - 1
$N D=N D+$
$N L=N D+1$
DO $224 \mathrm{~K}=1$, MK
$N K=N D+K$
$A(J, K)=A(J, K)-A(I, N L) * A(I, N K) / A(I, 1)$
CONT INUE
$\stackrel{c}{c}$
RETURN
END
C
C
C

COMMON /C1/ DENSI, DENS, AREAI, AREAO, ELEN(50) , NDOF, GRAV, YMOD , 1 INERT, TENS, LENGTH (50), DENSO, NUMEL, NP (2,50), LL (4), NUMNP,
$2 \operatorname{STMAT}(4,4), \operatorname{EMAT}(4,4), \operatorname{GSMAT}(4,4), \operatorname{GLMASS}(50,6), \operatorname{GLSTIF}(50,6), \operatorname{TIME}(30)$
3, GLGEST $(50,6)$, NUMB, MBAND, ID $(2,50)$, NEQ, NNPE, AMASSC, GLTOST $(50,6)$
COMMON /C2/SH1(10), SH2 (10), SH3(10), SH4(10), ZHI (5), WGT(5), AMP, DPER COMMON /C3/ NINT, ITER,DIS (50,30), SURFV, WAVEL, WHGT, PERIOD, VCUR(5C) 1. VCW (20), DELT, GLDAMP (50,6), CMAT (4,4), Z (20), IDEPTH, FUNC(50, 30), DIAI 2, DIAD, VEL (50), DRA, PMAT (4, 4), GL.GEOS (50,6), FORCE (50), VWAVE (50), THETA
DIMENSION A(50,6), B(50, 1), XOLD(50), XNEW(50), VXOLD(50), VXNEW(50)
1 , AXNEW(50), AXOLD(50)

$$
N P_{1}=N E Q-1
$$

C
C
C
C
C
C
C

```
DO \(250 \mathrm{I}=\mathrm{i}, \mathrm{NP} 1\)
\(M J=1+\) MBAND - 1
\(\operatorname{IF}(M J . G T . N E Q) M J=N E Q\)
\(N J=I+1\)
\(L=1\)
DO \(250 \mathrm{~J}=\mathrm{NJ}, \mathrm{MJ}\)
```

00007150 00057160 00007:70 $00007: 70$
00007180 00007180
00007190 00007190 00007200 00007210 00057220 00007230 00007240 00007250 06007260 00007270 00007280 00007290 00007300 00007310 0000732.0 00007330 00007340 0007340 00007350 00007360 00007370
00007380 00007380 00007390 00007400 00007410 00007420 00007430 00007440 00007450 00007460 00007470 00007480 00007490 00007500 00007510 00007520 00007520 00007530 00007540 00007550 00007560
00007570 00007570
00007580 00007580 00007590 00007600 00007610 00007620 00007630 00007640 00007650

```
L=L+1
250
C
B(J,1)=B(J,1)-A(I,L)*B(I,i)/A(I,i)
    DIS(NEQ,JU)=B(NEQ,1)/A(NEQ,1)
    DO 253 K = 1,NF1
    I = NEQ - K
    MJ (( MBAND - MBAND-1).GT.NEQ) MAJ = NEQ-I+
    Sum = 0.0
    DO 251 J = 2,M
    N=I+J-1
SUM = SUM + A(I,N)*DIS(N,JJ)
253 DIS(I,JU)=(B(I,1)-SUM)/A(1,1)
C
RETURN
END
```

00007660
00007670
00007630
00007690
00007700
00007710
00007720
00007730
00007740
00007750
00007760
00007770
0000777 C
00007780
00007790
00007800
00007810
00007820 00007830 00007840

APPENDIX C

SAMPLE RESULTS

DENSI	=	0.14380E	04	NNPE	=	2	DRA	=	1.138	WHGT	=	6.090	YMOD	$=0.2100000 \mathrm{E}$	12
DENS	$=$	0.86900 E	04	Numel	$=$	15	AMASSC	=	1.500	AMP	=	2.000	tens	$=0.1072000 \mathrm{E}$	07
denso	=	0.10250E	04	mband	$=$	4	SURFV	=	1.028	theta	=	0.100	GRav	$=0.9810000 \mathrm{E}$	01
dial	$=$	0.38100 F	00	NDCF	$=$	4	WAVEL	=	100.000	DPER	$=$	20.000	DELT	1.000	
DIAO	$=$	$0.40640 E$	00	NUMNP	$=$	16	PERIOD	$=$	20.000	LENGTH	$=$	400.000	ITER	$=21$	

TIME $=0.00$ SECS.

NODE	DISPLACEMENT		ROTATION		ELEMENT	MOMENT		SHEAR		
1	0.000000 E	00	0.000000 E	00	1	-0.000000E		0.000000E		
2	0.000000 E	00	0.000000 E	00	2	-0.000000E	00	0.000000E		
3	O.COOOODE	00	0.000000 E	00	3	-0.000000E	00	O.OOOOOOE		
4	0.000000E	00	0.000000 E	00	4	-0.000000E	00	0.0000005		
5	0.000000 E	00	0.000000 E	00	5	-0.000000E		0.000000E		
							00			
6	0.000000 E	00	0.000000 E	00	6	-0.000000E		0.000000E		
							00			
7	0.000000 E	00	0.000000E	00	7					
						-0.000000E	00	0.000000 E		
8	0.000000E	00	0.000000E	00	8					
						-0.000000E	00	O.OOOOOOE		
9	0.000000 E	00	0.000000 E	00	9					
						-0.00C000E	00	O.OOOOOOE		
10	0.000000 E	00	0.000000 E	00						
					10	-0.000000E	00	0.000000 E	00	
11	0.000000E	00	0.000000 E	00						
					11	-0.000000E	00	$0.000000 E$	00	
12	0.000000 E	00	0.COOOOCE	00						
					12	-0.000000E	00	0.000000 E	00	
13	O. OOOOOOE	00	0.C00COOE	00						
					13	-0.000000E OO		O.ODOOOOE	00	
14	O.ODOOOOE	00	0.000000 E	00						
					14	-0.000000E		0.000000 E	co	
15	O.OOOOOOE	00	0.000000E	00						
					15	-0.000000E	00	0.000000 E 00		
16	0.000000E	00	0.000000 E	00						

NODE	DISPLACEMENT	Rotation	element	MOMENT	SHEAR
1	0.000000500	0.352095E-08			-0.280220E-01
2	0.742309E-06	0.104050E-06			
			2	-0.247854E 01	-O.199030E OO
3	0.123598E-04	0.113609E-05	3	-0.750555E 01	0.611397E-01
4	0.860253E-04	$0.426838 \mathrm{E}-05$	4	-O. 119532 E	- 132322E 01
5	0.298746E-03	0.924749E-05			-
			5	-0.135013E 02	O.292584E 01
6	0.692263E-03	0.148714E-04	6	-O.130236E 02	0.445843 E 01
7	0. 1269 16E-O2	0.202862E-04	7	-0.136663E 02	0.580526 E 01
8	0.2032 16E-02	0.259960E-04	8	-0.137569E 02	O.715495e 01
9	0.297873E-02	0.317307E-04	9	-0.143276E 02	$0.845245 E 01$
10	0.410945E-02	0.376876E-04	10	-0.343404E 02	0.802422 E O1
11	0.550599E-C2	0.520190E-O4	11	-0.180038E 03	-0.329953E 01
12	0.781260E-O2	O. 127070E-O3	12	-0.120562E 04	-0.851863E 02
13	0.157827E-01	0.628887E-03	13	-0.727795E 04	-0.519867E 03
14	0.602336E-01	0. 36562 1E-02	14	-0.290940e O5	-0.114539E 04
15	0.291817E 00	0.158080E-01	15	0.111923E 06	0.212843E 05
16	0.618016E 00	-0.309008E-01			

TIME $=2.00$ SECS .

NODE	DISPLACEMENT	Rotation	ELEMENT	MOMENT	SHEAR
1	0.000000e 00	0.264075E-06			
2	O. 154380E-04	0.145846E-05	1	-0.286626E 01	-O 304821E 00
	- 154380 - ${ }^{\text {a }}$		2	-0. 171946 E 02	-O. 105193 E 01
3	0.123754E-03	0.861816E-05	3	-0.443214E 02	-O. 126865 E O
4	0.569336E-03	0.271148E-04			
			4	-0.683307E 02	0.201752 EO
5	0.167619E-O2	0.555778E-04	5	-0.773445E 02	0.215715 Co
6	0.363982E-02	0.877955E-04			
7	0.649239E-02	O.119843E-O3	6	-0.770800E O2	O.371137E 01
			7	-0.778003E 02	0.485608501
8	O. 102510E-01	0.152348E-03	8	-0.838137E 02	0.547169 Cl
9	0.149152E-01	O. 187286E--O3			
10	0.206972E-01	0.243534E-03		-. 135288	
			10	-0.488179E 03	-0.241882E 02
11	O. $293198 \mathrm{E}-01$	O.447267E-O3	11	-0.236721E 04	-O.155000E O3
12	0.505773E-01	0.143406E-02	12	-0. 101748E 05	-0.608402E 03
13	O.130191E OC	0.566918E-02			
14	O.419382E 00	O.181221E-O:			
			14	-O.17548!E C5	0.2.77313E O4
15	O.106976E OI	0.254454E-01	15	O.201813E 06	0.222148E 05
16	O.117554E 01	-0.587770E-01			

TIME $=3.00$ SECS.

NODE	DISPLACEMENT	ROTATION	ELEMENT	MOMENT	SHEAR
1	0.000000 O	0.314652E-O5	1	-G.135033E 02	-0.143440E 01
2	0.123489E-03	0.877338E-05	2	-0.563335E O2	-0.264287E O1
3	0.504574E-03	0.322302E-04	3	-0.116516E 03	-0.331770E 01
4	0.203201E-02	$0.808556 \mathrm{E}-\mathrm{C4}$	4	-0.169154E O3	-0.206746E 01
5	0.507473E-02	0.151316E-03	5	-O 193547E	-0.108973E 00
6	0.101789E-01	0.231938E-03	6	-0. 198942 E	O. 118859 O
7	O. 174777E-01	0.314651E.03	7	-0.209835E O3	0.827836 E 00
8	0.270806E-01	0.40232CE-03	8		-0.64G567E 01
				-0.307677E 03	
9	0.393610E-O1	0.530578E-03	9	-0.873867E 03	-0.469953E O2
10	$0.571545 E-01$	$0.893903 E-03$	10	-0.342009E	-0.208436E 03
11	$0.949088 \mathrm{E}-01$	0.232 :21E-02	11	-0.119494E 05	-0.634894E O3
12	0.207552 EO	0.730245E-02	12	-0.284899E	-0.943483E 03
13	0.536703 O 0	$0.191609 E-01$	13	-0.242537E	0.103977E O4
14	C. 120921 El	0.292828E-01	¢4	0.408498E C5	0.268C29E O4
15	0.182992E O1	0. 122350E-01	15	0.223169 E 66	0.284263 E O5
16	0.16i8OOE 01	-0.809001E-01			

TIME $=4.00 \mathrm{SECS}$.

NODE	displacement	rotation	element	MOMENT	SHEAR
1	0.ODOOOOE OD	0.182462E-O4	1	-0.342042E 02	-0.417893E 01
2	- 573295E-03	0.324992E-04			
	-.57329	0.324902E-04	2	-0.126602E O3	-0.494376E 01
3	O.201951E-O2	0.852153E-04		-0.218917E 03	-0.565654E 01
4	0.537418E-02.	0.176576E-O3	3		
5	O.116202E-01	$0.300360 \mathrm{E}-03$	4	-0.297166E 03	-0.442857E O1
			5	-0.343878E 03	-C.257162E 01
6	O.214700E-O1	0.443602E-03			
7	0.353035E-01	$0.601589 \mathrm{E}-03$	6	-0.a79992E 03	-O.275797E Ot
			7	-0.523949E O3	-0.131661E 02
8	0.53982 1E-01	$0.820 .495 \mathrm{E}-03$			
9	$0.815958 \mathrm{E}-01$	0.135586E-02	8	-0.123427E 04	-C.650746E 02
			9	-0.432223E 04	-0.244159E 03
10	O.135377E 00	0.315230E-02			
11	0.276517E 00	0.859354E-02	10	-0.13036TE 05	-0.632237E 03
			¢ 1	-0.270341E 05	-0 781786E 03
12	$0.636666 E 00$	0.198629E-01			
13	O.130676E 01	0.289725E-01	12	-0.218857E 05	0.807113 E O3
			13	0.286853 E 05	C. 219644 E
		0.170012. 01	14	0.213059 E 05	-0.5782825 03
15	0.229586E 01	0.810966E-02			
16	O.190209E 01	-0.951045E-O1	15	0.247321E O6	0.30961 JE 05

time $=5.00$ Secs.

NODE	displacement	rotation	element	MOMENT	SHEAR
1	0.0000coe 00	0.673302E-04			
			1	-0.513380E 02	-0.908747E 01
2	0.185901E-02	0.889563E-04			
3	0.525550E-O2	0.180298E-03		-0.210364E	- 7 \%
			3	-0.344417E 03	-0.320295E 01
	- 117849E-01	-.324033- ${ }^{\text {a }}$	4	-0.446516E 03	-0.778519E 01
5	0.227069E-01	0.510029E-03			
6	0.390650E-01		5	-0.538082E 03	-0.895474E 01
		0.734166E-03	6	-0.758278E C3	-0.221776E 02
7	0.622432E-O1	0.104943E-()2			
8	0.976190E-OI	0.1750135-02	7	-0.167712E 04	-0.820206E 02
		-	8	-0.502996E 04	-0.268860E O3
9	O. 155612 E O	0.384693E-02			
10	c. 328434E 00	$0.953898 \mathrm{E}-02$	9	-0.136905E 05	-- 620486E 03
			10	-0.256064E O5	-0.6¢8702E 03
11	0.7092 IOE OO	0.202253E-01			
12	O.137400E O1	0.2831655-01	14	-O.194098E 05	0.707822 E 03
			12	0.239722 E CS	O. 199870e O4
13	O.204437E O1	0.183384E-O1			
14	0.236899501	0.891735E--02		0.225746	- 1 (58312E
15	O.258432E 01		14	O. 176450 E O5	O.304714E O4
			15	0.243341 E 06	0.294424 E O5
16	0.200000E O1	-0.100000E OO			

VITA ${ }^{\prime}$
 VASAN LAXMINARASIMHAN
 Candidate for the Degree of
 Master of Science

Thesis: DYNAMIC ANALYSIS OF A MARINE RISER SYSTEM
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Pasur, Tamil Nadu, India, June 28, 1955, the son of Mr . and Mrs. V. L. Narasimhan.

Education: Graduated from St. John's Church High School, Secunderabad, India, in May, 1971; two year intermediate from Railway Jr. College, Secunderabad, India, in May, 1973; received Bachelor of Engineering degree in Mechanical Engineering from Osmania University, in 1978; completed requirements for the Master of Science degree at Oklahoma State University in July, 1983.

Professional Experience: Worked as Design Engineer for Unicorn Industries, Secunderabad, India, June 1978 to November 1980; Production Supervisor, Bharat Dynamics Ltd., Hyderabad, India, December 1980 to July 1980.

