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CHAPTER I 

INTRODUCTION 

Background 

Although no real physical domains extend to infinity, 

a number of solutions to continum problems which are 

assumed to extend to infinity have been produced. Pioneers 

of elasticity, starting with Lord Kelvin, Boussinesq, Lamb 

have analyzed various problems of the potential, static 

and dynamic response in the three dimensional space, and 

in half space. In engineering models a considerably large 

medium, as compared to the domain of interest, is often 

idealised to be an appropriate infinite region. 

Many such problems occur in practical life in differ­

ent fields. Examples arise in structure- soil interaction 

and structure- fluid interaction where the media bounding 

the structure extend to infinity. The acoustic radiation 

problem is another example. In the electrical engineering 

field, electromagnetic problems for antenna and surveying 

for mineral deposit are being studied. 

One of the first numerical solutions for an unbounded 

domain was by Richardson (20} who matched his finite diff­

erence solution in the region of a dam foundation to the 

Boussinesq's analytical solution for a point load on a 

1 



half space. A number of other techniques have been used 

since in different applications of continum mechanics. 

2 

The normal practice in the conventional finite element 

method is to idealize the unbounded domain by extending the 

f irrite element mesh outward to a point where the influence 

of the exterior domain is negligible. This approach requi­

res an experimentation with several grid sizes and assumed 

boundary conditions. Results obtained are generally good 

for static problems but the method is not suitable for 

many dynamic analyses. Because of computer storage limita­

tions, the number of normal finite elements required to 

achieve a certain accuracy may be quite large. This will 

result in a very large number of simultaneous equations 

which may place a severe limitation on usefulness of the 

method for practical problems. 

The boundary solution procedures have been developed 

to circumvent the above difficulties and have been used to 

deal with infinite domain problems. In this method a trial 

function is selected a priori, and then the boundary cond­

itions are satisfied in a weighted integral sense. Differ­

ent variations of this method are reported in the literat­

ure in different fields. 

One of the major disadvantages of the boundary solution 

procedure is the loss of localized discretization leading 

to an unhanded system of equations and in some cases 

nonsymmetric matrices. Also, incorporation of boundary 

solution procedures into existing finite element programs 
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is cumbersome. 

Infinite Finite Elements 

The common characteristic in the development of most 

finite elements is that some quantity for example, poten­

tial energy is integrated and minimised over a finite 

domain. There seems to be no reason why the domain should 

not be infinite provided the quantity integrated remains 

finite. An infinite element is a specialized finite ele­

ment which is of infinite extent in one coordinate direc­

tion. This element posses infinite domain with properly 

selected decaying functions and integration schemes. No 

matter how the element equations are derived, from a vari­

ational principle or directly from governing differential 

equations some quantity will be integrated throughout the 

element domain. Therefore this quantity should be bounded 

and well defined. 

Infinite elements were introduced independently by 

Ungless (11) and by Bettes (1). Ungless used a reciprocal 

decay and Bettes used an exponential decay in their shape 

functions. The method was originally applied to infinite 

half space and potential problems. Subsequently it was 

applied to unbounded surface wave problems by Bettes and 

Zienkiewicz (2) and theri to a study of coupled hydrodynamic 

response of concrete gravity dams (3). Chow and Smith (8) 

have developed periodic infinite elements based on static 

infinite elements of serendipity family for dealing with 



multiple wave types encountered in geomechanics problems. 

Medina (7) describes a parametric infinite element for 

solving axisymmetric problems under non axisymmetric for­

cing functions. Lynn and Hadid (6) have used reciprocal 

decay infinite elements to solve elastic half space prob­

lems. Recently Beer (10) has used infinite element for 

analysis of underground excavation problems in a prestre­

ssed infinite medium. Zienkiewicz (21) has proposed a 

mapped infinite element based on the idea of mapping an 

infinite region onto a finite one. 

These papers describe the necessary basis for the 

technique and this is found to be often simple and econo~ 

mical. Infinite elements do not destroy the symmetry of 

equations or their banded structure in the stiffness 

matrix. No special techniques are needed in their imple­

mentation and they can be easily incorporated into exist­

ing finite element programs. 

Objectives 

· 1. Most of the earlier works which modelled infinite 

domain problems with infinite elements use only one type 

of infinite element. To this date no results have been 

published where all types of infinite elements are used 

to model one problem. In this work different types of 

infinite elements will be used to model the problem of an 

infinite beam on elastic foundation. 

4 

2. A comparison of the behavior of different types of 
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the infinite elements will be made. The effect of various 

parameters that influence the solution behavior will be 

discussed in detail. 

3. A method for analysing problems where very little 

is known about the solution behavior will be outlined. 

4. A modified infinite element based on mapped infi­

nite element will be proposed. 



CHAPTER II 

FINITE ELEMENT MODEL OF THE INFINITE BEAM 

Background Theory 

The problem chosen to analyse the infinite domain 

behavior is an infinite beam on elastic foundation. There 

are two reasons for choosing this problem: (1) the avail­

ability of analytical solution for comparison with finite 

and infinite element models, (2) a one dimensional 

problem is easier to deal, the infinite element is usually 

constructed by extending the one coordinate direction to 

infinity. 

The analytical solution of an infinite beam on elastic 

foundation subjected to a concentrated load at the center 

is available (14). To make use of the symmetry only one 

half of the beam will be considered. In Figure 1 the 

origin of coordinate axes (z,x) is located at the centroid 

of the beam cross section. A concentrated load P is app­

lied to the beam at the origin of the axes. The condition 

of zero slope is specified to make use of symmetry for 

extending the solution to the left of the lateral load. 

The load P causes the beam to deflect, which in turn dis­

places the elastic foundation. As a result a distributed 

6 
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force is developed between the beam and the foundation. 

Thus relative to the beam the resistance of the foundation 

produces a laterally distributed load "q" (force per unit 

length) on the beam. In certain regions the deflection 

of the beam may be negative. Hence, since the beam is 

assumed to be attached to the foundation, the foundation 

may in certain areas exert a tensile force on the beam. 

The differential equation of bending can be obtained 

as 

EI d'*'w/dx"° = -q ( 2 • 1 ) 

For linear elastic foundation the distributed load q is 

linearly proportional to the deflection w of the beam. 

Thus 

q= kw ( 2. 2) 

where, spring coefficient k may written in the form 

k=· bko (2.3) 

in which b is the beam width and k. is the elastic spring 

constant for the foundation. 

The general solution of Equation (2.1) may expressed as 

w= exp(-#'x)*(c, sin~x+cz. cospx)+exp(-,sx)*(c3 sin~x+c., cospx) 
( z. 4 ) 
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where, 

13 = ( k I 4 EI y ) y4-

c,, c~, c3 , c~are constants to be determined from boundary 

conditions. 

The deflections of the beam goes to zero for large 

values of X. Hence constants c, and c~ must be set equal 

to zero and the equation for displacement reduces to 

w= exp(-px)*(c5 sin px+c61 cos ~x) ( 2. 5) 

The constants c~ and c~ can be evaluated using the 

boundary conditions. The final equation for the displac­

ement, w, is given by 

w=(P,B/k)*(cos ,sx+sin J3x)*exp(-,Bx) ( 2. 6) 

Conventional Finite Elements 

The solution of continum problems involves determina­

tion of unknown function U such that it satisfies a 

certain differential equation set 

A(U)= 

A, (U) 

A2 (U) = 0 ( 2. 7) 
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which has to be solved in domain -D.. , given in Figure 2, 

together with the boundary conditions 

B(U)= 

B1 ( U) 

B2 ( U) 

on the boundaries r of the domain. 

( 2. 8) 

The unknown function U is approximated in the finite 

element method by 

(2.9) 

where, N4 are the shape functions defined in terms of the 

independent variables (such as coordinates X, Y) and all 

or some of the parameters ai are unknown. 

The parameters ai are obtained from a set of equations 

which have integral forms of the type 

(2.10) 

where, G1 and gi are some known functions or operators. 

These integral forms lead to an approximation element 

by element and an assembly of system of equations can be 

achieved by the use of standard procedures. If G. and g. 
1 1 

are integrable, we have 
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y 

r 

Figure 2. Problem Domain and Boundaries. 



12 

JG. dJL + jg. df = 
1 1 

(2.11) 

where, .n..e is the domain of each element and re its part 

of the boundary. 

The trial function N4 is narrowly based. It takes a 

value of zero everywhere except in elements associated 

with the node. This leads to a banded set of equations. 

The difference between various finite element approaches 

lie in the choice of shape functions and in the manner in 

which Equations (2.10) are derived. Various procedures 

like method of weighted residuals, variational principles 

can be used. 

If the differential equations are linear then the app­

roximating equation system will yield a set of linear 

equations of the form 

Ka + f = 0 (2.12) 

where, 

"' 
K4j = 2_ K"· 

C:al :/ 

M 

~ 
e 

f 4 = f. 
e=• -4. 

Finite Element Model 

The finite element model of the problem is given in 

Figure 3. In all results five isoparametric beam eleme­

nts and one infinite element will be used. The different 

cases will be analysed by varying the element length of 
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the beam elements. The length of beam elements vary from 

10 units to 200 units. The different geometries are given 

in Figure 5. 

Isoparametric Beam Element 

The isoparametric beam element is a straight beam 

element having three nodes as illustrated in the Figure 4. 

This element can account for shear deformation since energy 

due to shear as well as bending is considered in the 

formulation (15). This element is quite versatile and 

can be used to analyse not only thin beams with negligible 

shear deformation, but also thick beams and beams of san­

dwich construction in which shear effects are important. 

In this work only thin beams are considered. 

Two coordinate schemes are used in the element formu­

lation, the global coordinate system (X) and the local 

coordinate system for element Ct.). The three nodes are 

at ~ = -1, 0, and +l as shown in Figure 4. Each node i 

has two displacement degrees of freedom associated with it 

w~ the lateral displacement of the beam 

04 = (dw/dx).i + r;4. the rotation of the normal 

Thus the displacements may be listed in the vector 

f/ = [WI , a, ' W:I, ' 92. ' W3 ' e.3] (2.13) 

The shape functions associated with each node are: 



p : .2. 000 LS 

s -
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Figure 3. Finite Element Model of the Infinite Beam 

'1:: _, ~t 'f=-1-1 

r· 
2 

I 2 3 

{ ~:} {~:J 1~~} 

Figure 4. Isoparametric Beam Element 

I 

• 00 

. 
-- x 

I-' 

""" 



15 



N,= -0.5*(c)*(l-!) 

Na.= (1-e)*(l+l) 

N3 = 0.5*(e)*(l+~) 

16 

(2.14) 

The lateral displacement w(!) at any point within the 

element is defined in terms of the shape functions and 

associated nodal displacements by simple interpolation 

(2.15) 

The rotation at any point S(t) within the element is 

defined by 

(2.16) 

The X coordinate is defined in a similar way 

{2.17) 

The strains are defined in terms of nodal displacements 

and derivatives by 

as 0 ·aWtffJx 0 -dNa. 0 i3.N3 "'· ox- OT 07 &-, - WL -
¢ :: -ofAl+e - a.N, -~"''1. -oAJ.J 

9,_ 
N, N,_ N3 IJJ ax i> l( Ox dx 

93 

E - [ 8, B2. 83] ere -
( 2.· II) 

- B cf<? -
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The shape function derivatives in the strain matrix 

B~ can be calculated from the expression 

( a.19) 

where, oya~ is obtained from the jacobian matrix. 

The stress strain relation for beam may be written as 

M EI 0 d&/dx 

= (2.20) 

Q 0 s 

where, M is the bending moment and Q is the shear force. 

The element stiffness matrix Ke can be evaluated from 

the energy considerations given in Appendix (A). 

(2.21) 

The stiffness matrix can be evaluated numerically using the 

Gauss-Legendre quadrature. A submatrix in Ke linking two 

nodes i and j may be evaluated from the expression 

where 

K = J [Bi]T [nJ [ B4] detJ d£. 

dx= det J dt 

(2.22) 

The distributed lateral load due to spring foundation 

can be expressed in.terms of nodal forces by using virtual 

work principle. This term was added to stiffness matrix 

for simplifying the programming. The applied nodal forces 

and couples may be represented by the vector 

(2.23) 
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For distributed loading II q II 

P...: = JNL (-q) dx 

= JN .i (-kw) dx (2.24) 

and C. = 0 
"" 

The shape functions chosen for the infinite element 

should realistically model the infinite domain behavior. 

Also, they should lead to integrations over the element 

which are finite. 

The infinite elements can be constructed as suggested 

by Bettes (1) by finding the lagrangian polynomials to 

produce lagrange-type infinite elements. In general it is 

possible to extend any finite element to infinity. Since 

finite element shape functions will not be appropriate to 

describe the behavior of field variables, decay functions 

are introduced to modify the finite element shape functi­

ons. The shape functions will be of the form 

where 

and 

N.(s)= f .(s) M.(s) 
4 ~ ~ 

(2.25) 

i=l, .•• n 

M~(s)= Shape functions of the original element 

f ~(s)= Decay functions 

f.(s-)= 1 
J. .&. 

There is no requirements that decay function take any 

special value at other nodes. The shape functions N~ 



should tend to far field value at infinity. 

There are different possibilities in the choice of 

decay functions fi. For the exponential decay function 

the decay function f 4 is of the form 

19 

(2.26) 

L is an arbitary parameter that determines the 

severity of decay. The decay function for reciprocal 

decay is of the form 

2.27 

where s 0 is some origin point. By varying s and n the 

severity of decay can be changed. In the mapped infinite 

element the infinite region is mapped onto a finite. region 

and standard shape functions are used to interpolate the 

unknown functions. The shape functions for different 

infinite elements will be discussed in detail in the next 

chapters. 



CHAPTER III 

IMPLEMENTATION OF MAPPED INFINITE ELEMENTS 

Mapped Infinite Element 

The infinite region corresponding to infinite element 

is mapped onto a finite one and standard shape functions 

are used to interpolate the values of unknown variables. 

Figure 6 gives mapping of an one dimensional element. 

The element extending from x, to infinity is mapped on to 

a domain -1~ s ~ 1. 

The mapping is of the form 

" " x = N0 (S) X 0 + N,_ ( S) x:& (3.1) 

where Xo is some arbitary decay origin and, 

" N 0 ( s) = -s/(1-s) 
/' 
N2 (s) = l+ (s/1-s) 

At s = +l x = ( s/1-s}*(X -x )+X =oO (X2..~ X?>) 2. 0 2 

At s = 0 x = xi. 

At s = -1 x = (X0 /2)+(X 2/2) 

The coordinate X, is chosen to be at the outer edge 

of finite element region. Thus 

(3.2) ' 

20 
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r ~ "' += A 
~ 

oO 
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Figure 6. Geometry of the Mapped Infinite Element 



Using these relationships the mapping function can be 

defined as 

22 

I\ A 
X = (2X 1 -Xi) N 0 {s) + N2.(s) X~ ( 3 • 3 ) 

An important condition of any mapping used is that 

~,,+ ~'2.= 1 

which is here identically satisfied. This is necessary 

in order to that the mapping does not alter with any 

changes in origin of the coordinate system. Also this 

condition is necessary for convergence of solution (13). 

Any shift in origin ~X leads to 

X' = Xe.+ AX 

Substituting Equation (3.4) in Equation (3.3) gives 

X +f.:lX = (X 0 + !1X) ~.+ (X2.+AX) Ni. 
1' A 

AX = .AX {N0 +Ni.) 

which is true only if 

" " N., + N2. = 1 

( 3. 4) 

The shape functions associated with nodal displaceme­

nts are given by 

where, 

W ( S) = N, ( S) w, + Na. ( S) Wz.. 

e < s) = N, < s) a, + N,. < s > ei. 

N, (s}= -s/2 + s /2 

NL (s)= l_. Sz. 

( 3. 5) 

The shape function corresponding to the third node is 

condensed out as the displacements tend to zero at infinity 

This automatically imposes the boundary conditions. 

It is possible to extend this concept to two or more 
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dimensions. A typical two dimensional element is given 

in Figure 6 with the mapped versions in s, r domains. 

One dimensional mapping given by Equation ( 3 . 3 ) can be 

applied to line through points 1 and 2 such that, 

(2X, -Xz.) " /\ /\ x = No+ Xi. Nz. 

y = ( 2Y, -Yz.) N,+ ~2. ~2. ( 3 • 6 ) 

The same can be applied to the lines through points 3, 4 

and 5, 6 giving the complete mapping for the element 

N, ( r) ( ( 2X1 -X.z) " x = * N. + X:iN'L )+ 
/\ " Ni,(r) * ( ( 2X3 -X'I-) N. + X,_ N.z. ) + 

" " N3 (r) * ((2Xs-x,) N + X" N2. ) • 

Similarly expressions for Y can be got. The terms N, (r), 

N~(r), N3 (r) are standard polynomial shape functions in 

the r direction. 

Mapped Infinite Element with Reciprocal Decay 

The infinite domain is mapped on to the finite domain 

using the same mapping function as in mapped infinite 

element. The inverse mapping can be found by solving 

Equation (3.3) for s yielding 

s = 1 - (2a IX - X0 ) = 1 - 2a/r ( 3. 7) 

where 

a = Xz.- x, and r = X - X0 

There may be a severe decay in solution behavior for some 

problems. In such problems using interpolation function 



similar to the one given in Equation (3.5), may lead to 

some errors. A modification to the shape functions will 

made in this work for modelling such problems. A decay 

term (l/r)wwill be added to the shape functions to make 

the element more versatile: 

From Equation (3.7), 

r = 2a/l-s 

24 

N N 
(1/r) = ( l-s/2a ) ( 3. 8) 

The nodal displacements are given by 

where, 

w ( s) = NI ( s) w, + N2. ( s) Wz. 

(1 ( s) = NI ( s) &, + Ni., ( s) S:a. 

N ( s) = 

N ( s) = 

N 
-s/2 + s /2 )*( 1-s/2 ) 

1- si.)*( 1- s)N 

The exponent n can be varied to match the severity of 

the decay of the problem. 

Effect of Decay Origin 

(3.9) 

The location of second node X J. influences the decay 

origin. The decay origin X0 is given by 

X 0 = 2X, - Xi.. 

The changes in decay origin change the decay length. By 

moving the second node farther increases the decay length. 

This causes a reduction in severity of decay. The effect 

of decay length was studied on different mesh sizes given 

in Figure 5. In all cases 5 beam elements and one 
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infinite element was used. 

Figure 7 illustrates the effect of decay length on 

different mesh sizes for the mapped infinite element. For 

very coarse meshes the effect of decay length on maximum 

displacement is negligible. Refining the mesh size inc­

reases the accuracy of the solution. For an optimum 

mesh size of beam elements (20 units), there is a small 

variation with decay length and the results are good. 

For a beam element length of 10 units (when the finite 

elements are not extended far enough), there is a wide 

variation in the displacments for different values of 

decay length. The displacements are underestimated for 

small values of decay length due to the overestimation 

of the stiffness of the infinite element. For large 

values of decay length, the severity of decay in sha~e 

functions is small. Hence, the infinite element behaves 

like a regular finite element. Imposition of boundary 

conditions lead to the underestimation of displacements. 

Figures 8,. 9 and 10 give similar results for mapped 

infinite element with reciprocal decay for different 

exponents n. By increasing n, even for large values of 

decay length, good results are obtained. By making n 

larger, the severity of decay is also increased. Large 

values of decay length reduce the severity of decay. 

Thus the increase of n offsets reduction in decay due to 
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large values of decay length. If the finite elements are 

not extended far enough the decay origin and n can affect 

the result significantly. But a coarse mesh leads to 

poor results. Hence, an optimum mesh size should be used 

to model the infinite domain problems. 

Comparison of Mapped Infinite Elements 

Figure 11 gives the comparison of the two types of 

mapped infinite elements with finite element model and 

analytical solution. For the finite element model 6 beam 

elements was used. The infinite element model had 5 

beam elements and one infinite element. The length of 

beam elements was 10 units. The graphs show that the 

mapped infinite element with reciprocal decay give better 

results than the mapped infinite element with no recipro­

cal decay and the finite element model. The mapped 

infinite element with no reciprocal decay gives inferior 

result than the finite element model. The reciprocal 

decay increases the versatility of the mapped infinite 

element. For problems· with severe decay in the solution 

behavior, by varying exponent n good results can be 

obtained. 

Doubling the length of beam elements to 20 units 

increase the accuracy of both finite element and infinite 

element models. But a still coarser mesh size of beam ele­

ments lead to poor results. For very coarse mesh sizes 
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there is no difference in solution behavior between finite 

element and infinite element models. Thus the infinite 

element problems cannot be solved by extending the finite 

elements far and making the mesh size coarse. The 

infinite elements can be used to find the optimum mesh 

size. This will reduce the number of elements needed 

to achieve a certain accuracy. The mapped infinite elem­

ent is simple in concept and the standard shape functions 

are used to interpolate the unknown functions. The 

numerical integration for evaluating the stiffness of 

the infinite element can be performed by standard 

Gauss-Legendre scheme. This is an advantage over the 

other types of infinite elements, which require special 

schemes for numerical integration. 



CHAPTER IV 

IMPLEMENTATION OF RECIPROCAL DECAY 

INFINITE ELEMENT 

Reciprocal Decay Infinite Element 

The shape functions for the infinite element are def i­

ned in· terms of a local coordinate system s. The infinite 

element has three nodes, the third one at infinity. The 

first two nodes are placed at s = 0 and 50. The shape 

functions associated with the nodal displacements are 

given by 

where, 

NI ( s) 

N2..(s) 

w ( s) = NI ( s) w, + NJ. ( s) w . 
2. 

N 
= ( (s,_ -s )/(sz -s,) )*( (s, - s)/(s -s.)) 

= ((s 1 -s )/(s 1 -sz.))*((s2 - s)/(s -s0 >>"' 

(4.1) 

s 0 is an arbitary decay origin which can be used to change 

the severity of decay. The exponent n can also be varied 

to match the severity of decay. A typical shape function 

is sketched in Figure 12. Small values of decay origin 

lead to severe decay and for large values of decay origin 

the decay is very small. Increasing 'n' leads to high 
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decays in the shape functions. The location of second node 

of the infinite element is arbitary and it was found that 

its location does not affect the results. 

Evaluation of stiffness matrix for the infinite ele-

ment involves numerical integration of functions of the 

form 

oO 

~f (s) ds 
d 

Two possibilities will be considered. The terms in the 

stiffness can be evaluated by using Gauss-Laguerre scheme. 

Alternately, the Gauss-Legendre scheme may be modified 

for an unbounded range as suggested by Bettes (5). 

Numerical Integration 

The Gauss-Laguerre integration scheme can be used by 

multiplying the weights by exp(+s). This scheme is not 

exact. It was found that using more sampling points led 

to poor results. When the terms in the stiffness matrix 

were examined it was found that some of them were unbounded. 

The use of more sampling points led to an overestimation of 

the stiffness of the infinite element. Figure 14 gives 

the effect of sampling points for beam element length of 

10 units for different exponents. A total of 6 elements 

was used, similar to the example on mapped infinite ele­

ment. An optimum value of decay length was used in the 

graphs. Using seven to fifteen sampling points generally 

gave good results. Figure 13 illustrates results for 
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different mesh sizes. The pattern is similiar for all 

cases. The displacements are underestimated , when more 

sampling points are used. For coarse meshes the effect is 

negligible and the results are generally poor. This is 

due to the poor modelling of the problem. 

The second method of performing the numerical integr­

ation is by transforming the semi infinite interval to the 

finite bounds of -1 to +l. This is achieved by a transfo­

rmation given in Appendix(B). The standard Gauss-Legendre 

scheme can then be used to evaluate the terms in the 

stiffness matrix. 

This scheme was applied by considering 48 sampling 

points. Five beam elements and one infinite element were 

used. The length of the beam elements was 10 units. In 

Figure 17 the maximum displacement was plotted for diff­

erent exponents n and for different values of decay 

origin. Increasing n led to better results. For large 

values of decay length the infinite element behaves 

like a regular beam element as the decay is negligible. 

Imposing the boundary conditions for the node at infi­

nity leads to the underestimation of the displacements. 

Small values of decay length lead to the overestimation 

of the stiffness of the infinite element. So an 

optimum value of the decay origin should be used. 

Figure 15 illustrates the solution behavior of 

the infinite element model. The displacements farther 

from the load are overestimated. The function used 
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for the transformation of the unbounded region to the 

finite region is shown in Figure 27 . The graph is not 

smooth and this can be one reason for poor solution 

behavior. To overcome the problem of the third node at 

infinity, which makes the terms in the stiffness matrix 

unbounded, the third node was placed at a large but 

finite distance. This large interval can be converted 

to the interval -1 to +l by a simple transformation. 

For this range the Gauss-Legendre scheme can be used. 

The solution behavior is very poor as illustrated in 

Figure 16. 

Effect of Decay Origin 

40 

The decay origin can significantly affect the results 

if the beam elements are not extended far enough. Figures 

17 and 18 give the effect of decay origin for beam element 

length of 10 units. At low values of decay origin and 

large values of exponent n lead to severe decay in the 

interpolation functions. The stiffness of the infinite 

element is overestimated and the displacements are small. 

For large values of decay origin and small values of n 

the decay is small and the infinite element behaves like 

a regular beam element. Imposition of the boundary con­

ditions lead to the underestimation of the displacements. 

Only for Gauss-Laguerre scheme, the displacements are not 

underestimated for large values of decay origin. This is 
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probaly due to inaccuracies in the stiffness matrix eval­

uation, but the exact reason is not clear. For very 

coarse mesh sizes the effect of decay origin is negligible 

Refining the mesh size leads to better results. For an 

optimum mesh size of beam elements there is not much var­

iation in the displacements and the results are good. It 

is very hard to find this mesh size in a conventional fin­

ite element analysis of infinite domain problems. By stud­

ying the effect of decay parameters on different meshes, it 

is possible to find this optimum mesh size in an infinite 

element model. Figure 19 illustrate this behavior. 

Comparison of Results 

Figures 20 and 21 provide a comparison of finite and 

infinite element model. The terms in the stiffness matrix 

were evaluated using Gauss-Laguerre scheme. 15 sampling 

points were used. In Figure 20 a total of 6 elements was 

used for finite element and infinite element models. The 

element length of beam elements was 10 units. The problem 

was solved first by using six finite elements and then by 

replacing the last element with infinite element. 

The infinite element model gives closer values to the 

analytical solution than the finite element model. The 

number of beam elements in the finite element mo.del was 

doubled to twelve elements and this result is compared with 
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the infinite element model having six elements in Figure 21. 

The infinite element model still gives better results than 

the finite element model with only half the number of 

elements. The farf ield solution of both the finite element 

and the infinite element models do not agree with the 

analytical results. The use of infinite elements can cut 

down the number of elements required to achieve desired 

accuracy. Eventhough, the stiffness matrix is not properly 

defined it is interesting to note that the results obtained 

are better than the results of the finite element model. 



CHAPTER V 

IMPLEMENTATION OF EXPONENTIAL DECAY 

INFINITE ELEMENT 

Exponential Decay Infinite Element 

The infinite element has three nodes the third one at 

infinity. The shape functons are defined in terms of the 

local coordinate systems (Figure 3). The three nodes are 

placed at s= 0, 50 and oo. The location of second node is 

arbitary and it was found that its location does not alter 

the results. 

The shape functions associated with nodal displacement 

are given by 

where, 

w ( s ) = N I ( s ) w I + Ni. ( s ) wt. 

e ( s > = N, ( s > e, + N 'L ( s > &2. 

N, (s)= (exp(s, -s)/L)*(sz. -s)/(s"' -s,) 

N2 (s}= (exp(~-s)/L)*(s 1 -s)/(s,-si> 

(5.1) 

The shape function corresponding to the third node at inf­

inity is condensed out as displacements are negligible at 

a large distance from the application of load. 

L is an arbitary decay parameter. There is no fixed 
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mathematical reason for choosing it. It helps to vary the 

severity of decay. Small values of L can be used when the 

solution decays fast. A typical shape function is sketched 

in Figure 22. The terms in the stiffness matrix can be exa­

ctly integrated by using the Gauss-Laguerre ~cheme. This 

is an advantage over the reciprocal decay infinite element 

which presents some numerical integration problems. 

Effect of Decay Parameter L 

The effect of decay parameter was studied by varying 

'L' from 2 to 100. Different mesh sizes were used as 

shown in Figure 5. In all cases 5 beam elements and one 

infinite element were used. Figure 23 gives a plot of 

maximum dislacement for different values of L. For coarse 

meshes the effect of decay parameter L is negligible. 

The results obtained are poor. Refining the mesh size of 

beam elements to an optimum value (20 units) gives good 

results and there is a small variation of displacements 

for different values of L. For a small mesh size of beam 

elements there is considerable variation in the displace­

ments. 

The displacements are underestimated for small values 

of L. This is due to overestimation of stiffness of infinite 

element. For large values of L the decay is small and the 

infinite element behaves like a beam element. Imposing 

the artificial boundary condition leads to underestimation 
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of displacements. 

Comparison of Results 

Figure 24 gives the comparison of finite and infinite 

element models. An optimum value of L was used. The 

length of beam elements was 10 units. The infinite ele­

ment model was constructed by using five beam elements 

and one infinite element. The infinite element model 

gives closer results to the analytical solution than the 

finite element model having six and twelve beam elements. 

Thus, with only half the number of beam elements, the 

infinite element gives closer results to the analytical 

solution. This result is significant since, in complex 

three dimensional problems the number of regular finite 

elements needed to achieve a certain accuracy may be quite 

large.and the use of infinite elements can cut down the 

number of finite elements. 

Figure 25 gives the result for doubling the length 

of beam elements. A total of 6 elements was used in 

the finite element and infinite element models. Both 

models give good results. Further increase in lengths 

of beam elements leads to poor results. The infinite 

domaim problems cannot be solved by using coarse mesh 

sizes. An optimum mesh size should be chosen to cut 

down the number of elements. It is hard to find this 

optimum mesh size by using the conventional finite 
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elements. By using infinite element and studying the 

effect of decay parameters on various mesh sizes it is 

possible to find an optimum mesh size. It should be 

noted that the infinite elements do not generally give 

good results in the far field. The infinite elements 

give the effect of far field on the domain of interest. 

Comparison of Different Infinite Elements 
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Figure 26 provide the comparison of different types of 

the infinite elements with finite element model. A total 

of 6 elements was used in all cases. All infinite elem­

ents with the exception of mapped infinite element with no 

reciprocal decay, give better results than the finite ele­

ment model. In all cases it was found that for small mesh 

sizes (if the beam elements are not extended far enough)~ 

variation of arbitary parameters like decay origin,decay 

length L lead to considerable changes in solution behavior. 

For very coarse mesh sizes, the variation of these parame­

ters have no effect and the results are poor. Refining 

the mesh size from a very coarse size leads to solutions 

with increasing accuracy. For an optimum mesh size there 

is a small variation in solution behavior and good results 

can be obtained. 

This behavior of infinite elements can be used for 

solving complex problems where no analytical solution 

exist. Trials should be made with different mesh sizes 
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and decay parameters. An optimum mesh size should then 

be chosen where there is only a small variation in solu­

tion behavior. 
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The infinite element models generally do not give good 

results in the far field. The infinite element do not 

represent the far field behavior. The effect of far field 

on the domain of interest is modelled by the infinite ele­

ment. The desired level of accuracy for the infinite 

domain problem can be achieved with less number of elem­

ents in an infinite element model than with finite element 

model. 

The reciprocal decay element has some numerical inte­

gration problems. Hence, the stiffness matrix of the 

infinite element may not be well defined. It is posssible 

to get good results if small number of sampling points are 

used in the stiffness matrix evaluation. The mapped 

infinite element is simple in concept as no special nume­

rical integration schemes are needed. The reciprocal 

decay in the mapped infinite element makes it more versa­

tile for dealing with problems having severe decay in the 

solution behavior. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The infinite element is an elegant way for analysing 

infinite domain problems. This method has a number of 

advantages. 

1. This method can be used to model complex problems 

where little is known about the solution behavior. By 

studying the effect of decay parameters on different meshes 

it is possible to arrive at a good solution. 

2. The infinite elements are simpler theoretically. 

They simply appear as a slightly different element type. 

3. The infinite elements can be introduced into exis­

ting finite element programs simply as addition to the 

element library. Most of the other techniques like boun­

dary element method, need special procedures. The infinite 

elements do not destroy either the symmetry of the equa­

tions or their banded structure. 

4. The infinite element should make the analysis of 

infinite domain problems more economical by reducing the 

number of elements used to model regions remote from the 

domain of interest. This benefit should be most marked 

in three dimensional problems. 

5. This method can be applied to non linear problems 
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which are difficult to solve by boundary integral methods. 

There are some disadvantages in the use of infinite 

elements. A suitable quadrature formula for a semi 

infinite interval must be included in the finite element 

program. The choice of various decay parameters is arbi­

tary and can affect the results if they are not properly 

chosen. The infinite elements do not represent the true 

solution behavior of farfield. Thus, the infinite element 

cannot be used to find good solutions in the far field. 

The recommendations for future study are as follows: 

1. The effect of decay parameters should be investi­

gated for dynamic analysis. 

2. The infinite elements can be applied to the acou­

stic radiation problemsr where finite element solutions 

have proved to be complex and expensive. 
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APPENDIX A 

DEVELOPMENT OF STRUCTURAL EQUATIONS 

The structural equations can be developed from the 

energy considerations (15). In any continum problems 

the actual number of degrees of freedom are infinite 

and, unless a closed form solution is available an 

exact analysis is impossible. In the finite element 

method the continum is divided into a series of elements 

which are connected at a finite number of points known 

as nodal points. The governing equilibrium equations can 

be obtained.by minimising the total potential energy of 

the system. The total potential energy ,7f, can be 

expressed as 

(A• I) 

where tr and e are the stress and strain vectors, d the dis­

placements at any point, p the body force per unit volume 

and q the applied surface tractions. Integrations are 

taken over the volume V of the structure and loaded sur-

face area, S. 

The first term on the right hand side of A.l repres­

ents the internal strain energy and the second and third 
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terms are respectively the work contributions of the body 

forces and distributed surface loads. 

In the finite element displacement method, the disp­

lacement is assumed to have unknown values only at the 

nodal points, so that the variation within the element 

is described in terms of the nodal values by means of 

simple interpolation functions. Thus, 

0 = Noe (A· 2.) 

where, N is the set of interpolation functions termed the 

shape functions and d""is the vector of nodal displacements 

of the element. The strains within the element can be 

expressed in terms of the element nodal displacements as 

= (A•.3) 

where B is the strain matrix generally composed of deriv­

atives of the shape functions. Finally the stresses may be 

related to the strains by the use of an elasticity matrix 

D, as follows 

o- = DE (A· <I) 

The total potential energy of the cont~num will be the 

sum of the energy contributions of the individual elements. 

Thus, 
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where Ve is the element volume and s~the loaded element sur­

face area. Performance of the minimisation for element e 

with respect to the nodal displacements~ for the element 

results in 

where, 

are the equivalent nodal forces for the element, and 

ke:: j[n]T[D][.B]dl/L 
Ve 

The summation of the terms in A. 6. over all the elements, 

when equated to zero, results in a system of equilibrium 

equations for the complete continum. "These equations are 

then solved by any standard technique to yield the nodal 

displacements. 



APPENDIX B 

TRANSFORMATION FOR SEMI-INFINITE 

NUMERICAL INTEGRATION 

The evaluation of stiffness matrix for the reciprocal 

decay infinite element involves numerical integration of 

integrals of the form 

oil> j f ( s) ds 
~ 

(B.l) 

This interval can be transformed to the range -1 to +l by 

a mapping of the form 

s = 2/1-t (B.2) 

Assuming a=l, the following corresponding points can be 

identified, 

At t=l s= 2/0 = oO 

At t=-1 s= 2/2 = 1 

Thus the integral given by B.l can written as 

00 +1 J f(s) ds =}g(t) dt ( B. 3) 
0. -1 

The function g(t) is given by 

g(t)= f (2/-t +1)*2/(1-t) 
'l.. 

This can be easily programmed by modifying the weights and 

abscissa of standard Gauss-Legendre formula. 
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The mapping function used for transformation is plotted 

in Figure 27. It shows a steep climb and is not smooth. 
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