
FINITE ELEMENT ANALYSIS OF THE ACOUSTIC FIELD 

IN AN AXISYMMETRIC DUCT WITH FLOW USING 

THE CONVECTED WAVE EQUATION 

By 

YOUNG WUK KWON 
,r;_ 

Bachelor of Science in Engineering 

Seoul National University 

Seoul, Korea 

1981 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in pa rti a 1 fulfililment of the requirements 
for the Degree of 
MASTER OF SCIENCE 

May, 1983 



Th\::,s is 

/q'8°!) 

1<99. ~ 

to p.l ).. 



FINITE ELEMENT ANALYSIS OF THE ACOUSTIC FIELD 

IN AN AXISYMMETRIC DUCT WITH FLOW USING 

THE CONVECTED WAVE EQUATION 

Thesis Approved: 

Dean of Graduate College 

i i 

1153234 ' 



ACKNOWLEDGMENTS 

I owed the successful completion of this degree to many people. I 

would like to appreciate to Dr. Cline T. Young his friendly suggestions 

and encouragement, to Dr. J. K. Good and Dr. Richard L. Lowery their 

understanding. In particular, I would like to express my deep appre­

ciation to Dr. James J. Allen, my thesis adviser, for his patient advise, 

wise guidance and encouragement during my graduate study. 

I am also grateful to Soon Man Han for her assistance in preparing 

the manuscript. 

I am indebted to my parents, Mr. and Mrs. Jong Ho Kwon, who gave 

me the opportunity for a higher education. I also wish to express very 

special thanks to my wife, Soon Ja, for her constant patience, encour­

agement, and sacrifice which made my graduate study successful. I would 

once again like to thank everybody who helped me to· finish this degree 

successfully. 

iii 



Chapter 

I. 

TABLE OF CONTENTS 

INTRODUCTION 

Background . . . . 
Literature Survey 
Acoustic Cornain Equations . 
Objective ....... . 

Page 

1 
2 
4 
7 

I I. DEVELOPMENT OF GALERKIN FINITE EL Erl ENT METHOD. 9 

Galerkin Finite Element Formulation 
Field Inside Circular Ducts ... 

Isoparametric Element and Numerical 
Isoparametric Element .... . 
Numerical Integration .... . 

for Acoustic 

Integration 
9 

15 
15 
17 

III. APPLICATION OF ACOUSTIC-FLOW FINITE ELEMENT. . 19 

Acoustic Field in Circular Straight Ducts With 
No Fl ow . . . . . • . . . . . . . . . . . 20 

Sound Field in Varying Cross-Section Ducts. 26 
Sound Field in Circular Straight Ducts With 

Uniform Flow. . . . . . . . . . . . . . . 30 
Sound Field in Circular Straight Ducts With 

Constant Gradient Flow. . . . . . . . . . . 33 
Sound Propagation Inside Circular Converging-

Diverging Duct With Two Dimensional Flow. 38 

IV. CONCLUSIONS AND RECOMMENDATIONS. 48 

50 BIBLIOGRAPHY 

APPENDIX A - BOUNDARY CONDITION 53 

APPENDIX B - ANALYTIC SOLUTION FOR A STRAIGHT DUCT ACOUSTIC 
PROBLEM WITH UNIFORM FLOW . . . . . . . . . . 54 

iv 



LIST OF FIGURES 

Figure 

1. Idealization of Acoustic System 

2. System Domain ..... . 

3. Two-dimensional Quadratic Isoparametric Element 

Page 

8 

11 

and its Mapping ...................... 16 

4. Convergence of Quadratic Isoparametric Element 
Solution to Acoustic Problem With No Airflow ....... 21 

5. Comparison Between Finite Element Solution and 
Analytic Solutions With No Airflow .....•...... 22 

6. Acoustic Pressure Distribution Across Duct During 
Plane Wave Propagation ........... . 

7. Characteristic of Cut-off Frequency for ~ode (1,0). 

8. Sound Field in a Bottle-like Duct (ka=l.95) 

9. Finite Element Mesh for a Bottle-like Duct 

10. Convergence of Quadratic Isoparametric Element 
Solution to Acoustic Problem With Airflow 

24 

27 

28 

... 29 

of M=0.5 ......................... 31 

11. Convergence of Quadratic Isoparametric Element 
Solution to Acoustic Problem ~Jith Airflow of 
M=-0.5 .......................... 32 

12. Comparison Between Finite Element and Analytic 
Solutions for M=0.5 .................... 34 

13. Comparison Between Finite Element and Analytic 
Solutions for M=-0.5 . . . . . . 35 

14. Constant Gradient Velocity Inside a Duct . . 36 

15. Acoustic Pressure Distributions Across Duct 
With Different Lengths . . . . . . . . . . ..... 37 

16. Two Mode Shapes for Pressure Distribution Across 
a Duct Containing Shear Flow ............... 39 

v 



Figure · 

17. Acoustic Pressure Di stri bu ti on 1-\cross Duct for 
Different Velocities of Airflow and Same Frequency. 

18. Finite Element Mesh for Convergent-Divergent Duct . 

Page 

40 

41 

19. Acoustic Pressure Field Inside Converging-Diverging 
· Duct With and Without Airflow (ka=2.2) ........... 43 

20. 

21. 

22. 

Acoustic Pressure Field Inside Converging-Diverging 
Duct With and Without A.irflow (ka=0.73) ..... 

Acoustic Pressure Profile Across Converging-Diverging 
Duct With no Airflow ............. . 

Velocity Distribution Inside a Converging-Diverging 
Duct ..................... . 

vi 

44 

45 

46 



a 

A 

c 

Cm 

Jm 

JI (*) 
m 

k 

m,n 

M 

n 

Ni 

p 

Sw, Si 

t 

u 

u 

NOMENCLATURE 

Radius of a circu1ar duct 

- Area 

- Sound speed 

- Conformabi1ity of order m 

- The first kind of Besse1 function of order m 

- The first orderdderivative of Jm with respect to * 

Loading wave number, w/c 

- Cut-off wave number of a duct 

Boundary 1 i ne 

- Mode indices 

- Mach number, U/c 

Outer normal direction of a boundary surface 

- Shape function 

- Acoustic pressure 

- Acoustic pressure at the center 1ine of a duct 

- Acoustic pressure at the ith noda1 point 

Input acoustic pressure given at the input boundary 

- Mean pressure 

Residua1 

Boundary surfaces of a duct 

- Time 

Particle ve1ocity in an axial direction 

- Mean fluid ve1ocity in an axial direction 

vii 



v 

v 
v 
w 

\<Ji 

r, e ' 
X, e' 
z 

Cl 

p ,p 

w 

v2 

L J 

z 

y 

Particle velocity in a radial direction 

- Mean fluid velocity in a radial direction 

Volume of system 

Particle velocity in a circumferential direction 

- Weight function 

- A set of cyclindrical coordinate 

- Other set of cyclindrical coordinate 

Normal specific acoustic impedq.nce 

Direction cosine of wave propagation with respect 

to an axial direction 

Specific density of the fluid medium 

- Angular frequency 

- Laplacian operator 

Row matrix 

viii 



CHAPTER I 

INTRODUCTION 

Background 

In order to give a person a better environ~ent, the acoustic envir­

onment needs to be controlled. A frequently encountered situation is 

acoustic propagation in ducts. Thus, duct acoustic problems are often 

encountered to control noise, for example, in ventilation ducts, muf­

flers of passenger cars, and nuclear reactors. Most duct acoustic pro­

blems involve fluid flow inside a duct. Many parameters, however, such 

as fluid flow in a duct, complex geometry of a duct and sound radiation 

from the open end of a duct make duct acoustic problems complicated. 

Consequently it is hard to obtain the analytic solutions for such com­

plicated problems so that many different solution techniques such as 

approximate methods, finite difference method, and finite element method 

have been developed. 

The approximate method usually involves very limiting assumptions 

which restrict its usefulness. The finite difference method gives good 

numerical results but it is difficult to be applied to complex geometry 

of ducts. Thus, the finite element analysis will be adopted in this 

paper. 



2 

Literature Survey 

During past decades many researchers have worked on duct acoustic 

problems. They used analytic methods, numerical methods or both of them 

to solve the problems. First of all, the analytic results will be re­

viewed and later the numerical results will be reviewed. 

The acoustic problem not including fluid flow was solved by ~~orse 

[l]. He developed the theory about sound attenuation in a duct with no 

flow. After that, Lansing and Zorumski [2] also dealt with the duct of 

uniform area with lining variations but no flow, and Cho and Ingard [3] 

studied higher order mode propagation in a nonuniform circular duct 

without mean flow. They derived an approximate wave equation on the 

assumptions that the duct has very slow change of cross-section and 

given mode continues through the duct without mode change. They used 

"Circular Cash Duct" to develope their theory. 

The acoustic problem including fluid flow was worked on by Eversman 

and Astley [4,5]. They studied the acoustic problem in a non-uniform 

duct with flow, and they considered a high speed subsonic compressible 

flow inside a duct. They also used two methods to attack this problem; 

the method of weighted residuals and the finite element method. The 

comparison between the results obtained using two methods was also given 

in those papers and two results were in good agreement. The plane wave 

in ducts with one dimensional flow was also dealt by King and Karamcheti 

[6 J. 

Nayfeh [7] studied sound propagation through non-uniform ducts with 

and without flow. He reviewed the state of art concerning methods deal­

ing with non-uniform duct acoustic problems, and the reviewed methods 
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were purely numerical methods, quasi-one-dimensional approximations, 

solutions for slowly varying cross section, solutions for weak wall un­

dulations, approximation of the duct by a series of stepped uniform cross 

sections, variational methods and solutions for the mode envelops. 

Ca 11 egari and Myers [8] studied the propagation of sound inside a 

converging-diverging duct containing a quasi-one-dimensional steady flow 

with a high subsonic throat Mach number, and they concluded that the 

linearized acoustic theory at the throat of the duct was invalid. May­

feh, Shaker and Kaiser [9] developed an acoustic theory to determine the 

sound transmission and attenuation in a lined and non-uniform duct in­

cluding compressible, sheared, mean flow. They used the wave envelope 

technique to solve for the envelopes of the quasi-parallel acoustic 

modes that exist in the duct instead of solving for the actual wave. 

However, this technique was proved to be not suitable near cut-off fre­

quency. 

The analytical approaches mentioned above have many limitations in 

solving the acoustic problem. Hence, lots of numerical techniques have 

been developed. Among the numerical methods, the finite element method 

has become most popular because of its general and diverse applicability. 

The first attack to the acoustic problems using finite element technique 

was initiated by Gladwell [10] who used a one-dimensional element. 

Craggs [11] predicted the sound transmission loss from the engine com­

partment and the passenger space of a passenger car using three-dimen-

si ona l box elements. Abrahamson [12] determined the mathematical model 

used for obtaining optimum acoustic liners in aeroengine ducts using 

finite elements. He also developed an accurate mathematical model for 

sound propagation in axisymmetric aircraft engine ducts with compressible 
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mean flow and the model is based on the perturbation theory of fluid 

dynamics [ 13 ]. 

Baumeister et al. [14] used both finite element method and finite 

difference method for the study of sound propagation without flow in a 

rectangular duct with a converging-diverging area variation. They also 

performed experimental study for this problem. The results obtained 

using three different methods were in good agreement. Young [15] used 

finite element method to compute the sound attenuation performance of 

mufflers for internal ~ombustion engine, and he stressed the finite 

element method over other numerical approaches because the former could 

be applied to the muffler with completely general geometry and complex 

boundary conditions which included not only displacement but also pres­

ure boundary conditions. Baumeister [16] reviewed both finite element 

and finite difference methods for the sound propagation in straight and 

variable area ducts including flow. Sigman et al. [17] studied the 

acoustic properties of turbofan inlets containing high subsonic Mach 

number flow using finite element method and Galerkin 1 s method. Ling 

[18] also exploited two-dimensional isoparametric elements to solve 

several duct acoustic problems. 

Acoustic Domain Equations 

In order to solve the duct acoustic problem, the finite element 

analysis can be based on several different domain equations. The type 

of shape functions and required conformability depend on the domain 

equation to be used. 

Abrahamson [13] derived four governing equations for the linearized 

acoustic motion in a nonuniform axisymmetric duct using basic fluid 
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dynamic equations such as conservation of momentum, mass and energy 

equations and equation of state. The derived equations are 

wu + ( v + PV ) !!_ + V .!!_ + ( u+ PU ) ~ + U ~ + l f. = 0 ( 1 • 1 ) 
Poc2 r r Poc2 z z p0 z 

wV + ( V + fY_ ) }!_ + V y_ + ( u + PU ) 'j_ + U y_ + l f_ = 0 ( 1 . 2 ) 
poc2 r r poc2 z z po r 

ww + v ( aw + l w) + u aw + !!1p = o ( 1 . 3 ). 
ar r az r 

P (2.!!. + l'!.. + ~ + Y....) + .J: (l.Y.. + av + Y....) = 0 az ar r r c2 az ar r ( 1 . 4) 

To apply the finite element method to Equations (1.1) through (1 .4), 

four types of shape functions are needed for the variables u,v,w, and 

P. In addition, according to the confonnability condition the equation 

whose order is equal to 2m requires m-1 conformability. The notation 

Cm-1 is used to indicate m-1 conformability. Thus, Equations (1.1) 

through (1.4) require Co conformability because they are first order 

equations. Astley and Eversman [5] used the same equation as above but 

they neglected the velocity in Z-direction. 

Pridmore-Brown [19] combined all basic fluid dynamic equations into 

single equatton with the assumption of tranversly one-dimensional 

sheared flow. The derived equation is 

1 2p 2 2p 2 2 
2 q = ( 1 - M ) _a - + a p - 2M E._l_ + 2p c dM .£Y.... = 0 ( 1 . 5 ) 
c at ax2 ay2 c a.xat dy ax 

Savkar [20] deduced the same equation as Equation (1.5) but he adopted 
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the momentum equation for the last term of right hand side of Equation 

(1.5). The resultant equation is 

(1. 6) 

which requires c1 conformabi1ity. If velocity U is assumed to be con­

stant with respect toy, that is d/dy = O, then Equation (1.6) is trans­

formed into the convected wave equation 

(1. 7) 

Here the substantial derivative D/Dt is 

~t = d ~ + u d ~ ( 1. 8) 

with one-dimensional flow. Moreover, with an assumption that the pres-

sure is a time harmonic function such as 

P(t,x) = P 1 (x) e iwt ( 1. 9) 

Equation (1.7) is transformed into 

2 k2P _ . u ap u2 a2P v p + 21w ~ax -~ ;7 = 0 (l.10) 

This equation was used by Ling QB]. In this equation only one shape 

function for the unknown parameter, P, is needed and Co conformability 

is required to make the finite element solution converge as the element 

mesh becomes smaller and smaller. 

If two-dimensional flow is considered, the substantial derivative 

becomes 
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_D_ = ~ + U .L + v-l 
Dt at 3X 3.Y (1. 11) 

Therefore, using Equation (1.7) and (1.11), the conveted wave equation 

can be expressed as 

(1.12) 

The above equation also requires one shape function for P and Co con-

formability and this equation will be used throughout this paper. The 

significant assumption in deriving Equation (1.12) is that the mean 

velocity remains constant; however, when used in a finite element for-

mulation the velocity will vary from element to element. If a smaller 

element mesh is used in finite element analysis, the assumption will 

approximate a velocity varying throughout the system domain. 

Objective 

The objective of this thesis is to analyze the acoustic field in 

an axisymmetric duct with or without flow using the finite element me-

thod. This method will be applied to several example problems. First 

of all, the finite element method combined with the convected wave equa­

tion is applied to simple problems and each finite element solution is 

compared with the analytic solution or the experimental result to veri-

fy the accuracy of the finite element solution. 

Next, the finite element method combined with the convected wave 

equation is applied to the duct acoustic problem containing shear flow 
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in a duct to check if this method can be used to solve the problem in­

volving shear flow. As more complex example, the finite element method 

is applied to find the sound propagation in a converging-diverging duct 

with two-dimensional flow. 

Through this research an axisymmetric circular duct with hard wall 

is used, and the domain equation to be used can be rewritten as 

2 2 2 2U' ~p 2\t ~p 2UV ~ 2 P 
'V p + (k - ---;;Ym ) p - ; ~c ~x - i . a a c. c. 0 -;_'[ Cly - T ClXCly 

(1.13) 

The boundary conditions, which are derived in Appendix A, are 

i f + ~~ ~~ = aP 
pw z z ax z ay -"3rl on Sw (1.14) 

on Si (1.15) 

where f(x,y) is a given input boundary condition, and Sw and Si are 

shown in Figure 1. 

y 

1 CENTER LI NE 

l Sw/! ! I I 
~S· I l I Sw---i 
I I 

: ~Sw : I I 

>1111111111111111111111111111 1111111111111111111111111/ >X 
HARD WALL 

Fiaure 1. Idealization of Acoustic System 



CHAPTER II 

DEVELOPMENT OF GALERKIN FINITE ELEMENT METHOD 

Galerkin Finite Element Formulation For Acoustic 

Field Inside Circular Ducts 

As mentioned in the previous chapter, the domain equation 

2 2 2 2U P \/ p + (k - ~) p - i 2 .a.!._ -
Y c Clx 

(2. l) 

will be used to formulate the acoustic-flo\'1 problem in an axisymmetric 

duct. In addition, the Galerkin method will be adopted to formulate 

the finite element equation corresponding to Equation (2.1). 

Galerkin method is one of the weighted residual methods which in-

elude collocation, least squares, least square collocation, and moment 

methods. According to Cook [21] the methods differ in how the weight 

function Wi is defined, and the general procedure is to establish a ten­

tative group of solutions and decide the best solution of the group 

based on a given criterion. The criterion for weighted residual methods 

can be written as 

!v t~i R dV = o (2.2) 

where R is residual of the governing equation. 

9 
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In Galerkin's method, the shape function Ni can be used as the 

weight function Wi and then Equation (2.2) may be written as 

fv Ni R dV = O (2.3) 

Next, consider the finitely subdivided domain as shown in Figure 

2. On the finite subdomain the acoustic pressure P can be expressed as 
K 

p =L Ni Pi (2.4) 
i =l 

where K is the number of nodal points on the subdomain, Ve. Using a 

matrix notation, Equation (2.4) may be rewritten as 

(2.5) 

To obtain the residual Re on each subdomain Equation (2.5) is inserted 

into Equation (2.1). Then 

Re= (L\72NJ + (k2 _m2 )LNJ _ i2Uw l-2.liJ- i2Vw L.Q!.J 
Y2 c2 8X c2 8X 

( 2. 6) 

Equation (2.6) is a trial solution, so the best solution can be selected 

using the criterion Equation (2.3). Inserting Equation (2.6) into Equa­

tion (2.3) yields 
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Figure 2. System Domain 

The Green's theorem is applied to the first, sixth, seventh and 

eighth terms to reduce the order of Equation (2.7). The first term is 

transformed using the Green's theorem into the following form 

(2 .8) 

Here, to perform a surface integral of the first term in Equation 

(2.8) the boundary conditions must be introduced. Rewriting the boun­

dary conditions here yields 

. P + u aP + y_ ~ = aP 
, pw z z ax z ay - an 

~~ = f (x,y) on s. , 

(2.9) 

(2.10) 

where Swand Si are shown in Figure 1 and f(x,y) is a given input boundary 

condition, and the subscript o for P is omitted. Applying Equations 
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(2.9) and (2.10) to Equation (2.8) yields 

J. e {N} f(x ,y) dS - iwJs e f {N} LNJ dS{Pe} 
s, w 

(2.11) 

In a similar way, the sixth, seventh, and eighth terms of Equation 

(2.7) are transformed into the forms, respectively, 

(2.12) 

f u2 J u2 ~ ci N ..,. -s.e 2 {N} f(x,y) dS + s e 2 LnL3XJ (1x· n) dS{Pe} 
1 c w c 

(2.13) 

JS. e ~ {N}L~NJ (1 · n) dS{Pe} 
w c y y 

-J e i!_ {~} L .2!i j dV{Pe} v 2 av (ly c ~ ~ 

(2.14) 

Substituting Equations (2.11), (2.12), (2.13) and (2.14) for the 

first, sixth, seventh and eighth terms of Equation (2.7) and rearranging 

the result, we obtain the resultant equation 



where 

[Me] =f 1z- {N}LNJ dV 
Ve c 

[Cle] =fs e ~ {N} LNJ dS 
w 

[rue] =J pU {N} L~J dS 
S e Z 3X 
w 

[Ke] =fve {VN}LVNJ dV 

[Le] =f ve ~N}LMJ dV 
y 

Acoustic Inertia 

Boundary Impedance 
Damping 

Hori zonta 1 Fl ow 
!Jamping 

Vertical Flow 
Damping 

13 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Horizontal Flow Effect on 
Boundary Impedance (2.20) 

Vertical Flow Effect on 
Boundary Impedance (2.21) 

Acoustic Stiffness (2.22) 

Higher Mode Stiffness (2.23) 

[Ee] =fs e 2~V {N}LNJ (1 · n) dS 
w c y 

Coupled Flow Effect on 
Boundary Stiffness (2.24) 

[Fe] = ( e 2UV { 3N} I_£!! J dV 
j V -Z 3X - 3y c 

Coupled Flow Convection 
Stiffness (2.25) 

[Gie] =fs e ~ {N} L~~J (lx· n) dS 
w c Horizontal Flow Effect on 

Boundary Stiffness (2.26) 



[Qe] =Js. e ~ {N} f(x,y) dS 
l c 

Horizontal Flow 
Convection Stiffness 

14 

(2. 27) 

Vertical Flow Effect on 
Boundary Stiffness (2. 28 ) 

Vertical Flow Convection 
Stiffness (2.29) 

Particle Velocity 
Boundary Input (2.30) 

Convection Effect on 
Input (2.31) 

Neglecting the terms which contain the vertical velocity V, we will ob­

tain the same equation as was obtained by Ling [18]. 

If there is no flow in a duct, only five terms, [Me], [Cle], [Ke], 

[Le], and [Re] of sixteen terms will be left in Equation (2.15). If 

we also assume one-dimensional flow inside a duct, there will be ten 

terms left. 

As mentioned before, there has been an assumption in deriving 

Equation (2.15) that the velocity of an airflow in a finite element mesh 

is constant in each direction. Thus, the average value of the velocities 

in a mesh can be used in each direction. 

Equation (2.15) may be rewritten as 

(2.32) 

where [Te] and {Se} are the sums of all square matrices and column vec­

tors, respectively, in Equation (2.15). Assembling Equation (2.32) 

over whole elements yields 
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[T] {P} = {S} (2.33) 

where [T] and {S} mean the sums of all element square matrices and 

element column vectors, respectively. 

Equation (3.33) is the final equation to be solved in order to com­

pute the acoustic pressure {P} in a duct. This is a linear algebraic 

matrix equation, and several numerical solution methods can be utilized 

to obtain the acoustic pressure {P}. 

Isoparametric Element and Numerical Integration 

· Isoparametric Element 

Many different kinds of finite elements can be used in deriving 

the Galerkin finite element equation. However, the isoparametric ele­

ment is particulary suitable for the curved boundary element. There­

fore, we will adopt the isoparametric element for the formulation of 

finite element equation. 

The development of isoparametric elements is given in many Refer­

ences [21 ,22]. Baumeister [16] presented a summary of finite element 

configurations used in acoustic applications. In this thesis, two­

dimensional q~adratic isoparametric elements will be used as shown in 

Figure 3. 

The Serendipity shape functions for a two-dimensional quadratic 

isoparametric element are expressed as 

Nl = -(1-r)(l-s)(r+s+l)/4 (2.34) 

N2 = (1-r)(l+r)(l-s)/2 (2.35) 

N3 = (l+r)(l-s)(r-s-1)/4 (2.36) 

N4 = (l+r)(l+s)(l+r)/2 (2.37) 



16 

s y 
s 

r- 1 1 1 5 7 
6 5 ~ 

1 

8 4 r ~ r 
1 
~ 3 

1 2 3 
0 x 

Figure 3. Two-dimensional Quadratic Isopa-
rametic Element and Its Mapping 



N5 = (l+r)(l-s)(r+s-1)/4 

N6,_= (1-r)(l+r)(l+s)/2 

N7 = -(1-r)(l+s)(r-s+l)/4 

N8 = (1-r)(l+r)(l-s)/2 

17 

(2.38) 

(2.39) 

(2.40) 

(2 .41) 

The shape function Ni has unit value on the ith nodal point and zero 

value on any other nodal points. 

Numerical Integration 

It is difficult to obtain a closed form of the integration of 

Equations (2.16) through (2.31). Therefore, numerical integration me­

thods must be used to compute each terms. Gerald [23] introduced many 

numerical integration techniques. The Gauss Legendre quadrature inte-

gration has been proved most advantageous in finite element work because 

a polynomial of degree 2n-l is integrated exactly using n-point Gauss 

legendre quadrature. In one-dimensional problems, the quadrature for­

mula for g(x) is expressed as 

11 n 

1g(x) dx = ~Wi g(xi) (2. 42) 

where n is the number of sampling points, and Wiand g(xi) are the 

weights and values of the function at the sampling points. The example 

of sampling points is given in References [21,22, 23]. 

Because we are dealing with a circular axisymmetric duct, the vol­

ume and surface integrations in Equations (2.16) through (2.31) can be 

replaced by area and line integrations, respectively, by the following 

relations: 

dV = 2'ITy dA (2.43) 
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' and 

dS = 2ny dl (2.44) 

When Equations (2.43) and (2.44) are used for the integration of an 

isoparametric element, the results are 

f v F dV =[A F 2ny dA = J JF(r,s) 2nLNJ{Y} IJ I dr ds (2.45) 

fs G dS =fl G 2ny dl = JG(r) 2nLNJ{Y} IJI dr (2.46) 

where N {Y} is equal toy and IJI is the determinant of the Jacobian 

matrix. For two-dimensional problems, the Jacobian matrix, [J], is 

expressed as 

[ 
x, 

[J] = r 

x,s 
(2. 47) 

where x,r indicates the partial derivative of x with respect to r. Thus, 

the Gauss legendre quadrature can be directly applied to Equations (2.45) 

and (2. 46). 



CHAPTER III 

APPLICATION OF ACOUSTIC-FLOW FINITE ELEMENT 

Several example problems are solved using the finite element for­

mulation which was derived in the previous chapter. The finite element 

application is made to simple problems to verify the accuracy of the 

finite element solution and after that more complicated problems. 

Sound propagation in a duct including no fluid flow is considered. 

The propagation of a plane wave and a higher mode wave in a straight 

duct is solved using the finite element formulation. Here the cut-off 

frequency is considered for the case of a higher mode wave. Next, the 

sound propagation of a plane wave in a bottle-like duct with closed end 

is treated, and the finite element solution is compared with the experi­

mental result. 

Later, sound propagation in a duct including a fluid flow is con­

sidered as example problems. The propagation of plane wave in a duct 

with uniform fluid flow is solved, and these results are compared with 

the analytical solutions. After that. the sound propagation in a duct 

including a constant gradient fluid flow is treated. In this example 

the pressure distribution across a duct is investigated. 

Finally, as a more complicated example problem, the sound propaga­

tion in a converging-diverging duct including two-dimensional fluid flow 

is studied. In this case, the velocity distribution of fluid inside a 

converging-diverging duct is obtained using the finite element analysis. 
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Acoustic Field In Circular Straight Ducts 

With No Flow 

When no flow is present in a duct, Equation (2. 1) is reduced to 

( 3. 1 ) 

Moreover, considering a plane wave along a straight duct also reduces 

Equation (3.1) to 

32~ + k2 p = 0 (3.2) 
ax 

where x is the axial direction of a circular straight duct. For this 

simple problem, the percentage error of the finite element solution to 

the exact solution versus the number of elements per wavelength is shown 

in Figure 4, which is called the convergence curve for the no flow case 

using two-dimensional quadratic isoparametric elements. According to 

this curve, we can decide how many elements per wavelength are needed to 

obtain the finite element solution within a certain percentage error 

when compared with the exact solution. As an example, the finite ele-

ment solution obtained using eight elements per wavelength is shown in 

Figure 5 and compared with the analytic solution. Both results are in 

very good agreement. 

The convergence curve for the no flow case using two-dimensional 

cubic isoparametric elements was given in Reference [18]. When the 

quadratic and cubic isoparametric elements are compared for this case, 

three and a half quadratic elements and three cubic elements are needed 

respectively to obtain the solutions with one percentage error. Even 
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though the cubic isoparametric elements give slightly more accurate 

solutions, they need much larger bandwidth for the computation of the 

resultant linear algebraic system of equations. Thus, the quadratic 

isoparametric element is better for this problem. 

When a plane wave is used as a input wave, the wave propagates 

along a straight duct in the shape of a plane wave as shown in Figure 6. 

In order to consider the propagation of a higher mode input wave 

the concept of cut-off frequency should be introduced. The cut-off fre-

quency is found from the equation 

(3.3) 

Using the separation of variable method to Equation (3.3), we obtain 

(3.4) 

where Pis the amplitude of pressure and 

k = J k2 - k 2 
x mn (3.5) 

Applying the following boundary condition to Equation (3.4) 

at r = a (3.6) 

yields 

J '(k a)= 0 (3.7) m mn 

Thus, the cut-off frequency is obtained form Equation (3.7). For 

instance, the cut-off frequency for a mode (1.0) inside a circular duct 

with a radius of 0.2m is 502.55 cycles/sec. 

The higher mode (1.0) is treated here so that higher and lower 
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frequencies than the cut-off frequency are used as input to the duct. 

For higher mode (m, n) the anechoic termination impedence is pc/amn, and 

amn is computed from 

J 1 
k 

amn = - ( mn)2 
(3.8) k 

which was given in Reference [24]. 

As expected the input wave with higher frequency than the cut-off fre-

quency propagates without the acoustic pressure drop, but the input wave 

at lower frequency than the cut-off frequency propagates with the con-

stant decaying rate in logarithmic scale of absolute pressure. The de-

caying rate is computed as below. 

From Equations (3.5) and (3.8), we obtain 

k = ka x mn (3.9) 

and substituting Equation (3.9) into Equation (3.4) yields 

p = p• eikamn x (3.10) 

where 

(3.11) 

Thus, when the input frequency is less than the cut-off frequency at 

higher order mode, we get from Equation (3.8) 

a = i } ( kmn ) 2 - 1 
mn k = i smn (3.12) 

Substituting Equation (3.12) into Equation (3.10) gives 

P = p• e-ki3mn x (3.13) 
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Consequently, the decaying rate in logarithmic scale is -kSmn' and the 

input wave with lower frequency has the larger decaying rate. Figure 

7 shows the phenomena mentioned above. 

Sound Field In Varying Cross-section Ducts 

Because the accuracy of the finite element solution was proved for 

the sound field in a constant area duct with no flow in last section, 

the accuracy of the finite element solution for the sound in a varying 

cross-section duct with no flow will be verified. As that example prob­

lem, a bottle-like duct with a closed end is studied using the finite 

element formulation. The piston-type sound source is used at the bottle 

mouth and the hard walls exist in the other sides. 

When Ka is larger than 1.3, the higher modes become significant so 

that it is hard to get the exact solution using the analytical approach. 

Therefore, the finite element formulation is used to solve the bottle-

1 ike duct with a closed end when Ka is equal to 1.95 which is larger 

than 1.3. The finite element solution and the experimental result are 

shown in Figure 8. The experimental result was given in Reference [18]. 

The reason there is a slight difference between both results is that 

the duct shape obtained by curve fitting using two-dimensional quadratic 

isoparametric elements is not the actual duct shape used in experimental 

analysis. The finite element mesh used for this problem is shown in 

Figure 9, and this mesh was chosen based on the convergence curve given 

in the last section. 

In last and this sections, the accuracy of the finite element solu­

tion was proved for the duct acoustic problem not including flow in a 

duct. 
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Sound Field In Circular Straight Ducts 

With Uniform Flow 

30 

When we consider the uniform airflow in a duct, the terms contain-

ing a velocity V in radial direction and a derivatives with respect to 

y can be draped from Equation (2.1). Also, if the plane wave is treated, 

the equation is simplified to the form 

( 1 u2) a2P _ 2U .£E.. + k2P = O 
c2 ax2 ~ax 

(3.14) 

The analytic solution to Equation (3.14) with proper boundary conditions 

is disscussed in Appendix B. 

The convergence curves for the constant area duct problem including 

uniform flow are given in Figures 10 and 11. Figure 10 is for the case 

of flow along the sound propagation, and Figure 11 is for the case of 

flow against the sound propagation. The number of elements per wave~ 

length can be selected based on these convergence curves for the constant 

area duct with uniform flow. 

The comparisons between the convergence curves for the quadratic 

isoparametric elements shown in Figures 10 and 11 and those for the cu-

bic isoparametric elements given in Reference Q8] indicate that the 

quadratic isoparametric elements are better even though the cubic iso­

parametric elements give slightly more accurate results because of the 

same reason as mentioned for the convergence curve of the no flow case. 

The flow in the same direction as the sound propagation convects 

the sound propagation so that a higher acoustic pressure propagates 

along a duct. The comparing curves between finite element and exact 

solutions are given for M=0.5 and M=-0.5 respectively in Figures 12 and 
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13. The finite element solutions are in very good agreement with the 

analytic solutions developed in Appendix B. In Figures 12 and 13 A is 

the wavelength of the convected sound when the flow exists inside a duct 

and A is equal to (l+M)Ao, where Ao is the wavelength when no flow exists 

in a duct. 

From this study it can be concluded that the finite element analy­

sis gives the accurate solutions for the constant area duct acoustic 

problems including uniform flow. 

Sound Field In Circular Straight Ducts 

With Constant Gradient Flow 

The circular straight duct containing constant gradient flow as 

shown in Figure 14 is analyzed using the finite element method. Even 

if the plane wave is used as an input wave, the wave inside a duct is 

not the plane wave any more because of the refraction and the convection 

due to the shear flow. It is very difficult to predict the anechoic 

termination impedence so that a long duct can be used to attenuate the 

reflected wave due to the disharmony of impedence at the right-side boun­

dary. Three ducts with different lengths but same radii are used to 

find a duct whose front portion is not affected by the reflected wave 

due to the disharmony of the anechoic termination impedence. To do so 

the pressure distributions along the radii of the front portions of three 

different ducts with same input frequencies are investigated. They are 

shown in Figure 15. As shown in that figure the pressure distributions 

for two ducts with 20cm and 30cm lengths are almost same. This means 

that 20cm of length is enough to decay the reflected wave coming from 

the right-side boundary so that the front portion of the duct may not 
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be influenced by the reflected wave. Thus, this length duct is used 

for this study. 

Using the finite element analysis, two kinds of mode shpaes are 

obtained for the pressure distribution across a duct, which are shown 

in Figure 16. In the first mode shape, the sound is directed into the 

boundary walls due to the velocity gradient in shear flow. This was 

predicted using the analytic study in References [19,25]. Moreover, 

the large value of velocity of shear flow makes a greater change of 

pressure across a duct than the small value of velocity, which is shown 

in Figure 17. This result was also predicted by Pridmore-Brown [19]. 

The above phenomena can be used in reducing undesired sound by 

making it pass through an acoustically lined duct, and we can conclude 

the finite element analysis combined with the convected wave equation 

can be used to solve the duct acoustic problem including shear flow. 

Sound Propagation Inside Circular Converging­

Diverging Duct With Two Dimensional Flow 

The converging-diverging duct with two-dimensional flow is analyzed 

using the finite element method. As the geometry of the duct becomes 

complicated, the phenomenon of sound propagation in a duct also becomes 

difficult to predict. Even though the plane wave enters the inlet of a 

converging-diverging duct, the plane wave does not persist any more 

along the duct. Particuarly, with the existence of flow inside a duct, 

the acoustic pressure field comes to be more complex. Figure 18 shows 

the finite element mesh to be solved. 

First of all, the acoustic field is studied without considering air­

flow in a converging-diverging duct. As the plane wave propagates 
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inside a duct, the wave is in the ~hpae of standing wave in pre-nozzle 

and nozzle sections. However, in post~nozzle section there is almost 

no variation in acoustic pressure as shown in Figures 19 and 20. The 

wave almost remains a plane wave in pre-nozzle section, but the wave is 

converted into higher mode in nozzle seciton. After the nozzle section 

the higher mode decays due to the cut-off frequency characteristics. 

Thus, in this section the shape of wave comes to resemble the plane wave 

as the sound continues to propagate along a duct, which is shown in 

Figure 21. 

Next, we assume the uniform flow at the inlet of a converging­

diverging duct. Even if the inlet velocity is assumed to be uniflow, 

the velocity distribution inside a converging-diverging duct does not 

remain uniform throughout the duct. A host of papers have been published 

about the velocity field in a varying area duct [26-30]. In this paper, 

the finite element method using the potential flow theory is used to 

compute the velocities in axial and radial directions of a converging­

diverging duct. The obtained velocity distribution in a converging­

diverging duct is shown in Figure 22. Here, the length of arrow indicates 

the relative magnitude of velocity. As clearly shown in the figure, the 

radial velocity component cannot be neglected around the nozzle section. 

Thus, the terms containing the radial velocity in the wave equation can­

not be also omitted. The sound propagation with such velocity component 

is solved and also shown in Figures 19 and 20. The characteristics of 

sound propagation is preserved with the flow, but the peak of acoustic 

pressure is different and there is also phase shift between no flow and 

flow cases. Moreover, in case of Ka=2.2 the acoustic pressure peak 

carrying flow is higher than that not carrying flow, but in case of 
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Ka=0.73 the above statement is reversed. These are different results 

compared to the results obtained using o~ly one-dimensional flow which 

does not include the radial velocities. The finite element analysis 

for these problem using one-dimensional flow were also shown in Figures 

19 and 20. Thus, the radial velocity terms cannot be neglected in solv­

ing the converging-diverging duct acoustic problem containing flow in 

the duct. 



CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Some important conclusions can be deduced through this study as 

mentioned below: 

1. The Galerkin finite element method in combination with two­

dimensional isoparametric element was proved to be powerful in solving 

duct acoustic problems. In particular, this method was very useful to 

the duct with complex geometry of boundaries and complex boundary con­

ditions. This kind of problems are very hard to solve by analytic and 

other approximate methods. 

2. The duct acoustic problems with shear flow in a duct were veri­

fied to be solved using the convected wave equation. The finite element 

analysis using the convected wave equation gave reasonable results as 

predicted by analytical method. Moreover, two different mode shapes 

were obtained using the finite element analysis. The first mode of two 

modes was predicted by some authors [19,25]. 

3. Two-dimensional quadratric isoparametric element was found to 

have advantages compared to linear or cubic isoparametric elements. The 

linear isoparametric element connot model the curved boundary, and there 

is no big difference in convergence curve between quadratic and cubic 

isoparametric elements. Thus, it can be concluded that the quadratic 

isoparametric element is the best for the duct acoustic problems. 

4. The result of sound propagation in a converging-diverging duct 
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containing two-dimensional flow was quite different from that with one­

dimensional flow. Hence, the vertical velocity cannot be neglected in 

predicting the sound propagation in a converging-diverging duct contain­

ing flow. 

Next, some works can be recommended for the further research based 

on this study. 

1. As mentioned before, the basic domain equation used throughout 

this research was derived based on the assumption that the velocity of 

flow in an element was constant. This assumption is reasonable when the 

smaller and smaller element mesh is used. However, if Equation (1.7) is 

used as a domain equation, it need not be assumed that the velocity is 

constant in an element. Instead, the larger finite element mesh can be 

used and the finite element solution will be more accurate for the duct 

acoustic problems including diverse flow. The disadvantage of Equation 

(1.7) is that the higher order shape function is required because of Cl 

conformability. 

2. Instead of an axisymmetric duct, any shape of duct can be ana~ 

lyzed using the finite element method. The different shape of duct re­

quires some change in numerical integration procedure. In this case, 

Equations (2.43) and (2.44) cannot be used. 

The further investigation as mentioned above will make the finite 

element method be used to analyze more general duct acoustic problems. 
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APPENDIX A 

BOUNDARY CONDITION 

The momentum equatton in the x-direction is 

~+U~+V~=-~ P at ax ay ax 

Here, the velocity can be expressed as 

u = iw(A cos (wt-kx) + B cos (wt+kx)) 

where A and B are arbitrary constants. 

Substituting Equation (A.2) into Equation (A.l) yields 

. au au aP 
i pwu + U - + V - = --ax ay ax 

At the right-hand side bouncary of a duct, u can be expressed as 

p 
u = -z 

Substituting Equation (A.4) into (A.3) gives 

(A. 1 ) 

(A. 2) 

(A.3) 

(A.4) 

(A. 5) 

Using the assumption that the impedence is independent of space, we get 

= aP -an (A.6) 

The boundary conditions for the other side walls can be deduced in a 

similar way. 
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APPENDIX B 

ANALYTIC SOLUTION FOR A STRAIGHT DUCT ACOUSTIC 

PROBLEM WITH UNI FORM FLOW 

The domain equation for this case is 

The solution for Equation (B.l) is 

. kx . kx 
A e- 1 l+M 11-M 

P = + B e 

The corresponding boundary conditions are 

at x = 0 

and 

ap _ aP . P u aP 
- an - - ax - l ow z + z ax at x = L 

where L is the length of a straight circular duct. 

When only right-traveling wave exists, the impedence is 

z = oc 

When only left-traveling wave exists, the impedence is 

z = - oc 
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( B. l ) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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Thus, when only right-traveling wave exists, substituting Equation 

(B.2), its derivative with respect to x and Equation (B.5) into Equa­

tion (B.4) yields B=O so that we obtain 

kx 
-i l+M 

P = A e 

Next, from Equations (B.3) and (B.7) the final solution is 

P = _ . l+M f( ) 1 -k- x,y e 
-i kx 

l+M 

(B. 7) 

(B.8) 

Hence, the real and imaginary parts of pressure can be obtained from 

Equation (B.8). 

When only left-traveling wave exists, the similar procedure can 

be applied to obtain the analytic solution. 
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